|
|
|
|
|
"""Advanced circle packing for n=26 circles in a unit square""" |
|
|
import numpy as np |
|
|
from scipy.optimize import minimize |
|
|
|
|
|
|
|
|
def construct_packing(): |
|
|
""" |
|
|
Construct an optimized arrangement of 26 circles in a unit square |
|
|
using mathematical principles and optimization techniques. |
|
|
|
|
|
Returns: |
|
|
Tuple of (centers, radii, sum_of_radii) |
|
|
centers: np.array of shape (26, 2) with (x, y) coordinates |
|
|
radii: np.array of shape (26) with radius of each circle |
|
|
sum_of_radii: Sum of all radii |
|
|
""" |
|
|
n = 26 |
|
|
|
|
|
|
|
|
centers = np.zeros((n, 2)) |
|
|
radii = np.zeros(n) |
|
|
|
|
|
|
|
|
radii[:] = np.linspace(0.12, 0.05, n) |
|
|
|
|
|
|
|
|
grid_x = int(np.sqrt(n)) |
|
|
grid_y = int(n / grid_x) |
|
|
|
|
|
x_coords = np.linspace(0.15, 0.85, grid_x) |
|
|
y_coords = np.linspace(0.15, 0.85, grid_y) |
|
|
|
|
|
count = 0 |
|
|
for i in range(grid_x): |
|
|
for j in range(grid_y): |
|
|
if count < n: |
|
|
centers[count] = [x_coords[i] + 0.05 * (j % 2), y_coords[j]] |
|
|
count += 1 |
|
|
|
|
|
|
|
|
while count < n: |
|
|
centers[count] = np.random.rand(2) * 0.7 + 0.15 |
|
|
count += 1 |
|
|
|
|
|
|
|
|
def objective(x): |
|
|
centers = x[: 2 * n].reshape(n, 2) |
|
|
radii = x[2 * n :] |
|
|
return -np.sum(radii) |
|
|
|
|
|
|
|
|
def constraint(x): |
|
|
centers = x[: 2 * n].reshape(n, 2) |
|
|
radii = x[2 * n :] |
|
|
|
|
|
|
|
|
overlap_constraints = [] |
|
|
for i in range(n): |
|
|
for j in range(i + 1, n): |
|
|
dist = np.sqrt(np.sum((centers[i] - centers[j]) ** 2)) |
|
|
overlap_constraints.append(dist - (radii[i] + radii[j])) |
|
|
|
|
|
|
|
|
boundary_constraints = [] |
|
|
for i in range(n): |
|
|
boundary_constraints.append(centers[i, 0] - radii[i]) |
|
|
boundary_constraints.append(1 - centers[i, 0] - radii[i]) |
|
|
boundary_constraints.append(centers[i, 1] - radii[i]) |
|
|
boundary_constraints.append(1 - centers[i, 1] - radii[i]) |
|
|
|
|
|
return np.array(overlap_constraints + boundary_constraints) |
|
|
|
|
|
|
|
|
x0 = np.concatenate([centers.flatten(), radii]) |
|
|
|
|
|
|
|
|
bounds = [(0, 1)] * (2 * n) + [(0.03, 0.2)] * n |
|
|
|
|
|
|
|
|
constraints = {"type": "ineq", "fun": constraint} |
|
|
|
|
|
|
|
|
result = minimize( |
|
|
objective, |
|
|
x0, |
|
|
method="SLSQP", |
|
|
bounds=bounds, |
|
|
constraints=constraints, |
|
|
options={"maxiter": 1000, "ftol": 1e-8}, |
|
|
) |
|
|
|
|
|
|
|
|
optimized_centers = result.x[: 2 * n].reshape(n, 2) |
|
|
optimized_radii = result.x[2 * n :] |
|
|
|
|
|
|
|
|
optimized_radii = np.maximum(optimized_radii, 0.001) |
|
|
|
|
|
|
|
|
sum_radii = np.sum(optimized_radii) |
|
|
|
|
|
return optimized_centers, optimized_radii, sum_radii |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_packing(): |
|
|
"""Run the circle packing constructor for n=26""" |
|
|
centers, radii, sum_radii = construct_packing() |
|
|
return centers, radii, sum_radii |
|
|
|
|
|
|
|
|
def visualize(centers, radii): |
|
|
""" |
|
|
Visualize the circle packing |
|
|
|
|
|
Args: |
|
|
centers: np.array of shape (n, 2) with (x, y) coordinates |
|
|
radii: np.array of shape (n) with radius of each circle |
|
|
""" |
|
|
import matplotlib.pyplot as plt |
|
|
from matplotlib.patches import Circle |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(8, 8)) |
|
|
|
|
|
|
|
|
ax.set_xlim(0, 1) |
|
|
ax.set_ylim(0, 1) |
|
|
ax.set_aspect("equal") |
|
|
ax.grid(True) |
|
|
|
|
|
|
|
|
for i, (center, radius) in enumerate(zip(centers, radii)): |
|
|
circle = Circle(center, radius, alpha=0.5) |
|
|
ax.add_patch(circle) |
|
|
ax.text(center[0], center[1], str(i), ha="center", va="center") |
|
|
|
|
|
plt.title(f"Circle Packing (n={len(centers)}, sum={sum(radii):.6f})") |
|
|
plt.show() |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
centers, radii, sum_radii = run_packing() |
|
|
print(f"Sum of radii: {sum_radii}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|