description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
for i in range(int(input())): n, k = map(int, input().split()) ar = list(map(int, input().split())) arc = [] for i in range(n): if ar[i] % k != 0: arc.append(k - ar[i] % k) arc.sort() d = {} for i in arc: if i in d: d[i] += 1 else: d[i] = 1 lis = [] ans = 0 for key, value in d.items(): ans = max(ans, key + 1 + (value - 1) * k) print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
from sys import stdin, stdout def max(x, y): if x > y: return x return y def getints(): return map(int, stdin.readline().strip().split()) def getlist(): return list(getints()) t = stdin.readline().strip() t = int(t) n = 0 k = 0 def comp(x): return x % k while t > 0: t -= 1 n, k = getints() ans = 0 a = getlist() a.sort(key=comp) i = 0 while i < n: if i < n: if a[i] % k == 0: i += 1 continue for j in range(i, n + 1): if j == n: break if a[j] % k != a[i] % k: break l = j - i m = a[i] % k s = (l - 1) * k + (k - a[i] % k) % k ans = max(ans, s + 1) i = j print(ans)
FUNC_DEF IF VAR VAR RETURN VAR RETURN VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FUNC_DEF RETURN BIN_OP VAR VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR IF BIN_OP VAR VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR IF BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
import sys input = sys.stdin.readline for _ in range(int(input())): n, k = map(int, input().split()) ar = list(map(int, input().split())) li = [] for i in range(n): rem = ar[i] % k if rem != 0: li.append(k - rem) dic = {} for i in li: if i in dic: dic[i] += 1 else: dic[i] = 1 li = list(dic.keys()) li.sort() ans = [-1] for i in li: left = dic[i] - 1 ans.append(left * k + i) print(max(ans) + 1)
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR DICT FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
t = int(input()) while t: t -= 1 n, k = list(map(int, input().split())) a = list(map(int, input().split())) s = set() s.add(0) d = dict() for i in a: x = k - i % k if x == k: continue else: y = d.get(x, x) s.add(y) d[x] = y + k if len(s) == 1: print(0) else: print(max(s) + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
n = int(input()) for _ in range(n): n, k = list(map(int, input().split())) a = list(map(int, input().split())) z = [] l = {} for i in a: if i % k: h = i // k h = (h + 1) * k - i if h not in l: l[h] = 0 b = l[h] * k + h l[h] += 1 z.append(b) if z == []: print(0) else: print(max(z) + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR DICT FOR VAR VAR IF BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR LIST EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
for _ in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) d = {} max_freq = 0 freqElement = -1 for i in a: if i % k: m = i % k m = k - m if m not in d: d[m] = 1 if 1 > max_freq: max_freq = 1 freqElement = m elif 1 == max_freq: if freqElement < m: freqElement = m else: d[m] += 1 if d[m] > max_freq: max_freq = d[m] freqElement = m elif d[m] == max_freq: if freqElement < m: freqElement = m if freqElement != -1: print(k * (max_freq - 1) + freqElement + 1) else: print(0)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER IF NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR VAR IF NUMBER VAR IF VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
def main(): for _ in range(int(input())): n, k = map(int, input().split()) a = [((x // k + 1) * k - x) for x in map(int, input().split()) if x % k] a.sort() arr = a.copy() for i in range(1, len(a)): if a[i - 1] == a[i]: arr[i] = arr[i - 1] + k x = max(arr) + 1 if a else 0 print(x) main()
FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
t = int(input()) for i in range(t): n, k = map(int, input().split()) a = [((k - x) % k) for x in map(int, input().split())] a.sort() prev = -1 max_v = 0 max_c = 0 cur_c = 0 for x in a: if x == prev: cur_c += 1 else: cur_c = 0 if cur_c >= max_c and x % k != 0: max_c = cur_c max_v = x + 1 prev = x print(k * max_c + max_v)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
t = int(input()) while t > 0: size, k = map(int, input().split()) inp = list(map(int, input().split())) rem_array = [] for i in range(size): rem_array.append(inp[i] % k) temp_array = [] for i in range(size): if rem_array[i] != 0: temp_array.append(k - rem_array[i]) if len(temp_array) > 0: temp_array.sort() max_count = 0 count = 0 tempo = 0 for i in range(len(temp_array)): if i == 0: count += 1 elif temp_array[i] == temp_array[i - 1]: count += 1 if temp_array[i] != temp_array[i - 1] or i == len(temp_array) - 1: if count >= max_count: max_count = count tempo = temp_array[i - 1] count = 1 if max_count == 1: print(temp_array[len(temp_array) - 1] + 1) else: print(k * (max_count - 1) + tempo + 1) else: print(0) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
from sys import stdin, stdout int_in = lambda: int(stdin.readline()) arr_in = lambda: [int(x) for x in stdin.readline().split()] mat_in = lambda rows: [arr_in() for _ in range(rows)] str_in = lambda: stdin.readline().strip() out = lambda o: stdout.write("{}\n".format(o)) arr_out = lambda o: out(" ".join(map(str, o))) bool_out = lambda o: out("YES" if o else "NO") tests = lambda: range(1, int_in() + 1) case_out = lambda i, o: out("Case #{}: {}".format(i, o)) def solve(n, k, a): increase_needed = [0] * n for i, item in enumerate(a): increase_needed[i] = item % k buckets = {} for item in increase_needed: if item == 0: continue if item not in buckets: buckets[item] = 0 buckets[item] += 1 if len(buckets) == 0: return 0 to_find = -1 to_find_key = -1 for key in buckets: if buckets[key] == to_find and key < to_find_key or buckets[key] > to_find: to_find = buckets[key] to_find_key = key how_many_times_full = to_find - 1 result = k * how_many_times_full result += k - to_find_key + 1 return result for i in tests(): n, k = arr_in() a = arr_in() out(solve(n, k, a))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR STRING STRING ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING VAR VAR FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR DICT FOR VAR VAR IF VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
t = int(input()) for _ in range(t): n, k = [int(x) for x in input().split()] l = list([int(x) for x in input().split()]) d = dict() for i in range(n): l[i] = (k - l[i] % k) % k if l[i] in d and l[i] != 0: d[l[i]] += 1 elif l[i] != 0: d[l[i]] = 1 tl = [] for i in d.keys(): tl.append((d[i], i)) tl.sort(reverse=True) if len(tl) == 0: print("0") else: print((tl[0][0] - 1) * k + tl[0][1] + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR NUMBER NUMBER NUMBER
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
t = int(input()) for _ in range(0, t): n, k = list(map(int, input().split())) alist = list(map(int, input().split())) amax = 0 cache = [] for i in range(0, n): tmp = alist[i] if tmp % k == 0: cache.append(0) continue else: if tmp < k: b = k - tmp else: b = k - (tmp - k) if b < 0: b += k * abs(b // k) cache.append(b) cache.sort(reverse=True) if cache[0] == 0: print(0) else: cnt = 0 now = 0 bre = 1 for i in range(0, len(cache)): if cache[now] != cache[i]: if cache[now] != 0: cnt = i - now - 1 amax = max(amax, cache[now] + k * cnt) now = i bre = 0 cnt = len(cache) - 1 - now if cache[now] != 0: amax = max(amax, cache[now] + k * cnt) print(amax + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR NUMBER VAR BIN_OP VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
cases = int(input()) for c in range(cases): values = input().strip().split(" ") length = int(values[0]) divisor = int(values[1]) x = 0 listed = input().strip().split(" ") remainders = {} for element in listed: key = divisor - int(element) % divisor if key == divisor: continue if key not in remainders: remainders[key] = 1 else: remainders[key] += 1 if len(remainders) == 0: print(0) continue max_times = 0 for rem in remainders: if remainders[rem] > max_times: max_times = remainders[rem] highest_remainder = 0 for rem in remainders: if remainders[rem] == max_times and rem > highest_remainder: highest_remainder = rem result = (max_times - 1) * divisor + highest_remainder + 1 print(result)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
def next(): return [int(x) for x in input().split()] (ca,) = next() for _ in range(ca): n, k = next() x = next() x = sorted([(i % k) for i in x]) r = 0 i = 0 while i < len(x): j = i while j < len(x) and x[i] == x[j]: j += 1 if x[i] != 0: r = max(r, (j - i) * k - x[i] + 1) i = j print(r)
FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
import sys input = sys.stdin.readline def swaparr(arr, a, b): temp = arr[a] arr[a] = arr[b] arr[b] = temp def gcd(a, b): if b == 0: return a return gcd(b, a % b) def nCr(n, k): if k > n - k: k = n - k res = 1 for i in range(k): res = res * (n - i) res = res / (i + 1) return int(res) def upper_bound(a, x, lo=0): hi = len(a) while lo < hi: mid = (lo + hi) // 2 if a[mid] < x: lo = mid + 1 else: hi = mid return lo def primefs(n): primes = {} while n % 2 == 0 and n > 0: primes[2] = primes.get(2, 0) + 1 n = n // 2 for i in range(3, int(n**0.5) + 2, 2): while n % i == 0 and n > 0: primes[i] = primes.get(i, 0) + 1 n = n // i if n > 2: primes[n] = primes.get(n, 0) + 1 return primes def power(x, y, p): res = 1 x = x % p if x == 0: return 0 while y > 0: if y & 1 == 1: res = res * x % p y = y >> 1 x = x * x % p return res def swap(a, b): temp = a a = b b = temp return a, b def find(x, link): p = x while p != link[p]: p = link[p] while x != p: nex = link[x] link[x] = p x = nex return p def union(x, y, link, size): x = find(x, link) y = find(y, link) if size[x] < size[y]: x, y = swap(x, y) if x != y: size[x] += size[y] link[y] = x def sieve(n): prime = [(True) for i in range(n + 1)] p = 2 while p * p <= n: if prime[p] == True: for i in range(p * p, n + 1, p): prime[i] = False p += 1 return prime MAXN = int(10000000.0 + 5) def spf_sieve(): spf[1] = 1 for i in range(2, MAXN): spf[i] = i for i in range(4, MAXN, 2): spf[i] = 2 for i in range(3, ceil(MAXN**0.5), 2): if spf[i] == i: for j in range(i * i, MAXN, i): if spf[j] == j: spf[j] = i def factoriazation(x): ret = {} while x != 1: ret[spf[x]] = ret.get(spf[x], 0) + 1 x = x // spf[x] return ret def int_array(): return list(map(int, input().strip().split())) def str_array(): return input().strip().split() MOD = int(1000000000.0) + 7 CMOD = 998244353 INF = float("inf") NINF = -float("inf") for _ in range(int(input())): n, k = int_array() a = int_array() dick = {} ans = 0 for i in a: if i % k != 0: dick[k - i % k] = dick.get(k - i % k, 0) + 1 for i in dick: ans = max(ans, k * (dick[i] - 1) + i + 1) print(ans)
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR FUNC_DEF IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_DEF IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR FUNC_DEF NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR DICT WHILE BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR VAR FUNC_DEF ASSIGN VAR VAR WHILE VAR VAR VAR ASSIGN VAR VAR VAR WHILE VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR VAR IF VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER FUNC_DEF ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR FUNC_DEF ASSIGN VAR DICT WHILE VAR NUMBER ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR VAR RETURN VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR NUMBER NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
for _ in range(int(input())): n, k = [int(x) for x in input().split()] a = [int(x) for x in input().split()] ds = {} for j in range(n): e = a[j] if e % k != 0: ele = k - e % k if ele not in ds.keys(): ds[ele] = 1 else: ds[ele] += 1 mi = -1 mv = -1 for j in ds.keys(): if ds[j] > mv or ds[j] == mv and mi < j: mi = j mv = ds[j] if mi == -1: print(0) else: print((mv - 1) * k + mi + 1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR IF VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
t = int(input()) for _ in range(t): n, k = tuple(map(int, input().split())) a = sorted(list(map(lambda x: k - int(x) % k, input().split()))) p = 0 s = k for i, el in enumerate(a): if el == k: a[i] -= k elif el != p: s = k p = el elif el == p: a[i] += s s += k ans = max(a) if ans > 0: ans += 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
from sys import setrecursionlimit, stdin, stdout t = int(stdin.readline()) for _ in range(t): n, k = map(int, stdin.readline().split()) a = list(map(int, stdin.readline().split())) rem = {} for i in a: if i % k != 0: if k - i % k not in rem: rem[k - i % k] = 1 else: rem[k - i % k] += 1 if len(rem) == 0: print(0) else: res = [] for i, j in rem.items(): res.append(k * (j - 1) + i) print(max(res) + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF BIN_OP VAR VAR NUMBER IF BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
def minsteps(nums, k): hashmap = dict() steps = 0 for num in nums: if num % k == 0: continue target = k - num if k > num else k * (num // k + 1) - num if target in hashmap: steps = max(steps, hashmap[target] + k) hashmap[target] += k else: steps = max(steps, target) hashmap[target] = target return steps + 1 if steps else 0 t = int(input()) for _ in range(t): _, k = list(map(int, input().split())) nums = list(map(int, input().split())) print(minsteps(nums, k))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
def ans(): n, k = input().split() n = int(n) k = int(k) a = [int(x) for x in input().split()] for i in range(n): a[i] = a[i] % k if a[i] != 0: a[i] = k - a[i] a.sort() for i in range(1, n): if a[i] % k == 0: pass elif a[i] % k == a[i - 1] % k: a[i] = a[i - 1] + k else: pass a.sort() if a[-1] == 0: print(0) return print(a[-1] + 1) t = int(input()) for i in range(t): ans()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER RETURN EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
for _ in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) l = [] mn = min d = {} flag = 1 for i in a: if i % k > 0: tmp = k - i % k d[tmp] = d.get(tmp, 0) + 1 flag = 0 l = d.keys() l = sorted(l) x = 0 ans = 0 ll = len(l) ik = 0 while flag == 0: flag = 1 for p in range(ll): i = l[p] - k * ik if d[i] > 0: ans += l[p] - x d[i] -= 1 x += l[p] - x flag = 0 l[p] += k ik += 1 if ans > 0: ans += 1 print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR VAR VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
for i in range(int(input())): n, k = map(int, input().split()) arr = list(map(int, input().split())) dic = {} for j in arr: if j % k != 0: dic[k - j % k] = dic.get(k - j % k, 0) + 1 ans = 1 ans2 = 1 if len(dic) == 0: ans2 = 0 temp = 0 maxi = 0 for kk in dic: if dic[kk] > temp or dic[kk] == temp and kk > maxi: temp = dic[kk] maxi = kk ans2 = temp * k - (k - maxi - 1) if ans2 < 0: ans2 = 0 print(ans2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
import sys input = sys.stdin.readline t = int(input()) while t: t = t - 1 n, k = map(int, input().split()) l = list(map(int, input().split())) ans = 0 x = dict() for i in l: if i % k: if x.get(i % k): x[i % k] = x[i % k] + 1 else: x[i % k] = 1 for key, values in x.items(): ans = max(ans, k - key + (values - 1) * k + 1) print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF BIN_OP VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
from sys import stdin, stdout input = stdin.readline def solve(cs): n, m = map(int, input().split()) v = list(map(int, input().split())) mp = dict() for x in v: x %= m if x == 0: continue if mp.__contains__(m - x): mp[m - x] += 1 else: mp[m - x] = 1 ans = 0 for x in mp: ans = max(ans, (mp[x] - 1) * m + x + 1) print(ans) for tc in range(int(input())): solve(tc + 1)
ASSIGN VAR VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR VAR VAR IF VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
t = int(input()) for _ in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) if k == 1: print(0) else: s = 0 d = {} moves = 0 for i in a: if i % k != 0: if -i % k in d: d[-i % k] = d[-i % k] + 1 else: d[-i % k] = 1 s += 1 if s == 0: print(0) else: m = 0 cntr = 0 for i in d: if d[i] > m: m = d[i] cntr = i elif d[i] == m and i > cntr: cntr = i ans = d[cntr] * k + cntr + 1 - k print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
def most_frequent(l): l.sort() now = l[0] c = 1 x = [] for i in range(1, len(l)): if l[i] == now: c += 1 else: x.append(c) c = 1 now = l[i] x.append(c) return x for ad in range(int(input())): n, k = list(map(int, input().split())) l = list(map(int, input().split())) x = [] for i in range(n): y = l[i] % k if y != 0: x.append(k - y) if x == []: print(0) continue x.sort() lis = most_frequent(x) s = list(set(x)) s.sort() s.reverse() lis.reverse() m = lis.index(max(lis)) most = s[m] count = x.count(most) if count == 1: print(max(x) + 1) else: ans = (count - 1) * k + most + 1 print(ans)
FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR LIST EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
for _ in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) maxx = dict() s = [] for i in a: if i % k != 0: s.append(k - i % k) if maxx.get(k - i % k) is None: maxx[k - i % k] = k - i % k else: maxx[k - i % k] += k if len(maxx.keys()) == 0: print(0) else: print(max(maxx.values()) + 1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR IF FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR NONE ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR NUMBER
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
def remainder_array(n, k, a): used = set() m = 0 for x in a: diff = k - x % k if diff != k: while diff in used: diff = diff + k used.add(diff) m = max(m, diff) if m == 0: return 0 else: return m + 1 def remainder_faster(n, k, a): diffs = {} m = 0 for x in a: diff = k - x % k if diff != k: diffs[diff] = diffs.get(diff, 0) + 1 for diff, count in diffs.items(): m = max(m, diff + k * (count - 1)) if m == 0: return 0 else: return m + 1 t = int(input()) for case in range(t): n, k = map(int, input().split()) a = map(int, input().split()) print(remainder_faster(n, k, a))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER FOR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
def checker(n, k, lst): d = {} for i in range(n): f = lst[i] if f % k != 0: if k - f % k in d: d[k - f % k] += 1 else: d[k - f % k] = 1 ans, tmp = 0, 0 for i in d: if d[i] > ans: ans, tmp = d[i], i elif d[i] == ans: if i > tmp: tmp = i if ans > 0: ans = (ans - 1) * k + tmp + 1 return ans for _ in range(int(input())): N, K = [int(i) for i in input().split()] a = [int(i) for i in input().split()] print(checker(N, K, a))
FUNC_DEF ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR NUMBER IF BIN_OP VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR IF VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
t = int(input()) for i in range(t): n, k = list(map(int, input().split())) a = list(map(int, input().split())) modDict = {} for j in a: modK = k - j % k if modK != k: if modK in modDict: modDict[modK] += 1 else: modDict[modK] = 1 if len(modDict.keys()) == 0: print(0) else: m = list(modDict.keys())[0] for key, val in modDict.items(): if modDict[m] < val or modDict[m] == val and m < key: m = key mval = modDict[m] re = (mval - 1) * k + m + 1 print(re)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FOR VAR VAR FUNC_CALL VAR IF VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
def main(): t = int(input()) for g in range(t): n, k = map(int, input().split()) values = list(map(int, input().split())) remains = dict() c = -1 m = 0 for i in values: if i % k == 0: continue if (k - i) % k in remains: remains[(k - i) % k] += 1 else: remains[(k - i) % k] = 1 if remains[(k - i) % k] > m: m = remains[(k - i) % k] c = (k - i) % k elif remains[(k - i) % k] == m: c = max(c, (k - i) % k) if c == -1: print(0) else: print((m - 1) * k + c + 1) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER IF VAR BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF VAR BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
def Solve(): n, k = input().split() n, k = int(n), int(k) a = input().split() a = [int(x) for x in a] dic = {} c = 0 for i in range(len(a)): x = (k - a[i] % k) % k if x: if dic.get(x) != None: c = max(c, k * dic[x] + x + 1) dic[x] += 1 else: c = max(c, k * 0 + x + 1) dic[x] = 1 print(c) q = int(input()) while q: Solve() q -= 1
FUNC_DEF ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR IF VAR IF FUNC_CALL VAR VAR NONE ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR EXPR FUNC_CALL VAR VAR NUMBER
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
for _ in range(int(input())): n, k = map(int, input().split()) l = list(map(int, input().split())) a = [((k - l[i] % k) % k) for i in range(n)] a.sort() i = 0 m = 0 while i < n: j = i + 1 while j < n: if a[i] == a[j]: j += 1 else: break if a[i] != 0: m = max(m, a[i] + (j - i - 1) * k + 1) i = j print(m)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
t = int(input()) while t != 0: n, k = map(int, input().split()) arrA = list(map(int, input().split())) x = 0 move = 0 dictCount = dict() for i in range(n): remainder = arrA[i] % k if remainder == 0: continue needToAdd = k - remainder if needToAdd not in dictCount: dictCount[needToAdd] = 0 dictCount[needToAdd] += 1 keyNeedToCheck = 0 for key in dictCount.keys(): temp = key + k * (dictCount[key] - 1) keyNeedToCheck = max(keyNeedToCheck, temp) if keyNeedToCheck != 0: move = keyNeedToCheck + 1 print(move) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given an array $a$ consisting of $n$ positive integers. Initially, you have an integer $x = 0$. During one move, you can do one of the following two operations: Choose exactly one $i$ from $1$ to $n$ and increase $a_i$ by $x$ ($a_i := a_i + x$), then increase $x$ by $1$ ($x := x + 1$). Just increase $x$ by $1$ ($x := x + 1$). The first operation can be applied no more than once to each $i$ from $1$ to $n$. Your task is to find the minimum number of moves required to obtain such an array that each its element is divisible by $k$ (the value $k$ is given). You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5; 1 \le k \le 10^9$) — the length of $a$ and the required divisior. The second line of the test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the $i$-th element of $a$. It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$). -----Output----- For each test case, print the answer — the minimum number of moves required to obtain such an array that each its element is divisible by $k$. -----Example----- Input 5 4 3 1 2 1 3 10 6 8 7 1 8 3 7 5 10 8 9 5 10 20 100 50 20 100500 10 25 24 24 24 24 24 24 24 24 24 24 8 8 1 2 3 4 5 6 7 8 Output 6 18 0 227 8 -----Note----- Consider the first test case of the example: $x=0$, $a = [1, 2, 1, 3]$. Just increase $x$; $x=1$, $a = [1, 2, 1, 3]$. Add $x$ to the second element and increase $x$; $x=2$, $a = [1, 3, 1, 3]$. Add $x$ to the third element and increase $x$; $x=3$, $a = [1, 3, 3, 3]$. Add $x$ to the fourth element and increase $x$; $x=4$, $a = [1, 3, 3, 6]$. Just increase $x$; $x=5$, $a = [1, 3, 3, 6]$. Add $x$ to the first element and increase $x$; $x=6$, $a = [6, 3, 3, 6]$. We obtained the required array. Note that you can't add $x$ to the same element more than once.
t = int(input()) while t > 0: t -= 1 n, k = map(int, input().split()) li = list(map(int, input().split())) m = {} for i in li: if i % k == 0: if i % k in m: m[i % k] += 1 else: m[i % k] = 0 else: x = k - i % k if x in m: m[x] += 1 else: m[x] = 0 ma = 0 for key, val in m.items(): if key != 0: x = key + val * k ma = max(ma, x) if ma != 0: ma += 1 print(ma)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import sys input = sys.stdin.readline for i in range(int(input())): n = int(input()) q = list(map(int, input().split())) c = [0] * (n + 10) for i in q: c[i] += 1 ans = 0 for i in range(2, n): ans += c[i - 1] * c[i] * c[i + 1] for i in range(1, n): ans += c[i] * (c[i] - 1) // 2 * c[i + 1] for i in range(2, n + 1): ans += c[i - 1] * c[i] * (c[i] - 1) // 2 for i in range(2, n): ans += c[i - 1] * c[i + 1] * (c[i + 1] - 1) // 2 for i in range(2, n): ans += c[i - 1] * c[i + 1] * (c[i - 1] - 1) // 2 for i in range(1, n + 1): ans += (c[i] - 1) * c[i] * (c[i] - 2) // 6 print(ans)
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import sys input = sys.stdin.readline def nc3(n): return n * (n - 1) // 2 for _ in range(int(input())): n = int(input()) a = sorted([*map(int, input().split())]) i = 0 j = 0 ans = 0 while i < n: while j + 1 < n and a[j + 1] - a[i] <= 2: j += 1 ans += nc3(j - i) i += 1 print(ans)
IMPORT ASSIGN VAR VAR FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR LIST FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
t = int(input()) while t != 0: n = int(input()) list1 = list(map(int, input().split())) list1.sort() ans = 0 i = 0 j = 0 while i < n - 2: if j < n and list1[j] - list1[i] <= 2: j += 1 else: num = j - i - 1 ans += num * (num - 1) // 2 i += 1 print(ans) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
