introvoyz041's picture
Migrated from GitHub
5e4510c verified
# EVOLVE-BLOCK-START
"""Advanced circle packing for n=26 circles in a unit square"""
import numpy as np
from scipy.optimize import minimize
def construct_packing():
"""
Construct an optimized arrangement of 26 circles in a unit square
using mathematical principles and optimization techniques.
Returns:
Tuple of (centers, radii, sum_of_radii)
centers: np.array of shape (26, 2) with (x, y) coordinates
radii: np.array of shape (26) with radius of each circle
sum_of_radii: Sum of all radii
"""
n = 26
# Initial guess: Strategic placement with some randomness
centers = np.zeros((n, 2))
radii = np.zeros(n)
# Heuristic placement for better initial guess: place larger circles in center
radii[:] = np.linspace(0.12, 0.05, n) # Linear distribution of radii
# Initial placement: approximate hexagonal grid
grid_x = int(np.sqrt(n))
grid_y = int(n / grid_x)
x_coords = np.linspace(0.15, 0.85, grid_x)
y_coords = np.linspace(0.15, 0.85, grid_y)
count = 0
for i in range(grid_x):
for j in range(grid_y):
if count < n:
centers[count] = [x_coords[i] + 0.05 * (j % 2), y_coords[j]]
count += 1
# Place remaining circles randomly
while count < n:
centers[count] = np.random.rand(2) * 0.7 + 0.15
count += 1
# Objective function: Negative sum of radii (to maximize)
def objective(x):
centers = x[: 2 * n].reshape(n, 2)
radii = x[2 * n :]
return -np.sum(radii)
# Constraint: No overlaps and circles stay within the unit square
def constraint(x):
centers = x[: 2 * n].reshape(n, 2)
radii = x[2 * n :]
# Overlap constraint
overlap_constraints = []
for i in range(n):
for j in range(i + 1, n):
dist = np.sqrt(np.sum((centers[i] - centers[j]) ** 2))
overlap_constraints.append(dist - (radii[i] + radii[j]))
# Boundary constraints
boundary_constraints = []
for i in range(n):
boundary_constraints.append(centers[i, 0] - radii[i]) # x >= radius
boundary_constraints.append(1 - centers[i, 0] - radii[i]) # x <= 1 - radius
boundary_constraints.append(centers[i, 1] - radii[i]) # y >= radius
boundary_constraints.append(1 - centers[i, 1] - radii[i]) # y <= 1 - radius
return np.array(overlap_constraints + boundary_constraints)
# Initial guess vector
x0 = np.concatenate([centers.flatten(), radii])
# Bounds: Circles stay within the unit square and radii are positive
bounds = [(0, 1)] * (2 * n) + [(0.03, 0.2)] * n # radii are positive, up to 0.2
# Constraints dictionary
constraints = {"type": "ineq", "fun": constraint}
# Optimization using SLSQP
result = minimize(
objective,
x0,
method="SLSQP",
bounds=bounds,
constraints=constraints,
options={"maxiter": 1000, "ftol": 1e-8},
)
# Extract optimized centers and radii
optimized_centers = result.x[: 2 * n].reshape(n, 2)
optimized_radii = result.x[2 * n :]
# Ensure radii are not negative (numerical stability)
optimized_radii = np.maximum(optimized_radii, 0.001)
# Calculate the sum of radii
sum_radii = np.sum(optimized_radii)
return optimized_centers, optimized_radii, sum_radii
# EVOLVE-BLOCK-END
# This part remains fixed (not evolved)
def run_packing():
"""Run the circle packing constructor for n=26"""
centers, radii, sum_radii = construct_packing()
return centers, radii, sum_radii
def visualize(centers, radii):
"""
Visualize the circle packing
Args:
centers: np.array of shape (n, 2) with (x, y) coordinates
radii: np.array of shape (n) with radius of each circle
"""
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
fig, ax = plt.subplots(figsize=(8, 8))
# Draw unit square
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.set_aspect("equal")
ax.grid(True)
# Draw circles
for i, (center, radius) in enumerate(zip(centers, radii)):
circle = Circle(center, radius, alpha=0.5)
ax.add_patch(circle)
ax.text(center[0], center[1], str(i), ha="center", va="center")
plt.title(f"Circle Packing (n={len(centers)}, sum={sum(radii):.6f})")
plt.show()
if __name__ == "__main__":
centers, radii, sum_radii = run_packing()
print(f"Sum of radii: {sum_radii}")
# AlphaEvolve improved this to 2.635
# Uncomment to visualize:
# visualize(centers, radii)