Datasets:

inputs
stringlengths
50
14k
targets
stringlengths
4
655k
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: n = len(piles)/3 res = 0 p = sorted(piles) #print(p) for i in range(int(n)): p.pop(-1) p.pop(0) res += p[-1] p.pop(-1) #print(p) return res
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() length = len(piles) maxSum = 0 for i in range(int(length/3)): maxSum += piles[-2] piles.pop(-1) piles.pop(-1) piles.pop(0) return maxSum
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() n = len(piles)//3 return sum([piles[len(piles)-2-2*i] for i in range(0,n)])
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() s = len(piles)//3 n = len(piles) i,j,k = 0,n-2,n-1 sumi = 0 while(s!=0): sumi += piles[j] j = j-2 s = s-1 return sumi
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() wallet = 0 while piles: piles.pop(-1) wallet += piles.pop(-1) piles.pop(0) return wallet
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() mine = 0 while piles: piles.pop(-1) mine += piles.pop(-1) piles.pop(0) return mine
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() res = 0 while len(piles) != 0: can = [] can.append(piles.pop()) can.append(piles.pop()) can.append(piles.pop(0)) res += can[1] can = [] return(res)
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: newP = [] pileSort = sorted(piles) while(len(pileSort)>0): newP.append([pileSort[0], pileSort[-2], pileSort[-1]]) pileSort.pop(0) pileSort.pop(-2) pileSort.pop(-1) sum = 0 for i in newP: sum += i[1] return sum
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: res = 0 piles.sort() while len(piles) > 0: piles.pop(0) piles.pop(-1) res += piles.pop(-1) return res
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: sorted_piles = list(sorted(piles)) s = 0 while len(sorted_piles) > 3: triplet = [sorted_piles.pop(0)] + [sorted_piles.pop(-2)] + [sorted_piles.pop(-1)] s += triplet[1] triplet = [sorted_piles.pop(0)] + [sorted_piles.pop(-2)] + [sorted_piles.pop(-1)] s += triplet[1] return s
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: # O(nlgn) solution with O(1) space complexity def maxCoins(self, piles: List[int]) -> int: # First sort piles.sort() res = 0 while piles: first = piles.pop(-1) second = piles.pop(-1) third = piles.pop(0) res += second return res
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() mine = [] while piles: _ = piles.pop() _ = piles.pop(0) mine.append(piles.pop()) return sum(mine)
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: me=0 piles=sorted(piles) # print(piles) while(len(piles)>1): temp=[piles[0]]+piles[-2:] # print(temp) piles.pop(0) piles.pop(-1) piles.pop(-1) temp=sorted(temp) me+=temp[1] return me
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles = sorted(piles, key=lambda x: -x) ans, cnt = 0, 0 for i in range(1, len(piles), 2): ans += piles[i] cnt += 1 if cnt == len(piles) // 3: break return ans
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: out = 0 piles.sort() while len(piles) >= 3: piles.pop() out += piles.pop() piles.pop(0) return out
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: # sort pile from least to greatest sorted_piles = piles sorted_piles.sort() max_coins = 0 num_groups = int(len(sorted_piles) / 3) for i in range(num_groups): sorted_piles.pop(len(sorted_piles) - 1) # pop last element sorted_piles.pop(0) # pop first element your_coin = sorted_piles.pop(len(sorted_piles) - 1) max_coins += your_coin return max_coins
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() count = 0 while len(piles) >0: piles.pop(len(piles)-1) piles.pop(0) count = count + piles.pop(len(piles)-1) return count
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() ret = 0 while piles: piles.pop() ret += piles.pop() piles.pop(0) return ret
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() count_total = 0 while len(piles) > 0: max_el = piles.pop(-1) #print(\"max_el is \" + str(max_el)) second_max_el = piles.pop(-1) #print(\"second_max_el is \" + str(second_max_el)) min_el = piles.pop(0) #print(\"min_el is \" + str(min_el)) count_total += second_max_el return count_total
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() mine = 0 while(len(piles)>0): piles.pop() mine += piles.pop() piles.pop(0) return mine
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() maxCoins=0 while len(piles)>0: piles.pop() maxCoins+=piles.pop() piles.pop(0) return maxCoins
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: sorted_coins = sorted(piles) print(sorted_coins) max_coins = 0 while len(sorted_coins) > 0: sorted_coins.pop(0) sorted_coins.pop() max_coins += sorted_coins.pop() return max_coins
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: def mergeSort(l): if len(l) <2: return l pivot = l[0] return mergeSort([x for x in l if x>pivot]) + [x for x in l if x==pivot] + mergeSort([x for x in l if x<pivot]) sortedPiles = mergeSort(piles) sumlimit = (2*len(piles))//3 sumind = list(range(1, sumlimit, 2)) return sum([sortedPiles[i] for i in sumind])
