Datasets:

inputs
stringlengths
50
14k
targets
stringlengths
4
655k
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def util(self,i,n,A,K,d) : if i >= n : return 0 if i not in d : count=0 ma=A[i] temp=-1 while (i + count < n) and count<=K-1 : if A[i+count] > ma : ma=A[i+count] nex=self.util(i+count+1,n,A,K,d) if (count+1)*ma+nex > temp : temp=(count+1)*ma+nex count+=1 d[i]=temp return d[i] def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n=len(A) d={} return self.util(0,n,A,K,d)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: visited={} def recurse(index): if index>=len(A): return 0 if index in visited: return visited[index] mxx=0 ans=0 for i in range(K): if index+i<len(A): mxx=max(mxx,A[i+index]) ans=max(ans,mxx*(i+1)+recurse(i+index+1)) visited[index]=ans return ans return recurse(0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = {} def recur(index,arr,k): if index >= len(arr): return 0 if index in dp: return dp[index] maxi = 0 res = 0 for i in range(k): if index+i < len(arr): maxi = max(maxi, arr[index+i]) res = max(res, maxi * (i+1) + recur(index + i + 1, arr, k)) dp[index] = res return res return recur(0, arr, k)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0]*(n+1) for i in range(n): curMax = 0 for k in range(1, min(K,i+1)+1 ): curMax = max(curMax, A[i-k+1]) dp[i] = max(dp[i], dp[i-k]+curMax*k) print(dp) return dp[n-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = {} def recur(i,arr,k): if i >= len(arr): return 0 if i in dp: return dp[i] maxi,res = 0,0 for j in range(k): if i+j < len(arr): maxi = max(maxi, arr[i+j]) res = max(res, maxi * (j+1) + recur(i + j + 1, arr, k)) dp[i] = res return res return recur(0, arr, k)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp=[0]*len(arr) dp[0]=arr[0] max_value=arr[0] max_sum=arr[0] for i in range(1,k): max_value=max(max_value,arr[i]) dp[i]=max_value*(i+1) for i in range(k,len(arr)): max_value=0 for j in range(k): max_value=max(max_value,arr[i-j]) dp[i]=max(dp[i],dp[i-j-1]+max_value*(j+1)) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
from collections import deque class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = deque([0 for i in range(K)]) for i in range(1, len(A)+1): maxA, maxP = float('-inf'), float('-inf') for j in range(1, min(K+1, i+1)): maxA = max(maxA, A[i-j]) maxP = max(maxP, dp[-j] + j*maxA) dp.popleft() dp.append(maxP) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
from collections import deque class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = deque([0 for i in range(K)]) for i in range(1, len(A)+1): maxA, maxP = float('-inf'), float('-inf') for j in range(1, min(K, i)+1): maxA = max(maxA, A[i-j]) maxP = max(maxP, dp[-j] + j*maxA) dp.popleft() dp.append(maxP) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: inf = 0x3f3f3f3f dp = [[(-inf, -inf) for _ in range(k+1)] for _ in range(2)] last_max = 0 dp[0][0] = (0, 0) for i in range(1, len(arr) + 1): for j in range(1, k + 1): if j == 1: dp[i%2][j] = (last_max + arr[i-1], arr[i-1]) last_max = dp[i%2][j][0] elif i >= j: last_s, last_n = dp[(i-1)%2][j-1] n = max(last_n, arr[i-1]) s = last_s - last_n * (j-1) + n * j dp[i%2][j] = (s, n) last_max = max(last_max, s) # print(i, j, dp[i][j]) return last_max
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A, K): N = len(A) dp = [0] * (N + 1) for i in range(N): curMax = 0 for k in range(1, min(K, i + 1) + 1): curMax = max(curMax, A[i - k + 1]) dp[i] = max(dp[i], dp[i - k] + curMax * k) return dp[N - 1] #Time Complexity- O(N*K)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: N = len(A) if K == 1 or N == 1: return sum(A) dp = [0] * (N + 1) dp[0] = 0 for i in range(N): mv = A[i] dp[i+1] = dp[i] + A[i] for j in range(1, min(i+1, K)): mv = max(mv, A[i-j]) dp[i+1] = max(dp[i+1], dp[i-j] + (j+1)*mv) # print(dp) return dp[N]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: size = len(A) if K == 1: return sum(A) dp = [0] * (size+1) for i in range(size): cur_max = A[i] block_size = 1 while block_size <= K and i - block_size + 1 >= 0: cur_max = max(cur_max, A[i-block_size + 1]) dp[i+1] = max(dp[i+1], dp[i-block_size + 1] + block_size * cur_max) block_size += 1 return dp[size]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n=len(arr) dp=[[-1]*(n+1) for _ in range(n+1)] def maxsum(i=0): if i>=n:return 0 elif dp[i][n]!=-1: return dp[i][n] else: mx=0 for j in range(i,min(i+k,n)): mx=max(arr[j],mx) dp[i][j]=mx*(j-i+1) dp[i][n]=max(dp[i][n],dp[i][j]+maxsum(j+1)) return dp[i][n] return maxsum()
