|
|
namespace Mapack |
|
|
{ |
|
|
using System; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public class LuDecomposition |
|
|
{ |
|
|
private Matrix LU; |
|
|
private int pivotSign; |
|
|
private int[] pivotVector; |
|
|
|
|
|
|
|
|
public LuDecomposition(Matrix value) |
|
|
{ |
|
|
if (value == null) |
|
|
{ |
|
|
throw new ArgumentNullException("value"); |
|
|
} |
|
|
|
|
|
this.LU = (Matrix) value.Clone(); |
|
|
double[][] lu = LU.Array; |
|
|
int rows = value.Rows; |
|
|
int columns = value.Columns; |
|
|
pivotVector = new int[rows]; |
|
|
for (int i = 0; i < rows; i++) |
|
|
{ |
|
|
pivotVector[i] = i; |
|
|
} |
|
|
|
|
|
pivotSign = 1; |
|
|
double[] LUrowi; |
|
|
double[] LUcolj = new double[rows]; |
|
|
|
|
|
|
|
|
for (int j = 0; j < columns; j++) |
|
|
{ |
|
|
|
|
|
for (int i = 0; i < rows; i++) |
|
|
{ |
|
|
LUcolj[i] = lu[i][j]; |
|
|
} |
|
|
|
|
|
|
|
|
for (int i = 0; i < rows; i++) |
|
|
{ |
|
|
LUrowi = lu[i]; |
|
|
|
|
|
|
|
|
int kmax = Math.Min(i,j); |
|
|
double s = 0.0; |
|
|
for (int k = 0; k < kmax; k++) |
|
|
{ |
|
|
s += LUrowi[k]*LUcolj[k]; |
|
|
} |
|
|
LUrowi[j] = LUcolj[i] -= s; |
|
|
} |
|
|
|
|
|
|
|
|
int p = j; |
|
|
for (int i = j+1; i < rows; i++) |
|
|
{ |
|
|
if (Math.Abs(LUcolj[i]) > Math.Abs(LUcolj[p])) |
|
|
{ |
|
|
p = i; |
|
|
} |
|
|
} |
|
|
|
|
|
if (p != j) |
|
|
{ |
|
|
for (int k = 0; k < columns; k++) |
|
|
{ |
|
|
double t = lu[p][k]; |
|
|
lu[p][k] = lu[j][k]; |
|
|
lu[j][k] = t; |
|
|
} |
|
|
|
|
|
int v = pivotVector[p]; |
|
|
pivotVector[p] = pivotVector[j]; |
|
|
pivotVector[j] = v; |
|
|
|
|
|
pivotSign = - pivotSign; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if (j < rows & lu[j][j] != 0.0) |
|
|
{ |
|
|
for (int i = j+1; i < rows; i++) |
|
|
{ |
|
|
lu[i][j] /= lu[j][j]; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
public bool NonSingular |
|
|
{ |
|
|
get |
|
|
{ |
|
|
for (int j = 0; j < LU.Columns; j++) |
|
|
if (LU[j, j] == 0) |
|
|
return false; |
|
|
return true; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
public double Determinant |
|
|
{ |
|
|
get |
|
|
{ |
|
|
if (LU.Rows != LU.Columns) throw new ArgumentException("Matrix must be square."); |
|
|
double determinant = (double) pivotSign; |
|
|
for (int j = 0; j < LU.Columns; j++) |
|
|
determinant *= LU[j, j]; |
|
|
return determinant; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
public Matrix LowerTriangularFactor |
|
|
{ |
|
|
get |
|
|
{ |
|
|
int rows = LU.Rows; |
|
|
int columns = LU.Columns; |
|
|
Matrix X = new Matrix(rows, columns); |
|
|
for (int i = 0; i < rows; i++) |
|
|
for (int j = 0; j < columns; j++) |
|
|
if (i > j) |
|
|
X[i,j] = LU[i,j]; |
|
|
else if (i == j) |
|
|
X[i,j] = 1.0; |
|
|
else |
|
|
X[i,j] = 0.0; |
|
|
return X; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
public Matrix UpperTriangularFactor |
|
|
{ |
|
|
get |
|
|
{ |
|
|
int rows = LU.Rows; |
|
|
int columns = LU.Columns; |
|
|
Matrix X = new Matrix(rows, columns); |
|
|
for (int i = 0; i < rows; i++) |
|
|
for (int j = 0; j < columns; j++) |
|
|
if (i <= j) |
|
|
X[i,j] = LU[i,j]; |
|
|
else |
|
|
X[i,j] = 0.0; |
|
|
return X; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
public double[] PivotPermutationVector |
|
|
{ |
|
|
get |
|
|
{ |
|
|
int rows = LU.Rows; |
|
|
|
|
|
double[] p = new double[rows]; |
|
|
for (int i = 0; i < rows; i++) |
|
|
{ |
|
|
p[i] = (double) this.pivotVector[i]; |
|
|
} |
|
|
|
|
|
return p; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public Matrix Solve(Matrix value) |
|
|
{ |
|
|
if (value == null) |
|
|
{ |
|
|
throw new ArgumentNullException("value"); |
|
|
} |
|
|
|
|
|
if (value.Rows != this.LU.Rows) |
|
|
{ |
|
|
throw new ArgumentException("Invalid matrix dimensions.", "value"); |
|
|
} |
|
|
|
|
|
if (!this.NonSingular) |
|
|
{ |
|
|
throw new InvalidOperationException("Matrix is singular"); |
|
|
} |
|
|
|
|
|
|
|
|
int count = value.Columns; |
|
|
Matrix X = value.Submatrix(pivotVector, 0, count-1); |
|
|
|
|
|
int rows = LU.Rows; |
|
|
int columns = LU.Columns; |
|
|
double[][] lu = LU.Array; |
|
|
|
|
|
|
|
|
for (int k = 0; k < columns; k++) |
|
|
{ |
|
|
for (int i = k + 1; i < columns; i++) |
|
|
{ |
|
|
for (int j = 0; j < count; j++) |
|
|
{ |
|
|
X[i,j] -= X[k,j] * lu[i][k]; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
for (int k = columns - 1; k >= 0; k--) |
|
|
{ |
|
|
for (int j = 0; j < count; j++) |
|
|
{ |
|
|
X[k,j] /= lu[k][k]; |
|
|
} |
|
|
|
|
|
for (int i = 0; i < k; i++) |
|
|
{ |
|
|
for (int j = 0; j < count; j++) |
|
|
{ |
|
|
X[i,j] -= X[k,j] * lu[i][k]; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
return X; |
|
|
} |
|
|
} |
|
|
} |
|
|
|