|
|
#region Copyright � 2009, De Santiago-Castillo JA. All rights reserved.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endregion
|
|
|
|
|
|
using System;
|
|
|
using System.Collections.Generic;
|
|
|
using System.Text;
|
|
|
using System.Diagnostics;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace DotNumerics.LinearAlgebra
|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
public sealed class TridiagonalMatrix : BaseMatrix
|
|
|
{
|
|
|
#region Public Constructors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public TridiagonalMatrix(int size) : base(size) { }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
internal TridiagonalMatrix(int size, double[] Data) : base(size, Data) { }
|
|
|
|
|
|
#endregion
|
|
|
|
|
|
|
|
|
#region Public Methods
|
|
|
|
|
|
public override double this[int row, int column]
|
|
|
{
|
|
|
get
|
|
|
{
|
|
|
if (column >= this._ColumnCount)
|
|
|
{
|
|
|
throw new ArgumentException("Index was outside the bounds of the matrix.");
|
|
|
}
|
|
|
return this._Data[row + column * this._RowCount];
|
|
|
}
|
|
|
set
|
|
|
{
|
|
|
if (column >= this._ColumnCount)
|
|
|
{
|
|
|
throw new ArgumentException("Index was outside the bounds of the matrix.");
|
|
|
}
|
|
|
|
|
|
if (Math.Abs(row - column) <= 1)
|
|
|
{
|
|
|
this._Data[row + column * this._RowCount] = value;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
|
|
|
internal void GetPackedMatrix(out double[] SubDiagonal, out double[] SuperDiagonal, out double[] Diagonal)
|
|
|
{
|
|
|
Diagonal = new double[this._RowCount];
|
|
|
SubDiagonal = new double[this._RowCount - 1];
|
|
|
SuperDiagonal = new double[this._RowCount - 1];
|
|
|
|
|
|
|
|
|
for (int i = 0; i < this._RowCount; i++)
|
|
|
{
|
|
|
Diagonal[i] = this._Data[i + i * this._RowCount];
|
|
|
}
|
|
|
|
|
|
|
|
|
for (int i = 0; i < this._RowCount - 1; i++)
|
|
|
{
|
|
|
SubDiagonal[i] = this._Data[i + 1 + i * this._RowCount];
|
|
|
}
|
|
|
|
|
|
|
|
|
for (int i = 0; i < this._RowCount - 1; i++)
|
|
|
{
|
|
|
SuperDiagonal[i] = this._Data[i + (i + 1) * this._RowCount];
|
|
|
}
|
|
|
}
|
|
|
|
|
|
public TridiagonalMatrix Clone()
|
|
|
{
|
|
|
TridiagonalMatrix NewMatrix = new TridiagonalMatrix(this._RowCount, this._Data);
|
|
|
return NewMatrix;
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#region Static methods
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static TridiagonalMatrix Random(int size)
|
|
|
{
|
|
|
System.Random random = new System.Random();
|
|
|
|
|
|
TridiagonalMatrix X = new TridiagonalMatrix(size);
|
|
|
|
|
|
double[] XData = X.Data;
|
|
|
|
|
|
for (int j = 0; j < X.ColumnCount; j++)
|
|
|
{
|
|
|
for (int i = 0; i < X.RowCount; i++)
|
|
|
{
|
|
|
X[i, j] = random.NextDouble();
|
|
|
}
|
|
|
}
|
|
|
return X;
|
|
|
}
|
|
|
|
|
|
#endregion
|
|
|
|
|
|
#endregion
|
|
|
|
|
|
#region Overloading Operators
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static TridiagonalMatrix operator +(TridiagonalMatrix A, TridiagonalMatrix B)
|
|
|
{
|
|
|
if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount)
|
|
|
{
|
|
|
throw new System.ArgumentException("Matrix dimensions are not valid.");
|
|
|
}
|
|
|
|
|
|
TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);
|
|
|
|
|
|
double[] AData = A.Data;
|
|
|
double[] BData = B.Data;
|
|
|
double[] CData = C.Data;
|
|
|
|
|
|
for (int i = 0; i < AData.Length; i++)
|
|
|
{
|
|
|
CData[i] = AData[i] + BData[i];
|
|
|
}
|
|
|
|
|
|
return C;
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static TridiagonalMatrix operator -(TridiagonalMatrix A, TridiagonalMatrix B)
|
|
|
{
|
|
|
if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount)
|
|
|
{
|
|
|
throw new System.ArgumentException("Matrix dimensions are not valid.");
|
|
|
}
|
|
|
|
|
|
TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);
|
|
|
|
|
|
double[] AData = A.Data;
|
|
|
double[] BData = B.Data;
|
|
|
double[] CData = C.Data;
|
|
|
|
|
|
for (int i = 0; i < AData.Length; i++)
|
|
|
{
|
|
|
CData[i] = AData[i] - BData[i];
|
|
|
}
|
|
|
|
|
|
return C;
|
|
|
}
|
|
|
|
|
|
#region Scalar-Matrix Multiplication
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static TridiagonalMatrix operator *(double s, TridiagonalMatrix A)
|
|
|
{
|
|
|
TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);
|
|
|
|
|
|
double[] AData = A.Data;
|
|
|
double[] CData = C.Data;
|
|
|
|
|
|
|
|
|
Matrix.MultiplicationSM(s, AData, CData);
|
|
|
|
|
|
return C;
|
|
|
}
|
|
|
|
|
|
#endregion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static implicit operator Matrix(TridiagonalMatrix tridiagonal)
|
|
|
{
|
|
|
Matrix NewMatrix = new Matrix(tridiagonal.RowCount, tridiagonal.ColumnCount, tridiagonal.Data);
|
|
|
return NewMatrix;
|
|
|
}
|
|
|
|
|
|
|
|
|
#endregion
|
|
|
|
|
|
}
|
|
|
}
|
|
|
|