niobures's picture
ffmpeg (v6.0/v7.x), gensim, numpy, opencv
be94e5d verified
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "../usac.hpp"
#ifdef HAVE_EIGEN
#include <Eigen/Eigen>
#endif
namespace cv { namespace usac {
class HomographyMinimalSolver4ptsImpl : public HomographyMinimalSolver4pts {
private:
Mat points_mat;
const bool use_ge;
public:
explicit HomographyMinimalSolver4ptsImpl (const Mat &points_, bool use_ge_) :
points_mat(points_), use_ge(use_ge_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
int estimate (const std::vector<int>& sample, std::vector<Mat> &models) const override {
const float * points = points_mat.ptr<float>();
int m = 8, n = 9;
std::vector<double> A(72, 0);
int cnt = 0;
for (int i = 0; i < 4; i++) {
const int smpl = 4*sample[i];
const auto x1 = points[smpl], y1 = points[smpl+1], x2 = points[smpl+2], y2 = points[smpl+3];
A[cnt++] = -x1;
A[cnt++] = -y1;
A[cnt++] = -1;
cnt += 3; // skip zeros
A[cnt++] = x2*x1;
A[cnt++] = x2*y1;
A[cnt++] = x2;
cnt += 3;
A[cnt++] = -x1;
A[cnt++] = -y1;
A[cnt++] = -1;
A[cnt++] = y2*x1;
A[cnt++] = y2*y1;
A[cnt++] = y2;
}
if (use_ge) {
if (!Math::eliminateUpperTriangular(A, m, n))
return 0;
models = std::vector<Mat>{ Mat_<double>(3,3) };
auto * h = (double *) models[0].data;
h[8] = 1.;
// start from the last row
for (int i = m-1; i >= 0; i--) {
double acc = 0;
for (int j = i+1; j < n; j++)
acc -= A[i*n+j]*h[j];
h[i] = acc / A[i*n+i];
// due to numerical errors return 0 solutions
if (std::isnan(h[i]))
return 0;
}
} else {
Mat U, Vt, D;
cv::Matx<double, 8, 9> A_svd(&A[0]);
SVD::compute(A_svd, D, U, Vt, SVD::FULL_UV+SVD::MODIFY_A);
models = std::vector<Mat> { Vt.row(Vt.rows-1).reshape(0, 3) };
}
return 1;
}
int getMaxNumberOfSolutions () const override { return 1; }
int getSampleSize() const override { return 4; }
};
Ptr<HomographyMinimalSolver4pts> HomographyMinimalSolver4pts::create(const Mat &points, bool use_ge) {
return makePtr<HomographyMinimalSolver4ptsImpl>(points, use_ge);
}
class HomographyNonMinimalSolverImpl : public HomographyNonMinimalSolver {
private:
Mat points_mat;
const bool do_norm, use_ge;
Ptr<NormTransform> normTr;
Matx33d _T1, _T2;
public:
explicit HomographyNonMinimalSolverImpl (const Mat &norm_points_, const Matx33d &T1, const Matx33d &T2, bool use_ge_) :
points_mat(norm_points_), do_norm(false), use_ge(use_ge_), _T1(T1), _T2(T2)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
explicit HomographyNonMinimalSolverImpl (const Mat &points_, bool use_ge_) :
points_mat(points_), do_norm(true), use_ge(use_ge_), normTr (NormTransform::create(points_))
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
int estimate (const std::vector<int> &sample, int sample_size, std::vector<Mat> &models,
const std::vector<double> &weights) const override {
if (sample_size < getMinimumRequiredSampleSize())
return 0;
Matx33d T1, T2;
Mat norm_points_;
if (do_norm)
normTr->getNormTransformation(norm_points_, sample, sample_size, T1, T2);
