Datasets:

inputs
stringlengths
50
14k
targets
stringlengths
4
655k
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp=[0]*(len(arr)+1) dp[1]=arr[0] for i in range(1,len(arr)): for j in range(max(0,i-k+1),i+1): dp[i+1]=max(dp[i+1],dp[j]+max(arr[j:i+1])*(i-j+1)) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = [[0 for _ in range(len(A))] for _ in range(2)] dp2 = [0 for _ in range(len(A))] for i in range(len(A)): # we have 2 options - to partition or not to partition. # if i - K + 1 < 0: # maxCand = max(A[:i+1]) # size = i + 1 # else: # maxCand = max(A[i - K + 1:i+1]) # size = K # # if we choose not to partition # dp[0][i] = size * maxCand + max(dp[0][i - K], dp[1][i - K]) # # if we choose to partition at this candidate # dp[1][i] = A[i] + max(dp[0][i - 1], dp[1][i - 1]) startIndex = max(0, i - K + 1) while startIndex <= i: if startIndex - 1 >= 0: dp2[i] = max(dp2[startIndex - 1] + max(A[startIndex:i+1])*(i + 1 - startIndex), dp2[i]) else: dp2[i] = max(A[:i+1]) * (i + 1) startIndex += 1 print(dp2) return dp2[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: # def rec(l,h): if h-l<K: dp[l][h] = (h-l+1)*max(A[l:h+1]) return dp[l][h] m = [] if dp[l][h]>0: return dp[l][h] for i in range(0,K): m += [rec(l,l+i) + rec(l+i+1,h)] dp[l][h] = max(m) return dp[l][h] dp = [0]*len(A) dp = [[0]*len(A) for i in range(len(A))] rec(0,len(A)-1) return dp[0][len(A)-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: size = len(arr) mem = [0] * size for i in range(size): mem[i] = arr[i] for j in range(0, k): if i - j > 0: candidate = max(arr[i - j: i + 1]) * (j + 1) + mem[i - j - 1] mem[i] = max(mem[i], candidate) elif i - j == 0: candidate = max(arr[i - j: i + 1]) * (j + 1) mem[i] = max(mem[i], candidate) else: break return mem[size - 1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: A = arr dp = [0] * (n := len(arr)) dp[0] = curr_max = arr[0] for i in range(1, k): curr_max = max(curr_max, A[i]) dp[i] = (i + 1) * curr_max for i in range(k, n): curr_max = A[i] for j in range(k): curr_max = max(curr_max, A[i - j]) dp[i] = max(dp[i], dp[i - j - 1] + curr_max * (j + 1)) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0] for i in range(len(arr)): max_sum = -float('inf') for j in range(1, k+1): if i - j + 1 < 0: break max_sum = max(max_sum, max(arr[i-j + 1: i+1]) * j + dp[i - j + 1]) dp.append(max_sum) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def getMax(self, arr, k, idx, cache): # I am partitioning 1 element if idx == len(arr) - 1: return arr[idx] # I need to get max sum after partitioning maxSum = 0 # [1,2,9,30] # I need to try partitioning from 1 -> K elements for numInPartition in range(1, k + 1): # I cannot choose elements if I would be choosing too many elements if idx + numInPartition > len(arr): break startOfRecursiveIndex = idx + numInPartition # select max value in first 'k' elements maxVal = max(arr[idx:startOfRecursiveIndex]) # generates sum for this subset partSum = maxVal * numInPartition # I need to get the partition sum for the rest of the elements rest = cache[startOfRecursiveIndex] if startOfRecursiveIndex in cache else self.getMax(arr, k, startOfRecursiveIndex, cache) cache[startOfRecursiveIndex] = rest maxSum = max(maxSum, partSum + rest) return maxSum def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: ''' Input: A: int[] - Array of numbers K: int - Max length allowable for subarray Output: Return largest sum after partitioning. Steps: 1. Make partition 2. Change all elements to max value v [1,2,9,30], 2 {1,2}{9,30} => {2,2}{30,30} => 4 + 60 = 64 {1}{2,9}{30} => {1}{9,9}{30} => 1 + 18 + 30 = 49 Example: [1] {1} = 1 [1,2] {1}{2} => 1+2 = 3 {1,2} => {2,2} => 4 v [1,2,9] {1,2}{9} => {2,2} + {9} => 4 + 9 = 13 {1}{2,9} => {1},{9,9} = 1 + 18 = 19 {1,2,9} {1}{2,9}{30} => {1}{9,9}{30} => 19 + 30 => 49 {1,2}{9,30} => {2,2}{30,30} => 4 + 60 => 64 v [1,2,9,30] {1,2,9} {30} => 30 + getMaxSum([1,2,9]) => 30 + 19 => 49 {1,2} {9,30} => 60 + getMaxSum([1,2]) => 60 + 4 = 64 {1}{2,9,30} {1,2}{9,30} {1,2,9}{30} All about subproblems!! Approach: - Let's look into sliding window. - We can frame this problem in terms of choices. When considering an element, we can place it into its own partition OR with the preceeding partition. Choice: K-way choice Do I group my current element in the last [1,k] elements? Constraint: Subset needs to be contiguous? Goal: Maximum sum 1. When placing Approach: [0,0,0,0] maxSum[i] = max(maxSum[i-1] + A[i] * 1, maxSum[i-2] + max(last two elements) * 2) and so on ''' cache = {} return self.getMax(A, K, 0, cache)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: mem = {} def find(s, e): if (s,e) in mem: return mem[(s,e)] if e-s == 1: return arr[s] elif e-s == 0: return 0 else: m = None for i in range(s+1, min(s+k+1, len(arr)+1)): subsum = max(arr[s:i])*(i-s) + find(i,e) if m is None or subsum > m: m = subsum mem[(s,e)] = m return m return find(0, len(arr))
