repo
stringclasses 900
values | file
stringclasses 754
values | content
stringlengths 4
215k
|
|---|---|---|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
from math import cos, pi, acos
print("cosine of 90 degrees is zero:",cos(pi/2))
# find the degree of two unit vectors having the dot product of 0.
radian_degree = acos(0)
degree = 360*radian_degree/(2*pi)
print("the degree of two unit vectors having the dot product of 0 is",degree,"degrees")
# include our predefined functions
%run qlatvia.py
# draw the axes
draw_qubit()
#
# your solution is here
#
draw_quantum_state(3/5,4/5,"main")
draw_quantum_state(-4/5,3/5,"ort1")
draw_quantum_state(4/5,-3/5,"ort2")
draw_qubit()
draw_quantum_state(3/5,-4/5,"main")
draw_quantum_state(4/5,3/5,"ort1")
# randomly create a 2-dimensional quantum state
from math import cos, sin, pi
from random import randrange
def random_quantum_state2():
angle_degree = randrange(360)
angle_radian = 2*pi*angle_degree/360
return [cos(angle_radian),sin(angle_radian)]
# finding the angle of a 2-dimensional quantum state
from math import acos, pi
def angle_quantum_state(x,y):
angle_radian = acos(x) # radian of the angle with state |0>
angle_degree = 360*angle_radian/(2*pi) # degree of the angle with state |0>
# if the second amplitude is negative,
# then angle is (-angle_degree)
# or equivalently 360 + (-angle_degree)
if y<0: angle_degree = 360-angle_degree # degree of the angle
# else degree of the angle is the same as degree of the angle with state |0>
return angle_degree
%run qlatvia.py
draw_qubit()
from math import acos, pi
[x1,y1]=random_quantum_state() # randomly pick a quantum state
first_angle = angle_quantum_state(x1,y1)
print("the angle of |u> is",first_angle)
[x2,y2]=random_quantum_state() # randomly pick a quantum state
second_angle = angle_quantum_state(x2,y2)
print("the angle of |c> is",second_angle)
angle_between_1 = first_angle - second_angle
if angle_between_1 < 0: angle_between_1 *= -1
if angle_between_1 >180: angle_between_1 = 360 - angle_between_1
dot_product = x1*x2+y1*y2
print("their dot prouct is",dot_product)
angle_between_radian = acos(dot_product)
angle_between_2 = 360 * angle_between_radian/(2*pi)
print("the angle in between is calculated as",angle_between_1,"and",angle_between_2)
draw_quantum_state(x1,y1,"|u>")
draw_quantum_state(x2,y2,"|v>")
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# include our predefined functions
%run qlatvia.py
# draw the axes
draw_qubit()
#
# your solution is here
#
draw_quantum_state(3/5,4/5,"main")
draw_quantum_state(-4/5,3/5,"ort1")
draw_quantum_state(4/5,-3/5,"ort2")
# include our predefined functions
%run qlatvia.py
# draw the axes
draw_qubit()
#
# your solution is here
#
draw_quantum_state(3/5,-4/5,"main")
draw_quantum_state(-4/5,-3/5,"ort1")
draw_quantum_state(4/5,3/5,"ort2")
# include our predefined functions
%run qlatvia.py
# draw the axes
draw_qubit()
#
# your solution is here
#
draw_quantum_state(-5/13,12/13,"main")
draw_quantum_state(-12/13,-5/13,"ort1")
draw_quantum_state(12/13,5/13,"ort2")
# include our predefined functions
%run qlatvia.py
# draw the axes
draw_qubit()
#
# your solution is here
#
sqrttwo=2**0.5
draw_quantum_state(-1/sqrttwo,-1/sqrttwo,"main")
draw_quantum_state(1/sqrttwo,-1/sqrttwo,"ort1")
draw_quantum_state(-1/sqrttwo,1/sqrttwo,"ort2")
# randomly create a 2-dimensional quantum state
from math import cos, sin, pi
from random import randrange
def random_quantum_state2():
angle_degree = randrange(360)
angle_radian = 2*pi*angle_degree/360
return [cos(angle_radian),sin(angle_radian)]
# finding the angle of a 2-dimensional quantum state
from math import acos, pi
def angle_quantum_state(x,y):
angle_radian = acos(x) # radian of the angle with state |0>
angle_degree = 360*angle_radian/(2*pi) # degree of the angle with state |0>
# if the second amplitude is negative,
# then angle is (-angle_degree)
# or equivalently 360 + (-angle_degree)
if y<0: angle_degree = 360-angle_degree # degree of the angle
# else degree of the angle is the same as degree of the angle with state |0>
return angle_degree
%run qlatvia.py
draw_qubit()
from math import acos, pi
[x1,y1]=random_quantum_state2() # randomly pick a quantum state
first_angle = angle_quantum_state(x1,y1)
print("the angle of |u> is",first_angle)
[x2,y2]=random_quantum_state2() # randomly pick a quantum state
second_angle = angle_quantum_state(x2,y2)
print("the angle of |c> is",second_angle)
angle_between_1 = first_angle - second_angle
if angle_between_1 < 0: angle_between_1 *= -1
dot_product = x1*x2+y1*y2
print("their dot prouct is",dot_product)
angle_between_radian = acos(dot_product)
angle_between_2 = 360 * angle_between_radian/(2*pi)
print("the angle in between is calculated as",angle_between_1,"and",angle_between_2)
draw_quantum_state(x1,y1,"|u>")
draw_quantum_state(x2,y2,"|v>")
%run qlatvia.py
draw_qubit()
from math import acos, pi
[x1,y1]=random_quantum_state() # randomly pick a quantum state
first_angle = angle_quantum_state(x1,y1)
print("the angle of |u> is",first_angle)
[x2,y2]=random_quantum_state() # randomly pick a quantum state
second_angle = angle_quantum_state(x2,y2)
print("the angle of |c> is",second_angle)
angle_between_1 = first_angle - second_angle
if angle_between_1 < 0: angle_between_1 *= -1
if angle_between_1 >180: angle_between_1 = 360 - angle_between_1
dot_product = x1*x2+y1*y2
print("their dot prouct is",dot_product)
angle_between_radian = acos(dot_product)
angle_between_2 = 360 * angle_between_radian/(2*pi)
print("the angle in between is calculated as",angle_between_1,"and",angle_between_2)
draw_quantum_state(x1,y1,"|u>")
draw_quantum_state(x2,y2,"|v>")
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
%run qlatvia.py
draw_qubit()
sqrttwo=2**0.5
draw_quantum_state(1,0,"")
draw_quantum_state(1/sqrttwo,1/sqrttwo,"|+>")
# drawing the angle with |0>-axis
from matplotlib.pyplot import gca, text
from matplotlib.patches import Arc
gca().add_patch( Arc((0,0),0.4,0.4,angle=0,theta1=0,theta2=45) )
text(0.08,0.05,'.',fontsize=30)
text(0.21,0.09,'\u03C0/4')
%run qlatvia.py
draw_qubit()
sqrttwo=2**0.5
draw_quantum_state(0,0,"")
draw_quantum_state(1/sqrttwo,1/sqrttwo,"|+>")
# line of reflection for Hadamard
from matplotlib.pyplot import arrow
arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red')
# drawing the angle with |0>-axis
from matplotlib.pyplot import gca, text
from matplotlib.patches import Arc
gca().add_patch( Arc((0,0),0.4,0.4,angle=0,theta1=0,theta2=22.5) )
text(0.09,0.015,'.',fontsize=30)
text(0.25,0.03,'\u03C0/8')
gca().add_patch( Arc((0,0),0.4,0.4,angle=0,theta1=22.5,theta2=45) )
text(0.075,0.065,'.',fontsize=30)
text(0.21,0.16,'\u03C0/8')
%run qlatvia.py
draw_qubit()
# line of reflection for Hadamard
from matplotlib.pyplot import arrow
arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red')
#
# your code is here
#
# visually draw the reflections
# second draw
sqrttwo=2**0.5
draw_quantum_state(0,1,"|1>")
draw_quantum_state(1/sqrttwo,-1/sqrttwo,"|->")
%run qlatvia.py
draw_qubit()
# line of reflection for Hadamard
from matplotlib.pyplot import arrow
arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red')
#
# your code is here
#
sqrttwo=2**0.5
draw_quantum_state(-1,0,"-|0>")
draw_quantum_state(-1/sqrttwo,-1/sqrttwo,"-|+>")
%run qlatvia.py
draw_qubit()
# line of reflection for Hadamard
from matplotlib.pyplot import arrow
arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red')
#
# your code is here
#
sqrttwo=2**0.5
draw_quantum_state(0,-1,"-|1>")
draw_quantum_state(-1/sqrttwo,1/sqrttwo,"-|->")
%run qlatvia.py
draw_qubit()
# line of reflection for Hadamard
from matplotlib.pyplot import arrow
arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red')
#
# your code is here
#
# create a random quantum state
random_state = random_quantum_state2()
# draw random
draw_quantum_state(random_state[0],random_state[1],"randomState")
# apply hadamard
sqrttwo=2**0.5
next_state = [random_state[0] * (1/sqrttwo) + random_state[1] * (1/sqrttwo), random_state[0] * (1/sqrttwo) + random_state[1] * -(1/sqrttwo)]
# draw the state
draw_quantum_state(next_state[0],next_state[1],"refectState")
%run qlatvia.py
draw_qubit()
#
# your code is here
#
random_state = random_quantum_state2()
# draw random
draw_quantum_state(random_state[0],random_state[1],"randomState")
# find the reflection to x-axis
# apply hadamard
sqrttwo=2**0.5
next_state = [random_state[0] * (1/sqrttwo) + random_state[1] * (1/sqrttwo), random_state[0] * (1/sqrttwo) + random_state[1] * -(1/sqrttwo)]
# draw the state
draw_quantum_state(next_state[0],next_state[1],"refectState")
%run qlatvia.py
draw_qubit()
# the line y=x
from matplotlib.pyplot import arrow
arrow(-1,-1,2,2,linestyle='dotted',color='red')
#
# your code is here
#
random_state = random_quantum_state2()
# draw random
draw_quantum_state(random_state[0],random_state[1],"randomState")
# find the reflection to x-axis
# apply hadamard
sqrttwo=2**0.5
next_state = [random_state[0] * 0 + random_state[1] * 1, random_state[0] * 1 + random_state[1] * 0]
# draw the state
# not operator -> switches x and y
draw_quantum_state(next_state[0],next_state[1],"refectState")
%run qlatvia.py
draw_qubit()
#
# your code is here
#
# line of reflection
from matplotlib.pyplot import arrow
#arrow(x,y,dx,dy,linestyle='dotted',color='red')
#
#
# draw_quantum_state(x,y,"name")
import numpy as np
import math
# method for reflection matrix
def get_reflection_matrix(theta):
reflect_matrix = np.array([[math.cos(2 * theta), math.sin(2 * theta)],[math.sin(2 * theta), -math.cos(2 * theta)]])
return reflect_matrix
# obtain a random quantum state
random_quantum_state = np.array(random_quantum_state2())
draw_quantum_state(random_quantum_state[0],random_quantum_state[1],"q-state")
theta = math.pi/8
reflected_state = np.matmul(get_reflection_matrix(theta), random_quantum_state)
draw_quantum_state(reflected_state[0],reflected_state[1],"reflect-q-state")
arrow(0,0,math.cos(theta),math.sin(theta),linestyle='dotted',color='red')
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
%run qlatvia.py
draw_qubit()
# line of reflection for Hadamard
from matplotlib.pyplot import arrow
arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red')
sqrttwo=2**0.5
draw_quantum_state(0,1,"")
draw_quantum_state(1/sqrttwo,-1/sqrttwo,"|->")
%run qlatvia.py
draw_qubit()
# line of reflection for Hadamard
from matplotlib.pyplot import arrow
arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red')
sqrttwo=2**0.5
draw_quantum_state(-1,0,"")
draw_quantum_state(-1/sqrttwo,-1/sqrttwo,"-|+>")
%run qlatvia.py
draw_qubit()
# line of reflection for Hadamard
from matplotlib.pyplot import arrow
arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red')
sqrttwo=2**0.5
draw_quantum_state(0,-1,"")
draw_quantum_state(-1/sqrttwo,1/sqrttwo,"-|->")
# randomly create a 2-dimensional quantum state
from math import cos, sin, pi
from random import randrange
def random_quantum_state2():
angle_degree = randrange(360)
angle_radian = 2*pi*angle_degree/360
return [cos(angle_radian),sin(angle_radian)]
%run qlatvia.py
draw_qubit()
# line of reflection for Hadamard
from matplotlib.pyplot import arrow
arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red')
[x1,y1] = random_quantum_state2()
print(x1,y1)
sqrttwo=2**0.5
oversqrttwo = 1/sqrttwo
[x2,y2] = [ oversqrttwo*x1 + oversqrttwo*y1 , oversqrttwo*x1 - oversqrttwo*y1 ]
print(x2,y2)
draw_quantum_state(x1,y1,"main")
draw_quantum_state(x2,y2,"ref")
# randomly create a 2-dimensional quantum state
from math import cos, sin, pi
from random import randrange
def random_quantum_state2():
angle_degree = randrange(360)
angle_radian = 2*pi*angle_degree/360
return [cos(angle_radian),sin(angle_radian)]
%run qlatvia.py
draw_qubit()
[x1,y1] = random_quantum_state2()
[x2,y2] = [x1,-y1]
draw_quantum_state(x1,y1,"main")
draw_quantum_state(x2,y2,"ref")
# randomly create a 2-dimensional quantum state
from math import cos, sin, pi
from random import randrange
def random_quantum_state2():
angle_degree = randrange(360)
angle_radian = 2*pi*angle_degree/360
return [cos(angle_radian),sin(angle_radian)]
%run qlatvia.py
draw_qubit()
# the line y=x
from matplotlib.pyplot import arrow
arrow(-1,-1,2,2,linestyle='dotted',color='red')
[x1,y1] = random_quantum_state2()
[x2,y2] = [y1,x1]
draw_quantum_state(x1,y1,"main")
draw_quantum_state(x2,y2,"ref")
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
%run qlatvia.py
draw_qubit()
sqrttwo=2**0.5
draw_quantum_state(1,0,"")
draw_quantum_state(1/sqrttwo,1/sqrttwo,"|+>")
# drawing the angle with |0>-axis
from matplotlib.pyplot import gca, text
from matplotlib.patches import Arc
gca().add_patch( Arc((0,0),0.4,0.4,angle=0,theta1=0,theta2=45) )
text(0.08,0.05,'.',fontsize=30)
text(0.21,0.09,'\u03C0/4')
%run qlatvia.py
draw_qubit()
[x,y]=[1,0]
draw_quantum_state(x,y,"v0")
sqrttwo = 2**0.5
oversqrttwo = 1/sqrttwo
R = [ [oversqrttwo, -1*oversqrttwo], [oversqrttwo,oversqrttwo] ]
#
# your code is here
#
#
import numpy as np
R = np.array(R)
# initial state 0
s0 = np.array([x, y])
for i in range(1, 9):
# rotate the matrix
s0 = np.matmul(R, s0)
# draw the matrix
draw_quantum_state(s0[0], s0[1], "after " + str(i))
%run qlatvia.py
draw_qubit()
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
# we define a quantum circuit with one qubit and one bit
qreg1 = QuantumRegister(1) # quantum register with a single qubit
creg1 = ClassicalRegister(1) # classical register with a single bit
mycircuit1 = QuantumCircuit(qreg1,creg1) # quantum circuit with quantum and classical registers
rotation_angle = pi/4
for i in range(1,9):
mycircuit1.ry(2*rotation_angle,qreg1[0])
# the following code is used to get the quantum state of the quantum register
job = execute(mycircuit1,Aer.get_backend('statevector_simulator'))
current_quantum_state=job.result().get_statevector(mycircuit1)
print("iteration",i,": the quantum state is",current_quantum_state)
x_value = current_quantum_state[0].real # get the amplitude of |0>
y_value = current_quantum_state[1].real # get the amplitude of |1>
draw_quantum_state(x_value,y_value,"|v"+str(i)+">")
#
# your code is here
#
import math
%run qlatvia.py
def rotate_angle_times(angle, times):
draw_qubit()
qreg1 = QuantumRegister(1) # quantum register with a single qubit
creg1 = ClassicalRegister(1) # classical register with a single bit
mycircuit1 = QuantumCircuit(qreg1,creg1) # quantum circuit with quantum and classical registers
rotation_angle = angle
for i in range(1,times):
# defined for block sphere
mycircuit1.ry(2*rotation_angle,qreg1[0])
# simulator gives the states
job = execute(mycircuit1,Aer.get_backend('statevector_simulator'))
current_quantum_state = job.result().get_statevector(mycircuit1)
print("iteration",i,": the quantum state is",current_quantum_state)
x_value = current_quantum_state[0].real # get the amplitude of |0>
y_value = current_quantum_state[1].real # get the amplitude of |1>
draw_quantum_state(x_value,y_value,"|v"+str(i)+">")
rotate_angle_times((math.pi / 6), 12)
rotate_angle_times(((3 * math.pi) / 8), 16)
rotate_angle_times(((2**(0.5)) * math.pi ), 20)
#
# your code is here
#
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
from random import randrange
# first qubit
qreg1 = QuantumRegister(1)
creg1 = ClassicalRegister(1)
mycircuit1 = QuantumCircuit(qreg1,creg1)
# second qubit
qreg2 = QuantumRegister(1)
creg2 = ClassicalRegister(1)
mycircuit2 = QuantumCircuit(qreg2,creg2)
# third qubit
qreg3 = QuantumRegister(1)
creg3 = ClassicalRegister(1)
mycircuit3 = QuantumCircuit(qreg3,creg3)
# randomly pick the angle of rotation
r = randrange(100)
theta = 2*pi*(r/100) # radians
print("the picked angle is",r*3.6,"degrees and",theta,"radians")
# rotate the first qubit
mycircuit1.ry(2*theta,qreg1[0])
# the different angles orthogonal to theta
theta1 = theta + pi/2
theta2 = theta - pi/2
# rotate the second and third qubits
mycircuit2.ry(2*theta1,qreg2[0])
mycircuit3.ry(2*theta2,qreg3[0])
# read the quantum state of the first qubit
job = execute(mycircuit1,Aer.get_backend('statevector_simulator'))
current_quantum_state=job.result().get_statevector(mycircuit1)
[x1,y1]=[current_quantum_state[0].real,current_quantum_state[1].real]
print("the first qubit:",x1,y1)
# read the quantum state of the second qubit
job = execute(mycircuit2,Aer.get_backend('statevector_simulator'))
current_quantum_state=job.result().get_statevector(mycircuit2)
[x2,y2]=[current_quantum_state[0].real,current_quantum_state[1].real]
print("the second qubit:",x2,y2)
# read the quantum state of the third qubit
job = execute(mycircuit3,Aer.get_backend('statevector_simulator'))
current_quantum_state=job.result().get_statevector(mycircuit3)
[x3,y3]=[current_quantum_state[0].real,current_quantum_state[1].real]
print("the third qubit:",x3,y3)
%run qlatvia.py
draw_qubit()
draw_quantum_state(x1,y1,"v0")
draw_quantum_state(x2,y2,"v1")
draw_quantum_state(x3,y3,"v2")
print("the dot product of |v0> and |v1> is",x1*x2+y1*y2)
print("the dot product of |v0> and |v2> is",x1*x3+y1*y3)
print("the dot product of |v1> and |v2> is",x2*x3+y2*y3)
# make a full rotation by theta + theta_prime
theta_prime = 2*pi - theta
# rotate all qubits with theta_prime
mycircuit1.ry(2*theta_prime,qreg1[0])
mycircuit2.ry(2*theta_prime,qreg2[0])
mycircuit3.ry(2*theta_prime,qreg3[0])
# measure all qubits
mycircuit1.measure(qreg1,creg1)
mycircuit2.measure(qreg2,creg2)
mycircuit3.measure(qreg3,creg3)
# draw the first circuit
mycircuit1.draw()
# draw the first circuit
mycircuit2.draw()
# draw the first circuit
mycircuit3.draw()
# execute the first circuit
job = execute(mycircuit1,Aer.get_backend('qasm_simulator'),shots=1000)
counts = job.result().get_counts(mycircuit1)
print(counts)
# execute the second circuit
job = execute(mycircuit2,Aer.get_backend('qasm_simulator'),shots=1000)
counts = job.result().get_counts(mycircuit2)
print(counts)
# execute the third circuit
job = execute(mycircuit3,Aer.get_backend('qasm_simulator'),shots=1000)
counts = job.result().get_counts(mycircuit3)
print(counts)
#
# your code is here
#
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi, cos, sin
# first qubit
qreg = QuantumRegister(1)
creg = ClassicalRegister(1)
mycircuit = QuantumCircuit(qreg,creg)
theta=pi/4
for i in range(1,9):
total_theta = i*theta
mycircuit.ry(2*theta,qreg[0])
job = execute(mycircuit, Aer.get_backend('unitary_simulator'))
current_unitary = job.result().get_unitary(mycircuit, decimals=3)
print("after",i,"iteration(s):")
print(current_unitary[0][0].real,current_unitary[0][1].real)
print(current_unitary[1][0].real,current_unitary[1][1].real)
print("calculated by python:")
print(round(cos(total_theta),3),round(-sin(total_theta),3))
print(round(sin(total_theta),3),round(cos(total_theta),3))
print()
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
%run qlatvia.py
draw_qubit()
[x,y]=[1,0]
draw_quantum_state(x,y,"v0")
sqrttwo = 2**0.5
oversqrttwo = 1/sqrttwo
R = [ [oversqrttwo, -1*oversqrttwo], [oversqrttwo,oversqrttwo] ]
# function for rotation R
def rotate(px,py):
newx = R[0][0]*px + R[0][1]*py
newy = R[1][0]*px + R[1][1]*py
return [newx,newy]
# apply rotation R 7 times
for i in range(1,8):
[x,y] = rotate(x,y)
draw_quantum_state(x,y,"|v"+str(i)+">")
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
from random import randrange
# first qubit
qreg1 = QuantumRegister(1)
creg1 = ClassicalRegister(1)
mycircuit1 = QuantumCircuit(qreg1,creg1)
# second qubit
qreg2 = QuantumRegister(1)
creg2 = ClassicalRegister(1)
mycircuit2 = QuantumCircuit(qreg2,creg2)
# third qubit
qreg3 = QuantumRegister(1)
creg3 = ClassicalRegister(1)
mycircuit3 = QuantumCircuit(qreg3,creg3)
# randomly pick the angle of rotation
r = randrange(100)
theta = 2*pi*(r/100) # radians
print("the picked angle is",r*3.6,"degrees and",theta,"radians")
# rotate the first qubit
mycircuit1.ry(2*theta,qreg1[0])
# the different angles orthogonal to theta
theta1 = theta + pi/2
theta2 = theta - pi/2
# rotate the second and third qubits
mycircuit2.ry(2*theta1,qreg2[0])
mycircuit3.ry(2*theta2,qreg3[0])
# read the quantum state of the first qubit
job = execute(mycircuit1,Aer.get_backend('statevector_simulator'))
current_quantum_state=job.result().get_statevector(mycircuit1)
[x1,y1]=[current_quantum_state[0].real,current_quantum_state[1].real]
print("the first qubit:",x1,y1)
# read the quantum state of the second qubit
job = execute(mycircuit2,Aer.get_backend('statevector_simulator'))
current_quantum_state=job.result().get_statevector(mycircuit2)
[x2,y2]=[current_quantum_state[0].real,current_quantum_state[1].real]
print("the second qubit:",x2,y2)
# read the quantum state of the third qubit
job = execute(mycircuit3,Aer.get_backend('statevector_simulator'))
current_quantum_state=job.result().get_statevector(mycircuit3)
[x3,y3]=[current_quantum_state[0].real,current_quantum_state[1].real]
print("the third qubit:",x3,y3)
%run qlatvia.py
draw_qubit()
draw_quantum_state(x1,y1,"v0")
draw_quantum_state(x2,y2,"v1")
draw_quantum_state(x3,y3,"v2")
print("the dot product of |v0> and |v1> is",x1*x2+y1*y2)
print("the dot product of |v0> and |v2> is",x1*x3+y1*y3)
print("the dot product of |v1> and |v2> is",x2*x3+y2*y3)
# make a full rotation by theta + theta_prime
theta_prime = 2*pi - theta
# rotate all qubits with theta_prime
mycircuit1.ry(2*theta_prime,qreg1[0])
mycircuit2.ry(2*theta_prime,qreg2[0])
mycircuit3.ry(2*theta_prime,qreg3[0])
# measure all qubits
mycircuit1.measure(qreg1,creg1)
mycircuit2.measure(qreg2,creg2)
mycircuit3.measure(qreg3,creg3)
# draw the first circuit
mycircuit1.draw()
# draw the second circuit
mycircuit2.draw()
# draw the third circuit
mycircuit3.draw()
# execute the first circuit
job = execute(mycircuit1,Aer.get_backend('qasm_simulator'),shots=1000)
counts = job.result().get_counts(mycircuit1)
print(counts)
# execute the second circuit
job = execute(mycircuit2,Aer.get_backend('qasm_simulator'),shots=1000)
counts = job.result().get_counts(mycircuit2)
print(counts)
# execute the third circuit
job = execute(mycircuit3,Aer.get_backend('qasm_simulator'),shots=1000)
counts = job.result().get_counts(mycircuit3)
print(counts)
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi, cos, sin
# first qubit
qreg = QuantumRegister(1)
creg = ClassicalRegister(1)
mycircuit = QuantumCircuit(qreg,creg)
theta=pi/4
for i in range(1,9):
total_theta = i*theta
mycircuit.ry(2*theta,qreg[0])
job = execute(mycircuit, Aer.get_backend('unitary_simulator'))
current_unitary = job.result().get_unitary(mycircuit, decimals=3)
print("after",i,"iteration(s):")
print(current_unitary[0][0].real,current_unitary[0][1].real)
print(current_unitary[1][0].real,current_unitary[1][1].real)
print("calculated by python:")
print(round(cos(total_theta),3),round(-sin(total_theta),3))
print(round(sin(total_theta),3),round(cos(total_theta),3))
print()
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
#
# your code is here
#
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi, cos, sin
from random import randrange
# quantum circuit with three qubits and three bits
qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
mycircuit = QuantumCircuit(qreg,creg)
# rotate the first qubit by random angle
r = randrange(100)
theta = 2*pi*(r/100) # radians
print("the picked angle is",r*3.6,"degrees and",theta,"radians")
a = cos(theta)
b = sin(theta)
print("a=",round(a,3),"b=",round(b,3))
print("a*a=",round(a**2,3),"b*b=",round(b**2,3))
print()
mycircuit.ry(2*theta,qreg[0])
# creating an entanglement between the second and third qubits
mycircuit.h(qreg[1])
mycircuit.cx(qreg[1],qreg[2])
# CNOT operator by Asja on her qubits where the first qubit is the control qubit
mycircuit.cx(qreg[0],qreg[1])
# Hadamard operator by Asja on the first qubit
mycircuit.h(qreg[0])
# measurement done by Asja
mycircuit.measure(qreg[0],creg[0])
mycircuit.measure(qreg[1],creg[1])
# read the state vector
job = execute(mycircuit,Aer.get_backend('statevector_simulator'))
current_quantum_state=job.result().get_statevector(mycircuit)
print("the state vector is")
for i in range(len(current_quantum_state)):
print(current_quantum_state[i].real)
print()
# reverse the order
def get_state(i):
if i==0: return "000"
if i==1: return "100"
if i==2: return "010"
if i==3: return "110"
if i==4: return "001"
if i==5: return "101"
if i==6: return "011"
if i==7: return "111"
balvis_state = ""
for i in range(len(current_quantum_state)):
if current_quantum_state[i].real!=0:
if abs(current_quantum_state[i].real-a)<0.000001:
balvis_state += "+a|"+ get_state(i)+">"
elif abs(current_quantum_state[i].real+a)<0.000001:
balvis_state += "-a|"+ get_state(i)+">"
elif abs(current_quantum_state[i].real-b)<0.000001:
balvis_state += "+b|"+ get_state(i)+">"
elif abs(current_quantum_state[i].real+b)<0.000001:
balvis_state += "-b|"+ get_state(i)+">"
print("which is",balvis_state)
mycircuit.draw()
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi, cos, sin
from random import randrange
# quantum circuit with three qubits and three bits
qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
mycircuit = QuantumCircuit(qreg,creg)
# rotate the first qubit by random angle
r = randrange(100)
theta = 2*pi*(r/100) # radians
print("the picked angle is",r*3.6,"degrees and",theta,"radians")
a = cos(theta)
b = sin(theta)
print("a=",round(a,3),"b=",round(b,3))
print("a*a=",round(a**2,3),"b*b=",round(b**2,3))
print()
mycircuit.ry(2*theta,qreg[0])
# creating an entanglement between the second and third qubits
mycircuit.h(qreg[1])
mycircuit.cx(qreg[1],qreg[2])
# CNOT operator by Asja on her qubits where the first qubit is the control qubit
mycircuit.cx(qreg[0],qreg[1])
# Hadamard operator by Asja on the first qubit
mycircuit.h(qreg[0])
# measurement done by Asja
mycircuit.measure(qreg[0],creg[0])
mycircuit.measure(qreg[1],creg[1])
# read the state vector
job = execute(mycircuit,Aer.get_backend('statevector_simulator'))
current_quantum_state=job.result().get_statevector(mycircuit)
print("the state vector is")
for i in range(len(current_quantum_state)):
print(current_quantum_state[i].real)
print()
# reverse the order
def get_state(i):
if i==0: return "000"
if i==1: return "100"
if i==2: return "010"
if i==3: return "110"
if i==4: return "001"
if i==5: return "101"
if i==6: return "011"
if i==7: return "111"
balvis_state = ""
for i in range(len(current_quantum_state)):
if current_quantum_state[i].real!=0:
if abs(current_quantum_state[i].real-a)<0.000001:
balvis_state += "+a|"+ get_state(i)+">"
elif abs(current_quantum_state[i].real+a)<0.000001:
balvis_state += "-a|"+ get_state(i)+">"
elif abs(current_quantum_state[i].real-b)<0.000001:
balvis_state += "+b|"+ get_state(i)+">"
elif abs(current_quantum_state[i].real+b)<0.000001:
balvis_state += "-b|"+ get_state(i)+">"
print("which is",balvis_state)
mycircuit.draw()
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
# the angle of rotation
theta = 1 * pi/16
# we read streams of length 8, 16, 24, 32, 40, 48, 56, 64
for i in [8, 16, 24, 32, 40, 48, 56, 64]:
# quantum circuit with one qubit and one bit
qreg = QuantumRegister(1)
creg = ClassicalRegister(1)
mycircuit = QuantumCircuit(qreg,creg)
# the stream of length i
for j in range(i):
mycircuit.ry(2*theta,qreg[0]) # apply one rotation for each symbol
# we measure after reading the whole stream
mycircuit.measure(qreg[0],creg[0])
# execute the circuit 100 times
job = execute(mycircuit,Aer.get_backend('qasm_simulator'),shots=100)
counts = job.result().get_counts(mycircuit)
d = i /8
if d % 2 == 0: print(i,"is even multiple of 8")
else: print(i,"is odd multiple of 8")
print("stream of lenght",i,"->",counts)
print()
#
# your solution is here
#
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
from random import randrange
rand = randrange(1, 11)
# random number can take any value in between 1-11
theta = (rand * 2* pi)/11 # calculating angle
# the streams of lengths from 1 to 11
for i in range(1,12):
# quantum circuit with one qubit and one bit
qreg = QuantumRegister(1)
creg = ClassicalRegister(1)
mycircuit = QuantumCircuit(qreg,creg)
# the stream of length i
for j in range(i):
mycircuit.ry(2*theta,qreg[0]) # apply one rotation for each symbol
# we measure after reading the whole stream
mycircuit.measure(qreg[0],creg[0])
# execute the circuit 1000 times
job = execute(mycircuit,Aer.get_backend('qasm_simulator'),shots=1000)
counts = job.result().get_counts(mycircuit)
print("Length of the Stream",i,"->",counts)
#
# your solution is here
#
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
from random import randrange
# for each stream of length from 1 to 10
for i in range(1,11):
# we try each angle of the form k*2*pi/11 for k=1,...,10
# we try to find the best k for which we observe 1 the most
number_of_one_state = 0
best_k = 1
all_outcomes_for_i = "length "+str(i)+"-> "
for k in range(1,11):
theta = k*2*pi/11
# quantum circuit with one qubit and one bit
qreg = QuantumRegister(1)
creg = ClassicalRegister(1)
mycircuit = QuantumCircuit(qreg,creg)
# the stream of length i
for j in range(i):
mycircuit.ry(2*theta,qreg[0]) # apply one rotation for each symbol
# we measure after reading the whole stream
mycircuit.measure(qreg[0],creg[0])
# execute the circuit 10000 times
job = execute(mycircuit,Aer.get_backend('qasm_simulator'),shots=10000)
counts = job.result().get_counts(mycircuit)
all_outcomes_for_i = all_outcomes_for_i + str(k)+ ":" + str(counts['1']) + " "
if int(counts['1']) > number_of_one_state:
number_of_one_state = counts['1']
best_k = k
print(all_outcomes_for_i)
print("for length",i,", the best k is",best_k)
#
# your solution is here
#
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
from random import randrange
p = 31
theta1 = (3 * 2 * pi)/p
theta2 = (7 * 2 * pi)/p
theta3 = (11 * 2 * pi)/p
# the streams of lengths from 1 to 30
for i in range(1,30):
# Create a circuit with 3 Quantum States
qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
mycircuit = QuantumCircuit(qreg,creg)
for j in range(i):
# Rotations applied to each symbol number of length times
mycircuit.ry(2*theta1,qreg[0])
mycircuit.ry(2*theta2,qreg[1])
mycircuit.ry(2*theta3,qreg[2])
# we measure the system
mycircuit.measure(qreg,creg)
# execute 1000 times
job = execute(mycircuit,Aer.get_backend('qasm_simulator'),shots= 1000)
counts = job.result().get_counts(mycircuit)
# check the number of times state |000>
print(counts)
if '000' in counts.keys():
c = counts['000']
else:
c = 0
# print the result
print('000 is observed',c,'times out of',1000)
percentange = round(c/1000*100,1)
print("the ratio of 000 is ",percentange,"%")
print()
#
# your solution is here
#
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
from random import randrange
# randomly picked angles of rotations
k1 = randrange(1,31)
theta1 = k1*2*pi/31
k2 = randrange(1,31)
theta2 = k2*2*pi/31
k3 = randrange(1,31)
theta3 = k3*2*pi/31
print("k1 =",k1,"k2 =",k2,"k3 =",k3)
print()
max_percentange = 0
# we read streams of length from 1 to 30
for i in range(1,31):
# quantum circuit with three qubits and three bits
qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
mycircuit = QuantumCircuit(qreg,creg)
# the stream of length i
for j in range(i):
# apply rotations for each symbol
mycircuit.ry(2*theta1,qreg[0])
mycircuit.ry(2*theta2,qreg[1])
mycircuit.ry(2*theta3,qreg[2])
# we measure after reading the whole stream
mycircuit.measure(qreg,creg)
# execute the circuit N times
N = 1000
job = execute(mycircuit,Aer.get_backend('qasm_simulator'),shots=N)
counts = job.result().get_counts(mycircuit)
# print(counts)
if '000' in counts.keys():
c = counts['000']
else:
c = 0
print('000 is observed',c,'times out of',N, "for sequence length", i)
percentange = round(c/N*100,1)
if max_percentange < percentange: max_percentange = percentange
print("the ratio of 000 is ",percentange,"%")
print()
print("max percentage is",max_percentange)
#
# your solution is here
#
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
from random import randrange
number_of_qubits = 4
#number_of_qubits = 5
# randomly picked angles of rotations
theta = []
for i in range(number_of_qubits):
k = randrange(1,31)
print("k",str(i),"=",k)
theta += [k*2*pi/31]
print(theta)
# we count the number of zeros
zeros = ''
for i in range(number_of_qubits):
zeros = zeros + '0'
print("zeros = ",zeros)
print()
max_percentange = 0
# we read streams of length from 1 to 30
for i in range(1,31):
# quantum circuit with qubits and bits
qreg = QuantumRegister(number_of_qubits)
creg = ClassicalRegister(number_of_qubits)
mycircuit = QuantumCircuit(qreg,creg)
# the stream of length i
for j in range(i):
# apply rotations for each symbol
for k in range(number_of_qubits):
mycircuit.ry(2*theta[k],qreg[k])
# we measure after reading the whole stream
mycircuit.measure(qreg,creg)
# execute the circuit N times
N = 1000
job = execute(mycircuit,Aer.get_backend('qasm_simulator'),shots=N)
counts = job.result().get_counts(mycircuit)
# print(counts)
if zeros in counts.keys():
c = counts[zeros]
else:
c = 0
# print('000 is observed',c,'times out of',N)
percentange = round(c/N*100,1)