const float * const npts = do_norm ? norm_points_.ptr<float>() : points_mat.ptr<float>();
Mat H;
if (use_ge) {
double a1[8] = {0, 0, -1, 0, 0, 0, 0, 0},
a2[8] = {0, 0, 0, 0, 0, -1, 0, 0};
std::vector<double> AtAb(72, 0); // 8x9
if (weights.empty()) {
for (int i = 0; i < sample_size; i++) {
const int idx = do_norm ? 4*i : 4*sample[i];
const double x1 = npts[idx], y1 = npts[idx+1], x2 = npts[idx+2], y2 = npts[idx+3];
a1[0] = -x1;
a1[1] = -y1;
a1[6] = x2*x1;
a1[7] = x2*y1;
a2[3] = -x1;
a2[4] = -y1;
a2[6] = y2*x1;
a2[7] = y2*y1;
// calculate covariance for eigen
for (int j = 0; j < 8; j++) {
for (int z = j; z < 8; z++)
AtAb[j * 9 + z] += a1[j]*a1[z] + a2[j]*a2[z];
AtAb[j * 9 + 8] += a1[j]*x2 + a2[j]*y2;
}
}
} else { // use weights
for (int i = 0; i < sample_size; i++) {
const double weight = weights[i];
if (weight < FLT_EPSILON) continue;
const int idx = do_norm ? 4*i : 4*sample[i];
const double x1 = npts[idx], y1 = npts[idx+1], x2 = npts[idx+2], y2 = npts[idx+3];
const double minus_weight_times_x1 = -weight * x1,
minus_weight_times_y1 = -weight * y1,
weight_times_x2 = weight * x2,
weight_times_y2 = weight * y2;
a1[0] = minus_weight_times_x1;
a1[1] = minus_weight_times_y1;
a1[2] = -weight;
a1[6] = weight_times_x2 * x1;
a1[7] = weight_times_x2 * y1;
a2[3] = minus_weight_times_x1;
a2[4] = minus_weight_times_y1;
a2[5] = -weight;
a2[6] = weight_times_y2 * x1;
a2[7] = weight_times_y2 * y1;
for (int j = 0; j < 8; j++) {
for (int z = j; z < 8; z++)
AtAb[j * 9 + z] += a1[j]*a1[z] + a2[j]*a2[z];
AtAb[j * 9 + 8] += a1[j]*weight_times_x2 + a2[j]*weight_times_y2;
}
}
}
for (int j = 1; j < 8; j++)
for (int z = 0; z < j; z++)
AtAb[j*9+z] = AtAb[z*9+j];
if (!Math::eliminateUpperTriangular(AtAb, 8, 9))
return 0;
H = Mat_<double>(3,3);
auto * h = (double *) H.data;
h[8] = 1.;
const int m = 8, n = 9;
// start from the last row
for (int i = m-1; i >= 0; i--) {
double acc = 0;
for (int j = i+1; j < n; j++)
acc -= AtAb[i*n+j]*h[j];
h[i] = acc / AtAb[i*n+i];
if (std::isnan(h[i]))
return 0; // numerical imprecision
}
} else {
double a1[9] = {0, 0, -1, 0, 0, 0, 0, 0, 0},
a2[9] = {0, 0, 0, 0, 0, -1, 0, 0, 0}, AtA[81] = {0};
if (weights.empty()) {
for (int i = 0; i < sample_size; i++) {
const int smpl = do_norm ? 4*i : 4*sample[i];
const auto x1 = npts[smpl], y1 = npts[smpl+1], x2 = npts[smpl+2], y2 = npts[smpl+3];
a1[0] = -x1;
a1[1] = -y1;
a1[6] = x2*x1;
a1[7] = x2*y1;
a1[8] = x2;
a2[3] = -x1;
a2[4] = -y1;
a2[6] = y2*x1;
a2[7] = y2*y1;
a2[8] = y2;
for (int j = 0; j < 9; j++)
for (int z = j; z < 9; z++)
AtA[j*9+z] += a1[j]*a1[z] + a2[j]*a2[z];
}
} else { // use weights
for (int i = 0; i < sample_size; i++) {
const double weight = weights[i];
if (weight < FLT_EPSILON) continue;
const int smpl = do_norm ? 4*i : 4*sample[i];
const auto x1 = npts[smpl], y1 = npts[smpl+1], x2 = npts[smpl+2], y2 = npts[smpl+3];
const double minus_weight_times_x1 = -weight * x1,
minus_weight_times_y1 = -weight * y1,
weight_times_x2 = weight * x2,
weight_times_y2 = weight * y2;
a1[0] = minus_weight_times_x1;