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: if not arr: return 0 n = len(arr) dp = [0] * n for i in range(n): for j in range(k): if i - j < 0: continue _max = max(arr[i-j : i+1]) _sum = _max * (j+1) if i-j == 0 else dp[i-j-1] + _max*(j+1) dp[i] = max(dp[i], _sum) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, nums: List[int], k: int) -> int: n = len(nums) dp = [nums[0]] + [0] * (n - 1) for i in range(1, n): for j in range(max(0, i - k + 1), i + 1): dp[i] = max(dp[i], dp[j - 1] + max(nums[j:i + 1]) * (i + 1 - j)) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: from functools import lru_cache @lru_cache(None) def dp(i): ans=0 for k in range(K): if i-k>=0: ans=max(ans,max(A[i-k:i+1])*(k+1)+dp(i-k-1)) return ans return dp(len(A)-1)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: if not arr: return 0 n = len(arr) dp = [0]*n for i in range(n): for j in range(k): if i-j < 0: continue _max = max(arr[i-j:i+1]) _sum = _max*(j+1) if i-j == 0 else dp[i-j-1] + _max*(j+1) dp[i] = max(dp[i], _sum) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr, k): if not arr: return 0 dp = [0]*len(arr) for i in range(len(arr)): for j in range(k): if i-j < 0 : continue max_val = max(arr[i-j : i+1]) if i-j == 0: total = max_val * (j+1) else: total = dp[i-j-1] + max_val * (j+1) dp[i] = max(dp[i], total) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: N = len(A) dp = [0] * N dp[0] = A[0] for i in range(1, N): for j in range(0, min(K, i+1)): current_subarray = A[i-j:i+1] if i >= K: dp[i] = max(dp[i], dp[i-j-1] + max(current_subarray)*(j+1)) else: dp[i] = max(dp[i], max(current_subarray)*(j+1)) return dp[-1] # [1,15,7,9,2,5,10] k = 3 # No need to inspect all combination, focus on growth # (1) # [1] -> 1 - max(A[i])*1 # (1,15) # [1,15] -> 30 - max(A[i-1], A[i])*2 # [1][15] -> 16 - DP[i-1] + A[i] 0,1 1,1 # (1,15,7) # [1,15,7] -> 45 max(A[i]. A[i-1], A[-2])*3 # [1][15,7] -> 23 - DP[i-2] + max(A[i-1], A[i])*2 # [1,15][7] -> 37 - DP[i-1] + A[i] # (1,15,7,9) # [1,15,7][9] -> 54 DP[i-1] + A[i] # [1,15][7,9] -> 32 DP[i-2] + max(A[i-1], A[i])*2 # [1][15,7,9] -> 46 DP[i-3] + max(A[i-2], A[i-1], A[i])*3
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0] * n for i in range(n): if i == 0: dp[i] = A[0] else: # A[i-k+1, ..., i-1, i] is a subarray # A[0, 1, 2, ..., i-k] is previous chuck with subarray length up to K for k in range(1, K+1): if i-k+1 < 0: break elif i-k+1 == 0: dp[i] = max(dp[i], max(A[i-k+1:i+1]) * k) else: dp[i] = max(dp[i], dp[i-k] + max(A[i-k+1:i+1]) * k) return dp[n-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: if not arr: return 0 n = len(arr) dp = [0]*n for i in range(n): for j in range(k): if i-j < 0: continue _max = max(arr[i-j:i+1]) _sum = _max*(j+1) if i-j == 0 else dp[i-j-1] + _max*(j+1) dp[i] = max(dp[i], _sum) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0] * (n + 1) for i in range(n): for k in range(1,K+1): if i-k > -2: dp[i+1] = max(dp[i+1], max(A[max(0,i-k+1):i+1]) * k + dp[i+1-k]) return dp[n]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0] * (n + 1) for i in range(n): dp_ix = i+1 for k in range(1,K+1): if i-k > -2: dp[dp_ix] = max(dp[dp_ix], max(A[max(0,i-k+1):i+1]) * k + dp[dp_ix-k]) return dp[n]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = [[0 for _ in range(len(A))] for _ in range(2)] dp2 = [0 for _ in range(len(A))] for i in range(len(A)): # we have 2 options - to partition or not to partition. # if i - K + 1 < 0: # maxCand = max(A[:i+1]) # size = i + 1 # else: # maxCand = max(A[i - K + 1:i+1]) # size = K # # if we choose not to partition # dp[0][i] = size * maxCand + max(dp[0][i - K], dp[1][i - K]) # # if we choose to partition at this candidate # dp[1][i] = A[i] + max(dp[0][i - 1], dp[1][i - 1]) startIndex = max(0, i - K + 1) currMax = 0 while startIndex <= i: currMax = max(currMax, A[startIndex]) if startIndex - 1 >= 0: dp2[i] = max(dp2[startIndex - 1] + max(A[startIndex:i+1])*(i + 1 - startIndex), dp2[i]) else: dp2[i] = max(A[:i+1]) * (i + 1) startIndex += 1 print(dp2) return dp2[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0] * len(arr) for i in range(len(arr)): print(arr[i]) max_so_far = arr[i] + (dp[i-1] if i > 0 else 0) for j in range(1, min(i+1, k)): max_in_range = max(arr[i-j:i+1]) max_so_far = max(max_so_far, dp[i-j-1] + max_in_range * (j+1)) dp[i] = max_so_far return dp[len(arr)-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0] * (len(arr)) dp[0] = arr[0] for i,val in enumerate(arr): if i == 0: continue cur_max = val + dp[i-1] cur_k = 1 while(i-cur_k>=0 and cur_k < k): temp = arr[i-cur_k:i+1] m = max(temp) if i-cur_k==0: cur_max = max(cur_max, m* (cur_k+1) ) else: cur_max = max(cur_max,( m * (cur_k+1)) + dp[i-cur_k-1] ) cur_k += 1 dp[i] = cur_max return dp[-1] ''' #[1,4,1, 5, 7, 3, 6, 1, 9, 9, 3] # 1 5 '''