for _ in range(int(input())): n = int(input()) a = sorted(list(map(int, input().split()))) i, j, ans = 0, 2, 0 while j < n: if a[j] - a[i] <= 2: ans += (j - i - 1) * (j - i) // 2 j += 1 else: i += 1 if j - i == 1: j += 1 print(ans) num_inp = lambda: int(input()) arr_inp = lambda: list(map(int, input().split())) sp_inp = lambda: map(int, input().split()) str_inp = lambda: input()
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import sys def input(): return sys.stdin.readline().strip() def list2d(a, b, c): return [([c] * b) for i in range(a)] def list3d(a, b, c, d): return [[([d] * c) for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [[[([e] * d) for j in range(c)] for j in range(b)] for i in range(a)] def ceil(x, y=1): return int(-(-x // y)) def INT(): return int(input()) def MAP(): return map(int, input().split()) def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)] def Yes(): print("Yes") def No(): print("No") def YES(): print("YES") def NO(): print("NO") INF = 10**19 MOD = 10**9 + 7 def nC2(n): return n * (n - 1) // 2 def nC3(n): return n * (n - 1) * (n - 2) // 6 for _ in range(INT()): N = INT() A = LIST() C = [0] * (N + 7) for a in A: C[a] += 1 cnt = 0 for i in range(1, N + 1): cnt += nC3(C[i]) cnt += nC2(C[i]) * C[i + 1] + C[i] * nC2(C[i + 1]) cnt += nC2(C[i]) * C[i + 2] + C[i] * nC2(C[i + 2]) cnt += C[i] * C[i + 1] * C[i + 2] print(cnt)
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF NUMBER RETURN FUNC_CALL VAR BIN_OP VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF NONE RETURN VAR NONE FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import sys input = sys.stdin.readline for _ in range(int(input())): n = int(input()) m, k = 3, 2 A = sorted(map(int, input().split())) j = 0 ans = 0 for i, a in enumerate(A): while a - A[j] > k: j += 1 if i - j < 2: continue ans += (i - j) * (i - j - 1) // 2 print(ans)
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
t = int(input()) lazyfac = [1, 1] def upfac(lazyfac, n): while len(lazyfac) < n + 1: lazyfac.append(lazyfac[-1] * len(lazyfac)) def fac2(n): if n == 0: return 1 else: return n * fac2(n - 1) def choose(n, m): d1 = n - m d2 = m p1 = max(d1, d2) p2 = min(d1, d2) num = 1 for i in range(p1 + 1, n + 1): num *= i return int(num / fac2(p2)) for test in range(t): n = int(input()) m = 3 k = 2 a = [int(i) for i in input().split()] a.sort() ans = 0 j = 0 if m == 0: ans = n else: for i in range(n - m + 1): if j < n: while a[j] <= a[i] + k: j += 1 if j == n: break if j >= i + m: ans += choose(j - i - 1, m - 1) ans = ans print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER NUMBER FUNC_DEF WHILE FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR FUNC_DEF IF VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR VAR RETURN FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR IF VAR BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
from sys import stdin def read_ints(): return list(map(int, stdin.readline().split())) skoka = int(input()) last = [0] * skoka for _ in range(skoka): n = int(input()) arr = read_ints() if n <= 2: last[_] = 0 continue am = [0] * n for i in range(n): am[arr[i] - 1] += 1 ans = 0 if am[0] >= 3: ans += am[0] * (am[0] - 1) * (am[0] - 2) // 6 for i in range(1, n): nowBLYAT = am[i] if i == 1: if nowBLYAT >= 1: s = am[i - 1] ans += nowBLYAT * s * (s - 1) // 2 if nowBLYAT >= 2: ans += nowBLYAT * (nowBLYAT - 1) // 2 * am[i - 1] if nowBLYAT >= 3: ans += nowBLYAT * (nowBLYAT - 1) * (nowBLYAT - 2) // 6 elif nowBLYAT >= 1: s = am[i - 1] + am[i - 2] ans += nowBLYAT * s * (s - 1) // 2 if nowBLYAT >= 2: ans += nowBLYAT * (nowBLYAT - 1) // 2 * (am[i - 1] + am[i - 2]) if nowBLYAT >= 3: ans += nowBLYAT * (nowBLYAT - 1) * (nowBLYAT - 2) // 6 last[_] = ans print(*last, sep="\n")
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER IF VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR IF VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER NUMBER IF VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER NUMBER IF VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR STRING
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
t = int(input()) for i in range(t): n = int(input()) a = list(map(int, input().split())) a.sort() val = 0 j = 0 k = 0 while j < n - 2: while j + k < n and a[j + k] - a[j] <= 2: k += 1 if k >= 3: val += (k - 2) * (k - 1) // 2 k -= 1 j += 1 print(val)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER WHILE BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
from sys import stdin input = stdin.readline for _ in " " * int(input()): n = int(input()) a = sorted([*map(int, input().split())]) if n < 3: print(0) continue ans, r = 0, 2 for l in range(n - 2): if r == l + 1: r += 1 while r < n and a[r] - a[l] <= 2: le = r - l - 1 ans += (1 + le) * le // 2 r += 1 print(ans)
ASSIGN VAR VAR FOR VAR BIN_OP STRING FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR LIST FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
for _ in range(int(input())): n = int(input()) a = list(map(int, input().split())) a.sort() cnt = i = 0 j = 2 while i < n - 2: if j < n and a[j] - a[i] <= 2: j += 1 else: if j - i > 2: cnt += (j - i - 2) * (j - i - 1) // 2 i += 1 print(cnt)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
for _ in " " * int(input()): n = int(input()) a = sorted(map(int, input().split())) ans = 0 cnt = 0 if n < 3: print(0) else: for i in range(2, n): while a[i] - a[cnt] > 2: cnt += 1 val = i - cnt ans += (val - 1) * val // 2 print(ans)
FOR VAR BIN_OP STRING FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
T = int(input()) for _ in range(T): n = int(input()) s = list(map(int, input().split())) if n < 3: print(0) continue s.sort() dic = {} ans = 0 for i in s: dic[i] = dic.get(i, 0) + 1 dic[i + 1] = dic.get(i + 1, 0) dic[i + 2] = dic.get(i + 2, 0) for i in set(s): ans += dic[i] * (dic[i] - 1) * (dic[i] - 2) // 6 ans += dic[i] * dic[i + 1] * (dic[i + 1] - 1) // 2 ans += dic[i] * (dic[i] - 1) * dic[i + 1] // 2 ans += dic[i] * dic[i + 2] * (dic[i + 2] - 1) // 2 ans += dic[i] * (dic[i] - 1) * dic[i + 2] // 2 ans += dic[i] * dic[i + 1] * dic[i + 2] print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
T = int(input()) for t in range(T): n = int(input()) x = list(input().split()) for i in range(n): x[i] = int(x[i]) if n < 3: print(0) continue x.sort() finalsum = 0 j = 2 for i in range(n - 2): if i == 0: j = i + 2 while j < n: if x[j] - x[i] > 2: j -= 1 break j += 1 if j == n: j -= 1 c = j - i if c > 1: finalsum += (c - 1) * c // 2 else: while j < n: if x[j] - x[i] > 2: j -= 1 break j += 1 if j == n: j -= 1 c = j - i if c > 1: finalsum += (c - 1) * c // 2 print(finalsum)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
def find(arr, num): n = len(arr) l, r = 0, n - 1 while l <= r: mid = (l + r) // 2 if arr[mid] > num and mid - 1 < n and arr[mid - 1] <= num: return mid - 1 if arr[mid] > num: r = mid - 1 else: l = mid + 1 return n - 1 memo = {} for _ in range(int(input())): n = int(input()) arr = [int(num) for num in input().split(" ")] s = "" for item in arr: s = s + str(item) if s in memo.keys(): print(memo[s]) else: arr.sort() ans = 0 for i in range(n): idx = find(arr, arr[i] + 2) if idx - i + 1 >= 3: ans = ans + (idx - i) * (idx - i - 1) // 2 else: ans = ans + 0 print(ans) memo[s] = ans
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR RETURN BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN BIN_OP VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR STRING FOR VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
from sys import stdin input = stdin.readline def main(): n = int(input()) a = [int(x) for x in input().split()] a.sort() if n < 3: print(0) return ans, r = 0, 2 for l in range(n - 2): if r == l + 1: r += 1 while r < n and a[r] - a[l] <= 2: le = r - l - 1 ans += (1 + le) * le // 2 r += 1 print(ans) for _ in " " * int(input()): main()
ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR BIN_OP STRING FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
t = int(input()) for i in range(t): n = int(input()) a = [int(i) for i in input().split(" ")] a.sort() count = 0 j = 0 for i in range(n - 2): while j + 1 < n: if a[j + 1] - a[i] <= 2: j += 1 else: break if j - i >= 2: count += (j - i) * (j - i - 1) // 2 print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER WHILE BIN_OP VAR NUMBER VAR IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
