|
|
clear;
|
|
|
clc;
|
|
|
|
|
|
set(groot, 'DefaultAxesLineWidth', 1.5);
|
|
|
set(groot, 'DefaultLineLineWidth', 4);
|
|
|
set(groot, 'DefaultAxesTickLabelInterpreter','latex');
|
|
|
set(groot, 'DefaultLegendInterpreter','latex');
|
|
|
set(groot, 'DefaultAxesFontSize',22);
|
|
|
|
|
|
intmeth = 'spline';
|
|
|
printr = 1;
|
|
|
|
|
|
optset('bisect', 'tol', 1e-32);
|
|
|
|
|
|
|
|
|
|
|
|
p.beta = 0.992;
|
|
|
p.F = 0.22;
|
|
|
p.phi = 1;
|
|
|
p.nu = 3;
|
|
|
|
|
|
|
|
|
|
|
|
p.rm = (1 + 0.025)^(1/4) - 1;
|
|
|
p.rl = (1 + 0.010)^(1/4) - 1;
|
|
|
|
|
|
p.D = 120;
|
|
|
|
|
|
p.sigma = 2;
|
|
|
p.gamma = 1;
|
|
|
p.thetam = 0.85;
|
|
|
|
|
|
se = (1 - 0.55)^(1/2)*0.4869;
|
|
|
|
|
|
p.mbar = p.rm/(1 - (1 + p.rm)^(-p.D))*p.thetam;
|
|
|
p.hbar = 8;
|
|
|
|
|
|
|
|
|
|
|
|
p.na = 250;
|
|
|
p.nw = 250;
|
|
|
p.nl = 250;
|
|
|
p.nt = 75;
|
|
|
p.ny = 71;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[y, wy] = qnwunif(p.ny, 0, 1);
|
|
|
|
|
|
y = norminv(y, 0, 1)*se;
|
|
|
|
|
|
y = exp(y);
|
|
|
|
|
|
|
|
|
|
|
|
amin = 0;
|
|
|
amax = 50;
|
|
|
p.agrid = amin + (amax - amin)*nodeunif(p.na, 0, 1).^2;
|
|
|
|
|
|
wmin = min(y);
|
|
|
wmax = (1 + p.rl)*amax + max(y);
|
|
|
p.wgrid = wmin + (wmax - wmin)*nodeunif(p.nw, 0, 1).^2;
|
|
|
|
|
|
lmin = -0.5;
|
|
|
lmax = wmax + p.hbar;
|
|
|
p.lgrid = lmin + (lmax - lmin)*nodeunif(p.nl, 0, 1).^2;
|
|
|
|
|
|
|
|
|
p.tgrid = nodeunif(p.nt, 0, p.thetam);
|
|
|
|
|
|
|
|
|
|
|
|
sv = gridmake(p.wgrid, p.tgrid);
|
|
|
sw = gridmake(p.lgrid, p.tgrid);
|
|
|
svbar = gridmake(p.agrid, p.tgrid);
|
|
|
|
|
|
|
|
|
|
|
|
cmax = bisect('savings', 1e-13, 1e5, p.lgrid, p, amin);
|
|
|
cmin = bisect('savings', 1e-13, 1e5, p.lgrid, p, amax);
|
|
|
|
|
|
cmax = repmat(cmax, p.nt, 1);
|
|
|
cmin = repmat(cmin, p.nt, 1);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Vbar = zeros(p.na*p.nt, 1);
|
|
|
|
|
|
for iter = 1 : 5
|
|
|
|
|
|
Vbarold = Vbar;
|
|
|
|
|
|
EV = griddedInterpolant({p.agrid, p.tgrid}, reshape(Vbar, p.na, p.nt), intmeth, 'linear');
|
|
|
|
|
|
|
|
|
|
|
|
c = solve_golden('wfunc', cmin, cmax, sw, EV, p);
|
|
|
|
|
|
[~, aprime] = savings(c, sw, p);
|
|
|
|
|
|
W = wfunc(c, sw, EV, p);
|
|
|
|
|
|
Winterp = griddedInterpolant({p.lgrid, p.tgrid}, reshape(W, p.nl, p.nt), intmeth, 'linear');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V = solveh(sv, Winterp, p);
|
|
|
|
|
|
|
|
|
|
|
|
Vinterp = griddedInterpolant({p.wgrid, p.tgrid}, reshape(V, p.nw, p.nt), intmeth, 'linear');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Vbar = zeros(p.na*p.nt, 1);
|
|
|
|
|
|
for i = 1 : p.ny
|
|
|
|
|
|
Vbar = Vbar + wy(i)*Vinterp((1 + p.rl)*svbar(:,1) + y(i), svbar(:,2));
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
fprintf('%4i %6.2e \n', [iter, norm(Vbar - Vbarold)/norm(Vbar)]);
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for iter = 1 : 5000
|
|
|
|
|
|
Vbarold = Vbar;
|
|
|
|
|
|
EV = griddedInterpolant({p.agrid, p.tgrid}, reshape(Vbar, p.na, p.nt), intmeth, 'linear');
|
|
|
|
|
|
|
|
|
|
|
|
if mod(iter, 50) == 0
|
|
|
|
|
|
c = solve_golden('wfunc', cmin, cmax, sw, EV, p);
|
|
|
|
|
|
end
|
|
|
|
|
|
[~, aprime] = savings(c, sw, p);
|
|
|
|
|
|
W = wfunc(c, sw, EV, p);
|
|
|
|
|
|
Winterp = griddedInterpolant({p.lgrid, p.tgrid}, reshape(W, p.nl, p.nt), intmeth, 'linear');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V = solveh(sv, Winterp, p);
|
|
|
|
|
|
|
|
|
|
|
|
Vinterp = griddedInterpolant({p.wgrid, p.tgrid}, reshape(V, p.nw, p.nt), intmeth, 'linear');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Vbar = zeros(p.na*p.nt, 1);
|
|
|
|
|
|
for i = 1 : p.ny
|
|
|
|
|
|
Vbar = Vbar + wy(i)*Vinterp((1 + p.rl)*svbar(:,1) + y(i), svbar(:,2));
|
|
|
|
|
|
end
|
|
|
|
|
|
if mod(iter, 50) == 0
|
|
|
|
|
|
fprintf('%4i %6.2e \n', [iter/50, norm(Vbar - Vbarold)/norm(Vbar)]);
|
|
|
|
|
|
if norm(Vbar - Vbarold)/norm(Vbar) < 1e-7, break, end
|
|
|
|
|
|
end
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
Cinterp = griddedInterpolant({p.lgrid, p.tgrid}, reshape(c, p.nl, p.nt), intmeth, 'linear');
|
|
|
|
|
|
plot_decisions
|
|
|
return
|
|
|
simulate
|
|
|
|
|
|
start_new
|
|
|
|
|
|
Cinterp_new = griddedInterpolant({p.lgrid, p.tgrid, p.rgrid}, reshape(c, p.nl, p.nt, p.nr), intmeth, 'linear');
|
|
|
|
|
|
simulate_new |