a1[1] = minus_weight_times_y1;
a1[2] = -weight;
a1[6] = weight_times_x2 * x1;
a1[7] = weight_times_x2 * y1;
a1[8] = weight_times_x2;
a2[3] = minus_weight_times_x1;
a2[4] = minus_weight_times_y1;
a2[5] = -weight;
a2[6] = weight_times_y2 * x1;
a2[7] = weight_times_y2 * y1;
a2[8] = weight_times_y2;
for (int j = 0; j < 9; j++)
for (int z = j; z < 9; z++)
AtA[j*9+z] += a1[j]*a1[z] + a2[j]*a2[z];
}
}
// copy symmetric part of covariance matrix
for (int j = 1; j < 9; j++)
for (int z = 0; z < j; z++)
AtA[j*9+z] = AtA[z*9+j];
#ifdef HAVE_EIGEN
H = Mat_<double>(3,3);
// extract the last null-vector
Eigen::Map<Eigen::Matrix<double, 9, 1>>((double *)H.data) = Eigen::Matrix<double, 9, 9>
(Eigen::HouseholderQR<Eigen::Matrix<double, 9, 9>> (
(Eigen::Matrix<double, 9, 9> (AtA))).householderQ()).col(8);
#else
Matx<double, 9, 9> Vt;
Vec<double, 9> D;
if (! eigen(Matx<double, 9, 9>(AtA), D, Vt)) return 0;
H = Mat_<double>(3, 3, Vt.val + 72/*=8*9*/);
#endif
}
const auto * const h = (double *) H.data;
const auto * const t1 = do_norm ? T1.val : _T1.val, * const t2 = do_norm ? T2.val : _T2.val;
// H = T2^-1 H T1
models = std::vector<Mat>{ Mat(Matx33d(t1[0]*(h[0]/t2[0] - (h[6]*t2[2])/t2[0]),
t1[0]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]), h[2]/t2[0] + t1[2]*(h[0]/t2[0] -
(h[6]*t2[2])/t2[0]) + t1[5]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]) - (h[8]*t2[2])/t2[0],
t1[0]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]), t1[0]*(h[4]/t2[0] - (h[7]*t2[5])/t2[0]),
h[5]/t2[0] + t1[2]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]) + t1[5]*(h[4]/t2[0] -
(h[7]*t2[5])/t2[0]) - (h[8]*t2[5])/t2[0], t1[0]*h[6], t1[0]*h[7],
h[8] + h[6]*t1[2] + h[7]*t1[5])) };
return 1;
}
int estimate (const std::vector<bool> &/*mask*/, std::vector<Mat> &/*models*/,
const std::vector<double> &/*weights*/) override {
return 0;
}
int getMinimumRequiredSampleSize() const override { return 4; }
int getMaxNumberOfSolutions () const override { return 1; }
void enforceRankConstraint (bool /*enforce*/) override {}
};
Ptr<HomographyNonMinimalSolver> HomographyNonMinimalSolver::create(const Mat &points_, bool use_ge_) {
return makePtr<HomographyNonMinimalSolverImpl>(points_, use_ge_);
}
Ptr<HomographyNonMinimalSolver> HomographyNonMinimalSolver::create(const Mat &points_, const Matx33d &T1, const Matx33d &T2, bool use_ge) {
return makePtr<HomographyNonMinimalSolverImpl>(points_, T1, T2, use_ge);
}
class CovarianceHomographySolverImpl : public CovarianceHomographySolver {
private:
Mat norm_pts;
Matx33d T1, T2;
float * norm_points;
std::vector<bool> mask;
int points_size;
double covariance[81] = {0}, * t1, * t2;
public:
explicit CovarianceHomographySolverImpl (const Mat &norm_points_, const Matx33d &T1_, const Matx33d &T2_)
: norm_pts(norm_points_), T1(T1_), T2(T2_) {
points_size = norm_points_.rows;
norm_points = (float *) norm_pts.data;
t1 = T1.val; t2 = T2.val;
mask = std::vector<bool>(points_size, false);
}