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: DP = [0 for _ in range(len(arr)+1)] for i in range(1,len(DP)): loc = max(i-k,0) run_max = 0 for j in range(loc,i): run_max = max(run_max,DP[j]+max(arr[j:i])*(i-j)) DP[i] = run_max return DP[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: if not K or K == 1: return sum(A) if not A: return 0 dp = [0] * len(A) for index, num in enumerate(A): possible = [] for group in range(K): if index - group >= 0: if index - group - 1 >= 0: previous = dp[index - group - 1] else: previous = 0 possible.append( previous + max(A[index - group : index + 1]) * (group + 1) ) dp[index] = max(possible) # print(f\"{index=} {dp[index]=}\") return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: self.arr = arr self.dp = {} def helper(i,j,k): if j <= i: return 0 if (i,j) in self.dp: return self.dp[(i,j)] maxsum = -sys.maxsize for length in range(1,k+1): if i+length <= j: currsum = (max(self.arr[i:i+length]) * length) + helper(i+length,j,k) maxsum = max(maxsum,currsum) self.dp[(i,j)] = maxsum return self.dp[(i,j)] return helper(0,len(arr),k)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp=[0 for _ in A] for i,num in enumerate(A): for j in range(K): ans=0 if i-j>=0: ans = ans + (j+1)*max(A[i-j:i+1]) if i-j-1>=0: ans = ans + dp[i-j-1] dp[i]=max(dp[i],ans) # if i-p-1>=0: # ans=dp[i-p-1]+(p+1)*max(A[i-p:i+1]) # print(A[i-p-1],(p+1)*max(A[i-p:i+1])) # dp[i]=max(dp[i],ans) #print(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: d = [0] * (1 + len(arr) + k) for ind in range(1, len(arr) + 1): for sub_arr_st in range(min(ind, k)): if arr[ind - sub_arr_st - 1] > arr[ind - 1]: break for sub_arr_len in range(sub_arr_st + 1, k + 1): ind_x = ind - sub_arr_st + sub_arr_len - 1 d[ind_x] = max(d[ind_x], d[ind - sub_arr_st - 1] + arr[ind - 1] * sub_arr_len) return d[len(arr)]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp=[0]*(len(arr)+1) dp[0]=arr[0] for i in range(1,len(arr)): ans=-100000 for z in range(max(0,i-k+1) , i+1): # print(z,i+1) ans=max(dp[z-1]+max(arr[z:i+1])*(i-z+1) , ans) # ans=max(dp[i-z-1]+max(arr[i-z-1:i+1])*(z+1),ans) dp[i]=ans return dp[-2]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: cacheMax=[[0]*len(arr) for i in range(len(arr))] for i in range(len(arr)): cacheMax[i][i]=arr[i] for i in range(1,len(arr)): for j in range(i): cacheMax[j][i] = max(cacheMax[j][i-1],arr[i]) dp=[0]*(len(arr)+1) dp[1]=arr[0] for i in range(1,len(arr)): for j in range(max(0,i-k+1),i+1): dp[i+1]=max(dp[i+1],dp[j]+max(arr[j:i+1])*(i-j+1)) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: memo = {} l_arr = len(arr) for chain_len in range(0, k, 1): for i in range(0, l_arr - chain_len, 1): memo[(i, i + chain_len)] = max(arr[i : i + chain_len + 1]) * (chain_len + 1) res_memo = {} def dfs(idx): if idx == l_arr: return 0 if idx in res_memo: return res_memo[idx] res_memo[idx] = max( memo[(idx, idx + j)] + dfs(idx + j + 1) for j in range(k) if idx + j < l_arr ) return res_memo[idx] return dfs(0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: # use dp to solve this question n = len(A) dp = [0] * (n + 1) # dp[i] is the answer for array A[0] ... A[i-1] # for j = 1 .. k, # dp[i] is the max of dp[i-j] + max(A[i-1] ... A[i-j]) * j # j = 1 # dp[i-1] + max(A[i-1]) * 1 # dp[i-2] + max(A[i-1], A[i-2]) * 2 # dp[i-3] + max(A[i-1], A[i-2], A[i-3]) * 3 # ... # dp[i-k] + max(A[i-1], ..., A[i-k]) * 3 for i in range(1, n+1): for j in range(1, K+1): if i-j>=0: dp[i] = max(dp[i], dp[i-j] + max(A[i-j:i]) * j) # from i-j to i-1, with i-1-i+j+1 = j elements return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = [0 for i in range(len(A)+1)] for i in range(1, len(A)+1): dp[i] = max([dp[i-j] + j * max(A[i-j:i]) for j in range(1, K+1) if j <= i]) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: res = [0] * (len(arr) + 1) for i in range(1, len(arr) + 1): for j in range(1, k + 1): if i - j > -1: res[i] = max(res[i], res[i - j] + max(arr[i - j : i]) * j) return res[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: ar_len = len(arr) dp= [0] * (ar_len+1) for i in range(1,len(dp)): tmp_max = [] for j in range(1,k+1): if i-j >=0: max_t = dp[i-j] + max(arr[i-j:i]) * j tmp_max.append(max_t) dp[i] = max(tmp_max) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) if k == n: return n * max(arr) dp = collections.deque([0] * k) for i in range(n - 1, -1, -1): m = 0 result = 0 for j in range(min(k, n - i)): m = max(m, arr[i + j]) result = max(result, m * (j + 1) + dp[j]) dp.appendleft(result) dp.pop() return dp[0]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: N = len(A) dp = [0] * N dp[0] = A[0] #print('DP:', dp) #print() for i in range(1, N): for j in range(0, min(K, i+1)): current_subarray = A[i-j:i+1] #print( max(current_subarray)*(j+1), current_subarray, i, j) if i >= K: dp[i] = max(dp[i], dp[i-j-1] + max(current_subarray)*(j+1)) else: dp[i] = max(dp[i], max(current_subarray)*(j+1)) #print('DP:', dp) #print() return dp[-1] # [1,15,7,9,2,5,10] k = 3 # No need to inspect all combination, focus on growth # (1) # [1] -> 1 - max(A[i])*1 # (1,15) # [1,15] -> 30 - max(A[i-1], A[i])*2 # [1][15] -> 16 - DP[i-1] + A[i] 0,1 1,1 # (1,15,7) # [1,15,7] -> 45 max(A[i]. A[i-1], A[-2])*3 # [1][15,7] -> 23 - DP[i-2] + max(A[i-1], A[i])*2 # [1,15][7] -> 37 - DP[i-1] + A[i] # (1,15,7,9) # [1,15,7][9] -> 54 DP[i-1] + A[i] # [1,15][7,9] -> 32 DP[i-2] + max(A[i-1], A[i])*2 # [1][15,7,9] -> 46 DP[i-3] + max(A[i-2], A[i-1], A[i])*3 # N = len(A) # dp = [0] * (N + 1) # for i in range(N): # curMax = 0 # for k in range(1, min(K, i + 1) + 1): # curMax = max(curMax, A[i - k + 1]) # dp[i] = max(dp[i], dp[i - k] + curMax * k) # print(dp) # print() # return dp[N - 1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, nums: List[int], k: int) -> int: ''' v [1,30,45,_,_,_,_,????] [1,15,7, 9,2,5,10], 2 dp[i] = max( (windowSize * maxInWindow) + dp[i - windowSize] ) for valid windowSize from 1 to k return dp[-1] 30 + [7] => 37 1 + [15,7] => 31 0 + [1,15,7] => 45 <<<<< [1,15] ''' dp = [0] * len(nums) for i in range(len(nums)): # generate all window sizes # [1,2,3] # if k = 3 for windowSize in range(1, k + 1): startIndex = i - windowSize + 1 # Bounding Function to make sure that I don't run out of bounds if startIndex < 0: break # v # v # # [1,15,7,9,2,5,10] maxVal = max(nums[startIndex: i + 1]) currVal = windowSize * maxVal currSum = currVal if startIndex > 0: currSum += dp[startIndex - 1] dp[i] = max(dp[i], currSum) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) memo = {n:0} def helper(arr, i): if i in memo: return memo[i] res = 0 for j in range(i, min(n,i+k)): res = max(res, helper(arr, j+1)+max(arr[i:j+1])*(j+1-i)) memo[i] = res return res return helper(arr, 0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, nums: List[int], k: int) -> int: ''' v [1,30,45,_,_,_,_,????] [1,15,7, 9,2,5,10], 2 dp[i] = max( (windowSize * maxInWindow) + dp[i - windowSize] ) for valid windowSize from 1 to k return dp[-1] 30 + [7] => 37 1 + [15,7] => 31 0 + [1,15,7] => 45 <<<<< [1,15] ''' dp = [0] * len(nums) for i in range(len(nums)): # generate all window sizes # [1,2,3] # if k = 3 for windowSize in range(1, k + 1): startIndex = i - windowSize + 1 # Bounding Function to make sure that I don't run out of bounds if startIndex < 0: break # v # v # # [1,15,7,9,2,5,10] maxVal = max(nums[startIndex: i + 1]) currVal = windowSize * maxVal currSum = currVal if startIndex > 0: currSum += dp[startIndex - 1] dp[i] = max(dp[i], currSum) print(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = [0 for i in range(len(A)+1)] for i in range(1, len(A)+1): dp[i] = max([dp[i-j] + j * max(A[i-j:i]) for j in range(1, K+1) if j <= i]) print(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0] * len(arr) for i in range(len(arr)): max_so_far = arr[i] + (dp[i-1] if i > 0 else 0) for j in range(1, min(i+1, k)): max_in_range = max(arr[i-j:i+1]) max_so_far = max(max_so_far, dp[i-j-1] + max_in_range * (j+1)) dp[i] = max_so_far return dp[len(arr)-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: result = [0]*len(arr) result[0] = arr[0] max_val = result[0] for i in range(1,k): max_val = max(max_val,arr[i]) result[i] = max_val*(i+1) #print(result) for i in range(k,len(arr)): max_val = arr[i] for j in range(1,k+1): max_val = max(max_val,arr[i-j+1]) result[i] = max(result[i],result[i-j]+max_val*j) #print(i,j,max_val,result[i]) #print(result) return result[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: A = arr K = k n = len(A) dp = [0] * n curMax = 0 for i in range(n): if i < K: curMax = max(curMax, A[i]) dp[i] = curMax * (i + 1) else: curMax = 0 for j in range(1, K + 1): curMax = max(A[i - j + 1], curMax) dp[i] = max(dp[i], dp[i - j] + curMax * j) # print(dp) return dp[n - 1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: if not arr: return 0 n = len(arr) dp = [0] * n curr_max = arr[0] for i in range(k): curr_max = max(curr_max, arr[i]) dp[i] = curr_max * (i + 1) for i in range(k, n): dp[i] = arr[i] curr_max = arr[i] for j in range(k): curr_max = max(curr_max, arr[i-j]) dp[i] = max(dp[i], dp[i-j-1] + curr_max * (j + 1)) return dp[-1] # @lru_cache(None) # def dp(idx): # if idx < 0: # return 0 # left = max(0, idx - k + 1) # curr_max = arr[idx] # res = arr[idx] # for i in range(idx, left - 1, -1): # curr_max = max(curr_max, arr[i]) # res = max(res, dp(i-1) + curr_max * (idx - i + 1)) # return res # return dp(len(arr)-1)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [0] * (n + 1) for i in range(1, n+1): max_val = float('-inf') for j in range(1, min(i, k)+1): max_val = max(max_val, arr[i-j]) dp[i] = max(dp[i], dp[i-j] + j*max_val) return dp[n]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp=[0]*len(arr) dp[0]=arr[0] max1=arr[0] for i in range(1,k): max1=max(max1,arr[i]) dp[i]=max1*(i+1) for i in range(k,len(arr)): max1=arr[i] for j in range(1,k+1): dp[i]=max(dp[i],max1*j+dp[i-j]) max1=max(arr[i-j],max1) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: f = [0] for end in range(1, len(arr)+1): _local = 0 _cur_max = 0 for start in range(end-1, max(0, end-k)-1, -1): _cur_max = max(_cur_max, arr[start]) _local = max(_cur_max *(end - start)+f[start], _local) f.append(_local) return f[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr, k): n = len(arr) dp = [0]*(n+1) for i in range(n): cmax = 0 for j in range(1, min(k, i+1) + 1): cmax = max(cmax, arr[i-j+1]) dp[i] = max(dp[i], dp[i-j] + cmax*j) return dp[-2]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [0] * (n + 1) for i in range(n): curMax = 0 for j in range(1, min(k, i + 1) + 1): curMax = max(curMax, arr[i - j + 1]) dp[i] = max(dp[i], dp[i - j] + curMax * j) return dp[n - 1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: best_sums = [0] * (len(arr)+1) for i in range(len(arr)): curr_max = 0 for j in range(1,min(k+1,i+2)): curr_max = max(curr_max, arr[i-j+1]) best_sums[i] = max(best_sums[i], best_sums[i-j] + j*curr_max) return best_sums[-2]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: DP=[0]*len(arr) N=len(arr) DP[0]=arr[0] m=arr[0] for i in range(k): m=max(m,arr[i]) DP[i]=m*(i+1) # print(DP) for i in range(k,N): mm=arr[i] DP[i]=DP[i-1]+arr[i] # print(DP[i],i) # print(i,DP,mm,arr[i]) for j in range(1,k): mm=max(mm,arr[i-j]) # print(i,mm,arr[i-j],DP[i-j]) DP[i]=max(DP[i],DP[i-j-1]+mm*(j+1)) #DP[i]=max(DP[i-1]+arr) # print(DP) return DP[-1] # [5,7,7,7,7]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n=len(arr) dp=[0]*(n+1) for i in range(n): cur=0 for j in range(1,min(k,i+1)+1): cur=max(cur,arr[i-j+1]) dp[i]=max(dp[i],cur*j+dp[i-j]) return dp[-2]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [0] * (n + 1) for i in range(n): cur_max = 0 for j in range(1, min(k, i + 1) + 1): cur_max = max(cur_max, arr[i - j + 1]) dp[i] = max(dp[i], dp[i - j] + cur_max * j) return dp[n - 1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: @lru_cache(None) def dp(idx): if idx < 0: return 0 left = max(idx - k + 1, 0) curr_max = arr[idx] res = arr[idx] for i in range(idx, left - 1, -1): curr_max = max(curr_max, arr[i]) res = max(res, dp(i-1) + (idx - i + 1) * curr_max) return res # print(dp(3)) return dp(len(arr) - 1) # A = arr # dp = [0] * (n := len(arr)) # dp[0] = curr_max = arr[0] # for i in range(1, k): # curr_max = max(curr_max, A[i]) # dp[i] = (i + 1) * curr_max # for i in range(k, n): # curr_max = A[i] # for j in range(k): # curr_max = max(curr_max, A[i-j]) # dp[i] = max(dp[i], dp[i-j-1] + curr_max * (j + 1)) # return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: N = len(arr) dp = [0] * (N+1) for i in range(N): cur_max = 0 for j in range(1, min(k, i+1)+1): cur_max = max(cur_max, arr[i-j+1]) # 从当前元素开始 dp[i] = max(dp[i], dp[i-j]+cur_max*j) return dp[N-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: # O(NK) coming sooooon N = len(arr) dp = [0 for _ in range(N)] dp[0] = arr[0] max_so_far = arr[0] for i in range(1, k): max_so_far = max(max_so_far, arr[i]) dp[i] = (i+1) * max_so_far # now the actual thing for i in range(k, N): max_so_far = -sys.maxsize for j in range(i, i-k, -1): max_so_far = max(max_so_far, arr[j]) dp[i] = max(dp[i], dp[j-1] + (i-j+1) * max_so_far) return dp[N-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0] * (n + 1) for i in range(1, n + 1): max_val = float('-inf') for w in range(1, K + 1): if i - w < 0: break max_val = max(max_val, A[i - w]) dp[i] = max(dp[i], dp[i - w] + max_val * w) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0] * (n + 1) for i in range(1, n + 1): cur = 0 for j in range(1, K + 1): if i >= j: cur = max(cur, A[i - j]) dp[i] = max(dp[i], dp[i - j] + cur * j) return dp[n]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [0] * (n+1) for i in range(1,n+1): j = i - 1 mx = -float('inf') while i - j <= k and j >= 0: mx = max(mx,arr[j]) dp[i] = max(dp[i],dp[j]+mx * (i - j)) j -= 1 return dp[n]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0] * (n+1) for i in range(1,n+1): j = i - 1 mx = -float('inf') while i - j <= K and j >= 0: mx = max(mx,A[j]) dp[i] = max(dp[i],dp[j]+mx * (i - j)) j -= 1 return dp[n]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0] * (len(arr)+1) for i in range(1, len(dp)): maxone = 0 for j in range(i, i-k, -1): if j >= 1: maxone = max(maxone, arr[j-1]) dp[i] = max(dp[i], dp[j-1]+maxone * (i-j+1)) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A, K): N = len(A) dp = [0] * (N + 1) for i in range(N): curMax = 0 for k in range(1, min(K, i + 1) + 1): curMax = max(curMax, A[i - k + 1]) dp[i] = max(dp[i], dp[i - k] + curMax * k) return dp[N - 1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: N = len(A) DP = [0]*(N+1) for i in range(N): curMax = 0 for k in range(1, min(K, i+1) + 1): curMax = max(curMax, A[i-k+1]) DP[i] = max(DP[i], DP[i-k] + curMax * k) return DP[N-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [0] * (n+1) for i in range(n): cur_max = 0 for d in range(1, min(k, i+1)+1): cur_max = max(cur_max, arr[i-d+1]) dp[i+1] = max(dp[i+1], dp[i+1-d] + cur_max * d) # print(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n=len(arr) dp=[0]*(n+1) for i in range(n): m=-1 x=-1 for j in range(1,k+1): if (i-j+1)<0: break x=max(x,arr[i-j+1]) m=max(m,dp[i-j+1]+x*j) dp[i+1]=m return dp[n]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0 for _ in arr] rolling_max = -1 for i in range(0, k): rolling_max = max(rolling_max, arr[i]) dp[i] = rolling_max * (i + 1) for i in range(k, len(arr)): rolling_max = arr[i] for j in range(1, k + 1): rolling_max = max(rolling_max, arr[i - j + 1]) dp[i] = max(rolling_max * j + dp[i - j], dp[i]) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0] for i in range(1, len(arr) + 1) : max_arr_num = 0 now_max = 0 for j in range(1, k + 1) : idx = i - j if idx >= 0 : max_arr_num = max(max_arr_num, arr[idx]) now_max = max(now_max, dp[idx] + max_arr_num * j) dp.append(now_max) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0] * (n+1) for i in range(1,n+1): m = float('-inf') for j in range(1,K+1): if i - j >= 0: m = max(A[i-j],m) dp[i] = max(dp[i],dp[i-j] + m*j) return dp[-1] # n = len(A) # dp = [0] * (n+1) # for i in range(1,n+1): # m = float('-inf') # for j in range(1,K+1): # if i - j >= 0: # m = max(A[i-j],m) # dp[i] = max(dp[i],dp[i-j]+m*j) # return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: n = len(A) dp = [0] * (n+1) res = 0 for i in range(n): max_val = 0 for k in range(1, min(K, i+1)+1): max_val = max(max_val, A[i-k+1]) dp[i] = max(dp[i], dp[i-k] + max_val*k) return dp[n-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0] * (len(arr)) dp[0] = arr[0] for i,val in enumerate(arr): if i == 0: continue cur_max = val + dp[i-1] cur_k = 1 m = val while(i-cur_k>=0 and cur_k < k): # temp = arr[i-cur_k:i+1] m = max(m,arr[i-cur_k]) if i-cur_k==0: cur_max = max(cur_max, m* (cur_k+1) ) else: cur_max = max(cur_max,( m * (cur_k+1)) + dp[i-cur_k-1] ) cur_k += 1 dp[i] = cur_max return dp[-1] ''' #[1,4,1, 5, 7, 3, 6, 1, 9, 9, 3] # 1 5 '''
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: d = [0] * (len(arr) + 1) for i in range(len(arr)): cur_max = 0 for kk in range(1, k + 1): if i - kk + 1 < 0: continue cur_max = max(cur_max, arr[i-kk+1]) # print(i, kk, \",\", i - kk + 1, cur_max, arr[i-kk+1], ':', d[i], d[i-kk]) d[i] = max(d[i], d[i-kk] + cur_max*kk) print(d) return d[-2]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: N = len(A) dp = [0]*(N+1) for i in range(N): curr_max = 0 for j in range(1, K+1): if i+j>N: break curr_max = max(curr_max, A[i+j-1]) dp[i+j] = max(dp[i+j], dp[i]+curr_max*j) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = [float('-inf') for i in range(len(A)+1)] dp[-1] = 0 dp[-2] = A[-1] for j in reversed(list(range(len(A)-1))): cur_max = float('-inf') for k in range(K): if j+k == len(A): break cur_max = max(cur_max, A[j+k]) dp[j] = max(dp[j], (k+1)*cur_max + dp[j+k+1]) return dp[0]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp=[0]*len(arr) dp[0]=arr[0] for i in range(1, len(arr)): maxval=arr[i] for j in range(i, i-k, -1): if j<0: break maxval=max(maxval, arr[j]) temp=dp[j-1] if j-1>=0 else 0 temp+=maxval*(i-j+1) dp[i]=max(dp[i], temp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], k: int) -> int: N = len(A) dp = [0] * (N+1) for i in range(N): mx = 0 #print('i={}'.format(i)) for j in range(i, max(-1, i-k), -1): mx = max(mx, A[j]) #print(' j={}, mx={}'.format(j, mx)) p = dp[i+1] dp[i+1] = max(dp[i+1], dp[j] + mx * (i-j+1)) #print(' p={}, c={}'.format(p, dp[i+1])) #print('c={}'.format(dp[i+1])) return