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() ans = 0 while len(piles) != 0: piles.pop(0) piles.pop(-1) ans += piles.pop(-1) return ans
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort(reverse = True) print(piles) p3n = len(piles) n = int(p3n/3) out = 0 i = 1 while i < 2*n: out += piles[i] print((piles[i])) i += 2 return out
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: ans = 0 piles.sort() while len(piles) > 0: alice = piles[len(piles)-1] piles.pop() ans += piles[len(piles)-1] piles.pop() bob = piles[0] piles.pop(0) return ans
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: res = 0 piles.sort() while len(piles) > 0: piles.pop(len(piles)-1) res+=piles[len(piles)-1] piles.pop(len(piles)-1) piles.pop(0) return res
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles = sorted(piles) return self.helper(piles) def helper(self, piles): if not piles: return 0 mx = piles[-1] mx2 = piles[-2] mn = piles[0] piles.pop(0) piles.pop() piles.pop() return mx2 + self.helper(piles)
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() Count = 0 while piles: Count += piles[-2] piles.pop() piles.pop() piles.pop(0) return Count
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() ans = 0 while piles: big = piles.pop() ans += piles.pop() smol = piles.pop(0) return ans
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() ans = 0 while len(piles) >=3: bade_bahi = piles.pop() mei_khud = piles.pop() chutiya = piles.pop(0) ans += mei_khud #piles = piles[1:-2] return ans
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: me = 0 piles.sort() while piles: arr = [] arr += piles.pop(), arr += piles.pop(), arr += piles.pop(0), arr.sort() me += arr.pop(1) return me
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort(); answer = 0; while len(piles) > 0: largest = piles.pop(); almostLargest = piles.pop(); smallest = piles.pop(0); answer += almostLargest; return answer;
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: complete_sorted = sorted(piles) result = 0 while complete_sorted: complete_sorted.pop() result += complete_sorted.pop() complete_sorted.pop(0) return result
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
from collections import deque class Solution: def maxCoins(self, piles: List[int]) -> int: ret = 0 d = deque(sorted(piles)) def draw(ds): nonlocal ret discard = ds.pop() ret += ds.pop() discard = ds.popleft() return ds while len(d) >= 3: d = draw(d) return ret
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() res = 0; while piles: a = piles.pop() b = piles.pop() c = piles.pop(0) res += b return res
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() a=0 first,moke,myself=0,0,0 i=0 j=len(piles)-1 while(i<j): first+=piles[j] j-=1 myself+=piles[j] j-=1 moke+=piles[i] i+=1 return myself
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: n=len(piles)//3 piles.sort() count=0 i=n while i < len(piles): count+=piles[i] i+=2 return(count)
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles = sorted(piles) res,l,r = 0, 0, len(piles)-1 # round while l < r: l += 1 r -= 1 res += piles[r] r -= 1 return res
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() count = 0 for i in range(len(piles) - 2, len(piles)//3 - 1, -2): count += piles[i] # while piles: # piles.pop() # count += piles.pop() # piles.pop(0) return count
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() wallet = 0 start = 0 end = len(piles) - 1 while start <= end: # Bob pile start += 1 # Alices pile end -= 1 # My pile wallet += piles[end] end -= 1 return wallet
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: ''' Every time when I choose the best I can do is to get the 2nd largest pile among all I also want to make sure Bob gets the smallest pile ''' piles.sort(reverse=True) ans = 0 for i in range(1, len(piles) // 3 + 1): ans += piles[2*(i-1)+1] return ans
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() piles=deque(piles) res=0 while piles: piles.pop() res+=piles.pop() piles.popleft() return res
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: ans=0 queue=collections.deque() piles.sort() for ele in piles: queue.append(ele) while len(queue): queue.popleft() queue.pop() ans+=queue.pop() return ans
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: my_coins = 0 piles.sort() count = len(piles)/3 i = 0 j = -2 k = -1 while count > 0: my_coins += piles[j] i += 1 j -= 2 k -= 2 count -= 1 return my_coins
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: ## solution 1: use sort ## Time-O(nlogn) Space-O(n) piles.sort(reverse=True) return sum(piles[1:len(piles)//3*2:2])
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: asc = sorted(piles) desc = sorted(piles,reverse=True) new = [] for i in range(len(piles)//3): new.append(asc.pop()) new.append(asc.pop()) new.append(desc.pop()) return sum([new[i] for i in range(len(new)) if i%3==1])
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: return sum(sorted(piles)[-2:-2*(len(sorted(piles))//3)-1:-2])