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0] * (n := len(arr)) dp[0] = curr_max = arr[0] for i in range(1, k): curr_max = max(curr_max, arr[i]) dp[i] = (i + 1) * curr_max for i in range(k, n): curr_max = arr[i] for j in range(k): curr_max = max(curr_max, arr[i-j]) dp[i] = max(dp[i], dp[i-j-1] + (j + 1) * curr_max) return dp[-1] # @lru_cache(None) # def dp(idx): # if idx < 0: # return 0 # left = max(idx - k + 1, 0) # curr_max = arr[idx] # res = arr[idx] # for i in range(idx, left - 1, -1): # curr_max = max(curr_max, arr[i]) # res = max(res, dp(i-1) + (idx - i + 1) * curr_max) # return res # return dp(len(arr) - 1) # A = arr # dp = [0] * (n := len(arr)) # dp[0] = curr_max = arr[0] # for i in range(1, k): # curr_max = max(curr_max, A[i]) # dp[i] = (i + 1) * curr_max # for i in range(k, n): # curr_max = A[i] # for j in range(k): # curr_max = max(curr_max, A[i-j]) # dp[i] = max(dp[i], dp[i-j-1] + curr_max * (j + 1)) # return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
from collections import deque class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = deque([0 for i in range(K)]) for i in range(1, len(A)+1): maxA, maxP = float('-inf'), float('-inf') for j in range(1, min(K+1, i+1)): maxA = max(maxA, A[i-j]) maxP = max(maxP, dp[-j] + j*maxA) dp.popleft() dp.append(maxP) return dp.pop()
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
''' what would be the state ? i: current position partition start just try allof them is probably the answer [1,15,7,9,2,5,10] try all possible partitions and keep track of the max and sum so far helper(start, i) for j in range(i, k - i + start + 1): # these are the possible ends helper(start, j) if i = 2 and start = 1 and k = 3 from i=2 to 5 - 1 = 4 instead it should be 1, 2, 3, so only one more so i + 1 = i + k - i if i = 2 and start = 1 and k = 4 it shld be 1, 2, 3, 4 i just want to know much left to get to k k = end - start k = j + i - start -> j = k - i + start class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: def helper(i, left, curr_max, sum_so_far): print(\"helper i =\", i, \", left =\", left, \", curr_max =\", curr_max) if i == len(arr): self.res = max(self.res, sum_so_far + (curr_max * (k - left))) return 0 # continue current partition choice1 = float('-inf') if left > 0: choice1 = helper(i + 1, left - 1, max(curr_max, arr[i]), sum_so_far) # start a new partition choice2 = helper(i + 1, k, arr[i], sum_so_far + (curr_max * (k - left))) print(\"choice1 =\", choice1, \", choice2 =\", choice2) return max(choice1, choice2) self.res = float('-inf') helper(0, k, arr[0], 0) return self.res ''' ''' dp[i]: max sum for arr ending at i ''' class Solution: def maxSumAfterPartitioning(self, arr: List[int], K: int) -> int: n = len(arr) dp = [0 for _ in range(n+1)] for i in range(n): # i is considered the end of the partition currMax = 0 for k in range(1, min(K, i + 1) + 1): currMax = max(currMax, arr[i - k + 1]) dp[i] = max(dp[i], dp[i-k] + (currMax * k)) return dp[n-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: if arr is None or len(arr) == 0: return 0 dp = [0 for _ in range(len(arr))] for i in range(len(arr)): max_elem = arr[i] j = 1 while j <= k and i - j + 1 >= 0: max_elem = max(max_elem, arr[i - j + 1]) if i - j >= 0: dp[i] = max(dp[i], max_elem * j + dp[i - j]) else: dp[i] = max(dp[i], max_elem * j) j += 1 return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0] * (n+1) for i, a in enumerate(A): r = a for j in range(1, K+1): r = max(r, A[i-j+1] if i-j+1>=0 else float('-inf')) # print(i, j, r, dp) if i-j+1 >= 0: dp[i+1] = max(dp[i+1], dp[i-j+1] + r*j) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: cacheMax=[[0]*len(arr) for i in range(len(arr))] for i in range(len(arr)): cacheMax[i][i]=arr[i] for i in range(1,len(arr)): for j in range(i): cacheMax[j][i] = max(cacheMax[j][i-1],arr[i]) dp=[0]*(len(arr)+1) dp[1]=arr[0] for i in range(1,len(arr)): for j in range(max(0,i-k+1),i+1): dp[i+1]=max(dp[i+1],dp[j]+cacheMax[j][i]*(i-j+1)) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) self.dp = [-1 for i in range(n)] def helper(pos:int)->int: if pos >= n: return 0 if self.dp[pos] != -1: return self.dp[pos] current_max = arr[pos] ret = arr[pos] + helper(pos+1) for i in range(1, k): pos2 = pos + i if pos2 >= n: break current_max = max(current_max, arr[pos2]) ret = max(ret, current_max * (i+1) + helper(pos2+1)) self.dp[pos] = ret return ret return helper(0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) # maxSum[i] = max(A[i] + maxSum[i+1], max(A[i], A[i+1]) + maxSum[i+2], max(A[i], A[i+1], A[i+2], maxSum[i+3])) maxSum = [0] * n; for i in range(-1, -K-1, -1): maxSum[i] = max(A[i:])*(-i) for i in range(n-K-1, -1, -1): ms = 0 for k in range(1, K+1): ms = max(ms, max(A[i:i+k]) * k + maxSum[i+k]) # print(i,k,ms) maxSum[i] = ms # print(maxSum) return maxSum[0]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: @lru_cache(None) def helper(index, start, mx): if index == len(arr): return (index - start)* mx if index - start + 1 <= k: return max(helper(index + 1, start, max(arr[index], mx)), (index - start)*mx + helper(index + 1, index , arr[index])) return (index - start)*mx + helper(index + 1, index , arr[index]) return helper(0, 0, arr[0])