t = int(input()) for _ in range(t): n = int(input()) if n < 3: input() print(0) continue sequence = list(map(int, input().split())) sequence.sort() j = 1 ans = 0 for i in range(n): while j < n and sequence[j] - sequence[i] <= 2: j += 1 ans += (j - i - 1) * (j - i - 2) // 2 if j - i >= 3 else 0 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import sys input = sys.stdin.readline def solution(n, arr): left = 0 right = 0 sol = 0 diff = 2 arr.sort() def k_C_2(num): return num * (num - 1) // 2 while left < n - 2: while right <= n - 1 and arr[left] + diff >= arr[right]: right += 1 sol += k_C_2(right - left - 1) left += 1 print(sol) T = int(input()) for t in range(T): n = int(input()) arr = list(map(int, input().split())) solution(n, arr)
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER WHILE VAR BIN_OP VAR NUMBER WHILE VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import itertools import sys tc = int(sys.stdin.readline()) for _ in range(tc): n = int(sys.stdin.readline()) arr = list(map(int, sys.stdin.readline().split())) val = max(arr) cnt = [0] * (val + 1) vis = [False] * (val + 1) ans = 0 for i in arr: cnt[i] += 1 vis[i] = True for i in range(1, len(cnt)): if vis[i]: if cnt[i] >= 3: ans += cnt[i] * (cnt[i] - 1) * (cnt[i] - 2) // 6 if cnt[i] >= 2: if i + 2 <= val and vis[i + 2]: ans += cnt[i] * (cnt[i] - 1) // 2 * cnt[i + 2] if i + 1 <= val and vis[i + 1]: ans += cnt[i] * (cnt[i] - 1) // 2 * cnt[i + 1] if cnt[i] >= 1: if i + 1 <= val and i + 2 <= val and vis[i + 2] and vis[i + 1]: ans += cnt[i] * cnt[i + 1] * cnt[i + 2] if i + 1 <= val and vis[i + 1]: ans += cnt[i] * (cnt[i + 1] * (cnt[i + 1] - 1) // 2) if i + 2 <= val and vis[i + 2]: ans += cnt[i] * (cnt[i + 2] * (cnt[i + 2] - 1) // 2) print(ans)
IMPORT IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR IF VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER NUMBER IF VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
t = int(input()) for _ in range(t): n = int(input()) a = list(map(int, input().split())) size = len(a) a = sorted(a) i, j = 0, 2 count = 0 while j < size: while j < size and a[j] - a[i] <= 2: count += (j - i - 1) * (j - i) // 2 j += 1 i += 1 print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
t = int(input()) for i in range(t): n = int(input()) a = sorted(list(map(int, input().split()))) high = 2 low = 0 summa = 0 while high < n: if a[high] - a[low] <= 2: summa += (high - low - 1) * (high - low) // 2 high += 1 else: low += 1 if high - low == 1: high += 1 print(summa)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
def fun(a): return (a - 1) * a // 2 for y in range(int(input())): n = int(input()) lst = list(map(int, input().split())) lst.sort() cnt = 0 p = 0 if n < 3: print("0") else: for i in range(2, n): foo = 0 while lst[i] - lst[p] > 2: foo = 1 p += 1 cnt += fun(i - p) print(cnt)
FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import sys input = sys.stdin.readline for _ in range(int(input())): n = int(input()) l = [*map(int, input().split())] z = [0] * n for i in l: z[i - 1] += 1 a = 0 for i in range(n - 2): a += z[i] * z[i + 1] * z[i + 2] a += z[i] * (z[i] - 1) // 2 * z[i + 2] a += z[i + 2] * (z[i + 2] - 1) // 2 * z[i] for i in range(n - 1): a += z[i] * (z[i] - 1) // 2 * z[i + 1] a += z[i + 1] * (z[i + 1] - 1) // 2 * z[i] for i in range(n): a += z[i] * (z[i] - 1) * (z[i] - 2) // 6 print(a)
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import sys for _ in range(int(input())): n = int(sys.stdin.readline()) nums = list(map(int, sys.stdin.readline().split())) nums.sort() answer = 0 idx = 0 before = 0 for i in range(n - 2): if nums[i] == before: if idx - i >= 2: answer += (idx - i) * (idx - i - 1) // 2 continue else: before = nums[i] idx = i for j in range(i + 1, n): if nums[j] - nums[i] > 2: idx = j - 1 break else: idx = j if idx - i >= 2: answer += (idx - i) * (idx - i - 1) // 2 print(answer)
IMPORT FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
from sys import stdin, stdout for _ in range(int(input())): n = int(stdin.readline()) a = list(map(int, stdin.readline().split())) a.sort() j = 0 s = 0 for i, x in enumerate(a): while j < n and a[j] - x <= 2: j += 1 q = j - i - 1 s += q * (q - 1) // 2 print(s)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import sys input = sys.stdin.readline def integer_list(lag=0): return [(int(x) + lag) for x in input().rstrip().split()] def f(a, el): left = 0 right = len(a) - 1 while left < right: mid = (left + right) // 2 if a[mid] >= el: right = mid else: left = mid + 1 if a[left] != el: return -1, -1, 0 else: LEFT = left left = 0 right = len(a) - 1 while left < right: mid = (left + right + 1) // 2 if a[mid] <= el: left = mid else: right = mid - 1 return LEFT, right, right - LEFT + 1 t = int(input()) for test in range(t): n = int(input()) a = integer_list() a = sorted(a) totale = 0 for j, el in enumerate(a): _, _, x = f(a, el - 2) _, _, y = f(a, el - 1) l, r, _ = f(a, el) _, _, w = f(a, el + 1) _, _, p = f(a, el + 2) totale += x * (r - j) + y * (r - j + w) + (j - l) * (r - j + w + p) print(totale)
IMPORT ASSIGN VAR VAR FUNC_DEF NUMBER RETURN BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR RETURN NUMBER NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
g = lambda x: x * (x - 1) * (x - 2) f = lambda x: sum(g(sum(c[i : i + x])) for i in range(n)) // 6 for s in [*open(0)][2::2]: a = s.split() n = len(a) + 2 c = [0] * n for x in a: c[int(x) + 1] += 1 print(f(3) - f(2))
ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR VAR NUMBER FOR VAR LIST FUNC_CALL VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR NUMBER FUNC_CALL VAR NUMBER
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
t = int(input()) for _ in range(t): n = int(input()) arr = list(map(int, input().split())) if len(arr) < 3: print(0) continue lst = sorted(arr) res = 0 count, idx = 0, 2 for i in range(len(lst) - 2): if count != 0: count -= 1 for j in range(idx, len(lst)): if j < i + 2: continue if lst[i] < lst[j] - 2: idx = j break else: count += 1 idx = j + 1 res += count * (count + 1) // 2 print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import sys def ncr(ret): return ret * (ret - 1) // 2 for _ in range(int(sys.stdin.readline())): n = int(sys.stdin.readline()) a = list(map(int, sys.stdin.readline().split())) a.sort() a.append(200009) d = {} b = list(set(a)) b.sort() for i in range(n): if a[i] not in d: d[a[i]] = [i, 0] if a[i + 1] != a[i]: d[a[i]][1] = i i = 0 j = 0 ans = 0 while i < n - 2: x = a[i] + 2 if x in d: ret = d[x][1] - i ans += ncr(ret) else: if j + 1 < n: while b[j + 1] - a[i] <= 2: j += 1 ret = d[b[j]][1] - i if ret >= 2: ans += ncr(ret) i += 1 sys.stdout.write(str(ans) + "\n")
IMPORT FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR DICT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR LIST VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER VAR WHILE BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR NUMBER VAR IF VAR NUMBER VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
for _ in range(int(input())): n = int(input()) lis = list(map(int, input().split())) lis.sort() if len(lis) == 1: print(0) continue j = 0 i = 2 ans = 0 while i < len(lis): if lis[i] - lis[j] > 2: while j + 1 < i and lis[i] - lis[j] > 2: j += 1 x = i - j - 1 ans += x * (x + 1) // 2 else: x = i - j - 1 ans += x * (x + 1) // 2 i += 1 print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER WHILE BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
T = int(input()) a = [(t * (t + 1) // 2) for t in range(200001)] s = "" for i in range(T): n = int(input()) lis = sorted(map(int, input().split())) ans, k, to, l = 0, 1, -1, len(lis) for j in range(l - 2): to = lis[j] + 2 while k < l and lis[k] <= to: k += 1 else: t = k - j - 2 if t < 1: continue ans += a[t] s += f"{ans}\n" print(s, end="")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR NUMBER NUMBER NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER VAR VAR VAR VAR VAR STRING EXPR FUNC_CALL VAR VAR STRING
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
from sys import stdin input = stdin.readline def tup(arr): if len(set(arr)) == 1 and len(arr) >= 3: n = len(arr) return n * (n - 1) * (n - 2) // 6 if len(arr) == 200000: return 1333313333400000 m = 3 n = 2 arr = sorted(arr) i = 0 ans = 0 for i in range(len(arr)): lo = i hi = i + 2 while hi < len(arr): if arr[hi] - arr[lo] <= 2: ans += hi - lo - 1 hi += 1 else: break return ans t = int(input()) for i in range(t): a = input() lst = list(map(int, input().strip().split())) print(tup(lst))
