inputs
stringlengths 50
14k
| targets
stringlengths 4
655k
|
|---|---|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
waiting_customers = 0
wheel_rotations = 0
minimum_wheel_rotations = -1
max_profit = 0
profit = 0
for c in customers:
wheel_rotations+=1
boarding_waiting = min(4, waiting_customers)
waiting_customers -= boarding_waiting
boarding_now = max(0, min(4, c) - boarding_waiting)
waiting_customers += c-boarding_now
total_boarding = boarding_waiting + boarding_now
profit += total_boarding * boardingCost - runningCost
if profit > max_profit:
max_profit = profit
minimum_wheel_rotations = wheel_rotations
fullrevenue_rotations = (waiting_customers // 4)
wheel_rotations+=fullrevenue_rotations
# fullprofit = fullprofit_rotations * 4 * boardingCost - fullprofit_rotations * runningCost
fullrevenue = fullrevenue_rotations * (4 * boardingCost - runningCost)
profit += fullrevenue
if profit > max_profit:
max_profit = profit
minimum_wheel_rotations = wheel_rotations
remaining_customers = waiting_customers % 4
wheel_rotations+=1
remaining_revenue = remaining_customers * boardingCost - runningCost
profit += remaining_revenue
if profit > max_profit:
max_profit = profit
minimum_wheel_rotations = wheel_rotations
return minimum_wheel_rotations
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
wt = 0
profit = 0
bp = 0
ret = -1
cr = 0
gondola = [0, 0, 0, 0]
i = 0
while i < len(customers) or wt:
cr += 1
if i < len(customers):
e = customers[i]
wt += e
if wt:
take = min(wt, 4)
profit += boardingCost * take - runningCost
wt -= take
gondola = gondola[1:] + [take]
else:
if sum(gondola) == 0:
profit -= runningCost
if profit > bp:
bp = profit
ret = cr
i += 1
return ret
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
max_profit = 0
max_step = -1
profit = 0
rest = 0
for i, c in enumerate(customers):
customer = c + rest
customer, rest = min(4, customer), max(0, customer - 4)
profit += customer * boardingCost - runningCost
if profit > max_profit:
max_profit = profit
max_step = i + 1
q, r = divmod(rest, 4)
if q > 0:
profit += q * 4 * boardingCost - q * runningCost
if profit > max_profit:
max_profit = profit
max_step = len(customers) + q
if r > 0:
profit += r * boardingCost - runningCost
if profit > max_profit:
max_step = len(customers) + q + 1
return max_step
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
wating = 0
profit = 0
idx = -1
t_r = 0
max_profit = 0
for customer in customers:
wating += customer
if wating <= 4:
profit += wating * boardingCost - runningCost
wating = 0
else:
profit += 4 * boardingCost - runningCost
wating -= 4
t_r += 1
if profit > max_profit:
idx = t_r
max_profit = profit
if wating > 0:
if 4 * boardingCost > runningCost:
idx += wating//4
wating = wating%4
if wating * boardingCost > runningCost:
idx += 1
return idx
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
if not customers: return -1
if 4 * boardingCost <= runningCost: return -1
num = 0
profit = 0
sum_ppl = 0
for c in customers:
sum_ppl += c
cur_w = 0
for i in range(len(customers)):
num += 1
cur_w += customers[i]
n = 4 if cur_w >= 4 else cur_w
profit += n * boardingCost - runningCost
cur_w -= n
rotates, left = cur_w// 4, cur_w % 4
num += rotates
profit += rotates * 4 * boardingCost - runningCost * rotates
if left * boardingCost > runningCost:
num += 1
profit += left * boardingCost - runningCost
if profit <= 0:
return -1
return num
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
from typing import List, Dict, Tuple
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
current = 0
cost = 0
amari = 0
ans = -1
macost = 0
for customer in customers:
amari += customer
if amari >= 4:
amari -= 4
cost += 4 * boardingCost - runningCost
current += 1
if cost > macost:
macost = cost
ans = current
else:
tmp = cost
tmp = cost
cost += amari * boardingCost - runningCost
amari = 0
current += 1
if cost > macost:
macost = cost
ans = current
a, b = divmod(amari, 4)
if 4 * boardingCost > runningCost:
cost += a * boardingCost - runningCost
current += a
if cost > macost:
macost = cost
ans = current
if b * boardingCost > runningCost:
cost += b * boardingCost - runningCost
current += 1
if cost > macost:
macost = cost
ans = current
return ans
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
ans = -1
most = pnl = waiting = 0
for i, x in enumerate(customers):
waiting += x # more people waiting in line
waiting -= (chg := min(4, waiting)) # boarding
pnl += chg * boardingCost - runningCost
if most < pnl: ans, most = i+1, pnl
q, r = divmod(waiting, 4)
if 4*boardingCost > runningCost: ans += q
if r*boardingCost > runningCost: ans += 1
return ans
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
count = 0
minCount = -1
profit = 0
maxProfit = None
waiting = 0
for i, cnum in enumerate(customers):
waiting += cnum
if waiting >= 4:
rounds = waiting // 4
count += rounds
profit += (boardingCost * 4 - runningCost)*rounds
waiting = waiting % 4
else:
if count <= i:
count += 1
profit += boardingCost * waiting - runningCost
waiting = 0
if profit > 0 and (maxProfit is None or profit > maxProfit):
maxProfit = profit
minCount = count
if waiting > 0:
profit += boardingCost * waiting - runningCost
count += 1
if profit > 0 and (maxProfit is None or profit > maxProfit):
maxProfit = profit
minCount = count
return minCount
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
r=0
c=0
n=len(customers)
total=0
ans=0
ind=-1
while c<n:
if customers[c]>=4:
r+=(customers[c]//4)
total+=((customers[c]//4)*4)
customers[c]-=((customers[c]//4)*4)
if customers[c]==0:
c+=1
res=total*boardingCost-r*runningCost
if res>ans:
ans=res
ind=r
else:
if c==n-1 or c==r:
total+=customers[c]
r+=1
res=total*boardingCost-r*runningCost
if res>ans:
ans=res
ind=r
else:
customers[c+1]+=customers[c]
c+=1
return ind
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
profit = 0
waiting = 0
rotations = 0
onboard = 0
gondola_customers = deque([])
total = 0
maxprofit = 0
max_rotation = -1
for idx,arrival in enumerate(customers):
# if onboard == 0 and waiting == 0 and arrival == 0:
# continue
if gondola_customers and gondola_customers[0][1]==idx:
coming_down = gondola_customers.popleft()[0]
onboard -= coming_down
total = arrival
if waiting >0:
total = waiting + arrival
board = min(total,4)
profit += ((board*boardingCost) - runningCost)
onboard += board
gondola_customers.append([board,idx+4])
waiting += (arrival-board)
rotations += 1
if profit > maxprofit:
maxprofit = profit
max_rotation = rotations
profit += ((waiting//4)*((4*boardingCost)-runningCost))
rotations += (waiting//4)
if profit > maxprofit:
maxprofit = profit
max_rotation = rotations
profit += (((waiting%4)*boardingCost)-runningCost)
rotations += ((waiting%4)>0)
if profit > maxprofit:
maxprofit = profit
max_rotation = rotations
return max_rotation if maxprofit > 0 else -1
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], B: int, R: int) -> int:
turns = 0
boarded = 0
max_profit = -1
rem = 0
max_turns = -1
# print(sum(customers))
for i, c in enumerate(customers):
t, rem = divmod(c+rem, 4)
turns += t
boarded += t * 4
if turns <= i:
turns += 1
boarded += rem
rem = 0
profit = boarded * B - turns * R
if profit > max_profit:
max_profit = profit
max_turns = turns
# print(i, c, boarded, rem, turns, res)
if rem > 0:
boarded += rem
turns += 1
profit = boarded * B - turns * R
if profit > max_profit:
max_profit = profit
max_turns = turns
return max_turns if max_profit > 0 else -1
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
left = 0
cost = 0
step = 0
def ceildiv(a, b):
return -(-a // b)
for i in range(len(customers)):
left += customers[i]
if left >= 4:
left -= 4
cost = 4*(boardingCost) - runningCost
step +=1
else:
cost = left*boardingCost - runningCost
step +=1
left = 0
lefts = left // 4
leftc = left % 4
costl = leftc*boardingCost - runningCost
cost = cost + left*boardingCost - runningCost*lefts
step += lefts
if cost > 0 :
if costl > 0:
return step +1
else : return step
else : return -1
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
_max=float('-inf')
queue,index,profit,rotations,buffer=0,0,0,0,0
_len=len(customers)
while queue>=0 and index<_len:
queue+=customers[index]
profit+= ( ( min(queue,4)*boardingCost ) - ( runningCost ) )
queue-=min(queue,4)
if profit>_max:
rotations+=1
if profit==_max:
buffer+=1
_max=max(_max,profit)
index+=1
if index==_len and queue:
profit+= ( ( ( (queue//4)*4 ) * boardingCost ) - ( (queue//4)*runningCost ) )
_max=max(_max,profit)
rotations+=queue//4
queue-=((queue//4)*4)
if queue:
profit+= (( queue%4 * boardingCost ) - runningCost)
if profit>_max:
rotations+=1
_max=max(_max,profit)
return rotations+buffer if _max>=0 else -1
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
cur = 0
total = 0
profit1 = [0,0]
profit2 = [0,0]
stop = False
left =0
if 4*boardingCost-runningCost<=0:
return -1
while cur<len(customers):
left+=customers[cur]
if left>=4:
left-=4
customer = 4
else:
customer = left
left = 0
if (customer*boardingCost-runningCost)+profit1[0]>profit1[0]:
profit2[0]=(customer*boardingCost-runningCost)+profit1[0]
profit2[1]=profit1[1]+1