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: inf = 0x3f3f3f3f dp = [[(-inf, -inf) for _ in range(k+1)] for _ in range(len(arr)+1)] last_max = 0 dp[0][0] = (0, 0) for i in range(1, len(arr) + 1): for j in range(1, k + 1): if j == 1: dp[i][j] = (last_max + arr[i-1], arr[i-1]) last_max = dp[i][j][0] elif i >= j: last_s, last_n = dp[i-1][j-1] n = max(last_n, arr[i-1]) s = last_s - last_n * (j-1) + n * j dp[i][j] = (s, n) last_max = max(last_max, s) # print(i, j, dp[i][j]) return last_max
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = [0] * len(A) for i in range(K): dp[i] = max(A[:(i + 1)]) * (i + 1) for i in range(K, len(A)): dp[i] = max([dp[i - j] + max(A[(i - j + 1):(i + 1)]) * j for j in range(1, K + 1)]) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: ''' For each element, it can either go to the previous group, or start a new group dp[i][j] = largest sum before i when last group's size is j, last group's largest value ''' dp = [[(0, 0)] * k for _ in range(len(arr)+1)] for i in range(1, len(arr)+1): for j in range(min(i, k)): if j == 0: dp[i][j] = max((dp[i-1][m][0] + arr[i-1], arr[i-1]) for m in range(min(i, k))) else: new_max = max(dp[i-1][j-1][1], arr[i-1]) dp[i][j] = dp[i-1][j-1][0] - j * dp[i-1][j-1][1] + new_max * (j + 1), new_max #print(dp) return max(dp[-1])[0]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [0]*n for i in range(n-1, -1, -1): curr_max = arr[i] for j in range(0, k): index = min(n-1, i+j) curr_max = max(curr_max, arr[index]) if i+j+1 >= n: dp[i] = (n-i)*curr_max else: dp[i] = max(dp[i], dp[i+j+1] + (j+1)*curr_max) return dp[0]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: if not arr: return 0 local_max = {(idx, idx+1) :arr[idx] for idx in range(len(arr))} for l in range(2, k+1): for start in range(len(arr)-l+1): local_max[(start, start+l)] = max(local_max[(start, start+l-1)], local_max [(start+1, start+l)]) f = [0] for end in range(1, len(arr)+1): _local = 0 for start in range(max(0, end-k), end): _local = max(f[start]+local_max[(start, end)]*(end-start), _local) f.append(_local) return f[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n=len(arr) memo=[0]*n for i in range(n): if i<k: memo[i]=(i+1)*max(arr[:i+1]) else: memo[i]=max(memo[i-j-1]+(j+1)*max(arr[i-j:i+1]) for j in range(k)) return memo[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: # 动态规划 length = len(arr) dp = [0]*(length+1) maxval = [[0]*length for _ in range(length)] for i in range(length): for j in range(i, length): if i == j: maxval[i][j] = arr[i] else: maxval[i][j] = max(maxval[i][j-1], arr[j]) # print(maxval) for i in range(1, length+1): temp = 0 # print(\"------{}------\".format(i)) for t in range(1, k+1): temp = max(temp, dp[i-t]+maxval[i-t][i-1]*t) # print(temp) dp[i] = temp # print(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = [0] * len(A) for i in range(K): dp[i] = (i+1) * max(A[:i+1]) for i in range(K,len(A)): maximum = 0 for j in range(1,K+1): if i-j<0: break temp = dp[i-j] + max(A[i-j+1:i+1]) * j if temp>maximum: maximum = temp dp[i] = maximum print(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: def dfs(i, j, max_num=0): if i == -1: return max_num * j if opt[i][j] == -1: a, b = 0, 0 if j < K: a = dfs(i - 1, j + 1, max(max_num, A[i])) b = j * max_num + dfs(i - 1, 1, A[i]) opt[i][j] = max(a, b) return opt[i][j] n = len(A) opt = [[-1] * (K + 1) for _ in range(n)] return dfs(n - 1, 0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: l = len(arr) results = [0] * l for idx, num in enumerate(arr): if idx < k: results[idx] = max(arr[:idx+1]) * (idx + 1) else: res = 0 for i in range(1, k+1): start = idx -i tmp = results[start] + max(arr[start+1:idx+1]) * i res = max(res, tmp) results[idx] = res return results[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: max_sums = [0]*len(arr) for i in range(len(arr)): if i<=k-1: max_sums[i] = (i+1)*max(arr[:i+1]) else: res = 0 for j in range(1,k+1): first = max_sums[i-j] second = j*max(arr[i-j+1:i+1]) #print(i, j) #print(arr[:i-j+1], arr[i-j+1:i+1]) #print(\"first, second \", first, second) res = max(res, first+second) max_sums[i] = res #print(max_sums) #print(max_sums) return max_sums[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: maxx = arr[0] dp = [] for i,_ in enumerate(arr[:k]): maxx=max(arr[i], maxx) dp.append(maxx*(i+1)) for i, _ in enumerate(arr[k::]): i+=k max_sum = 0 for j in range(k): max_sum = max( max_sum,dp[i-j-1] + (max(arr[i-j:i+1])*(j+1)) ) dp.append(max_sum) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: A=arr K=k n=len(A) dp=[0]*n for i in range(K): dp[i]=max(A[:i+1])*(i+1) for i in range(K,n): for j in