description
stringlengths 171
4k
| code
stringlengths 94
3.98k
| normalized_code
stringlengths 57
4.99k
|
|---|---|---|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
def check(Val):
base, modulus = 26, 2**32
AL = base**Val % modulus
hk = 0
for i in range(Val):
hk = hk * base + ord(S[i]) - ord("a")
hk %= modulus
hm = {hk: 0}
for i in range(Val, N):
hk = (
hk * base - (ord(S[i - Val]) - ord("a")) * AL + ord(S[i]) - ord("a")
)
hk %= modulus
if hk in hm and S[hm[hk] : hm[hk] + Val] == S[i - Val + 1 : i + 1]:
return i - Val + 1
hm[hk] = i - Val + 1
N = len(S)
start, end = 1, N
res = 0
while start <= end:
mid = start + (end - start) // 2
pos = check(mid)
if pos:
res = pos
start = mid + 1
else:
end = mid - 1
return S[res : res + end]
|
CLASS_DEF FUNC_DEF VAR FUNC_DEF ASSIGN VAR VAR NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR DICT VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR VAR IF VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER RETURN BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP VAR VAR VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
p = 239017
pows = [[1], [1]]
hsh = [[0], [0]]
mods = [int(1000000000.0) + 7, int(1000000000.0) + 9]
for ch in S:
for i in range(len(mods)):
hsh[i].append((hsh[i][-1] + ord(ch) * pows[i][-1]) % mods[i])
pows[i].append(pows[i][-1] * p % mods[i])
l = 0
r = len(S)
substrs = {}
ans = ""
while r - l > 1:
m = (r + l) // 2
found = False
for i in range(0, len(S) - m + 1):
h0 = (hsh[0][i + m] - hsh[0][i]) * pows[0][-(i + 1)] % mods[0]
h1 = (hsh[1][i + m] - hsh[1][i]) * pows[1][-(i + 1)] % mods[1]
if (h0, h1) in substrs:
found = True
ans = S[i : i + m]
break
else:
substrs[h0, h1] = True
if found:
l = m
else:
r = m
substrs.clear()
return ans
|
CLASS_DEF FUNC_DEF VAR ASSIGN VAR NUMBER ASSIGN VAR LIST LIST NUMBER LIST NUMBER ASSIGN VAR LIST LIST NUMBER LIST NUMBER ASSIGN VAR LIST BIN_OP FUNC_CALL VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR NUMBER NUMBER FOR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR STRING WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR NUMBER VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR NUMBER VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR RETURN VAR VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
def has_duplicate(m, S):
val, Mod = 0, 2**63 - 1
for i in range(m):
val = (26 * val + ord(S[i])) % Mod
d = set([val])
const = 26**m % Mod
for i in range(m, len(S)):
val = (26 * val + ord(S[i]) - ord(S[i - m]) * const) % Mod
if val in d:
return i - m + 1
d.add(val)
return -1
l, r = 0, len(S)
start, length = -1, 0
while l <= r:
mid = l + (r - l) // 2
idx = has_duplicate(mid, S)
if idx != -1:
l = mid + 1
start, length = idx, mid
else:
r = mid - 1
if start == -1:
return ""
return S[start : start + length]
|
CLASS_DEF FUNC_DEF VAR FUNC_DEF ASSIGN VAR VAR NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR LIST VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER RETURN STRING RETURN VAR VAR BIN_OP VAR VAR VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
arr = [(ord(ch) - ord("a")) for ch in S]
n = len(arr)
B = 29
mod = 2**63 - 1
def exists(L):
seen = {}
P = pow(B, L, mod)
h = 0
for i in range(n):
h = (h * B + arr[i]) % mod
if i >= L:
h = (h - arr[i - L] * P) % mod
if i >= L - 1:
if h in seen:
return seen[h]
seen[h] = i
return -1
lo, hi = 0, len(S)
pos = -1
while lo < hi:
mid = (lo + hi + 1) // 2
idx = exists(mid)
if idx != -1:
lo = mid
pos = idx
else:
hi = mid - 1
return S[pos - lo + 1 : pos + 1]
|
CLASS_DEF FUNC_DEF VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF ASSIGN VAR DICT ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR VAR RETURN VAR VAR ASSIGN VAR VAR VAR RETURN NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def find(self, s, m):
seen = collections.defaultdict(list)
mod = 1 << 63 - 1
base = 26
d = pow(26, m - 1, mod)
chal = 0
for i in range(len(s)):
if i >= m:
l_chal = ord(s[i - m]) - ord("a")
chal = (chal - l_chal * d) % mod
l_chal = ord(s[i]) - ord("a")
chal = (chal * base + l_chal) % mod
if i >= m - 1:
s_i = s[i - m + 1 : i + 1]
if chal in seen:
for j in seen[chal]:
s_j = s[j - m + 1 : j + 1]
if s_j == s_i:
return s_i
else:
seen[chal].append(i)
return ""
def longestDupSubstring(self, S: str) -> str:
l = 2
h = len(S) - 1
ans = ""
while l <= h:
m = (l + h) // 2
s = self.find(S, m)
if s != "":
ans = s
l = m + 1
else:
h = m - 1
return ans
|