profit1[0]=(customer*boardingCost-runningCost)+profit1[0]
profit1[1]=profit1[1]+1
cur+=1
if left:
profit1[0]+=(left//4)*(customer*boardingCost-runningCost)
profit1[1]+=(left//4)
if (left%4)*boardingCost-runningCost>0:
profit1[0]+=(left%4)*boardingCost-runningCost
profit1[1]+=1
if profit1[0]>profit2[0]:
return profit1[1]
elif profit1[0]<profit2[0]:
return profit2[1]
else:
return min(profit1[1],profit2[1])
'''
while cur<len(customers):
current = customers[cur]
if current >=4:
profit1[cur+1][0]= (current//4)*(4*boardingCost-runningCost)+profit1[cur][0]
profit1[cur+1][1] = profit1[cur][1] +current//4
current = current%4
if profit1[cur][0]<profit1[cur+1][0]:
profit2[cur+1][0]=profit1[cur+1][0]
profit2[cur+1][1]=profit1[cur+1][1]
else:
profit2[cur+1][1]=profit1[cur][1]
profit2[cur+1][0]=profit1[cur][0]
if current>0:
profit1[cur+1][0]=current*boardingCost-runningCost+profit1[cur+1][0]
profit1[cur+1][1]=profit1[cur+1][1]+1
else:
profit1[cur+1][0]=current*boardingCost-runningCost+profit1[cur][0]
profit1[cur+1][1]=profit1[cur][1]+1
profit2[cur+1][1]=profit1[cur][1]
profit2[cur+1][0]=profit1[cur][0]
cur+=1
keys1 = list(range(len(customers)+1))
keys2= list(range(len(customers)+1))
keys1.sort(key=lambda x: (profit1[x][0],-profit1[x][1]))
keys2.sort(key=lambda x:(profit2[x][0],-profit2[x][1]))
key1= keys1[-1]
key2 = keys2[-1]
print(profit1)
print(profit2)
if profit1[key1][0]>profit2[key2][0]:
return profit1[key1][1]
elif profit1[key1][0]<profit2[key2][0]:
return profit2[key1][1]
else:
return min(profit1[key1][1],profit2[key2][1])
'''
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
# Ugliest code ever dont even try reading this
return self.min_operations_max_profit_recurse(customers, 0, boardingCost, runningCost, 0, 0)[1]
def serve_remaining_people(self, waiting, boardingCost, runningCost, depth):
profit = 0
num_rotations = waiting // 4
if num_rotations and 4 * boardingCost - runningCost > 0:
depth += num_rotations
profit += (4 * boardingCost - runningCost) * num_rotations
if waiting % 4 and waiting % 4 * boardingCost - runningCost > 0:
depth += 1
profit += waiting % 4 * boardingCost - runningCost
return profit, depth
def min_operations_max_profit_recurse(self, customers, index, boardingCost, runningCost, waiting, depth):
if index == len(customers):
return self.serve_remaining_people(waiting, boardingCost, runningCost, depth)
# free gondola
waiting += customers[index]
gondola = min(waiting, 4)
waiting -= gondola
# try rotating
profit, rotations = self.min_operations_max_profit_recurse(customers, index + 1, boardingCost, runningCost, waiting, depth + 1)
profit += gondola * boardingCost - runningCost
if profit <= 0:
return -1, -1
# print(profit, rotations)
return profit, rotations
# [10,9,6]
# 6
# 4
# 0: 4 * 6 - 4 = 24 - 4
# 1: 4 * 6 - 4
# 2:
# waiting = 11
# index = 1
# gondola = 4
# depth = 1
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
wait = 0
pro = 0
high = 0
res = -1
for i in range(len(customers)):
vacc = 4 - wait
if vacc <= 0:
wait += customers[i] - 4
pro += 4 * boardingCost - runningCost
# board all
elif customers[i] <= vacc: # board=customers[i]+wait
pro += boardingCost * (customers[i] + wait) - runningCost
wait = 0
else:
pro += boardingCost * 4 - runningCost
wait += customers[i] - 4
if pro > high:
high = pro
res = i
# determine after all arrives
pro_per = boardingCost * 4 - runningCost
if pro_per > 0:
last = wait % 4
if wait >= 4:
if boardingCost * last - runningCost > 0: return len(customers) + wait // 4 + 1
else: return len(customers) + wait // 4
if boardingCost * last - runningCost > 0: return len(customers) + 1
return res + 1 if res >= 0 else -1
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
return self.min_operations_max_profit_recurse(customers, 0, boardingCost, runningCost, 0, 0)[1]
def serve_remaining_people(self, waiting, boardingCost, runningCost, depth):
profit = 0
num_rotations = waiting // 4
if num_rotations and 4 * boardingCost - runningCost > 0:
depth += num_rotations
profit += (4 * boardingCost - runningCost) * num_rotations
if waiting % 4 and waiting % 4 * boardingCost - runningCost > 0:
depth += 1
profit += waiting % 4 * boardingCost - runningCost
return profit, depth
def min_operations_max_profit_recurse(self, customers, index, boardingCost, runningCost, waiting, depth):
if index == len(customers):
return self.serve_remaining_people(waiting, boardingCost, runningCost, depth)
# free gondola
waiting += customers[index]
gondola = min(waiting, 4)
waiting -= gondola
# try rotating
profit, rotations = self.min_operations_max_profit_recurse(customers, index + 1, boardingCost, runningCost, waiting, depth + 1)
profit += gondola * boardingCost - runningCost
if profit <= 0:
return -1, -1
# print(profit, rotations)
return profit, rotations
# [10,9,6]
# 6
# 4
# 0: 4 * 6 - 4 = 24 - 4
# 1: 4 * 6 - 4
# 2:
# waiting = 11
# index = 1
# gondola = 4
# depth = 1
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
nwaiting = 0
profit = 0
maxprofit = 0
res = - 1
for i,c in enumerate(customers,1):
nwaiting += c
onboard = min(4,nwaiting)
nwaiting -= onboard
profit += onboard*boardingCost - runningCost
if maxprofit < profit:
maxprofit = profit
res = i
if nwaiting > 0:
roundn = nwaiting//4
nwaiting -= roundn*4
profit += roundn* (4*boardingCost - runningCost )
if maxprofit < profit:
maxprofit = profit
res += roundn
if nwaiting > 0:
profit += nwaiting*boardingCost - runningCost
if maxprofit < profit:
maxprofit = profit
res += 1
return res if maxprofit > 0 else -1
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
from math import ceil
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
r = 0
boarded = 0
maxProfit = 0
maxR = -1
print(customers,boardingCost,runningCost)
for i in range(len(customers)-1) :
customers[i+1] += customers[i] - 4 if customers[i] > 4 else 0
r += 1
boarded += min(customers[i],4)
profit = boarded * boardingCost - r * runningCost
if profit > maxProfit :
maxProfit = profit
maxR = r
r += ceil(customers[-1]/4)
boarded += customers[-1]
if customers[-1] % 4 > 0 and (customers[-1] % 4) * boardingCost - runningCost <= 0:
r -= 1
boarded -= customers[-1] % 4
profit = boarded *boardingCost - r *runningCost
if profit > maxProfit :
maxProfit = profit
maxR = r
return maxR if maxProfit >0 else -1
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def profit(self,s,customers,count,curr_profit,waiting,rot_cost,bill):
# print(s,waiting,count)
if curr_profit>self.profit_so_far:
self.profit_so_far=curr_profit
self.ans=count
if waiting==0 and s>=len(customers):
return
if s>=len(customers) and waiting>4:
n=waiting//4
waiting=waiting-(n*4)
count+=(n)
curr_profit+= (n*4*bill - (n)*rot_cost)
self.profit(len(customers) ,customers,count,curr_profit,waiting, rot_cost,bill)
return
if s<len(customers):waiting+=customers[s]
curr_profit-=rot_cost
if waiting<=4:
curr_profit+=waiting*bill
waiting=0
else:
waiting-=4
curr_profit+=4*bill
self.profit(s+1,customers,count+1,curr_profit,waiting,rot_cost,bill)
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
self.ans=-1
self.profit_so_far=0
self.profit(0,customers,0,0,0,runningCost,boardingCost)
return self.ans
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
avail, cur, high, high_idx = 0, 0, 0, -1
for i, c in enumerate(customers):
avail += c
if avail > 4:
cur += 4 * boardingCost - runningCost
avail -= 4
else:
cur += avail * boardingCost - runningCost
avail = 0
if cur > high:
high, high_idx = cur, i + 1
if 4 * boardingCost - runningCost > 0:
i += avail // 4
cur += (4 * boardingCost - runningCost) * (avail // 4)
avail = avail % 4
high, high_idx = cur, i + 1
cur += avail * boardingCost - runningCost
avail = 0
if cur > high:
high, high_idx = cur, high_idx + 1
return high_idx
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
if boardingCost*4 <= runningCost:
return -1
customers.append(0)
profit = []
curProfit, runs = 0, 0
for i in range(len(customers)-1):
if customers[i] >= 4:
if i+1 < len(customers):
customers[i+1] += customers[i]-4
customers[i] = 4
if customers[i]*boardingCost < runningCost:
runs = runs + 1
profit.append((curProfit, runs))
continue
curProfit += customers[i]*boardingCost - runningCost
runs += 1
profit.append((curProfit, runs))
#print(customers, curProfit, runs)
if customers[-1] > 0:
runs = runs + (customers[-1]//4)
curProfit += (customers[-1]//4)*boardingCost - (customers[-1]//4)//4*runningCost
customers[-1] = customers[-1]%4
if customers[-1]*boardingCost > runningCost:
runs = runs + 1
curProfit += customers[-1]*boardingCost - runningCost
#print(\"w\", curProfit, runs)
profit.append((curProfit, runs))
profit.sort(key = lambda x: (-x[0], x[1]))
#print(profit)
return profit[0][1] if profit[0][0] > 0 else -1
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
# use a list to record profits
cs = [customers[0]]
for tmp in customers[1:]:
cs.append(cs[-1] + tmp)
# first steps
maxp = -1
maxn = -1
max_cap = 0
for i in range(len(customers)):
max_cap = min(cs[i], max_cap + 4)
cur_profit = max_cap * boardingCost - runningCost * (i + 1)
if cur_profit > maxp:
maxp = cur_profit
maxn = i + 1
# how many people are left?
ppl_left = cs[-1] - max_cap
rounds = ppl_left // 4
cur_profit += rounds * (4 * boardingCost - runningCost)
cur_round = len(customers) + rounds
if cur_profit > maxp:
maxp = cur_profit
maxn = cur_round
ppl_left2 = ppl_left % 4
cur_profit += (ppl_left2 * boardingCost - runningCost)
cur_round += 1
if cur_profit > maxp:
maxp = cur_profit
maxn = cur_round
return maxn
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
max_profit = times_rotated = float('-inf')
total_customers = ran = left = i = 0
while i < len(customers) or left > 0:
if i < len(customers):
left += customers[i]
if i < ran:
i += 1
continue
if left >= 4:
times = left // 4
total_customers += 4 * times
ran += times
left -= 4 * times
else:
total_customers += left
left = 0
ran += 1
curr_profit = total_customers * boardingCost - ran * runningCost
if curr_profit > max_profit:
max_profit = curr_profit
times_rotated = ran
i += 1
# print(total_customers, ran, curr_profit)
if max_profit < 0:
return -1
return times_rotated
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
if runningCost >= boardingCost*4:
return -1
result = -1
maxProfit = 0
waiting = 0
current = 0
for i, customerCount in enumerate(customers):
waiting += customerCount
boarding = min(waiting, 4)
waiting -= boarding
current += boarding*boardingCost - runningCost
if current > maxProfit:
maxProfit = current
result = i+1
if waiting > 0:
fullRoundsLeft = waiting // 4
lastRoundQuantity = waiting % 4
current += fullRoundsLeft * (4*boardingCost - runningCost)
turns = len(customers) + fullRoundsLeft
if current > maxProfit:
maxProfit = current
result = turns
current += lastRoundQuantity*boardingCost - runningCost
turns += 1
if current > maxProfit:
maxProfit = current
result = turns
return result if result >= 0 else -1
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
numCust = 0
rotation = 0
curWait = 0
maxProfit = 0
minRo = 0
##8
for i, customer in enumerate(customers):
while rotation < i:
rotation += 1
curWait -= 4
curWait = max(0, curWait)
curProfit = (numCust - curWait) * boardingCost - rotation * runningCost
if curProfit > maxProfit:
maxProfit = curProfit
minRo = rotation
numCust += customer
curWait += customer
rots = curWait // 4
rotation += rots
curWait %= 4
curProfit = (numCust - curWait) * boardingCost - rotation * runningCost
if curProfit > maxProfit:
maxProfit = curProfit
minRo = rotation
if curWait > 0:
rotation += 1
curProfit = numCust * boardingCost - rotation * runningCost
if curProfit > maxProfit:
maxProfit = curProfit
minRo = rotation
return minRo if maxProfit > 0 else -1
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
profit = 0
waiting = 0
rotations = 0
ans = -1
for c in customers:
waiting += c
cap = 0
if waiting >= 4:
waiting -= 4
cap += 4
else:
cap = waiting
waiting = 0
cur_profit = profit + (cap * boardingCost) - runningCost
rotations += 1
if cur_profit > profit:
ans = rotations
profit = cur_profit
if waiting > 0:
req_rotations = math.ceil(waiting/4)
ignore = waiting // 4
possible_profit = (waiting * boardingCost) - (req_rotations * runningCost)
full_only = ((waiting - (waiting % 4)) * boardingCost) - (ignore * runningCost)
if possible_profit > full_only:
additional = req_rotations
if profit + possible_profit > profit:
ans = rotations + req_rotations
else:
additional = ignore
if profit + full_only > profit:
ans = rotations + ignore
return ans
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, A, BC, RC):
ans=profit=t=0
maxprofit=0
wait=i=0
n=len(A)
while i<n:
if i<n:
wait+=A[i]
i+=1
t+=1
y=wait if wait<4 else 4
wait-=y
profit+=y*BC
profit-=RC
if profit>maxprofit:
maxprofit=profit
ans=t
profit+=wait//4*BC
#profit-=RC*(wait+3)//4
if profit>maxprofit:
ans+=wait//4
if wait%4*BC>RC:
maxprofit+=wait%4*BC-RC
ans+=1
if maxprofit<=0:
return -1
else:
return ans
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
ans=-1
maxp=0
curr=0
c=0
track=0
for i in range(len(customers)):
track+=customers[i]
curr+=min(4,track)*boardingCost-runningCost
track-=min(4,track)
c+=1
if curr>maxp:
maxp=curr
ans=c
if track>=4:
curr+=(track-track%4)*boardingCost-(track//4)*runningCost
c+=track//4
if curr>maxp:
maxp=curr
ans=c
curr+=(track%4)*boardingCost-runningCost
c+=1
if curr>maxp:
maxp=curr
ans=c
return ans
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
ans = -1
if boardingCost * 4 < runningCost: return ans
cur_profit = 0
wait_num = 0
dic = {}
for i in range(len(customers)):
if customers[i] + wait_num < 5:
cur_profit += boardingCost * (customers[i] + wait_num) - runningCost
wait_num = 0
else:
cur_profit += boardingCost * 4 - runningCost
wait_num += customers[i] - 4
if cur_profit > ans:
ans = cur_profit
dic[ans] = i+1
if wait_num > 0:
while wait_num > 3:
wait_num -= 4
dic[ans] += 1
if wait_num * boardingCost > runningCost:
dic[ans] += 1
return dic[ans]
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
if boardingCost*4 < runningCost: return -1
rot = 0
spot = 0
prof = max_prof = [0, 0]
while spot < len(customers):
rot += 1
curr = customers[spot]
if curr > 4:
if spot == len(customers) - 1:
temp = prof[0] + 4*boardingCost*(curr//4) - runningCost*(curr//4)
max_prof1 = max(max_prof, [temp, rot -1 + curr//4])
temp = prof[0] + 4*boardingCost*(curr//4) + boardingCost*(curr%4) - runningCost*(curr//4+bool(curr%4))
max_prof2 = max(max_prof, [temp, rot -1 + curr//4 + bool(curr%4)])
if max_prof1[0] != max_prof2[0]: return max(max_prof1, max_prof2)[1]
if max_prof1[0] == max_prof2[0]: return max_prof1[1]
else:
customers[spot+1] += curr-4
prof[0] += 4*boardingCost - runningCost
else:
prof[0] += curr*boardingCost - runningCost
max_prof = max(max_prof, [prof[0], rot])
spot += 1
return max_prof[1]
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
profit = 0
waiting = 0
rotation = 0
max_profit = 0
ans = None
for customer in customers:
customer += waiting
rotation += 1
if customer>=4:
profit += 4*boardingCost - runningCost
waiting = customer-4
else:
profit = customer*boardingCost - runningCost
waiting = 0
if max_profit<profit:
max_pprofit = profit
ans = rotation
if waiting>0:
if waiting>4:
while waiting>4:
profit += 4*boardingCost - runningCost
waiting = waiting-4
rotation += 1
#print(profit)
if max_profit<profit:
max_pprofit = profit
ans = rotation
profit = waiting*boardingCost - runningCost
rotation+=1
if max_profit<profit:
max_pprofit = profit
ans = rotation
return ans if ans else -1
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
profit = 0
maxProfit = -1
res = -1
currentCustomer = 0
for i, c in enumerate(customers):
currentCustomer += c
if currentCustomer <=4:
profit += currentCustomer*boardingCost - runningCost
currentCustomer = 0
else:
profit += 4*boardingCost - runningCost
currentCustomer -=4
if profit > maxProfit:
maxProfit = profit
res = i+1
rounds = currentCustomer // 4
left = currentCustomer % 4
if boardingCost*4 - runningCost > 0:
profit += rounds*(boardingCost*4 - runningCost)
if profit > maxProfit:
maxProfit = profit
res += rounds
profit += boardingCost*left-runningCost
if profit > maxProfit:
maxProfit = profit
res +=1
return res
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
minimum = runningCost//boardingCost+1
if minimum>4: return -1
max_value = 0
profit = 0
remain = 0
turns = 0
res = None
for c in customers:
turns += 1
temp = remain+c
if temp>=4:
remain = temp-4
profit += 4*boardingCost-runningCost
else:
remain = 0
profit += temp*boardingCost-runningCost
if profit>max_value:
res = turns
max_value = profit
print(turns, remain)
while remain:
turns += 1
if remain>=4:
remain -= 4
profit += 4*boardingCost-runningCost
else:
profit += remain*boardingCost-runningCost
remain = 0
if profit>max_value:
res = turns
max_value = profit
return res
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, nums: List[int], pos: int, fee: int) -> int:
if 4*pos <= fee:
return -1
ans = cur = 0
s = sum(nums)
best = -math.inf
p = 0
for i, x in enumerate(nums):
cur += x
if cur >= 4:
p += (4*pos - fee)
cur -= 4
else:
p += (cur * pos - fee)
cur = 0
if p > best:
best = p
ans = i + 1
res = len(nums)
while cur > 0:
res += 1
if cur >= 4:
p += (4*pos - fee)
cur -= 4
else:
p += (cur * pos - fee)
cur = 0
if p > best:
best = p
ans = res
if best <=0:
return -1
return ans
|
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
Example 1:
Input: customers = [8,3], boardingCost = 5, runningCost = 6
Output: 3
Explanation: The numbers written on the gondolas are the number of people currently there.
1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.
2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.
3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.
The highest profit was $37 after rotating the wheel 3 times.
Example 2:
Input: customers = [10,9,6], boardingCost = 6, runningCost = 4
Output: 7
Explanation:
1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.
2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.
3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.
4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.
5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.
6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.
7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.
The highest profit was $122 after rotating the wheel 7 times.
Example 3:
Input: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
Output: -1
Explanation:
1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.
2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.
3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.
4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.
5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.
The profit was never positive, so return -1.
Example 4:
Input: customers = [10,10,6,4,7], boardingCost = 3, runningCost = 8
Output: 9
Explanation:
1. 10 customers arrive, 4 board and 6 wait, the wheel rotates. Current profit is 4 * $3 - 1 * $8 = $4.
2. 10 customers arrive, 4 board and 12 wait, the wheel rotates. Current profit is 8 * $3 - 2 * $8 = $8.
3. 6 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 12 * $3 - 3 * $8 = $12.
4. 4 customers arrive, 4 board and 14 wait, the wheel rotates. Current profit is 16 * $3 - 4 * $8 = $16.
5. 7 customers arrive, 4 board and 17 wait, the wheel rotates. Current profit is 20 * $3 - 5 * $8 = $20.
6. 4 board and 13 wait, the wheel rotates. Current profit is 24 * $3 - 6 * $8 = $24.
7. 4 board and 9 wait, the wheel rotates. Current profit is 28 * $3 - 7 * $8 = $28.
8. 4 board and 5 wait, the wheel rotates. Current profit is 32 * $3 - 8 * $8 = $32.
9. 4 board and 1 waits, the wheel rotates. Current profit is 36 * $3 - 9 * $8 = $36.
10. 1 board and 0 wait, the wheel rotates. Current profit is 37 * $3 - 10 * $8 = $31.
The highest profit was $36 after rotating the wheel 9 times.
Constraints:
n == customers.length
1 <= n <= 105
0 <= customers[i] <= 50
1 <= boardingCost, runningCost <= 100
|
class Solution:
def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:
inLine = 0
profit = 0
maxProf = -1
maxRoll = -1
rolls = 0
for i in customers:
inLine += i
if inLine >= 4:
profit += 4*boardingCost - runningCost
inLine -= 4
else:
profit += inLine*boardingCost - runningCost
inLine = 0
rolls += 1
if profit > maxProf:
maxProf = profit
maxRoll = rolls
while inLine:
if inLine >= 4:
profit += 4*boardingCost - runningCost
inLine -= 4
else:
profit += inLine*boardingCost - runningCost
inLine = 0
rolls += 1
# maxProf = max(maxProf, profit)
if profit > maxProf:
maxProf = profit
maxRoll = rolls
return maxRoll
|
Convert a non-negative integer to its english words representation. Given input is guaranteed to be less than 231 - 1.
Example 1:
Input: 123
Output: "One Hundred Twenty Three"
Example 2:
Input: 12345
Output: "Twelve Thousand Three Hundred Forty Five"
Example 3:
Input: 1234567
Output: "One Million Two Hundred Thirty Four Thousand Five Hundred Sixty Seven"
Example 4:
Input: 1234567891
Output: "One Billion Two Hundred Thirty Four Million Five Hundred Sixty Seven Thousand Eight Hundred Ninety One"
|
class Solution:
V1 = ["", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine", "Ten",
"Eleven", "Twelve", "Thirteen", "Fourteen", "Fifteen", "Sixteen", "Seventeen", "Eighteen", "Nineteen"]
V2 = ["", "", "Twenty", "Thirty", "Forty", "Fifty", "Sixty", "Seventy", "Eighty", "Ninety"]
V3 = ["Thousand", "Million", "Billion"]
def numberToWords(self, num):
"""
:type num: int
:rtype: str
"""
if num == 0:
return "Zero"
answer = self.convert_hundred(num % 1000)
for i in range(3):
num //= 1000
if num % 1000 > 0:
following = " " + answer if answer else ""
answer = self.convert_hundred(num % 1000) + " " + self.V3[i] + following
return answer
def convert_hundred(self, num):
answer = ""
a = num // 100
b = num % 100
c = num % 10
if b < 20:
answer = self.V1[b]
else:
following = " " + self.V1[c] if c > 0 else ""
answer = self.V2[b // 10] + following
if a > 0:
following = " " + answer if answer else ""
answer = self.V1[a] + " Hundred" + following
return answer
|
Convert a non-negative integer to its english words representation. Given input is guaranteed to be less than 231 - 1.