range(1,K+1): dp[i]=max(dp[i],dp[i-j]+max(A[i-j+1:i+1])*j) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: size = len(arr) dp = [0]*size for i in range(k): dp[i] = max(arr[:i+1])*(i+1) for i in range(k,size): for j in range(1,k+1): dp[i] = max(dp[i],dp[i-j]+max(arr[i-j+1:i+1])*j) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def printm(self,arr): [print(arr[i]) for i in range(len(arr))] def maxSumAfterPartitioning(self, A,K): size = len(A) dp = [0]*size for i in range(K): dp[i] = max(A[:i+1])*(i+1) # printm(dp) for i in range(K,size): for j in range(1,K+1): dp[i] = max(dp[i],dp[i-j]+max(A[i-j+1:i+1])*j) # self.printm(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: L = len(arr) dp = [0] * L for i in range(k): dp[i] = max(arr[:i+1])*(i+1) for i in range(k,L): dp[i] = dp[i-k] + max(arr[i-k+1:i+1])*k for j in range(1,k): dp[i] = max(dp[i],dp[i-j] + max(arr[i-j+1:i+1])*j) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
# dynamic programming # time complexity: O(A*K*K) # dp[i] = max sum of A[:i] after partitioning class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: N = len(A) dp = [float('-inf')] * (N+1) for i in range(1,N+1): if i <= K: dp[i] = max(A[:i]) * i else: for j in range(1,K+1): dp[i] = max(dp[i], dp[i-j]+max(A[i-j:i])*j) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0] * len(arr) for i in range(k): dp[i] = max(arr[:i+1]) * (i+1) for i in range(k, len(arr)): for j in range(1,k+1): dp[i] = max(dp[i], dp[i-j] + j * max(arr[i-j+1:i+1])) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: M = [0 for i in range(len(arr))] M[0] = arr[0] for i in range(1, len(arr)): if i < k: M[i] = max(arr[:i+1]) * (i+1) else: for j in range(1, min(k+1, i+1)): M[i] = max(M[i], M[i-j] + max(arr[i-j+1:i+1]) * j) return M[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: rec = {} def helper(idx): if idx in rec: return rec[idx] if len(arr)-idx <= k: temp = max(arr[idx:])*(len(arr)-idx) rec[idx] = temp return temp pre_max = float('-inf') temp = float('-inf') for j in range(idx, min(idx+k, len(arr))): pre_max = max(pre_max, arr[j]) temp = max(temp, pre_max*(j-idx+1)+helper(j+1)) rec[idx] = temp return temp return helper(0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0]*len(arr) for i in range(k): dp[i] = max(arr[:i+1])*(i+1) #print(dp) for i in range(k,len(arr)): for j in range(1,k+1): dp[i] = max(dp[i],dp[i-j]+max(arr[i-j+1:i+1])*j) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: def maxSum(i, mem): if i in mem: return mem[i] if len(A) - i <= K: mem[i] = max(A[i:]) * (len(A) - i) return mem[i] ans = -float('inf') for j in range(i+1, i+1+K): if j > len(A): break ans = max(ans, max(A[i:j]) * (j-i) + maxSum(j, mem)) mem[i] = ans return mem[i] mem = {} return maxSum(0, mem)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: largest_sums = [] for i in range(len(A)): if i < K: largest_sums.append(max(A[:i+1]) * (i + 1)) continue max_sum = 0 for j in range(K): if i - (j+1) < 0: continue # print(j, i-j-1, largest_sums[i - j-1], max(A[i-j:i+1])) cur_sum = largest_sums[i - j-1] + max(A[i-j:i+1]) * (j + 1) if cur_sum > max_sum: max_sum = cur_sum # print(i, max_sum) largest_sums.append(max_sum) return largest_sums[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: def dfs(i, j, max_num=0): if i == -1: return max_num * j if opt[i][j] == -1: ans = 0 if j < K: ans = max(ans, dfs(i - 1, j + 1, max(max_num, A[i]))) ans = max(ans, j * max_num + dfs(i - 1, 1, A[i])) opt[i][j] = ans return opt[i][j] n = len(A) opt = [[-1] * (K + 1) for _ in range(n)] return dfs(n - 1, 0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0 for i in range(len(arr))] for i in range(k): dp[i] = (i+1)*max(arr[:i+1]) for i in range(k,len(arr)): for j in range(k): dp[i] = max(dp[i], dp[i-j-1]+(j+1)*max(arr[i-j:i+1])) return dp[len(arr)-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0] * n for i in range(K): dp[i] = max(A[:i+1]) * (i + 1) for i in range(K, n): for d in range(1, K + 1): dp[i] = max(dp[i], dp[i - d] + max(A[i - d + 1: i + 1]) * d) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: mm = [[a for a in arr]] for i in range(len(arr) - 1): mm.append([0] * len(arr)) for i in range(1, k): for j in range(i, len(arr)): mm[i][j] = max(mm[i - 1][j - 1], arr[j]) dp = [0] * (len(arr) + 1) for i in range(1, len(arr) + 1): for j in range(max(k, i)): dp[i] = max(dp[i], dp[i - j - 1] + mm[j][i - 1] * (j + 1)) print(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: aLen = len(A) dp = {} def helper(i0): if i0 in dp: return dp[i0] if aLen - i0 <= K: dp[i0] = max(A[i0:])*(aLen-i0) return dp[i0] subAns = 0 thisMax = A[i0] for ki in range(1, K+1): thisMax = max(thisMax, A[i0+ki-1]) subAns = max(subAns, thisMax*ki + helper(i0 +ki)) dp[i0] = subAns return subAns return