if max_percentange < percentange: max_percentange = percentange
# print("the ration of 000 is ",percentange,"%")
# print()
print("max percentage is",max_percentange)
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
from random import randrange
# the angle of rotation
r = randrange(1,11)
print("the picked angle is",r,"times of 2pi/11")
print()
theta = r*2*pi/11
# we read streams of length from 1 to 11
for i in range(1,12):
# quantum circuit with one qubit and one bit
qreg = QuantumRegister(1)
creg = ClassicalRegister(1)
mycircuit = QuantumCircuit(qreg,creg)
# the stream of length i
for j in range(i):
mycircuit.ry(2*theta,qreg[0]) # apply one rotation for each symbol
# we measure after reading the whole stream
mycircuit.measure(qreg[0],creg[0])
# execute the circuit 1000 times
job = execute(mycircuit,Aer.get_backend('qasm_simulator'),shots=1000)
counts = job.result().get_counts(mycircuit)
print("stream of lenght",i,"->",counts)
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
from random import randrange
# for each stream of length from 1 to 10
for i in range(1,11):
# we try each angle of the form k*2*pi/11 for k=1,...,10
# we try to find the best k for which we observe 1 the most
number_of_one_state = 0
best_k = 1
all_outcomes_for_i = "length "+str(i)+"-> "
for k in range(1,11):
theta = k*2*pi/11
# quantum circuit with one qubit and one bit
qreg = QuantumRegister(1)
creg = ClassicalRegister(1)
mycircuit = QuantumCircuit(qreg,creg)
# the stream of length i
for j in range(i):
mycircuit.ry(2*theta,qreg[0]) # apply one rotation for each symbol
# we measure after reading the whole stream
mycircuit.measure(qreg[0],creg[0])
# execute the circuit 10000 times
job = execute(mycircuit,Aer.get_backend('qasm_simulator'),shots=10000)
counts = job.result().get_counts(mycircuit)
all_outcomes_for_i = all_outcomes_for_i + str(k)+ ":" + str(counts['1']) + " "
if int(counts['1']) > number_of_one_state:
number_of_one_state = counts['1']
best_k = k
print(all_outcomes_for_i)
print("for length",i,", the best k is",best_k)
print()
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
from random import randrange
# the angles of rotations
theta1 = 3*2*pi/31
theta2 = 7*2*pi/31
theta3 = 11*2*pi/31
# we read streams of length from 1 to 30
for i in range(1,31):
# quantum circuit with three qubits and three bits
qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
mycircuit = QuantumCircuit(qreg,creg)
# the stream of length i
for j in range(i):
# apply rotations for each symbol
mycircuit.ry(2*theta1,qreg[0])
mycircuit.ry(2*theta2,qreg[1])
mycircuit.ry(2*theta3,qreg[2])
# we measure after reading the whole stream
mycircuit.measure(qreg,creg)
# execute the circuit N times
N = 1000
job = execute(mycircuit,Aer.get_backend('qasm_simulator'),shots=N)
counts = job.result().get_counts(mycircuit)
print(counts)
if '000' in counts.keys():
c = counts['000']
else:
c = 0
print('000 is observed',c,'times out of',N)
percentange = round(c/N*100,1)
print("the ratio of 000 is ",percentange,"%")
print()
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
from random import randrange
# randomly picked angles of rotations
k1 = randrange(1,31)
theta1 = k1*2*pi/31
k2 = randrange(1,31)
theta2 = k2*2*pi/31
k3 = randrange(1,31)
theta3 = k3*2*pi/31
print("k1 =",k1,"k2 =",k2,"k3 =",k3)
print()
max_percentange = 0
# we read streams of length from 1 to 30
for i in range(1,31):
# quantum circuit with three qubits and three bits
qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
mycircuit = QuantumCircuit(qreg,creg)
# the stream of length i
for j in range(i):
# apply rotations for each symbol
mycircuit.ry(2*theta1,qreg[0])
mycircuit.ry(2*theta2,qreg[1])
mycircuit.ry(2*theta3,qreg[2])
# we measure after reading the whole stream
mycircuit.measure(qreg,creg)
# execute the circuit N times
N = 1000
job = execute(mycircuit,Aer.get_backend('qasm_simulator'),shots=N)
counts = job.result().get_counts(mycircuit)
# print(counts)
if '000' in counts.keys():
c = counts['000']
else:
c = 0
# print('000 is observed',c,'times out of',N)
percentange = round(c/N*100,1)
if max_percentange < percentange: max_percentange = percentange
# print("the ration of 000 is ",percentange,"%")
# print()
print("max percentage is",max_percentange)
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
from random import randrange
number_of_qubits = 4
#number_of_qubits = 5
# randomly picked angles of rotations
theta = []
for i in range(number_of_qubits):
k = randrange(1,31)
print("k",str(i),"=",k)
theta += [k*2*pi/31]
# print(theta)
# we count the number of zeros
zeros = ''
for i in range(number_of_qubits):
zeros = zeros + '0'
print("zeros = ",zeros)
print()
max_percentange = 0
# we read streams of length from 1 to 30
for i in range(1,31):
# quantum circuit with qubits and bits
qreg = QuantumRegister(number_of_qubits)
creg = ClassicalRegister(number_of_qubits)
mycircuit = QuantumCircuit(qreg,creg)
# the stream of length i
for j in range(i):
# apply rotations for each symbol
for k in range(number_of_qubits):
mycircuit.ry(2*theta[k],qreg[k])
# we measure after reading the whole stream
mycircuit.measure(qreg,creg)
# execute the circuit N times
N = 1000
job = execute(mycircuit,Aer.get_backend('qasm_simulator'),shots=N)
counts = job.result().get_counts(mycircuit)
# print(counts)
if zeros in counts.keys():
c = counts[zeros]
else:
c = 0
# print('000 is observed',c,'times out of',N)
percentange = round(c/N*100,1)
if max_percentange < percentange: max_percentange = percentange
# print("the ration of 000 is ",percentange,"%")
# print()
print("max percentage is",max_percentange)
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
# the angles of rotations
theta1 = pi/4
theta2 = pi/6
# the circuit with two qubits
qreg = QuantumRegister(2)
creg = ClassicalRegister(2)
mycircuit = QuantumCircuit(qreg,creg)
# when the second qubit is in |0>, the first qubit is rotated by theta1
mycircuit.x(qreg[1])
mycircuit.cu3(2*theta1,0,0,qreg[1],qreg[0])
mycircuit.x(qreg[1])
# when the second qubit is in |1>, the first qubit is rotated by theta2
mycircuit.cu3(2*theta2,0,0,qreg[1],qreg[0])
# we read the unitary matrix
job = execute(mycircuit,Aer.get_backend('unitary_simulator'))
u=job.result().get_unitary(mycircuit,decimals=3)
# we print the unitary matrix in nice format
for i in range(len(u)):
s=""
for j in range(len(u)):
val = str(u[i][j].real)
while(len(val)<8): val = " "+val
s = s + val
print(s)
#
# your code is here
#
from math import pi, sin, cos
theta1 = pi/4
theta2 = pi/6
print(round(cos(theta1),3),-round(sin(theta1),3),0,0)
print(round(sin(theta1),3),-round(cos(theta1),3),0,0)
print(0,0,round(cos(theta2),3),-round(sin(theta2),3))
print(0,0,round(sin(theta2),3),-round(cos(theta2),3))
#
# your solution is here
#
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi, sin, cos
# the angle of rotation
theta1 = pi/23
theta2 = 2*pi/23
theta3 = 4*pi/23
precision = 3
print("a1 = theta3 => sin(a1) = ",round(sin(theta3),precision))
print("a2 = theta2+theta3 => sin(a2) = ",round(sin(theta2+theta3),precision))
print("a3 = theta1 => sin(a3) = ",round(sin(theta1),precision))
print("a4 = theta1+theta2 => sin(a4) = ",round(sin(theta1+theta2),precision))
print()
qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
circuit = QuantumCircuit(qreg,creg)
# controlled rotation when the third qubit is |1>
circuit.cu3(2*theta1,0,0,qreg[2],qreg[0])
# controlled rotation when the second qubit is |1>
circuit.cu3(2*theta2,0,0,qreg[1],qreg[0])
# controlled rotation when the third qubit is |0>
circuit.x(qreg[2])
circuit.cu3(2*theta3,0,0,qreg[2],qreg[0])
circuit.x(qreg[2])
# read the corresponding unitary matrix
job = execute(circuit,Aer.get_backend('unitary_simulator'))
unitary_matrix=job.result().get_unitary(circuit,decimals=precision)
for i in range(len(unitary_matrix)):
s=""
for j in range(len(unitary_matrix)):
val = str(unitary_matrix[i][j].real)
while(len(val)<precision+4): val = " "+val
s = s + val
print(s)
#
# your solution is here
#
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi, sin, cos
from random import randrange
# the angle of rotation
k1 = randrange(1,31)
theta1 = k1*2*pi/31
k2 = randrange(1,31)
theta2 = k2*2*pi/31
k3 = randrange(1,31)
theta3 = k3*2*pi/31
max_percentange = 0
# for each stream of length from 1 to 31
for i in range(1,32):
# initialize the circuit
qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
circuit = QuantumCircuit(qreg,creg)
# Hadamard operators before reading the stream
for m in range(3):
circuit.h(qreg[m])
# read the stream of length i
print("stream of length",i,"is being read")
for j in range(i):
# controlled rotation when the third qubit is |1>
circuit.cu3(2*theta1,0,0,qreg[2],qreg[0])
# controlled rotation when the second qubit is |1>
circuit.cu3(2*theta2,0,0,qreg[1],qreg[0])
# controlled rotation when the third qubit is |0>
circuit.x(qreg[2])
circuit.cu3(2*theta3,0,0,qreg[2],qreg[0])
circuit.x(qreg[2])
# Hadamard operators after reading the stream
for m in range(3):
circuit.h(qreg[m])
# we measure after reading the whole stream
circuit.measure(qreg,creg)
# execute the circuit N times
N = 1000
job = execute(circuit,Aer.get_backend('qasm_simulator'),shots=N)
counts = job.result().get_counts(circuit)
print(counts)
if '000' in counts.keys():
c = counts['000']
else:
c = 0
print('000 is observed',c,'times out of',N)
percentange = round(c/N*100,1)
if max_percentange < percentange and i != 31: max_percentange = percentange
print("the ration of 000 is ",percentange,"%")
print()
print("maximum percentage of observing unwanted '000' is",max_percentange)
#
# your solution is here
#
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi
# initialize the circuit
qreg = QuantumRegister(4)
circuit = QuantumCircuit(qreg)
# we use the fourth qubit as the auxiliary
# apply a rotation to the first qubit when the third and second qubits are in states |0> and |1>
# change the state of the third qubit to |1>
circuit.x(qreg[2])
# if both the third and second qubits are in states |1>, the state of auxiliary qubit is changed to |1>
circuit.ccx(qreg[2],qreg[1],qreg[3])
# the rotation is applied to the first qubit if the state of auxiliary qubit is |1>
circuit.cu3(2*pi/6,0,0,qreg[3],qreg[0])
# reverse the effects
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.x(qreg[2])
circuit.draw()
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi,sin
# the angles of rotations
theta1 = pi/10
theta2 = 2*pi/10
theta3 = 3*pi/10
theta4 = 4*pi/10
# for verification, print sin(theta)'s
print("sin(theta1) = ",round(sin(theta1),3))
print("sin(theta2) = ",round(sin(theta2),3))
print("sin(theta3) = ",round(sin(theta3),3))
print("sin(theta4) = ",round(sin(theta4),3))
print()
qreg = QuantumRegister(4)
circuit = QuantumCircuit(qreg)
# the third qubit is in |0>
# the second qubit is in |0>
circuit.x(qreg[2])
circuit.x(qreg[1])
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.cu3(2*theta1,0,0,qreg[3],qreg[0])
# reverse the effects
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.x(qreg[1])
circuit.x(qreg[2])
# the third qubit is in |0>
# the second qubit is in |1>
circuit.x(qreg[2])
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.cu3(2*theta2,0,0,qreg[3],qreg[0])
# reverse the effects
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.x(qreg[2])
# the third qubit is in |1>
# the second qubit is in |0>
circuit.x(qreg[1])
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.cu3(2*theta3,0,0,qreg[3],qreg[0])
# reverse the effects
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.x(qreg[1])
# the third qubit is in |1>
# the second qubit is in |1>
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.cu3(2*theta4,0,0,qreg[3],qreg[0])
# reverse the effects
circuit.ccx(qreg[2],qreg[1],qreg[3])
# read the corresponding unitary matrix
job = execute(circuit,Aer.get_backend('unitary_simulator'))
unitary_matrix=job.result().get_unitary(circuit,decimals=3)
for i in range(len(unitary_matrix)):
s=""
for j in range(len(unitary_matrix)):
val = str(unitary_matrix[i][j].real)
while(len(val)<7): val = " "+val
s = s + val
print(s)
#
# your solution is here
#
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi,sin
# the angle of rotation
k1 = randrange(1,61)
theta1 = k1*2*pi/61
k2 = randrange(1,61)
theta2 = k2*2*pi/61
k3 = randrange(1,61)
theta3 = k3*2*pi/61
k4 = randrange(1,61)
theta4 = k4*2*pi/61
max_percentange = 0
# for each stream of length of 1, 11, 21, 31, 41, 51, and 61
for i in [1,11,21,31,41,51,61]:
#for i in range(1,62):
# initialize the circuit
qreg = QuantumRegister(4)
creg = ClassicalRegister(4)
circuit = QuantumCircuit(qreg,creg)
# Hadamard operators before reading the stream
for m in range(3):
circuit.h(qreg[m])
# read the stream of length i
print("stream of length",i,"is being read")
for j in range(i):
# the third qubit is in |0>
# the second qubit is in |0>
circuit.x(qreg[2])
circuit.x(qreg[1])
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.cu3(2*theta1,0,0,qreg[3],qreg[0])
# reverse the effects
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.x(qreg[1])
circuit.x(qreg[2])
# the third qubit is in |0>
# the second qubit is in |1>
circuit.x(qreg[2])
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.cu3(2*theta2,0,0,qreg[3],qreg[0])
# reverse the effects
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.x(qreg[2])
# the third qubit is in |1>
# the second qubit is in |0>
circuit.x(qreg[1])
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.cu3(2*theta3,0,0,qreg[3],qreg[0])
# reverse the effects
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.x(qreg[1])
# the third qubit is in |1>
# the second qubit is in |1>
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.cu3(2*theta4,0,0,qreg[3],qreg[0])
# reverse the effects
circuit.ccx(qreg[2],qreg[1],qreg[3])
# Hadamard operators after reading the stream
for m in range(3):
circuit.h(qreg[m])
# we measure after reading the whole stream
circuit.measure(qreg,creg)
# execute the circuit N times
N = 1000
job = execute(circuit,Aer.get_backend('qasm_simulator'),shots=N)
counts = job.result().get_counts(circuit)
print(counts)
if '0000' in counts.keys():
c = counts['0000']
else:
c = 0
print('0000 is observed',c,'times out of',N)
percentange = round(c/N*100,1)
if max_percentange < percentange and i != 61: max_percentange = percentange
print("the ration of 0000 is ",percentange,"%")
print()
print("maximum percentage of observing unwanted '0000' is",max_percentange)
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
from math import pi, sin, cos
theta1 = pi/4
theta2 = pi/6
print(round(cos(theta1),3),-round(sin(theta1),3),0,0)
print(round(sin(theta1),3),-round(cos(theta1),3),0,0)
print(0,0,round(cos(theta2),3),-round(sin(theta2),3))
print(0,0,round(sin(theta2),3),-round(cos(theta2),3))
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi, sin, cos
# the angle of rotation
theta1 = pi/23
theta2 = 2*pi/23
theta3 = 4*pi/23
precision = 3
print("a1 = theta3 => sin(a1) = ",round(sin(theta3),precision))
print("a2 = theta2+theta3 => sin(a2) = ",round(sin(theta2+theta3),precision))
print("a3 = theta1 => sin(a3) = ",round(sin(theta1),precision))
print("a4 = theta1+theta2 => sin(a4) = ",round(sin(theta1+theta2),precision))
print()
qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
circuit = QuantumCircuit(qreg,creg)
# controlled rotation when the third qubit is |1>
circuit.cu3(2*theta1,0,0,qreg[2],qreg[0])
# controlled rotation when the second qubit is |1>
circuit.cu3(2*theta2,0,0,qreg[1],qreg[0])
# controlled rotation when the third qubit is |0>
circuit.x(qreg[2])
circuit.cu3(2*theta3,0,0,qreg[2],qreg[0])
circuit.x(qreg[2])
# read the corresponding unitary matrix
job = execute(circuit,Aer.get_backend('unitary_simulator'))
unitary_matrix=job.result().get_unitary(circuit,decimals=precision)
for i in range(len(unitary_matrix)):
s=""
for j in range(len(unitary_matrix)):
val = str(unitary_matrix[i][j].real)
while(len(val)<precision+4): val = " "+val
s = s + val
print(s)
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi, sin, cos
from random import randrange
# the angle of rotation
k1 = randrange(1,31)
theta1 = k1*2*pi/31
k2 = randrange(1,31)
theta2 = k2*2*pi/31
k3 = randrange(1,31)
theta3 = k3*2*pi/31
max_percentange = 0
# for each stream of length from 1 to 31
for i in range(1,32):
# initialize the circuit
qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
circuit = QuantumCircuit(qreg,creg)
# Hadamard operators before reading the stream
for m in range(3):
circuit.h(qreg[m])
# read the stream of length i
print("stream of length",i,"is being read")
for j in range(i):
# controlled rotation when the third qubit is |1>
circuit.cu3(2*theta1,0,0,qreg[2],qreg[0])
# controlled rotation when the second qubit is |1>
circuit.cu3(2*theta2,0,0,qreg[1],qreg[0])
# controlled rotation when the third qubit is |0>
circuit.x(qreg[2])
circuit.cu3(2*theta3,0,0,qreg[2],qreg[0])
circuit.x(qreg[2])
# Hadamard operators after reading the stream
for m in range(3):
circuit.h(qreg[m])
# we measure after reading the whole stream
circuit.measure(qreg,creg)
# execute the circuit N times
N = 1000
job = execute(circuit,Aer.get_backend('qasm_simulator'),shots=N)
counts = job.result().get_counts(circuit)
print(counts)
if '000' in counts.keys():
c = counts['000']
else:
c = 0
print('000 is observed',c,'times out of',N)
percentange = round(c/N*100,1)
if max_percentange < percentange and i != 31: max_percentange = percentange
print("the ration of 000 is ",percentange,"%")
print()
print("maximum percentage of observing unwanted '000' is",max_percentange)
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import pi,sin
# the angle of rotation
k1 = randrange(1,61)
theta1 = k1*2*pi/61
k2 = randrange(1,61)
theta2 = k2*2*pi/61
k3 = randrange(1,61)
theta3 = k3*2*pi/61
k4 = randrange(1,61)
theta4 = k4*2*pi/61
max_percentange = 0
# for each stream of length of 1, 11, 21, 31, 41, 51, and 61
for i in [1,11,21,31,41,51,61]:
#for i in range(1,62):
# initialize the circuit
qreg = QuantumRegister(4)
creg = ClassicalRegister(4)
circuit = QuantumCircuit(qreg,creg)
# Hadamard operators before reading the stream
for m in range(3):
circuit.h(qreg[m])
# read the stream of length i
print("stream of length",i,"is being read")
for j in range(i):
# the third qubit is in |0>
# the second qubit is in |0>
circuit.x(qreg[2])
circuit.x(qreg[1])
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.cu3(2*theta1,0,0,qreg[3],qreg[0])
# reverse the effects
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.x(qreg[1])
circuit.x(qreg[2])
# the third qubit is in |0>
# the second qubit is in |1>
circuit.x(qreg[2])
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.cu3(2*theta2,0,0,qreg[3],qreg[0])
# reverse the effects
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.x(qreg[2])
# the third qubit is in |1>
# the second qubit is in |0>
circuit.x(qreg[1])
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.cu3(2*theta3,0,0,qreg[3],qreg[0])
# reverse the effects
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.x(qreg[1])
# the third qubit is in |1>
# the second qubit is in |1>
circuit.ccx(qreg[2],qreg[1],qreg[3])
circuit.cu3(2*theta4,0,0,qreg[3],qreg[0])
# reverse the effects
circuit.ccx(qreg[2],qreg[1],qreg[3])
# Hadamard operators after reading the stream
for m in range(3):
circuit.h(qreg[m])
# we measure after reading the whole stream
circuit.measure(qreg,creg)
# execute the circuit N times
N = 1000
job = execute(circuit,Aer.get_backend('qasm_simulator'),shots=N)
counts = job.result().get_counts(circuit)
print(counts)
if '0000' in counts.keys():
c = counts['0000']
else:
c = 0
print('0000 is observed',c,'times out of',N)
percentange = round(c/N*100,1)
if max_percentange < percentange and i != 61: max_percentange = percentange
print("the ration of 0000 is ",percentange,"%")
print()
print("maximum percentage of observing unwanted '0000' is",max_percentange)
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
from matplotlib.pyplot import bar
labels = []
L = []
for i in range(8):
labels = labels + [i+1]
L = L + [1]
# visualize the values of elements in the list
bar(labels,L)
#
# 1st step - query
#
# 4th element is marked flip the sign
L[3] = -1 * L[3]
# visualize the values of elements in the list
bar(labels,L)
#
# 1st step - inversion
#
import numpy as np
# find reflection over the mean
sum = 0
for i in range(len(L)):
sum += L[i]
# mean of all values
mean = sum / len(L)
# reflection over the mean
for i in range(len(L)):
value = L[i]
new_value = mean - (L[i]-mean)
L[i] = new_value
# visualize the values of elements in the list
bar(labels,L)
#
# 2nd step - query
#
L[3] = -1 * L[3]
# visualize the values of elements in the list
bar(labels,L)
#
# 2nd step - inversion
#
sum = 0
for i in range(len(L)):
sum += L[i]
# mean of all values
mean = sum / len(L)
# reflection over the mean
for i in range(len(L)):
value = L[i]
new_value = mean - (L[i]-mean)
L[i] = new_value
# visualize the values of elements in the list
bar(labels,L)
#
# your code is here
#
# Construct the list with all elements 1
def query(L):
L[3] = -1 * L[3]
return L
def inversion(L):
sum = 0
for i in range(len(L)):
sum += L[i]
# mean of all values
mean = sum / len(L)
# reflection over the mean
for i in range(len(L)):
value = L[i]
new_value = mean - (L[i]-mean)
L[i] = new_value
return L
# iterate same steps 3 times
for i in range(3):
L = query(L)
L = inversion(L)
# visualize the values of elements in the list
bar(labels,L)
#
# your code is here
#
labels = []
L = []
for i in range(16):
labels = labels + [i+1]
L = L + [1]
def query(L):
L[10] = -1 * L[10]
return L
def inversion(L):
sum = 0
for i in range(len(L)):
sum += L[i]
# mean of all values
mean = sum / len(L)
# reflection over the mean
for i in range(len(L)):
value = L[i]
new_value = mean - (L[i]-mean)
L[i] = new_value
return L
# iterate the game 16 times
for i in range(1, 17):
L = query(L)
L = inversion(L)
print("Value of 11th element after ", i, " iteration: ", L[10] )
print()
# visualize the values of elements in the list
bar(labels,L)
#
# your code is here
#
N = 8
marked = 1
L = []
for i in range(N):
L = L + [1/(N**0.5)]
# print the elements of a given list with a given precision
def print_list(L,precision):
output = ""
for i in range(len(L)):
output = output + str(round(L[i],precision))+" "
print(output)
print_list(L,3)
for i in range(10):
print((i+1),"th iteration:")
# flip the sign of the marked element
L[marked] = -1 * L[marked]
# print after query phase
print_list(L,3)
# summation of all values
sum = 0
for i in range(len(L)):
sum += L[i]
# mean of all values
mean = sum / len(L)
print("mean = ",round(mean,3))
# reflection over mean
for i in range(len(L)):
value = L[i]
new_value = mean - (L[i]-mean)
L[i] = new_value
# calculate the length of the list
length_of_list = 0
for j in range(len(L)):
length_of_list += L[j]*L[j]
print("length of list is",round(length_of_list,3))
# print after inversion phase
print_list(L,3)
print()
# visualize the values of elements in the list
bar(labels,L)
#
# your code is here
#
N = 16
marked_elements = [0,2,9]
L = []
for i in range(N):
L = L + [1/(N**0.5)]
# print the elements of a given list with a given precision
def print_list(L,precision):
output = ""
for i in range(len(L)):
output = output + str(round(L[i],precision))+" "
print(output)
print_list(L,3)
for i in range(10):
print((i+1),"th iteration:")
# flip the sign of the marked element
for marked in marked_elements:
L[marked] = -1 * L[marked]
# print after query phase
print_list(L,3)
# summation of all values
sum = 0
for i in range(len(L)):
sum += L[i]
# mean of all values
mean = sum / len(L)
# reflection over mean
for i in range(len(L)):
value = L[i]
new_value = mean - (L[i]-mean)
L[i] = new_value
# calculate the length of the list
length_of_list = 0
for j in range(len(L)):
length_of_list += L[j]*L[j]
print("length of list is",round(length_of_list,3))
# print after inversion phase
print_list(L,3)
print()
#
# your code is here
#
N = 16
marked_elements = range(12)
L = []
for i in range(N):
L = L + [1/(N**0.5)]
# print the elements of a given list with a given precision
def print_list(L,precision):
output = ""
for i in range(len(L)):
output = output + str(round(L[i],precision))+" "
print(output)
print_list(L,3)
for i in range(10):
print((i+1),"th iteration:")
# flip the sign of the marked element
for marked in marked_elements:
L[marked] = -1 * L[marked]
# print after query phase
print_list(L,3)
# summation of all values
sum = 0
for i in range(len(L)):
sum += L[i]
# mean of all values
mean = sum / len(L)
# reflection over mean
for i in range(len(L)):
value = L[i]
new_value = mean - (L[i]-mean)
L[i] = new_value
# calculate the length of the list
length_of_list = 0
for j in range(len(L)):
length_of_list += L[j]*L[j]
print("length of list is",round(length_of_list,3))
# print after inversion phase
print_list(L,3)
print()
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
from matplotlib.pyplot import bar
labels = []
L = []
for i in range(8):
labels = labels + [i+1]
L = L + [1]
# visualize the values of elements in the list
bar(labels,L)
#
# 1st step - query
#
# flip the sign of the marked element
L[3] = -1 * L[3]
# visualize the values of elements in the list
bar(labels,L)
#
# 1st step - inversion
#
# summation of all values
sum = 0
for i in range(len(L)):
sum += L[i]
# mean of all values
mean = sum / len(L)
# reflection over the mean
for i in range(len(L)):
value = L[i]
new_value = mean - (L[i]-mean)
L[i] = new_value
# visualize the values of elements in the list
bar(labels,L)
#
# 2nd step - query
#
# flip the sign of the marked element
L[3] = -1 * L[3]
# visualize the values of elements in the list
bar(labels,L)
#
# 2nd step - inversion
#
# summation of all values
sum = 0
for i in range(len(L)):
sum += L[i]
# mean of all values
mean = sum / len(L)
# reflection over mean
for i in range(len(L)):
value = L[i]
new_value = mean - (L[i]-mean)
L[i] = new_value
# visualize the values of elements in the list
bar(labels,L)
for i in range(3):
# flip the sign of the marked element
L[3] = -1 * L[3]
# summation of all values
sum = 0
for i in range(len(L)):
sum += L[i]
# mean of all values
mean = sum / len(L)
# reflection over mean
for i in range(len(L)):
value = L[i]
new_value = mean - (L[i]-mean)
L[i] = new_value
# visualize the values of elements in the list
bar(labels,L)
from matplotlib.pyplot import bar
labels = []
L = []
for i in range(16):
labels = labels + [i+1]
L = L + [1]
for i in range(20):
print((i+1),"th iteration:")
# flip the sign of the marked element
L[11] = -1 * L[11]
# print after query phase
print(L[11])
# summation of all values
sum = 0
for i in range(len(L)):
sum += L[i]
# mean of all values
mean = sum / len(L)
# reflection over mean
for i in range(len(L)):
value = L[i]
new_value = mean - (L[i]-mean)
L[i] = new_value
# print after inversion phase
print(L[11])
print()
N = 8
marked = 1
L = []
for i in range(N):
L = L + [1/(N**0.5)]
# print the elements of a given list with a given precision
def print_list(L,precision):
output = ""
for i in range(len(L)):
output = output + str(round(L[i],precision))+" "
print(output)
print_list(L,3)
for i in range(10):
print((i+1),"th iteration:")
# flip the sign of the marked element
L[marked] = -1 * L[marked]
# print after query phase
print_list(L,3)
# summation of all values
sum = 0
for i in range(len(L)):
sum += L[i]
# mean of all values
mean = sum / len(L)
print("mean = ",round(mean,3))
# reflection over mean
for i in range(len(L)):
value = L[i]
new_value = mean - (L[i]-mean)
L[i] = new_value
# calculate the length of the list
length_of_list = 0
for j in range(len(L)):
length_of_list += L[j]*L[j]
print("length of list is",round(length_of_list,3))
# print after inversion phase
print_list(L,3)
print()
N = 16
marked_elements = [0,2,9]
L = []
for i in range(N):
L = L + [1/(N**0.5)]
# print the elements of a given list with a given precision
def print_list(L,precision):
output = ""
for i in range(len(L)):
output = output + str(round(L[i],precision))+" "
print(output)
print_list(L,3)
for i in range(10):
print((i+1),"th iteration:")
# flip the sign of the marked element
for marked in marked_elements:
L[marked] = -1 * L[marked]
# print after query phase
print_list(L,3)
# summation of all values
sum = 0
for i in range(len(L)):
sum += L[i]
# mean of all values
mean = sum / len(L)
# reflection over mean
for i in range(len(L)):
value = L[i]
new_value = mean - (L[i]-mean)
L[i] = new_value
# calculate the length of the list
length_of_list = 0
for j in range(len(L)):
length_of_list += L[j]*L[j]
print("length of list is",round(length_of_list,3))
# print after inversion phase
print_list(L,3)
print()
N = 16
marked_elements = range(12)
L = []
for i in range(N):
L = L + [1/(N**0.5)]
# print the elements of a given list with a given precision
def print_list(L,precision):
output = ""
for i in range(len(L)):
output = output + str(round(L[i],precision))+" "
print(output)
print_list(L,3)
for i in range(10):
print((i+1),"th iteration:")
# flip the sign of the marked element
for marked in marked_elements:
L[marked] = -1 * L[marked]
# print after query phase
print_list(L,3)
# summation of all values
sum = 0
for i in range(len(L)):
sum += L[i]
# mean of all values
mean = sum / len(L)
# reflection over mean
for i in range(len(L)):
value = L[i]
new_value = mean - (L[i]-mean)
L[i] = new_value
# calculate the length of the list
length_of_list = 0
for j in range(len(L)):
length_of_list += L[j]*L[j]
print("length of list is",round(length_of_list,3))
# print after inversion phase
print_list(L,3)
print()
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# import all necessary objects and methods for quantum circuits
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
#
# your code is here
qreg1 = QuantumRegister(2) # quantum register with 2 qubits
creg1 = ClassicalRegister(2) # classical register with 2 bits
mycircuit1 = QuantumCircuit(qreg1,creg1) # quantum circuit with quantum and classical registers
# the first qubit is in |0>
# set the second qubit to |1>
mycircuit1.x(qreg1[1]) # apply x-gate (NOT operator)
# apply Hadamard to both qubits.
mycircuit1.h(qreg1[0])
mycircuit1.h(qreg1[1])
# apply CNOT operator, where the controller qubit is the first qubit and the target qubit is the second qubit.
mycircuit1.cx(qreg1[0],qreg1[1])
# apply Hadamard to both qubits.
mycircuit1.h(qreg1[0])
mycircuit1.h(qreg1[1])
# measure both qubits
mycircuit1.measure(qreg1,creg1)
# execute the circuit 100 times in the local simulator
job = execute(mycircuit1,Aer.get_backend('qasm_simulator'),shots=100)
counts = job.result().get_counts(mycircuit1)
# print the reverse of the outcome
for outcome in counts:
reverse_outcome = ''
for i in outcome:
reverse_outcome = i + reverse_outcome
print("Start state: 01, Result state: ",reverse_outcome," Observed",counts[outcome],"times")
# import all necessary objects and methods for quantum circuits
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
#
# your code is here
#
# import all necessary objects and methods for quantum circuits
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
# Create a circuit with 7 qubits.
n = 7
qreg2 = QuantumRegister(n) # quantum register with 7 qubits
creg2 = ClassicalRegister(n) # classical register with 7 bits
mycircuit2 = QuantumCircuit(qreg2,creg2) # quantum circuit with quantum and classical registers
# the first six qubits are already in |0>
# set the last qubit to |1>
mycircuit2.x(qreg2[n-1]) # apply x-gate (NOT operator)
# apply Hadamard to all qubits.
for i in range(n):
mycircuit2.h(qreg2[i])
# apply CNOT operator (first-qubit,last-qubit)
# apply CNOT operator (fourth-qubit,last-qubit)
# apply CNOT operator (fifth-qubit,last-qubit)
mycircuit2.cx(qreg2[0],qreg2[n-1])
mycircuit2.cx(qreg2[3],qreg2[n-1])
mycircuit2.cx(qreg2[4],qreg2[n-1])
# apply Hadamard to all qubits.
for i in range(n):
mycircuit2.h(qreg2[i])
# measure all qubits
mycircuit2.measure(qreg2,creg2)
# execute the circuit 100 times in the local simulator
job = execute(mycircuit2,Aer.get_backend('qasm_simulator'),shots=100)
counts = job.result().get_counts(mycircuit2)
# print the reverse of the outcome
for outcome in counts:
reverse_outcome = ''
for i in outcome:
reverse_outcome = i + reverse_outcome
print(reverse_outcome,"is observed",counts[outcome],"times")
for i in range(len(reverse_outcome)):
print("Final q-bit value for nth q-bit",(i+1),"is",reverse_outcome[i])
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# import all necessary objects and methods for quantum circuits
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
qreg1 = QuantumRegister(2) # quantum register with 2 qubits
creg1 = ClassicalRegister(2) # classical register with 2 bits
mycircuit1 = QuantumCircuit(qreg1,creg1) # quantum circuit with quantum and classical registers
# the first qubit is in |0>
# set the second qubit to |1>
mycircuit1.x(qreg1[1]) # apply x-gate (NOT operator)