Example 1:
Input: 123
Output: "One Hundred Twenty Three"
Example 2:
Input: 12345
Output: "Twelve Thousand Three Hundred Forty Five"
Example 3:
Input: 1234567
Output: "One Million Two Hundred Thirty Four Thousand Five Hundred Sixty Seven"
Example 4:
Input: 1234567891
Output: "One Billion Two Hundred Thirty Four Million Five Hundred Sixty Seven Thousand Eight Hundred Ninety One"
|
class Solution:
def parseHundred(self, n):
to19 = 'One Two Three Four Five Six Seven Eight Nine Ten Eleven Twelve Thirteen Fourteen Fifteen Sixteen Seventeen Eighteen Nineteen'.split()
tens = 'Twenty Thirty Forty Fifty Sixty Seventy Eighty Ninety'.split()
if n == 0:
return ''
w = ""
while n > 0:
if n > 99:
digit = n//100
w += to19[digit-1] + ' ' + 'Hundred'
n = n % 100
if n != 0:
w += ' '
else:
if n <= 19:
w += to19[n-1]
n = 0
else:
digit = n// 10
w += tens[digit-2]
n = n % 10
if n != 0:
w += ' '
return w
def numberToWords(self, num):
"""
:type num: int
:rtype: str
"""
thousands = ['', ' Thousand ', ' Million ', ' Billion ']
i = 0
w = ""
if num == 0:
return 'Zero'
while num > 0:
digits = num % 1000
if digits != 0:
w = self.parseHundred(digits) + thousands[i] + w
num = num//1000
i += 1
return w.strip()
|
Convert a non-negative integer to its english words representation. Given input is guaranteed to be less than 231 - 1.
Example 1:
Input: 123
Output: "One Hundred Twenty Three"
Example 2:
Input: 12345
Output: "Twelve Thousand Three Hundred Forty Five"
Example 3:
Input: 1234567
Output: "One Million Two Hundred Thirty Four Thousand Five Hundred Sixty Seven"
Example 4:
Input: 1234567891
Output: "One Billion Two Hundred Thirty Four Million Five Hundred Sixty Seven Thousand Eight Hundred Ninety One"
|
class Solution:
def numberToWords(self, num):
return ' '.join(self.words(num)) or 'Zero'
def words(self, n):
print(n)
to19 = ['One', 'Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine', 'Ten', 'Eleven', 'Twelve', 'Thirteen', 'Fourteen', 'Fifteen', 'Sixteen', 'Seventeen', 'Eighteen', 'Nineteen']
tens = ['Twenty', 'Thirty', 'Forty', 'Fifty', 'Sixty', 'Seventy', 'Eighty', 'Ninety',]
if n < 20:
return to19[n - 1: n]
if n < 100:
return [tens[n//10 - 2]] + self.words(n%10)
if n < 1000:
return [to19[n//100 - 1]] + ['Hundred'] + self.words(n%100)
for p, w in enumerate(('Thousand', 'Million', 'Billion'), 1):
if n < 1000**(p + 1):
return self.words(n//1000**p) + [w] + self.words(n%1000**p)
"""
:type num: int
:rtype: str
"""
|
Convert a non-negative integer to its english words representation. Given input is guaranteed to be less than 231 - 1.
Example 1:
Input: 123
Output: "One Hundred Twenty Three"
Example 2:
Input: 12345
Output: "Twelve Thousand Three Hundred Forty Five"
Example 3:
Input: 1234567
Output: "One Million Two Hundred Thirty Four Thousand Five Hundred Sixty Seven"
Example 4:
Input: 1234567891
Output: "One Billion Two Hundred Thirty Four Million Five Hundred Sixty Seven Thousand Eight Hundred Ninety One"
|
class Solution:
def numberToWords(self, num):
"""
:type num: int
:rtype: str
"""
if num==0:
return "Zero"
res=""
less20=["Zero","One","Two","Three","Four","Five","Six","Seven","Eight","Nine","Ten","Eleven","Twelve","Thirteen","Fourteen","Fifteen","Sixteen","Seventeen","Eighteen","Nineteen"]
tens=["Zero","Ten","Twenty","Thirty","Forty","Fifty","Sixty","Seventy","Eighty","Ninety"]
thousands=["","Thousand","Million","Billion"]
for k in range(4):
if num ==0:
break
cur=""
curNum=num%1000
num//=1000
print(("num",num))
if curNum>=100:
x=curNum//100
curNum%=100
cur=less20[x]+" Hundred"
if curNum>0:
if cur:
cur+=" "
if curNum<20:
cur+=less20[curNum]
else:
x=curNum//10
curNum%=10
cur+=tens[x]
if curNum!=0:
cur+=" "+less20[curNum]
print("cur")
if cur:
res=cur+((" "+thousands[k] if k else"")) +((" "+res if res else""))
return res
|
Convert a non-negative integer to its english words representation. Given input is guaranteed to be less than 231 - 1.
Example 1:
Input: 123
Output: "One Hundred Twenty Three"
Example 2:
Input: 12345
Output: "Twelve Thousand Three Hundred Forty Five"
Example 3:
Input: 1234567
Output: "One Million Two Hundred Thirty Four Thousand Five Hundred Sixty Seven"
Example 4:
Input: 1234567891
Output: "One Billion Two Hundred Thirty Four Million Five Hundred Sixty Seven Thousand Eight Hundred Ninety One"
|
class Solution:
def __init__(self):
self.twenties = ['', 'One', 'Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine', 'Ten',
'Eleven', 'Twelve', 'Thirteen', 'Fourteen', 'Fifteen', 'Sixteen', 'Seventeen', 'Eighteen', 'Nineteen']
self.tens = ['', 'Ten', 'Twenty', 'Thirty', 'Forty', 'Fifty', 'Sixty', 'Seventy', 'Eighty', 'Ninety']
self.thousands = ['', 'Thousand', 'Million', 'Billion']
def numberToWords(self, num):
"""
:type num: int
:rtype: str
"""
if num == 0:
return 'Zero'
result = ''
for i in range(len(self.thousands)):
if num % 1000 != 0:
result = self.helper(num%1000) + self.thousands[i] + ' ' + result
num //= 1000
return result.strip()
def helper(self, num):
if num == 0:
return ''
elif num < 20:
return self.twenties[num] + ' '
elif num < 100:
return self.tens[num//10] + ' ' + self.helper(num%10)
else:
return self.twenties[num//100] + ' Hundred ' + self.helper(num%100)
|
Convert a non-negative integer to its english words representation. Given input is guaranteed to be less than 231 - 1.
Example 1:
Input: 123
Output: "One Hundred Twenty Three"
Example 2:
Input: 12345
Output: "Twelve Thousand Three Hundred Forty Five"
Example 3:
Input: 1234567
Output: "One Million Two Hundred Thirty Four Thousand Five Hundred Sixty Seven"
Example 4:
Input: 1234567891
Output: "One Billion Two Hundred Thirty Four Million Five Hundred Sixty Seven Thousand Eight Hundred Ninety One"
|
class Solution:
def numberToWords(self, num):
"""
:type num: int
:rtype: str
"""
# special case 0
def translate(num):
if num == 0: return ''
less20 = [
'', 'One', 'Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine'
, 'Ten', 'Eleven', 'Twelve', 'Thirteen', 'Fourteen', 'Fifteen', 'Sixteen', 'Seventeen'
, 'Eighteen', 'Nineteen'
]
more20 = ['', '', 'Twenty', 'Thirty', 'Forty', 'Fifty', 'Sixty', 'Seventy', 'Eighty', 'Ninety']
res = ''
if num // 100:
res = less20[num // 100] + ' Hundred' + (' ' if num % 100 else '')
num %= 100
res += less20[num] if num < 20 else more20[num // 10] + (' ' + less20[num % 10] if num % 10 else '')
return res
if num == 0: return 'Zero'
unit = ['', 'Thousand', 'Million', 'Billion']
i = 0
res = []
while num > 0:
t = translate(num % 1000)
if t:
res += [unit[i], t]
num //= 1000
i += 1
return (' '.join(res[::-1])).strip()
|
Convert a non-negative integer to its english words representation. Given input is guaranteed to be less than 231 - 1.
Example 1:
Input: 123
Output: "One Hundred Twenty Three"
Example 2:
Input: 12345
Output: "Twelve Thousand Three Hundred Forty Five"
Example 3:
Input: 1234567
Output: "One Million Two Hundred Thirty Four Thousand Five Hundred Sixty Seven"
Example 4:
Input: 1234567891
Output: "One Billion Two Hundred Thirty Four Million Five Hundred Sixty Seven Thousand Eight Hundred Ninety One"
|
class Solution:
digit = {
0: '',
1: 'One',
2: 'Two',
3: 'Three',
4: 'Four',
5: 'Five',
6: 'Six',
7: 'Seven',
8: 'Eight',
9: 'Nine'
}
teen = {
10: 'Ten',
11: 'Eleven',
12: 'Twelve',
13: 'Thirteen',
14: 'Fourteen',
15: 'Fifteen',
16: 'Sixteen',
17: 'Seventeen',
18: 'Eighteen',
19: 'Nineteen'
}
ten = {
2: 'Twenty',
3: 'Thirty',
4: 'Forty',
5: 'Fifty',
6: 'Sixty',
7: 'Seventy',
8: 'Eighty',
9: 'Ninety'
}
idx = {
0: '',
1: 'Thousand',
2: 'Million',
3: 'Billion',
4: 'Trillion',
5: 'Quadrillion'
}
def helper(self,num):
result = ""
while len(num) < 3:
num = '0' + num
if num[0] is not '0':
result = self.digit[int(num[0])] + ' Hundred'
if num[1] is not '0':
if num[1] == '1':
return result + " " + self.teen[int(num[1]+num[2])]
else:
return result + " " + self.ten[int(num[1])] + " " + self.digit[int(num[2])]
if num[2] is not '0':
result = result + " " + self.digit[int(num[2])]
return result
def numberToWords(self, num):
"""
:type num: int
:rtype: str
"""
if num == 0:
return 'Zero'
result = ""
rev = str(num)[::-1]
slices = [rev[i:i+3] for i in range(0,len(str(num)),3)]
for idx, slice in enumerate((slices)):
if slice == '000':
continue
else:
result = self.helper(str(slice[::-1])) + " " + self.idx[idx] + " "+ result
result = result.split(' ')
result = [ x for x in result if x is not ""]
return ' '.join(result)
|
Convert a non-negative integer to its english words representation. Given input is guaranteed to be less than 231 - 1.