explicit CovarianceHomographySolverImpl (const Mat &points_) {
points_size = points_.rows;
// normalize points
std::vector<int> sample(points_size);
for (int i = 0; i < points_size; i++) sample[i] = i;
const Ptr<NormTransform> normTr = NormTransform::create(points_);
normTr->getNormTransformation(norm_pts, sample, points_size, T1, T2);
norm_points = (float *) norm_pts.data;
t1 = T1.val; t2 = T2.val;
mask = std::vector<bool>(points_size, false);
}
void reset () override {
// reset covariance matrix to zero and mask to false
std::fill(covariance, covariance+81, 0);
std::fill(mask.begin(), mask.end(), false);
}
/*
* Find homography using 4-point algorithm with covariance matrix and PCA
*/
int estimate (const std::vector<bool> &new_mask, std::vector<Mat> &models,
const std::vector<double> &/*weights*/) override {
double a1[9] = {0, 0, -1, 0, 0, 0, 0, 0, 0},
a2[9] = {0, 0, 0, 0, 0, -1, 0, 0, 0};
for (int i = 0; i < points_size; i++) {
if (mask[i] != new_mask[i]) {
const int smpl = 4*i;
const double x1 = norm_points[smpl ], y1 = norm_points[smpl+1],
x2 = norm_points[smpl+2], y2 = norm_points[smpl+3];
a1[0] = -x1;
a1[1] = -y1;
a1[6] = x2*x1;
a1[7] = x2*y1;
a1[8] = x2;
a2[3] = -x1;
a2[4] = -y1;
a2[6] = y2*x1;
a2[7] = y2*y1;
a2[8] = y2;
if (mask[i]) // if mask[i] is true then new_mask[i] must be false
for (int j = 0; j < 9; j++)
for (int z = j; z < 9; z++)
covariance[j*9+z] +=-a1[j]*a1[z] - a2[j]*a2[z];
else
for (int j = 0; j < 9; j++)
for (int z = j; z < 9; z++)
covariance[j*9+z] += a1[j]*a1[z] + a2[j]*a2[z];
}
}
mask = new_mask;
// copy symmetric part of covariance matrix
for (int j = 1; j < 9; j++)
for (int z = 0; z < j; z++)
covariance[j*9+z] = covariance[z*9+j];
#ifdef HAVE_EIGEN
Mat H = Mat_<double>(3,3);
// extract the last null-vector
Eigen::Map<Eigen::Matrix<double, 9, 1>>((double *)H.data) = Eigen::Matrix<double, 9, 9>
(Eigen::HouseholderQR<Eigen::Matrix<double, 9, 9>> (
(Eigen::Matrix<double, 9, 9> (covariance))).householderQ()).col(8);
#else
Matx<double, 9, 9> Vt;
Vec<double, 9> D;
if (! eigen(Matx<double, 9, 9>(covariance), D, Vt)) return 0;
Mat H = Mat_<double>(3, 3, Vt.val + 72/*=8*9*/);
#endif
const auto * const h = (double *) H.data;
// H = T2^-1 H T1
models = std::vector<Mat>{ Mat(Matx33d(t1[0]*(h[0]/t2[0] - (h[6]*t2[2])/t2[0]),
t1[0]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]), h[2]/t2[0] + t1[2]*(h[0]/t2[0] -
(h[6]*t2[2])/t2[0]) + t1[5]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]) - (h[8]*t2[2])/t2[0],
t1[0]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]), t1[0]*(h[4]/t2[0] - (h[7]*t2[5])/t2[0]),
h[5]/t2[0] + t1[2]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]) + t1[5]*(h[4]/t2[0] -
(h[7]*t2[5])/t2[0]) - (h[8]*t2[5])/t2[0], t1[0]*h[6], t1[0]*h[7],
h[8] + h[6]*t1[2] + h[7]*t1[5])) };
return 1;
}
void enforceRankConstraint (bool /*enforce*/) override {}
int getMinimumRequiredSampleSize() const override { return 4; }
int getMaxNumberOfSolutions () const override { return 1; }
};