# apply Hadamard to both qubits.
mycircuit1.h(qreg1[0])
mycircuit1.h(qreg1[1])
# apply CNOT operator, where the controller qubit is the first qubit and the target qubit is the second qubit.
mycircuit1.cx(qreg1[0],qreg1[1])
# apply Hadamard to both qubits.
mycircuit1.h(qreg1[0])
mycircuit1.h(qreg1[1])
# measure both qubits
mycircuit1.measure(qreg1,creg1)
# execute the circuit 100 times in the local simulator
job = execute(mycircuit1,Aer.get_backend('qasm_simulator'),shots=100)
counts = job.result().get_counts(mycircuit1)
# print the reverse of the outcome
for outcome in counts:
reverse_outcome = ''
for i in outcome:
reverse_outcome = i + reverse_outcome
print("We start in quantum state 01, and",reverse_outcome,"is observed",counts[outcome],"times")
# import all necessary objects and methods for quantum circuits
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
# Create a circuit with 7 qubits.
n = 7
qreg2 = QuantumRegister(n) # quantum register with 7 qubits
creg2 = ClassicalRegister(n) # classical register with 7 bits
mycircuit2 = QuantumCircuit(qreg2,creg2) # quantum circuit with quantum and classical registers
# the first six qubits are already in |0>
# set the last qubit to |1>
mycircuit2.x(qreg2[n-1]) # apply x-gate (NOT operator)
# apply Hadamard to all qubits.
for i in range(n):
mycircuit2.h(qreg2[i])
# apply CNOT operator (first-qubit,last-qubit)
# apply CNOT operator (fourth-qubit,last-qubit)
# apply CNOT operator (fifth-qubit,last-qubit)
mycircuit2.cx(qreg2[0],qreg2[n-1])
mycircuit2.cx(qreg2[3],qreg2[n-1])
mycircuit2.cx(qreg2[4],qreg2[n-1])
# apply Hadamard to all qubits.
for i in range(n):
mycircuit2.h(qreg2[i])
# measure all qubits
mycircuit2.measure(qreg2,creg2)
# execute the circuit 100 times in the local simulator
job = execute(mycircuit2,Aer.get_backend('qasm_simulator'),shots=100)
counts = job.result().get_counts(mycircuit2)
# print the reverse of the outcome
for outcome in counts:
reverse_outcome = ''
for i in outcome:
reverse_outcome = i + reverse_outcome
print(reverse_outcome,"is observed",counts[outcome],"times")
for i in range(len(reverse_outcome)):
print("the final value of the qubit nr.",(i+1),"is",reverse_outcome[i])
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# import all necessary objects and methods for quantum circuits
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
#
# your solution is here
#
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
# Quantum Circuit with 4 qbits
qreg = QuantumRegister(4) # quantum register with 4 qubits
creg = ClassicalRegister(4) # classical register with 4 bits
mycircuit = QuantumCircuit(qreg,creg) # quantum circuit with quantum and classical registers
# Apply Hadamard to each one of the q-bits
for i in range(4):
mycircuit.h(qreg[i])
# perform measurement
mycircuit.measure(qreg,creg)
# Execute circuit 16000 times
job = execute(mycircuit,Aer.get_backend('qasm_simulator'),shots=1600)
counts = job.result().get_counts(mycircuit)
# reverse q-bits to have a readable format
for outcome in counts:
reverse_outcome = ''
for i in outcome:
reverse_outcome = i + reverse_outcome
print(reverse_outcome,"is observed",counts[outcome],"times")
# include our predefined functions
%run qlatvia.py
# import all necessary objects and methods for quantum circuits
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import acos, pi
# after Hadamard operators
u = [(13/16)**0.5,(3/16)**0.5]
def angle_between_two_states(u1,u2):
dot_product = u1[0]*u2[0]+u1[1]*u2[1]
return acos(dot_product)
theta = angle_between_two_states(u,[1,0])
all_visited_quantum_states =[]
qreg2 = QuantumRegister(1) # quantum register with 1 qubit
creg2 = ClassicalRegister(1) # classical register with 1 bit
mycircuit2 = QuantumCircuit(qreg2,creg2) # quantum circuit with quantum and classical registers
# set the qubit to |u> by rotating it by theta
mycircuit2.ry(2*theta,qreg2[0])
# read and store the current quantum state
current_state = execute(mycircuit2,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit2)
[x,y] = [current_state[0].real,current_state[1].real]
all_visited_quantum_states.append([x,y,'u'])
# the first reflection
theta = angle_between_two_states([x,y],[1,0])
mycircuit2.ry(2*(-2*theta),qreg2[0])
# read and store the current quantum state
current_state = execute(mycircuit2,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit2)
[x,y] = [current_state[0].real,current_state[1].real]
all_visited_quantum_states.append([x,y,'r'])
# the second reflection
theta = angle_between_two_states(u,[x,y])
mycircuit2.ry(2*(2*theta),qreg2[0])
# read and store the current quantum state
current_state = execute(mycircuit2,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit2)
[x,y] = [current_state[0].real,current_state[1].real]
all_visited_quantum_states.append([x,y,'n'])
# measure the qubit
mycircuit2.measure(qreg2,creg2)
# execute the circuit 100 times, and print the outcomes
job = execute(mycircuit2,Aer.get_backend('qasm_simulator'),shots=100)
counts2 = job.result().get_counts(mycircuit2)
print(counts2)
# visualization
draw_qubit()
for quantum_state in all_visited_quantum_states:
draw_quantum_state(quantum_state[0],quantum_state[1],quantum_state[2])
# include our predefined functions
%run qlatvia.py
# import all necessary objects and methods for quantum circuits
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import acos, pi
# after Hadamard operators
u = [(63/64)**0.5,(1/64)**0.5]
def angle_between_two_states(u1,u2):
dot_product = u1[0]*u2[0]+u1[1]*u2[1]
return acos(dot_product)
theta = angle_between_two_states(u,[1,0])
all_visited_quantum_states =[]
qreg3 = QuantumRegister(1) # quantum register with 1 qubit
creg3 = ClassicalRegister(1) # classical register with 1 bit
mycircuit3 = QuantumCircuit(qreg3,creg3) # quantum circuit with quantum and classical registers
# set the qubit to |u> by rotating it by theta
mycircuit3.ry(2*theta,qreg3[0])
# read and store the current quantum state
current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3)
[x,y] = [current_state[0].real,current_state[1].real]
all_visited_quantum_states.append([x,y,'u'])
# three iterations
for i in range(3): # 4,5,6,7,8,9,10
# the first reflection
theta = angle_between_two_states([x,y],[1,0])
mycircuit3.ry(2*(-2*theta),qreg3[0])
# read and store the current quantum state
current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3)
[x,y] = [current_state[0].real,current_state[1].real]
all_visited_quantum_states.append([x,y,'r'+str(i+1)])
# the second reflection
theta = angle_between_two_states(u,[x,y])
mycircuit3.ry(2*(2*theta),qreg3[0])
# read and store the current quantum state
current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3)
[x,y] = [current_state[0].real,current_state[1].real]
all_visited_quantum_states.append([x,y,'n'+str(i+1)])
# measure the qubit
mycircuit3.measure(qreg3,creg3)
# execute the circuit 100 times, and print the outcomes
job = execute(mycircuit3,Aer.get_backend('qasm_simulator'),shots=100)
counts3 = job.result().get_counts(mycircuit3)
print(counts3)
# visualization
draw_qubit()
for quantum_state in all_visited_quantum_states:
draw_quantum_state(quantum_state[0],quantum_state[1],quantum_state[2])
# include our predefined functions
%run qlatvia.py
# import all necessary objects and methods for quantum circuits
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import acos, pi
# after Hadamard operators
u = [(4/16)**0.5,(12/16)**0.5]
def angle_between_two_states(u1,u2):
dot_product = u1[0]*u2[0]+u1[1]*u2[1]
return acos(dot_product)
theta = angle_between_two_states(u,[1,0])
all_visited_quantum_states = []
qreg3 = QuantumRegister(1) # quantum register with 1 qubit
creg3 = ClassicalRegister(1) # classical register with 1 bit
mycircuit3 = QuantumCircuit(qreg3,creg3) # quantum circuit with quantum and classical registers
# set the qubit to |u> by rotating it by theta
mycircuit3.ry(2*theta,qreg3[0])
# read and store the current quantum state
current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3)
[x,y] = [current_state[0].real,current_state[1].real]
all_visited_quantum_states.append([x,y,'u'])
# three iterations
number_of_iterations = 1 # 2, 3, and 4
for i in range(number_of_iterations):
# the first reflection
theta = angle_between_two_states([x,y],[1,0])
mycircuit3.ry(2*(-2*theta),qreg3[0])
# read and store the current quantum state
current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3)
[x,y] = [current_state[0].real,current_state[1].real]
if i == number_of_iterations -1: all_visited_quantum_states.append([x,y,'r'+str(i+1)])
# the second reflection
theta = angle_between_two_states(u,[x,y])
mycircuit3.ry(2*(2*theta),qreg3[0])
# read and store the current quantum state
current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3)
[x,y] = [current_state[0].real,current_state[1].real]
if i == number_of_iterations -1: all_visited_quantum_states.append([x,y,'n'+str(i+1)])
# measure the qubit
mycircuit3.measure(qreg3,creg3)
# execute the circuit 100 times, and print the outcomes
job = execute(mycircuit3,Aer.get_backend('qasm_simulator'),shots=100)
counts3 = job.result().get_counts(mycircuit3)
print(counts3)
# visualization
draw_qubit()
for quantum_state in all_visited_quantum_states:
draw_quantum_state(quantum_state[0],quantum_state[1],quantum_state[2])
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# import all necessary objects and methods for quantum circuits
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
qreg = QuantumRegister(4) # quantum register with 4 qubits
creg = ClassicalRegister(4) # classical register with 4 bits
mycircuit = QuantumCircuit(qreg,creg) # quantum circuit with quantum and classical registers
# apply h-gate (Hadamard) to each qubit
for i in range(4):
mycircuit.h(qreg[i])
# measure all qubits
mycircuit.measure(qreg,creg)
# execute the circuit 1600 times, and print the outcomes
job = execute(mycircuit,Aer.get_backend('qasm_simulator'),shots=1600)
counts = job.result().get_counts(mycircuit)
for outcome in counts:
reverse_outcome = ''
for i in outcome:
reverse_outcome = i + reverse_outcome
print(reverse_outcome,"is observed",counts[outcome],"times")
# include our predefined functions
%run qlatvia.py
# import all necessary objects and methods for quantum circuits
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import acos, pi
# after Hadamard operators
u = [(13/16)**0.5,(3/16)**0.5]
def angle_between_two_states(u1,u2):
dot_product = u1[0]*u2[0]+u1[1]*u2[1]
return acos(dot_product)
theta = angle_between_two_states(u,[1,0])
all_visited_quantum_states =[]
qreg2 = QuantumRegister(1) # quantum register with 1 qubit
creg2 = ClassicalRegister(1) # classical register with 1 bit
mycircuit2 = QuantumCircuit(qreg2,creg2) # quantum circuit with quantum and classical registers
# set the qubit to |u> by rotating it by theta
mycircuit2.ry(2*theta,qreg2[0])
# read and store the current quantum state
current_state = execute(mycircuit2,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit2)
[x,y] = [current_state[0].real,current_state[1].real]
all_visited_quantum_states.append([x,y,'u'])
# the first reflection
theta = angle_between_two_states([x,y],[1,0])
mycircuit2.ry(2*(-2*theta),qreg2[0])
# read and store the current quantum state
current_state = execute(mycircuit2,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit2)
[x,y] = [current_state[0].real,current_state[1].real]
all_visited_quantum_states.append([x,y,'r'])
# the second reflection
theta = angle_between_two_states(u,[x,y])
mycircuit2.ry(2*(2*theta),qreg2[0])
# read and store the current quantum state
current_state = execute(mycircuit2,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit2)
[x,y] = [current_state[0].real,current_state[1].real]
all_visited_quantum_states.append([x,y,'n'])
# measure the qubit
mycircuit2.measure(qreg2,creg2)
# execute the circuit 100 times, and print the outcomes
job = execute(mycircuit2,Aer.get_backend('qasm_simulator'),shots=100)
counts2 = job.result().get_counts(mycircuit2)
print(counts2)
# visualization
draw_qubit()
for quantum_state in all_visited_quantum_states:
draw_quantum_state(quantum_state[0],quantum_state[1],quantum_state[2])
# include our predefined functions
%run qlatvia.py
# import all necessary objects and methods for quantum circuits
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import acos, pi
# after Hadamard operators
u = [(63/64)**0.5,(1/64)**0.5]
def angle_between_two_states(u1,u2):
dot_product = u1[0]*u2[0]+u1[1]*u2[1]
return acos(dot_product)
theta = angle_between_two_states(u,[1,0])
all_visited_quantum_states =[]
qreg3 = QuantumRegister(1) # quantum register with 1 qubit
creg3 = ClassicalRegister(1) # classical register with 1 bit
mycircuit3 = QuantumCircuit(qreg3,creg3) # quantum circuit with quantum and classical registers
# set the qubit to |u> by rotating it by theta
mycircuit3.ry(2*theta,qreg3[0])
# read and store the current quantum state
current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3)
[x,y] = [current_state[0].real,current_state[1].real]
all_visited_quantum_states.append([x,y,'u'])
# three iterations
for i in range(3): # 4,5,6,7,8,9,10
# the first reflection
theta = angle_between_two_states([x,y],[1,0])
mycircuit3.ry(2*(-2*theta),qreg3[0])
# read and store the current quantum state
current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3)
[x,y] = [current_state[0].real,current_state[1].real]
all_visited_quantum_states.append([x,y,'r'+str(i+1)])
# the second reflection
theta = angle_between_two_states(u,[x,y])
mycircuit3.ry(2*(2*theta),qreg3[0])
# read and store the current quantum state
current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3)
[x,y] = [current_state[0].real,current_state[1].real]
all_visited_quantum_states.append([x,y,'n'+str(i+1)])
# measure the qubit
mycircuit3.measure(qreg3,creg3)
# execute the circuit 100 times, and print the outcomes
job = execute(mycircuit3,Aer.get_backend('qasm_simulator'),shots=100)
counts3 = job.result().get_counts(mycircuit3)
print(counts3)
# visualization
draw_qubit()
for quantum_state in all_visited_quantum_states:
draw_quantum_state(quantum_state[0],quantum_state[1],quantum_state[2])
# include our predefined functions
%run qlatvia.py
# import all necessary objects and methods for quantum circuits
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from math import acos, pi
# after Hadamard operators
u = [(4/16)**0.5,(12/16)**0.5]
def angle_between_two_states(u1,u2):
dot_product = u1[0]*u2[0]+u1[1]*u2[1]
return acos(dot_product)
theta = angle_between_two_states(u,[1,0])
all_visited_quantum_states = []
qreg3 = QuantumRegister(1) # quantum register with 1 qubit
creg3 = ClassicalRegister(1) # classical register with 1 bit
mycircuit3 = QuantumCircuit(qreg3,creg3) # quantum circuit with quantum and classical registers
# set the qubit to |u> by rotating it by theta
mycircuit3.ry(2*theta,qreg3[0])
# read and store the current quantum state
current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3)
[x,y] = [current_state[0].real,current_state[1].real]
all_visited_quantum_states.append([x,y,'u'])
# three iterations
number_of_iterations = 1 # 2, 3, and 4
for i in range(number_of_iterations):
# the first reflection
theta = angle_between_two_states([x,y],[1,0])
mycircuit3.ry(2*(-2*theta),qreg3[0])
# read and store the current quantum state
current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3)
[x,y] = [current_state[0].real,current_state[1].real]
if i == number_of_iterations -1: all_visited_quantum_states.append([x,y,'r'+str(i+1)])
# the second reflection
theta = angle_between_two_states(u,[x,y])
mycircuit3.ry(2*(2*theta),qreg3[0])
# read and store the current quantum state
current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3)
[x,y] = [current_state[0].real,current_state[1].real]
if i == number_of_iterations -1: all_visited_quantum_states.append([x,y,'n'+str(i+1)])
# measure the qubit
mycircuit3.measure(qreg3,creg3)
# execute the circuit 100 times, and print the outcomes
job = execute(mycircuit3,Aer.get_backend('qasm_simulator'),shots=100)
counts3 = job.result().get_counts(mycircuit3)
print(counts3)
# visualization
draw_qubit()
for quantum_state in all_visited_quantum_states:
draw_quantum_state(quantum_state[0],quantum_state[1],quantum_state[2])
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# consider the following list with 4 elements
L = [1,-2,0,5]
print(L)
# 3 * v
v = [1,-2,0,5]
print("v is",v)
# we use the same list for the result
for i in range(len(v)):
v[i] = 3 * v[i]
print("3v is",v)
# -0.6 * u
# reinitialize the list v
v = [1,-2,0,5]
for i in range(len(v)):
v[i] = -0.6 * v[i]
print("0.6v is",v)
u = [-3,-2,0,-1,4]
v = [-1,-1,2,-3,5]
result=[]
for i in range(len(u)):
result.append(u[i]+v[i])
print("u+v is",result)
# let's also print the result vector similarly to a column vector
print() # print an empty line
print("the elements of u+v are")
for j in range(len(result)):
print(result[j])
from random import randrange
#
# your solution is here
#
#r=randrange(-10,11) # randomly pick a number from the list {-10,-9,...,-1,0,1,...,9,10}
#
# your solution is here
#
v = [-1,-3,5,3,1,2]
length_square=0
for i in range(len(v)):
print(v[i],":square ->",v[i]**2) # let's print each entry and its square value
length_square = length_square + v[i]**2 # let's sum up the square of each entry
length = length_square ** 0.5 # let's take the square root of the summation of the squares of all entries
print("the summation is",length_square)
print("then the length is",length)
# for square root, we can also use built-in function math.sqrt
print() # print an empty line
from math import sqrt
print("the square root of",length_square,"is",sqrt(length_square))
#
# your solution is here
#
#
# your solution is here
#
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
from random import randrange
dimension = 7
# create u and v as empty list
u = []
v = []
for i in range(dimension):
u.append(randrange(-10,11)) # add a randomly picked number to the list u
v.append(randrange(-10,11)) # add a randomly picked number to the list v
# print both lists
print("u is",u)
print("v is",v)
# please execute the cell for Task 1 to define u and v
# let's create a result list
# the first method
result=[]
# fill it with zeros
for i in range(dimension):
result.append(0)
print("by using the first method, result is initialized to",result)
# the second method
# alternative and shorter solution for creating a list with zeros
result = [0] * 7
print("by using the second method, result is initialized to",result)
# let's calculate 3u-2v
for i in range(dimension):
result[i] = 3 * u[i] - 2 * v[i]
# print all lists
print("u is",u)
print("v is",v)
print("3u-2v is",result)
u = [1,-2,-4,2]
fouru=[4,-8,-16,8]
len_u = 0
len_fouru = 0
for i in range(len(u)):
len_u = len_u + u[i]**2 # adding square of each value
len_fouru = len_fouru + fouru[i]**2 # adding square of each value
len_u = len_u ** 0.5 # taking square root of the summation
len_fouru = len_fouru ** 0.5 # taking square root of the summation
# print the lengths
print("length of u is",len_u)
print("4 * length of u is",4 * len_u)
print("length of 4u is",len_fouru)
from random import randrange
u = [1,-2,-4,2]
print("u is",u)
r = randrange(9) # r is a number in {0,...,8}
r = r + 1 # r is a number in {1,...,9}
r = r/10 # r is a number in {1/10,...,9/10}
print()
print("r is",r)
newu=[]
for i in range(len(u)):
newu.append(-1*r*u[i])
print()
print("-ru is",newu)
print()
length = 0
for i in range(len(newu)):
length = length + newu[i]**2 # adding square of each number
print(newu[i],"->[square]->",newu[i]**2)
print()
print("the summation of squares is",length)
length = length**0.5 # taking square root
print("the length of",newu,"is",length)
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# let's define both vectors
u = [-3,-2,0,-1,4]
v = [-1,-1,2,-3,5]
uv = 0; # summation is initially zero
for i in range(len(u)): # iteratively access every pair with the same indices
print("pairwise multiplication of the entries with index",i,"is",u[i]*v[i])
uv = uv + u[i]*v[i] # i-th entries are multiplied and then added to summation
print() # print an empty line
print("The dot product of",u,'and',v,'is',uv)
#
# your solution is here
#
#
# your solution is here
#
# let's find the dot product of v and u
v = [-4,0]
u = [0,-5]
result = 0;
for i in range(2):
result = result + v[i]*u[i]
print("the dot product of u and v is",result)
# we can use the same code
v = [-4,3]
u = [-3,-4]
result = 0;
for i in range(2):
result = result + v[i]*u[i]
print("the dot product of u and v is",result)
# you may consider to write a function in Python for dot product
#
# your solution is here
#
#
# your solution is here
#
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# let's define the vectors
v=[-3,4,-5,6]
u=[4,3,6,5]
vu = 0
for i in range(len(v)):
vu = vu + v[i]*u[i]
print(v,u,vu)
u = [-3,-4]
uu = u[0]*u[0] + u[1]*u[1]
print(u,u,uu)
u = [-3,-4]
neg_u=[3,4]
v=[-4,3]
neg_v=[4,-3]
# let's define a function for inner product
def dot(v_one,v_two):
summation = 0
for i in range(len(v_one)):
summation = summation + v_one[i]*v_two[i] # adding up pairwise multiplications
return summation # return the inner product
print("the dot product of u and -v (",u," and ",neg_v,") is",dot(u,neg_v))
print("the dot product of -u and v (",neg_u," and ",v,") is",dot(neg_u,v))
print("the dot product of -u and -v (",neg_u," and ",neg_v,") is",dot(neg_u,neg_v))
# let's define a function for inner product
def dot(v_one,v_two):
summation = 0
for i in range(len(v_one)):
summation = summation + v_one[i]*v_two[i] # adding up pairwise multiplications
return summation # return the inner product
v = [-1,2,-3,4]
v_neg_two=[2,-4,6,-8]
u=[-2,-1,5,2]
u_three=[-6,-3,15,6]
print("the dot product of v and u is",dot(v,u))
print("the dot product of -2v and 3u is",dot(v_neg_two,u_three))
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# we may break lines when defining our list
M = [
[8 , 0 , -1 , 0 , 2],
[-2 , -3 , 1 , 1 , 4],
[0 , 0 , 1 , -7 , 1],
[1 , 4 , -2 , 5 , 9]
]
# let's print matrix M
print(M)
# let's print M in matrix form, row by row
for i in range(4): # there are 4 rows
print(M[i])
M = [
[8 , 0 , -1 , 0 , 2],
[-2 , -3 , 1 , 1 , 4],
[0 , 0 , 1 , -7 , 1],
[1 , 4 , -2 , 5 , 9]
]
#let's print the element of M in the 1st row and the 1st column.
print(M[0][0])
#let's print the element of M in the 3rd row and the 4th column.
print(M[2][3])
#let's print the element of M in the 4th row and the 5th column.
print(M[3][4])
# we use double nested for-loops
N =[] # the result matrix
for i in range(4): # for each row
N.append([]) # create an empty sub-list for each row in the result matrix
for j in range(5): # in row (i+1), we do the following for each column
N[i].append(M[i][j]*-2) # we add new elements into the i-th sub-list
# let's print M and N, and see the results
print("I am M:")
for i in range(4):
print(M[i])
print()
print("I am N:")
for i in range(4):
print(N[i])
# create an empty list for the result matrix
K=[]
for i in range(len(M)): # len(M) return the number of rows in M
K.append([]) # we create a new row for K
for j in range(len(M[0])): # len(M[0]) returns the number of columns in M
K[i].append(M[i][j]+N[i][j]) # we add new elements into the i-th sublist/rows
# print each matrix in a single line
print("M=",M)
print("N=",N)
print("K=",K)
from random import randrange
#
# your solution is here
#
M = [
[-2,3,0,4],
[-1,1,5,9]
]
N =[
[1,2,3],
[4,5,6],
[7,8,9]
]
#
# your solution is here
#
# matrix M
M = [
[-1,0,1],
[-2,-3,4],
[1,5,6]
]
# vector v
v = [1,-3,2]
# the result vector u
u = []
# for each row, we do an inner product
for i in range(3):
# inner product for one row is initiated
inner_result = 0 # this variable keeps the summation of the pairwise multiplications
for j in range(3): # the elements in the i-th row
inner_result = inner_result + M[i][j] * v[j]
# inner product for one row is completed
u.append(inner_result)
print("M is")
for i in range(len(M)):
print(M[i])
print()
print("v=",v)
print()
print("u=",u)
#
# your solution is here
#
# matrix M
M = [
[-1,0,1],
[-2,-1,2],
[1,2,-2]
]
# matrix N
M = [
[0,2,1],
[3,-1,-2],
[-1,1,0]
]
# matrix K
K = []
#
# your solution is here
#
#
# your solution is here
#
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
from random import randrange
A = []
B = []
for i in range(3):
A.append([])
B.append([])
for j in range(4):
A[i].append(randrange(-5,6))
B[i].append(randrange(-5,6))
print("A is",A)
print("B is",B)
C = []
for i in range(3):
C.append([])
for j in range(4):
C[i].append( 3*A[i][j]-2*B[i][j])
print("C is 3A - 2B")
print("C is",C)
M = [
[-2,3,0,4],
[-1,1,5,9]
]
N =[
[1,2,3],
[4,5,6],
[7,8,9]
]
# create the transpose of M as a zero matrix
# its dimension is (4x2)
MT = []
for i in range(4):
MT.append([])
for j in range(2):
MT[i].append(0)
# create the transpose of N as a zero matrix
# its dimension is (3x3)
NT = []
for i in range(3):
NT.append([])
for j in range(3):
NT[i].append(0)
# calculate the MT
for i in range(2):
for j in range(4):
MT[j][i]=M[i][j] # check the indices
print("M is")
for i in range(len(M)):
print(M[i])
print()
print("Transpose of M is")
for i in range(len(MT)):
print(MT[i])
print()
# calculate the NT
for i in range(3):
for j in range(3):
NT[j][i]=N[i][j] # check the indices
print("N is")
for i in range(len(N)):
print(N[i])
print()
print("Transpose of N is")
for i in range(len(NT)):
print(NT[i])
N = [
[-1,1,2],
[0,-2,-3],
[3,2,5],
[0,2,-2]
]
u = [2,-1,3]
uprime =[]
print("N is")
for i in range(len(N)):
print(N[i])
print()
print("u is",u)
for i in range(len(N)): # the number of rows of N
S = 0 # summation of pairwise multiplications
for j in range(len(u)): # the dimension of u
S = S + N[i][j] * u[j]
uprime.append(S)
print()
print("u' is",uprime)
# matrix M
M = [
[-1,0,1],
[-2,-1,2],
[1,2,-2]
]
# matrix N
N = [
[0,2,1],
[3,-1,-2],
[-1,1,0]
]
# matrix K
K = []
for i in range(3):
K.append([])
for j in range(3):
# here we calculate K[i][j]
# inner product of i-th row of M with j-th row of N
S = 0
for k in range(3):
S = S + M[i][k] * N[k][j]
K[i].append(S)
print("M is")
for i in range(len(M)):
print(M[i])
print()
print("N is")
for i in range(len(N)):
print(N[i])
print()
print("K is")
for i in range(len(K)):
print(K[i])
from random import randrange
A = []
B = []
AB = []
BA = []
DIFF = []
# create A, B, AB, BA, DIFF together
for i in range(2):
A.append([])
B.append([])
AB.append([])
BA.append([])
DIFF.append([])
for j in range(2):
A[i].append(randrange(-10,10)) # the elements of A are random
B[i].append(randrange(-10,10)) # the elements of B are random
AB[i].append(0) # the elements of AB are initially set to zeros
BA[i].append(0) # the elements of BA are initially set to zeros
DIFF[i].append(0) # the elements of DIFF are initially set to zeros
print("A =",A)
print("B =",B)
print() # print a line
print("AB, BA, and DIFF are initially zero matrices")
print("AB =",AB)
print("BA =",BA)
print("DIFF =",BA)
# let's find AB
for i in range(2):
for j in range(2):
# remark that AB[i][j] is already 0, and so we can directly add all pairwise multiplications
for k in range(2):
AB[i][j] = AB[i][j] + A[i][k] * B[k][j] # each multiplication is added
print() # print a line
print("AB =",AB)
# let's find BA
for i in range(2):
for j in range(2):
# remark that BA[i][j] is already 0, and so we can directly add all pairwise multiplications
for k in range(2):
BA[i][j] = BA[i][j] + B[i][k] * A[k][j] # each multiplication is added
print("BA =",BA)
# let's calculate DIFF = AB- BA
for i in range(2):
for j in range(2):
DIFF[i][j] = AB[i][j] - BA[i][j]
print() # print a line
print("DIFF = AB - BA =",DIFF)
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# vector v
v = [1,2,-3]
# vector u
u=[-2,3]
vu = []
for i in range(len(v)): # Each element of v will be replaced
for j in range(len(u)): # the vector u will come here after multiplying with the entry there
vu.append( v[i] * u[j] )
print("v=",v)
print("u=",u)
print("vu=",vu)
#
# your solution is here
#
import numpy as np
u = [-2, -1, 0, 1]
v = [1, 2, 3]
uv = np.tensordot(np.array(u), np.array(v), axes = 0)
print("uv: " + str(uv))
# matrix M
M = [
[-1,0,1],
[-2,-1,2],
[1,2,-2]
]
# matrix N
N = [
[0,2,1],
[3,-1,-2],
[-1,1,0]
]
# MN will be a (9x9)-dimensional matrix
# let's prepare it as a zero matrix
# this helps us to easily fill it
MN=[]
for i in range(9):
MN.append([])
for j in range(9):
MN[i].append(0)
for i in range(3): # row of M
for j in range(3): # column of M
for k in range(3): # row of N
for l in range(3): # column of N
MN[i*3+k][3*j+l] = M[i][j] * N[k][l]
print("M-tensor-N is")
for i in range(9):
print(MN[i])
# matrices M and N were defined above
# matrix NM will be prepared as a (9x9)-dimensional zero matrix
NM=[]
for i in range(9):
NM.append([])
for j in range(9):
NM[i].append(0)
for i in range(3): # row of N
for j in range(3): # column of N
for k in range(3): # row of M
for l in range(3): # column of M
NM[i*3+k][3*j+l] = N[i][j] * M[k][l]
print("N-tensor-M is")
for i in range(9):
print(NM[i])
#
# your solution is here
#
A = [
[-1,0,1],
[-2,-1,2]
]
B = [
[0,2],
[3,-1],
[-1,1]
]
print("A =")
for i in range(len(A)):
print(A[i])
print() # print a line
print("B =")
for i in range(len(B)):
print(B[i])
# let's define A-tensor-B as a (6x6)-dimensional zero matrix
AB = []
for i in range(6):
AB.append([])
for j in range(6):
AB[i].append(0)
# let's find A-tensor-B
for i in range(2):
for j in range(3):
# for each A(i,j) we execute the following codes
a = A[i][j]
# we access each element of B
for m in range(3):
for n in range(2):
b = B[m][n]
# now we put (a*b) in the appropriate index of AB
AB[3*i+m][2*j+n] = a * b
print() # print a line
print("A-tensor-B =")
print() # print a line
for i in range(6):
print(AB[i])
#
# your solution is here
#
A = [
[-1,0,1],
[-2,-1,2]
]
B = [
[0,2],
[3,-1],
[-1,1]
]
print() # print a line
print("B =")
for i in range(len(B)):
print(B[i])
print("A =")
for i in range(len(A)):
print(A[i])
# let's define B-tensor-A as a (6x6)-dimensional zero matrix
BA = []
for i in range(6):
BA.append([])
for j in range(6):
BA[i].append(0)
# let's find B-tensor-A
for i in range(3):
for j in range(2):
# for each B(i,j) we execute the following codes
b = B[i][j]
# we access each element of A
for m in range(2):
for n in range(3):
a = A[m][n]
# now we put (a*b) in the appropriate index of AB
BA[2*i+m][3*j+n] = b * a
print() # print a line
print("B-tensor-A =")
print() # print a line
for i in range(6):
print(BA[i])
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
u = [-2,-1,0,1]
v = [1,2,3]
uv = []
vu = []
for i in range(len(u)): # one element of u is picked
for j in range(len(v)): # now we iteratively select every element of v
uv.append(u[i]*v[j]) # this one element of u is iteratively multiplied with every element of v
print("u-tensor-v is",uv)
for i in range(len(v)): # one element of v is picked
for j in range(len(u)): # now we iteratively select every element of u
vu.append(v[i]*u[j]) # this one element of v is iteratively multiplied with every element of u
print("v-tensor-u is",vu)
A = [
[-1,0,1],
[-2,-1,2]
]
B = [
[0,2],
[3,-1],
[-1,1]
]
print("A =")
for i in range(len(A)):
print(A[i])
print() # print a line
print("B =")
for i in range(len(B)):
print(B[i])
# let's define A-tensor-B as a (6x6)-dimensional zero matrix
AB = []
for i in range(6):
AB.append([])
for j in range(6):
AB[i].append(0)
# let's find A-tensor-B
for i in range(2):
for j in range(3):
# for each A(i,j) we execute the following codes
a = A[i][j]
# we access each element of B
for m in range(3):
for n in range(2):
b = B[m][n]
# now we put (a*b) in the appropriate index of AB
AB[3*i+m][2*j+n] = a * b
print() # print a line
print("A-tensor-B =")
print() # print a line
for i in range(6):
print(AB[i])
A = [
[-1,0,1],
[-2,-1,2]
]
B = [
[0,2],
[3,-1],
[-1,1]
]
print() # print a line
print("B =")
for i in range(len(B)):
print(B[i])
print("A =")
for i in range(len(A)):
print(A[i])
# let's define B-tensor-A as a (6x6)-dimensional zero matrix
BA = []
for i in range(6):
BA.append([])
for j in range(6):
BA[i].append(0)
# let's find B-tensor-A
for i in range(3):
for j in range(2):
# for each B(i,j) we execute the following codes
b = B[i][j]
# we access each element of A
for m in range(2):
for n in range(3):
a = A[m][n]
# now we put (a*b) in the appropriate index of AB
BA[2*i+m][3*j+n] = b * a
print() # print a line
print("B-tensor-A =")
print() # print a line
for i in range(6):
print(BA[i])
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
number = 5 # integer
real = -3.4 # float
name = 'Asja' # string
surname = "Sarkana" # string
boolean1 = True # Boolean
boolean2 = False # Boolean
a = 13
b = 5
print("a =",a)
print("b =",b)
print()
# basics operators
print("a + b =",a+b)
print("a - b =",a-b)
print("a * b =",a*b)
print("a / b =",a/b)
a = 13
b = 5
print("a =",a)
print("b =",b)
print()
print("integer division:")
print("a//b =",a//b)
print("modulus operator:")
print("a mod b =",a % b)
b = 5
print("b =",b)
print()
print("b*b =",b**2)
print("b*b*b =",b**3)
print("sqrt(b)=",b**0.5)
# list
mylist = [10,8,6,4,2]
print(mylist)
# tuple
mytuple=(1,4,5,'Asja')
print(mytuple)
# dictionary
mydictionary = {
'name' : "Asja",
'surname':'Sarkane',
'age': 23
}
print(mydictionary)
print(mydictionary['surname'])
# list of the other objects or variables
list_of_other_objects =[
mylist,
mytuple,
3,
"Asja",
mydictionary
]
print(list_of_other_objects)
# length of a string
print(len("Asja Sarkane"))
# size of a list
print(len([1,2,3,4]))
# size of a dictionary
mydictionary = { 'name' : "Asja", 'surname':'Sarkane', 'age': 23}
print(len(mydictionary))
i = 10
while i>0: # while condition(s):
print(i)
i = i - 1
for i in range(10): # i is in [0,1,...,9]
print(i)
for i in range(-5,6): # i is in [-5,-4,...,0,...,4,5]
print(i)
for i in range(0,23,4): # i is in [0,4,8,12,16,20]
print(i)
for i in [3,8,-5,11]:
print(i)
for i in "Sarkane":
print(i)
# dictionary
mydictionary = {
'name' : "Asja",
'surname':'Sarkane',
'age': 23,
}
for key in mydictionary:
print("key is",key,"and its value is",mydictionary[key])
for a in range(4,7):
# if condition(s)
if a<5:
print(a,"is less than 5")
# elif conditions(s)
elif a==5:
print(a,"is equal to 5")
# else
else:
print(a,"is greater than 5")
# Logical operator "and"
i = -3
j = 4
if i<0 and j > 0:
print(i,"is negative AND",j,"is positive")
# Logical operator "or"
i = -2
j = 2
if i==2 or j == 2:
print("i OR j is 2: (",i,",",j,")")
# Logical operator "not"
i = 3
if not (i==2):
print(i,"is NOT equal to 2")
# Operator "equal to"
i = -1
if i == -1:
print(i,"is EQUAL TO -1")
# Operator "not equal to"
i = 4
if i != 3:
print(i,"is NOT EQUAL TO 3")
# Operator "not equal to"
i = 2
if i <= 5:
print(i,"is LESS THAN OR EQUAL TO 5")
# Operator "not equal to"
i = 5
if i >= 1:
print(i,"is GREATER THAN OR EQUAL TO 3")
A =[
[1,2,3],
[-2,-4,-6],
[3,6,9]
]
# print all
print(A)
print()
# print each list in a new line
for list in A:
print(list)
list1 = [1,2,3]
list2 = [4,5,6]
#concatenation of two lists
list3 = list1 + list2
print(list3)
list4 = list2 + list1
print(list4)
list = [0,1,2]
list.append(3)
print(list)
list = list + [4]
print(list)
def summation_of_integers(n):
summation = 0
for integer in range(n+1):
summation = summation + integer
return summation
print(summation_of_integers(10))
print(summation_of_integers(20))
from random import randrange
print(randrange(10),"is picked randomly between 0 and 9")
print(randrange(-9,10),"is picked randomly between -9 and 9")
print(randrange(0,20,3),"is picked randomly from the list [0,3,6,9,12,15,18]")