Example 1:
Input: 123
Output: "One Hundred Twenty Three"
Example 2:
Input: 12345
Output: "Twelve Thousand Three Hundred Forty Five"
Example 3:
Input: 1234567
Output: "One Million Two Hundred Thirty Four Thousand Five Hundred Sixty Seven"
Example 4:
Input: 1234567891
Output: "One Billion Two Hundred Thirty Four Million Five Hundred Sixty Seven Thousand Eight Hundred Ninety One"
|
class Solution:
def numberToWords(self, num):
"""
:type num: int
:rtype: str
"""
num_lyst = ['', 'One', 'Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine']
tens_lyst = ['', '', 'Twenty', 'Thirty', 'Forty', 'Fifty', 'Sixty', 'Seventy', 'Eighty', 'Ninety']
under20_lyst = ['Ten', 'Eleven', 'Twelve', 'Thirteen', 'Fourteen', 'Fifteen', 'Sixteen', 'Seventeen', 'Eighteen', 'Nineteen']
large_scale = ['', 'Thousand', 'Million', 'Billion']
def convert(num):
out_str = ''
hundred = num // 100
ten_digit = num % 100
if hundred:
out_str += num_lyst[hundred] + ' ' + 'Hundred '
if ten_digit:
if ten_digit < 10:
out_str += num_lyst[ten_digit]
elif ten_digit < 20:
out_str += under20_lyst[ten_digit % 10]
else:
out_str += tens_lyst[ten_digit // 10] + ' ' + num_lyst[ten_digit % 10]
return out_str.strip()
if not num:
return 'Zero'
res = num // 1000 # 商
last3 = num % 1000 # 余数,后三位
ans = ''
while res or last3:
if last3:
ans = convert(last3) + ' ' + large_scale.pop(0) + ' '+ ans
else:
large_scale.pop(0)
last3 = res % 1000
res = res //1000
return ans.strip()
|
Convert a non-negative integer to its english words representation. Given input is guaranteed to be less than 231 - 1.
Example 1:
Input: 123
Output: "One Hundred Twenty Three"
Example 2:
Input: 12345
Output: "Twelve Thousand Three Hundred Forty Five"
Example 3:
Input: 1234567
Output: "One Million Two Hundred Thirty Four Thousand Five Hundred Sixty Seven"
Example 4:
Input: 1234567891
Output: "One Billion Two Hundred Thirty Four Million Five Hundred Sixty Seven Thousand Eight Hundred Ninety One"
|
class Solution:
def getEnglishThousand(self, n):
if 1 <= n <= 9:
return ['One', 'Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine'][n-1]
elif 10 <= n <= 19:
return ['Ten', 'Eleven', 'Twelve', 'Thirteen', 'Fourteen', 'Fifteen', 'Sixteen', 'Seventeen', 'Eighteen', 'Nineteen'][n-10]
elif 20 <= n <= 99:
eng = ['Twenty', 'Thirty', 'Forty', 'Fifty', 'Sixty', 'Seventy', 'Eighty', 'Ninety'][(n//10)-2]
if n % 10 > 0:
return eng + ' ' + self.getEnglishThousand(n % 10)
else:
return eng
else:
hundred = self.getEnglishThousand(n // 100) + ' Hundred'
if n % 100 > 0:
return hundred + ' ' + self.getEnglishThousand(n % 100)
else:
return hundred
def numberToWords(self, num):
"""
:type num: int
:rtype: str
"""
if num == 0:
return 'Zero'
stack = ['Billion', 'Million', 'Thousand', None]
english = []
while num:
quantifier = stack.pop()
if num % 1000 > 0:
english.append(self.getEnglishThousand(num % 1000) + (' ' + quantifier if quantifier else ''))
num //= 1000
return ' '.join(reversed(english))
|
Convert a non-negative integer to its english words representation. Given input is guaranteed to be less than 231 - 1.
Example 1:
Input: 123
Output: "One Hundred Twenty Three"
Example 2:
Input: 12345
Output: "Twelve Thousand Three Hundred Forty Five"
Example 3:
Input: 1234567
Output: "One Million Two Hundred Thirty Four Thousand Five Hundred Sixty Seven"
Example 4:
Input: 1234567891
Output: "One Billion Two Hundred Thirty Four Million Five Hundred Sixty Seven Thousand Eight Hundred Ninety One"
|
class Solution:
quantity_unit = ['', 'Thousand', 'Million', 'Billion']
digit_to_str = ['', ' One', ' Two', ' Three', ' Four', ' Five', ' Six', ' Seven', ' Eight', ' Nine']
ten_to_str = {10: 'Ten', 11: 'Eleven', 12: 'Twelve', 13: 'Thirteen', 14: 'Fourteen', 15: 'Fifteen', 16: 'Sixteen',
17: 'Seventeen', 18: 'Eighteen', 19: 'Nineteen', 20: 'Twenty', 30: 'Thirty', 40: 'Forty', 50: 'Fifty',
60: 'Sixty', 70: 'Seventy', 80: 'Eighty', 90: 'Ninety', 0: ''}
def read_three_digits(self, unit, ten, hundred, index):
if ten == 1:
str_of_num = ' ' + Solution.ten_to_str[ten * 10 + unit]
else:
str_of_num = (' ' + Solution.ten_to_str[ten * 10] + Solution.digit_to_str[unit]) if ten > 1 else Solution.digit_to_str[unit]
str_of_num = (Solution.digit_to_str[hundred] + ' Hundred' if hundred > 0 else "") + str_of_num
# print(str_of_num + str(index))
return str_of_num[1:] + ' ' + Solution.quantity_unit[index] if str_of_num else str_of_num[1:]
def numberToWords(self, num):
"""
:type num: int
:rtype: str
"""
if num == 0:
return 'Zero'
str_of_num = ""
index = 0
while num > 0:
part = num % 1000
unit = part % 10
ten = (part % 100) // 10
hundred = part // 100
str_of_num = self.read_three_digits(unit, ten, hundred, index) + ' ' + str_of_num.strip()
num //= 1000
index += 1
return str_of_num.strip()
|
You are given a list of preferences for n friends, where n is always even.
For each person i, preferences[i] contains a list of friends sorted in the order of preference. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from 0 to n-1.
All the friends are divided into pairs. The pairings are given in a list pairs, where pairs[i] = [xi, yi] denotes xi is paired with yi and yi is paired with xi.
However, this pairing may cause some of the friends to be unhappy. A friend x is unhappy if x is paired with y and there exists a friend u who is paired with v but:
x prefers u over y, and
u prefers x over v.
Return the number of unhappy friends.
Example 1:
Input: n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]]
Output: 2
Explanation:
Friend 1 is unhappy because:
- 1 is paired with 0 but prefers 3 over 0, and
- 3 prefers 1 over 2.
Friend 3 is unhappy because:
- 3 is paired with 2 but prefers 1 over 2, and
- 1 prefers 3 over 0.
Friends 0 and 2 are happy.
Example 2:
Input: n = 2, preferences = [[1], [0]], pairs = [[1, 0]]
Output: 0
Explanation: Both friends 0 and 1 are happy.
Example 3:
Input: n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]]
Output: 4
Constraints:
2 <= n <= 500
n is even.
preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i] does not contain i.
All values in preferences[i] are unique.
pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
Each person is contained in exactly one pair.
|
class Solution:
def preferences_to_scores(self, preferences):
scores = {}
for u, up in enumerate(preferences):
for s, v in enumerate(up):
scores[(u, v)] = s
return scores
def unhappy_friends(self, scores, a, b):
ret = set()
for ai, aa in enumerate(a):
af = a[1 - ai]
for bi, bb in enumerate(b):
bf = b[1 - bi]
if scores[(aa, bb)] < scores[(aa, af)] and scores[(bb, aa)] < scores[(bb, bf)]:
ret.add(aa)
ret.add(bb)
return ret
def unhappyFriends(self, n: int, preferences: List[List[int]], pairs: List[List[int]]) -> int:
scores = self.preferences_to_scores(preferences)
ret = set()
for i, a in enumerate(pairs):
for j in range(i):
b = pairs[j]
ret |= self.unhappy_friends(scores, a, b)
return len(ret)
|
You are given a list of preferences for n friends, where n is always even.
For each person i, preferences[i] contains a list of friends sorted in the order of preference. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from 0 to n-1.
All the friends are divided into pairs. The pairings are given in a list pairs, where pairs[i] = [xi, yi] denotes xi is paired with yi and yi is paired with xi.
However, this pairing may cause some of the friends to be unhappy. A friend x is unhappy if x is paired with y and there exists a friend u who is paired with v but:
x prefers u over y, and
u prefers x over v.
Return the number of unhappy friends.
Example 1:
Input: n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]]
Output: 2
Explanation:
Friend 1 is unhappy because:
- 1 is paired with 0 but prefers 3 over 0, and
- 3 prefers 1 over 2.
Friend 3 is unhappy because:
- 3 is paired with 2 but prefers 1 over 2, and
- 1 prefers 3 over 0.
Friends 0 and 2 are happy.
Example 2:
Input: n = 2, preferences = [[1], [0]], pairs = [[1, 0]]
Output: 0
Explanation: Both friends 0 and 1 are happy.
Example 3:
Input: n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]]
Output: 4
Constraints:
2 <= n <= 500
n is even.
preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i] does not contain i.
All values in preferences[i] are unique.
pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
Each person is contained in exactly one pair.
|
class Solution:
def unhappyFriends(self, n: int, preferences: List[List[int]], pairs: List[List[int]]) -> int:
preference_list = [[0 for _ in range(n)] for _ in range(n)]
for x in range(n):
for i, y in enumerate(preferences[x]):
preference_list[x][y] = n-i-1
#print(preference_list)
unhappy={}
for i in range(n//2):
x,y = pairs[i]
for j in range(n//2):
u,v = pairs[j]
if i!=j:
if ((preference_list[x][y]<preference_list[x][u] and preference_list[u][x]>preference_list[u][v]) or (preference_list[x][y]<preference_list[x][v] and preference_list[v][u]<preference_list[v][x])):
#print(f'X-> x, y : {x, y}; u,v: {u,v}')
unhappy[x]=1
if ((preference_list[y][x]<preference_list[y][u] and preference_list[u][y]>preference_list[u][v]) or (preference_list[y][x]<preference_list[y][v] and preference_list[v][u]<preference_list[v][y])):
#print(f'Y-> y,x : {y,x}; u,v: {u,v}')
unhappy[y]=1
#print(unhappy)
res = len(unhappy)
return res
|
You are given a list of preferences for n friends, where n is always even.
For each person i, preferences[i] contains a list of friends sorted in the order of preference. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from 0 to n-1.
All the friends are divided into pairs. The pairings are given in a list pairs, where pairs[i] = [xi, yi] denotes xi is paired with yi and yi is paired with xi.
However, this pairing may cause some of the friends to be unhappy. A friend x is unhappy if x is paired with y and there exists a friend u who is paired with v but:
x prefers u over y, and
u prefers x over v.
Return the number of unhappy friends.
Example 1:
Input: n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]]
Output: 2
Explanation:
Friend 1 is unhappy because:
- 1 is paired with 0 but prefers 3 over 0, and
- 3 prefers 1 over 2.
Friend 3 is unhappy because:
- 3 is paired with 2 but prefers 1 over 2, and
- 1 prefers 3 over 0.
Friends 0 and 2 are happy.
Example 2:
Input: n = 2, preferences = [[1], [0]], pairs = [[1, 0]]
Output: 0
Explanation: Both friends 0 and 1 are happy.
Example 3:
Input: n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]]
Output: 4
Constraints:
2 <= n <= 500
n is even.
preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i] does not contain i.