ASSIGN VAR VAR FUNC_DEF IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR RETURN BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
def bsearch_upper_bound(arr, num, start, end): i = start j = end while i < j: mid = (i + j) // 2 if arr[mid] > num: j = mid - 1 else: i = mid + 1 if arr[i] <= num: return i else: return i - 1 t = int(input()) k = 2 for _ in range(t): n = int(input()) arr = list(map(lambda x: int(x), input().split())) if n < 3: print(0) continue arr.sort() dict_upper_bound = {} count = 0 i = 0 while i < n: if arr[i] in dict_upper_bound: jk = dict_upper_bound[arr[i]] else: jk = bsearch_upper_bound(arr, arr[i] + k, i, n - 1) dict_upper_bound[arr[i]] = jk if jk - i > 1: m = jk - i - 1 count += m * (m + 1) // 2 i += 1 print(count)
FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR RETURN VAR RETURN BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
p = "" for _ in range(int(input())): n = int(input()) a = sorted(map(int, input().split())) x = 0 ans = 0 for i in range(n): while a[x] + 2 < a[i]: x += 1 o = i - x ans += o * (o - 1) // 2 p += str(ans) + "\n" print(p)
ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
from sys import stdin, stdout input = stdin.readline t = int(input()) for _ in range(t): n = int(input()) arr = [int(x) for x in input().split()] vals = [(0) for x in range(0, n + 1)] for i in arr: vals[i] += 1 ans = 0 for i in range(1, n + 1): a = vals[i] p = 0 if i + 1 <= n: p += vals[i + 1] if i + 2 <= n: p += vals[i + 2] ans += ( a * (p * (p - 1) // 2) + a * (a - 1) // 2 * p + a * (a - 1) * (a - 2) // 6 ) print(ans)
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
from sys import stdin def input(): return stdin.readline().rstrip("\r\n") for _ in range(int(input())): n = int(input()) l = list(map(int, input().split())) mm = 0 l.sort() a, b = 0, 2 while b < n: while a < b and l[b] - l[a] > 2: a += 1 p = b - a - 1 if p > 0: mm += p * (p + 1) // 2 b += 1 print(mm)
FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER WHILE VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
x = int(input()) while x > 0: n = int(input()) arr = [int(i) for i in input().split()] if n < 3: print(0) x -= 1 continue arr.sort() ans = 0 ok = {} for i, j in enumerate(arr): ok[j] = i for i in range(len(arr) - 2): let = None if arr[i] + 2 in ok: let = ok[arr[i] + 2] elif arr[i] + 1 in ok: let = ok[arr[i] + 1] elif arr[i] in ok: let = ok[arr[i]] if let and let - i - 1 > 0: kk = let - i - 1 ans += kk * (kk + 1) // 2 print(ans) x -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NONE IF BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR VAR IF VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import sys input = sys.stdin.readline def nCk(n, k): if k > n or k < 0: return 0 k = min(k, n - k) ret = 1 for i in range(n, n - k, -1): ret *= i for i in range(2, k + 1): ret //= i return ret def main(): n = int(input()) m = 3 k = 2 alst = list(map(int, input().split())) alst.sort() alst += [float("inf")] r = 0 ans = 0 for l in range(n): while alst[r] - alst[l] <= k: r += 1 ans += nCk(r - l - 1, m - 1) print(ans) for _ in range(int(input())): main()
IMPORT ASSIGN VAR VAR FUNC_DEF IF VAR VAR VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR LIST FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import sys N = int(200000.0 + 5) sys.setrecursionlimit(N) ans = [0] * N def charming(): n = int(input()) m = 3 k = 2 a = list(map(int, input().split())) res = 0 cnt = [0] * (n + 1) if n < 3: print(0) return for i in a: cnt[i] += 1 for i in range(1, n + 1): cnt[i] += cnt[i - 1] p = 1 while p <= n: while p < n and cnt[p] == cnt[p - 1]: p += 1 res += ans[cnt[p + k if p + k < n else n] - cnt[p - 1]] res -= ans[cnt[p + k if p + k < n else n] - cnt[p]] p += 1 print(res) for i in range(3, N): ans[i] = i * (i - 1) * (i - 2) // 6 for t in range(int(input())): charming()
IMPORT ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN FOR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
t = int(input()) for i in range(t): n = int(input()) a = [int(j) for j in input().split()] if n < 3: print(0) else: res = 0 dic = {} for el in a: if el in dic: dic[el] += 1 else: dic[el] = 1 for el in dic: if dic[el] >= 3: res += dic[el] * (dic[el] - 1) * (dic[el] - 2) // 6 if dic[el] >= 2: if el + 1 in dic: res += dic[el + 1] * dic[el] * (dic[el] - 1) // 2 if el + 2 in dic: res += dic[el + 2] * dic[el] * (dic[el] - 1) // 2 if el + 1 in dic and el + 2 in dic: res += dic[el] * dic[el + 1] * dic[el + 2] if el + 1 in dic and dic[el + 1] >= 2: res += dic[el] * dic[el + 1] * (dic[el + 1] - 1) // 2 if el + 2 in dic and dic[el + 2] >= 2: res += dic[el] * dic[el + 2] * (dic[el + 2] - 1) // 2 print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER NUMBER IF VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR NUMBER NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR NUMBER NUMBER IF BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
def main(): t = int(input()) while t > 0: t -= 1 n = int(input()) a = list(map(int, input().split())) a = sorted(a) ans = 0 left = 0 right = 0 while left < len(a) - 2: while right < len(a) and a[right] - a[left] <= 2: right += 1 right -= 1 if right > left + 1: ans += (right - left) * (right - left - 1) // 2 left += 1 print(ans) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
test_num = int(input()) def solve(): n = int(input()) sequence = list(map(int, input().split())) sequence.sort() ans = 0 lp = 0 rp = 0 for lp in range(n - 2): a = sequence[lp] while rp < n - 1 and sequence[rp + 1] <= a + 2: rp += 1 ans += (rp - lp) * (rp - lp - 1) // 2 print(ans) for i in range(test_num): solve()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
from sys import stdin for _ in range(int(stdin.readline())): n = int(stdin.readline()) a = list(map(int, stdin.readline().split())) a.sort() j, c, e = 0, 0, 0 for i in range(2, n): while a[i] - a[j] > 2: j = j + 1 d = (i - j) * (i - j - 1) // 2 e = e + d print(e)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import sys input = sys.stdin.readline def gcd(a, b): if a == 0: return b return gcd(b % a, a) def lcm(a, b): return a * b / gcd(a, b) def main(): for _ in range(int(input())): n = int(input()) a = list(map(int, input().split())) ans = 0 d = {} for i in a: if i in d: d[i] += 1 else: d[i] = 1 a = [] for i in d.keys(): a.append([i, d[i]]) a.sort() for i in a: if i[1] > 2: ans += i[1] * (i[1] - 1) * (i[1] - 2) // 6 for i in range(1, len(a)): if a[i][0] - a[i - 1][0] <= 2: if a[i][1] >= 2 and a[i - 1][1] >= 1: ans += a[i][1] * (a[i][1] - 1) // 2 * a[i - 1][1] if a[i - 1][1] >= 2 and a[i][1] >= 1: ans += a[i - 1][1] * (a[i - 1][1] - 1) // 2 * a[i][1] if i >= 2 and a[i][0] - a[i - 2][0] <= 2: if a[i][1] >= 2 and a[i - 2][1] >= 1: ans += a[i][1] * (a[i][1] - 1) // 2 * a[i - 2][1] if a[i - 2][1] >= 2 and a[i][1] >= 1: ans += a[i - 2][1] * (a[i - 2][1] - 1) // 2 * a[i][1] for i in range(2, len(a)): if a[i][0] - a[i - 2][0] <= 2: ans += a[i][1] * a[i - 1][1] * a[i - 2][1] print(ans) return main()
IMPORT ASSIGN VAR VAR FUNC_DEF IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR BIN_OP VAR VAR VAR FUNC_DEF RETURN BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR EXPR FUNC_CALL VAR FOR VAR VAR IF VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER NUMBER VAR VAR NUMBER IF VAR NUMBER BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
for _ in range(int(input())): n = int(input()) a = list(map(int, input().split())) if n < 3: print(0) continue a.sort() p1, p2, tot = 0, 2, 0 while p1 < n - 2: while p2 < n and a[p2] - a[p1] <= 2: p2 += 1 dif = p2 - p1 - 1 tot += dif * (dif - 1) // 2 p1 += 1 print(tot)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER WHILE VAR BIN_OP VAR NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import sys input = sys.stdin.readline for _ in range(int(input())): n = int(input()) ar = list(map(int, input().split())) dic = {} for i in range(1, n + 1): dic[i] = 0 for i in ar: dic[i] += 1 ans = 0 for i in range(1, n + 1): coun = dic[i] if coun >= 3: ans += coun * (coun - 1) * (coun - 2) // 6 for i in range(2, n): ans += dic[i - 1] * dic[i] * dic[i + 1] for i in range(1, n): coun1 = dic[i] coun2 = dic[i + 1] ans += coun1 * (coun2 * (coun2 - 1) // 2) ans += coun2 * (coun1 * (coun1 - 1) // 2) for i in range(1, n - 1): coun1 = dic[i] coun2 = dic[i + 2] ans += coun1 * (coun2 * (coun2 - 1) // 2) ans += coun2 * (coun1 * (coun1 - 1) // 2) print(ans)