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# This is a comment
# A comment is used for explanations/descriptions/etc.
# Comments do not affect the programs
# let's define an integer variable named a
a = 5
# let's print its value
print(a)
# let's define three integer variables named a, b, and c
a = 2
b = 4
c = a + b # summation of a and b
# let's print their values together
print(a,b,c)
# a single space will automatically appear in between
# let's print their values in reverse order
print(c,b,a)
# let's print their summation and multiplication
print(a+b+c,a*b*c)
# let's define variables with string/text values
hw = "hello world" # we can use double quotes
hqw = 'hello quantum world' # we can use single quotes
# let's print them
print(hw)
print(hqw)
# let's print them together by inserting another string in between
print(hw,"and",hqw)
# let's concatenate a few strings
d = "Hello " + 'World' + " but " + 'Quantum ' + "World"
# let's print the result
print(d)
# let's print numeric and string values together
print("a =",a,", b =",b,", a+b =",a+b)
# let's subtract two numbers
d = a-b
print(a,b,d)
# let's divide two numbers
d = a/b
print(a,b,d)
# let's divide integers over integers
# the result is always an integer (with possible integer remainder)
d = 33 // 6
print(d)
# reminder/mod operator
r = 33 % 6
# 33 mod 6 = 3
# or when 33 is divided by 6 over integers, the reminder is 3
# 33 = 5 * 6 + 3
# let's print the result
print(r)
# Booleen variables
t = True
f = False
# let's print their values
print(t,f)
# print their negations
print(not t)
print("the negation of",t,"is",not t)
print(not f)
print("the negation of",f,"is",not f)
# define a float variable
d = -3.4444
# let's print its value and its square
print(d, d * d)
e = (23*13) - (11 * 15)
print(e)
# we can use more than one variable
# left is the variable for the left part of the expression
# we start with the multiplication inside the parentheses
left = 34*11
# we continue with the substruction inside the parentheses
# we reuse the variable named left
left = 123 - left
# we reuse left again for the multiplication with -3
left = -3 * left
# right is the variable for the right part of the expression
# we use the same idea here
right = 23 * 15
right = 5 + right
right = 4 * right
# at the end, we use left for the result
left = left + right
# let's print the result
print(left)
#
# your solution is here
#
#
# your solution is here
#
#
# your solution is here
#
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
n1,n2,n3 = 3,-4,6
print(n1,n2,n3)
r1 = (2 * n1 + 3 * n2)*2 - 5 *n3
print(r1)
n1,n2,n3 = 3,-4,6
up = (n1-n2) * (n2-n3)
down = (n3-n1) * (n3+1)
result = up/down
print (result)
N = "Abuzer"
S = "Yakaryilmaz"
print("hello from the quantum world to",N,S)
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# let's print all numbers between 0 and 9
for i in range(10): print(i)
# range(n) represents the list of all numbers from 0 to n-1
# i is the variable to take the values in the range(n) iteratively: 0, 1, ..., 9 in our example
# let's write the same code in two lines
for i in range(10): # do not forget to use colon
print(i)
# the second line is indented
# this means that the command in the second line will be executed inside the for-loop
# any other code executed inside the for-loop must be intented in the same way
#my_code_inside_for-loop_2 will come here
#my_code_inside_for-loop_3 will come here
#my_code_inside_for-loop_4 will come here
# now I am out of the scope of for-loop
#my_code_outside_for-loop_1 will come here
#my_code_outside_for-loop_2 will come here
# let's calculate the summation 1+2+...+10 by using a for-loop
# we use variable total for the total summation
total = 0
for i in range(11): # do not forget to use colon
total = total + i # total is increased by i in each iteration
# alternatively, the same assignment can shortly be written as total += i similarly to languages C, C++, Java, etc.
# now I am out of the scope of for-loop
# let's print the latest value of total
print(total)
# let's calculate the summation 10+12+14+...+44
# we create a list having all numbers in the summation
# for this purpose, this time we will use three parameters in range
total = 0
for j in range(10,45,2): # the range is defined between 10 and 44, and the value of j will be increased by 2 after each iteration
total += j # let's use the shortened version of total = total + j
print(total)
# let's calculate the summation 1+2+4+8+16+...+256
# remark that 256 = 2*2*...*2 (8 times)
total = 0
current_number = 1 # this value will be multiplied by 2 after each iteration
for k in range(9):
total = total + current_number # current_number is 1 at the beginning, and its value will be doubled after each iteration
current_number = 2 * current_number # let's double the value of the current_number for the next iteration
# short version of the same assignment: current_number *= 2 as in the languages C, C++, Java, etc.
# now I am out of the scope of for-loop
# let's print the latest value of total
print(total)
# instead of a range, we can directly use a list
for i in [1,10,100,1000,10000]:
print(i)
# instead of [...], we can also use (...)
# but this time it is a tuple, not a list (keep in your mind that the values in a tuple cannot be changed)
for i in (1,10,100,1000,10000):
print(i)
# let's create a range between 10 and 91 that contains the multiples of 7
for j in range(14,92,7):
# 14 is the first multiple of 7 greater than or equal to 10
# 91 should be in the range, and so we write 92
print(j)
# let's create a range between 11 and 22
for i in range(11,23):
print(i)
# we can also use variables in range
n = 5
for j in range(n,2*n):
print(j) # we will print all numbers in {n,n+1,n+2,...,2n-1}
# we can use a list of strings
for name in ("Asja","Balvis","Fyodor"):
print("Hello",name,":-)")
# any range can be converted to a list
L1 = list(range(10))
print(L1)
L2 = list(range(55,200,11))
print(L2)
#
# your solution is here
#
#
# your solution is here
#
# let's calculate the summation 1+2+4+8+...+256 by using a while-loop
total = 0
i = 1
#while condition(s):
# your_code1
# your_code2
# your_code3
while i < 257: # this loop iterates as long as i is less than 257
total = total + i
i = i * 2 # i is doubled in each iteration, and so soon it will be greater than 256
print(total)
# remember that we calculated this summation as 511 before
L = [0,1,2,3,4,5,11] # this is a list containing 7 integer values
i = 0
while i in L: # this loop will be iterated as long as i is in L
print(i)
i = i + 1 # the value of i iteratively increased, and so soon it will hit a value not in the list L
# the loop is terminated after i is set to 6, because 6 is not in L
# let's use negation in the condition of while-loop
L = [10] # this list has a single element
i = 0
while i not in L: # this loop will be iterated as long as i is not equal to 10
print(i)
i = i+1 # the value of i will hit 10 after ten iterations
# let's rewrite the same loop by using a direct inequality
i = 0
while i != 10: # "!=" is used for "not equal to" operator
print(i)
i=i+1
# let's rewrite the same loop by using negation of equality
i = 0
while not (i == 10): # "==" is used for "equal to" operator
print(i)
i=i+1
# while-loop seems having more fun :-)
# but we should be more careful when writing the condition(s)!
# summation and n is zero at the beginning
S = 0
n = 0
while S < 1000: # this loop will stop after S exceeds 999 (S = 1000 or S > 1000)
n = n +1
S = S + n
# let's print n and S
print("n =",n," S =",S)
# three examples for the operator "less than or equal to"
#print (4 <= 5)
#print (5 <= 5)
#print (6 <= 5)
# you may comment out the above three lines and see the results by running this cell
#
# your solution is here
#
# this is the code for including function randrange into our program
from random import randrange
# randrange(n) picks a number from the list [0,1,2,...,n-1] randomly
#r = randrange(100)
#print(r)
#
# your solution is here
#
# here is a schematic example for double nested loops
#for i in range(10):
# your_code1
# your_code2
# while j != 7:
# your_code_3
# your_code_4
#
# your solution is here
#
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
total1 = 0
total2 = 0
for i in range(3,52,3):
total1 = total1 + i
total2 += i # shorter form
print("The summation is",total1)
print("The summation is",total2)
T = 0
current_number = 1
for i in range(9):
T = T + current_number
print("3 to",i,"is",current_number)
current_number = 3 * current_number
print("summation is",T)
# Python has also exponent operator: **
# we can also directly use it
T = 0
for i in range(9):
print("3 to",i,"is",3**i)
T = T + 3 ** i
print("summation is",T)
T = 0
n = 2 # this value iteratively will be first halved and then added to the summation T
how_many_terms = 0
while T<=1.99:
n = n/2 # half the value of n
print("n = ",n)
T = T + n # update the value of T
how_many_terms = how_many_terms + 1
print("T = ",T)
print("how many terms in the summation:",how_many_terms)
# our result says that there should be 8 terms in our summation
# let's calculate the summations of the first seven and eight terms, and verify our results
T7 = 0
n = 2 # this value iteratively will be first halved and then added to the summation
for i in range(7):
n = n/2
print("n =",n)
T7 = T7 + n
print("the summation of the first seven terms is",T7)
T8 = 0
n = 2 # this value iteratively will be first halved and then added to the summation
for i in range(8):
n = n/2
print("n =",n)
T8 = T8 + n
print("the summation of the first eight terms is",T8)
print("(the summation of the first seven terms is",T7,")")
from random import randrange
r = 0
attempt = 0
while r != 3: # the loop iterates as long as r is not equal to 3
r = randrange(10) # randomly pick a number
attempt = attempt + 1 # increase the number of attempts by 1
print (attempt,"->",r) # print the number of attempt and the randomly picked number
print("total number of attempt(s) is",attempt)
# be aware of single and double indentions
number_of_execution = 2000 # change this with 200, 2000, 20000, 200000 and reexecute this cell
total_attempts = 0
from random import randrange
for i in range(number_of_execution): # the outer loop iterates number_of_execution times
r = 0
attempt = 0
while r != 3: # the while-loop iterates as long as r is not equal to 3
r = randrange(10) # randomly pick a number
attempt = attempt + 1 # increase the number of attempts by 1
# I am out of scope of while-loop
total_attempts = total_attempts + attempt # update the total number of attempts
# I am out of scope of for-loop
print(number_of_execution,"->",total_attempts/number_of_execution)
# let's use triple nested loops
for number_of_execution in [20,200,2000,20000,200000]: # we will use the same code by indenting all lines by one more level
total_attempts = 0
for i in range(number_of_execution): # the middle loop iterates number_of_execution times
r = 0
attempt = 0
while r != 3: # the while-loop iterates as long as r is not equal to 3
r = randrange(10) # randomly pick a number
attempt = attempt + 1 # increase the number of attempts by 1
# I am out of scope of while-loop
total_attempts = total_attempts + attempt # update the total number of attempts
# I am out of scope of for-loop
print(number_of_execution,"->",total_attempts/number_of_execution)
# you can include 2 million to the list, but you should WAIT for a while to see the result
# can your computer compete with exponential growth?
# if you think "yes", please try 20 million, 200 million, and so on
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# let's randomly pick a number between 0 and 9, and print its value if it is greater than 5
from random import randrange
r = randrange(10)
if r > 5: print(r) # when the condition (r > 5) is valid/true, the code (print(r)) will be executed
# you may need to execute your code more than once to see an outcome
# repeat the same task four times, and also print the value of iteration variable (i)
for i in range(4):
r = randrange(10) # this code belongs to for-loop, and so it is indented
if r > 5: # this code also belongs to for-loop, and so it is indented as well
print("i =",i,"r =",r) # this code belongs to if-statement, and so it is indented with respect to if-statement
# if you are unlucky (with probabability less than 13/100), you may not see any outcome after a single run
# do the same task 100 times, and find the percentage of successful iterations (attempts)
# an iteration (attempt) is successful if the randomly picked number is greater than 5
# the expected percentage is 40, because, out of 10 numbers, there are 4 numbers greater than 5
# but the experimental results differ
success = 0
for i in range(100):
r = randrange(10)
if r > 5:
success = success + 1
print(success,"%")
# each experiment most probably will give different percentage value
# let's randomly pick a number between 0 and 9, and print whether it is less than 6 or not
# we use two conditionals here
r = randrange(10)
print("the picked number is ",r)
if r < 6:
print("it is less than 6")
if r >= 6:
print("it is greater than or equal to 6")
# let's write the same algorithm by using if-else structure
r = randrange(10)
print("the picked number is ",r)
if r < 6:
print("it is less than 6")
else: # if the above condition (r<6) is False
print("it is greater than or equal to 6")
#
# your solution is here
#
#
# when there are many related conditionals, we can use if-elif-else structure
#
# let's randomly pick an even number between 1 and 99
# then determine whether it is less than 25, between 25 and 50, between 51 and 75, or greater than 75.
r = randrange(2,100,2) # randonmly pick a number in range {2,4,6,...,98}, which satisfies our condition
# let's print this range to verify our claim
print(list(range(2,100,2)))
print() # print an empty line
print("the picked number is",r)
if r < 25:
print("it is less than 25")
elif r<=50: # if the above condition is False and the condition here is True
print("it is between 25 and 50")
elif r<=75: # if both conditions above are False and the condition here is True
print("it is between 51 and 75")
else: # if none of the above conditions is True
print("it is greater than 75")
#
# your solution is here
#
# let's determine whether a randomly picked number between -10 and 100 is prime or not.
# this is a good example for using more than one conditional in different parts of the program
# this is also an example for "break" command, which terminates any loop immediately
r = randrange(-10,101) # pick a number between -10 and 100
print(r) # print is value
if r < 2: print("it is NOT a prime number") # this is by definition
elif r == 2: print("it is a PRIME number") # we already know this
else:
prime=True # we assume that r is prime, and try to falsify this assumption by looking for a divisor in the following loop
for i in range(2,r): # check all integers between 2 and r-1
if r % i ==0: # if i divides r without any reminder (or reminder is zero), then r is not a prime number
print("it is NOT a prime number")
prime=False # our assumption is falsifed
break # TERMINATE the iteration immediately
# we are out of if-scope
# we are out of for-loop-scope
if prime == True: # if our assumption is still True (if it was not falsified inside for-loop)
print("it is a PRIME number")
# this is an example to write a function
# our function will return a Boolean value True or False
def prime(number): # our function takes one parameter (has one argument)
if number < 2: return False # once return command is executed, we exit the function
if number == 2: return True # because of return command, we can use "if" instead of "elif"
if number % 2 == 0: return False # any even number greater than 2 is not prime, because it is divisible by 2
for i in range(3,number,2): # we can skip even integers
if number % i == 0: return False # once we find a divisor of the number, we return False and exit the function
return True # the number has passed all checks until now
# by using "return" command appropriately, the programs can be shortened
# remark that this might not be a good choice everytime for readibility of codes
# let's test our program by printing all prime numbers between -10 and 30
for i in range(-10,30):
# we pass i to the function prime
if prime(i): # the function prime(i) returns True or False
print(i) # this code will be executed if i is prime, i.e., prime(i) returns True
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
from random import randrange
r = randrange(10,51)
if r % 2 ==0: print(r,"is even")
else: print(r,"is odd")
from random import randrange
for N in [100,1000,10000,100000]:
first_half=second_half=0
for i in range(N):
r = randrange(100)
if r<50:
first_half = first_half + 1
else:
second_half=second_half + 1
print(N,"->",first_half/N,second_half/N)
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# here is a list holding all even numbers between 10 and 20
L = [10, 12, 14, 16, 18, 20]
# let's print the list
print(L)
# let's print each element by using its index but in reverse order
print(L[5],L[4],L[3],L[2],L[1],L[0])
# let's print the length (size) of list
print(len(L))
# let's print each element and its index in the list
# we use a for-loop, and the number of iteration is determined by the length of the list
# everthing is automatical :-)
L = [10, 12, 14, 16, 18, 20]
for i in range(len(L)):
print(L[i],"is the element in our list with the index",i)
# let's replace each number in the above list with its double value
# L = [10, 12, 14, 16, 18, 20]
# let's print the list before doubling operation
print("the list before doubling operation is",L)
for i in range(len(L)):
current_element=L[i] # get the value of the i-th element
L[i] = 2 * current_element # update the value of the i-th element
# let's shorten the code as
#L[i] = 2 * L[i]
# or
#L[i] *= 2
# let's print the list after doubling operation
print("the list after doubling operation is",L)
# after each execution of this cell, the latest values will be doubled
# so the values in the list will be exponentially increased
# let's define two lists
L1 = [1,2,3,4]
L2 = [-5,-6,-7,-8]
# two lists can be concatenated
# the result is a new list
print("the concatenation of L1 and L2 is",L1+L2)
# the order of terms is important
print("the concatenation of L2 and L1 is",L2+L1) # this is a different list than L1+L2
# we can add a new element to a list, which increases its length/size by 1
L = [10, 12, 14, 16, 18, 20]
print(L,"the current length is",len(L))
# we add two values by showing two different methods
# L.append(value) directly adds the value as a new element to the list
L.append(-4)
# we can also use concatenation operator +
L = L + [-8] # here [-8] is a list having a single element
print(L,"the new length is",len(L))
# a list can be multiplied with an integer
L = [1,2]
# we can consider the multiplication of L by an integer as a repeated summation (concatenation) of L by itself
# L * 1 is the list itself
# L * 2 is L + L (the concatenation of L with itself)
# L * 3 is L + L + L (the concatenation of L with itself twice)
# L * m is L + ... + L (the concatenation of L with itself m-1 times)
# L * 0 is the empty list
# L * i is the same as i * L
# let's print the different cases
for i in range(6):
print(i,"* L is",i*L)
# this operation can be useful when initializing a list with the same value(s)
# let's create a list of prime numbers less than 100
# here is a function that determines whether a given number is prime or not
def prime(number):
if number < 2: return False
if number == 2: return True
if number % 2 == 0: return False
for i in range(3,number,2):
if number % i == 0: return False
return True
# end of a function
# let's start with an empty list
L=[]
# what can the length of this list be?
print("my initial length is",len(L))
for i in range(2,100):
if prime(i):
L.append(i)
# alternative methods:
#L = L + [i]
#L += [i]
# print the final list
print(L)
print("my final length is",len(L))
# let's define the list with S(0)
L = [0]
# let's iteratively define n and S
# initial values
n = 0
S = 0
# the number of iterations
N = 20
while n <= N: # we iterate all values from 1 to 20
n = n + 1
S = S + n
L.append(S)
# print the final list
print(L)
#
# your solution is here
#
F = [1,1]
# the following list stores certain information about Asja
# name, surname, age, profession, height, weight, partner(s) if any, kid(s) if any, the creation date of list
ASJA = ['Asja','Sarkane',34,'musician',180,65.5,[],['Eleni','Fyodor'],"October 24, 2018"]
print(ASJA)
# Remark that an element of a list can be another list as well.
#
# your solution is here
#
# let's define a dictionary pairing a person with her/his age
ages = {
'Asja':32,
'Balvis':28,
'Fyodor':43
}
# let print all keys
for person in ages:
print(person)
# let's print the values
for person in ages:
print(ages[person])
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# the first and second elements are 1 and 1
F = [1,1]
for i in range(2,30):
F.append(F[i-1] + F[i-2])
# print the final list
print(F)
# define an empty list
N = []
for i in range(11):
N.append([ i , i*i , i*i*i , i*i + i*i*i ]) # a list having four elements is added to the list N
# Alternatively:
#N.append([i , i**2 , i**3 , i**2 + i**3]) # ** is the exponent operator
#N = N + [ [i , i*i , i*i*i , i*i + i*i*i] ] # Why using double brackets?
#N = N + [ [i , i**2 , i**3 , i**2 + i**3] ] # Why using double brackets?
# In the last two alternative solutions, you may try with a single bracket,
# and then see why double brackets are needed for the exact answer.
# print the final list
print(N)
# let's print the list N element by element
for i in range(len(N)):
print(N[i])
# let's print the list N element by element by using an alternative method
for el in N: # el will iteratively takes the values of elements in N
print(el)
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# A jupyter notebook is composed by one or more cells.
# A cell is used to write and execute your codes.
# A cell is also used to write descriptions, notes, formulas, etc.
# You can format your descriptions by using HTML or LaTex codes.
# During our tutorial, you are expected to write only python codes.
# Interested readers may also use HTML and LaTex, but it is not necesary to complete our tutorial.
#
# We explain basic usage of cells in Jupyter notebooks here
#
# This is the first cell in this notebook.
# You can write Python code here,
# and then EXECUTE/RUN it by
# 1) pressing SHIFT+ENTER
# 2) clicking "Run" on the menu
# here are few lines of python code
print("hello world")
str="*"
for i in range(10):
print(str)
str+="*"
# after executing this cell, you will see the outcomes immedeately after this cell
# you may change the range above and re-run this cell
# after executing this cell, you can continue with the next cell
# This is the second cell.
#
# When you double click after the last cell, a new cell appears automatically.
# It automatically happens, when you execute the last cell as well.
#
# By using menu item "Insert", you may also add a new cell before or after the selected cell.
# When a cell is selected, you may delete it by using menu item "Edit".
#
# As you may notice, there are other editing options under "Edit",
# for example, copy/cut-paste cells and split-merge cells.
%%writefile first.py
print("hello world")
str="*"
for i in range(5):
print(str)
str+="*"
%run first.py
%load first.py
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# I am a comment in python
print("Hello From Quantum World :-)")
# please run this cell
# import the objects from qiskit
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from random import randrange
# Create my circuit and register objects
qreg = QuantumRegister(2) # my quantum register
creg = ClassicalRegister(2) # my classical register
circuit = QuantumCircuit(qreg,creg) # my quantum circuit
# let's apply a Hadamard gate to the first qubit
circuit.h(qreg[0])
# let's set the second qubit to |1>
circuit.x(qreg[1])
# let's apply CNOT(first_qubit,second_qubit)
circuit.cx(qreg[0],qreg[1])
# let's measure the both qubits
circuit.measure(qreg,creg)
print("The execution of the cell was completed, and the circuit was created :)")
## execute the circuit 100 times
job = execute(circuit,Aer.get_backend('qasm_simulator'),shots=1024)
# get the result
counts = job.result().get_counts(circuit)
print(counts)
# draw circuit
circuit.draw(output='mpl',reverse_bits=True)
# the output will be a "matplotlib.Figure" object
from qiskit import IBMQ
IBMQ.save_account('write YOUR IBM API TOKEN here')
# Then, execute this cell
IBMQ.stored_accounts()
IBMQ.load_accounts()
IBMQ.active_accounts()
IBMQ.backends()
IBMQ.backends(operational=True, simulator=False)
from qiskit.providers.ibmq import least_busy
least_busy(IBMQ.backends(simulator=False))
backend = least_busy(IBMQ.backends(simulator=True))
backend.name()
from qiskit import compile
qobj = compile(circuit, backend=backend, shots=1024)
job = backend.run(qobj)
result = job.result()
counts = result.get_counts()
print(counts)
backend_real = least_busy(IBMQ.backends(simulator=False))
backend_real.name()
backend_real.status()
qobj_real = compile(circuit, backend=backend_real, shots=1024)
job_real = backend_real.run(qobj_real)
job_real.queue_position()
result_real = job_real.result()
counts_real = result_real.get_counts()
print(counts_real)
|
https://github.com/adarshisme/QiskitBiskit
|
adarshisme
|
!pip install qiskit
!pip install pylatexenc
import matplotlib.pyplot as plt
import math
import matplotlib as mpl
import numpy as np
import pandas as pd
import qiskit as q
from qiskit import Aer, assemble, QuantumRegister, ClassicalRegister
from qiskit.circuit import QuantumCircuit
import pylatexenc
from qiskit.quantum_info import Statevector, PTM
from qiskit.visualization import array_to_latex
from qiskit import transpile
from qiskit.providers.aer import QasmSimulator
import random
from qiskit.quantum_info import partial_trace, Statevector, DensityMatrix
from numpy import kron, trace
backend = QasmSimulator()
def visualize_one_line(x1_vals, y1_vals, axis_labels, title, label):
fig, ax = plt.subplots()
plt.title(title)
plt.xlabel(axis_labels[0])
plt.ylabel(axis_labels[1])
ax.plot(x1_vals, y1_vals, linestyle='-', color='red', label=label)
plt.legend()
def stateTomography(p):
I = (np.array([[1, 0],[0, 1]])* np.array(p)).trace()
X = (np.array([[0, 1],[1, 0]])* np.array(p)).trace()
Y = (np.array([[0, 0- 1j],[1j, 0]])* np.array(p)).trace()
Z = (np.array([[1, 0],[0, -1]])* np.array(p)).trace()
return np.array([I, X, Y, Z])
def normalNoise(circ, noise):
circ.cry(noise, 0, 1)
circ.cnot(1, 0)
circ.reset(1)
def randomTwirl(circ, noise):
x = random.randint(0,3)
if x == 1:
circ.x(0)
if x == 2:
circ.y(0)
if x == 3:
circ.z(0)
circ.cry(noise, 0, 1)
circ.cnot(1, 0)
circ.reset(1)
if x == 1:
circ.x(0)
if x == 2:
circ.y(0)
if x == 3:
circ.z(0)
def PauliConjugation(circ, noise, gate):
if gate == 'x':
circ.x(0)
if gate == 'y':
circ.y(0)
if gate == 'z':
circ.z(0)
circ.cry(noise, 0, 1)
circ.cnot(1, 0)
circ.reset(1)
if gate == 'x':
circ.x(0)
if gate == 'y':
circ.y(0)
if gate == 'z':
circ.z(0)
def pauli_conjug_x(circ, noise):
PauliConjugation(circ, noise, 'x')
def pauli_conjug_y(circ, noise):
PauliConjugation(circ, noise, 'y')
def pauli_conjug_z(circ, noise):
PauliConjugation(circ, noise, 'z')
tvals = [0.7, 1, 7, 10, 70, 100, 700, 1000, 7000, 10000]
funcs = [normalNoise, randomTwirl, pauli_conjug_x, pauli_conjug_y, pauli_conjug_z]
strings_to_funcs = {str(noise_func).split(' ')[1]: noise_func for noise_func in funcs}
funcs_to_strings = {strings_to_funcs[a]: a for a in strings_to_funcs}
success_data = {noise_func: [] for noise_func in funcs}
state_tomography_data = {noise_func: [] for noise_func in funcs}
for noise_func in funcs:
print(funcs_to_strings[noise_func])
for val in tvals:
coinQ = QuantumRegister(1)
coinC = ClassicalRegister(1)
t = val
T_1 = 10000
turn = math.pi/500
noise = 2*math.asin(math.sqrt(1-math.e**(-t/T_1)))
coinCircuit = QuantumCircuit(coinQ, coinC)
coinCircuit.initialize([1, 0], 0)
coinCircuit.ry(math.pi/3, 0)
coinCircuit.measure(0, 0)
coin_compiled = transpile(coinCircuit, backend)
flip_sim = backend.run(coin_compiled, shots=1000)
result_sim = flip_sim.result()
counts = {}
counts = result_sim.get_counts(coin_compiled)
distribution = []
for i in range(counts['1']):
distribution.append(1)
for i in range (counts['0']):
distribution.append(0)
random.shuffle(distribution)
unfairQ = QuantumRegister(2)
unfairC = ClassicalRegister(1)
unfairCircuit = QuantumCircuit(unfairQ, unfairC)
unfairCircuit.initialize([1, 0], 0)
unfairCircuit.initialize([1, 0], 1)
for i in distribution:
if i == 1:
unfairCircuit.ry(-turn, 0)
if i == 0:
unfairCircuit.ry(turn, 0)
noise_func(unfairCircuit, noise)
#For Pauli conjugation comment out randomTwirl and use the below with desired gate
#PauliConjugation(unfairCircuit, noise, z)
#For normal noise use below
#normalNoise(unfairCircuit, noise)
unfairCircuit.measure(0, 0)
turn_compiled = transpile(unfairCircuit, backend)
turn_sim = backend.run(turn_compiled, shots = 200)
unfair_sim = turn_sim.result()
count_totals = unfair_sim.get_counts(turn_compiled)
unfairQ = QuantumRegister(2)
unfairCircuit = QuantumCircuit(unfairQ)
for i in distribution:
if i == 1:
unfairCircuit.ry(-turn, 0)
if i == 0:
unfairCircuit.ry(turn, 0)
unfairCircuit.cry(noise, 0, 1)
unfairCircuit.cnot(1, 0)
unfairCircuit.reset(1)
state = Statevector.from_int(0, 2**2)
state = state.evolve(unfairCircuit)
rho = DensityMatrix(state)
qubitOut = partial_trace(rho, [1])
qubitIn = DensityMatrix([1, 0])
stateTomographyIn = stateTomography(qubitIn)
stateTomographyOut = stateTomography(qubitOut)
success_data[noise_func].append(count_totals['1'] / 200 if '1' in count_totals else 0)
state_tomography_data[noise_func].append(stateTomographyOut[-1])
fig, axs = plt.subplots(1, 2, figsize=(13, 5))
fig.suptitle('error correction via twirling and Pauli conjugation')
axs[0].set_xscale('log')
axs[0].set_xlabel('t / T_1')
axs[0].set_ylabel('success probability')
axs[1].set_xscale('log')
axs[1].set_xlabel('t / T_1')
axs[1].set_ylabel('Pauli expectation out')
tvals = [t / T_1 for t in tvals]
for noise_func in funcs:
axs[0].plot(tvals, success_data[noise_func], label=funcs_to_strings[noise_func])
axs[1].plot(tvals, state_tomography_data[noise_func], label=funcs_to_strings[noise_func])
plt.legend()
|
https://github.com/IBMDeveloperUK/Hello-Quantum-World.