helper(0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) maxes = [[None for _ in range(n)] for _ in range(n)] for i in range(n): maxes[i][i] = arr[i] for i in range(n): for j in range(i+1, n): maxes[i][j] = max(arr[j], maxes[i][j-1]) dp = [None for _ in range(n+1)] dp[n] = 0 for i in range(n-1, -1, -1): m = float('-inf') for j in range(min(n-i,k)): m = max(m, (j+1)*maxes[i][min(n-1, i+j)] + dp[min(n, i+j+1)]) dp[i] = m return dp[0]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: def helper(index, start, mx): key = (index, start, mx) if key in d: return d[key] if index == len(arr): return (index - start)* mx if index - start + 1 <= k: d[key] = max(helper(index + 1, start, max(arr[index], mx)), (index - start)*mx + helper(index + 1, index , arr[index])) return d[key] d[key] = (index - start)*mx + helper(index + 1, index , arr[index]) return d[key] d = dict() return helper(0, 0, arr[0])
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: @lru_cache(None) def checkSum(i, j, k): if j - i <= k: return max(A[i:j]) * (j - i) else: best = 0 for nk in range(1, K + 1): best = max(best, checkSum(i, i + nk, K) + checkSum(i+nk, j, K)) return best return checkSum(0, len(A), K)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: N = len(A) arr = [[(0,0)]*(K+1) for _ in range(N)] prev=0 for i in range(N): arr[i][1] = (A[i]+prev,A[i]) prev+=A[i] for j in range(2,min(i+2,K+1)): mx = max(arr[i-1][j-1][1],A[i]) s = arr[i-1][j-1][0] - arr[i-1][j-1][1]*(j-1) + mx*j arr[i][j] = (s,mx) prev = max(prev,s) # print(prev,arr[i][1:]) return max(arr[-1][k][0] for k in range(1,K+1))
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: if not A: return 0 N = len(A) if K == N: return N*max(A) dp = [0 for i in range(N)] for i in range(K): dp[i] = max(A[:i+1])*(i+1) for i in range(K, N): a = max(A[i-K+1:i+1]) # print(a, dp[i-K], dp[i-1]) # dp[i] = max(dp[i-K]+K*a, dp[i-1]+A[i]) dp[i] = max([dp[i-j]+j*max(A[i-j+1:i+1]) for j in range(1, K+1)]) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: @lru_cache(None) def help(A,K): n = len(A) if K==1: return sum(A) if K>=n: return n*max(A) cMax = [A[0]] for i in range(1,K): cMax.append(max(cMax[-1],A[i])) return max((i+1)*cMax[i] + help(A[i+1:],K) for i in range(K)) return help(tuple(A),K)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: #dpdp grid = [0]*len(arr) for i in range(len(arr)-1, -1, -1): if len(arr) - i <= k: grid[i] = max(arr[i:len(arr)])*(len(arr)-i) else: maxi = 0 current_max = 0 for t in range(k): current_max = max(current_max, arr[i+t]) maxi = max(maxi, current_max*(t+1) + grid[i+t+1]) grid[i] = maxi return grid[0]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: if not arr: return 0 if k==1: return sum(arr) self.memo={} def makepart(arr,n): if n in self.memo: return self.memo[n] if not arr: return 0 l=min(k,len(arr)) maxele=0 total=0 for i in range(l): maxele=max(maxele,arr[i]) temp=(maxele*(i+1))+makepart(arr[i+1:],n+i+1) total=max(total,temp) self.memo[n]=total return total return makepart(arr,0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], k: int) -> int: def dfs(i, j, max_num=0): if i == -1: return max_num * j if (i, j, max_num) not in opt: ans = 0 if j < k: ans = max(ans, dfs(i - 1, j + 1, max(max_num, A[i]))) ans = max(ans, j * max_num + dfs(i - 1, 1, A[i])) opt[(i, j, max_num)] = ans return opt[(i, j, max_num)] n = len(A) opt = dict() return dfs(n - 1, 0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr, k: int) -> int: n = len(arr) mask = [[0] * n for i in range(n)] for i in range(n): for j in range(i, n): mask[i][j] = max(arr[j], mask[i][j - 1] if j > i else 0) for i in range(n): for j in range(i, n): mask[i][j] = (j + 1 - i) * mask[i][j] dp = [0]*n for i in range(n): for h in range(1,k+1): dp[i]= max((dp[i-h] if i-h>=0 else 0)+(mask[i-h+1][i] if i-h+1<n else 0), dp[i]) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr, k: int) -> int: n = len(arr) mask = [[0] * n for i in range(n)] for i in range(n): for j in range(i, n): mask[i][j] = max(arr[j], mask[i][j - 1] if j > i else 0) for i in range(n): for j in range(i, n): mask[i][j] = (j + 1 - i) * mask[i][j] dp = [0]*n for i in range(n): for h in range(1,k+1): dp[i]= max((dp[i-h] if i-h>=0 else 0)+(mask[i-h+1][i] if i-h+1<n else 0), dp[i]) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: self.answer = {} def max_starting_i (index_A): array = A[index_A:] if index_A in self.answer: return self.answer[index_A] #print (array) if len(array) == 0: self.answer[index_A] = 0 return 0 if len(array) <= K: self.answer[index_A] = max(array) * len(array) return self.answer[index_A] max_start_here = 0 for i in range(0,K): #print (i) max_split_here = (i+1)*max(array[:i+1]) + max_starting_i(index_A+i+1) max_start_here = max(max_start_here, max_split_here) self.answer[index_A] = max_start_here return