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: sorted_ = (sorted(piles, key = lambda x: -x)) answer = 0 for i in range(len(sorted_) // 3): answer += sorted_[2*i+1] return answer
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: n = len(piles) piles.sort(reverse=True) return sum(piles[1:2*n//3:2])
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort(reverse = True) n = len(piles) // 3 num = 0 for i in range(n): num += piles[i * 2 + 1] return num
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort(key=lambda x : -x) return sum(piles[1:len(piles)// 3 * 2:2])
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() return sum(piles[len(piles)//3:len(piles):2])
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: s_piles = sorted(piles) my_coin_ct = 0 triplet_ct = len(s_piles) // 3 for i in range(triplet_ct, 0, -1): my_coin_ct += s_piles[2 * (i - 1) + triplet_ct] return my_coin_ct
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort(reverse=True) res = 0 print(piles) for i in range(1, len(piles)-(len(piles)//3), 2): print((piles[i])) res+=piles[i] return res
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() res = 0 i = len(piles) - 2 for _ in range(len(piles) // 3): res += piles[i] i -= 2 return res
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() me_max = 0 start = len(piles) - 2 for i in range(int(len(piles)/3)): idx = start - (2 * i) me_max += piles[idx] return me_max
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() out = 0 count = 0 hi = len(piles)-1 lo = 0 while count < len(piles): if count % 3 == 0: hi -= 1 elif count % 3 == 1: out += piles[hi] hi -= 1 else: lo += 1 count += 1 return out
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles = collections.deque(sorted(piles)[::-1]) s = 0 while len(piles) > 0: piles.popleft() x = piles.popleft() piles.pop() s += x return s
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() l=len(piles) temp=2 sum=0 for i in range(l//3): sum=sum+piles[l-temp] temp=temp+2 return sum
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: ans=0 piles.sort() n=len(piles) for i in range(n-2, n//3-1, -2): ans+=piles[i] return ans
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles = sorted(piles) print(piles) n = len(piles) s = 0 for i in range(n // 3): print((n-1-(2*i+1))) s += piles[n-1-(2*i+1)] return s
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() piles = deque(piles) me = 0 while len(piles) > 2: piles.pop() me += piles.pop() if piles: piles.popleft() return me
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: heap = [-x for x in piles] heapq.heapify(heap) rounds = count = 0 while len(heap) > rounds: _ = heapq.heappop(heap) count -= heapq.heappop(heap) rounds += 1 return count
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: if(not piles): return 0 piles.sort() coins=0 n=len(piles) index=n-2 for i in range(n//3): coins+=piles[index] index-=2 return coins
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: n=len(piles)//3 piles.sort() piles=piles[n::2] return sum(piles)
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() start = len(piles) - 1 end = 0 total = 0 while end < start: total += piles[start - 1] start -= 2 end += 1 return total
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles = sorted(piles) me, alice, bob = len(piles)-2, 0, len(piles) ans = 0 while alice < me: ans += piles[me] alice += 1 me -= 2 bob -= 2 return ans
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort(reverse=True) ans=0 for i in range(1,2*(len(piles)//3),2): ans+=piles[i] return ans
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles): piles.sort(reverse=True) return(sum(piles[1:int(len(piles)/3*2)+1:2]))
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort(reverse=True) return sum(piles[1:int(len(piles)/3*2):2])
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() count1=int(len(piles)/3) sum1=0 j=0 while(count1<len(piles)): print(j,count1) if j%2==0: print(piles[count1]) sum1=sum1+piles[count1] count1=count1+1 j=j+1 return sum1
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: ans=0 piles.sort() i=len(piles)-2 j=0 while(i>=j): ans=ans+piles[i] i=i-2 j=j+1 return ans # 1 2 3 4 5 6 7 8 9 # 9 8 1 # 7 6 2 # 5 4 3
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort(reverse = True) return sum(piles[1:2*len(piles)//3:2])
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles = sorted(piles,reverse = True) ans = [] for i in range(0,len(piles)//3 * 2,2 ): ans.append(piles[i + 1]) #print(i + 1) return sum(ans)
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: count = 0 coinPiles = collections.deque(sorted(piles)) while len(coinPiles)>0: coinPiles.pop() count += coinPiles.pop() coinPiles.popleft() return count
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: from collections import deque def maxCoins(self, piles: List[int]) -> int: piles.sort() n = len(piles)//3 s=0 for i in range(n,n*3,2): s += piles[i] return s
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: steps = int(len(piles)/3) piles = sorted(piles) return sum(piles[steps::2])