|
IBMDeveloperUK
|
import numpy as np
import networkx as nx
import qiskit
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble
from qiskit.quantum_info import Statevector
from qiskit.aqua.algorithms import NumPyEigensolver
from qiskit.quantum_info import Pauli
from qiskit.aqua.operators import op_converter
from qiskit.aqua.operators import WeightedPauliOperator
from qiskit.visualization import plot_histogram
from qiskit.providers.aer.extensions.snapshot_statevector import *
from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost
from utils import mapeo_grafo
from collections import defaultdict
from operator import itemgetter
from scipy.optimize import minimize
import matplotlib.pyplot as plt
LAMBDA = 10
SEED = 10
SHOTS = 10000
# returns the bit index for an alpha and j
def bit(i_city, l_time, num_cities):
return i_city * num_cities + l_time
# e^(cZZ)
def append_zz_term(qc, q_i, q_j, gamma, constant_term):
qc.cx(q_i, q_j)
qc.rz(2*gamma*constant_term,q_j)
qc.cx(q_i, q_j)
# e^(cZ)
def append_z_term(qc, q_i, gamma, constant_term):
qc.rz(2*gamma*constant_term, q_i)
# e^(cX)
def append_x_term(qc,qi,beta):
qc.rx(-2*beta, qi)
def get_not_edge_in(G):
N = G.number_of_nodes()
not_edge = []
for i in range(N):
for j in range(N):
if i != j:
buffer_tupla = (i,j)
in_edges = False
for edge_i, edge_j in G.edges():
if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)):
in_edges = True
if in_edges == False:
not_edge.append((i, j))
return not_edge
def get_classical_simplified_z_term(G, _lambda):
# recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos
N = G.number_of_nodes()
E = G.edges()
# z term #
z_classic_term = [0] * N**2
# first term
for l in range(N):
for i in range(N):
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += -1 * _lambda
# second term
for l in range(N):
for j in range(N):
for i in range(N):
if i < j:
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 2
# z_jl
z_jl_index = bit(j, l, N)
z_classic_term[z_jl_index] += _lambda / 2
# third term
for i in range(N):
for l in range(N):
for j in range(N):
if l < j:
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 2
# z_ij
z_ij_index = bit(i, j, N)
z_classic_term[z_ij_index] += _lambda / 2
# fourth term
not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1)
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 4
# z_j(l+1)
l_plus = (l+1) % N
z_jlplus_index = bit(j, l_plus, N)
z_classic_term[z_jlplus_index] += _lambda / 4
# fifthy term
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# z_il
z_il_index = bit(edge_i, l, N)
z_classic_term[z_il_index] += weight_ij / 4
# z_jlplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_j, l_plus, N)
z_classic_term[z_jlplus_index] += weight_ij / 4
# add order term because G.edges() do not include order tuples #
# z_i'l
z_il_index = bit(edge_j, l, N)
z_classic_term[z_il_index] += weight_ji / 4
# z_j'lplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_i, l_plus, N)
z_classic_term[z_jlplus_index] += weight_ji / 4
return z_classic_term
def tsp_obj_2(x, G,_lambda):
# obtenemos el valor evaluado en f(x_1, x_2,... x_n)
not_edge = get_not_edge_in(G)
N = G.number_of_nodes()
tsp_cost=0
#Distancia
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# x_il
x_il_index = bit(edge_i, l, N)
# x_jlplus
l_plus = (l+1) % N
x_jlplus_index = bit(edge_j, l_plus, N)
tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij
# add order term because G.edges() do not include order tuples #
# x_i'l
x_il_index = bit(edge_j, l, N)
# x_j'lplus
x_jlplus_index = bit(edge_i, l_plus, N)
tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji
#Constraint 1
for l in range(N):
penal1 = 1
for i in range(N):
x_il_index = bit(i, l, N)
penal1 -= int(x[x_il_index])
tsp_cost += _lambda * penal1**2
#Contstraint 2
for i in range(N):
penal2 = 1
for l in range(N):
x_il_index = bit(i, l, N)
penal2 -= int(x[x_il_index])
tsp_cost += _lambda*penal2**2
#Constraint 3
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# x_il
x_il_index = bit(i, l, N)
# x_j(l+1)
l_plus = (l+1) % N
x_jlplus_index = bit(j, l_plus, N)
tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda
return tsp_cost
def get_classical_simplified_zz_term(G, _lambda):
# recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos
N = G.number_of_nodes()
E = G.edges()
# zz term #
zz_classic_term = [[0] * N**2 for i in range(N**2) ]
# first term
for l in range(N):
for j in range(N):
for i in range(N):
if i < j:
# z_il
z_il_index = bit(i, l, N)
# z_jl
z_jl_index = bit(j, l, N)
zz_classic_term[z_il_index][z_jl_index] += _lambda / 2
# second term
for i in range(N):
for l in range(N):
for j in range(N):
if l < j:
# z_il
z_il_index = bit(i, l, N)
# z_ij
z_ij_index = bit(i, j, N)
zz_classic_term[z_il_index][z_ij_index] += _lambda / 2
# third term
not_edge = get_not_edge_in(G)
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# z_il
z_il_index = bit(i, l, N)
# z_j(l+1)
l_plus = (l+1) % N
z_jlplus_index = bit(j, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4
# fourth term
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# z_il
z_il_index = bit(edge_i, l, N)
# z_jlplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_j, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4
# add order term because G.edges() do not include order tuples #
# z_i'l
z_il_index = bit(edge_j, l, N)
# z_j'lplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_i, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4
return zz_classic_term
def get_classical_simplified_hamiltonian(G, _lambda):
# z term #
z_classic_term = get_classical_simplified_z_term(G, _lambda)
# zz term #
zz_classic_term = get_classical_simplified_zz_term(G, _lambda)
return z_classic_term, zz_classic_term
def get_cost_circuit(G, gamma, _lambda):
N = G.number_of_nodes()
N_square = N**2
qc = QuantumCircuit(N_square,N_square)
z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda)
# z term
for i in range(N_square):
if z_classic_term[i] != 0:
append_z_term(qc, i, gamma, z_classic_term[i])
# zz term
for i in range(N_square):
for j in range(N_square):
if zz_classic_term[i][j] != 0:
append_zz_term(qc, i, j, gamma, zz_classic_term[i][j])
return qc
def get_mixer_operator(G,beta):
N = G.number_of_nodes()
qc = QuantumCircuit(N**2,N**2)
for n in range(N**2):
append_x_term(qc, n, beta)
return qc
def get_QAOA_circuit(G, beta, gamma, _lambda):
assert(len(beta)==len(gamma))
N = G.number_of_nodes()
qc = QuantumCircuit(N**2,N**2)
# init min mix state
qc.h(range(N**2))
p = len(beta)
for i in range(p):
qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda))
qc = qc.compose(get_mixer_operator(G, beta[i]))
qc.barrier(range(N**2))
qc.snapshot_statevector("final_state")
qc.measure(range(N**2),range(N**2))
return qc
def invert_counts(counts):
return {k[::-1] :v for k,v in counts.items()}
# Sample expectation value
def compute_tsp_energy_2(counts, G):
energy = 0
get_counts = 0
total_counts = 0
for meas, meas_count in counts.items():
obj_for_meas = tsp_obj_2(meas, G, LAMBDA)
energy += obj_for_meas*meas_count
total_counts += meas_count
mean = energy/total_counts
return mean
def get_black_box_objective_2(G,p):
backend = Aer.get_backend('qasm_simulator')
sim = Aer.get_backend('aer_simulator')
# function f costo
def f(theta):
beta = theta[:p]
gamma = theta[p:]
# Anzats
qc = get_QAOA_circuit(G, beta, gamma, LAMBDA)
result = execute(qc, backend, seed_simulator=SEED, shots= SHOTS).result()
final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0]
state_vector = Statevector(final_state_vector)
probabilities = state_vector.probabilities()
probabilities_states = invert_counts(state_vector.probabilities_dict())
expected_value = 0
for state,probability in probabilities_states.items():
cost = tsp_obj_2(state, G, LAMBDA)
expected_value += cost*probability
counts = result.get_counts()
mean = compute_tsp_energy_2(invert_counts(counts),G)
return mean
return f
def crear_grafo(cantidad_ciudades):
pesos, conexiones = None, None
mejor_camino = None
while not mejor_camino:
pesos, conexiones = rand_graph(cantidad_ciudades)
mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False)
G = mapeo_grafo(conexiones, pesos)
return G, mejor_costo, mejor_camino
def run_QAOA(p,ciudades, grafo):
if grafo == None:
G, mejor_costo, mejor_camino = crear_grafo(ciudades)
print("Mejor Costo")
print(mejor_costo)
print("Mejor Camino")
print(mejor_camino)
print("Bordes del grafo")
print(G.edges())
print("Nodos")
print(G.nodes())
print("Pesos")
labels = nx.get_edge_attributes(G,'weight')
print(labels)
else:
G = grafo
intial_random = []
# beta, mixer Hammiltonian
for i in range(p):
intial_random.append(np.random.uniform(0,np.pi))
# gamma, cost Hammiltonian
for i in range(p):
intial_random.append(np.random.uniform(0,2*np.pi))
init_point = np.array(intial_random)
obj = get_black_box_objective_2(G,p)
res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True})
print(res_sample)
if __name__ == '__main__':
# Run QAOA parametros: profundidad p, numero d ciudades,
run_QAOA(5, 3, None)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
plt.style.use("ggplot")
from pprint import pprint
import pickle
import time
import datetime
%matplotlib inline
with open("e2d1_raw.pkl", "rb") as f:
raw = pickle.load(f)
with open("e2d1_qrem.pkl", "rb") as f:
qrem = pickle.load(f)
with open("e2d1_zne.pkl", "rb") as f:
zne = pickle.load(f)
with open("e2d1_zne_pt.pkl", "rb") as f:
zne_pt = pickle.load(f)
num_steps_list = raw["num_steps_list"]
raw_fid_list = raw["fid"]
raw_stddev_list = raw["stddev"]
num_steps_list = qrem["num_steps_list"]
qrem_fid_list = qrem["fid"]
qrem_stddev_list = qrem["stddev"]
num_steps_list = zne["num_steps_list"]
zne_fid_list = zne["fid"]
zne_stddev_list = zne["stddev"]
num_steps_list = zne_pt["num_steps_list"]
zne_pt_fid_list = zne_pt["fid"]
zne_pt_stddev_list = zne_pt["stddev"]
plt.clf()
plt.figure(dpi=200)
plt.scatter(num_steps_list, raw_fid_list)
plt.scatter(num_steps_list, qrem_fid_list)
plt.scatter(num_steps_list, zne_fid_list)
plt.scatter(num_steps_list, zne_pt_fid_list)
limit = 13
plt.clf()
plt.figure(dpi=200)
plt.scatter(num_steps_list[:limit], raw_fid_list[:limit], marker="o")
plt.scatter(num_steps_list[:limit], qrem_fid_list[:limit], marker="v")
plt.scatter(num_steps_list[:limit], zne_fid_list[:limit], marker="x")
plt.scatter(num_steps_list[:limit], zne_pt_fid_list[:limit], marker="*")
plt.xlabel("number of trotter steps")
plt.ylabel("state fidelity")
plt.legend(("without error mitigations", "with QREM", "with QREM and ZNE", "with QREM, ZNE and Pauli Twirling"))
plt.title("The effect of error mitigations")
zne_pt_fid_list[12]
import qiskit.tools.jupyter
%qiskit_version_table
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
plt.style.use("ggplot")
from pprint import pprint
import pickle
import time
import datetime
%matplotlib inline
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, X, Y, Z, I
from qiskit.opflow.state_fns.dict_state_fn import DictStateFn
from qiskit.quantum_info import DensityMatrix
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
# unused for this file
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils
importlib.reload(circuit_utils)
importlib.reload(zne_utils) # unused for this file
importlib.reload(tomography_utils) # unused for this file
from circuit_utils import *
from zne_utils import zne_wrapper, zne_decoder
from tomography_utils import expvals_to_valid_rho
from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
backend = Aer.get_backend("qasm_simulator")
# Returns the matrix representation of the XXX Heisenberg model for 3 spin-1/2 particles in a line
def H_heis3():
# Interactions (I is the identity matrix; X, Y, and Z are Pauli matricies; ^ is a tensor product)
XXs = (I^X^X) + (X^X^I)
YYs = (I^Y^Y) + (Y^Y^I)
ZZs = (I^Z^Z) + (Z^Z^I)
# Sum interactions
H = XXs + YYs + ZZs
# Return Hamiltonian
return H
# Returns the matrix representation of U_heis3(t) for a given time t assuming an XXX Heisenberg Hamiltonian for 3 spins-1/2 particles in a line
def U_heis3(t):
# Compute XXX Hamiltonian for 3 spins in a line
H = H_heis3()
# Return the exponential of -i multipled by time t multipled by the 3 spin XXX Heisenberg Hamilonian
return (t * H).exp_i()
# Define array of time points
ts = np.linspace(0, np.pi, 100)
target_state = DictStateFn({"000": 0,
"001": 0,
"010": 1,
"011": 0,
"100": 0,
"101": 0,
"110": 1,
"111": 0}, 1 / np.sqrt(2))
print(DensityMatrix(target_state.to_density_matrix()).is_valid())
# Compute probability of remaining in |110> state over the array of time points
# ~target_state gives the bra of the initial state (<110|)
# @ is short hand for matrix multiplication
# U_heis3(t) is the unitary time evolution at time t
# t needs to be wrapped with float(t) to avoid a bug
# (...).eval() returns the inner product <110|U_heis3(t)|110>
# np.abs(...)**2 is the modulus squared of the innner product which is the expectation value, or probability, of remaining in |110>
probs_010_110 = [np.abs((~target_state @ U_heis3(float(t)) @ target_state).eval())**2 for t in ts]
# Plot evolution of |110>
plt.figure(dpi=200)
plt.plot(ts, probs_010_110)
plt.xlabel('time')
plt.ylabel(r'probability of state $|010\rangle + |110\rangle$')
plt.title(r'Evolution of state $|010\rangle + |110\rangle$ under $H_{Heis3}$')
# plt.grid()
plt.show()
num_qubits = 3
# The final time of the state evolution
target_times = [i * np.pi / 20 for i in range(0, 20 + 1)]
pprint(target_times)
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0] # unused for this file
shots = 1 << 13
reps = 8 # unused
target_state = np.zeros((1 << num_qubits, 1 << num_qubits))
target_state[2, 2] = target_state[6, 6] = target_state[2, 6] = target_state[6, 2] = 0.5
target_state = DensityMatrix(target_state)
target_state.draw("latex")
prob_list = []
for target_time in target_times:
print("target_time: ", target_time)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
cr = ClassicalRegister(num_qubits, name="c")
qc = QuantumCircuit(qr, cr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
qc.h(0)
qc.x(1)
general_subspace_encoder(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
general_subspace_decoder(qc, targets=[0, 1, 2]) # decode
qc.x(1)
qc.h(0)
qc.measure(qr, cr[::-1])
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# optimize circuit
t3_qc = transpile(qc, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_qc = transpile(t3_qc, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_qc (depth:", t3_qc.depth(), ")")
t3_qc = transpile(t3_qc, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_qc (depth:", t3_qc.depth(), ")")
job = execute(t3_qc, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
prob = job.result().get_counts().get("0" * num_qubits, 0) / shots
prob_list.append(prob)
t2 = time.perf_counter()
print(r'probability of state |010> + |110> = {:.4f}'.format(prob))
print("time:", t2 - t1)
print()
plt.figure(dpi=200)
plt.plot(ts, probs_010_110, label="theoretical prediction")
plt.scatter(target_times, prob_list, c="green", zorder=4)
plt.legend(("theoretical prediction", "proposed method"))
plt.xlabel('time')
plt.ylabel(r'probability of state $|010\rangle + |110\rangle$')
plt.title(r'Evolution of state $|010\rangle + |110\rangle$ under $H_{Heis3}$')
plt.show()
import qiskit.tools.jupyter
%qiskit_version_table
fid_list = []
for target_time in target_times:
print("target_time: ", target_time)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
qc.h(0)
qc.x(1)
general_subspace_encoder(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
general_subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs
# zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = False)
# print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
rho = StateTomographyFitter(job.result(), t3_zne_qcs).fit(method='lstsq')
fid = state_fidelity(rho, target_state)
fid_list.append(fid)
t2 = time.perf_counter()
print('state tomography fidelity = {:.4f}'.format(fid))
print("time:", t2 - t1)
print()
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
# unused for this file
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils
importlib.reload(circuit_utils)
importlib.reload(zne_utils) # unused for this file
importlib.reload(tomography_utils) # unused for this file
from circuit_utils import *
from zne_utils import zne_wrapper, zne_decoder
from tomography_utils import expvals_to_valid_rho
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps_list = [1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100]
print("trotter step list: ", num_steps_list)
scale_factors = [1.0, 2.0, 3.0] # unused for this file
shots = 1 << 13
reps = 8 # unused
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
raw_fid_list = []
raw_stddev_list = []
qrem_fid_list = []
qrem_stddev_list = []
for num_steps in num_steps_list:
print("trotter steps: ", num_steps)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs
# zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = False)
# print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
retrieved_jobs = jobs
raw_fids = []
qrem_fids = []
for job in retrieved_jobs:
raw_results = job.result()
mit_results = meas_fitter.filter.apply(raw_results)
raw_rho = StateTomographyFitter(raw_results, t3_zne_qcs).fit(method='lstsq')
qrem_rho = StateTomographyFitter(mit_results, t3_zne_qcs).fit(method='lstsq')
raw_fids.append(state_fidelity(raw_rho, target_state))
qrem_fids.append(state_fidelity(qrem_rho, target_state))
raw_fid_list.append(np.mean(raw_fids))
raw_stddev_list.append(np.std(raw_fids))
qrem_fid_list.append(np.mean(qrem_fids))
qrem_stddev_list.append(np.std(qrem_fids))
t2 = time.perf_counter()
print('raw state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(raw_fids), np.std(raw_fids)))
print('qrem state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(qrem_fids), np.std(qrem_fids)))
print("time:", t2 - t1)
print()
with open("e2d1_raw.pkl", "wb") as f:
pickle.dump({"num_steps_list": num_steps_list, "fid": raw_fid_list, "stddev": raw_stddev_list}, f)
with open("e2d1_qrem.pkl", "wb") as f:
pickle.dump({"num_steps_list": num_steps_list, "fid": qrem_fid_list, "stddev": qrem_stddev_list}, f)
import qiskit.tools.jupyter
%qiskit_version_table
plt.plot(num_steps_list, raw_fid_list)
plt.plot(num_steps_list, qrem_fid_list)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
# unused for this file
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils
importlib.reload(circuit_utils)
importlib.reload(zne_utils) # unused for this file
importlib.reload(tomography_utils) # unused for this file
from circuit_utils import *
from zne_utils import zne_wrapper, zne_decoder
from tomography_utils import expvals_to_valid_rho
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps_list = [1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100]
print("trotter step list: ", num_steps_list)
scale_factors = [1.0, 2.0, 3.0] # unused for this file
shots = 1 << 13
reps = 8 # unused
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
qrem_fid_list = []
qrem_stddev_list = []
for num_steps in num_steps_list:
print("trotter steps: ", num_steps)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs
# zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = False)
# print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
retrieved_jobs = jobs
qrem_fids = []
for job in retrieved_jobs:
raw_results = job.result()
mit_results = meas_fitter.filter.apply(raw_results)
qrem_rho = StateTomographyFitter(mit_results, t3_zne_qcs).fit(method='lstsq')
qrem_fids.append(state_fidelity(qrem_rho, target_state))
qrem_fid_list.append(np.mean(qrem_fids))
qrem_stddev_list.append(np.std(qrem_fids))
t2 = time.perf_counter()
print('qrem state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(qrem_fids), np.std(qrem_fids)))
print("time:", t2 - t1)
print()
with open("e2d2_qrem.pkl", "wb") as f:
pickle.dump({"num_steps_list": num_steps_list, "fid": qrem_fid_list, "stddev": qrem_stddev_list}, f)
import qiskit.tools.jupyter
%qiskit_version_table
plt.plot(num_steps_list, qrem_fid_list)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
plt.style.use("ggplot")
from pprint import pprint
import pickle
import time
import datetime
%matplotlib inline
with open("e2d1_raw.pkl", "rb") as f:
raw = pickle.load(f)
with open("e2d1_qrem.pkl", "rb") as f:
qrem = pickle.load(f)
with open("e2d1_zne.pkl", "rb") as f:
zne = pickle.load(f)
with open("e2d1_zne_pt.pkl", "rb") as f:
zne_pt = pickle.load(f)
num_steps_list = raw["num_steps_list"]
raw_fid_list = raw["fid"]
raw_stddev_list = raw["stddev"]
num_steps_list = qrem["num_steps_list"]
qrem_fid_list = qrem["fid"]
qrem_stddev_list = qrem["stddev"]
num_steps_list = zne["num_steps_list"]
zne_fid_list = zne["fid"]
zne_stddev_list = zne["stddev"]
num_steps_list = zne_pt["num_steps_list"]
zne_pt_fid_list = zne_pt["fid"]
zne_pt_stddev_list = zne_pt["stddev"]
plt.clf()
plt.figure(dpi=200)
plt.scatter(num_steps_list, raw_fid_list)
plt.scatter(num_steps_list, qrem_fid_list)
plt.scatter(num_steps_list, zne_fid_list)
plt.scatter(num_steps_list, zne_pt_fid_list)
limit = 13
plt.clf()
plt.figure(dpi=200)
plt.scatter(num_steps_list[:limit], raw_fid_list[:limit], marker="o")
plt.scatter(num_steps_list[:limit], qrem_fid_list[:limit], marker="v")
plt.scatter(num_steps_list[:limit], zne_fid_list[:limit], marker="x")
plt.scatter(num_steps_list[:limit], zne_pt_fid_list[:limit], marker="*")
plt.xlabel("number of trotter steps")
plt.ylabel("state fidelity")
plt.legend(("without error mitigations", "with QREM", "with QREM and ZNE", "with QREM, ZNE and Pauli Twirling"))
plt.title("The effect of error mitigations")
zne_pt_fid_list[12]
import qiskit.tools.jupyter
%qiskit_version_table
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
plt.style.use("ggplot")
from pprint import pprint
import pickle
import time
import datetime
%matplotlib inline
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, X, Y, Z, I
from qiskit.opflow.state_fns.dict_state_fn import DictStateFn
from qiskit.quantum_info import DensityMatrix
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
# unused for this file
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils
importlib.reload(circuit_utils)
importlib.reload(zne_utils) # unused for this file
importlib.reload(tomography_utils) # unused for this file
from circuit_utils import *
from zne_utils import zne_wrapper, zne_decoder
from tomography_utils import expvals_to_valid_rho
from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
backend = Aer.get_backend("qasm_simulator")
# Returns the matrix representation of the XXX Heisenberg model for 3 spin-1/2 particles in a line
def H_heis3():
# Interactions (I is the identity matrix; X, Y, and Z are Pauli matricies; ^ is a tensor product)
XXs = (I^X^X) + (X^X^I)
YYs = (I^Y^Y) + (Y^Y^I)
ZZs = (I^Z^Z) + (Z^Z^I)
# Sum interactions
H = XXs + YYs + ZZs
# Return Hamiltonian
return H
# Returns the matrix representation of U_heis3(t) for a given time t assuming an XXX Heisenberg Hamiltonian for 3 spins-1/2 particles in a line
def U_heis3(t):
# Compute XXX Hamiltonian for 3 spins in a line
H = H_heis3()
# Return the exponential of -i multipled by time t multipled by the 3 spin XXX Heisenberg Hamilonian
return (t * H).exp_i()
# Define array of time points
ts = np.linspace(0, np.pi, 100)
target_state = DictStateFn({"000": 0,
"001": 0,
"010": 1,
"011": 0,
"100": 0,
"101": 0,
"110": 1,
"111": 0}, 1 / np.sqrt(2))
print(DensityMatrix(target_state.to_density_matrix()).is_valid())
# Compute probability of remaining in |110> state over the array of time points
# ~target_state gives the bra of the initial state (<110|)
# @ is short hand for matrix multiplication
# U_heis3(t) is the unitary time evolution at time t
# t needs to be wrapped with float(t) to avoid a bug
# (...).eval() returns the inner product <110|U_heis3(t)|110>
# np.abs(...)**2 is the modulus squared of the innner product which is the expectation value, or probability, of remaining in |110>
probs_010_110 = [np.abs((~target_state @ U_heis3(float(t)) @ target_state).eval())**2 for t in ts]
# Plot evolution of |110>
plt.figure(dpi=200)
plt.plot(ts, probs_010_110)
plt.xlabel('time')
plt.ylabel(r'probability of state $|010\rangle + |110\rangle$')
plt.title(r'Evolution of state $|010\rangle + |110\rangle$ under $H_{Heis3}$')
# plt.grid()
plt.show()
num_qubits = 3
# The final time of the state evolution
target_times = [i * np.pi / 20 for i in range(0, 20 + 1)]
pprint(target_times)
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0] # unused for this file
shots = 1 << 13
reps = 8 # unused
target_state = np.zeros((1 << num_qubits, 1 << num_qubits))
target_state[2, 2] = target_state[6, 6] = target_state[2, 6] = target_state[6, 2] = 0.5
target_state = DensityMatrix(target_state)
target_state.draw("latex")
prob_list = []
for target_time in target_times:
print("target_time: ", target_time)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
cr = ClassicalRegister(num_qubits, name="c")
qc = QuantumCircuit(qr, cr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
qc.h(0)
qc.x(1)
general_subspace_encoder(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
general_subspace_decoder(qc, targets=[0, 1, 2]) # decode
qc.x(1)
qc.h(0)
qc.measure(qr, cr[::-1])
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# optimize circuit
t3_qc = transpile(qc, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_qc = transpile(t3_qc, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_qc (depth:", t3_qc.depth(), ")")
t3_qc = transpile(t3_qc, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_qc (depth:", t3_qc.depth(), ")")
job = execute(t3_qc, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
prob = job.result().get_counts().get("0" * num_qubits, 0) / shots
prob_list.append(prob)
t2 = time.perf_counter()
print(r'probability of state |010> + |110> = {:.4f}'.format(prob))
print("time:", t2 - t1)
print()
plt.figure(dpi=200)
plt.plot(ts, probs_010_110, label="theoretical prediction")
plt.scatter(target_times, prob_list, c="green", zorder=4)
plt.legend(("theoretical prediction", "proposed method"))
plt.xlabel('time')
plt.ylabel(r'probability of state $|010\rangle + |110\rangle$')
plt.title(r'Evolution of state $|010\rangle + |110\rangle$ under $H_{Heis3}$')
plt.show()
import qiskit.tools.jupyter
%qiskit_version_table
fid_list = []
for target_time in target_times:
print("target_time: ", target_time)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
qc.h(0)
qc.x(1)
general_subspace_encoder(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
general_subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs
# zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = False)
# print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
rho = StateTomographyFitter(job.result(), t3_zne_qcs).fit(method='lstsq')
fid = state_fidelity(rho, target_state)
fid_list.append(fid)
t2 = time.perf_counter()
print('state tomography fidelity = {:.4f}'.format(fid))
print("time:", t2 - t1)
print()
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
# unused for this file
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils
importlib.reload(circuit_utils)
importlib.reload(zne_utils) # unused for this file
importlib.reload(tomography_utils) # unused for this file
from circuit_utils import *
from zne_utils import zne_wrapper, zne_decoder
from tomography_utils import expvals_to_valid_rho
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps_list = [1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100]
print("trotter step list: ", num_steps_list)
scale_factors = [1.0, 2.0, 3.0] # unused for this file
shots = 1 << 13
reps = 8 # unused
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
raw_fid_list = []
raw_stddev_list = []
qrem_fid_list = []
qrem_stddev_list = []
for num_steps in num_steps_list:
print("trotter steps: ", num_steps)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs
# zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = False)
# print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
retrieved_jobs = jobs
raw_fids = []
qrem_fids = []
for job in retrieved_jobs:
raw_results = job.result()
mit_results = meas_fitter.filter.apply(raw_results)
raw_rho = StateTomographyFitter(raw_results, t3_zne_qcs).fit(method='lstsq')
qrem_rho = StateTomographyFitter(mit_results, t3_zne_qcs).fit(method='lstsq')
raw_fids.append(state_fidelity(raw_rho, target_state))
qrem_fids.append(state_fidelity(qrem_rho, target_state))
raw_fid_list.append(np.mean(raw_fids))
raw_stddev_list.append(np.std(raw_fids))
qrem_fid_list.append(np.mean(qrem_fids))
qrem_stddev_list.append(np.std(qrem_fids))
t2 = time.perf_counter()
print('raw state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(raw_fids), np.std(raw_fids)))
print('qrem state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(qrem_fids), np.std(qrem_fids)))
print("time:", t2 - t1)
print()
with open("e2d1_raw.pkl", "wb") as f:
pickle.dump({"num_steps_list": num_steps_list, "fid": raw_fid_list, "stddev": raw_stddev_list}, f)
with open("e2d1_qrem.pkl", "wb") as f:
pickle.dump({"num_steps_list": num_steps_list, "fid": qrem_fid_list, "stddev": qrem_stddev_list}, f)
import qiskit.tools.jupyter
%qiskit_version_table
plt.plot(num_steps_list, raw_fid_list)
plt.plot(num_steps_list, qrem_fid_list)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
# unused for this file
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils
importlib.reload(circuit_utils)
importlib.reload(zne_utils) # unused for this file
importlib.reload(tomography_utils) # unused for this file
from circuit_utils import *
from zne_utils import zne_wrapper, zne_decoder
from tomography_utils import expvals_to_valid_rho
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps_list = [1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100]
print("trotter step list: ", num_steps_list)
scale_factors = [1.0, 2.0, 3.0] # unused for this file
shots = 1 << 13
reps = 8 # unused
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
qrem_fid_list = []
qrem_stddev_list = []
for num_steps in num_steps_list:
print("trotter steps: ", num_steps)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs
# zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = False)
# print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
retrieved_jobs = jobs
qrem_fids = []
for job in retrieved_jobs:
raw_results = job.result()
mit_results = meas_fitter.filter.apply(raw_results)
qrem_rho = StateTomographyFitter(mit_results, t3_zne_qcs).fit(method='lstsq')
qrem_fids.append(state_fidelity(qrem_rho, target_state))
qrem_fid_list.append(np.mean(qrem_fids))
qrem_stddev_list.append(np.std(qrem_fids))
t2 = time.perf_counter()
print('qrem state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(qrem_fids), np.std(qrem_fids)))
print("time:", t2 - t1)
print()
with open("e2d2_qrem.pkl", "wb") as f:
pickle.dump({"num_steps_list": num_steps_list, "fid": qrem_fid_list, "stddev": qrem_stddev_list}, f)
import qiskit.tools.jupyter
%qiskit_version_table
plt.plot(num_steps_list, qrem_fid_list)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
plt.style.use("ggplot")
from pprint import pprint
import pickle
import time
import datetime
%matplotlib inline
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, X, Y, Z, I
from qiskit.opflow.state_fns.dict_state_fn import DictStateFn
from qiskit.quantum_info import DensityMatrix
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
# unused for this file
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils
importlib.reload(circuit_utils)
importlib.reload(zne_utils) # unused for this file
importlib.reload(tomography_utils) # unused for this file
from circuit_utils import *
from zne_utils import zne_wrapper, zne_decoder
from tomography_utils import expvals_to_valid_rho
from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
backend = Aer.get_backend("qasm_simulator")
# Returns the matrix representation of the XXX Heisenberg model for 3 spin-1/2 particles in a line
def H_heis3():
# Interactions (I is the identity matrix; X, Y, and Z are Pauli matricies; ^ is a tensor product)
XXs = (I^X^X) + (X^X^I)
YYs = (I^Y^Y) + (Y^Y^I)
ZZs = (I^Z^Z) + (Z^Z^I)
# Sum interactions
H = XXs + YYs + ZZs
# Return Hamiltonian
return H
# Returns the matrix representation of U_heis3(t) for a given time t assuming an XXX Heisenberg Hamiltonian for 3 spins-1/2 particles in a line
def U_heis3(t):
# Compute XXX Hamiltonian for 3 spins in a line
H = H_heis3()
# Return the exponential of -i multipled by time t multipled by the 3 spin XXX Heisenberg Hamilonian
return (t * H).exp_i()
# Define array of time points
ts = np.linspace(0, np.pi, 100)
target_state = DictStateFn({"000": 0,
"001": 0,
"010": 1,
"011": 0,
"100": 0,
"101": 0,
"110": 1,
"111": 0}, 1 / np.sqrt(2))
print(DensityMatrix(target_state.to_density_matrix()).is_valid())
# Compute probability of remaining in |110> state over the array of time points
# ~target_state gives the bra of the initial state (<110|)
# @ is short hand for matrix multiplication
# U_heis3(t) is the unitary time evolution at time t
# t needs to be wrapped with float(t) to avoid a bug
# (...).eval() returns the inner product <110|U_heis3(t)|110>
# np.abs(...)**2 is the modulus squared of the innner product which is the expectation value, or probability, of remaining in |110>
probs_010_110 = [np.abs((~target_state @ U_heis3(float(t)) @ target_state).eval())**2 for t in ts]
# Plot evolution of |110>
plt.figure(dpi=200)
plt.plot(ts, probs_010_110)
plt.xlabel('time')
plt.ylabel(r'probability of state $|010\rangle + |110\rangle$')
plt.title(r'Evolution of state $|010\rangle + |110\rangle$ under $H_{Heis3}$')
# plt.grid()
plt.show()
num_qubits = 3
# The final time of the state evolution
target_times = [i * np.pi / 20 for i in range(0, 20 + 1)]
pprint(target_times)
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0] # unused for this file
shots = 1 << 13
reps = 8 # unused
target_state = np.zeros((1 << num_qubits, 1 << num_qubits))
target_state[2, 2] = target_state[6, 6] = target_state[2, 6] = target_state[6, 2] = 0.5
target_state = DensityMatrix(target_state)
target_state.draw("latex")
prob_list = []
for target_time in target_times:
print("target_time: ", target_time)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
cr = ClassicalRegister(num_qubits, name="c")
qc = QuantumCircuit(qr, cr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
qc.h(0)
qc.x(1)
general_subspace_encoder(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
general_subspace_decoder(qc, targets=[0, 1, 2]) # decode
qc.x(1)
qc.h(0)
qc.measure(qr, cr[::-1])
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# optimize circuit
t3_qc = transpile(qc, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_qc = transpile(t3_qc, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_qc (depth:", t3_qc.depth(), ")")
t3_qc = transpile(t3_qc, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_qc (depth:", t3_qc.depth(), ")")
job = execute(t3_qc, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
prob = job.result().get_counts().get("0" * num_qubits, 0) / shots
prob_list.append(prob)
t2 = time.perf_counter()
print(r'probability of state |010> + |110> = {:.4f}'.format(prob))
print("time:", t2 - t1)
print()
plt.figure(dpi=200)
plt.plot(ts, probs_010_110, label="theoretical prediction")
plt.scatter(target_times, prob_list, c="green", zorder=4)
plt.legend(("theoretical prediction", "proposed method"))
plt.xlabel('time')
plt.ylabel(r'probability of state $|010\rangle + |110\rangle$')
plt.title(r'Evolution of state $|010\rangle + |110\rangle$ under $H_{Heis3}$')
plt.show()
import qiskit.tools.jupyter
%qiskit_version_table
fid_list = []
for target_time in target_times:
print("target_time: ", target_time)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
qc.h(0)
qc.x(1)
general_subspace_encoder(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
general_subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs
# zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = False)
# print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
rho = StateTomographyFitter(job.result(), t3_zne_qcs).fit(method='lstsq')
fid = state_fidelity(rho, target_state)
fid_list.append(fid)
t2 = time.perf_counter()
print('state tomography fidelity = {:.4f}'.format(fid))
print("time:", t2 - t1)
print()
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
plt.style.use("ggplot")
from pprint import pprint
import pickle
import time
import datetime
%matplotlib inline
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, X, Y, Z, I
from qiskit.opflow.state_fns.dict_state_fn import DictStateFn
from qiskit.quantum_info import DensityMatrix
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
# unused for this file
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils
importlib.reload(circuit_utils)
importlib.reload(zne_utils) # unused for this file
importlib.reload(tomography_utils) # unused for this file
from circuit_utils import *
from zne_utils import zne_wrapper, zne_decoder
from tomography_utils import expvals_to_valid_rho
from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
backend = Aer.get_backend("qasm_simulator")
# Returns the matrix representation of the XXX Heisenberg model for 3 spin-1/2 particles in a line
def H_heis3():
# Interactions (I is the identity matrix; X, Y, and Z are Pauli matricies; ^ is a tensor product)
XXs = (I^X^X) + (X^X^I)
YYs = (I^Y^Y) + (Y^Y^I)
ZZs = (I^Z^Z) + (Z^Z^I)
# Sum interactions
H = XXs + YYs + ZZs
# Return Hamiltonian
return H
# Returns the matrix representation of U_heis3(t) for a given time t assuming an XXX Heisenberg Hamiltonian for 3 spins-1/2 particles in a line
def U_heis3(t):
# Compute XXX Hamiltonian for 3 spins in a line
H = H_heis3()
# Return the exponential of -i multipled by time t multipled by the 3 spin XXX Heisenberg Hamilonian
return (t * H).exp_i()
# Define array of time points
ts = np.linspace(0, np.pi, 100)
target_state = DictStateFn({"000": 0,
"001": 0,
"010": 1,
"011": 0,
"100": 0,
"101": 0,
"110": 1,
"111": 0}, 1 / np.sqrt(2))
print(DensityMatrix(target_state.to_density_matrix()).is_valid())
# Compute probability of remaining in |110> state over the array of time points
# ~target_state gives the bra of the initial state (<110|)
# @ is short hand for matrix multiplication
# U_heis3(t) is the unitary time evolution at time t
# t needs to be wrapped with float(t) to avoid a bug
# (...).eval() returns the inner product <110|U_heis3(t)|110>
# np.abs(...)**2 is the modulus squared of the innner product which is the expectation value, or probability, of remaining in |110>
probs_010_110 = [np.abs((~target_state @ U_heis3(float(t)) @ target_state).eval())**2 for t in ts]
# Plot evolution of |110>
plt.figure(dpi=200)
plt.plot(ts, probs_010_110)
plt.xlabel('time')
plt.ylabel(r'probability of state $|010\rangle + |110\rangle$')
plt.title(r'Evolution of state $|010\rangle + |110\rangle$ under $H_{Heis3}$')
# plt.grid()
plt.show()
num_qubits = 3
# The final time of the state evolution
target_times = [i * np.pi / 20 for i in range(0, 20 + 1)]
