description
stringlengths 171
4k
| code
stringlengths 94
3.98k
| normalized_code
stringlengths 57
4.99k
|
|---|---|---|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
lst = list(map(int, input().split()))
final = []
for i in lst:
if i % k != 0:
final.append(i % k)
val = {}
for i in final:
if i not in val:
val[i] = 1
else:
val[i] += 1
temp = 0
count = 0
for i in val:
if val[i] > count:
count = val[i]
temp = i
elif count == val[i] and i < temp or temp == 0:
temp = i
if temp != 0:
temp -= 1
print((count - 1) * k + k - temp)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR DICT FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
import sys
input = sys.stdin.readline
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
A = list(map(int, input().split()))
B = []
for i in A:
B.append((k - i % k) % k)
B.sort()
i = 1
while i < n:
j = i
if B[i] != 0 and B[i] == B[i - 1]:
while j < n:
if B[j] == B[i - 1]:
B[j] = B[j] + (j - i + 1) * k
else:
break
j = j + 1
i = j + 1
B.sort()
c, x = 0, 0
for i in range(n):
iv = B[i]
if iv == 0:
continue
else:
c = c + iv - x + 1
x = iv + 1
print(c)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR IF VAR VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER WHILE VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
test_case = int(input())
for _ in range(test_case):
size, div = map(int, input().split())
arr = list(map(int, input().split()))
s = {(arr[i] % div): (0) for i in range(size)}
for i in arr:
if i % div:
s[i % div] += 1
x = 0
for i in s.keys():
x = max(x, s[i] * div - i)
if x == 0:
print(0)
else:
print(x + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR VAR IF BIN_OP VAR VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def turns(n, k, a):
remainders_count = dict()
majority_remainder_count = 0
majority_remainder = k + 1
for num in a:
if num % k == 0:
continue
if num % k in remainders_count:
remainders_count[num % k] += 1
else:
remainders_count[num % k] = 1
if remainders_count[num % k] > majority_remainder_count:
majority_remainder_count = remainders_count[num % k]
majority_remainder = num % k
elif remainders_count[num % k] == majority_remainder_count:
majority_remainder = min(majority_remainder, num % k)
if majority_remainder < k + 1:
return (majority_remainder_count - 1) * k + (k + 1 - majority_remainder)
else:
return 0
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
a = [int(i) for i in input().split()]
print(turns(n, k, a))
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR BIN_OP VAR NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for i in range(int(input())):
n, k = map(int, input().split(" "))
nums = list(map(int, input().split(" ")))
zeroRem = 0
remOcc = {}
for i in nums:
rem = i % k
if rem == 0:
zeroRem += 1
else:
remOcc[k - rem] = remOcc.setdefault(k - rem, 0) + 1
if zeroRem == n:
print(0)
continue
else:
maxValue = 0
z = 0
for i in remOcc:
z = i + (remOcc[i] - 1) * k
maxValue = max(maxValue, z)
print(maxValue + 1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
import sys
input = sys.stdin.readline
for _ in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
d = {}
for i in range(n):
if a[i] % k != 0:
x = k - a[i] % k
if x not in d:
d[x] = 1
else:
d[x] += 1
ans = 0
if not d:
print(0)
continue
for x in d:
ans = max(ans, x + (d[x] - 1) * k)
print(ans + 1)
|
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
d = {(k - 1): 0}
for i in a:
if i % k:
if k - i % k not in d:
d[k - i % k] = 0
d[k - i % k] += 1
m = max(d, key=lambda x: (d[x], x))
print(k * (d[m] - 1) + m + 1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT BIN_OP VAR NUMBER NUMBER FOR VAR VAR IF BIN_OP VAR VAR IF BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR VAR NUMBER VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for i in range(int(input())):
n, k = input().split(" ")
n, k = int(n), int(k)
A = input().split(" ")
for j in range(n):
A[j] = int(A[j]) % k
A.sort()
ma = 1
rema = A[0]
tem = 1
for j in range(1, n):
if A[j] == 0:
continue
if A[j] == A[j - 1]:
tem += 1
if tem > ma:
ma = tem
rema = A[j]
elif A[j - 1] == 0:
tem = 1
rema = A[j]
else:
tem = 1
if rema == 0:
print(0)
else:
print(ma * k - rema + 1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
for i in range(n):
a[i] = (k - a[i] % k) % k
a.sort()
i = a.count(0)
mv = a[n - 1]
while i < n:
cv, cnt = a[i], 1
while i + 1 < n and a[i + 1] == a[i]:
mv = max(mv, cv + cnt * k)
i += 1
cnt += 1
i += 1
print(mv + 1 if mv > 0 else 0)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR VAR NUMBER WHILE BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
from sys import stdin, stdout
def zero_remainder_array(n, k, a):
dic = {}
maxcnt = 0
maxa = 0
for v in a:
vk = k - v % k
if vk == k:
continue
if vk not in dic:
dic[vk] = 0
dic[vk] += 1
if dic[vk] > maxcnt:
maxcnt = dic[vk]
maxa = vk
elif dic[vk] == maxcnt and vk > maxa:
maxa = vk
if maxcnt == 0:
return 0
return (maxcnt - 1) * k + maxa + 1
t = int(stdin.readline())
for i in range(t):
n, k = map(int, stdin.readline().split())
a = list(map(int, stdin.readline().split()))
stdout.write(str(zero_remainder_array(n, k, a)) + "\n")
|
FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR VAR VAR ASSIGN VAR VAR IF VAR NUMBER RETURN NUMBER RETURN BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR STRING
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for _ in range(t):
l = list(map(int, input().split()))
n, k = l[0], l[1]
l = list(map(int, input().split()))
for i in range(n):
if l[i] % k > 0:
l[i] = k * (l[i] // k) + k - l[i]
else:
l[i] = 0
if l == [0] * n:
print(0)
else:
d = {}
for i in l:
if i not in d:
d[i] = i
elif i != 0:
d[i] += k
print(max(max(d.values()), max(d.keys())) + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER IF VAR BIN_OP LIST NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR DICT FOR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def findMin(ele, ans, k):
left = 0
right = 10**9
best = None
while left <= right:
mid = (left + right) // 2
if mid * k + ele not in ans:
best = mid * k + ele
right = mid - 1
else:
left = mid + 1
return best
I = lambda: list(map(int, input().split(" ")))
for _ in range(I()[0]):
n, k = I()
lst = I()
t = []
for ele in lst:
if ele % k != 0:
t.append((ele, k * (1 + ele // k) - ele))
t = [ele[1] for ele in sorted(t, key=lambda x: x[1])]
dct = {}
for ele in t:
if ele in dct:
dct[ele] += 1
else:
dct[ele] = 1
if len(dct) != 0:
ans = set()
for ele in dct:
cur = dct[ele]
for i in range(dct[ele]):
ans.add(findMin(ele, ans, k))
print(max(ans) + 1)
else:
print(0)