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: length = len(piles) sorted_piles = sorted(piles, reverse = True) if length == 3: return sorted_piles[1] n = length / 3 count, res = 0, 0 for i in range(1, length, 2): if count == n: return res res += sorted_piles[i] count += 1
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
import heapq class Solution: def maxCoins(self, piles: List[int]) -> int: max_coins_for_me = 0 sorted_piles = sorted(piles) top = len(piles) - 1 for i in range(len(piles) // 3): max_coins_for_me += sorted_piles[top-1] top = top - 2 return max_coins_for_me
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort(reverse=True) res=0 alice, me, bob = 0, 1, -1 while me<len(piles)+bob: res+=piles[me] alice+=2 me+=2 bob-=1 return res
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
import heapq class Solution: def maxCoins(self, piles: List[int]) -> int: piles = sorted(piles) piles = piles[len(piles)//3:] me = 0 for i in range(len(piles)-2,-1,-2): me+=piles[i] return me
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, p: List[int]) -> int: p.sort() max_coins=0 i=len(p)//3 while i<len(p): max_coins+=p[i] i+=2 return max_coins
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
from heapq import heappop, heappush, heapify class Solution: def maxCoins(self, piles: List[int]) -> int: piles = sorted(piles) i, j = 0, 0 ans = 0 while i + j < len(piles) - 1: i += 1 j += 2 ans += piles[-j] return ans
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: n = len(piles)//3; mc = 0 piles.sort(reverse=True) print(piles) for i in range(0,n): mc += piles[1 + 2*i] return mc
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: you = [] l = int((len(piles)/3)) piles.sort() piles = piles[l:] for i in range(len(piles)): if i%2 == 0: you.append(piles[i]) return sum(you)
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution(object): def maxCoins(self, piles): piles = collections.deque(sorted(piles)[::-1]) s = 0 while len(piles) > 0: piles.popleft() x = piles.popleft() piles.pop() s += x return s
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: n = len(piles)/3 piles.sort() res = [] for i in range(2, 2*int(n)+1, 2): res.append(piles[-i]) return sum(res)
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() total = 0 n = len(piles) // 3 m = len(piles)-1 for i in range(m, n, -2): total += piles[i-1] return total
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() c = 0 for x in range(len(piles)//3, len(piles), 2): c += piles[x] return c
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() l_i, r_i = 0, len(piles)-1 max_coin = 0 while l_i < r_i: max_coin += piles[r_i-1] l_i += 1 r_i -= 2 return max_coin
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: return sum(sorted(piles)[len(piles)//3::2])
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: from collections import deque def maxCoins(self, piles: List[int]) -> int: piles.sort() n = len(piles)//3 return sum([piles[i] for i in range(n,n*3,2)])
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: count=0 piles.sort() l=len(piles) n=l//3 j=l-2 k=0 while(k<n): count=count+piles[j] j=j-2 k=k+1 return count
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
from collections import deque class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() piles = deque(piles) total = 0 ptr1, ptr2 = len(piles) - 2, 0 while ptr2 < ptr1: total += piles[ptr1] ptr1 -= 2 ptr2 += 1 return total
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles = sorted(piles,reverse = True) res = 0 n= len(piles) n = n//3 for i in range(1,2*n,2): res += piles[i] return res
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: myNum = 0 piles.sort(reverse=True) for i in range(1, len(piles) *2//3 +1, 2): myNum += piles[i] print(myNum) return myNum
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort(reverse=True) n = len(piles) ret = 0 for i in range(int(n/3)): ret += piles[2*i+1] return ret
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles: List[int]) -> int: piles.sort() p = piles[len(piles)-2::-2] return sum(p[:len(piles)//3])
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows: In each step, you will choose any 3 piles of coins (not necessarily consecutive). Of your choice, Alice will pick the pile with the maximum number of coins. You will pick the next pile with maximum number of coins. Your friend Bob will pick the last pile. Repeat until there are no more piles of coins. Given an array of integers piles where piles[i] is the number of coins in the ith pile. Return the maximum number of coins which you can have.   Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal. Example 2: Input: piles = [2,4,5] Output: 4 Example 3: Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18   Constraints: 3 <= piles.length <= 10^5 piles.length % 3 == 0 1 <= piles[i] <= 10^4
class Solution: def maxCoins(self, piles): piles.sort() end = len(piles) - 2 start = 0 count = 0 while start < end: count += piles[end] end -= 2 start += 1 return count