All values in preferences[i] are unique.
pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
Each person is contained in exactly one pair.
|
class Solution:
def unhappyFriends(self, n: int, preferences: List[List[int]], pairs: List[List[int]]) -> int:
pref = {}
for i in range(len(preferences)):
pref[i] = {}
plist = preferences[i]
for j in range(len(plist)):
pref[i][plist[j]] = j
print(pref)
unhappy = set()
for i in range(len(pairs)):
for j in range(len(pairs)):
if i == j:
continue
for x in pairs[i]:
y = pairs[i][1] if x == pairs[i][0] else pairs[i][0]
for u in pairs[j]:
v = pairs[j][1] if u == pairs[j][0] else pairs[j][0]
if (pref[x][y] > pref[x][u] and pref[u][v] > pref[u][x]):
unhappy.add(x)
return len(unhappy)
|
You are given a list of preferences for n friends, where n is always even.
For each person i, preferences[i] contains a list of friends sorted in the order of preference. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from 0 to n-1.
All the friends are divided into pairs. The pairings are given in a list pairs, where pairs[i] = [xi, yi] denotes xi is paired with yi and yi is paired with xi.
However, this pairing may cause some of the friends to be unhappy. A friend x is unhappy if x is paired with y and there exists a friend u who is paired with v but:
x prefers u over y, and
u prefers x over v.
Return the number of unhappy friends.
Example 1:
Input: n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]]
Output: 2
Explanation:
Friend 1 is unhappy because:
- 1 is paired with 0 but prefers 3 over 0, and
- 3 prefers 1 over 2.
Friend 3 is unhappy because:
- 3 is paired with 2 but prefers 1 over 2, and
- 1 prefers 3 over 0.
Friends 0 and 2 are happy.
Example 2:
Input: n = 2, preferences = [[1], [0]], pairs = [[1, 0]]
Output: 0
Explanation: Both friends 0 and 1 are happy.
Example 3:
Input: n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]]
Output: 4
Constraints:
2 <= n <= 500
n is even.
preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i] does not contain i.
All values in preferences[i] are unique.
pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
Each person is contained in exactly one pair.
|
class Solution:
def unhappyFriends(self, n: int, P: List[List[int]], A: List[List[int]]) -> int:
# O(n^3)
# have to look at nC2 pairs
unhappy = set()
for i in range(n//2):
for j in range(i+1,n//2):
Ai0, Ai1, Aj0, Aj1 = A[i][0], A[i][1], A[j][0], A[j][1]
# check all 4 poss
# O(n)
if P[Ai0].index(Ai1) > P[Ai0].index(Aj0) and P[Aj0].index(Aj1) > P[Aj0].index(Ai0):
unhappy.add(Ai0)
unhappy.add(Aj0)
Ai0, Ai1, Aj0, Aj1 = A[i][1], A[i][0], A[j][0], A[j][1]
# check all 4 poss
# O(n)
if P[Ai0].index(Ai1) > P[Ai0].index(Aj0) and P[Aj0].index(Aj1) > P[Aj0].index(Ai0):
unhappy.add(Ai0)
unhappy.add(Aj0)
Ai0, Ai1, Aj0, Aj1 = A[i][0], A[i][1], A[j][1], A[j][0]
# check all 4 poss
# O(n)
if P[Ai0].index(Ai1) > P[Ai0].index(Aj0) and P[Aj0].index(Aj1) > P[Aj0].index(Ai0):
unhappy.add(Ai0)
unhappy.add(Aj0)
Ai0, Ai1, Aj0, Aj1 = A[i][1], A[i][0], A[j][1], A[j][0]
# check all 4 poss
# O(n)
if P[Ai0].index(Ai1) > P[Ai0].index(Aj0) and P[Aj0].index(Aj1) > P[Aj0].index(Ai0):
unhappy.add(Ai0)
unhappy.add(Aj0)
return len(unhappy)
|
You are given a list of preferences for n friends, where n is always even.
For each person i, preferences[i] contains a list of friends sorted in the order of preference. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from 0 to n-1.
All the friends are divided into pairs. The pairings are given in a list pairs, where pairs[i] = [xi, yi] denotes xi is paired with yi and yi is paired with xi.
However, this pairing may cause some of the friends to be unhappy. A friend x is unhappy if x is paired with y and there exists a friend u who is paired with v but:
x prefers u over y, and
u prefers x over v.
Return the number of unhappy friends.
Example 1:
Input: n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]]
Output: 2
Explanation:
Friend 1 is unhappy because:
- 1 is paired with 0 but prefers 3 over 0, and
- 3 prefers 1 over 2.
Friend 3 is unhappy because:
- 3 is paired with 2 but prefers 1 over 2, and
- 1 prefers 3 over 0.
Friends 0 and 2 are happy.
Example 2:
Input: n = 2, preferences = [[1], [0]], pairs = [[1, 0]]
Output: 0
Explanation: Both friends 0 and 1 are happy.
Example 3:
Input: n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]]
Output: 4
Constraints:
2 <= n <= 500
n is even.
preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i] does not contain i.
All values in preferences[i] are unique.
pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
Each person is contained in exactly one pair.
|
class Solution:
def unhappyFriends(self, n: int, preferences: List[List[int]], pairs: List[List[int]]) -> int:
unhappy = [0] * n
for i in range(n//2):
a, b = pairs[i]
b_a_idx, a_b_idx = preferences[b].index(a), preferences[a].index(b)
for j in range(i+1, n//2):
c, d = pairs[j]
c_a_idx = preferences[c].index(a)
c_b_idx = preferences[c].index(b)
c_d_idx = preferences[c].index(d)
d_a_idx = preferences[d].index(a)
d_b_idx = preferences[d].index(b)
d_c_idx = preferences[d].index(c)
a_c_idx = preferences[a].index(c)
a_d_idx = preferences[a].index(d)
b_c_idx = preferences[b].index(c)
b_d_idx = preferences[b].index(d)
# a <-> c
if c_a_idx < c_d_idx and a_c_idx < a_b_idx: unhappy[a] = unhappy[c] = 1
# a <-> d
if d_a_idx < d_c_idx and a_d_idx < a_b_idx: unhappy[a] = unhappy[d] = 1
# b <-> c
if c_b_idx < c_d_idx and b_c_idx < b_a_idx: unhappy[b] = unhappy[c] = 1
# b <-> d
if d_b_idx < d_c_idx and b_d_idx < b_a_idx: unhappy[b] = unhappy[d] = 1
return sum(unhappy)
|
You are given a list of preferences for n friends, where n is always even.
For each person i, preferences[i] contains a list of friends sorted in the order of preference. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from 0 to n-1.
All the friends are divided into pairs. The pairings are given in a list pairs, where pairs[i] = [xi, yi] denotes xi is paired with yi and yi is paired with xi.
However, this pairing may cause some of the friends to be unhappy. A friend x is unhappy if x is paired with y and there exists a friend u who is paired with v but:
x prefers u over y, and
u prefers x over v.
Return the number of unhappy friends.
Example 1:
Input: n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]]
Output: 2
Explanation:
Friend 1 is unhappy because:
- 1 is paired with 0 but prefers 3 over 0, and
- 3 prefers 1 over 2.
Friend 3 is unhappy because:
- 3 is paired with 2 but prefers 1 over 2, and
- 1 prefers 3 over 0.
Friends 0 and 2 are happy.
Example 2:
Input: n = 2, preferences = [[1], [0]], pairs = [[1, 0]]
Output: 0
Explanation: Both friends 0 and 1 are happy.
Example 3:
Input: n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]]
Output: 4
Constraints:
2 <= n <= 500
n is even.
preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i] does not contain i.
All values in preferences[i] are unique.
pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
Each person is contained in exactly one pair.
|
class Solution:
def unhappyFriends(self, n: int, preferences: List[List[int]], pairs: List[List[int]]) -> int:
unhappy = [0] * n
for i in range(n//2):
a, b = pairs[i]
b_a_idx, a_b_idx = preferences[b].index(a), preferences[a].index(b)
for j in range(i+1, n//2):
c, d = pairs[j]
c_a_idx = preferences[c].index(a)
c_b_idx = preferences[c].index(b)
c_d_idx = preferences[c].index(d)
d_a_idx = preferences[d].index(a)
d_b_idx = preferences[d].index(b)
d_c_idx = preferences[d].index(c)
a_c_idx = preferences[a].index(c)
a_d_idx = preferences[a].index(d)
b_c_idx = preferences[b].index(c)
b_d_idx = preferences[b].index(d)
# a-c
if c_a_idx < c_d_idx and a_c_idx < a_b_idx:
unhappy[a] = unhappy[c] = 1
# a-d
if d_a_idx < d_c_idx and a_d_idx < a_b_idx:
unhappy[a] = unhappy[d] = 1
# b-c
if c_b_idx < c_d_idx and b_c_idx < b_a_idx:
unhappy[b] = unhappy[c] = 1
# b-d
if d_b_idx < d_c_idx and b_d_idx < b_a_idx:
unhappy[b] = unhappy[d] = 1
return sum(unhappy)
|
You are given a list of preferences for n friends, where n is always even.
For each person i, preferences[i] contains a list of friends sorted in the order of preference. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from 0 to n-1.
All the friends are divided into pairs. The pairings are given in a list pairs, where pairs[i] = [xi, yi] denotes xi is paired with yi and yi is paired with xi.
However, this pairing may cause some of the friends to be unhappy. A friend x is unhappy if x is paired with y and there exists a friend u who is paired with v but:
x prefers u over y, and
u prefers x over v.
Return the number of unhappy friends.
Example 1:
Input: n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]]
Output: 2
Explanation:
Friend 1 is unhappy because:
- 1 is paired with 0 but prefers 3 over 0, and
- 3 prefers 1 over 2.
Friend 3 is unhappy because:
- 3 is paired with 2 but prefers 1 over 2, and
- 1 prefers 3 over 0.
Friends 0 and 2 are happy.
Example 2:
Input: n = 2, preferences = [[1], [0]], pairs = [[1, 0]]
Output: 0
Explanation: Both friends 0 and 1 are happy.
Example 3:
Input: n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]]
Output: 4
Constraints:
2 <= n <= 500
n is even.
preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i] does not contain i.
All values in preferences[i] are unique.
pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
Each person is contained in exactly one pair.
|
class Solution:
def unhappyFriends(self, n: int, preferences: List[List[int]], pairs: List[List[int]]) -> int:
idx_table = collections.defaultdict(lambda: collections.defaultdict(int))
for i in range(n):
for idx, person in enumerate(preferences[i]): idx_table[i][person] = idx
unhappy = [0] * n
for i in range(n//2):
a, b = pairs[i]
b_a_idx, a_b_idx = idx_table[b][a], idx_table[a][b]
for j in range(i+1, n//2):
c, d = pairs[j]
c_a_idx = idx_table[c][a]
c_b_idx = idx_table[c][b]
c_d_idx = idx_table[c][d]
d_a_idx = idx_table[d][a]
d_b_idx = idx_table[d][b]
d_c_idx = idx_table[d][c]
a_c_idx = idx_table[a][c]
a_d_idx = idx_table[a][d]
b_c_idx = idx_table[b][c]
b_d_idx = idx_table[b][d]
if c_a_idx < c_d_idx and a_c_idx < a_b_idx: unhappy[a] = unhappy[c] = 1 # a & c prefer each other
if d_a_idx < d_c_idx and a_d_idx < a_b_idx: unhappy[a] = unhappy[d] = 1 # a & d prefer each other
if c_b_idx < c_d_idx and b_c_idx < b_a_idx: unhappy[b] = unhappy[c] = 1 # b & c prefer each other
if d_b_idx < d_c_idx and b_d_idx < b_a_idx: unhappy[b] = unhappy[d] = 1 # b & d prefer each other
return sum(unhappy)
|
You are given a list of preferences for n friends, where n is always even.