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR NONE WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP VAR VAR VAR ASSIGN VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR DICT FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def solve():
n, k = map(int, input().split())
a = [int(x) for x in input().split()]
used = {}
ans = 0
for i in a:
if i % k != 0:
if i % k in used:
ans = max(ans, k * (used[i % k] + 1) - i % k + 1)
used[i % k] += 1
else:
ans = max(ans, k - i % k + 1)
used[i % k] = 1
print(ans)
[solve() for i in range(int(input()))]
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
import sys
input = lambda: sys.stdin.readline().rstrip()
for _ in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
d = {}
for i in a:
if i % k != 0:
v = k * (i // k + 1) - i
if v not in d:
d[v] = 0
d[v] += 1
if len(d) == 0:
print(0)
else:
mx = max(d.values())
val = -1
for i in d:
if d[i] == mx and i > val:
val = i
print((mx - 1) * k + val + 1)
|
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
arr = list(map(int, input().split()))
for i in range(n):
arr[i] = k - arr[i] % k
if arr[i] == k:
arr[i] = 0
counts = {}
for i in arr:
if i not in counts.keys():
counts[i] = 1
else:
counts[i] += 1
if 0 in counts.keys():
del counts[0]
if counts == {}:
x = 0
else:
x = max(counts.values())
if x == 0 or counts == []:
print(0)
else:
key = list(counts.keys())
key.sort()
for i in key[::-1]:
if counts[i] == x:
print((x - 1) * k + i + 1)
break
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR DICT FOR VAR VAR IF VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER IF NUMBER FUNC_CALL VAR VAR NUMBER IF VAR DICT ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER VAR LIST EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FOR VAR VAR NUMBER IF VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
n = int(input())
while n > 0:
l, d = input().split()
l, d = int(l), int(d)
arr = [int(x) for x in input().split()]
for i in range(len(arr)):
arr[i] = (d - arr[i] % d) % d
lookup = dict()
for ele in arr:
if ele not in lookup:
lookup[ele] = 1
else:
lookup[ele] += 1
rev = dict()
for k in lookup:
v = lookup[k]
if v not in rev:
rev[v] = [k]
else:
rev[v].append(k)
item = rev.items()
items = sorted(item, reverse=True)
ans = 0
for k, v in items:
v.sort()
if len(v) == 1 and v[0] == 0:
continue
else:
ans = (k - 1) * d + v[len(v) - 1] + 1
break
print(ans)
n -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR LIST VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
for i in range(n):
a[i] = (k - a[i] % k) % k
m = {}
for elem in a:
if elem > 0:
m[elem] = 1 + m.get(elem, 0)
maxx = 0
for elem in m:
maxx = max(maxx, elem + k * (m[elem] - 1))
if maxx != 0:
maxx += 1
print(maxx)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR DICT FOR VAR VAR IF VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
dp = {}
for x in a:
if x % k:
t = k - x % k
dp[t] = dp.get(t, 0) + 1
dp[0] = 0
cycles = max(dp.values())
ind = 0
if cycles == 0:
print(0)
else:
res = k * (cycles - 1)
for x in dp:
if dp[x] == cycles:
ind = max(ind, x)
res += ind + 1
print(res)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
T = int(input())
for tc in range(1, T + 1):
n, k = map(int, input().split())
data = list(map(int, input().split()))
modDict = dict()
for i in range(len(data)):
mod = k - data[i] % k
if mod != k:
if mod not in modDict:
modDict[mod] = 1
else:
modDict[mod] += 1
if len(modDict) == 0:
print(0)
continue
maxCnt = 0
maxMod = 0
for key, value in modDict.items():
if maxCnt < value:
maxCnt = value
maxMod = key
elif maxCnt == value:
if maxMod < key:
maxMod = key
print((maxCnt - 1) * k + maxMod + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR IF VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for tt in range(int(input())):
n, k = map(int, input().split())
arr = list(map(int, input().split()))
d = dict()
for i in arr:
x = i % k
if x != 0:
if i % k in d:
d[i % k] += 1
else:
d[i % k] = 1
ans = 0
for i in d.keys():
ans = max(ans, d[i] * k - i)
if ans != 0:
print(ans + 1)
else:
print(0)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER IF BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
from sys import stdin
input = stdin.readline
for _ in range(int(input())):
n, k = map(int, input().split())
a = [int(x) for x in input().split()]
d = dict()
maxx, maxxx = 0, 0
for x in a:
now = k - x % k
if now in d.keys():
d[now] += 1
else:
d[now] = 1
if now == k:
continue
if d[now] > maxx:
maxx = d[now]
if k in d.keys():
if d[k] == n:
print(0)
continue
else:
d[0] = d[k]
del d[k]
for x in d.keys():
if x == 0:
continue
if d[x] == maxx:
if x > maxxx:
maxxx = x
print((maxx - 1) * k + maxxx + 1)
|
ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR IF VAR FUNC_CALL VAR IF VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR VAR FOR VAR FUNC_CALL VAR IF VAR NUMBER IF VAR VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for i in range(int(input())):
n, k = map(int, input().strip().split())
a = list(map(int, input().strip().split()))
d = dict.fromkeys(list(map(lambda x: k - x % k, a)), 0)
for i in a:
d[k - i % k] += 1
ans = 0
for i in d:
if i % k != 0:
ans = max(i + 1 + (d[i] - 1) * k, ans)
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER FOR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
arr = list(map(int, input().split()))
dct = {}
l = 0
for i in arr:
rem = i % k
if rem != 0:
if rem in dct:
dct[rem] += 1
else:
l += 1
dct[rem] = 1
lst = list(dct.values())
if len(lst) == 0:
print(0)
continue
mx = max(lst)
lst1 = list(dct.keys())
ct = 0
rem1 = 10**9 + 7
for i in range(l):
if lst[i] == mx and lst1[i] < rem1:
rem1 = lst1[i]
sm = k - rem1
sm += (k - 1) * (mx - 1) + mx
print(sm)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
r = lambda: map(int, input().split())
(t,) = r()
for _ in [0] * t:
n, k = r()
a = [*r()]
s = {(i % k): (0) for i in a}
for i in a:
if i % k:
s[i % k] += 1
f = max(1 - i + k * s[i] for i in s.keys())
print(f if f > 1 else 0)
|
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR NUMBER VAR VAR FOR VAR VAR IF BIN_OP VAR VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
A = list(map(int, input().split()))
m = {}
for i in range(n):
if A[i] % k == 0:
continue
temp = A[i] % k
temp = k - temp
if m.get(temp) == None:
m[temp] = 1
else:
tmp = m.get(temp)
m[temp] = tmp + 1
maxV = 0
idx = 0
for i in m:
if maxV <= m[i]:
if maxV == m[i]:
if idx < i:
idx = i
else:
idx = i
maxV = m[i]
if maxV == 0:
res = 0
else:
res = (maxV - 1) * k + idx + 1
print(res)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF FUNC_CALL VAR VAR NONE ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR IF VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for i in range(t):