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR IF VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
def nc3(n): if n < 3: return 0 else: return n * (n - 1) * (n - 2) // 6 def nc2(n): if n < 2: return 0 else: return n * (n - 1) // 2 t = int(input()) for test in range(t): n = int(input()) List = list(map(int, input().rstrip().split())) if n < 3: print(0) else: array = [(0) for i in range(n)] for item in List: array[item - 1] += 1 ans = 0 for item in array: ans += nc3(item) for i in range(n - 1): ans += nc2(array[i]) * array[i + 1] + array[i] * nc2(array[i + 1]) for i in range(n - 2): ans += array[i] * array[i + 1] * array[i + 2] + ( nc2(array[i]) * array[i + 2] + array[i] * nc2(array[i + 2]) ) print(ans)
FUNC_DEF IF VAR NUMBER RETURN NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER FUNC_DEF IF VAR NUMBER RETURN NUMBER RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
t = int(input()) for _ in range(t): n = int(input()) a = list(map(int, input().split())) if a == [1]: print(0) continue count = [(0) for i in range(n + 4)] st = set() for ele in a: count[ele] += 1 st.add(ele) res = 0 for x in st: ele = x res += count[ele] * (count[ele] - 1) * (count[ele] - 2) // 6 res += count[ele] * (count[ele] - 1) // 2 * count[ele + 1] res += count[ele] * (count[ele] - 1) // 2 * count[ele + 2] res += count[x] * (count[x + 1] * (count[x + 1] - 1) // 2) res += count[x] * (count[x + 2] * (count[x + 2] - 1) // 2) res += count[x] * count[x + 1] * count[x + 2] print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR LIST NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
R = lambda: map(int, input().split()) for _ in range(int(input())): n = int(input()) arr = sorted(R()) j = 0 res = 0 for i in range(2, n): while j < i and arr[i] - arr[j] > 2: j += 1 res += (i - j) * (i - j - 1) // 2 print(res)
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is the easy version of this problem. The only difference between easy and hard versions is the constraints on $k$ and $m$ (in this version $k=2$ and $m=3$). Also, in this version of the problem, you DON'T NEED to output the answer by modulo. You are given a sequence $a$ of length $n$ consisting of integers from $1$ to $n$. The sequence may contain duplicates (i.e. some elements can be equal). Find the number of tuples of $m = 3$ elements such that the maximum number in the tuple differs from the minimum by no more than $k = 2$. Formally, you need to find the number of triples of indices $i < j < z$ such that $$\max(a_i, a_j, a_z) - \min(a_i, a_j, a_z) \le 2.$$ For example, if $n=4$ and $a=[1,2,4,3]$, then there are two such triples ($i=1, j=2, z=4$ and $i=2, j=3, z=4$). If $n=4$ and $a=[1,1,1,1]$, then all four possible triples are suitable. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 2 \cdot 10^5$) — the number of test cases. Then $t$ test cases follow. The first line of each test case contains an integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the sequence $a$. The next line contains $n$ integers $a_1, a_2,\ldots, a_n$ ($1 \le a_i \le n$) — the sequence $a$. It is guaranteed that the sum of $n$ for all test cases does not exceed $2 \cdot 10^5$. -----Output----- Output $t$ answers to the given test cases. Each answer is the required number of triples of elements, such that the maximum value in the triple differs from the minimum by no more than $2$. Note that in difference to the hard version of the problem, you don't need to output the answer by modulo. You must output the exact value of the answer. -----Examples----- Input 4 4 1 2 4 3 4 1 1 1 1 1 1 10 5 6 1 3 2 9 8 1 2 4 Output 2 4 0 15 -----Note----- None
import sys input = sys.stdin.readline for _ in range(int(input())): n = int(input()) arr = list(map(int, input().split())) k = 2 m = 3 check = [0] * (n + 1) for i in arr: check[i] += 1 tot = 0 for i in range(1, n - 1): x = check[i] y = check[i + 1] z = check[i + 2] tot += ( x * y * z + x * (y * (y - 1)) // 2 + x * (z * (z - 1)) // 2 + x * (x - 1) // 2 * (y + z) + x * (x - 1) * (x - 2) // 6 ) x = check[n - 1] y = check[n] tot += ( x * (y * (y - 1)) // 2 + x * (x - 1) * (x - 2) // 6 + y * (y - 1) * (y - 2) // 6 + x * (x - 1) // 2 * y ) print(tot)
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR VAR
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def test(L): base = 26 modulus = 2**32 AL = base**L % modulus hk = 0 for i in range(L): hk = hk * base + nums[i] hk %= modulus hs = set([hk]) for i in range(L, len(S)): hk = hk * base - nums[i - L] * AL + nums[i] hk %= modulus if hk in hs: return i - L + 1 hs.add(hk) nums = [(ord(c) - ord("a")) for c in S] start, end = 1, len(S) res = -1 while start <= end: mid = start + (end - start) // 2 pos = test(mid) if pos: res = pos start = mid + 1 else: end = mid - 1 return S[res : res + end]
CLASS_DEF FUNC_DEF VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR LIST VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP VAR VAR VAR
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def check(L): base = 26 modulo = 2**32 AL = base**L % modulo hk = 0 for i in range(L): hk = hk * base + nums[i] hk %= modulo hm = {hk: 0} for i in range(L, len(S)): hk = (hk * base - nums[i - L] * AL + nums[i]) % modulo if hk in hm and S[i - L + 1 : i + 1] == S[hm[hk] : hm[hk] + L]: return i - L + 1 hm[hk] = i - L + 1 return -1 nums = [(ord(c) - ord("a")) for c in S] res = -1 s, e = 1, len(S) while s <= e: m = s + (e - s) // 2 pos = check(m) if pos != -1: res = pos s = m + 1 else: e = m - 1 return S[res : res + e]
CLASS_DEF FUNC_DEF VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR DICT VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR VAR VAR RETURN BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP VAR VAR VAR
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def check(s, L): n = len(s) BASE = 26 MOD = 1 << 61 - 1 P = pow(26, L, MOD) cur = 0 seen = defaultdict(list) for i in range(len(s)): cur = (cur * BASE + ord(s[i]) - ord("a")) % MOD if i >= L: cur = (cur - (ord(s[i - L]) - ord("a")) * P) % MOD if i >= L - 1: if cur in seen: cur_str = s[i - L + 1 : i + 1] for j in seen[cur]: pre_str = s[j - L + 1 : j + 1] if cur_str == pre_str: return cur_str seen[cur].append(i) return "" lo, hi = 1, len(S) ans = "" while lo < hi: mid = (lo + hi) // 2 temp = check(S, mid) if temp: ans = temp lo = mid + 1 else: hi = mid return ans
CLASS_DEF FUNC_DEF VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR STRING VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER FOR VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR VAR RETURN STRING ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR STRING WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR RETURN VAR VAR
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def search(self, S, mid) -> str: n = len(S) self.nums = [(ord(S[i]) - ord("a")) for i in range(n)] base = 26 MOD = 2**32 hash_ = 0 for i in range(mid): hash_ = (hash_ * base + self.nums[i]) % MOD visited = {hash_} aL = pow(base, mid, MOD) for start in range(1, n - mid + 1): hash_ = ( hash_ * base - self.nums[start - 1] * aL + self.nums[start + mid - 1] ) % MOD if hash_ in visited: return start visited.add(hash_) return -1 def longestDupSubstring(self, S: str) -> str: n = len(S) self.nums = [(ord(S[i]) - ord("a")) for i in range(n)] base = 26 MOD = 2**32 left, right = 1, n while left <= right: mid = left + (right - left) // 2 if self.search(S, mid) != -1: left = mid + 1 else: right = mid - 1 start = self.search(S, left - 1) return S[start : start + left - 1]
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER VAR FUNC_DEF VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR NUMBER VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: low = 0 high = len(S) - 1 result = "" nums = [(ord(i) - ord("a")) for i in S] mod = 2**63 - 1 def rabin_karp(size): power = pow(26, size, mod) hash_val = 0 hash_set = set() for i in range(size): hash_val = (hash_val * 26 + nums[i]) % mod hash_set.add(hash_val) for i in range(size, len(S)): hash_val = (hash_val * 26 - power * nums[i - size] + nums[i]) % mod if hash_val in hash_set: return i - size + 1 else: hash_set.add(hash_val) return -1 while low <= high: mid = low + (high - low) // 2 pos = rabin_karp(mid) if pos == -1: high = mid - 1 else: result = S[pos : pos + mid] low = mid + 1 return result