For each person i, preferences[i] contains a list of friends sorted in the order of preference. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from 0 to n-1.
All the friends are divided into pairs. The pairings are given in a list pairs, where pairs[i] = [xi, yi] denotes xi is paired with yi and yi is paired with xi.
However, this pairing may cause some of the friends to be unhappy. A friend x is unhappy if x is paired with y and there exists a friend u who is paired with v but:
x prefers u over y, and
u prefers x over v.
Return the number of unhappy friends.
Example 1:
Input: n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]]
Output: 2
Explanation:
Friend 1 is unhappy because:
- 1 is paired with 0 but prefers 3 over 0, and
- 3 prefers 1 over 2.
Friend 3 is unhappy because:
- 3 is paired with 2 but prefers 1 over 2, and
- 1 prefers 3 over 0.
Friends 0 and 2 are happy.
Example 2:
Input: n = 2, preferences = [[1], [0]], pairs = [[1, 0]]
Output: 0
Explanation: Both friends 0 and 1 are happy.
Example 3:
Input: n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]]
Output: 4
Constraints:
2 <= n <= 500
n is even.
preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i] does not contain i.
All values in preferences[i] are unique.
pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
Each person is contained in exactly one pair.
|
class Solution:
def unhappyFriends(self, n: int, preferences: List[List[int]], pairs: List[List[int]]) -> int:
res = set()
mem = [[0 for _ in range(n)] for _ in range(n)]
for i in range(n):
for j in range(n-1):
mem[i][preferences[i][j]] = j+1
for i in range(n//2):
x = pairs[i][0]
y = pairs[i][1]
for j in range(i+1, n//2):
u = pairs[j][0]
v = pairs[j][1]
if mem[x][u] < mem[x][y] and mem[u][x] < mem[u][v]:
res.add(x)
res.add(u)
if mem[x][v] < mem[x][y] and mem[v][x] < mem[v][u]:
res.add(x)
res.add(v)
if mem[y][u] < mem[y][x] and mem[u][y] < mem[u][v]:
res.add(y)
res.add(u)
if mem[y][v] < mem[y][x] and mem[v][y] < mem[v][u]:
res.add(y)
res.add(v)
return len(res)
|
You are given a list of preferences for n friends, where n is always even.
For each person i, preferences[i] contains a list of friends sorted in the order of preference. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from 0 to n-1.
All the friends are divided into pairs. The pairings are given in a list pairs, where pairs[i] = [xi, yi] denotes xi is paired with yi and yi is paired with xi.
However, this pairing may cause some of the friends to be unhappy. A friend x is unhappy if x is paired with y and there exists a friend u who is paired with v but:
x prefers u over y, and
u prefers x over v.
Return the number of unhappy friends.
Example 1:
Input: n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]]
Output: 2
Explanation:
Friend 1 is unhappy because:
- 1 is paired with 0 but prefers 3 over 0, and
- 3 prefers 1 over 2.
Friend 3 is unhappy because:
- 3 is paired with 2 but prefers 1 over 2, and
- 1 prefers 3 over 0.
Friends 0 and 2 are happy.
Example 2:
Input: n = 2, preferences = [[1], [0]], pairs = [[1, 0]]
Output: 0
Explanation: Both friends 0 and 1 are happy.
Example 3:
Input: n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]]
Output: 4
Constraints:
2 <= n <= 500
n is even.
preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i] does not contain i.
All values in preferences[i] are unique.
pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
Each person is contained in exactly one pair.
|
import numpy as np
class Solution:
def check_happy(self,x,y,u,v,fmatrix,unhappy):
if(fmatrix[x][u]>fmatrix[x][y] and fmatrix[u][x]>fmatrix[u][v]):
unhappy.add(x)
unhappy.add(u)
def unhappyFriends(self, n, preferences, pairs) -> int:
if(n==2):
return 0
unhappy = set()
fmatrix = np.zeros((n,n),dtype=int)
for i,friendpref in enumerate(preferences):
for j,pref_ind in enumerate(friendpref):
fmatrix[i][pref_ind] = n-1-j
for i in range(n//2-1):
for j in range(i+1, n//2):
x,y,u,v = pairs[i][0],pairs[i][1],pairs[j][0],pairs[j][1]
self.check_happy(x,y,u,v,fmatrix,unhappy)
self.check_happy(x,y,v,u,fmatrix,unhappy)
self.check_happy(y,x,u,v,fmatrix,unhappy)
self.check_happy(y,x,v,u,fmatrix,unhappy)
return len(unhappy)
|
You are given a list of preferences for n friends, where n is always even.
For each person i, preferences[i] contains a list of friends sorted in the order of preference. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from 0 to n-1.
All the friends are divided into pairs. The pairings are given in a list pairs, where pairs[i] = [xi, yi] denotes xi is paired with yi and yi is paired with xi.
However, this pairing may cause some of the friends to be unhappy. A friend x is unhappy if x is paired with y and there exists a friend u who is paired with v but:
x prefers u over y, and
u prefers x over v.
Return the number of unhappy friends.
Example 1:
Input: n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]]
Output: 2
Explanation:
Friend 1 is unhappy because:
- 1 is paired with 0 but prefers 3 over 0, and
- 3 prefers 1 over 2.
Friend 3 is unhappy because:
- 3 is paired with 2 but prefers 1 over 2, and
- 1 prefers 3 over 0.
Friends 0 and 2 are happy.
Example 2:
Input: n = 2, preferences = [[1], [0]], pairs = [[1, 0]]
Output: 0
Explanation: Both friends 0 and 1 are happy.
Example 3:
Input: n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]]
Output: 4
Constraints:
2 <= n <= 500
n is even.
preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i] does not contain i.
All values in preferences[i] are unique.
pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
Each person is contained in exactly one pair.
|
import numpy as np
class Solution:
def check_happy(self,x,y,u,v,fmatrix,unhappy):
if(fmatrix[x][u]>fmatrix[x][y] and fmatrix[u][x]>fmatrix[u][v]):
unhappy.add(x)
unhappy.add(u)
def unhappyFriends(self, n, preferences, pairs) -> int:
unhappy = set()
fmatrix = np.zeros((n,n),dtype=int)
for i,friendpref in enumerate(preferences):
for j,pref_ind in enumerate(friendpref):
fmatrix[i][pref_ind] = n-1-j
for i in range(n//2-1):
for j in range(i+1, n//2):
x,y,u,v = pairs[i][0],pairs[i][1],pairs[j][0],pairs[j][1]
self.check_happy(x,y,u,v,fmatrix,unhappy)
self.check_happy(x,y,v,u,fmatrix,unhappy)
self.check_happy(y,x,u,v,fmatrix,unhappy)
self.check_happy(y,x,v,u,fmatrix,unhappy)
return len(unhappy)
|
You are given a list of preferences for n friends, where n is always even.
For each person i, preferences[i] contains a list of friends sorted in the order of preference. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from 0 to n-1.
All the friends are divided into pairs. The pairings are given in a list pairs, where pairs[i] = [xi, yi] denotes xi is paired with yi and yi is paired with xi.
However, this pairing may cause some of the friends to be unhappy. A friend x is unhappy if x is paired with y and there exists a friend u who is paired with v but:
x prefers u over y, and
u prefers x over v.
Return the number of unhappy friends.
Example 1:
Input: n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]]
Output: 2
Explanation:
Friend 1 is unhappy because:
- 1 is paired with 0 but prefers 3 over 0, and
- 3 prefers 1 over 2.
Friend 3 is unhappy because:
- 3 is paired with 2 but prefers 1 over 2, and
- 1 prefers 3 over 0.
Friends 0 and 2 are happy.
Example 2:
Input: n = 2, preferences = [[1], [0]], pairs = [[1, 0]]
Output: 0
Explanation: Both friends 0 and 1 are happy.
Example 3:
Input: n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]]
Output: 4
Constraints:
2 <= n <= 500
n is even.
preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i] does not contain i.
All values in preferences[i] are unique.
pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
Each person is contained in exactly one pair.
|
class Solution:
def get_pair(self, i):
for j in self.pairs:
if i in j:
for k in j:
if k != i:
return k
def t_happy(self, t, i):
pair = self.get_pair(t)
for j in self.prefer[t]:
if j == pair:
return True
if j == i:
return False
def happy(self, i, p):
prefer = self.prefer[i]
if prefer[0] == p:
return True
for j in range(1, len(prefer)):
if not self.t_happy(prefer[j-1], i):
return False
if prefer[j] == p:
return True
def unhappyFriends(self, n: int, preferences: List[List[int]], pairs: List[List[int]]) -> int:
self.prefer = preferences
self.pairs = pairs
count = 0
for i in range(n):
p = self.get_pair(i)
if not self.happy(i, p):
count += 1
return count
|
Given two integer arrays A and B, return the maximum length of an subarray that appears in both arrays.
Example 1:
Input:
A: [1,2,3,2,1]
B: [3,2,1,4,7]
Output: 3
Explanation:
The repeated subarray with maximum length is [3, 2, 1].
Note:
1
0
|
class Solution:
def findLength(self, A, B):
def check(length):
seen = {A[i:i+length]
for i in range(len(A) - length + 1)}
return any(B[j:j+length] in seen
for j in range(len(B) - length + 1))
A = ''.join(map(chr, A))
B = ''.join(map(chr, B))
lo, hi = 0, min(len(A), len(B)) + 1
while lo < hi:
mi = int((lo + hi) / 2)
if check(mi):
lo = mi + 1
else:
hi = mi
return lo - 1
|
Given an array of digits, you can write numbers using each digits[i] as many times as we want. For example, if digits = ['1','3','5'], we may write numbers such as '13', '551', and '1351315'.
Return the number of positive integers that can be generated that are less than or equal to a given integer n.
Example 1:
Input: digits = ["1","3","5","7"], n = 100
Output: 20
Explanation:
The 20 numbers that can be written are:
1, 3, 5, 7, 11, 13, 15, 17, 31, 33, 35, 37, 51, 53, 55, 57, 71, 73, 75, 77.
Example 2:
Input: digits = ["1","4","9"], n = 1000000000
Output: 29523
Explanation:
We can write 3 one digit numbers, 9 two digit numbers, 27 three digit numbers,
81 four digit numbers, 243 five digit numbers, 729 six digit numbers,
2187 seven digit numbers, 6561 eight digit numbers, and 19683 nine digit numbers.
In total, this is 29523 integers that can be written using the digits array.
Example 3:
Input: digits = ["7"], n = 8
Output: 1
Constraints:
1 <= digits.length <= 9
digits[i].length == 1
digits[i] is a digit from '1' to '9'.
All the values in digits are unique.