n, k = map(int, input().split())
b = list(map(int, input().split()))
d = dict()
p = 0
for j in range(n):
if b[j] % k != 0:
if b[j] % k in d.keys():
d[b[j] % k] += 1
else:
d[b[j] % k] = 1
p = max(p, 1 + k - b[j] % k + (d[b[j] % k] - 1) * k)
print(p)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER IF BIN_OP VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
cases = int(input())
for _ in range(cases):
n, k = list(map(int, input().strip().split()))
arr = list(map(int, input().strip().split()))
d = {}
for elem in arr:
rem = elem % k
if rem != 0:
rem = k - rem
if rem in d:
d[rem] += 1
else:
d[rem] = 1
maxnum, maxval, max_x = 0, 0, 0
for key in d:
if d[key] > maxnum or d[key] == maxnum and key > maxval:
maxnum = d[key]
maxval = key
if d != {}:
max_x = maxval + (maxnum - 1) * k + 1
print(max_x)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER FOR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR DICT ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def solve(a, k):
ctr = dict()
for x in a:
add = (k - x % k) % k
ctr[add] = ctr.get(add, 0) + 1
ans = 0
for i, c in ctr.items():
if i != 0:
ans = max(ans, 1 + i + k * (c - 1))
return ans
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
a = map(int, input().split())
print(solve(a, k))
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
T = int(input())
for test in range(T):
n, k = map(int, input().split())
l = list(map(int, input().split()))
dct = {}
for el in l:
try:
dct[el % k] += 1
except KeyError:
if el % k != 0:
dct[el % k] = 1
try:
max_el = max(dct.values())
max_key = 1000000001
for el in dct.keys():
if dct[el] == max_el:
max_key = min(max_key, el)
print((max_el - 1) * k + (k - max_key) + 1)
except ValueError:
print(0)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR VAR BIN_OP VAR VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
T = int(input())
for t in range(T):
n, k = (int(i) for i in input().split())
last = {}
maxx = 0
for i in input().split():
a = int(i)
if a > k:
if a % k == 0:
x = a
else:
x = (a // k + 1) * k
else:
x = k
y = x - a
if y not in last or y == 0:
last[y] = y
else:
last[y] += k
if maxx < last[y]:
maxx = last[y]
if maxx == 0:
print(0)
else:
print(maxx + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
a = [(int(i) % k) for i in input().split()]
b = {}
b[0] = 0
for i in a:
if i not in b.keys():
b[i] = 1
else:
b[i] += 1
mx = 0
mx_ind = 0
for i in b.keys():
if i == 0:
continue
if b[i] > mx:
mx = b[i]
mx_ind = i
if b[i] == mx and mx_ind > i:
mx_ind = i
if b[0] == n:
print(0)
else:
print(k * (mx - 1) + k - mx_ind + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER NUMBER FOR VAR VAR IF VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR IF VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR VAR VAR ASSIGN VAR VAR IF VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
a = int(input())
d = {}
while a:
d.clear()
a = a - 1
n, k = map(int, input().split())
lis = list(map(int, input().split()))
for i in range(len(lis)):
it = lis[i]
if it % k != 0:
if k - it % k in d:
d[k - it % k] += 1
else:
d[k - it % k] = 1
ans = 0
tt = 0
for i in d:
if d[i] > ans:
ans = d[i]
tt = i
elif d[i] == ans:
if i > tt:
tt = i
if ans > 0:
ans = (ans - 1) * k + tt + 1
print(ans)
lis.clear()
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR DICT WHILE VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR NUMBER IF BIN_OP VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
tt = int(input())
for loop in range(tt):
n, k = map(int, input().split())
a = list(map(int, input().split()))
dic = {}
for i in a:
if i % k != 0:
if k - i % k not in dic:
dic[k - i % k] = 0
dic[k - i % k] += 1
mi = None
for i in dic:
if mi == None:
mi = i
elif dic[i] == dic[mi]:
mi = max(i, mi)
elif dic[i] > dic[mi]:
mi = i
if mi == None:
print(0)
else:
print(k * (dic[mi] - 1) + mi + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF BIN_OP VAR VAR NUMBER IF BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NONE FOR VAR VAR IF VAR NONE ASSIGN VAR VAR IF VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR IF VAR NONE EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR VAR NUMBER VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for i in range(t):
n, k = input().split()
n, k = int(n), int(k)
inp = [int(j) for j in input().split()]
dict = {}
cnt = 0
answer = 0
for i in range(len(inp)):
if inp[i] % k == 0:
cnt = cnt + 1
else:
temp = k - inp[i] % k
if temp in dict:
dict[temp] = dict[temp] + 1
ans = k * (dict[temp] - 1) + temp
answer = max(ans, answer)
else:
dict[temp] = 1
ans = k * (dict[temp] - 1) + temp
answer = max(ans, answer)
if cnt == n:
print(0)
else:
print(answer + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
a = list(map(int, input().split()))
b = []
for i in range(n):
a[i] = a[i] % k
if a[i] != 0:
b.append(k - a[i])
if len(b) == 0:
print(0)
else:
b.sort()
v = {}
for i in b:
if i in v.keys():
v[i] = v[i] + k
else:
v[i] = i
m = max(v.values())
print(m + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF VAR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
arr = list(map(int, input().split()))
new = [0] * n
arr.sort()
new = dict()
for i in range(n):
new.setdefault(k - arr[i] % k if arr[i] % k != 0 else 0, 0)
new[k - arr[i] % k if arr[i] % k != 0 else 0] += 1
ans = 0
for key, el in new.items():
if not key:
continue
if el == 1:
ans = max(ans, key + 1)
else:
ans = max(ans, key + k * (el - 1) + 1)
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER BIN_OP VAR BIN_OP VAR VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR VAR NUMBER BIN_OP VAR BIN_OP VAR VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR IF VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
s = list(map(int, input().split()))
ll = []
for i in s:
if i % k != 0:
ll.append(i)
for i in range(0, len(ll)):
ll[i] = ll[i] % k
if len(ll) == 0:
print(0)
continue
ll.sort()
ans = 0
x = -1
maxy = 0
mycount = dict()
for i in ll:
if i in mycount.keys():
mycount[i] += 1
else:
mycount[i] = 1
for i in ll:
if maxy < mycount[i]:
x = i
maxy = mycount[i]
ans = k * (maxy - 1) + k - x + 1
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
i = 0
while i < t:
n, k = map(int, input().split())
arr = list(map(int, input().split()))
has = {(0): 0}
for x in arr:
a = x % k
if a == 0:
if a in has.keys():
has[a] = has[a] + 1
else:
has[a] = 1
else:
b = k - a
if b in has.keys():
has[b] = has[b] + 1
else:
has[b] = 1
res = 0
if has[0] == n:
print(0)
else:
for x, y in has.items():
if x != 0:
s = x + (y - 1) * k
res = max(s, res)
print(res + 1)
i = i + 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT NUMBER NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER IF VAR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER FOR VAR VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for _ in range(t):
n, k = list(map(int, input().split()))
a = list(map(lambda x: str((k - int(x)) % k), input().split()))
dic = {}
for ae in a:
if ae != "0":
if ae in dic:
dic[ae][0] += 1
else:
dic[ae] = [0, int(ae)]
maxi = 0
for de in dic:
maxi = max(dic[de][0] * k + dic[de][1], maxi)
if maxi == 0:
print(0)
else:
print(maxi + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF VAR STRING IF VAR VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
def num_changes(numbers, divisor):
for i in range(len(numbers)):
numbers[i] = divisor - numbers[i] % divisor
numbers.sort()
to_add = [[numbers[0], 0]]
for elem in numbers:
if to_add[-1][0] == elem:
to_add[-1][1] += 1
else:
to_add.append([elem, 1])
num_oper = []
for pair in to_add:
if pair[0] != divisor:
num_oper.append(pair[0] + (pair[1] - 1) * divisor)
if not num_oper:
return 0
else:
return max(num_oper) + 1
for i in range(t):
n, divisor = map(int, input().split())
numbers = list(map(int, input().split()))
print(num_changes(numbers, divisor))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST LIST VAR NUMBER NUMBER FOR VAR VAR IF VAR NUMBER NUMBER VAR VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR LIST VAR NUMBER ASSIGN VAR LIST FOR VAR VAR IF VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER VAR IF VAR RETURN NUMBER RETURN BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = input()
t = int(t)
while t:
t = t - 1
st = input()
n, k = map(int, st.split())
pt = input()
lst = [int(m) for m in pt.split()]
dic = {}
MAX = -1
for i in range(0, n):
re = lst[i] % k
if re == 0:
continue
if re not in dic:
dic[re] = 0
dic[re] = dic[re] + 1
MAX = max(MAX, k - re + (dic[re] - 1) * k)
print(MAX + 1)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
from sys import stdin
for _ in range(int(input())):
n, k = map(int, input().split())
l = list(map(int, stdin.readline().split()))
l.sort()
a = []
for e in l:
if e % k != 0:
a.append(e % k)
a.sort()
x = 0
moves = 0
dict = {}
pp = [0]
for e in a:
if e not in dict:
dict[e] = 1
else:
dict[e] += 1
for e, f in dict.items():
if f == 1:
pp[0] = max(k - e, pp[0])
else:
for i in range(1, f):
pp[0] = max(pp[0], k - e + k * i)
if pp[0] != 0:
print(pp[0] + 1)
else:
print(0)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR LIST NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for test in range(t):
n, k = map(int, input().split())
a = list(map(int, input().split()))
b = [0] * n
for i in range(n):
b[i] = (k - a[i] % k) % k
b.sort()
result = 0
minresult = 0
mc = 0
mmc = 0
c = 0
tek = 0
s = False
s1 = True
for i in range(n):
if b[i] == 0:
continue
if tek == b[i]:
c += 1
if c == mc:
if b[i] > mmc:
mmc = b[i]
if c > mc:
mc = c
minresult += k
mmc = b[i]
s = True
else:
s = False
c = 0
if s1:
s1 = False
result = 1
result += b[i] - tek
tek = b[i]
minresult += mmc
if minresult != 0:
minresult += 1
print(max(minresult, result))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR VAR VAR VAR NUMBER IF VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
import sys
input = sys.stdin.buffer.readline
t = int(input())
for _ in range(t):
n, k = [int(x) for x in input().split()]
arr = [int(x) for x in input().split()]
requiredTopUps = dict()
for i in range(n):
remainder = arr[i] % k
if remainder != 0:
if k - remainder not in requiredTopUps.keys():
requiredTopUps[k - remainder] = 0
requiredTopUps[k - remainder] += 1
finalx = 0
for t in requiredTopUps.keys():
finalx = max(finalx, t + (requiredTopUps[t] - 1) * k)
if finalx == 0:
print(finalx)
else:
print(finalx + 1)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR NUMBER IF BIN_OP VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
cases = []
for i in range(t):
n, kay = input().split(" ")
n = int(n)
kay = int(kay)
vals = input().split(" ")
vals = [(int(x) % kay) for x in vals if int(x) % kay != 0]
cases.append((n, kay, vals))
for c in cases:
arr = c[2].copy()
k = c[1]
moves = 1
x = 1
if len(arr) == 0:
print(0)
continue
m = {}
for i in range(len(arr)):
if arr[i] in m.keys():
m[arr[i]] += 1
else:
m[arr[i]] = 1
largest = -1
max_key = 0
for key in m:
if m[key] == largest:
if key < max_key:
max_key = key
elif m[key] > largest:
largest = m[key]
max_key = key
final_value = (m[max_key] - 1) * k + (k + 1 - max_key)
print(final_value)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
m = int(input())
while m:
m -= 1
a, b = map(int, input().split())
l = list(map(int, input().split()))
d = {}
for i in l:
if i % b != 0:
d.setdefault(b - i % b, 0)
d[b - i % b] += 1
ma = 0
for i, j in d.items():
ma = max(i + (j - 1) * b, ma)
if ma == 0:
print(0)
else:
print(ma + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for t in range(int(input())):
n, k = map(int, input().split())
a = [((k - int(s) % k) % k) for s in input().split()]
d = dict()
for i in a:
if i != 0:
d.setdefault(i, 0)
d[i] += 1
x = [(i + k * (d[i] - 1)) for i in d]
if len(x) == 0:
print(0)
else:
print(max(x) + 1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR VAR NUMBER VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
from sys import stdin
inp = lambda: stdin.readline().strip()
t = int(inp())
for _ in range(t):
n, k = [int(x) for x in inp().split()]
a = [int(x) for x in inp().split()]
ar = []
for i in a:
if i % k:
ar.append(i)
ar.sort(key=lambda x: x % k)
rem = dict()
for i in ar:
if rem.get(i % k, -1) != -1:
rem[i % k] += 1
else:
rem[i % k] = 1
ans = 0
maximum = 0
for i in rem.keys():
if rem[i] > maximum:
ans = 0
ans += 1
ans += k - i
ans += (rem[i] - 1) * k
maximum = rem[i]
print(ans)
|
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR IF BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR IF VAR VAR VAR ASSIGN VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
import sys
input = sys.stdin.readline
f = lambda: list(map(int, input().strip("\n").split()))
res = []
for _ in range(int(input())):
n, k = f()
inp = f()
cnt = {}
for i in inp:
if not i % k:
continue
cnt[k - i % k] = cnt.get(k - i % k, 0) + 1
if cnt.keys():
num = max(cnt.keys(), key=lambda x: (cnt[x], x))
ans = k * (cnt[num] - 1) + num + 1
else:
ans = 0
res.append(ans)
print("\n".join(map(str, res)))
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR NUMBER NUMBER IF FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
from sys import stdin
def inp():