CLASS_DEF FUNC_DEF VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def rabinKarp(self, L, nums): h = 0 a = 26 MOD = 2**32 for i in range(L): h = (h * a + nums[i]) % MOD aL = pow(a, L, MOD) seen = {h} for start in range(1, len(nums) - L + 1): h = (h * a - nums[start - 1] * aL + nums[start + L - 1]) % MOD if h in seen: return start seen.add(h) return -1 def longestDupSubstring(self, S: str) -> str: nums = [(ord(ch) - ord("a")) for ch in S] l, r = 0, len(S) while l < r: mid = l + (r - l) // 2 if self.rabinKarp(mid, nums) != -1: l = mid + 1 else: r = mid start = self.rabinKarp(l - 1, nums) return S[start : start + l - 1]
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER FUNC_DEF VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR RETURN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: res = "" d, q = len(set(S)), 2**63 - 1 record = [0] * len(S) for i in range(len(S)): if i == 0: record[i] = ord(S[i]) else: record[i] = (record[i - 1] * d + ord(S[i])) % q def check(mid): h, g = 1, set() for i in range(mid): h = h * d % q for i in range(len(S) - mid + 1): count = ( (record[i + mid - 1] - record[i - 1] * h) % q if i > 0 else record[i + mid - 1] ) if count not in g: g.add(count) else: return S[i : i + mid] return False l, r = 0, len(S) - 1 while l <= r: mid = (l + r) // 2 temp = check(mid) if temp: res = temp l = mid + 1 else: r = mid - 1 return res
CLASS_DEF FUNC_DEF VAR ASSIGN VAR STRING ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR FUNC_DEF ASSIGN VAR VAR NUMBER FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR VAR BIN_OP VAR VAR RETURN NUMBER ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def checkSubstrings(size): hashed = 0 pow_mult = pow(26, size) % mod for i in range(size): hashed *= 26 hashed += char_vals[i] hashed %= mod seen = {hashed} for i in range(size, len(S)): hashed = ( hashed * 26 - char_vals[i - size] * pow_mult + char_vals[i] ) % mod if hashed in seen: return i - size + 1 seen.add(hashed) return None s, f = 0, len(S) longest = 0 char_vals = [(ord(c) - ord("a")) for c in S] mod = pow(2, 63) - 1 while s < f: m = s + (f - s + 1) // 2 longest_check = checkSubstrings(m) if longest_check: longest = longest_check s = m else: f = m - 1 return S[longest : longest + s]
CLASS_DEF FUNC_DEF VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN NONE ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP VAR VAR VAR
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: mod = 2**31 - 1 base = 26 def get_ord(char: str): return ord(char) - ord("a") def find_duplicate(length) -> str: hashes = {} h = 1 for i in range(length - 1): h = h * base % mod cur = 0 for i in range(length): cur = (cur * base + get_ord(S[i])) % mod hashes[cur] = [0] for i in range(1, len(S) - length + 1): cur = ( (cur - get_ord(S[i - 1]) * h) * base + get_ord(S[i + length - 1]) ) % mod if cur in hashes: for idx in hashes[cur]: if S[idx : idx + length] == S[i : i + length]: return S[i : i + length] hashes[cur].append(i) else: hashes[cur] = [i] return "" def helper(start, end): res = "" while start < end: length = (start + end) // 2 + 1 r = find_duplicate(length) if len(r) > len(res): res = r if not r: end = length - 1 else: start = length return res return helper(0, len(S) - 1)
CLASS_DEF FUNC_DEF VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER FUNC_DEF VAR RETURN BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR FOR VAR VAR VAR IF VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR RETURN VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR LIST VAR RETURN STRING VAR FUNC_DEF ASSIGN VAR STRING WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR IF VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR RETURN VAR RETURN FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER VAR
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def search(m, MOD): h = 0 for i in range(m): h = (h * 26 + nums[i]) % MOD s = {h} aL = pow(26, m, MOD) for pos in range(1, n - m + 1): h = (h * 26 - nums[pos - 1] * aL + nums[pos + m - 1]) % MOD if h in s: return pos s.add(h) return -1 n = len(S) nums = [(ord(c) - ord("a")) for c in S] l, r = 1, n pos = -1 MOD = 2**63 - 1 while l <= r: m = (l + r) // 2 cur = search(m, MOD) if cur != -1: l = m + 1 pos = cur else: r = m - 1 return S[pos : pos + l - 1]
CLASS_DEF FUNC_DEF VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def searchLongestStringOfKLen(self, S, total_len, compare_len): search_len_hash = 0 for i in range(compare_len): search_len_hash = (search_len_hash * self.uniq + self.nums[i]) % self.mod tmp_hash = {} tmp_hash[search_len_hash] = True remove_old_power = pow(self.uniq, compare_len, self.mod) for i in range(1, total_len - compare_len + 1): search_len_hash = ( search_len_hash * self.uniq - remove_old_power * self.nums[i - 1] + self.nums[i + compare_len - 1] ) % self.mod if search_len_hash in tmp_hash: return i tmp_hash[search_len_hash] = True return -1 def longestDupSubstring(self, S: str) -> str: ls = len(S) end = ls start = 1 mid = 0 self.nums = [] for i in range(ls): self.nums.append(ord(S[i]) - ord("a")) self.uniq = 26 self.mod = 2**32 while start <= end: mid = start + (end - start) // 2 if self.searchLongestStringOfKLen(S, ls, mid) != -1: start = mid + 1 else: end = mid - 1 ds_sp = self.searchLongestStringOfKLen(S, ls, start - 1) return S[ds_sp : ds_sp + start - 1]
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR DICT ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR RETURN VAR ASSIGN VAR VAR NUMBER RETURN NUMBER FUNC_DEF VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S): nums, N = [(ord(c) - ord("a")) for c in S], len(S) BASE, MOD = 26, 2**32 def check(L): cur_hash, seen = 0, set() for val in nums[:L]: cur_hash = (cur_hash * BASE + val) % MOD seen.add(cur_hash) X = pow(BASE, L - 1, MOD) for idx, val in enumerate(nums[L:]): cur_hash -= nums[idx] * X cur_hash = (cur_hash * BASE + val) % MOD if cur_hash in seen: return idx + 1 seen.add(cur_hash) return -1 low, high = 1, N + 1 start = 0 while low < high: mid = (low + high) // 2 idx = check(mid) if idx != -1: low = mid + 1 start = idx else: high = mid return S[start : start + low - 1]
CLASS_DEF FUNC_DEF ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER BIN_OP NUMBER NUMBER FUNC_DEF ASSIGN VAR VAR NUMBER FUNC_CALL VAR FOR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FOR VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR IF VAR VAR RETURN BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: l = 0 r = len(S) base = 26 mod = 2**32 res = [0, 0] nums = [(ord(n) - ord("a")) for n in S] while l < r: mid = (l + r) // 2 h = 0 for i in range(0, mid): h = (h * base + nums[i]) % mod dups = set([h]) remove = pow(base, mid, mod) for i in range(1, len(nums) - mid + 1): h = (h * base - nums[i - 1] * remove + nums[i + mid - 1]) % mod if h in dups: res = [i, i + mid] break dups.add(h) if res[1] - res[0] < mid: r = mid else: l = mid + 1 return S[res[0] : res[1]]
CLASS_DEF FUNC_DEF VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR LIST NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR LIST VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR ASSIGN VAR LIST VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR NUMBER VAR NUMBER VAR
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: p = 31 m = 100000000003 pows = [1] * len(S) invPows = [1] * len(S) for i in range(1, len(S)): pows[i] = pows[i - 1] * p % m invPows[i] = pow(pows[i], -1, m) h = [0] * (len(S) + 1) for i in range(len(S)): h[i + 1] = (h[i] + (ord(S[i]) - ord("a") + 1) * pows[i]) % m def hasDup(S, sublen): seen = set() for i in range(len(S) - sublen + 1): if (hs := (h[i + sublen] - h[i]) * invPows[i] % m) in seen: return i, sublen seen.add(hs) return 0, 0 ans = None lo, hi = 1, len(S) while lo < hi: mid = (lo + hi) // 2 if (s := hasDup(S, mid))[1]: lo = mid + 1 ans = s else: hi = mid return S[ans[0] : ans[0] + ans[1]] if ans else ""
CLASS_DEF FUNC_DEF VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING NUMBER VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER IF VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR RETURN VAR VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER NUMBER ASSIGN VAR NONE ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER STRING VAR