pprint(target_times)
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0] # unused for this file
shots = 1 << 13
reps = 8 # unused
target_state = np.zeros((1 << num_qubits, 1 << num_qubits))
target_state[2, 2] = target_state[6, 6] = target_state[2, 6] = target_state[6, 2] = 0.5
target_state = DensityMatrix(target_state)
target_state.draw("latex")
prob_list = []
for target_time in target_times:
print("target_time: ", target_time)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
cr = ClassicalRegister(num_qubits, name="c")
qc = QuantumCircuit(qr, cr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
qc.h(0)
qc.x(1)
general_subspace_encoder(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
general_subspace_decoder(qc, targets=[0, 1, 2]) # decode
qc.x(1)
qc.h(0)
qc.measure(qr, cr[::-1])
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# optimize circuit
t3_qc = transpile(qc, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_qc = transpile(t3_qc, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_qc (depth:", t3_qc.depth(), ")")
t3_qc = transpile(t3_qc, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_qc (depth:", t3_qc.depth(), ")")
job = execute(t3_qc, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
prob = job.result().get_counts().get("0" * num_qubits, 0) / shots
prob_list.append(prob)
t2 = time.perf_counter()
print(r'probability of state |010> + |110> = {:.4f}'.format(prob))
print("time:", t2 - t1)
print()
plt.figure(dpi=200)
plt.plot(ts, probs_010_110, label="theoretical prediction")
plt.scatter(target_times, prob_list, c="green", zorder=4)
plt.legend(("theoretical prediction", "proposed method"))
plt.xlabel('time')
plt.ylabel(r'probability of state $|010\rangle + |110\rangle$')
plt.title(r'Evolution of state $|010\rangle + |110\rangle$ under $H_{Heis3}$')
plt.show()
import qiskit.tools.jupyter
%qiskit_version_table
fid_list = []
for target_time in target_times:
print("target_time: ", target_time)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
qc.h(0)
qc.x(1)
general_subspace_encoder(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
general_subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs
# zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = False)
# print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
rho = StateTomographyFitter(job.result(), t3_zne_qcs).fit(method='lstsq')
fid = state_fidelity(rho, target_state)
fid_list.append(fid)
t2 = time.perf_counter()
print('state tomography fidelity = {:.4f}'.format(fid))
print("time:", t2 - t1)
print()
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
plt.style.use("ggplot")
from pprint import pprint
import pickle
import time
import datetime
%matplotlib inline
with open("e2d1_raw.pkl", "rb") as f:
raw = pickle.load(f)
with open("e2d1_qrem.pkl", "rb") as f:
qrem = pickle.load(f)
with open("e2d1_zne.pkl", "rb") as f:
zne = pickle.load(f)
with open("e2d1_zne_pt.pkl", "rb") as f:
zne_pt = pickle.load(f)
num_steps_list = raw["num_steps_list"]
raw_fid_list = raw["fid"]
raw_stddev_list = raw["stddev"]
num_steps_list = qrem["num_steps_list"]
qrem_fid_list = qrem["fid"]
qrem_stddev_list = qrem["stddev"]
num_steps_list = zne["num_steps_list"]
zne_fid_list = zne["fid"]
zne_stddev_list = zne["stddev"]
num_steps_list = zne_pt["num_steps_list"]
zne_pt_fid_list = zne_pt["fid"]
zne_pt_stddev_list = zne_pt["stddev"]
plt.clf()
plt.figure(dpi=200)
plt.scatter(num_steps_list, raw_fid_list)
plt.scatter(num_steps_list, qrem_fid_list)
plt.scatter(num_steps_list, zne_fid_list)
plt.scatter(num_steps_list, zne_pt_fid_list)
limit = 13
plt.clf()
plt.figure(dpi=200)
plt.scatter(num_steps_list[:limit], raw_fid_list[:limit], marker="o")
plt.scatter(num_steps_list[:limit], qrem_fid_list[:limit], marker="v")
plt.scatter(num_steps_list[:limit], zne_fid_list[:limit], marker="x")
plt.scatter(num_steps_list[:limit], zne_pt_fid_list[:limit], marker="*")
plt.xlabel("number of trotter steps")
plt.ylabel("state fidelity")
plt.legend(("without error mitigations", "with QREM", "with QREM and ZNE", "with QREM, ZNE and Pauli Twirling"))
plt.title("The effect of error mitigations")
zne_pt_fid_list[12]
import qiskit.tools.jupyter
%qiskit_version_table
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
# unused for this file
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils
importlib.reload(circuit_utils)
importlib.reload(zne_utils) # unused for this file
importlib.reload(tomography_utils) # unused for this file
from circuit_utils import *
from zne_utils import zne_wrapper, zne_decoder
from tomography_utils import expvals_to_valid_rho
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps_list = [1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100]
print("trotter step list: ", num_steps_list)
scale_factors = [1.0, 2.0, 3.0] # unused for this file
shots = 1 << 13
reps = 8 # unused
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
raw_fid_list = []
raw_stddev_list = []
qrem_fid_list = []
qrem_stddev_list = []
for num_steps in num_steps_list:
print("trotter steps: ", num_steps)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs
# zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = False)
# print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
retrieved_jobs = jobs
raw_fids = []
qrem_fids = []
for job in retrieved_jobs:
raw_results = job.result()
mit_results = meas_fitter.filter.apply(raw_results)
raw_rho = StateTomographyFitter(raw_results, t3_zne_qcs).fit(method='lstsq')
qrem_rho = StateTomographyFitter(mit_results, t3_zne_qcs).fit(method='lstsq')
raw_fids.append(state_fidelity(raw_rho, target_state))
qrem_fids.append(state_fidelity(qrem_rho, target_state))
raw_fid_list.append(np.mean(raw_fids))
raw_stddev_list.append(np.std(raw_fids))
qrem_fid_list.append(np.mean(qrem_fids))
qrem_stddev_list.append(np.std(qrem_fids))
t2 = time.perf_counter()
print('raw state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(raw_fids), np.std(raw_fids)))
print('qrem state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(qrem_fids), np.std(qrem_fids)))
print("time:", t2 - t1)
print()
with open("e2d1_raw.pkl", "wb") as f:
pickle.dump({"num_steps_list": num_steps_list, "fid": raw_fid_list, "stddev": raw_stddev_list}, f)
with open("e2d1_qrem.pkl", "wb") as f:
pickle.dump({"num_steps_list": num_steps_list, "fid": qrem_fid_list, "stddev": qrem_stddev_list}, f)
import qiskit.tools.jupyter
%qiskit_version_table
plt.plot(num_steps_list, raw_fid_list)
plt.plot(num_steps_list, qrem_fid_list)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
# unused for this file
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils
importlib.reload(circuit_utils)
importlib.reload(zne_utils) # unused for this file
importlib.reload(tomography_utils) # unused for this file
from circuit_utils import *
from zne_utils import zne_wrapper, zne_decoder
from tomography_utils import expvals_to_valid_rho
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps_list = [1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100]
print("trotter step list: ", num_steps_list)
scale_factors = [1.0, 2.0, 3.0] # unused for this file
shots = 1 << 13
reps = 8 # unused
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
zne_fid_list = []
zne_stddev_list = []
for num_steps in num_steps_list:
print("trotter steps: ", num_steps)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = False)
print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
retrieved_jobs = jobs
zne_fids = []
for job in retrieved_jobs:
raw_results = job.result()
mit_results = meas_fitter.filter.apply(raw_results)
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors)
zne_rho = expvals_to_valid_rho(num_qubits, zne_expvals)
zne_fid = state_fidelity(zne_rho, target_state)
zne_fids.append(zne_fid)
zne_fid_list.append(np.mean(zne_fids))
zne_stddev_list.append(np.std(zne_fids))
t2 = time.perf_counter()
print('zne state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(zne_fids), np.std(zne_fids)))
print("time:", t2 - t1)
print()
with open("e2d1_zne.pkl", "wb") as f:
pickle.dump({"num_steps_list": num_steps_list, "fid": zne_fid_list, "stddev": zne_stddev_list}, f)
import qiskit.tools.jupyter
%qiskit_version_table
plt.plot(num_steps_list, zne_fid_list)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
# unused for this file
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils
importlib.reload(circuit_utils)
importlib.reload(zne_utils) # unused for this file
importlib.reload(tomography_utils) # unused for this file
from circuit_utils import *
from zne_utils import zne_wrapper, zne_decoder
from tomography_utils import expvals_to_valid_rho
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps_list = [1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100]
print("trotter step list: ", num_steps_list)
scale_factors = [1.0, 2.0, 3.0] # unused for this file
shots = 1 << 13
reps = 8 # unused
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
zne_fid_list = []
zne_stddev_list = []
for num_steps in num_steps_list:
print("trotter steps: ", num_steps)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = True)
print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
retrieved_jobs = jobs
zne_fids = []
for job in retrieved_jobs:
raw_results = job.result()
mit_results = meas_fitter.filter.apply(raw_results)
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors)
zne_rho = expvals_to_valid_rho(num_qubits, zne_expvals)
zne_fid = state_fidelity(zne_rho, target_state)
zne_fids.append(zne_fid)
zne_fid_list.append(np.mean(zne_fids))
zne_stddev_list.append(np.std(zne_fids))
t2 = time.perf_counter()
print('zne pt state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(zne_fids), np.std(zne_fids)))
print("time:", t2 - t1)
print()
with open("e2d1_zne_pt.pkl", "wb") as f:
pickle.dump({"num_steps_list": num_steps_list, "fid": zne_fid_list, "stddev": zne_stddev_list}, f)
import qiskit.tools.jupyter
%qiskit_version_table
plt.plot(num_steps_list, zne_fid_list)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
plt.style.use("ggplot")
from pprint import pprint
import pickle
import time
import datetime
%matplotlib inline
with open("e2d1_raw.pkl", "rb") as f:
raw = pickle.load(f)
with open("e2d1_qrem.pkl", "rb") as f:
qrem = pickle.load(f)
with open("e2d1_zne.pkl", "rb") as f:
zne = pickle.load(f)
with open("e2d1_zne_pt.pkl", "rb") as f:
zne_pt = pickle.load(f)
num_steps_list = raw["num_steps_list"]
raw_fid_list = raw["fid"]
raw_stddev_list = raw["stddev"]
num_steps_list = qrem["num_steps_list"]
qrem_fid_list = qrem["fid"]
qrem_stddev_list = qrem["stddev"]
num_steps_list = zne["num_steps_list"]
zne_fid_list = zne["fid"]
zne_stddev_list = zne["stddev"]
num_steps_list = zne_pt["num_steps_list"]
zne_pt_fid_list = zne_pt["fid"]
zne_pt_stddev_list = zne_pt["stddev"]
plt.clf()
plt.figure(dpi=200)
plt.scatter(num_steps_list, raw_fid_list)
plt.scatter(num_steps_list, qrem_fid_list)
plt.scatter(num_steps_list, zne_fid_list)
plt.scatter(num_steps_list, zne_pt_fid_list)
limit = 13
plt.clf()
plt.figure(dpi=200)
plt.scatter(num_steps_list[:limit], raw_fid_list[:limit], marker="o")
plt.scatter(num_steps_list[:limit], qrem_fid_list[:limit], marker="v")
plt.scatter(num_steps_list[:limit], zne_fid_list[:limit], marker="x")
plt.scatter(num_steps_list[:limit], zne_pt_fid_list[:limit], marker="*")
plt.xlabel("number of trotter steps")
plt.ylabel("state fidelity")
plt.legend(("without error mitigations", "with QREM", "with QREM and ZNE", "with QREM, ZNE and Pauli Twirling"))
plt.title("The effect of error mitigations")
zne_pt_fid_list[12]
import qiskit.tools.jupyter
%qiskit_version_table
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
# unused for this file
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils
importlib.reload(circuit_utils)
importlib.reload(zne_utils) # unused for this file
importlib.reload(tomography_utils) # unused for this file
from circuit_utils import *
from zne_utils import zne_wrapper, zne_decoder
from tomography_utils import expvals_to_valid_rho
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps_list = [1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100]
print("trotter step list: ", num_steps_list)
scale_factors = [1.0, 2.0, 3.0] # unused for this file
shots = 1 << 13
reps = 8 # unused
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
raw_fid_list = []
raw_stddev_list = []
qrem_fid_list = []
qrem_stddev_list = []
for num_steps in num_steps_list:
print("trotter steps: ", num_steps)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs
# zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = False)
# print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
retrieved_jobs = jobs
raw_fids = []
qrem_fids = []
for job in retrieved_jobs:
raw_results = job.result()
mit_results = meas_fitter.filter.apply(raw_results)
raw_rho = StateTomographyFitter(raw_results, t3_zne_qcs).fit(method='lstsq')
qrem_rho = StateTomographyFitter(mit_results, t3_zne_qcs).fit(method='lstsq')
raw_fids.append(state_fidelity(raw_rho, target_state))
qrem_fids.append(state_fidelity(qrem_rho, target_state))
raw_fid_list.append(np.mean(raw_fids))
raw_stddev_list.append(np.std(raw_fids))
qrem_fid_list.append(np.mean(qrem_fids))
qrem_stddev_list.append(np.std(qrem_fids))
t2 = time.perf_counter()
print('raw state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(raw_fids), np.std(raw_fids)))
print('qrem state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(qrem_fids), np.std(qrem_fids)))
print("time:", t2 - t1)
print()
with open("e2d1_raw.pkl", "wb") as f:
pickle.dump({"num_steps_list": num_steps_list, "fid": raw_fid_list, "stddev": raw_stddev_list}, f)
with open("e2d1_qrem.pkl", "wb") as f:
pickle.dump({"num_steps_list": num_steps_list, "fid": qrem_fid_list, "stddev": qrem_stddev_list}, f)
import qiskit.tools.jupyter
%qiskit_version_table
plt.plot(num_steps_list, raw_fid_list)
plt.plot(num_steps_list, qrem_fid_list)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
# unused for this file
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils
importlib.reload(circuit_utils)
importlib.reload(zne_utils) # unused for this file
importlib.reload(tomography_utils) # unused for this file
from circuit_utils import *
from zne_utils import zne_wrapper, zne_decoder
from tomography_utils import expvals_to_valid_rho
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps_list = [1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100]
print("trotter step list: ", num_steps_list)
scale_factors = [1.0, 2.0, 3.0] # unused for this file
shots = 1 << 13
reps = 8 # unused
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
zne_fid_list = []
zne_stddev_list = []
for num_steps in num_steps_list:
print("trotter steps: ", num_steps)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = False)
print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
retrieved_jobs = jobs
zne_fids = []
for job in retrieved_jobs:
raw_results = job.result()
mit_results = meas_fitter.filter.apply(raw_results)
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors)
zne_rho = expvals_to_valid_rho(num_qubits, zne_expvals)
zne_fid = state_fidelity(zne_rho, target_state)
zne_fids.append(zne_fid)
zne_fid_list.append(np.mean(zne_fids))
zne_stddev_list.append(np.std(zne_fids))
t2 = time.perf_counter()
print('zne state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(zne_fids), np.std(zne_fids)))
print("time:", t2 - t1)
print()
with open("e2d1_zne.pkl", "wb") as f:
pickle.dump({"num_steps_list": num_steps_list, "fid": zne_fid_list, "stddev": zne_stddev_list}, f)
import qiskit.tools.jupyter
%qiskit_version_table
plt.plot(num_steps_list, zne_fid_list)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
# unused for this file
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils
importlib.reload(circuit_utils)
importlib.reload(zne_utils) # unused for this file
importlib.reload(tomography_utils) # unused for this file
from circuit_utils import *
from zne_utils import zne_wrapper, zne_decoder
from tomography_utils import expvals_to_valid_rho
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps_list = [1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100]
print("trotter step list: ", num_steps_list)
scale_factors = [1.0, 2.0, 3.0] # unused for this file
shots = 1 << 13
reps = 8 # unused
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
zne_fid_list = []
zne_stddev_list = []
for num_steps in num_steps_list:
print("trotter steps: ", num_steps)
t1 = time.perf_counter()
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = True)
print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
retrieved_jobs = jobs
zne_fids = []
for job in retrieved_jobs:
raw_results = job.result()
mit_results = meas_fitter.filter.apply(raw_results)
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors)
zne_rho = expvals_to_valid_rho(num_qubits, zne_expvals)
zne_fid = state_fidelity(zne_rho, target_state)
zne_fids.append(zne_fid)
zne_fid_list.append(np.mean(zne_fids))
zne_stddev_list.append(np.std(zne_fids))
t2 = time.perf_counter()
print('zne pt state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(zne_fids), np.std(zne_fids)))
print("time:", t2 - t1)
print()
with open("e2d1_zne_pt.pkl", "wb") as f:
pickle.dump({"num_steps_list": num_steps_list, "fid": zne_fid_list, "stddev": zne_stddev_list}, f)
import qiskit.tools.jupyter
%qiskit_version_table
plt.plot(num_steps_list, zne_fid_list)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../utils/")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = True) # Pauli Twirling
print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
print(str(backend))
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
meas_calibs[0].draw("mpl")
dt_now = datetime.datetime.now()
print(dt_now)
filename = "job_ids_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl"
print(filename)
# with open("jobs_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
# pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
# with open(filename, "wb") as f:
# pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
# with open("properties_" + str(backend) + "_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
# pickle.dump(backend.properties(), f)
retrieved_jobs = jobs
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
fids = []
for job in retrieved_jobs:
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors)
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fid = state_fidelity(rho, target_state)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('2t/n')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 4
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
qc = QuantumCircuit(3)
subspace_decoder(qc, targets=[0, 1, 2])
qc.draw("mpl")
# Initialize quantum circuit for 3 qubits
# qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(3)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
qc.barrier()
general_subspace_encoder(qc, targets=[0, 1, 2]) # encode
qc.barrier()
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
qc.barrier()
general_subspace_decoder(qc, targets=[0, 1, 2]) # decode
qc = qc.bind_parameters({dt: target_time / num_steps})
qc.draw("mpl")
# Initialize quantum circuit for 3 qubits
# qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(3)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
qc.barrier()
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
qc.barrier()
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
qc.barrier()
subspace_decoder(qc, targets=[0, 1, 2]) # decode
qc = qc.bind_parameters({dt: target_time / num_steps})
qc.draw("mpl")
dt = Parameter('2t/n')
mdt = Parameter('-2t/n')
qc = QuantumCircuit(2)
qc.rx(dt, 0)
qc.rz(dt, 1)
qc.h(1)
qc.cx(1, 0)
qc.rz(mdt, 0)
qc.rx(mdt, 1)
qc.rz(dt, 1)
qc.cx(1, 0)
qc.h(1)
qc.rz(dt, 0)
qc.draw("mpl")
dt = Parameter('2t/n')
mdt = Parameter('-2t/n')
qc = QuantumCircuit(2)
qc.h(1)
qc.cx(1, 0)
qc.rz(mdt, 0)
qc.rx(mdt, 1)
qc.rz(dt, 1)
qc.cx(1, 0)
qc.h(1)
qc.rx(dt, 1)
qc.draw("mpl")
from qiskit import IBMQ
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
print(str(backend))
from qiskit.visualization import plot_error_map
device = provider.backend.ibmq_jakarta
plot_error_map(device)
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.ignis.mitigation import complete_meas_cal
# QREM
num_qubits = 3
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
meas_calibs[0].draw("mpl")
meas_calibs[1].draw("mpl")
meas_calibs[2].draw("mpl")
meas_calibs[3].draw("mpl")
meas_calibs[4].draw("mpl")
meas_calibs[5].draw("mpl")
meas_calibs[6].draw("mpl")
meas_calibs[7].draw("mpl")
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../utils/")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = True) # Pauli Twirling
print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
print(str(backend))
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
meas_calibs[0].draw("mpl")
dt_now = datetime.datetime.now()
print(dt_now)
filename = "job_ids_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl"
print(filename)
# with open("jobs_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
# pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
# with open(filename, "wb") as f:
# pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
# with open("properties_" + str(backend) + "_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
# pickle.dump(backend.properties(), f)
retrieved_jobs = jobs
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
fids = []
for job in retrieved_jobs:
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors)
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fid = state_fidelity(rho, target_state)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('2t/n')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 4
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
qc = QuantumCircuit(3)
subspace_decoder(qc, targets=[0, 1, 2])
qc.draw("mpl")
# Initialize quantum circuit for 3 qubits
# qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(3)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
qc.barrier()
general_subspace_encoder(qc, targets=[0, 1, 2]) # encode
qc.barrier()
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
qc.barrier()
general_subspace_decoder(qc, targets=[0, 1, 2]) # decode
qc = qc.bind_parameters({dt: target_time / num_steps})
qc.draw("mpl")
# Initialize quantum circuit for 3 qubits
# qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(3)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
qc.barrier()
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
qc.barrier()
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
qc.barrier()
subspace_decoder(qc, targets=[0, 1, 2]) # decode
qc = qc.bind_parameters({dt: target_time / num_steps})
qc.draw("mpl")
dt = Parameter('2t/n')
mdt = Parameter('-2t/n')
qc = QuantumCircuit(2)
qc.rx(dt, 0)
qc.rz(dt, 1)
qc.h(1)
qc.cx(1, 0)
qc.rz(mdt, 0)
qc.rx(mdt, 1)
qc.rz(dt, 1)
qc.cx(1, 0)
qc.h(1)
qc.rz(dt, 0)
qc.draw("mpl")
dt = Parameter('2t/n')
mdt = Parameter('-2t/n')
qc = QuantumCircuit(2)
qc.h(1)
qc.cx(1, 0)
qc.rz(mdt, 0)
qc.rx(mdt, 1)
qc.rz(dt, 1)
qc.cx(1, 0)
qc.h(1)
qc.rx(dt, 1)
qc.draw("mpl")
from qiskit import IBMQ
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
print(str(backend))
from qiskit.visualization import plot_error_map
device = provider.backend.ibmq_jakarta
plot_error_map(device)
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.ignis.mitigation import complete_meas_cal
# QREM
num_qubits = 3
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
meas_calibs[0].draw("mpl")
meas_calibs[1].draw("mpl")
meas_calibs[2].draw("mpl")
meas_calibs[3].draw("mpl")
meas_calibs[4].draw("mpl")
meas_calibs[5].draw("mpl")
meas_calibs[6].draw("mpl")
meas_calibs[7].draw("mpl")
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
filename = "job_ids_jakarta_100step_20220412_030333_.pkl"
import pickle
with open(filename, "rb") as f:
print(pickle.load(f))
filename = "job_ids_jakarta_100step_20220413_012425_.pkl"
with open(filename, "rb") as f:
print(pickle.load(f))
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
import numpy as np
from qiskit import compiler, BasicAer, QuantumRegister
from qiskit.converters import circuit_to_dag
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import Unroller
def convert_to_basis_gates(circuit):
# unroll the circuit using the basis u1, u2, u3, cx, and id gates
unroller = Unroller(basis=['u1', 'u2', 'u3', 'cx', 'id'])
pm = PassManager(passes=[unroller])
qc = compiler.transpile(circuit, BasicAer.get_backend('qasm_simulator'), pass_manager=pm)
return qc
def is_qubit(qb):
# check if the input is a qubit, which is in the form (QuantumRegister, int)
return isinstance(qb, tuple) and isinstance(qb[0], QuantumRegister) and isinstance(qb[1], int)
def is_qubit_list(qbs):
# check if the input is a list of qubits
for qb in qbs:
if not is_qubit(qb):
return False
return True
def summarize_circuits(circuits):
"""Summarize circuits based on QuantumCircuit, and four metrics are summarized.
Number of qubits and classical bits, and number of operations and depth of circuits.
The average statistic is provided if multiple circuits are inputed.
Args:
circuits (QuantumCircuit or [QuantumCircuit]): the to-be-summarized circuits
"""
if not isinstance(circuits, list):
circuits = [circuits]
ret = ""
ret += "Submitting {} circuits.\n".format(len(circuits))
ret += "============================================================================\n"
stats = np.zeros(4)
for i, circuit in enumerate(circuits):
dag = circuit_to_dag(circuit)
depth = dag.depth()
width = dag.width()
size = dag.size()
classical_bits = dag.num_cbits()
op_counts = dag.count_ops()
stats[0] += width
stats[1] += classical_bits
stats[2] += size
stats[3] += depth
ret = ''.join([ret, "{}-th circuit: {} qubits, {} classical bits and {} operations with depth {}\n op_counts: {}\n".format(
i, width, classical_bits, size, depth, op_counts)])
if len(circuits) > 1:
stats /= len(circuits)
ret = ''.join([ret, "Average: {:.2f} qubits, {:.2f} classical bits and {:.2f} operations with depth {:.2f}\n".format(
stats[0], stats[1], stats[2], stats[3])])
ret += "============================================================================\n"
return ret
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="lq")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs # CHANGED!!!!
print("created zne_qcs (length:", len(zne_qcs), ")")
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[4].draw("mpl")
from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
# QREM
shots = 1 << 13
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
jobs.append(job)
dt_now = datetime.datetime.now()
print(dt_now)
import pickle
with open("jobs_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
with open("job_ids_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
with open("properties_jakarta" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump(backend.properties(), f)
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
fids = []
for job in jobs:
mit_results = meas_fitter.filter.apply(job.result())
rho = State
fid = state_fidelity(rho, target_state)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
import pickle
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="lq")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors=scale_factors)
print("created zne_qcs (length:", len(zne_qcs), ")")
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
shots = 1 << 13
reps = 1 # unused
# Number of trotter steps
print("trotter step: ", num_steps)
# execute: reps = 1
job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
# QREM
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="lq")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors)
print("created zne_qcs (length:", len(zne_qcs), ")")
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
jobs.append(job)
# QREM
shots = 1 << 13
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
fids = []
for job in jobs:
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors)
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fid = state_fidelity(rho, target_state)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="lq")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs)
print("created zne_qcs (length:", len(zne_qcs), ")")
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[32].draw("mpl")
from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
# QREM
shots = 1 << 13
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
jobs.append(job)
# 1回目: 2022-04-12 17:27:43.880500
# 2回目: 2022-04-13 01:19:40.602655
dt_now = datetime.datetime.now()
print(dt_now)
import pickle
with open("jobs_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
with open("job_ids_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
with open("properties_jakarta" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump(backend.properties(), f)
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
fids = []
for job in jobs:
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fid = state_fidelity(rho, target_state)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import re
import itertools
import numpy as np
import random
random.seed(42)
import mitiq
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.ignis.mitigation import expectation_value
# Pauli Twirling
def pauli_twirling(circ: QuantumCircuit) -> QuantumCircuit:
"""
[internal function]
This function takes a quantum circuit and return a new quantum circuit with Pauli Twirling around the CNOT gates.
Args:
circ: QuantumCircuit
Returns:
QuantumCircuit
"""
def apply_pauli(num: int, qb: int) -> str:
if (num == 0):
return f''
elif (num == 1):
return f'x q[{qb}];\n'
elif (num == 2):
return f'y q[{qb}];\n'
else:
return f'z q[{qb}];\n'
paulis = [(i,j) for i in range(0,4) for j in range(0,4)]
paulis.remove((0,0))
paulis_map = [(0, 1), (3, 2), (3, 3), (1, 1), (1, 0), (2, 3), (2, 2), (2, 1), (2, 0), (1, 3), (1, 2), (3, 0), (3, 1), (0, 2), (0, 3)]
new_circ = ''
ops = circ.qasm().splitlines(True) #! split the quantum circuit into qasm operators
for op in ops:
if (op[:2] == 'cx'): # add Pauli Twirling around the CNOT gate
num = random.randrange(len(paulis))
qbs = re.findall('q\[(.)\]', op)
new_circ += apply_pauli(paulis[num][0], qbs[0])
new_circ += apply_pauli(paulis[num][1], qbs[1])
new_circ += op
new_circ += apply_pauli(paulis_map[num][0], qbs[0])
new_circ += apply_pauli(paulis_map[num][1], qbs[1])
else:
new_circ += op
return QuantumCircuit.from_qasm_str(new_circ)
def zne_wrapper(qcs, scale_factors = [1.0, 2.0, 3.0], pt = False):
"""
This function outputs the circuit list for zero-noise extrapolation.
Args:
qcs: List[QuantumCircuit], the input quantum circuits.
scale_factors: List[float], to what extent the noise scales are investigated.
pt: bool, whether add Pauli Twirling or not.
Returns:
folded_qcs: List[QuantumCircuit]
"""
folded_qcs = [] #! ZNE用の回路
for qc in qcs:
folded_qcs.append([mitiq.zne.scaling.fold_gates_at_random(qc, scale) for scale in scale_factors]) #! ここでmitiqを使用
folded_qcs = list(itertools.chain(*folded_qcs)) #! folded_qcsを平坦化
if pt:
folded_qcs = [pauli_twirling(circ) for circ in folded_qcs]
return folded_qcs
def make_stf_basis(n, basis_elements = ["X","Y","Z"]):
"""
[internal function]
This function outputs all the combinations of length n string for given basis_elements.
When basis_elements is X, Y, and Z (default), the output becomes the n-qubit Pauli basis.
Args:
n: int
basis_elements: List[str]
Returns:
basis: List[str]
"""
if n == 1:
return basis_elements
basis = []
for i in basis_elements:
sub_basis = make_stf_basis(n - 1, basis_elements)
basis += [i + j for j in sub_basis]
return basis
def reduce_hist(hist, poses):
"""
[internal function]
This function returns the reduced histogram to the designated positions.
Args:
hist: Dict[str, float]
poses: List[int]
Returns:
ret_hist: Dict[str, float]
"""
n = len(poses)
ret_hist = {format(i, "0" + str(n) + "b"): 0 for i in range(1 << n)}
for k, v in hist.items():
pos = ""
for i in range(n):
pos += k[poses[i]]
ret_hist[pos] += v
return ret_hist
def make_stf_expvals(n, stf_hists):
"""
[internal function]
This function create the expectations under expanded basis, which are used to reconstruct the density matrix.
Args:
n: int, the size of classical register in the measurement results.
stf_hists: List[Dict[str, float]], the input State Tomography Fitter histograms.
Returns:
st_expvals: List[float], the output State Tomography expectation values.
"""
assert len(stf_hists) == 3 ** n
stf_basis = make_stf_basis(n, basis_elements=["X","Y","Z"])
st_basis = make_stf_basis(n, basis_elements=["I","X","Y","Z"])
stf_hists_dict = {basis: hist for basis, hist in zip(stf_basis, stf_hists)}
st_hists_dict = {basis: stf_hists_dict.get(basis, None) for basis in st_basis}
# remaining
for basis in sorted(set(st_basis) - set(stf_basis)):
if basis == "I" * n:
continue
reduction_poses = []
reduction_basis = ""
for i, b in enumerate(basis):
if b != "I":
reduction_poses.append(n - 1 - i) # big endian
reduction_basis += b # こっちはそのまま(なぜならラベルはlittle endianだから)
else:
reduction_basis += "Z"
st_hists_dict[basis] = reduce_hist(stf_hists_dict[reduction_basis], reduction_poses)
st_expvals = dict()
for basis, hist in st_hists_dict.items():
if basis == "I" * n:
st_expvals[basis] = 1.0
continue
st_expvals[basis], _ = expectation_value(hist)
return st_expvals
def zne_decoder(n, result, scale_factors=[1.0, 2.0, 3.0], fac_type="lin"):
"""
This function applies the zero-noise extrapolation to the measured results and output the mitigated zero-noise expectation values.
Args:
n: int, the size of classical register in the measurement results.
result: Result, the returned results from job.
scale_factors: List[float], this should be the same as the zne_wrapper.
fac_type: str, "lin" or "exp", whether to use LinFactory option or ExpFactory option in mitiq, to extrapolate the expectation values.
Returns:
zne_expvals: List[float], the mitigated zero-noise expectation values.
"""
hists = result.get_counts()
num_scale_factors = len(scale_factors)
assert len(hists) % num_scale_factors == 0
scale_wise_expvals = [] # num_scale_factors * 64
for i in range(num_scale_factors):
scale_wise_hists = [hists[3 * j + i] for j in range(len(hists) // num_scale_factors)]
st_expvals = make_stf_expvals(n, scale_wise_hists)
scale_wise_expvals.append( list(st_expvals.values()) )
scale_wise_expvals = np.array(scale_wise_expvals)
linfac = mitiq.zne.inference.LinearFactory(scale_factors)
expfac = mitiq.zne.ExpFactory(scale_factors)
zne_expvals = []
for i in range(4 ** n):
if fac_type == "lin":
zne_expvals.append( linfac.extrapolate(scale_factors, scale_wise_expvals[:, i]) )
else:
zne_expvals.append( expfac.extrapolate(scale_factors, scale_wise_expvals[:, i]) )
return zne_expvals
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
filename = "job_ids_jakarta_100step_20220412_030333_.pkl"
import pickle
with open(filename, "rb") as f:
print(pickle.load(f))
filename = "job_ids_jakarta_100step_20220413_012425_.pkl"
with open(filename, "rb") as f:
print(pickle.load(f))
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="lq")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = t3_st_qcs # CHANGED!!!!
print("created zne_qcs (length:", len(zne_qcs), ")")
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[4].draw("mpl")
from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
# QREM
shots = 1 << 13
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
jobs.append(job)
dt_now = datetime.datetime.now()
print(dt_now)
import pickle
with open("jobs_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
with open("job_ids_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
with open("properties_jakarta" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump(backend.properties(), f)
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
fids = []
for job in jobs:
mit_results = meas_fitter.filter.apply(job.result())
rho = State
fid = state_fidelity(rho, target_state)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
import pickle
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="lq")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors=scale_factors)
print("created zne_qcs (length:", len(zne_qcs), ")")
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
shots = 1 << 13
reps = 1 # unused
# Number of trotter steps
print("trotter step: ", num_steps)
# execute: reps = 1
job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
# QREM
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="lq")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors)
print("created zne_qcs (length:", len(zne_qcs), ")")
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
jobs.append(job)
# QREM
shots = 1 << 13
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
fids = []
for job in jobs:
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors)
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fid = state_fidelity(rho, target_state)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="lq")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs)
print("created zne_qcs (length:", len(zne_qcs), ")")
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[32].draw("mpl")
from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
# QREM
shots = 1 << 13
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
jobs.append(job)
# 1回目: 2022-04-12 17:27:43.880500
# 2回目: 2022-04-13 01:19:40.602655
dt_now = datetime.datetime.now()
print(dt_now)
import pickle
with open("jobs_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
with open("job_ids_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
with open("properties_jakarta" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump(backend.properties(), f)
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
fids = []
for job in jobs:
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fid = state_fidelity(rho, target_state)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
import numpy as np
from qiskit import compiler, BasicAer, QuantumRegister
from qiskit.converters import circuit_to_dag
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import Unroller
def convert_to_basis_gates(circuit):
# unroll the circuit using the basis u1, u2, u3, cx, and id gates
unroller = Unroller(basis=['u1', 'u2', 'u3', 'cx', 'id'])
pm = PassManager(passes=[unroller])
qc = compiler.transpile(circuit, BasicAer.get_backend('qasm_simulator'), pass_manager=pm)
return qc
def is_qubit(qb):
# check if the input is a qubit, which is in the form (QuantumRegister, int)
return isinstance(qb, tuple) and isinstance(qb[0], QuantumRegister) and isinstance(qb[1], int)
def is_qubit_list(qbs):
# check if the input is a list of qubits
for qb in qbs:
if not is_qubit(qb):
return False
return True
def summarize_circuits(circuits):
"""Summarize circuits based on QuantumCircuit, and four metrics are summarized.
Number of qubits and classical bits, and number of operations and depth of circuits.
The average statistic is provided if multiple circuits are inputed.