return stdin.readline().strip()
t = int(inp())
for _ in range(t):
n, k = [int(x) for x in inp().split()]
ar = [int(x) for x in inp().split()]
dic = dict({})
sett = set({})
ans = 0
bad = set({})
for i in ar:
if i not in sett:
sett.add(i)
dic[i] = 1
else:
dic[i] += 1
for i in sett:
if i % k != 0:
freq = dic[i]
needed = k - i % k
while True:
if needed not in bad:
for i in range(freq - 1):
bad.add(needed + (i + 1) * k)
ans = max(ans, needed + (freq - 1) * k)
bad.add(needed)
break
else:
bad.add(needed)
needed += k
if ans != 0:
print(ans + 1)
else:
print(ans)
|
FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR DICT ASSIGN VAR FUNC_CALL VAR DICT ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR DICT FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR WHILE NUMBER IF VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
d = dict()
a = list(map(int, input().split()))
for i in range(n):
d.setdefault(a[i] % k, 0)
d[a[i] % k] += 1
ans = 0
for i in d:
if i != 0:
ans = max(ans, (d[i] - 1) * k + (k - i))
if 0 in d and d[0] == n:
print("0")
else:
print(ans + 1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR IF NUMBER VAR VAR NUMBER VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
import sys
def func(t, k):
for i in range(0, sys.maxsize, k):
if i >= t:
break
return i
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
mp = dict()
temp = map(int, input().split())
for i in temp:
if func(i, k) - i not in mp:
mp[func(i, k) - i] = 0
mp[func(i, k) - i] += 1
ans = 0
for i in mp.keys():
if i != 0:
temp = i + (mp[i] - 1) * k
ans = max(ans, temp)
if ans == 0:
print(0)
else:
print(ans + 1)
|
IMPORT FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER VAR VAR IF VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
a = list(map(int, input().split()))
new = []
d = {}
for i in range(n):
if a[i] % k == 0:
pass
else:
x = k - a[i] % k
if d.get(x):
y = d[x] * k + x
d[x] += 1
new.append(y)
else:
d[x] = 1
new.append(x)
print(max(new) + 1 if len(new) else 0)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR IF FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def check(l, k):
for i in l:
if i % k != 0:
return False
return True
t = int(input())
for _ in range(t):
n, k = list(map(int, input().split()))
a = list(map(int, input().split()))
d = dict()
if check(a, k):
print(0)
continue
for i in a:
if i % k != 0:
d[k - i % k] = d.get(k - i % k, 0) + 1
maxrep = 0
reps = 0
for x, y in d.items():
if y == reps and x > maxrep:
maxrep = x
elif y > reps:
reps = y
maxrep = x
print((reps - 1) * k + maxrep + 1)
|
FUNC_DEF FOR VAR VAR IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR IF VAR VAR VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
d = {}
for x in a:
r = x % k
if r != 0:
d[k - r] = d.get(k - r, 0) + 1
rems = []
ans = 0
for x in d:
o = d[x]
t = (o - 1) * k + x
ans = max(ans, t + 1)
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for i in range(t):
n, m = map(int, input().split())
l = list(map(int, input().split()))
randomarr = []
for j in range(n):
hj = l[j] % m
if hj == 0:
hj = 0
else:
hj = m - hj
randomarr.append(hj)
dictio = dict()
for k in randomarr:
if k == 0:
continue
lk = 0
if dictio.get(k, 0) == 0:
dictio[k] = 1
else:
dictio[k] += 1
ans = 0
for ty in dictio:
if dictio[ty] > 1:
ans = max(ty + (dictio[ty] - 1) * m + 1, ans)
ans = max(ty + 1, ans)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
X, Y = map(int, input().split())
arr = list(map(int, input().split()))
dict = {}
flag = True
for i in arr:
if i % Y != 0:
flag = False
break
if flag:
print(0)
continue
for i in arr:
if i % Y == 0:
continue
if i > Y:
difference = Y - i % Y
if difference != 0:
if difference not in dict:
dict[difference] = 0
dict[difference] += 1
else:
difference = Y - i
if difference != 0:
if difference not in dict:
dict[difference] = 0
dict[difference] += 1
res = []
for i in dict:
cnts = dict[i]
initial = i
while cnts > 0:
res.append(initial)
initial += Y
cnts -= 1
print(max(res) + 1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR LIST FOR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
TC = int(input())
for tc in range(TC):
N, K = map(int, input().split())
A = list(map(lambda x: int(x) % K, input().split()))
M = {(0): -1}
for a in A:
if a != 0:
if a in M:
M[a] += K
else:
M[a] = K - a
print(max(M.values()) + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT NUMBER NUMBER FOR VAR VAR IF VAR NUMBER IF VAR VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
a = list(map(int, input().split()))
for i in range(n):
a[i] = (k - a[i] % k) % k
D = {}
for i in range(n):
if a[i] != 0:
if a[i] in D:
D[a[i]] += 1
else:
D[a[i]] = 1
X = 0
for i in D:
X = max(i + (D[i] - 1) * k + 1, X)
print(X)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
T = int(input().rstrip())
def solve(arr, k):
mod_arr = [(i % k) for i in arr]
mod_d = {}
for i in arr:
res = (k - i) % k
if res != 0:
if res not in mod_d:
mod_d[res] = 1
else:
mod_d[res] += 1
x = 0
num_moves = 0
while len(mod_d) != 0:
sorted_keys = sorted(mod_d)
for z in sorted_keys:
if z - x != 0:
if z < x:
num_moves += k - (x - z)
else:
num_moves += z - x
x = z
nidcs = mod_d[z]
if nidcs == 1:
del mod_d[z]
else:
mod_d[z] -= 1
x += 1
x = x % k
num_moves += 1
print(num_moves)
for test in range(T):
n, k = [int(x) for x in input().split()]
arr = [int(x) for x in input().split()]
solve(arr, k)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR IF BIN_OP VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
from itertools import groupby
for _ in range(int(input())):
n, k = [int(_) for _ in input().split()]
a = [int(_) for _ in input().split()]
rems = sorted((_ % k for _ in a), key=lambda x: -x)
rems = [[k, len(list(v))] for k, v in groupby(rems)]
x = 0
done = 0
i = 0
while done != n:
j = i % len(rems)
if rems[j][1] == 0:
i += 1
continue
if rems[j][0] % k == 0:
done += rems[j][1]
rems[j][1] = 0
i += 1
continue
x += (k - (x + rems[j][0]) % k) % k + 1
rems[j][1] -= 1
done += 1
i += 1
print(x)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR LIST VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER NUMBER VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
from sys import stdin
for _ in range(int(stdin.readline())):
n, k = list(map(int, stdin.readline().split()))
a = list(map(int, stdin.readline().split()))
d = {}
res = 0
for i, v in enumerate(a):
if v % k == 0:
continue
else:
t = k - v % k
if t not in d:
d[t] = 0
else:
d[t] += 1
if d[t] * k + t > res:
res = d[t] * k + t
if res == 0:
print(res)
else:
print(res + 1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
ar = list(map(int, input().split()))