Ptr<CovarianceHomographySolver> CovarianceHomographySolver::create (const Mat &points) {
return makePtr<CovarianceHomographySolverImpl>(points);
}
Ptr<CovarianceHomographySolver> CovarianceHomographySolver::create (const Mat &points, const Matx33d &T1, const Matx33d &T2) {
return makePtr<CovarianceHomographySolverImpl>(points, T1, T2);
}
class AffineMinimalSolverImpl : public AffineMinimalSolver {
private:
Mat points_mat;
public:
explicit AffineMinimalSolverImpl (const Mat &points_) :
points_mat(points_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
/*
Affine transformation
x1 y1 1 0 0 0 a u1
0 0 0 x1 y1 1 b v1
x2 y2 1 0 0 0 c u2
0 0 0 x2 y2 1 * d = v2
x3 y3 1 0 0 0 e u3
0 0 0 x3 y3 1 f v3
*/
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
const int smpl1 = 4*sample[0], smpl2 = 4*sample[1], smpl3 = 4*sample[2];
const float * points = points_mat.ptr<float>();
const auto
x1 = points[smpl1], y1 = points[smpl1+1], u1 = points[smpl1+2], v1 = points[smpl1+3],
x2 = points[smpl2], y2 = points[smpl2+1], u2 = points[smpl2+2], v2 = points[smpl2+3],
x3 = points[smpl3], y3 = points[smpl3+1], u3 = points[smpl3+2], v3 = points[smpl3+3];
// covers degeneracy test when all 3 points are collinear.
// In this case denominator will be 0
double denominator = x1*y2 - x2*y1 - x1*y3 + x3*y1 + x2*y3 - x3*y2;
if (fabs(denominator) < FLT_EPSILON) // check if denominator is zero
return 0;
denominator = 1. / denominator;
double a = (u1*y2 - u2*y1 - u1*y3 + u3*y1 + u2*y3 - u3*y2) * denominator;
double b = -(u1*x2 - u2*x1 - u1*x3 + u3*x1 + u2*x3 - u3*x2) * denominator;
double c = u1 - a * x1 - b * y1; // ax1 + by1 + c = u1
double d = (v1*y2 - v2*y1 - v1*y3 + v3*y1 + v2*y3 - v3*y2) * denominator;
double e = -(v1*x2 - v2*x1 - v1*x3 + v3*x1 + v2*x3 - v3*x2) * denominator;
double f = v1 - d * x1 - e * y1; // dx1 + ey1 + f = v1
models[0] = Mat(Matx33d(a, b, c, d, e, f, 0, 0, 1));
return 1;
}
int getSampleSize() const override { return 3; }
int getMaxNumberOfSolutions () const override { return 1; }
};
Ptr<AffineMinimalSolver> AffineMinimalSolver::create(const Mat &points_) {
return makePtr<AffineMinimalSolverImpl>(points_);
}
class AffineNonMinimalSolverImpl : public AffineNonMinimalSolver {
private:
Mat points_mat;
Ptr<NormTransform> normTr;
Matx33d _T1, _T2;
bool do_norm;
public:
explicit AffineNonMinimalSolverImpl (const Mat &points_, InputArray T1, InputArray T2) :
points_mat(points_) {
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
if (!T1.empty() && !T2.empty()) {
do_norm = false;
_T1 = T1.getMat();
_T2 = T2.getMat();
} else {
do_norm = true;
normTr = NormTransform::create(points_);
}
}
int estimate (const std::vector<int> &sample, int sample_size, std::vector<Mat> &models,
const std::vector<double> &weights) const override {
if (sample_size < getMinimumRequiredSampleSize())
return 0;
Matx33d T1, T2;
Mat norm_points_;
if (do_norm)
normTr->getNormTransformation(norm_points_, sample, sample_size, T1, T2);
const float * const pts = normTr ? norm_points_.ptr<float>() : points_mat.ptr<float>();