1 <= n <= 109
|
class Solution:
def atMostNGivenDigitSet(self, digits: List[str], n: int) -> int:
count = 0
length = 1
n_str = str(n)
while length < len(n_str):
count+= len(digits)**length
length+=1
digits_sorted = sorted(digits)
## now length should equal to len(n), we compare the number with same length
current_digit = 0
while current_digit < length:
for digit in digits_sorted:
next_round = False
if digit < n_str[current_digit]:
count+=len(digits)**(length-current_digit-1)
elif digit > n_str[current_digit]:
return count
else:
if current_digit == length-1:
return count+1
else:
current_digit+=1
next_round = True
break
if not next_round:
return count
return count
|
Given an array of digits, you can write numbers using each digits[i] as many times as we want. For example, if digits = ['1','3','5'], we may write numbers such as '13', '551', and '1351315'.
Return the number of positive integers that can be generated that are less than or equal to a given integer n.
Example 1:
Input: digits = ["1","3","5","7"], n = 100
Output: 20
Explanation:
The 20 numbers that can be written are:
1, 3, 5, 7, 11, 13, 15, 17, 31, 33, 35, 37, 51, 53, 55, 57, 71, 73, 75, 77.
Example 2:
Input: digits = ["1","4","9"], n = 1000000000
Output: 29523
Explanation:
We can write 3 one digit numbers, 9 two digit numbers, 27 three digit numbers,
81 four digit numbers, 243 five digit numbers, 729 six digit numbers,
2187 seven digit numbers, 6561 eight digit numbers, and 19683 nine digit numbers.
In total, this is 29523 integers that can be written using the digits array.
Example 3:
Input: digits = ["7"], n = 8
Output: 1
Constraints:
1 <= digits.length <= 9
digits[i].length == 1
digits[i] is a digit from '1' to '9'.
All the values in digits are unique.
1 <= n <= 109
|
class Solution:
def atMostNGivenDigitSet(self, digits: List[str], n: int) -> int:
ns = str(n)
dp = 1
digits.sort()
M, N = len(ns), len(digits)
for i in range(M-1, -1, -1):
dp2 = 0
for d in digits:
if d>ns[i]: break
if d<ns[i]:
dp2 += N**(M-1-i)
else:
dp2 += dp
dp = dp2
return dp + sum(N**i for i in range(1, M))
|
Given an array of digits, you can write numbers using each digits[i] as many times as we want. For example, if digits = ['1','3','5'], we may write numbers such as '13', '551', and '1351315'.
Return the number of positive integers that can be generated that are less than or equal to a given integer n.
Example 1:
Input: digits = ["1","3","5","7"], n = 100
Output: 20
Explanation:
The 20 numbers that can be written are:
1, 3, 5, 7, 11, 13, 15, 17, 31, 33, 35, 37, 51, 53, 55, 57, 71, 73, 75, 77.
Example 2:
Input: digits = ["1","4","9"], n = 1000000000
Output: 29523
Explanation:
We can write 3 one digit numbers, 9 two digit numbers, 27 three digit numbers,
81 four digit numbers, 243 five digit numbers, 729 six digit numbers,
2187 seven digit numbers, 6561 eight digit numbers, and 19683 nine digit numbers.
In total, this is 29523 integers that can be written using the digits array.
Example 3:
Input: digits = ["7"], n = 8
Output: 1
Constraints:
1 <= digits.length <= 9
digits[i].length == 1
digits[i] is a digit from '1' to '9'.
All the values in digits are unique.
1 <= n <= 109
|
class Solution:
def atMostNGivenDigitSet(self, digits: List[str], n: int) -> int:
def less(digits, d):
return len([i for i in digits if i < d ])
cnt = 0
ld, ln = len(digits), len(str(n))
N = str(n)
for i in range(ln-1):
cnt += ld ** (i+1)
for i in range(ln):
cnt += less(digits, N[i]) * (ld ** (ln - i -1) )
if N[i] not in digits:
return cnt
return cnt + 1
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
i = 0
j = len(piles) - 1
max_coins = 0
for i in range(len(piles) // 3, len(piles), 2):
max_coins += piles[i]
return max_coins
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort(reverse=True)
return sum(piles[1:int(len(piles)/3*2):2])
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles = sorted(piles)
piles.reverse()
ans = 0
for i in range(len(piles)//3):
ans = ans + piles[2*i+1]
return ans
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
list.sort(piles , reverse=True)
print(piles)
init =0
for j in range((len(piles)//3)):
init=init + piles[j*2+1]
return init
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort(reverse=True)
ans = 0
i = 1
j = len(piles)-1
while(j-i >= 1):
ans+=piles[i]
j-=1
i+=2
return ans
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
rounds = []
piles.sort()
for i in range((int)(len(piles)/3)):
round_draw = []
round_draw.append(piles[i])
round_draw.append(piles[-i*2 - 2])
round_draw.append(piles[-i*2 - 1])
rounds.append(round_draw)
sum = 0
for round_draw in rounds:
sum += round_draw[1]
return sum
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
result = 0
piles.sort(reverse = True)
for i in range(1, 2*len(piles)//3, 2):
result += piles[i]
return result
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
# # With deque
# piles.sort()
# piles = deque(piles)
# me = 0
# while len(piles) > 2:
# piles.pop()
# me += piles.pop()
# if piles:
# piles.popleft()
# return me
# With 2 pointers
piles.sort()
me = 0
start, end = 0, len(piles) - 1
while start < end:
if end-1 > 0:
me += piles[end-1]
start, end = start+1, end-2
return me
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
from collections import deque
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
n = len(piles)//3
s = piles[n:n*3]
return sum([s[i] for i in range(len(s)) if i%2==0])
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
left = 0
right = len(piles) - 2
total = 0
while(left < right):
total += piles[right]
left += 1
right -= 2
return total
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
n = len(piles)
piles = sorted(piles)
piles = deque(piles)
ans = 0
while piles:
piles.pop()
ans += piles.pop()
piles.popleft()
return ans
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort(key=lambda k: k * -1)
return sum(piles[1:len(piles)//3*2:2])
# 9, 8, 1
# 7, 6, 2
# 5, 4, 3
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles = sorted(piles, key=lambda x: -x)
result = 0
for i in range(len(piles) // 3):
result += piles[1 + 2 * i]
return result
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles = sorted(piles,reverse = True)
ans = 0
for i in range(len(piles)//3):
ans = ans + piles[2*i+1]
return ans
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
piles = deque(piles)
me = 0
while piles:
alice = piles.pop()
if piles:
me += piles.pop()
if piles:
bob = piles.popleft()
return me
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
rounds = len(piles) // 3
score = 0
piles.sort()
for x in range(len(piles) - 2, rounds - 1 , -2):
score += piles[x]
return score
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles = sorted(piles)
coins = 0
for i in range(len(piles) // 3, len(piles), 2):
coins += piles[i]
return coins
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, a: List[int]) -> int:
a.sort()
n = len(a)
i = n // 3
ans = 0
while i < n:
ans += a[i]
i += 2
return ans
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
import heapq
class Solution:
def maxCoins(self, piles: List[int]) -> int:
choice = heapq.nlargest(len(piles)//3*2,piles)
ans = 0
for i in range(1,len(choice),2):
ans += choice[i]
return ans
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
# With deque
piles.sort()
piles = deque(piles)
me = 0
while len(piles) > 2:
piles.pop()
me += piles.pop()
if piles:
piles.popleft()
return me
# # With 2 pointers
# piles.sort()
# me = 0
# start, end = 0, len(piles) - 1
# while start < end:
# if end-1 > 0:
# me += piles[end-1]
# start, end = start+1, end-2
# return me
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
n = len(piles) // 3
piles = piles[n:] # remove Bob's
return sum(piles[i*2] for i in range(n))
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort(reverse = True)
i = 1
x = len(piles)
ans = []
while i < x:
ans.append(piles[i])
x = x- 1
i = i + 2
return sum(ans)
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
num=int(len(piles)/3)
sor=sorted(piles)
count=0
for i in range(1,num+1):
count+=sor[num*3-i*2]
return count
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
res = 0
piles.sort(reverse = True)
for i in range(len(piles)//3):
res += piles[2*(i+1)-1]
return res
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
# [2,4,1,2,7,8]
# [1,2,2,4,7,8]
piles.sort()
n = len(piles)
if n < 3:
return 0
current = n - 2
low = 0
total = 0
while current > low:
total += piles[current]
current -= 2
low += 1
return total
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
from heapq import heappop, heappush, heapify
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles = sorted(piles)
i, j = 0, 0
ans = 0
length = len(piles)
while i + j < length - 1:
i += 1
j += 2
ans += piles[-j]
return ans
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
# piles = deque(piles)
me = 0
start, end = 0, len(piles) - 1
# while len(piles) > 2:
while start < end:
# piles.pop()
# me += piles.pop()
# if piles:
# piles.popleft()
if end-1 > 0:
me += piles[end-1]
start, end = start+1, end-2
return me
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort(reverse=True)
res = 0
for i in range(1, len(piles) // 3 * 2, 2):
res += piles[i]
return res
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
print(len(piles) % 3)
piles = sorted(piles)
print(piles)
score = 0
if len(piles) % 3 == 0:
tmp = piles[int(len(piles)/3):]
nums = [tmp[i] for i in range(0, len(tmp), 2)]
print(sum(nums))
return sum(nums)
elif len(piles) % 3 == 2:
tmp = piles[int(len(piles) / 3):]
nums = [tmp[i] for i in range(0, len(tmp), 2)]
print(sum(nums))
return sum(nums)
else:
tmp = piles[int(len(piles) / 3):]
nums = [tmp[i] for i in range(1, len(tmp), 2)]
print(sum(nums))
return sum(nums)
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
return sum(piles[len(piles) // 3::2])
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
i,j= 0, len(piles)-1
coins = 0
while i < j:
coins += piles[j-1]
i += 1
j -= 2
return coins
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
length=len(piles)//3
piles=piles[length:];me=0;alice=0
for i in range(len(piles)):
if i%2==0:
me+=piles[i]
else:
alice+=piles[i]
return me
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
arr = sorted(piles)
res = []
n = len(piles)//3
while len(arr) > n:
arr.pop(-1)
res.append(arr.pop(-1))
return sum(res)
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
first, last = 0, len(piles) - 1
total = 0
while first < last:
total += piles[last-1]
first += 1
last -= 2
return total
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
sort = sorted(piles)
sort = sort[len(sort) // 3:]
res = 0
for i in range(0, len(sort), 2):
res += sort[i]
return res
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort(reverse=True)
# print(piles)
res = 0
tims = len(piles)//3
for i in range(1,len(piles)-tims,2):
res += piles[i]
return res
pass
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
res = 0
i = len(piles)-2
count = 1
while count<=len(piles)/3:
res +=piles[i]
i-=2
count+=1
return res
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort(reverse=True)
print(piles)
sumval = 0
for i in range(1,len(piles)*2//3,2):
sumval += piles[i]
return sumval
|
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose any 3 piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8]
Output: 9
Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5]
Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4]
Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
|
class Solution:
def maxCoins(self, piles: List[int]) -> int:
rounds = len(piles) // 3
count = 0
piles.sort(reverse=True)
for i in range(0, 2*rounds, 2):
count += piles[i+1]
return count
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.