for i in range(n):
ar[i] = ar[i] % k
ar.sort()
i = 0
ans = -1
while i < n:
temp = k - ar[i]
if ar[i] == 0:
temp = 0
while i + 1 < n and ar[i] == 0 and ar[i + 1] == ar[i]:
i += 1
else:
while i + 1 < n and ar[i] == ar[i + 1]:
temp = temp + k
i += 1
i += 1
if ans < temp:
ans = temp
if ans > 0:
print(ans + 1)
else:
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER WHILE BIN_OP VAR NUMBER VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
liStr = input().split()
n = int(liStr[0])
k = int(liStr[1])
liStr = input().split()
arr = []
for i in liStr:
arr.append(int(i))
remArr = []
toAdd = []
for i in arr:
remArr.append(i % k)
for i in remArr:
if i == k or i == 0:
continue
toAdd.append(k - i)
if len(toAdd) == 0:
print("0")
continue
di = {}
for i in toAdd:
di[i] = di.get(i, 0) + 1
mf = -1
me = 0
for i in di:
e = i
f = di[i]
if f > mf:
mf = f
me = e
if f == mf and e > me:
me = e
print((mf - 1) * k + me + 1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for t in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
table = set()
remtable = {}
for i in a:
if i % k != 0:
rem = k - i % k
if rem in remtable:
last = remtable[rem][-1]
remtable[rem].append(last + 1)
index = rem + (last + 1) * k
else:
remtable[rem] = [0]
index = rem
table.add(index)
if len(table) == 0:
print(0)
else:
print(max(table) + 1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR VAR LIST NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
d = dict()
for i in range(n):
if a[i] % k == 0:
continue
else:
s = a[i] // k + 1
p = s * k - a[i]
d[p] = d.get(p, 0) + 1
m = 0
for k1, v in d.items():
q = k1 + (v - 1) * k
m = max(m, q)
if m == 0:
print(0)
else:
print(m + 1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
arr = list(map(int, input().split()))
arr.sort()
dic = {}
c = 0
for i in range(n):
if arr[i] % k == 0:
continue
else:
try:
dic[arr[i] % k] += k
except:
dic[arr[i] % k] = k - arr[i] % k
maxx = 0
for i in dic:
maxx = max(maxx, dic[i])
if maxx > 0:
print(maxx + 1)
else:
print(0)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def list_input():
return list(map(int, input().split()))
def multiple_input():
return map(int, input().split())
for _ in range(int(input())):
n, k = multiple_input()
a = list_input()
rem = {}
for i in a:
reminder = i % k
if reminder == 0:
reminder = k
if k - reminder in rem:
rem[k - reminder] += 1
else:
rem[k - reminder] = 1
ans = []
for i in rem:
if i != 0:
val = i
val += (rem[i] - 1) * k
ans.append(val)
if len(ans) == 0:
print(0)
else:
print(max(ans) + 1)
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR IF BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR LIST FOR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
for i in range(n):
if a[i] % k != 0:
a[i] = k - a[i] % k
else:
a[i] = 0
if a.count(0) == n:
print(0)
continue
a.sort()
v = {}
maxi = 0
for i in a:
if i == 0:
continue
if i not in v.keys():
v[i] = i
else:
v[i] += k
maxi = max(0, v[i])
print(max(v.values()) + 1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER IF VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for i in range(t):
n, k = map(int, input().split())
l = list(map(int, input().split()))
l.sort()
d = {}
for j in l:
r = j % k
if r:
if k - r in d:
d[k - r] = d[k - r] + 1
else:
d[k - r] = 1
z = float("-inf")
for j in d:
r = (d[j] - 1) * k + j
if r > z:
z = max(z, r)
print(max(z + 1, 0))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
lst = [int(x) for x in input().split()]
d = {}
for i in lst:
d[i % k] = d.get(i % k, 0) + 1
try:
d.pop(0)
except:
pass
if d != {}:
mx = max(d.values())
res = []
for i, j in d.items():
if j == mx:
res.append(k - i)
x = k - i
for i in range(mx - 1):
res.append(x + k)
x += k
print(max(res) + 1)
else:
print(0)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR DICT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
s = int(input())
for i in range(0, s):
x, y = input().split()
x = int(x)
y = int(y)
n = input().split()
l = {}
for i in range(0, x):
r = y - int(n[i]) % y
if r != y:
if r not in l.keys():
l[r] = 1
else:
l[r] += 1
if l == {}:
print(0)
else:
s = []
for i in l.keys():
s.append((l[i] - 1) * y + i + 1)
print(max(s))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR VAR VAR IF VAR VAR IF VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER IF VAR DICT EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
import sys
input = sys.stdin.readline
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
a = [((k - x) % k % k) for x in map(int, input().split())]
s = {}
s[0] = -1
for i in a:
if i == 0:
continue
if i not in s:
s[i] = i
else:
s[i] += k
print(max(s.values()) + 1)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER NUMBER FOR VAR VAR IF VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
T = int(input())
while T > 0:
n, k = map(int, input().split())
arr = list(map(int, input().split()))
dic = {}
for x in arr:
temp = x % k
if temp > 0:
need = k - temp
if need not in dic:
dic[need] = 0
dic[need] += 1
res = 0
c = 0
index = 0
for key in dic:
if dic[key] > c:
c = dic[key]
index = key
res = (dic[key] - 1) * k + key
elif dic[key] == c:
if key > index:
index = key
res = (dic[key] - 1) * k + key
if res > 0:
res += 1
print(res)
T -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR IF VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def main():
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
l = list(map(int, input().split()))
for i in l:
if i % k != 0:
break
else:
print(0)
continue
s = {}
for i in l:
if i < k:
rem = k - i
elif i == k or i % k == 0:
continue
else:
rem = (i // k + 1) * k - i
if rem in s.keys():
s[rem] += 1
rem += k * (s[rem] - 1)
s[rem] = 1
print(max(s.keys()) + 1)
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR DICT FOR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for ts in range(t):
l, k = [int(i) for i in input().split()]
a = [int(i) for i in input().split()]
f = {}
fm = 0
fr = 0
for i in a:
if i % k != 0:
f[i % k] = f.get(i % k, 0) + 1
if f[i % k] > fm or f[i % k] == fm and i % k < fr:
fm = f[i % k]
fr = i % k
if fr == 0:
print(0)
else:
print(1 + (k - fr) % k + (fm - 1) * k)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER IF VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def solve(arr, n, k):
aux = {}
for i in arr:
if i % k != 0:
if k - i % k not in aux:
aux[k - i % k] = 1
else:
aux[k - i % k] += 1
ans = -1
for i in aux:
ans = max(ans, i + (aux[i] - 1) * k)
print(ans + 1)
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
arr = list(map(int, input().split()))
solve(arr, n, k)
|