max_start_here return max_starting_i(0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: #dpdp grid = [0]*len(arr) for i in range(len(arr)-1, -1, -1): if len(arr) - i <= k: grid[i] = max(arr[i:len(arr)])*(len(arr)-i) else: maxi = 0 for t in range(k): maxi = max(maxi, max(arr[i:i+t+1])*(t+1) + grid[i+t+1]) grid[i] = maxi return grid[0]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, l: List[int], k: int) -> int: def _max_sum(l, start, k, memo): if (len(l)-start) <= k: return (len(l)-start)*max(l[start:]) if start in memo: return memo[start] max_sum = l[start] for i in range(1, k+1): curr_sum = max(l[start:start+i])*i + _max_sum(l, start+i, k, memo) max_sum = max(max_sum, curr_sum) memo[start] = max_sum return max_sum if not l: return 0 return _max_sum(l, 0, k, dict())
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: # fMax = [A[0]] # for num in A[1:]: # fMax.append(max(fMax[-1], num)) aLen = len(A) # bMax = [num for num in A] # for i in range(aLen-2, -1, -1): # bMax[i] = max(bMax[i], bMax[i+1]) # ans = 0 # for i in range(aLen-1): # ans = max(ans, (i+1)*fMax[i] + (aLen-i-1)*bMax[i+1]) # return ans dp = {} def helper(i0): if i0 in dp: return dp[i0] if aLen - i0 <= K: dp[i0] = max(A[i0:])*(aLen-i0) return dp[i0] subAns = 0 thisMax = A[i0] for ki in range(1, K+1): thisMax = max(thisMax, A[i0+ki-1]) subAns = max(subAns, thisMax*ki + helper(i0 +ki)) dp[i0] = subAns return subAns return helper(0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: self.dp = [-1] * (len(arr)+k) return self.solve(arr, 0, k) def solve(self, arr, start, k): if start >= len(arr): return 0 if start + k >= len(arr): end = min(len(arr), start+k) return max(arr[start:end]) * (end-start) if self.dp[start] != -1: return self.dp[start] result = float('-inf') for p in range(1, k+1): temp = max(arr[start:start+p]) * p + self.solve(arr, start+p, k) result = max(temp, result) self.dp[start] = result return result
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def partition(self, arr, k, index, memo): if len(arr) == 0: return 0 if index in memo: return memo[index] maxNum = arr[0] maxSum = maxNum for i in range(1, min(k+1, len(arr)+1)): maxNum = max(maxNum, arr[i-1]) subarr = arr[:i] sumArr = self.partition(arr[i:], k, index + i, memo) # i is the size of the array you're examining sumArr += maxNum * (i) maxSum = max(sumArr, maxSum) memo[index] = maxSum return maxSum def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: memo = {} num = self.partition(arr, k, 0, memo) print(memo) return num
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: self.cache = {} def helper(arr, k, start): if start in self.cache: return self.cache[start] _arr = arr[start:] if len(_arr) == 0: return 0 if len(_arr) <= k: return max(_arr) * len(_arr) ans = -1 for i in range(1, k + 1): ans = max(ans, i * max(_arr[:i]) + helper(arr, k, start + i)) self.cache[start] = ans return ans return helper(arr, k, 0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0] * (n+1) for i in range(1,n+1): # m = float('-inf') for j in range(1,K+1): if i - j >= 0: m = max(A[i-j:i]) dp[i] = max(dp[i],dp[i-j]+m*j) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
import typing class Solution: def maxSumAfterPartitioning(self, arr: typing.List[int], k: int) -> int: storage = {} def getSumRec(arr:list,i:int,k:int)->int: if i in storage: return storage[i] if not i<len(arr): return 0 if len(arr) - i < k: return max(arr[i:])*len(arr[i:]) listOfSums = [] for offset in range(k): listOfSums.append( max(arr[i:i+offset+1] )*(offset+1) + getSumRec(arr,i+offset+1,k)) storage[i] = max(listOfSums) return storage[i] return getSumRec(arr,0,k)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: best_a = [0] * len(A) best_a[0] = A[0] for i in range(1, len(A)): max_v = 0 for j in range(i, max(-1, i-K), -1): sa = A[j:i+1] v = best_a[j-1] + max(sa) * len(sa) if v > max_v: max_v = v #print(best_a,max_v,i,j,sa) best_a[i] = max_v return best_a[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0] * (len(arr)+1) for i in range(0, len(arr)): m = 0 for j in range(i, i-k, -1): if j < 0: break t = max(arr[j:i+1]) * (i - j + 1) + dp[j] if t > m: m = t dp[i+1] = m return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: best_a = [0] * len(A) best_a[0] = A[0] for i in range(1,len(A)): maxv = 0 for j in range(i,max(-1,i - K),-1): sa = A[j:i + 1] v = best_a[j - 1] + max(sa) * len(sa) if v > maxv: maxv = v best_a[i] = maxv return best_a[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n=len(arr) dp_sum=[0]*n dp_sum[0]=arr[0] max_so_far=arr[0] for i in range(1,k): max_so_far = max(max_so_far, arr[i]) dp_sum[i] = (i+1)*max_so_far for i in range(k,n): partition_max = 0 for back in range(k): partition_max = max(partition_max, arr[i-back]) dp_sum[i] = max(dp_sum[i], dp_sum[i-back-1] + (back+1)*partition_max) return