Args:
circuits (QuantumCircuit or [QuantumCircuit]): the to-be-summarized circuits
"""
if not isinstance(circuits, list):
circuits = [circuits]
ret = ""
ret += "Submitting {} circuits.\n".format(len(circuits))
ret += "============================================================================\n"
stats = np.zeros(4)
for i, circuit in enumerate(circuits):
dag = circuit_to_dag(circuit)
depth = dag.depth()
width = dag.width()
size = dag.size()
classical_bits = dag.num_cbits()
op_counts = dag.count_ops()
stats[0] += width
stats[1] += classical_bits
stats[2] += size
stats[3] += depth
ret = ''.join([ret, "{}-th circuit: {} qubits, {} classical bits and {} operations with depth {}\n op_counts: {}\n".format(
i, width, classical_bits, size, depth, op_counts)])
if len(circuits) > 1:
stats /= len(circuits)
ret = ''.join([ret, "Average: {:.2f} qubits, {:.2f} classical bits and {:.2f} operations with depth {:.2f}\n".format(
stats[0], stats[1], stats[2], stats[3])])
ret += "============================================================================\n"
return ret
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0, 4.0, 5.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0,1,2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
t1 = time.perf_counter()
qc = qc.bind_parameters({dt: target_time / num_steps})
t2 = time.perf_counter()
print("created qc,", t2 - t1, "s")
# Generate state tomography circuits to evaluate fidelity of simulation
t1 = time.perf_counter()
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
t2 = time.perf_counter()
print("created st_qcs (length:", len(st_qcs), "),", t2 - t1, "s")
# remove barriers
t1 = time.perf_counter()
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
t2 = time.perf_counter()
print("removed barriers from st_qcs,", t2 - t1, "s")
# optimize circuit
t1 = time.perf_counter()
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("created t3_st_qcs (length:", len(t3_st_qcs), "),", t2 - t1, "s")
t3_st_qcs[0].draw("mpl")
# zne wrapping
t1 = time.perf_counter()
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors=scale_factors)
t2 = time.perf_counter()
print("created zne_qcs (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("decomposed zne_qcs into basis gates (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(zne_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("optimized zne_qcs -> create t3_zne_qcs (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(t3_zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
t2 = time.perf_counter()
print("fit the t3_zne_qcs to the initial layoit (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
shots = 1 << 13
reps = 1 # unused
# Number of trotter steps
print("trotter step: ", num_steps)
# execute: reps = 1
job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
# QREM
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors=scale_factors)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0,1,2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
t1 = time.perf_counter()
qc = qc.bind_parameters({dt: target_time / num_steps})
t2 = time.perf_counter()
print("created qc,", t2 - t1, "s")
# Generate state tomography circuits to evaluate fidelity of simulation
t1 = time.perf_counter()
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
t2 = time.perf_counter()
print("created st_qcs (length:", len(st_qcs), "),", t2 - t1, "s")
# remove barriers
t1 = time.perf_counter()
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
t2 = time.perf_counter()
print("removed barriers from st_qcs,", t2 - t1, "s")
# optimize circuit
t1 = time.perf_counter()
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("created t3_st_qcs (length:", len(t3_st_qcs), "),", t2 - t1, "s")
t3_st_qcs[0].draw("mpl")
# zne wrapping
t1 = time.perf_counter()
zne_qcs = zne_wrapper(t3_st_qcs)
t2 = time.perf_counter()
print("created zne_qcs (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("decomposed zne_qcs into basis gates (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(zne_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("optimized zne_qcs -> create t3_zne_qcs (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(t3_zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
t2 = time.perf_counter()
print("fit the t3_zne_qcs to the initial layoit (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
shots = 1 << 13
reps = 1 # unused
# Number of trotter steps
print("trotter step: ", num_steps)
# execute: reps = 1
job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
# QREM
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0,1,2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
t1 = time.perf_counter()
qc = qc.bind_parameters({dt: target_time / num_steps})
t2 = time.perf_counter()
print("created qc,", t2 - t1, "s")
# Generate state tomography circuits to evaluate fidelity of simulation
t1 = time.perf_counter()
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
t2 = time.perf_counter()
print("created st_qcs (length:", len(st_qcs), "),", t2 - t1, "s")
# remove barriers
t1 = time.perf_counter()
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
t2 = time.perf_counter()
print("removed barriers from st_qcs,", t2 - t1, "s")
# optimize circuit
t1 = time.perf_counter()
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("created t3_st_qcs (length:", len(t3_st_qcs), "),", t2 - t1, "s")
t3_st_qcs[0].draw("mpl")
# zne wrapping
t1 = time.perf_counter()
zne_qcs = zne_wrapper(t3_st_qcs)
t2 = time.perf_counter()
print("created zne_qcs (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("decomposed zne_qcs into basis gates (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(zne_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("optimized zne_qcs -> create t3_zne_qcs (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(t3_zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
t2 = time.perf_counter()
print("fit the t3_zne_qcs to the initial layoit (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
# QREM
shots = 1 << 13
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level = 0) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
jobs.append(job)
dt_now = datetime.datetime.now()
print(dt_now)
import pickle
with open("jobs_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
with open("job_ids_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
with open("properties_jakarta" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump(backend.properties(), f)
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import re
import itertools
import numpy as np
import random
random.seed(42)
import mitiq
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.ignis.mitigation import expectation_value
# Pauli Twirling
def pauli_twirling(circ: QuantumCircuit) -> QuantumCircuit:
"""
[internal function]
This function takes a quantum circuit and return a new quantum circuit with Pauli Twirling around the CNOT gates.
Args:
circ: QuantumCircuit
Returns:
QuantumCircuit
"""
def apply_pauli(num: int, qb: int) -> str:
if (num == 0):
return f''
elif (num == 1):
return f'x q[{qb}];\n'
elif (num == 2):
return f'y q[{qb}];\n'
else:
return f'z q[{qb}];\n'
paulis = [(i,j) for i in range(0,4) for j in range(0,4)]
paulis.remove((0,0))
paulis_map = [(0, 1), (3, 2), (3, 3), (1, 1), (1, 0), (2, 3), (2, 2), (2, 1), (2, 0), (1, 3), (1, 2), (3, 0), (3, 1), (0, 2), (0, 3)]
new_circ = ''
ops = circ.qasm().splitlines(True) #! split the quantum circuit into qasm operators
for op in ops:
if (op[:2] == 'cx'): # add Pauli Twirling around the CNOT gate
num = random.randrange(len(paulis))
qbs = re.findall('q\[(.)\]', op)
new_circ += apply_pauli(paulis[num][0], qbs[0])
new_circ += apply_pauli(paulis[num][1], qbs[1])
new_circ += op
new_circ += apply_pauli(paulis_map[num][0], qbs[0])
new_circ += apply_pauli(paulis_map[num][1], qbs[1])
else:
new_circ += op
return QuantumCircuit.from_qasm_str(new_circ)
def zne_wrapper(qcs, scale_factors = [1.0, 2.0, 3.0], pt = False):
"""
This function outputs the circuit list for zero-noise extrapolation.
Args:
qcs: List[QuantumCircuit], the input quantum circuits.
scale_factors: List[float], to what extent the noise scales are investigated.
pt: bool, whether add Pauli Twirling or not.
Returns:
folded_qcs: List[QuantumCircuit]
"""
folded_qcs = [] #! ZNE用の回路
for qc in qcs:
folded_qcs.append([mitiq.zne.scaling.fold_gates_at_random(qc, scale) for scale in scale_factors]) #! ここでmitiqを使用
folded_qcs = list(itertools.chain(*folded_qcs)) #! folded_qcsを平坦化
if pt:
folded_qcs = [pauli_twirling(circ) for circ in folded_qcs]
return folded_qcs
def make_stf_basis(n, basis_elements = ["X","Y","Z"]):
"""
[internal function]
This function outputs all the combinations of length n string for given basis_elements.
When basis_elements is X, Y, and Z (default), the output becomes the n-qubit Pauli basis.
Args:
n: int
basis_elements: List[str]
Returns:
basis: List[str]
"""
if n == 1:
return basis_elements
basis = []
for i in basis_elements:
sub_basis = make_stf_basis(n - 1, basis_elements)
basis += [i + j for j in sub_basis]
return basis
def reduce_hist(hist, poses):
"""
[internal function]
This function returns the reduced histogram to the designated positions.
Args:
hist: Dict[str, float]
poses: List[int]
Returns:
ret_hist: Dict[str, float]
"""
n = len(poses)
ret_hist = {format(i, "0" + str(n) + "b"): 0 for i in range(1 << n)}
for k, v in hist.items():
pos = ""
for i in range(n):
pos += k[poses[i]]
ret_hist[pos] += v
return ret_hist
def make_stf_expvals(n, stf_hists):
"""
[internal function]
This function create the expectations under expanded basis, which are used to reconstruct the density matrix.
Args:
n: int, the size of classical register in the measurement results.
stf_hists: List[Dict[str, float]], the input State Tomography Fitter histograms.
Returns:
st_expvals: List[float], the output State Tomography expectation values.
"""
assert len(stf_hists) == 3 ** n
stf_basis = make_stf_basis(n, basis_elements=["X","Y","Z"])
st_basis = make_stf_basis(n, basis_elements=["I","X","Y","Z"])
stf_hists_dict = {basis: hist for basis, hist in zip(stf_basis, stf_hists)}
st_hists_dict = {basis: stf_hists_dict.get(basis, None) for basis in st_basis}
# remaining
for basis in sorted(set(st_basis) - set(stf_basis)):
if basis == "I" * n:
continue
reduction_poses = []
reduction_basis = ""
for i, b in enumerate(basis):
if b != "I":
reduction_poses.append(n - 1 - i) # big endian
reduction_basis += b # こっちはそのまま(なぜならラベルはlittle endianだから)
else:
reduction_basis += "Z"
st_hists_dict[basis] = reduce_hist(stf_hists_dict[reduction_basis], reduction_poses)
st_expvals = dict()
for basis, hist in st_hists_dict.items():
if basis == "I" * n:
st_expvals[basis] = 1.0
continue
st_expvals[basis], _ = expectation_value(hist)
return st_expvals
def zne_decoder(n, result, scale_factors=[1.0, 2.0, 3.0], fac_type="lin"):
"""
This function applies the zero-noise extrapolation to the measured results and output the mitigated zero-noise expectation values.
Args:
n: int, the size of classical register in the measurement results.
result: Result, the returned results from job.
scale_factors: List[float], this should be the same as the zne_wrapper.
fac_type: str, "lin" or "exp", whether to use LinFactory option or ExpFactory option in mitiq, to extrapolate the expectation values.
Returns:
zne_expvals: List[float], the mitigated zero-noise expectation values.
"""
hists = result.get_counts()
num_scale_factors = len(scale_factors)
assert len(hists) % num_scale_factors == 0
scale_wise_expvals = [] # num_scale_factors * 64
for i in range(num_scale_factors):
scale_wise_hists = [hists[3 * j + i] for j in range(len(hists) // num_scale_factors)]
st_expvals = make_stf_expvals(n, scale_wise_hists)
scale_wise_expvals.append( list(st_expvals.values()) )
scale_wise_expvals = np.array(scale_wise_expvals)
linfac = mitiq.zne.inference.LinearFactory(scale_factors)
expfac = mitiq.zne.ExpFactory(scale_factors)
zne_expvals = []
for i in range(4 ** n):
if fac_type == "lin":
zne_expvals.append( linfac.extrapolate(scale_factors, scale_wise_expvals[:, i]) )
else:
zne_expvals.append( expfac.extrapolate(scale_factors, scale_wise_expvals[:, i]) )
return zne_expvals
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0, 4.0, 5.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0,1,2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
t1 = time.perf_counter()
qc = qc.bind_parameters({dt: target_time / num_steps})
t2 = time.perf_counter()
print("created qc,", t2 - t1, "s")
# Generate state tomography circuits to evaluate fidelity of simulation
t1 = time.perf_counter()
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
t2 = time.perf_counter()
print("created st_qcs (length:", len(st_qcs), "),", t2 - t1, "s")
# remove barriers
t1 = time.perf_counter()
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
t2 = time.perf_counter()
print("removed barriers from st_qcs,", t2 - t1, "s")
# optimize circuit
t1 = time.perf_counter()
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("created t3_st_qcs (length:", len(t3_st_qcs), "),", t2 - t1, "s")
t3_st_qcs[0].draw("mpl")
# zne wrapping
t1 = time.perf_counter()
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors=scale_factors)
t2 = time.perf_counter()
print("created zne_qcs (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("decomposed zne_qcs into basis gates (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(zne_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("optimized zne_qcs -> create t3_zne_qcs (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(t3_zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
t2 = time.perf_counter()
print("fit the t3_zne_qcs to the initial layoit (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
shots = 1 << 13
reps = 1 # unused
# Number of trotter steps
print("trotter step: ", num_steps)
# execute: reps = 1
job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
# QREM
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0,1,2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
t1 = time.perf_counter()
qc = qc.bind_parameters({dt: target_time / num_steps})
t2 = time.perf_counter()
print("created qc,", t2 - t1, "s")
# Generate state tomography circuits to evaluate fidelity of simulation
t1 = time.perf_counter()
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
t2 = time.perf_counter()
print("created st_qcs (length:", len(st_qcs), "),", t2 - t1, "s")
# remove barriers
t1 = time.perf_counter()
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
t2 = time.perf_counter()
print("removed barriers from st_qcs,", t2 - t1, "s")
# optimize circuit
t1 = time.perf_counter()
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("created t3_st_qcs (length:", len(t3_st_qcs), "),", t2 - t1, "s")
t3_st_qcs[0].draw("mpl")
# zne wrapping
t1 = time.perf_counter()
zne_qcs = zne_wrapper(t3_st_qcs)
t2 = time.perf_counter()
print("created zne_qcs (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("decomposed zne_qcs into basis gates (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(zne_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("optimized zne_qcs -> create t3_zne_qcs (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(t3_zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
t2 = time.perf_counter()
print("fit the t3_zne_qcs to the initial layoit (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
shots = 1 << 13
reps = 1 # unused
# Number of trotter steps
print("trotter step: ", num_steps)
# execute: reps = 1
job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
# QREM
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0,1,2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
t1 = time.perf_counter()
qc = qc.bind_parameters({dt: target_time / num_steps})
t2 = time.perf_counter()
print("created qc,", t2 - t1, "s")
# Generate state tomography circuits to evaluate fidelity of simulation
t1 = time.perf_counter()
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
t2 = time.perf_counter()
print("created st_qcs (length:", len(st_qcs), "),", t2 - t1, "s")
# remove barriers
t1 = time.perf_counter()
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
t2 = time.perf_counter()
print("removed barriers from st_qcs,", t2 - t1, "s")
# optimize circuit
t1 = time.perf_counter()
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("created t3_st_qcs (length:", len(t3_st_qcs), "),", t2 - t1, "s")
t3_st_qcs[0].draw("mpl")
# zne wrapping
t1 = time.perf_counter()
zne_qcs = zne_wrapper(t3_st_qcs)
t2 = time.perf_counter()
print("created zne_qcs (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("decomposed zne_qcs into basis gates (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(zne_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("optimized zne_qcs -> create t3_zne_qcs (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(t3_zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
t2 = time.perf_counter()
print("fit the t3_zne_qcs to the initial layoit (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
# QREM
shots = 1 << 13
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level = 0) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
jobs.append(job)
dt_now = datetime.datetime.now()
print(dt_now)
import pickle
with open("jobs_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
with open("job_ids_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
with open("properties_jakarta" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump(backend.properties(), f)
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
filename = "job_ids_jakarta_100step_20220412_030333_.pkl"
import pickle
with open(filename, "rb") as f:
print(pickle.load(f))
filename = "job_ids_jakarta_100step_20220413_012425_.pkl"
with open(filename, "rb") as f:
print(pickle.load(f))
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
import numpy as np
from qiskit import compiler, BasicAer, QuantumRegister
from qiskit.converters import circuit_to_dag
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import Unroller
def convert_to_basis_gates(circuit):
# unroll the circuit using the basis u1, u2, u3, cx, and id gates
unroller = Unroller(basis=['u1', 'u2', 'u3', 'cx', 'id'])
pm = PassManager(passes=[unroller])
qc = compiler.transpile(circuit, BasicAer.get_backend('qasm_simulator'), pass_manager=pm)
return qc
def is_qubit(qb):
# check if the input is a qubit, which is in the form (QuantumRegister, int)
return isinstance(qb, tuple) and isinstance(qb[0], QuantumRegister) and isinstance(qb[1], int)
def is_qubit_list(qbs):
# check if the input is a list of qubits
for qb in qbs:
if not is_qubit(qb):
return False
return True
def summarize_circuits(circuits):
"""Summarize circuits based on QuantumCircuit, and four metrics are summarized.
Number of qubits and classical bits, and number of operations and depth of circuits.
The average statistic is provided if multiple circuits are inputed.
Args:
circuits (QuantumCircuit or [QuantumCircuit]): the to-be-summarized circuits
"""
if not isinstance(circuits, list):
circuits = [circuits]
ret = ""
ret += "Submitting {} circuits.\n".format(len(circuits))
ret += "============================================================================\n"
stats = np.zeros(4)
for i, circuit in enumerate(circuits):
dag = circuit_to_dag(circuit)
depth = dag.depth()
width = dag.width()
size = dag.size()
classical_bits = dag.num_cbits()
op_counts = dag.count_ops()
stats[0] += width
stats[1] += classical_bits
stats[2] += size
stats[3] += depth
ret = ''.join([ret, "{}-th circuit: {} qubits, {} classical bits and {} operations with depth {}\n op_counts: {}\n".format(
i, width, classical_bits, size, depth, op_counts)])
if len(circuits) > 1:
stats /= len(circuits)
ret = ''.join([ret, "Average: {:.2f} qubits, {:.2f} classical bits and {:.2f} operations with depth {:.2f}\n".format(
stats[0], stats[1], stats[2], stats[3])])
ret += "============================================================================\n"
return ret
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0, 4.0, 5.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0,1,2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
t1 = time.perf_counter()
qc = qc.bind_parameters({dt: target_time / num_steps})
t2 = time.perf_counter()
print("created qc,", t2 - t1, "s")
# Generate state tomography circuits to evaluate fidelity of simulation
t1 = time.perf_counter()
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
t2 = time.perf_counter()
print("created st_qcs (length:", len(st_qcs), "),", t2 - t1, "s")
# remove barriers
t1 = time.perf_counter()
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
t2 = time.perf_counter()
print("removed barriers from st_qcs,", t2 - t1, "s")
# optimize circuit
t1 = time.perf_counter()
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("created t3_st_qcs (length:", len(t3_st_qcs), "),", t2 - t1, "s")
t3_st_qcs[0].draw("mpl")
# zne wrapping
t1 = time.perf_counter()
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors=scale_factors)
t2 = time.perf_counter()
print("created zne_qcs (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("decomposed zne_qcs into basis gates (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(zne_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("optimized zne_qcs -> create t3_zne_qcs (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(t3_zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
t2 = time.perf_counter()
print("fit the t3_zne_qcs to the initial layoit (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
shots = 1 << 13
reps = 1 # unused
# Number of trotter steps
print("trotter step: ", num_steps)
# execute: reps = 1
job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
# QREM
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors=scale_factors)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0,1,2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
t1 = time.perf_counter()
qc = qc.bind_parameters({dt: target_time / num_steps})
t2 = time.perf_counter()
print("created qc,", t2 - t1, "s")
# Generate state tomography circuits to evaluate fidelity of simulation
t1 = time.perf_counter()
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
t2 = time.perf_counter()
print("created st_qcs (length:", len(st_qcs), "),", t2 - t1, "s")
# remove barriers
t1 = time.perf_counter()
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
t2 = time.perf_counter()
print("removed barriers from st_qcs,", t2 - t1, "s")
# optimize circuit
t1 = time.perf_counter()
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("created t3_st_qcs (length:", len(t3_st_qcs), "),", t2 - t1, "s")
t3_st_qcs[0].draw("mpl")
# zne wrapping
t1 = time.perf_counter()
zne_qcs = zne_wrapper(t3_st_qcs)
t2 = time.perf_counter()
print("created zne_qcs (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("decomposed zne_qcs into basis gates (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(zne_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("optimized zne_qcs -> create t3_zne_qcs (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(t3_zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
t2 = time.perf_counter()
print("fit the t3_zne_qcs to the initial layoit (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
shots = 1 << 13
reps = 1 # unused
# Number of trotter steps
print("trotter step: ", num_steps)
# execute: reps = 1
job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
# QREM
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0,1,2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
t1 = time.perf_counter()
qc = qc.bind_parameters({dt: target_time / num_steps})
t2 = time.perf_counter()
print("created qc,", t2 - t1, "s")
# Generate state tomography circuits to evaluate fidelity of simulation
t1 = time.perf_counter()
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
t2 = time.perf_counter()
print("created st_qcs (length:", len(st_qcs), "),", t2 - t1, "s")
# remove barriers
t1 = time.perf_counter()
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
t2 = time.perf_counter()
print("removed barriers from st_qcs,", t2 - t1, "s")
# optimize circuit
t1 = time.perf_counter()
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("created t3_st_qcs (length:", len(t3_st_qcs), "),", t2 - t1, "s")
t3_st_qcs[0].draw("mpl")
# zne wrapping
t1 = time.perf_counter()
zne_qcs = zne_wrapper(t3_st_qcs)
t2 = time.perf_counter()
print("created zne_qcs (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("decomposed zne_qcs into basis gates (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(zne_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("optimized zne_qcs -> create t3_zne_qcs (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(t3_zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
t2 = time.perf_counter()
print("fit the t3_zne_qcs to the initial layoit (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
# QREM
shots = 1 << 13
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level = 0) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
jobs.append(job)
dt_now = datetime.datetime.now()
print(dt_now)
import pickle
with open("jobs_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
with open("job_ids_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
with open("properties_jakarta" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump(backend.properties(), f)
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import re
import itertools
import numpy as np
import random
random.seed(42)
import mitiq
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.ignis.mitigation import expectation_value
# Pauli Twirling
def pauli_twirling(circ: QuantumCircuit) -> QuantumCircuit:
"""
[internal function]
This function takes a quantum circuit and return a new quantum circuit with Pauli Twirling around the CNOT gates.
Args:
circ: QuantumCircuit
Returns:
QuantumCircuit
"""
def apply_pauli(num: int, qb: int) -> str:
if (num == 0):
return f''
elif (num == 1):
return f'x q[{qb}];\n'
elif (num == 2):
return f'y q[{qb}];\n'
else:
return f'z q[{qb}];\n'
paulis = [(i,j) for i in range(0,4) for j in range(0,4)]
paulis.remove((0,0))
paulis_map = [(0, 1), (3, 2), (3, 3), (1, 1), (1, 0), (2, 3), (2, 2), (2, 1), (2, 0), (1, 3), (1, 2), (3, 0), (3, 1), (0, 2), (0, 3)]
new_circ = ''
ops = circ.qasm().splitlines(True) #! split the quantum circuit into qasm operators
for op in ops:
if (op[:2] == 'cx'): # add Pauli Twirling around the CNOT gate
num = random.randrange(len(paulis))
qbs = re.findall('q\[(.)\]', op)
new_circ += apply_pauli(paulis[num][0], qbs[0])
new_circ += apply_pauli(paulis[num][1], qbs[1])
new_circ += op
new_circ += apply_pauli(paulis_map[num][0], qbs[0])
new_circ += apply_pauli(paulis_map[num][1], qbs[1])
else:
new_circ += op
return QuantumCircuit.from_qasm_str(new_circ)
def zne_wrapper(qcs, scale_factors = [1.0, 2.0, 3.0], pt = False):
"""
This function outputs the circuit list for zero-noise extrapolation.
Args:
qcs: List[QuantumCircuit], the input quantum circuits.
scale_factors: List[float], to what extent the noise scales are investigated.
pt: bool, whether add Pauli Twirling or not.
Returns:
folded_qcs: List[QuantumCircuit]
"""
folded_qcs = [] #! ZNE用の回路
for qc in qcs:
folded_qcs.append([mitiq.zne.scaling.fold_gates_at_random(qc, scale) for scale in scale_factors]) #! ここでmitiqを使用
folded_qcs = list(itertools.chain(*folded_qcs)) #! folded_qcsを平坦化
if pt:
folded_qcs = [pauli_twirling(circ) for circ in folded_qcs]
return folded_qcs
def make_stf_basis(n, basis_elements = ["X","Y","Z"]):
"""
[internal function]
This function outputs all the combinations of length n string for given basis_elements.
When basis_elements is X, Y, and Z (default), the output becomes the n-qubit Pauli basis.
Args:
n: int
basis_elements: List[str]
Returns:
basis: List[str]
"""
if n == 1:
return basis_elements
basis = []
for i in basis_elements:
sub_basis = make_stf_basis(n - 1, basis_elements)
basis += [i + j for j in sub_basis]
return basis
def reduce_hist(hist, poses):
"""
[internal function]
This function returns the reduced histogram to the designated positions.
Args:
hist: Dict[str, float]
poses: List[int]
Returns:
ret_hist: Dict[str, float]
"""
n = len(poses)
ret_hist = {format(i, "0" + str(n) + "b"): 0 for i in range(1 << n)}
for k, v in hist.items():
pos = ""
for i in range(n):
pos += k[poses[i]]
ret_hist[pos] += v
return ret_hist
def make_stf_expvals(n, stf_hists):
"""
[internal function]
This function create the expectations under expanded basis, which are used to reconstruct the density matrix.
Args:
n: int, the size of classical register in the measurement results.
stf_hists: List[Dict[str, float]], the input State Tomography Fitter histograms.
Returns:
st_expvals: List[float], the output State Tomography expectation values.
"""
assert len(stf_hists) == 3 ** n
stf_basis = make_stf_basis(n, basis_elements=["X","Y","Z"])
st_basis = make_stf_basis(n, basis_elements=["I","X","Y","Z"])
stf_hists_dict = {basis: hist for basis, hist in zip(stf_basis, stf_hists)}
st_hists_dict = {basis: stf_hists_dict.get(basis, None) for basis in st_basis}
# remaining
for basis in sorted(set(st_basis) - set(stf_basis)):
if basis == "I" * n:
continue
reduction_poses = []
reduction_basis = ""
for i, b in enumerate(basis):
if b != "I":
reduction_poses.append(n - 1 - i) # big endian
reduction_basis += b # こっちはそのまま(なぜならラベルはlittle endianだから)
else:
reduction_basis += "Z"
st_hists_dict[basis] = reduce_hist(stf_hists_dict[reduction_basis], reduction_poses)
st_expvals = dict()
for basis, hist in st_hists_dict.items():
if basis == "I" * n:
st_expvals[basis] = 1.0
continue
st_expvals[basis], _ = expectation_value(hist)
return st_expvals
def zne_decoder(n, result, scale_factors=[1.0, 2.0, 3.0], fac_type="lin"):
"""
This function applies the zero-noise extrapolation to the measured results and output the mitigated zero-noise expectation values.
Args:
n: int, the size of classical register in the measurement results.
result: Result, the returned results from job.
scale_factors: List[float], this should be the same as the zne_wrapper.
fac_type: str, "lin" or "exp", whether to use LinFactory option or ExpFactory option in mitiq, to extrapolate the expectation values.
Returns:
zne_expvals: List[float], the mitigated zero-noise expectation values.
"""
hists = result.get_counts()
num_scale_factors = len(scale_factors)
assert len(hists) % num_scale_factors == 0
scale_wise_expvals = [] # num_scale_factors * 64
for i in range(num_scale_factors):
scale_wise_hists = [hists[3 * j + i] for j in range(len(hists) // num_scale_factors)]
st_expvals = make_stf_expvals(n, scale_wise_hists)
scale_wise_expvals.append( list(st_expvals.values()) )
scale_wise_expvals = np.array(scale_wise_expvals)
linfac = mitiq.zne.inference.LinearFactory(scale_factors)
expfac = mitiq.zne.ExpFactory(scale_factors)
zne_expvals = []
for i in range(4 ** n):
if fac_type == "lin":
zne_expvals.append( linfac.extrapolate(scale_factors, scale_wise_expvals[:, i]) )
else:
zne_expvals.append( expfac.extrapolate(scale_factors, scale_wise_expvals[:, i]) )
return zne_expvals
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
filename = "job_ids_jakarta_100step_20220412_030333_.pkl"
import pickle
with open(filename, "rb") as f:
print(pickle.load(f))
filename = "job_ids_jakarta_100step_20220413_012425_.pkl"
with open(filename, "rb") as f:
print(pickle.load(f))
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0, 4.0, 5.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0,1,2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
t1 = time.perf_counter()
qc = qc.bind_parameters({dt: target_time / num_steps})
t2 = time.perf_counter()
print("created qc,", t2 - t1, "s")
# Generate state tomography circuits to evaluate fidelity of simulation
t1 = time.perf_counter()
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
t2 = time.perf_counter()
print("created st_qcs (length:", len(st_qcs), "),", t2 - t1, "s")
# remove barriers
t1 = time.perf_counter()
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
t2 = time.perf_counter()
print("removed barriers from st_qcs,", t2 - t1, "s")
# optimize circuit
t1 = time.perf_counter()
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("created t3_st_qcs (length:", len(t3_st_qcs), "),", t2 - t1, "s")
t3_st_qcs[0].draw("mpl")
# zne wrapping
t1 = time.perf_counter()
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors=scale_factors)
t2 = time.perf_counter()
print("created zne_qcs (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("decomposed zne_qcs into basis gates (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(zne_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("optimized zne_qcs -> create t3_zne_qcs (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(t3_zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
t2 = time.perf_counter()
print("fit the t3_zne_qcs to the initial layoit (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
shots = 1 << 13
reps = 1 # unused
# Number of trotter steps
print("trotter step: ", num_steps)
# execute: reps = 1
job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
# QREM
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0,1,2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
t1 = time.perf_counter()
qc = qc.bind_parameters({dt: target_time / num_steps})
t2 = time.perf_counter()
print("created qc,", t2 - t1, "s")
# Generate state tomography circuits to evaluate fidelity of simulation
t1 = time.perf_counter()
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
t2 = time.perf_counter()
print("created st_qcs (length:", len(st_qcs), "),", t2 - t1, "s")
# remove barriers
t1 = time.perf_counter()
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
t2 = time.perf_counter()
print("removed barriers from st_qcs,", t2 - t1, "s")
# optimize circuit
t1 = time.perf_counter()
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("created t3_st_qcs (length:", len(t3_st_qcs), "),", t2 - t1, "s")
t3_st_qcs[0].draw("mpl")
# zne wrapping
t1 = time.perf_counter()
zne_qcs = zne_wrapper(t3_st_qcs)
t2 = time.perf_counter()
print("created zne_qcs (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("decomposed zne_qcs into basis gates (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(zne_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("optimized zne_qcs -> create t3_zne_qcs (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(t3_zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
t2 = time.perf_counter()
print("fit the t3_zne_qcs to the initial layoit (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
shots = 1 << 13
reps = 1 # unused
# Number of trotter steps
print("trotter step: ", num_steps)
# execute: reps = 1
job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
# QREM
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0,1,2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
t1 = time.perf_counter()
qc = qc.bind_parameters({dt: target_time / num_steps})
t2 = time.perf_counter()
print("created qc,", t2 - t1, "s")
# Generate state tomography circuits to evaluate fidelity of simulation
t1 = time.perf_counter()
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
t2 = time.perf_counter()
print("created st_qcs (length:", len(st_qcs), "),", t2 - t1, "s")
# remove barriers
t1 = time.perf_counter()
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
t2 = time.perf_counter()
print("removed barriers from st_qcs,", t2 - t1, "s")
# optimize circuit
t1 = time.perf_counter()
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("created t3_st_qcs (length:", len(t3_st_qcs), "),", t2 - t1, "s")
t3_st_qcs[0].draw("mpl")
# zne wrapping
t1 = time.perf_counter()
zne_qcs = zne_wrapper(t3_st_qcs)
t2 = time.perf_counter()
print("created zne_qcs (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("decomposed zne_qcs into basis gates (length:", len(zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(zne_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t2 = time.perf_counter()
print("optimized zne_qcs -> create t3_zne_qcs (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t1 = time.perf_counter()
t3_zne_qcs = transpile(t3_zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
t2 = time.perf_counter()
print("fit the t3_zne_qcs to the initial layoit (length:", len(t3_zne_qcs), "),", t2 - t1, "s")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
# QREM
shots = 1 << 13
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level = 0) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
jobs.append(job)
dt_now = datetime.datetime.now()
print(dt_now)
import pickle
with open("jobs_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
with open("job_ids_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
with open("properties_jakarta" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump(backend.properties(), f)
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../utils/")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = True) # Pauli Twirling
print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
print(str(backend))
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
meas_calibs[0].draw("mpl")
dt_now = datetime.datetime.now()
print(dt_now)
filename = "job_ids_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl"
print(filename)
# with open("jobs_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
# pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
# with open(filename, "wb") as f:
# pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
# with open("properties_" + str(backend) + "_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
# pickle.dump(backend.properties(), f)
retrieved_jobs = jobs
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
fids = []
for job in retrieved_jobs:
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors)
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fid = state_fidelity(rho, target_state)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../utils/")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = True) # Pauli Twirling
print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[-3].draw("mpl")
# from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
print(str(backend))
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
meas_calibs[0].draw("mpl")
dt_now = datetime.datetime.now()
print(dt_now)
filename = "job_ids_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl"
print(filename)
with open("jobs_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
with open(filename, "wb") as f:
pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
with open("properties_" + str(backend) + "_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump(backend.properties(), f)
filename = "job_ids_ibmq_jakarta_100step_20220413_030821_.pkl" # change here
with open(filename, "rb") as f:
job_ids_dict = pickle.load(f)
job_ids = job_ids_dict["job_ids"]
cal_job_id = job_ids_dict["cal_job_id"]
retrieved_jobs = []
for job_id in job_ids:
retrieved_jobs.append(backend.retrieve_job(job_id))
retrieved_cal_job = backend.retrieve_job(cal_job_id)
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
fids = []
for job in retrieved_jobs:
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors)
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fid = state_fidelity(rho, target_state)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
import qiskit.tools.jupyter
%qiskit_version_table
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../utils/")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = True) # Pauli Twirling
print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
print(str(backend))
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
meas_calibs[0].draw("mpl")
dt_now = datetime.datetime.now()
print(dt_now)
filename = "job_ids_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl"
print(filename)
# with open("jobs_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
# pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
# with open(filename, "wb") as f:
# pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
# with open("properties_" + str(backend) + "_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
# pickle.dump(backend.properties(), f)
retrieved_jobs = jobs
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
fids = []
for job in retrieved_jobs:
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors)
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fid = state_fidelity(rho, target_state)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../utils/")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = True) # Pauli Twirling
print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[-3].draw("mpl")
# from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
print(str(backend))
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
meas_calibs[0].draw("mpl")
dt_now = datetime.datetime.now()
print(dt_now)
filename = "job_ids_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl"
print(filename)
with open("jobs_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
with open(filename, "wb") as f:
pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
with open("properties_" + str(backend) + "_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump(backend.properties(), f)
filename = "job_ids_ibmq_jakarta_100step_20220413_030821_.pkl" # change here
with open(filename, "rb") as f:
job_ids_dict = pickle.load(f)
job_ids = job_ids_dict["job_ids"]
cal_job_id = job_ids_dict["cal_job_id"]
retrieved_jobs = []
for job_id in job_ids:
retrieved_jobs.append(backend.retrieve_job(job_id))
retrieved_cal_job = backend.retrieve_job(cal_job_id)
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
fids = []
for job in retrieved_jobs:
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors)
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fid = state_fidelity(rho, target_state)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
import qiskit.tools.jupyter
%qiskit_version_table
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import sys, time
sys.path.append("../")
import Qconfig
qx_config = {
"APItoken": Qconfig.APItoken,
"url": Qconfig.config['url']}
print('Qconfig loaded from %s.' % Qconfig.__file__)
# Imports
import qiskit as qk
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit import available_backends, execute, register, least_busy
from qiskit.tools.visualization import plot_histogram
from qiskit import IBMQ
from qiskit import Aer
from math import pi
print(qk.__version__)
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
qc = QuantumCircuit(qr,cr)
# circuit construction
# preparing the wavefunction
qc.h(qr[0])
qc.barrier()
qc.cx(qr[0], qr[1])
qc.barrier()
qc.u3(1.2309,0,0,qr[0])
qc.barrier()
# if we apply phase shift gate
qc.u1((2.0/3)*pi,qr[0])
qc.u1((2.0/3)*pi,qr[1])
qc.barrier()
# rotating the axis for measurement
#qc.cx(qr[0],qr[1]) # THE IMPLEMENTATION PROVIDED BY THE AUTHORS SKIPS THIS CNOT APPLICATION!!! it shouldn't be
# it shouldn't be there. Improves accuracy
#qc.barrier()
qc.u3(2.1862,6.5449,pi,qr[0])
qc.u3(0.9553,2*pi,pi,qr[1])
qc.barrier()
qc.measure(qr,cr)
# Running locally IBM backends respond too slowly
print(Aer.backends())
backend = Aer.get_backend('qasm_simulator')
job = execute(qc,backend)
job.status
result = job.result()
counts = result.get_counts(qc)
print(counts)
plot_histogram(counts)
performance = {
'success':(counts['01']+counts['10'])/1024,
'failure':1 - (counts['01']+counts['10'])/1024
}
plot_histogram(performance)
IBMQ.load_accounts()
# checking the backends
large_enough_devices = IBMQ.backends(filters=lambda x: x.configuration()['n_qubits'] > 1 and not x.configuration()['simulator'])
print(large_enough_devices)
backend = IBMQ.get_backend('ibmqx4')
job = execute(qc,backend,max_credits=3)
job.status
result = job.result()
counts = result.get_counts(qc)
print(counts)
plot_histogram(counts)
performance = {
'success':(counts['01']+counts['10'])/1024,
'failure':(counts['00']+counts['11'])/1024
}
plot_histogram(performance)
sqr = QuantumRegister(1)
scr = ClassicalRegister(1)
sqc = QuantumCircuit(sqr,scr)
# constructing the circuit
sqc.u3(1.1503,6.4850,2.2555,sqr[0])
sqc.barrier()
# unidentified gate -- now assumed to be R2pi3. if identity then use qc.u1(0,q[0])
sqc.u1((2.0/3)*pi,sqr[0])
sqc.barrier()
sqc.u3(1.231,0,0,sqr[0]) # X
sqc.barrier()
sqc.u1((2.0/3)*pi,sqr[0]) # U (unidentified gate)
sqc.barrier()
# measurement
sqc.u3(0.7854,6.0214,6.1913,sqr[0])
sqc.barrier()
sqc.measure(sqr,scr)
# Running on local simulator
backend = Aer.get_backend('qasm_simulator')
job = execute(sqc,backend)
result = job.result()
counts = result.get_counts(sqc)
print(counts)
plot_histogram(counts)
# Running on IBM
backend = IBMQ.get_backend('ibmqx4')
job = execute(sqc,backend,max_credits=3)
result = job.result()
counts = result.get_counts(sqc)
print(counts)
plot_histogram(counts)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import pandas as pd
import itertools
import cma
import os
import sys
import argparse
import pickle
import random
import re
from pprint import pprint
import qiskit
from qiskit import *
from qiskit import Aer
from qiskit import IBMQ
from qiskit.providers.aer.noise.noise_model import NoiseModel
from qiskit.test.mock import *
from qiskit.providers.aer import AerSimulator, QasmSimulator
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
import mitiq
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
provider = IBMQ.get_provider(hub='', group='internal', project='hirashi-jst')
print("provider:", provider)
L = 3
p = 2
dt = 1.0
tf = 20
shots = 8192
def TwirlCircuit(circ: str) -> QuantumCircuit:
"""
そのまま使う: 修正は後回し
"""
#! qasm ベタ書き
def apply_pauli(num: int, qb: int) -> str:
if (num == 0):
return f'id q[{qb}];\n'
elif (num == 1):
return f'x q[{qb}];\n'
elif (num == 2):
return f'y q[{qb}];\n'
else:
return f'z q[{qb}];\n'
paulis = [(i,j) for i in range(0,4) for j in range(0,4)]
paulis.remove((0,0))
paulis_map = [(0, 1), (3, 2), (3, 3), (1, 1), (1, 0), (2, 3), (2, 2), (2, 1), (2, 0), (1, 3), (1, 2), (3, 0), (3, 1), (0, 2), (0, 3)]
new_circ = ''
ops = circ.qasm().splitlines(True) #! 生のqasmコードを持ってきてる: オペレータに分解
for op in ops:
if (op[:2] == 'cx'): # can add for cz, etc.