// do Least Squares
// Ax = b -> A^T Ax = A^T b
// x = (A^T A)^-1 A^T b
double AtA[36] = {0}, Ab[6] = {0};
double r1[6] = {0, 0, 1, 0, 0, 0}; // row 1 of A
double r2[6] = {0, 0, 0, 0, 0, 1}; // row 2 of A
if (weights.empty())
for (int p = 0; p < sample_size; p++) {
const int idx = do_norm ? 4*p : 4*sample[p];
const auto x1=pts[idx], y1=pts[idx+1], x2=pts[idx+2], y2=pts[idx+3];
r1[0] = x1;
r1[1] = y1;
r2[3] = x1;
r2[4] = y1;
for (int j = 0; j < 6; j++) {
for (int z = j; z < 6; z++)
AtA[j * 6 + z] += r1[j] * r1[z] + r2[j] * r2[z];
Ab[j] += r1[j]*x2 + r2[j]*y2;
}
}
else
for (int p = 0; p < sample_size; p++) {
const auto weight = weights[p];
if (weight < FLT_EPSILON) continue;
const int idx = do_norm ? 4*p : 4*sample[p];
const double weight_times_x1 = weight * pts[idx ],
weight_times_y1 = weight * pts[idx+1],
weight_times_x2 = weight * pts[idx+2],
weight_times_y2 = weight * pts[idx+3];
r1[0] = weight_times_x1;
r1[1] = weight_times_y1;
r1[2] = weight;
r2[3] = weight_times_x1;
r2[4] = weight_times_y1;
r2[5] = weight;
for (int j = 0; j < 6; j++) {
for (int z = j; z < 6; z++)
AtA[j * 6 + z] += r1[j] * r1[z] + r2[j] * r2[z];
Ab[j] += r1[j]*weight_times_x2 + r2[j]*weight_times_y2;
}
}
// copy symmetric part
for (int j = 1; j < 6; j++)
for (int z = 0; z < j; z++)
AtA[j*6+z] = AtA[z*6+j];
Vec6d aff;
if (!solve(Matx66d(AtA), Vec6d(Ab), aff))
return 0;
const double h[9] = {aff(0), aff(1), aff(2),
aff(3), aff(4), aff(5),
0, 0, 1};
const auto * const t1 = normTr ? T1.val : _T1.val, * const t2 = normTr ? T2.val : _T2.val;
// A = T2^-1 A T1
models = std::vector<Mat>{ Mat(Matx33d(t1[0]*(h[0]/t2[0] - (h[6]*t2[2])/t2[0]),
t1[0]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]), h[2]/t2[0] + t1[2]*(h[0]/t2[0] -
(h[6]*t2[2])/t2[0]) + t1[5]*(h[1]/t2[0] - (h[7]*t2[2])/t2[0]) - (h[8]*t2[2])/t2[0],
t1[0]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]), t1[0]*(h[4]/t2[0] - (h[7]*t2[5])/t2[0]),
h[5]/t2[0] + t1[2]*(h[3]/t2[0] - (h[6]*t2[5])/t2[0]) + t1[5]*(h[4]/t2[0] -
(h[7]*t2[5])/t2[0]) - (h[8]*t2[5])/t2[0], t1[0]*h[6], t1[0]*h[7],
h[8] + h[6]*t1[2] + h[7]*t1[5])) };
return 1;
}
int estimate (const std::vector<bool> &/*mask*/, std::vector<Mat> &/*models*/,
const std::vector<double> &/*weights*/) override {
return 0;
}
void enforceRankConstraint (bool /*enforce*/) override {}
int getMinimumRequiredSampleSize() const override { return 3; }
int getMaxNumberOfSolutions () const override { return 1; }
};
Ptr<AffineNonMinimalSolver> AffineNonMinimalSolver::create(const Mat &points_, InputArray T1, InputArray T2) {
return makePtr<AffineNonMinimalSolverImpl>(points_, T1, T2);
}
class CovarianceAffineSolverImpl : public CovarianceAffineSolver {
private:
Mat norm_pts;
Matx33d T1, T2;
float * norm_points;
std::vector<bool> mask;
int points_size;
double covariance[36] = {0}, Ab[6] = {0}, * t1, * t2;
public:
explicit CovarianceAffineSolverImpl (const Mat &norm_points_, const Matx33d &T1_, const Matx33d &T2_)