dp[N]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = [float('-inf') for i in range(len(A)+1)] dp[-1] = 0 dp[-2] = A[-1] for j in reversed(range(len(A)-1)): cur_max = float('-inf') for k in range(K): if j+k == len(A): break cur_max = max(cur_max, A[j+k]) dp[j] = max(dp[j], (k+1)*cur_max + dp[j+k+1]) return dp[0]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = [0] * (len(A) + 1) for i in range(1, len(A) + 1): tmp = 0 tmp_max = 0 for j in range(1, min(i,K) + 1): tmp_max = max(A[i-j], tmp_max) tmp = max(tmp, dp[i-j] + tmp_max * j) dp[i] = tmp return dp[len(A)]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A, K): # https://leetcode.com/problems/partition-array-for-maximum-sum/discuss/290863/JavaC%2B%2BPython-DP # Use dp (record[i+1]) to record the maximum sum can be obtained from A[0]-A[i] # For each position, we loop back 1 to k elements and find the maximum within each range # And replace them all with the maximum and try to find the maximum sum based on record[i-k+1] n = len(A) record = [0]*(n+1) for i in range(n): curMax = 0 for k in range(1,min(K,i+1)+1): curMax = max(curMax,A[i-k+1]) record[i+1] = max(record[i+1],record[i-k+1]+curMax*k) return record[n] # N = len(A) # dp = [0] * (N + 1) # for i in range(N): # curMax = 0 # for k in range(1, min(K, i + 1) + 1): # curMax = max(curMax, A[i - k + 1]) # dp[i+1] = max(dp[i+1], dp[i+1 - k] + curMax * k) # return dp[N]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: dp = [0] * (len(A) + 1) for i in range(len(A)): value = A[i] for j in range(1, K + 1): if i + j - 1 >= len(A): break value = max(A[i + j - 1], value) dp[i + j] = max(dp[i] + value * j, dp[i + j]) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [0] * (n + 1) for i in range(1, n + 1): m = -float('inf') d = 0 while d < k and i - d > 0: m = max(m, arr[i - 1 - d]) dp[i] = max(dp[i], dp[i - d - 1] + m * (d + 1)) d += 1 return dp[n]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
''' So this can be a subproblem of different lengths of k and subarrays so f([1,15,7,9,2,5,10]) = 1 + f([15,7,9,2,5,10]]) or 15 * 2 + f([7,9,2,5,10]]) or 15 * 3 + f([7,9,2,5,10]]) if not arr, then we return ''' class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: N = len(arr) memo = {} def maxSum2(i): if i >= N: return 0 if i in memo: return memo[i] val = -1 sol = -1 # traverse k times or until end of array. + 1 to offset 0 index so we can multiply val * j straight up for j in range(1, min(k+1, N - i + 1)): val = max(val, arr[i + j -1]) sol = max(sol, val * j + maxSum2(i + j)) memo[i] = sol return sol return maxSum2(0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [0] * (n + 1) for i in range(n): currMax = arr[i] size = 1 while size <= k and i - size + 1 >= 0: currMax = max(currMax, arr[i - size + 1]) dp[i + 1] = max(dp[i + 1], dp[i + 1 - size] + (currMax * size)) size += 1 return dp[n]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: memo = {} def max_sum(idx): if idx >= len(arr): return 0 if idx in memo: return memo[idx] subarr_max = float('-inf') options = [] for end in range(idx, min(idx + k, len(arr))): subarr_max = max(subarr_max, arr[end]) subarr_sum = subarr_max * (end - idx + 1) options.append(subarr_sum + max_sum(end + 1)) memo[idx] = max(options) return memo[idx] return max_sum(0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) memo = {} def dfs(i): if i >= n: return 0 if i in memo: return memo[i] res = float('-inf') cur_max = float('-inf') for j in range(i, min(i + k, n)): cur_max = max(cur_max, arr[j]) res = max(res, cur_max * (j - i + 1) + dfs(j + 1)) memo[i] = res return res return dfs(0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: N = len(arr) maxSoFar = [0]*N for i in range(N): curMax = 0 for prev in range(1,min(i+1,k)+1): curMax = max(curMax,arr[i-prev+1]) lastPartition = maxSoFar[i-prev] if i >= prev else 0 maxSoFar[i] = max(maxSoFar[i], lastPartition + curMax*prev) return maxSoFar[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) current_max = 0 dp = [0] * n for i in range(n): if i < k: current_max = max(current_max, arr[i]) dp[i] = (i+1) * current_max else: current_max = 0 for j in range(1, k+1): current_max = max(current_max, arr[i - j + 1]) dp[i] = max(dp[i], dp[i-j] + current_max * j) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A, K): N = len(A) dp = [0] * (N + 1) for i in range(N): curMax = 0 for k in range(1, min(K, i + 1) + 1): curMax = max(curMax, A[i - k + 1]) dp[i+1] = max(dp[i+1], dp[i+1 - k] + curMax * k) print(dp) return dp[N]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [0] * n for i in range(n): currMax = arr[i] size = 1 while size <= k and i - size + 1 >= 0: currMax = max(currMax, arr[i - size + 