dp_sum[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: opt = [arr[0]] for i in range(1, len(arr)): opt.append(0) # At index i subseqLenMax = min(k, i+1) # To avoid counting past index 0 # For the length of each possible subsequence which includes (and ends at) index i: for subseqLen in range(1, subseqLenMax+1): # Find the max possible sum of the subsequence subseqSum = subseqLen * max(arr[i-subseqLen+1 : i+1]) # Add to the optimal solution from before if subseqLen < i+1: prevOpt = opt[i-subseqLen] else: # Entire arr prevOpt = 0 optTemp = prevOpt + subseqSum # print('for opt', i, ' sublen =', subseqLen, ' subseqSum = ',subseqSum, ' optTemp = ', optTemp) # Compare to the other possible subsequence sums if optTemp > opt[i]: opt[i] = optTemp # print(opt) return opt[len(opt)-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: if K == 1: return sum(A) # dp[i]: ans considering A[0:i] dp = [0] * (len(A)+1) for i in range(1, len(A)+1): cand = [] for j in range(1, K+1): # consider to A[i-j:i] if j > i: break temp = dp[i-j] + max(A[i-j:i]) * j cand.append(temp) dp[i] = max(cand) print(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0] * (n + 1) for i in range(1, n + 1): for w in range(1, K + 1): if i - w < 0: break dp[i] = max(dp[i], dp[i - w] + max(A[i - w:i]) * w) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = [0 for i in range(len(A)+1)] dp[0] = 0 dp[1] = A[0] for i in range(1, len(A)): result = 0 for j in range(max(0, i-K+1), i+1): result = max(result, dp[j] + max(A[j:i+1])*(i-j+1)) dp[i+1] = result return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [0]*(n+1) for i in range(1, n+1): for j in range(1, min(k+1,i+1)): dp[i]= max(dp[i], dp[i-j]+ max(arr[i-j:i])*j) return dp[n]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0]* (len(arr)+1) dp[1] = arr[0] for i in range(2, len(dp)): for j in range(1, k+1): if i-j < 0: continue #print(i, j, i-j, i) dp[i] = max(dp[i], dp[i-j] + j * max(arr[i-j:i])) print(dp) return dp[len(arr)]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) if not arr: return 0 if n == 1: return arr[0] if n < k: return sum(arr) dp = [0] * (n) for i in range(n): for j in range(i, max(-1, i-k), -1): dp[i] = max(dp[i], max(arr[j:i+1]) * (i-j+1) + (dp[j-1] if j-1 >= 0 else 0)) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: N = len(arr) T = [0] * (N+1) for i in range(1, N+1): for j in range(1, k+1): if j > i: break #if i == 2: print(max(arr[(i-j): i]), arr[(i-j): i], j) T[i] = max(T[i], T[i-j] + max(arr[(i-j): i]) * j) #print(T) return T[N]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: M = [0 for i in range(len(arr))] M[0] = arr[0] #if len(arr) > 1: # M[1] = max(arr[0],arr[1]) * 2 #if len(arr) > 2: # M[2] = max(arr[0],arr[1],arr[2]) * 3 for i in range(1, len(arr)): if i < k: M[i] = max(arr[:i+1]) * (i+1) for j in range(1, min(k+1, i+1)): M[i] = max(M[i], M[i-j] + max(arr[i-j+1:i+1]) * j) #print(M) return M[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: if k == 1: return sum(arr) if k == len(arr): max_val = max(arr) return max_val * len(arr) sums = [-1 for index in range(k)] maxs = [-1 for index in range(k)] max_sum = 0 sums[0] = arr[0] maxs[0] = arr[0] for idx in range(1, len(arr)): val = arr[idx] max_sum = max(sums) for ki in range(k-1, 0, -1): max_val = maxs[ki-1] if not max_val < 0: if val <= max_val: maxs[ki] = max_val sums[ki] = sums[ki-1] + max_val else: maxs[ki] = val sums[ki] = sums[ki-1] - max_val * ki + val * (ki + 1) sums[0] = max_sum + val maxs[0] = val return max(sums)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [0]*n currMax = 0 for i in range(n): if i < k: currMax = max(currMax,arr[i]) dp[i] = currMax * (i+1) else: currMax = 0 for j in range(1,k+1): currMax = max(currMax,arr[i-j+1]) dp[i] = max(dp[i], dp[i-j]+currMax*j) return dp[n-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: '''Dynamic program using a list named dp, where dp[i] indicates the largest sum of the array arr[:i].''' dp = [0] * len(arr) for i in range(len(arr)): maxsum = 0 for j in range(k): if i - j >= 1: maxsum = max(maxsum, (j + 1) * max(arr[i - j: i + 1]) + dp[i - j - 1]) elif i - j >= 0: maxsum = max(maxsum, (j + 1) * max(arr[i - j: i + 1])) dp[i] = maxsum return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [float('-inf') for _ in range(n + 1)] dp[0] = 0 for i in range(1, n + 1): j = i - 1 cnt = k while j >= 0 and cnt >= 1: maximum = max(arr[j:i]) dp[i] = max(dp[i], dp[j] + maximum*(i-j)) j -= 1 cnt -= 1 return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0] * (n+1) for i, a in enumerate(A, 1): for j in range(1, K+1): # print(i, j, dp) if i-j >= 0: dp[i] = max(dp[i], dp[i-j] + max(A[i-j:i])*j) else: break # print(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: # dp(i) = max