: norm_pts(norm_points_), T1(T1_), T2(T2_) {
points_size = norm_points_.rows;
norm_points = (float *) norm_pts.data;
t1 = T1.val; t2 = T2.val;
mask = std::vector<bool>(points_size, false);
}
explicit CovarianceAffineSolverImpl (const Mat &points_) {
points_size = points_.rows;
// normalize points
std::vector<int> sample(points_size);
for (int i = 0; i < points_size; i++) sample[i] = i;
const Ptr<NormTransform> normTr = NormTransform::create(points_);
normTr->getNormTransformation(norm_pts, sample, points_size, T1, T2);
norm_points = (float *) norm_pts.data;
t1 = T1.val; t2 = T2.val;
mask = std::vector<bool>(points_size, false);
}
void reset () override {
std::fill(covariance, covariance+36, 0);
std::fill(Ab, Ab+6, 0);
std::fill(mask.begin(), mask.end(), false);
}
/*
* Find affine transformation using linear method with covariance matrix and PCA
*/
int estimate (const std::vector<bool> &new_mask, std::vector<Mat> &models,
const std::vector<double> &) override {
double r1[6] = {0, 0, 1, 0, 0, 0}; // row 1 of A
double r2[6] = {0, 0, 0, 0, 0, 1}; // row 2 of A
for (int i = 0; i < points_size; i++) {
if (mask[i] != new_mask[i]) {
const int smpl = 4*i;
const double x1 = norm_points[smpl ], y1 = norm_points[smpl+1],
x2 = norm_points[smpl+2], y2 = norm_points[smpl+3];
r1[0] = x1;
r1[1] = y1;
r2[3] = x1;
r2[4] = y1;
if (mask[i]) // if mask[i] is true then new_mask[i] must be false
for (int j = 0; j < 6; j++) {
for (int z = j; z < 6; z++)
covariance[j*6+z] +=-r1[j]*r1[z] - r2[j]*r2[z];
Ab[j] +=-r1[j]*x2 - r2[j]*y2;
}
else
for (int j = 0; j < 6; j++) {
for (int z = j; z < 6; z++)
covariance[j*6+z] += r1[j]*r1[z] + r2[j]*r2[z];
Ab[j] += r1[j]*x2 + r2[j]*y2;
}
}
}
mask = new_mask;
// copy symmetric part of covariance matrix
for (int j = 1; j < 6; j++)
for (int z = 0; z < j; z++)
covariance[j*6+z] = covariance[z*6+j];
Vec6d aff;
if (!solve(Matx66d(covariance), Vec6d(Ab), aff))
return 0;
double a[9] = { aff(0), aff(1), aff(2), aff(3), aff(4), aff(5), 0, 0, 1 };
models = std::vector<Mat>{ Mat(Matx33d(t1[0]*(a[0]/t2[0] - (a[6]*t2[2])/t2[0]),
t1[0]*(a[1]/t2[0] - (a[7]*t2[2])/t2[0]), a[2]/t2[0] + t1[2]*(a[0]/t2[0] -
(a[6]*t2[2])/t2[0]) + t1[5]*(a[1]/t2[0] - (a[7]*t2[2])/t2[0]) - (a[8]*t2[2])/t2[0],
t1[0]*(a[3]/t2[0] - (a[6]*t2[5])/t2[0]), t1[0]*(a[4]/t2[0] - (a[7]*t2[5])/t2[0]),
a[5]/t2[0] + t1[2]*(a[3]/t2[0] - (a[6]*t2[5])/t2[0]) + t1[5]*(a[4]/t2[0] -
(a[7]*t2[5])/t2[0]) - (a[8]*t2[5])/t2[0], t1[0]*a[6], t1[0]*a[7],
a[8] + a[6]*t1[2] + a[7]*t1[5])) };
return 1;
}
void enforceRankConstraint (bool /*enforce*/) override {}
int getMinimumRequiredSampleSize() const override { return 3; }
int getMaxNumberOfSolutions () const override { return 1; }
};
Ptr<CovarianceAffineSolver> CovarianceAffineSolver::create (const Mat &points, const Matx33d &T1, const Matx33d &T2) {
return makePtr<CovarianceAffineSolverImpl>(points, T1, T2);
}
Ptr<CovarianceAffineSolver> CovarianceAffineSolver::create (const Mat &points) {
return makePtr<CovarianceAffineSolverImpl>(points);
}
}}