1]) dp[i] = max(dp[i], (dp[i - size] if i - size >= 0 else 0) + (currMax * size)) size += 1 # print(dp) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: d = [0] * (len(arr)) for i in range(len(arr)): cur_max = 0 for kk in range(1, k + 1): if i - kk + 1 < 0: continue cur_max = max(cur_max, arr[i-kk+1]) # print(i, kk, \",\", i - kk + 1, cur_max, arr[i-kk+1], ':', d[i], d[i-kk]) if i - kk < 0: prev = 0 else: prev = d[i-kk] d[i] = max(d[i], prev + cur_max*kk) print(d) return d[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [0 for i in range(len(arr)+1)] for i in range(len(arr)): val = arr[i] for j in range(1, k+1): if i + j -1 >= len(arr): break val = max(arr[i+j-1], val) dp[i+j] = max(dp[i] + val *j, dp[i+j]) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = (len(arr) + 1) * [0] for i in range(0, len(arr)): sub_max = 0 for j in range(k): if j <= i: sub_max = max(sub_max, arr[i-j]) dp[i + 1] = max(dp[i+1], sub_max * (j + 1) + dp[i-j]) return dp[len(arr)]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: def dfs(start, memo): if start in memo: return memo[start] N = len(A) if start >= N: return 0 maxSum = 0 maxEle = 0 for i in range(start, min(N, start + K)): maxEle = max(maxEle, A[i]) maxSum = max(maxSum, maxEle * (i - start + 1) + dfs(i+1, memo)) memo[start] = maxSum return maxSum return dfs(0, {}) # max_heap = [] # counter = collections.defaultdict(int) # N = len(A) # result = [] # for i in range(K): # heappush(max_heap, -A[i]) # counter[A[i]] += 1 # for i, n in enumerate(A): # if i+k < N: # result.append(-heap[0][0])
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: N = len(arr) dp = [0] * (N + 1) for i in range(N): curMax = 0 for j in range(1, min(k, i + 1) + 1): curMax = max(curMax, arr[i - j + 1]) dp[i] = max(dp[i], dp[i - j] + curMax * j) return dp[N - 1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = [-1] * (len(arr) + 1) dp[0] = 0 for i in range(len(arr)): cur_max = -1 for j in range(k): if (i - j) < 0: dp[i + 1] = max(dp[i + 1], arr[i]) break cur_max = max(cur_max, arr[i-j]) dp[i + 1] = max(dp[i + 1], dp[i-j] + cur_max * (j + 1)) return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: if arr == [] or k == 0: return 0 if len(arr) == 1 and k == 1: return arr[0] l = len(arr) res = [0]*(l) for i in range(0, l): sub_max = 0 for j in range(k): if j <= i: sub_max = max(sub_max, arr[i-j]) res[i] = max(res[i], sub_max*(j + 1) + (res[i-j-1] if i-j-1 >=0 else 0)) return res[l-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [0]*(n+1) dp[0] = 0 for i in range(1,n+1): mx=0 for j in range(k): if(i-j-1>=0): mx = max(mx, arr[i-j-1]) dp[i] = max(dp[i], mx*(j+1) + dp[i-j-1]) return dp[n]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: dp = len(arr) * [0] dp[0] = arr[0] for i in range(1, len(arr)): sub_max = 0 for j in range(k): if j <= i: sub_max = max(sub_max, arr[i-j]) dp[i] = max(dp[i], sub_max * (j + 1) + (dp[i-j-1] if i-j-1 >= 0 else 0)) return dp[len(arr)-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], K: int) -> int: # walk through list: at every element, look backwards up to K spaces # compare combination of 1, 2 .. K repeats of current segment max # vs total sum, and retain the largest (dp_sum memoization) # dummy index dp_sum[0] for index bound checking # O(AK) time, O(A) extra space dp_sum = [0 for _ in range(len(A)+1)] for i in range(len(A)): seg_max = A[i] for j in range(1, K+1): if i-j+1 < 0: break seg_max = max(seg_max, A[i-j+1]) tmp = dp_sum[i-j+1] + seg_max * j dp_sum[i+1] = max(dp_sum[i+1], tmp) return dp_sum[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, A: List[int], k: int) -> int: L=len(A) vis={} def pos(n): if n>=L: return 0 if n in vis: return vis[n] currmax=A[n] ans=A[n]+pos(n+1) for i in range(1,k): n1=n+i if n1>=L: break currmax=max(currmax,A[n1]) ans=max(ans,currmax*(i+1)+pos(n1+1)) vis[n]=ans return vis[n] return pos(0)
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: if not arr: return 0 n = len(arr) dp = [0 for _ in range(n)] for i in range(n): temp_max = arr[i] j = 1 while i-j+1>=0 and j<=k: temp_max = max(temp_max, arr[i-j+1]) if i>=j: dp[i] = max(dp[i], dp[i-j]+(temp_max*j)) else: dp[i] = max(dp[i], temp_max*j) j+=1 return dp[-1]
Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 109 1 <= k <= arr.length
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) dp = [-1 for _ in range(n)] def max_sum(i): # print(i) if i >= n: return 0 if i == (n - 1): return arr[i] if dp[i] != -1: return dp[i] ans = float('-inf') maxi = arr[i] for p in range(1, k + 1): v = maxi*p + max_sum(i + p) # print(i, p, v) ans = max(v, ans) if (i + p) < n: maxi = max(maxi, arr[i + p]) else: break dp[i] = ans return ans v = max_sum(0) return v