array sum using elements up to index i # dp(i) = for j = 1 to k, find max of dp(i-j) + j * max(arr[i-j:i]) dp = [0 for i in range(len(arr))] dp[0] = arr[0] for i in range(1, len(arr)): ans = 0 for j in range(1, k+1): if i-j >= 0: ans = max(ans, dp[i-j] + j * max(arr[i-j+1:i+1])) elif i-j == -1: ans = max(ans, j * max(arr[i-j+1: i+1])) dp[i] = ans return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: #don't really understand question. how did they partition exactly???? #dynamic programming! #let d[i] be the answer for A[0]...A[i-1] ''' S: d[i] be the answer for A[0]...A[i] answer = max sum of given array after partition. R: want maximum of elements within K away from i. from hint 2: d[i] = d[i-j] + max{A[i-j],..., A[i]}*j, for j between 1 and k. #times j because the max of that partition becomes the corresponding max for all the positions in transformed A. B = d[0] ''' #base case: #reference: https://leetcode.com/problems/partition-array-for-maximum-sum/discuss/783353/dp-with-python-and-some-comments-of-idea dp = [0]*(len(A)+1) for i in range(1, len(A)+1): temp = [] for j in range(1, K+1): #go through all possible values of j if i - j >= 0: k = dp[i-j] + max(A[i-j:i])*j temp.append(k) # print(k) # dp[i] = max(k, dp[i]) #storing stuff in the same index so replacing it every time. dp[i] = max(temp) return dp[len(A)]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [0]*(n+1) for i in range(1, n+1): for j in range(1, k+1): if (i-j)>=0: dp[i]= max(dp[i], dp[i-j]+ max(arr[i-j:i])*j) return dp[n]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = [0] for i in range(len(A)): curr = 0 for j in range(i, max(-1, i - K), -1): curr = max(max(A[j: i + 1]) * (i - j + 1) + dp[j], curr) dp.append(curr) print(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [0] * (n + 1) # dp[i] is the answer for array A[0] ... A[i-1] # for j = 1 .. k, # dp[i] is the max of dp[i-j] + max(A[i-1] ... A[i-j]) * j # j = 1 # dp[i-1] + max(A[i-1]) * 1 # dp[i-2] + max(A[i-1], A[i-2]) * 2 # dp[i-3] + max(A[i-1], A[i-2], A[i-3]) * 3 # ... # dp[i-k] + max(A[i-1], ..., A[i-k]) * 3 for i in range(1, n+1): for j in range(1, k+1): if i-j>=0: dp[i] = max(dp[i], dp[i-j] + max(arr[i-j:i]) * j) # from i-j to i-1, with i-1-i+j+1 = j elements return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n=len(arr) dp=[0]*(n+1) for i in range(n): m=-1 for j in range(1,k+1): if (i-j+1)<0: break m=max(m,dp[i-j+1]+max(arr[i-j+1:i+1])*(j)) dp[i+1]=m return dp[n]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0 for _ in range(k + 1)] rolling_max = -1 for i in range(0, k): rolling_max = max(rolling_max, arr[i]) dp[i] = rolling_max * (i + 1) for i in range(k, len(arr)): rolling_max = arr[i] for j in range(1, k + 1): rolling_max = max(rolling_max, arr[i - j + 1]) dp[i % (k + 1)] = max(rolling_max * j + dp[(i - j) % (k + 1)], dp[i % (k + 1)]) return dp[(len(arr) - 1) % (k + 1)]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
# 10:28 -> misunderstood the problem # dp class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0 for num in arr] for i in range(len(arr)): prev_sum = 0 if i - 1 < 0 else dp[i - 1] max_at_i = arr[i] + prev_sum possible_ks = i if i < k - 1 else k - 1 for j in range(1, possible_ks + 1): current_window = arr[i - j: i + 1] current_max = max(current_window) current_window_sum = len(current_window) * current_max prev_window_sum = 0 if i - j - 1 < 0 else dp[i - j - 1] total_sum = current_window_sum + prev_window_sum if total_sum > max_at_i: max_at_i = total_sum dp[i] = max_at_i # print(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: L=len(arr) record=dict() record[0]=0 for idx in range(1,L+1): r=-float('inf') for gap in range(1,k+1): if idx-gap<0: continue else: r=max(r,max(arr[idx-gap:idx])*gap+record[idx-gap]) record[idx]=r return record[L]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0] * (n+1) for i, a in enumerate(A, 1): for j in range(1, K+1): # print(i, j, dp) if i-j >= 0: dp[i] = max(dp[i], dp[i-j] + max(A[i-j:i])*j) # print(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0] * (len(arr) + 1) dp[0] = 0 for i in range(len(arr)): dp[i+1] = dp[i] + arr[i] for j in range(k, 1, -1): if i-j+1 >= 0: dp[i+1] = max(dp[i+1], dp[i-j+1] + max(arr[i-j+1:i+1]) * j) # print(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: hashmap = {} def partitionMatrix(lst, currScore): key = tuple(lst) if key in hashmap: return hashmap[key] + currScore if lst == []: hashmap[key] = 0 return currScore for i in range(1, k + 1): if len(lst) == i: hashmap[key] = (max(lst) * i) return currScore + (max(lst) * i) best = currScore for i in range(1, k + 1): subScore = max(lst[:i]) * i best = max(best, partitionMatrix(lst[i:], currScore + subScore)) hashmap[key] = best - currScore return best return partitionMatrix(arr, 0)