num = random.randrange(len(paulis)) #! permute paulis
qbs = re.findall('q\[(.)\]', op)
new_circ += apply_pauli(paulis[num][0], qbs[0])
new_circ += apply_pauli(paulis[num][1], qbs[1])
new_circ += op
new_circ += apply_pauli(paulis_map[num][0], qbs[0])
new_circ += apply_pauli(paulis_map[num][1], qbs[1])
else:
new_circ += op
return qiskit.circuit.QuantumCircuit.from_qasm_str(new_circ)
# とりあえずOK
def evolve(alpha: float, q0: Union[int, QuantumRegister], q1: Union[int, QuantumRegister]) -> QuantumCircuit:
"""
The implementation of Fig. 4 in https://arxiv.org/abs/2112.12654
"""
qc = QuantumCircuit(2)
qc.rz(-np.pi / 2, q1)
qc.cnot(q1, q0)
qc.rz(alpha - np.pi / 2, q0)
qc.ry(np.pi / 2 - alpha, q1)
qc.cnot(q0, q1)
qc.ry(alpha - np.pi / 2, q1)
qc.cnot(q1, q0)
qc.rz(np.pi / 2, q0)
return qc
# とりあえずOK
def make_ansatz_circuit(num_qubits: int, ansatz_depth: int, parameters: np.array) -> QuantumCircuit:
"""
Prepare ansatz circuit
code reference: https://gitlab.com/QANED/heis_dynamics
method reference: https://arxiv.org/abs/1906.06343
== AnsatzCircuit(param, p) -> QuantumCircuit
Args:
parameters: 1d array (for 2d parameters on circuit)
"""
qc = QuantumCircuit(num_qubits)
for l in range(ansatz_depth):
if num_qubits & 1:
for i in range(0, num_qubits, 2): # linear condition
qc.compose(evolve(parameters[l * ansatz_depth + i] / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4
for i in range(1, num_qubits - 1, 2): # linear condition
# ! we do not have to divide the angle by 4
qc.compose(evolve(parameters[l * ansatz_depth + i] / 4), [i, i + 1], inplace=True)
else:
for i in range(0, num_qubits - 1, 2): # linear condition
# ! we do not have to divide the angle by 4
qc.compose(evolve(parameters[l * ansatz_depth + i]), [i, i + 1], inplace=True)
for i in range(1, num_qubits - 1, 2): # linear condition
# ! we do not have to divide the angle by 4
qc.compose(evolve(parameters[l * ansatz_depth + i]), [i, i + 1], inplace=True)
return qc
# とりあえずOK
def make_trotter_circuit(num_qubits: int, time_interval: float) -> QuantumCircuit:
"""
Prepare Trotter circuit
code reference: https://gitlab.com/QANED/heis_dynamics
method reference: https://arxiv.org/abs/1906.06343
== TrotterEvolveCircuit(dt, nt, init) -> QuantumCircuit
"""
qc = QuantumCircuit(num_qubits)
for n in range(trotter_steps): #! time_interval の符号に注意
if num_qubits & 1:
for i in range(0, num_qubits, 2): # linear condition
qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4
for i in range(1, num_qubits - 1, 2): # linear condition
qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) # ! we do not have to divide the angle by 4
else:
for i in range(0, num_qubits - 1, 2): # linear condition
qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4
for i in range(1, num_qubits - 1, 2): # linear condition
qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) # ! we do not have to divide the angle by 4
return qc
#TODO VTCとは別実装?→ no, 同じ実装に。
def SimulateAndReorder(circ):
"""
#! execution wrapper
Executes a circuit using the statevector simulator and reorders basis to match with standard
"""
backend = Aer.get_backend('statevector_simulator')
return execute(circ.reverse_bits(), backend).result().get_statevector()
def Simulate(circ):
"""
#! execution wrapper
Executes a circuit using the statevector simulator. Doesn't reorder -- which is needed for intermediate steps in the VTC
"""
backend = Aer.get_backend('statevector_simulator')
return execute(circ, backend).result().get_statevector()
#TODO
def LoschmidtEchoExecutor(circuits, backend, shots, filter):
"""
#! 回路を実行
Returns the expectation value to be mitigated.
:param circuit: Circuit to run. #! ここでのcircuitsは
:param backend: backend to run the circuit on
:param shots: Number of times to execute the circuit to compute the expectation value.
:param fitter: measurement error mitigator
"""
# circuits = [TwirlCircuit(circ) for circ in circuits]
scale_factors = [1.0, 2.0, 3.0] #! ZNEのノイズスケーリングパラメタ
folded_circuits = [] #! ZNE用の回路
for circuit in circuits:
folded_circuits.append([mitiq.zne.scaling.fold_gates_at_random(circuit, scale) for scale in scale_factors]) #! ここでmitiqを使用
folded_circuits = list(itertools.chain(*folded_circuits)) #! folded_circuitsを平坦化
folded_circuits = [TwirlCircuit(circ) for circ in folded_circuits] #! 後からPauli Twirlingを施す!
print("length of circuit in job", len(folded_circuits))
#! jobを投げる
job = qiskit.execute(
experiments=folded_circuits,
backend=backend,
optimization_level=0,
shots=shots
)
print("casted job")
#! fidelity測定用(VTCをしないなら、ここはtomographyで良い)
c = ['1','1','0'] #! これをpermutationする
# c = [str((1 + (-1)**(i+1)) // 2) for i in range(L)]
c = ''.join(c)[::-1] #! endianを反転 (big endianへ)
res = job.result()
if (filter is not None): #! QREM
res = filter.apply(res)
print("retrieved job")
all_counts = [job.result().get_counts(i) for i in range(len(folded_circuits))]
expectation_values = []
for counts in all_counts:
total_allowed_shots = [counts.get(''.join(p)) for p in set(itertools.permutations(c))] #! ここでcをpermutationしている
total_allowed_shots = sum([0 if x is None else x for x in total_allowed_shots])
if counts.get(c) is None:
expectation_values.append(0)
else:
expectation_values.append(counts.get(c)/total_allowed_shots)
# expectation_values = [counts.get(c) / shots for counts in all_counts]
zero_noise_values = []
if isinstance(backend, qiskit.providers.aer.backends.qasm_simulator.QasmSimulator): # exact_sim
for i in range(len(circuits)):
zero_noise_values.append(np.mean(expectation_values[i*len(scale_factors):(i+1)*len(scale_factors)]))
else: #device_sim, real_device
fac = mitiq.zne.inference.LinearFactory(scale_factors)
for i in range(len(circuits)):
zero_noise_values.append(fac.extrapolate(scale_factors,
expectation_values[i*len(scale_factors):(i+1)*len(scale_factors)]))
print("zero_noise_values")
pprint(zero_noise_values)
print()
return zero_noise_values
#TODO
def LoschmidtEchoCircuit(params, U_v, U_trot, init, p):
"""
#! 回路を作成
Cost function using the Loschmidt Echo. Just using statevectors currently -- can rewrite using shots
:param params: parameters new variational circuit that represents U_trot U_v | init >. Need dagger for cost function
:param U_v: variational circuit that stores the state before the trotter step
:param U_trot: trotter step
:param init: initial state
:param p: number of ansatz steps
"""
U_v_prime = AnsatzCircuit(params, p)
circ = init + U_v + U_trot + U_v_prime.inverse()
circ.measure_all()
return circ
def LoschmidtEcho(params, U_v, U_trot, init, p, backend, shots, filter):
"""
#! 実行パート
"""
circs = []
for param in params:
circs.append(LoschmidtEchoCircuit(param, U_v, U_trot, init, p)) #! 回路を作成
print("length of circuits without zne:", len(circs))
res = LoschmidtEchoExecutor(circs, backend, shots, filter) #! 回路を実行
return abs(1 - np.array(res))
def LoschmidtEchoExact(params, U_v, U_trot, init, p):
"""
#! unused function
"""
U_v_prime = AnsatzCircuit(params, p)
circ = init + U_v + U_trot + U_v_prime.inverse()
circ_vec = Simulate(circ)
init_vec = Simulate(init)
return 1 - abs(np.conj(circ_vec) @ init_vec)**2
def CMAES(U_v, U_trot, init, p, backend, shots, filter):
"""
#! 実行 + 最適化パート
"""
init_params = np.random.uniform(0, 2*np.pi, (L-1)*p)
es = cma.CMAEvolutionStrategy(init_params, np.pi/2)
es.opts.set({'ftarget':5e-3, 'maxiter':1000})
# es = pickle.load(open(f'./results_{L}/optimizer_dump', 'rb'))
while not es.stop(): #! 最適化パート
# solutions = es.ask(25) # ! 25 = number of returned solutions
solutions = es.ask(10)
print("solutions")
pprint(solutions)
es.tell(solutions, LoschmidtEcho(solutions, U_v, U_trot, init, p, backend, shots, filter)) #! 実行パート
# es.tell(solutions, LoschmidtEchoExact(solutions, U_v, U_trot, init, p)) #! 実行パート
es.disp()
open(f'./results_{L}/optimizer_dump', 'wb').write(es.pickle_dumps())
return es.result_pretty()
def VTC(tf, dt, p, init, backend, shots, filter):
"""
#! tf: 総経過時間
#! dt: trotter step size: 時間間隔
#! p: ansatzのステップ数
"""
VTCParamList = [np.zeros((L-1)*p)] #! デフォルトのパラメタ(初期値)
VTCStepList = [SimulateAndReorder(init.copy())] #! type: List[Statevector]
# TrotterFixStepList = [init]
TimeStep = [0]
if (os.path.exists(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv')): #! 2巡目からこっち
VTCParamList = pd.read_csv(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv', index_col=0)
VTCStepList = pd.read_csv(f'./results_{L}/VTD_results_{tf}_{L}_{p}_{dt}_{shots}.csv', index_col=0)
temp = VTCParamList.iloc[-1]
print(temp, "th time interval")
U_v = AnsatzCircuit(temp, p)
else: #! 最初はこっちに入る
VTCParamList = pd.DataFrame(np.array(VTCParamList), index=np.array(TimeStep))
VTCStepList = pd.DataFrame(np.array(VTCStepList), index=np.array(TimeStep))
print("0 th time interval")
print()
U_v = QuantumCircuit(L)
ts = VTCParamList.index
#! 時間間隔
U_trot = TrotterEvolveCircuit(dt, p, QuantumCircuit(L)) #! Trotter分解のunitaryを作る
print()
print("start CMAES")
print()
res = CMAES(U_v, U_trot, init, p, backend, shots, filter) #! ここでプロセスを実行!!!!
print()
print("res")
pprint(res)
#! 新しいループ結果を追加し、tsを更新
res = res.xbest # ! best solution evaluated
print("res.xbest")
pprint(res)
VTCParamList.loc[ts[-1]+(dt*p)] = np.array(res)
VTCStepList.loc[ts[-1]+(dt*p)] = np.array(SimulateAndReorder(init + AnsatzCircuit(res, p)))
ts = VTCParamList.index
# VTCParamList = pd.DataFrame(np.array(VTCParamList), index=np.array(TimeStep))
# VTCStepList = pd.DataFrame(np.array(VTCStepList), index=np.array(TimeStep))
#! csvファイルを更新
VTCParamList.to_csv(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv')
VTCStepList.to_csv(f'./results_{L}/VTD_results_{tf}_{L}_{p}_{dt}_{shots}.csv')
if (ts[-1] >= tf):
return
else:
print("next step")
VTC(tf, dt, p, init, backend, shots, filter)
#! ここからQREM回路
qr = QuantumRegister(L)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# device_backend = FakeJakarta()
# device_sim = AerSimulator.from_backend(device_backend)
real_device = provider.get_backend('ibmq_jakarta')
noise_model = NoiseModel.from_backend(real_device)
device_sim = QasmSimulator(method='statevector', noise_model=noise_model)
exact_sim = Aer.get_backend('qasm_simulator') # QasmSimulator(method='statevector')
t_qc = transpile(meas_calibs)
qobj = assemble(t_qc, shots=8192)
# cal_results = real_device.run(qobj, shots=8192).result()
cal_results = device_sim.run(qobj, shots=8192).result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
print("qrem done")
# np.around(meas_fitter.cal_matrix, decimals=2)
init = QuantumCircuit(L)
# c = [str((1 + (-1)**(i+1)) // 2) for i in range(L)]
c = ['1','1','0'] #! なぜinitial stateが110なの??????? もしかしてopen science prizeを意識???
#! けどループでこのプログラムが実行されるたびにここが|110>だとおかしくないか?
for q in range(len(c)):
if (c[q] == '1'):
init.x(q)
#! ここまでQREM回路
nt = int(np.ceil(tf / (dt * p)))
# f = open(f'./results_{L}/logging.txt', 'a')
# sys.stdout = f
#! tf: シミュレーションの(経過)時間
#! dt: trotter分解のステップ数
#! p: ansatzのステップ数 (論文中のL)
# VTC(tf, dt, p, init, real_device, shots, meas_fitter.filter) #! mainの処理
print("vtc start!!!! \n\n\n")
VTC(tf, dt, p, init, device_sim, shots, meas_fitter.filter) #! mainの処理
# f.close()
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import pandas as pd
import itertools
import cma
import os
import sys
import argparse
import pickle
import random
import re
from pprint import pprint
import qiskit
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute
from qiskit import Aer
from qiskit import IBMQ
from qiskit.compiler import transpile
from qiskit.providers.aer.noise.noise_model import NoiseModel
from qiskit.test.mock import *
from qiskit.providers.aer import AerSimulator, QasmSimulator
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
import mitiq
IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
real_device = provider.get_backend('ibmq_jakarta')
def qrem_encoder(num_qubits: int, initial_layout: list) -> list:
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
return transpile(meas_calibs, initial_layout=initial_layout, basis_gates=["sx", "rz", "cx"])
def execute_circuits(qcs: list, backend) -> (qiskit.providers.Job, str):
job = exec
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
def qrem_decoder():
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import pandas as pd
import itertools
import cma
import os
import sys
import argparse
import pickle
import random
import re
from pprint import pprint
import qiskit
from qiskit import *
from qiskit import Aer
from qiskit import IBMQ
from qiskit.providers.aer.noise.noise_model import NoiseModel
from qiskit.test.mock import *
from qiskit.providers.aer import AerSimulator, QasmSimulator
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
import mitiq
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
provider = IBMQ.get_provider(hub='', group='internal', project='hirashi-jst')
print("provider:", provider)
L = 3
p = 2
dt = 1.0
tf = 20
shots = 8192
def TwirlCircuit(circ: str) -> QuantumCircuit:
"""
そのまま使う: 修正は後回し
"""
#! qasm ベタ書き
def apply_pauli(num: int, qb: int) -> str:
if (num == 0):
return f'id q[{qb}];\n'
elif (num == 1):
return f'x q[{qb}];\n'
elif (num == 2):
return f'y q[{qb}];\n'
else:
return f'z q[{qb}];\n'
paulis = [(i,j) for i in range(0,4) for j in range(0,4)]
paulis.remove((0,0))
paulis_map = [(0, 1), (3, 2), (3, 3), (1, 1), (1, 0), (2, 3), (2, 2), (2, 1), (2, 0), (1, 3), (1, 2), (3, 0), (3, 1), (0, 2), (0, 3)]
new_circ = ''
ops = circ.qasm().splitlines(True) #! 生のqasmコードを持ってきてる: オペレータに分解
for op in ops:
if (op[:2] == 'cx'): # can add for cz, etc.
num = random.randrange(len(paulis)) #! permute paulis
qbs = re.findall('q\[(.)\]', op)
new_circ += apply_pauli(paulis[num][0], qbs[0])
new_circ += apply_pauli(paulis[num][1], qbs[1])
new_circ += op
new_circ += apply_pauli(paulis_map[num][0], qbs[0])
new_circ += apply_pauli(paulis_map[num][1], qbs[1])
else:
new_circ += op
return qiskit.circuit.QuantumCircuit.from_qasm_str(new_circ)
# とりあえずOK
def evolve(alpha: float, q0: Union[int, QuantumRegister], q1: Union[int, QuantumRegister]) -> QuantumCircuit:
"""
The implementation of Fig. 4 in https://arxiv.org/abs/2112.12654
"""
qc = QuantumCircuit(2)
qc.rz(-np.pi / 2, q1)
qc.cnot(q1, q0)
qc.rz(alpha - np.pi / 2, q0)
qc.ry(np.pi / 2 - alpha, q1)
qc.cnot(q0, q1)
qc.ry(alpha - np.pi / 2, q1)
qc.cnot(q1, q0)
qc.rz(np.pi / 2, q0)
return qc
# とりあえずOK
def make_ansatz_circuit(num_qubits: int, ansatz_depth: int, parameters: np.array) -> QuantumCircuit:
"""
Prepare ansatz circuit
code reference: https://gitlab.com/QANED/heis_dynamics
method reference: https://arxiv.org/abs/1906.06343
== AnsatzCircuit(param, p) -> QuantumCircuit
Args:
parameters: 1d array (for 2d parameters on circuit)
"""
qc = QuantumCircuit(num_qubits)
for l in range(ansatz_depth):
if num_qubits & 1:
for i in range(0, num_qubits, 2): # linear condition
qc.compose(evolve(parameters[l * ansatz_depth + i] / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4
for i in range(1, num_qubits - 1, 2): # linear condition
# ! we do not have to divide the angle by 4
qc.compose(evolve(parameters[l * ansatz_depth + i] / 4), [i, i + 1], inplace=True)
else:
for i in range(0, num_qubits - 1, 2): # linear condition
# ! we do not have to divide the angle by 4
qc.compose(evolve(parameters[l * ansatz_depth + i]), [i, i + 1], inplace=True)
for i in range(1, num_qubits - 1, 2): # linear condition
# ! we do not have to divide the angle by 4
qc.compose(evolve(parameters[l * ansatz_depth + i]), [i, i + 1], inplace=True)
return qc
# とりあえずOK
def make_trotter_circuit(num_qubits: int, time_interval: float) -> QuantumCircuit:
"""
Prepare Trotter circuit
code reference: https://gitlab.com/QANED/heis_dynamics
method reference: https://arxiv.org/abs/1906.06343
== TrotterEvolveCircuit(dt, nt, init) -> QuantumCircuit
"""
qc = QuantumCircuit(num_qubits)
for n in range(trotter_steps): #! time_interval の符号に注意
if num_qubits & 1:
for i in range(0, num_qubits, 2): # linear condition
qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4
for i in range(1, num_qubits - 1, 2): # linear condition
qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) # ! we do not have to divide the angle by 4
else:
for i in range(0, num_qubits - 1, 2): # linear condition
qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4
for i in range(1, num_qubits - 1, 2): # linear condition
qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) # ! we do not have to divide the angle by 4
return qc
#TODO VTCとは別実装?→ no, 同じ実装に。
def SimulateAndReorder(circ):
"""
#! execution wrapper
Executes a circuit using the statevector simulator and reorders basis to match with standard
"""
backend = Aer.get_backend('statevector_simulator')
return execute(circ.reverse_bits(), backend).result().get_statevector()
def Simulate(circ):
"""
#! execution wrapper
Executes a circuit using the statevector simulator. Doesn't reorder -- which is needed for intermediate steps in the VTC
"""
backend = Aer.get_backend('statevector_simulator')
return execute(circ, backend).result().get_statevector()
#TODO
def LoschmidtEchoExecutor(circuits, backend, shots, filter):
"""
#! 回路を実行
Returns the expectation value to be mitigated.
:param circuit: Circuit to run. #! ここでのcircuitsは
:param backend: backend to run the circuit on
:param shots: Number of times to execute the circuit to compute the expectation value.
:param fitter: measurement error mitigator
"""
# circuits = [TwirlCircuit(circ) for circ in circuits]
scale_factors = [1.0, 2.0, 3.0] #! ZNEのノイズスケーリングパラメタ
folded_circuits = [] #! ZNE用の回路
for circuit in circuits:
folded_circuits.append([mitiq.zne.scaling.fold_gates_at_random(circuit, scale) for scale in scale_factors]) #! ここでmitiqを使用
folded_circuits = list(itertools.chain(*folded_circuits)) #! folded_circuitsを平坦化
folded_circuits = [TwirlCircuit(circ) for circ in folded_circuits] #! 後からPauli Twirlingを施す!
print("length of circuit in job", len(folded_circuits))
#! jobを投げる
job = qiskit.execute(
experiments=folded_circuits,
backend=backend,
optimization_level=0,
shots=shots
)
print("casted job")
#! fidelity測定用(VTCをしないなら、ここはtomographyで良い)
c = ['1','1','0'] #! これをpermutationする
# c = [str((1 + (-1)**(i+1)) // 2) for i in range(L)]
c = ''.join(c)[::-1] #! endianを反転 (big endianへ)
res = job.result()
if (filter is not None): #! QREM
res = filter.apply(res)
print("retrieved job")
all_counts = [job.result().get_counts(i) for i in range(len(folded_circuits))]
expectation_values = []
for counts in all_counts:
total_allowed_shots = [counts.get(''.join(p)) for p in set(itertools.permutations(c))] #! ここでcをpermutationしている
total_allowed_shots = sum([0 if x is None else x for x in total_allowed_shots])
if counts.get(c) is None:
expectation_values.append(0)
else:
expectation_values.append(counts.get(c)/total_allowed_shots)
# expectation_values = [counts.get(c) / shots for counts in all_counts]
zero_noise_values = []
if isinstance(backend, qiskit.providers.aer.backends.qasm_simulator.QasmSimulator): # exact_sim
for i in range(len(circuits)):
zero_noise_values.append(np.mean(expectation_values[i*len(scale_factors):(i+1)*len(scale_factors)]))
else: #device_sim, real_device
fac = mitiq.zne.inference.LinearFactory(scale_factors)
for i in range(len(circuits)):
zero_noise_values.append(fac.extrapolate(scale_factors,
expectation_values[i*len(scale_factors):(i+1)*len(scale_factors)]))
print("zero_noise_values")
pprint(zero_noise_values)
print()
return zero_noise_values
#TODO
def LoschmidtEchoCircuit(params, U_v, U_trot, init, p):
"""
#! 回路を作成
Cost function using the Loschmidt Echo. Just using statevectors currently -- can rewrite using shots
:param params: parameters new variational circuit that represents U_trot U_v | init >. Need dagger for cost function
:param U_v: variational circuit that stores the state before the trotter step
:param U_trot: trotter step
:param init: initial state
:param p: number of ansatz steps
"""
U_v_prime = AnsatzCircuit(params, p)
circ = init + U_v + U_trot + U_v_prime.inverse()
circ.measure_all()
return circ
def LoschmidtEcho(params, U_v, U_trot, init, p, backend, shots, filter):
"""
#! 実行パート
"""
circs = []
for param in params:
circs.append(LoschmidtEchoCircuit(param, U_v, U_trot, init, p)) #! 回路を作成
print("length of circuits without zne:", len(circs))
res = LoschmidtEchoExecutor(circs, backend, shots, filter) #! 回路を実行
return abs(1 - np.array(res))
def LoschmidtEchoExact(params, U_v, U_trot, init, p):
"""
#! unused function
"""
U_v_prime = AnsatzCircuit(params, p)
circ = init + U_v + U_trot + U_v_prime.inverse()
circ_vec = Simulate(circ)
init_vec = Simulate(init)
return 1 - abs(np.conj(circ_vec) @ init_vec)**2
def CMAES(U_v, U_trot, init, p, backend, shots, filter):
"""
#! 実行 + 最適化パート
"""
init_params = np.random.uniform(0, 2*np.pi, (L-1)*p)
es = cma.CMAEvolutionStrategy(init_params, np.pi/2)
es.opts.set({'ftarget':5e-3, 'maxiter':1000})
# es = pickle.load(open(f'./results_{L}/optimizer_dump', 'rb'))
while not es.stop(): #! 最適化パート
# solutions = es.ask(25) # ! 25 = number of returned solutions
solutions = es.ask(10)
print("solutions")
pprint(solutions)
es.tell(solutions, LoschmidtEcho(solutions, U_v, U_trot, init, p, backend, shots, filter)) #! 実行パート
# es.tell(solutions, LoschmidtEchoExact(solutions, U_v, U_trot, init, p)) #! 実行パート
es.disp()
open(f'./results_{L}/optimizer_dump', 'wb').write(es.pickle_dumps())
return es.result_pretty()
def VTC(tf, dt, p, init, backend, shots, filter):
"""
#! tf: 総経過時間
#! dt: trotter step size: 時間間隔
#! p: ansatzのステップ数
"""
VTCParamList = [np.zeros((L-1)*p)] #! デフォルトのパラメタ(初期値)
VTCStepList = [SimulateAndReorder(init.copy())] #! type: List[Statevector]
# TrotterFixStepList = [init]
TimeStep = [0]
if (os.path.exists(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv')): #! 2巡目からこっち
VTCParamList = pd.read_csv(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv', index_col=0)
VTCStepList = pd.read_csv(f'./results_{L}/VTD_results_{tf}_{L}_{p}_{dt}_{shots}.csv', index_col=0)
temp = VTCParamList.iloc[-1]
print(temp, "th time interval")
U_v = AnsatzCircuit(temp, p)
else: #! 最初はこっちに入る
VTCParamList = pd.DataFrame(np.array(VTCParamList), index=np.array(TimeStep))
VTCStepList = pd.DataFrame(np.array(VTCStepList), index=np.array(TimeStep))
print("0 th time interval")
print()
U_v = QuantumCircuit(L)
ts = VTCParamList.index
#! 時間間隔
U_trot = TrotterEvolveCircuit(dt, p, QuantumCircuit(L)) #! Trotter分解のunitaryを作る
print()
print("start CMAES")
print()
res = CMAES(U_v, U_trot, init, p, backend, shots, filter) #! ここでプロセスを実行!!!!
print()
print("res")
pprint(res)
#! 新しいループ結果を追加し、tsを更新
res = res.xbest # ! best solution evaluated
print("res.xbest")
pprint(res)
VTCParamList.loc[ts[-1]+(dt*p)] = np.array(res)
VTCStepList.loc[ts[-1]+(dt*p)] = np.array(SimulateAndReorder(init + AnsatzCircuit(res, p)))
ts = VTCParamList.index
# VTCParamList = pd.DataFrame(np.array(VTCParamList), index=np.array(TimeStep))
# VTCStepList = pd.DataFrame(np.array(VTCStepList), index=np.array(TimeStep))
#! csvファイルを更新
VTCParamList.to_csv(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv')
VTCStepList.to_csv(f'./results_{L}/VTD_results_{tf}_{L}_{p}_{dt}_{shots}.csv')
if (ts[-1] >= tf):
return
else:
print("next step")
VTC(tf, dt, p, init, backend, shots, filter)
#! ここからQREM回路
qr = QuantumRegister(L)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# device_backend = FakeJakarta()
# device_sim = AerSimulator.from_backend(device_backend)
real_device = provider.get_backend('ibmq_jakarta')
noise_model = NoiseModel.from_backend(real_device)
device_sim = QasmSimulator(method='statevector', noise_model=noise_model)
exact_sim = Aer.get_backend('qasm_simulator') # QasmSimulator(method='statevector')
t_qc = transpile(meas_calibs)
qobj = assemble(t_qc, shots=8192)
# cal_results = real_device.run(qobj, shots=8192).result()
cal_results = device_sim.run(qobj, shots=8192).result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
print("qrem done")
# np.around(meas_fitter.cal_matrix, decimals=2)
init = QuantumCircuit(L)
# c = [str((1 + (-1)**(i+1)) // 2) for i in range(L)]
c = ['1','1','0'] #! なぜinitial stateが110なの??????? もしかしてopen science prizeを意識???
#! けどループでこのプログラムが実行されるたびにここが|110>だとおかしくないか?
for q in range(len(c)):
if (c[q] == '1'):
init.x(q)
#! ここまでQREM回路
nt = int(np.ceil(tf / (dt * p)))
# f = open(f'./results_{L}/logging.txt', 'a')
# sys.stdout = f
#! tf: シミュレーションの(経過)時間
#! dt: trotter分解のステップ数
#! p: ansatzのステップ数 (論文中のL)
# VTC(tf, dt, p, init, real_device, shots, meas_fitter.filter) #! mainの処理
print("vtc start!!!! \n\n\n")
VTC(tf, dt, p, init, device_sim, shots, meas_fitter.filter) #! mainの処理
# f.close()
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
import numpy as np
from qiskit import compiler, BasicAer, QuantumRegister
from qiskit.converters import circuit_to_dag
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import Unroller
def convert_to_basis_gates(circuit):
# unroll the circuit using the basis u1, u2, u3, cx, and id gates
unroller = Unroller(basis=['u1', 'u2', 'u3', 'cx', 'id'])
pm = PassManager(passes=[unroller])
qc = compiler.transpile(circuit, BasicAer.get_backend('qasm_simulator'), pass_manager=pm)
return qc
def is_qubit(qb):
# check if the input is a qubit, which is in the form (QuantumRegister, int)
return isinstance(qb, tuple) and isinstance(qb[0], QuantumRegister) and isinstance(qb[1], int)
def is_qubit_list(qbs):
# check if the input is a list of qubits
for qb in qbs:
if not is_qubit(qb):
return False
return True
def summarize_circuits(circuits):
"""Summarize circuits based on QuantumCircuit, and four metrics are summarized.
Number of qubits and classical bits, and number of operations and depth of circuits.
The average statistic is provided if multiple circuits are inputed.
Args:
circuits (QuantumCircuit or [QuantumCircuit]): the to-be-summarized circuits
"""
if not isinstance(circuits, list):
circuits = [circuits]
ret = ""
ret += "Submitting {} circuits.\n".format(len(circuits))
ret += "============================================================================\n"
stats = np.zeros(4)
for i, circuit in enumerate(circuits):
dag = circuit_to_dag(circuit)
depth = dag.depth()
width = dag.width()
size = dag.size()
classical_bits = dag.num_cbits()
op_counts = dag.count_ops()
stats[0] += width
stats[1] += classical_bits
stats[2] += size
stats[3] += depth
ret = ''.join([ret, "{}-th circuit: {} qubits, {} classical bits and {} operations with depth {}\n op_counts: {}\n".format(
i, width, classical_bits, size, depth, op_counts)])
if len(circuits) > 1:
stats /= len(circuits)
ret = ''.join([ret, "Average: {:.2f} qubits, {:.2f} classical bits and {:.2f} operations with depth {:.2f}\n".format(
stats[0], stats[1], stats[2], stats[3])])
ret += "============================================================================\n"
return ret
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.