introvoyz041's picture
Migrated from GitHub
b1b3bae verified
#region Copyright � 2009, De Santiago-Castillo JA. All rights reserved.
//Copyright � 2009 Jose Antonio De Santiago-Castillo
//E-mail:JAntonioDeSantiago@gmail.com
//Web: www.DotNumerics.com
//
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;
//A general tridiagonal matrix is a matrix whose nonzero elements are found only on the diagonal, subdiagonal, and superdiagonal of the matrix; that is:
//aij = 0 if |i-j| > 1
namespace DotNumerics.LinearAlgebra
{
/// <summary>
/// Represents a Tridiagonal Matrix.
/// </summary>
public sealed class TridiagonalMatrix : BaseMatrix
{
#region Public Constructors
/// <summary>
/// Initializes a new instance of the TridiagonalMatrix class of the given size.
/// </summary>
/// <param name="size">Size</param>
public TridiagonalMatrix(int size) : base(size) { }
/// <summary>
/// Initializes a new instance of the TridiagonalMatrix class of the given size using a array
/// </summary>
/// <param name="size">Size</param>
/// <param name="Data">The data</param>
internal TridiagonalMatrix(int size, double[] Data) : base(size, Data) { }
#endregion
#region Public Methods
public override double this[int row, int column]
{
get
{
if (column >= this._ColumnCount)
{
throw new ArgumentException("Index was outside the bounds of the matrix.");
}
return this._Data[row + column * this._RowCount];
}
set
{
if (column >= this._ColumnCount)
{
throw new ArgumentException("Index was outside the bounds of the matrix.");
}
//aij = 0 if |i-j| > 1
if (Math.Abs(row - column) <= 1)
{
this._Data[row + column * this._RowCount] = value;
}
}
}
internal void GetPackedMatrix(out double[] SubDiagonal, out double[] SuperDiagonal, out double[] Diagonal)
{
Diagonal = new double[this._RowCount];
SubDiagonal = new double[this._RowCount - 1];
SuperDiagonal = new double[this._RowCount - 1];
//Para la diagonal
for (int i = 0; i < this._RowCount; i++)
{
Diagonal[i] = this._Data[i + i * this._RowCount];
}
//Para la SubDiagonal
for (int i = 0; i < this._RowCount - 1; i++)
{
SubDiagonal[i] = this._Data[i + 1 + i * this._RowCount];
}
//Para la SuperDiagonal
for (int i = 0; i < this._RowCount - 1; i++)
{
SuperDiagonal[i] = this._Data[i + (i + 1) * this._RowCount];
}
}
public TridiagonalMatrix Clone()
{
TridiagonalMatrix NewMatrix = new TridiagonalMatrix(this._RowCount, this._Data);
return NewMatrix;
}
#region Static methods
/// <summary>Generate a TridiagonalMatrix with random elements</summary>
/// <param name="size">Size</param>
public static TridiagonalMatrix Random(int size)
{
System.Random random = new System.Random();
TridiagonalMatrix X = new TridiagonalMatrix(size);
double[] XData = X.Data;
for (int j = 0; j < X.ColumnCount; j++)
{
for (int i = 0; i < X.RowCount; i++)
{
X[i, j] = random.NextDouble();
}
}
return X;
}
#endregion
#endregion
#region Overloading Operators
/// <summary>
/// Matrix addition.
/// </summary>
/// <param name="A">The left side matrix of the addition operator.</param>
/// <param name="B">The right side matrix of the addition operator.</param>
/// <returns>A matrix that represents the result of the matrix addition.</returns>
public static TridiagonalMatrix operator +(TridiagonalMatrix A, TridiagonalMatrix B)
{
if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions are not valid.");
}
TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);
double[] AData = A.Data;
double[] BData = B.Data;
double[] CData = C.Data;
for (int i = 0; i < AData.Length; i++)
{
CData[i] = AData[i] + BData[i];
}
return C;
}
/// <summary>
/// Matrix subtraction.
/// </summary>
/// <param name="A"> The left side matrix of the subtraction operator.</param>
/// <param name="B">The right side matrix of the subtraction operator.</param>
/// <returns>A matrix that represents the result of the matrix subtraction.</returns>
public static TridiagonalMatrix operator -(TridiagonalMatrix A, TridiagonalMatrix B)
{
if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions are not valid.");
}
TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);
double[] AData = A.Data;
double[] BData = B.Data;
double[] CData = C.Data;
for (int i = 0; i < AData.Length; i++)
{
CData[i] = AData[i] - BData[i];
}
return C;
}
#region Scalar-Matrix Multiplication
/// <summary>
/// Scalar-Matrix multiplication.
/// </summary>
/// <param name="s"> The left side scalar of the multiplication operator.</param>
/// <param name="A">The right side matrix of the multiplication operator.</param>
/// <returns>A matrix that represents the result of the multiplication.</returns>
public static TridiagonalMatrix operator *(double s, TridiagonalMatrix A)
{
TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);
double[] AData = A.Data;
double[] CData = C.Data;
Matrix.MultiplicationSM(s, AData, CData);
return C;
}
#endregion
/// <summary>
/// Implicit TridiagonalMatrix to Matrix conversion.
/// </summary>
/// <param name="tridiagonal"> The TridiagonalMatrix.</param>
/// <returns>The Matrix.</returns>
public static implicit operator Matrix(TridiagonalMatrix tridiagonal)
{
Matrix NewMatrix = new Matrix(tridiagonal.RowCount, tridiagonal.ColumnCount, tridiagonal.Data);
return NewMatrix;
}
#endregion
}
}