FUNC_DEF ASSIGN VAR DICT FOR VAR VAR IF BIN_OP VAR VAR NUMBER IF BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def cast(cre, typ):
return type(typ)(map(cre, typ))
def input_ilst():
return cast(int, input().split())
def input_slst():
return input().split()
def solution():
for t in range(int(input())):
n, k = input_ilst()
lst = input_ilst()
dic = {}
ans = 0
for e in lst:
if e % k != 0:
if dic.get(e % k) != None:
dic[e % k] += 1
else:
dic[e % k] = 1
lst = sorted(dic.items())
if len(lst) != 0:
mfe = max(lst, key=lambda x: x[1])[0]
amfe = dic[mfe]
ans = k * (amfe - 1) + (k - mfe) + 1
print(ans)
return
solution()
|
FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR VAR NONE VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
a = [int(x) for x in input().split()]
b = []
dic = {}
m = 0
for i in a:
if i % k == 0:
b.append(0)
else:
b.append(k - i % k)
tmp = k - i % k
if dic.get(tmp):
l = dic[tmp]
dic[tmp] += 1
tmp2 = tmp + k * l
m = max(tmp2, m)
else:
dic[tmp] = 1
m = max(tmp, m)
if m == 0:
print(0)
else:
print(m + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
arr = {}
for i in a:
arr[i % k] = arr.get(i % k, 0) + 1
m = 0
for i in arr:
if i:
m = max(m, k * arr[i] - i)
if m:
print(m + 1)
else:
print(m)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR IF VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
outputs = []
for __ in range(int(input())):
n, k = list(map(int, input().split()))
A = list(map(int, input().split()))
A = list(filter(lambda y: y % k != 0, A))
d = {}
for i in A:
num = k - i % k
d[num] = d.get(num, 0) + 1
maxm = 0
for i in d.keys():
if d.get(i) > 1:
num = (d.get(i) - 1) * k + i + 1
else:
num = i + 1
if maxm < num:
maxm = num
outputs.append(maxm)
for output in outputs:
print(output)
|
ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for i in range(t):
n, k = map(int, input().split())
ai = list(map(int, input().split()))
ai = [((k - ai[i] % k) % k) for i in range(n)]
ai.sort()
num = 1
ans = 1
ans2 = ai[-1] + 1 - (ai[-1] == 0)
for j in range(n):
if ai[j] != 0:
break
j += 1
for i in range(j, n):
num *= int(ai[i] == ai[i - 1])
num += 1
if num >= ans:
ans = num
ans2 = ai[i] + 1
print((ans - 1) * k + ans2)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
x = list(map(int, input().split()))
q = []
for i in x:
if k - i % k != k:
q.append(k - i % k)
q.sort()
if len(q) == 0:
print(0)
else:
c = q[0]
for i in range(1, len(q)):
if q[i] == c:
q[i] = k + q[i - 1]
else:
c = q[i]
print(max(q) + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR IF BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def f(k, arr):
a_m_dict = {}
for a in arr:
m = a % k
if m:
a_m_dict[k - m] = a_m_dict.get(k - m, 0) + 1
if not a_m_dict:
return 0
result = 0
for key, v in a_m_dict.items():
result = max(result, key + (v - 1) * k)
return result + 1
t = int(input())
for _ in range(t):
n, k = tuple(map(int, input().split()))
arr = list(map(int, input().split()))
print(f(k, arr))
|
FUNC_DEF ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER IF VAR RETURN NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR RETURN BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def solve():
n, k = map(int, input().split())
a = [int(x) for x in input().split()]
m = dict()
res = 0
for i in range(n):
if a[i] % k == 0:
continue
x = k - a[i] % k
m[x] = m.get(x, 0) + 1
for key, v in m.items():
p = key + (v - 1) * k
res = max(res, p)
if res == 0:
print(res)
else:
print(res + 1)
for _ in range(int(input())):
solve()
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER FOR VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for j in range(t):
n, k = map(int, input().split())
aa = [int(a) for a in input().split()]
fin = []
for i in aa:
fin.append(k - i % k)
x = 0
d = {}
for i in fin:
if i == k:
continue
elif i in d:
d[i] += 1
else:
d[i] = 1
for j in list(d.keys()):
x = max(x, k * (d[j] - 1) + j)
if x:
print(x + 1)
else:
print(x)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR VAR IF VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR NUMBER VAR IF VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def solution1():
for tangocharlie in range(int(input())):
xx, yy, nn = map(int, input().split())
p = nn // xx
k = p * xx + yy
while k > nn:
p -= 1
k = p * xx + yy
print(k)
def solution2():
for tangocharlie in range(int(input())):
nnn = int(input())
apple = 5
banana = 10
orange = apple + banana
answer = 0
while nnn > 1:
if nnn % 6 == 0:
answer += 1
nnn = nnn // 6
elif nnn % 3 == 0 and nnn % 2 != 0:
answer += 1
nnn *= 2
else:
answer = -1
break
print(answer)
def solution3():
for tangocharlie in range(int(input())):
number = int(input())
sunlight = list(input())
opnn = wrong = 0
for i in sunlight:
if i == "(":
opnn += 1
else:
opnn -= 1
if opnn < 0:
wrong += 1
opnn = 0
print(wrong)
def solution4():
for tangocharlie in range(int(input())):
n, k = map(int, input().split())
abra_ka_dabra = sorted(list(map(int, input().split())))
abra_ka_dabra1 = []
for i in abra_ka_dabra:
if i % k != 0:
abra_ka_dabra1.append(k - i % k)
if len(abra_ka_dabra1) == 0:
print(0)
continue
abra_ka_dabra1.sort()
ans = abra_ka_dabra1[0]
curr = abra_ka_dabra1[0]
for i in range(1, len(abra_ka_dabra1)):
if abra_ka_dabra1[i] != abra_ka_dabra1[i - 1]:
curr = abra_ka_dabra1[i]
else:
curr += k
ans = max(ans, curr)
print(ans + 1)
solution4()
|
FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR WHILE VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
a = [int(i) for i in input().split()]
temp = 0
used = {}
ans = 0
for i in range(n):
if a[i] % k != 0:
a[i] = k - a[i] % k
if a[i] not in used:
used[a[i]] = 0
used[a[i]], a[i] = used[a[i]] + 1, a[i] + k * used[a[i]]
if a[i] > ans:
ans = a[i]
if len(used) == 0:
print(0)
else:
print(ans + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR NUMBER BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def main():
for t in range(int(input())):
n, k = map(int, input().split())
a = [int(i) for i in input().split()]
rem = {}
for i in a:
if i % k not in rem:
rem[i % k] = 0
rem[i % k] += 1
maxAns = 0
if 0 in rem:
del rem[0]
for i in rem:
maxAns = max(maxAns, (rem[i] - 1) * k + (k - i))
if maxAns == 0:
print(0)
else:
print(maxAns + 1)
main()
|
FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF NUMBER VAR VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
import sys
t = int(sys.stdin.readline())
ans_arr = []
for i in range(t):
[n, k] = [int(x) for x in sys.stdin.readline().split()]
arr = [int(y) for y in sys.stdin.readline().split()]
a = []
for w in range(n):
if arr[w] % k != 0:
a.append(arr[w] % k)
d = {}
mx = -2
flag = 1
ele = -2
for e in range(len(a)):
if a[e] != 0:
flag = 0
if a[e] not in d:
d[a[e]] = 1
else:
d[a[e]] += 1
if d[a[e]] > mx:
mx = d[a[e]]
ele = a[e]
elif d[a[e]] == mx and k - a[e] > k - ele:
ele = a[e]
if flag == 1:
ans_arr.append(str(0))
else:
num = k - ele + (mx - 1) * k + 1
ans_arr.append(str(num))
print("\n".join(ans_arr))
|
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN LIST VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def solve():
n, k = map(int, input().split())
lst = list(map(int, input().split()))
lst2 = [(lst[i] % k) for i in range(n)]
lst2.sort()
lastelem = -1
colvo = 0
mxcolvo = 0
mxnum = 0
for i in lst2:
if i == 0:
continue
if lastelem == i:
colvo += 1
else:
if mxcolvo == colvo:
mxnum = max((mxnum, (k - lastelem) % k))
if mxcolvo < colvo:
mxcolvo = colvo
mxnum = (k - lastelem) % k
colvo = 1
lastelem = i
if mxcolvo == colvo:
mxnum = max(mxnum, (k - lastelem) % k)
if mxcolvo < colvo:
mxcolvo = colvo
mxnum = (k - lastelem) % k
print(max(mxcolvo * k - k + mxnum + 1, 0))
for i in range(int(input())):
solve()
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER IF VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for _ in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
rem = []
for i in range(n):
if a[i] % k != 0:
rem.append(k - a[i] % k)
arr = {}
if not rem:
print(0)
continue
for el in rem:
try:
_ = arr[el]
arr[el] += k
except:
arr[el] = el
m = max(arr.values())
print(0 if m == 0 else m + 1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR DICT IF VAR EXPR FUNC_CALL VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER NUMBER BIN_OP VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def Foo():
n, k = [int(x) for x in input().split()]
a = [int(x) for x in input().split()]
b = [0] * len(a)
for i in range(len(a)):
rem = a[i] % k
b[i] = k - rem if rem != 0 else rem
b.sort()
startI = 0
for i in range(len(b)):
if b[i] != 0:
startI = i
break
else:
print(0)
return
flag = False
blockStartI = -1
blockLen = 0
for i in range(startI, len(b)):
if i != len(b) - 1 and b[i] == b[i + 1]:
if blockStartI == -1:
blockStartI = i
blockLen += 1
flag = True
else:
if blockStartI != -1:
blockLen += 1
for j in range(1, blockLen):
b[blockStartI + j] += k * j
blockStartI = -1
blockLen = 0
b.sort()
print(b[len(b) - 1] + 1)
def main():
t = int(input())
for i in range(t):
Foo()
main()
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR NUMBER BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for test in range(int(input())):
n, k = map(int, input().split())
a = [int(i) for i in input().split()]
res_dict = {}
for i in a:
if i % k != 0:
res = k - i % k
if res in res_dict:
res_dict[res] += 1
else:
res_dict[res] = 1
biggest = 1
res = -1
for key in res_dict:
count = res_dict[key]
if count > biggest or count == biggest and key > res:
biggest = count
res = key
print(k * (biggest - 1) + res + 1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
while t:
n, k = map(int, input().split())
a = list(map(int, input().split()))
b = []
for i in range(0, n):
if a[i] % k != 0:
b.append(a[i] % k)
b.sort()
ans = 0
i = 0
while i < len(b):
cnt = 0
while i < len(b) - 1 and b[i + 1] == b[i]:
cnt += 1
i += 1
ans = max(ans, (cnt + 1) * k - b[i])
i += 1
if ans != 0:
print(ans + 1)
else:
print("0")
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
while t:
n, k = map(int, input().split())
lst = list(map(int, input().split()))
dic = {}
for i in range(n):
x = lst[i] % k
if x == 0:
continue
y = k - x
dic[y] = 0
for i in range(n):
x = lst[i] % k
if x == 0:
continue
y = k - x
dic[y] += 1
m = 0
for i in dic.keys():
a = (dic[i] - 1) * k + i
m = max(a + 1, m)
print(m)
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for p in range(int(input())):
n, k = input().split()
n = int(n)
k = int(k)
arr = input().split()
arr = list(map(int, arr))
ans = []
dic = {}
for d in arr:
if d % k == 0:
continue
if k - d % k not in dic:
dic[k - d % k] = 0
dic[k - d % k] += 1
ma = 0
val = -1
for d in dic:
if dic[d] > ma:
ma = dic[d]
val = d
elif dic[d] == ma:
if d > val:
val = d
print(max((ma - 1) * k + val + 1, 0))
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR DICT FOR VAR VAR IF BIN_OP VAR VAR NUMBER IF BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER NUMBER
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
for i in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
d = {}
for i in range(n):
if k - a[i] % k not in d and k - a[i] % k != k:
d[k - a[i] % k] = 1
elif k - a[i] % k != k:
d[k - a[i] % k] += 1
mx = -1
ind = 0
for i in d:
if d[i] > mx:
mx = d[i]
ind = i
elif d[i] == mx:
ind = max(ind, i)
if len(d) == 0:
ans = 0
else:
ans = (mx - 1) * k + ind + 1
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER IF BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
def zeroRemainder(a, n, k):
hash_map = {}
for i in range(n):
if a[i] % k in hash_map:
hash_map[a[i] % k] += 1
else:
hash_map[a[i] % k] = 1
cnt = 0
if 0 in hash_map:
del hash_map[0]
if not hash_map:
return 0
for i in hash_map:
cnt = max(cnt, hash_map[i] * k - i)
return cnt + 1 if cnt != 0 else 0
for t in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
print(zeroRemainder(a, n, k))
|
FUNC_DEF ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF NUMBER VAR VAR NUMBER IF VAR RETURN NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR RETURN VAR NUMBER BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
|
You are given an array $a$ consisting of $n$ positive integers.
Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$).
The first operation can be applied no more than once to each $i$ from $1$ to $n$.
Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given).
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) β the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$.
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer β the minimum number of moves required to obtain such an array that each its element is divisible by $k$.
-----Example-----
Input
5
4 3
1 2 1 3
10 6
8 7 1 8 3 7 5 10 8 9
5 10
20 100 50 20 100500
10 25
24 24 24 24 24 24 24 24 24 24
8 8
1 2 3 4 5 6 7 8
Output
6
18
0
227
8
-----Note-----
Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array.
Note that you can't add $x$ to the same element more than once.
|
t = int(input())
rem = {}
for _ in range(t):
n, k = map(int, input().split())
rem.clear()
for num in [int(num) for num in input().split()]:
if num % k not in rem:
rem[num % k] = 1
else:
rem[num % k] += 1
mx = 0
for p in rem.items():
if p[0]:
cnt = k * p[1] - p[0]
mx = max(mx, cnt)
print(mx + 1 if mx else mx)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.