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR FOR VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR VAR RETURN STRING FUNC_DEF VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR STRING WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR STRING ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
A = [ord(c) for c in S]
mod = 2**63 - 1
lo = 0
hi = len(S)
res = 0
def test(sz):
val = 0
p = pow(26, sz, mod)
for i in range(sz):
val = val * 26 + A[i]
val %= mod
seen = {val}
for i in range(sz, len(A)):
val = val * 26 + A[i] - A[i - sz] * p
val = val % mod
if val in seen:
return i - sz + 1
seen.add(val)
return -1
while lo < hi:
mid = (lo + hi) // 2
pos = test(mid)
if not pos >= 0:
hi = mid
else:
res = pos
lo = mid + 1
return S[res : res + lo - 1]
|
CLASS_DEF FUNC_DEF VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
p = 2**63 - 1
class Solution:
def longestDupSubstring(self, S: str) -> str:
def rabin_karp(mid):
cur_hash = 0
for i in range(mid):
cur_hash = (cur_hash * 26 + nums[i]) % p
hashes = {cur_hash}
pos = -1
max_pow = pow(26, mid, p)
for i in range(mid, len(S)):
cur_hash = (26 * cur_hash - nums[i - mid] * max_pow + nums[i]) % p
if cur_hash in hashes:
pos = i + 1 - mid
hashes.add(cur_hash)
return pos
low, high = 0, len(S) - 1
end = 0
start = 0
nums = [(ord(c) - ord("a")) for c in S]
while low <= high:
mid = (low + high) // 2
pos = rabin_karp(mid)
if pos == -1:
high = mid - 1
else:
start = pos
low = mid + 1
return S[start : start + low - 1]
|
ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER CLASS_DEF FUNC_DEF VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
def check(arr, n, l, mod):
p = pow(26, l, mod)
window_hash = 0
hash_set = set()
for i in range(l):
window_hash = (26 * window_hash + arr[i]) % mod
hash_set.add(window_hash)
for i in range(1, n - l + 1):
window_hash = (window_hash * 26 - arr[i - 1] * p + arr[i + l - 1]) % mod
if window_hash in hash_set:
return i
hash_set.add(window_hash)
return False
class Solution:
def longestDupSubstring(self, S: str) -> str:
n = len(S)
min_length, max_length = 1, n
ans, prev_len = 0, 0
mod = (1 << 63) - 1
nums = [(ord(S[i]) - ord("a")) for i in range(n)]
while min_length <= max_length:
mid_length = int((max_length + min_length) / 2)
start = check(nums, n, mid_length, mod)
if start != False:
if prev_len < mid_length:
ans = start
prev_len = mid_length
min_length = mid_length + 1
else:
max_length = mid_length - 1
return S[ans : ans + prev_len]
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER CLASS_DEF FUNC_DEF VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP VAR VAR VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
lo = 1
hi = len(S)
nums = [(ord(i) - ord("a")) for i in S]
self.modulus = 2**32
def dup(l):
seen = set()
hval = 0
for i in range(l):
hval = (hval * 26 + nums[i]) % self.modulus
seen.add(hval)
al = pow(26, l, self.modulus)
for i in range(1, len(S) - l + 1):
hval = (hval * 26 - nums[i - 1] * al + nums[i + l - 1]) % self.modulus
if hval in seen:
return i
seen.add(hval)
return -1
start = -1
while lo <= hi:
mi = lo + (hi - lo) // 2
begin = dup(mi)
if begin != -1:
lo = mi + 1
start = begin
else:
hi = mi - 1
return S[start : start + lo - 1]
|
CLASS_DEF FUNC_DEF VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
def rk(m):
nonlocal idx
mp = {}
p = b ** (m - 1)
p %= mod
y = 0
for i in range(m):
y = y * b + num[i]
y %= mod
mp[y] = 0
for i in range(1, n - m + 1):
y = ((y - num[i - 1] * p % mod) * b % mod + num[i - 1 + m]) % mod
if y in mp:
idx = i
return 0
else:
mp[y] = i
return 1
n = len(S)
b = 26
mod = 2**32
z = ord("a")
num = [(ord(S[i]) - z) for i in range(n)]
l = 1
r = n
idx = 0
while l < r:
m = (l + r) // 2
if rk(m) > 0:
r = m
else:
l = m + 1
return S[idx : idx + l - 1]
|
CLASS_DEF FUNC_DEF VAR FUNC_DEF ASSIGN VAR DICT ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
N = len(S)
l, r = 1, N
nums = [(ord(x) - ord("a")) for x in S]
KMAX = 2**63 - 1
def check(m):
MAXL = pow(26, m, KMAX)
total = 0
hashset = set()
for i in range(m):
total = (total * 26 + nums[i]) % KMAX
hashset.add(total)
for i in range(1, N - m + 1):
total = (total * 26 - MAXL * nums[i - 1] + nums[i + m - 1]) % KMAX
if total in hashset:
return i
hashset.add(total)
return -1
while l < r:
m = (l + r) // 2
if check(m) < 0:
r = m
else:
l = m + 1
idx = check(r - 1)
return S[idx : idx + r - 1]
|
CLASS_DEF FUNC_DEF VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
n = len(S)
mod = 10**30
ord_a = 97
def find_len_k_dup(k):
hash_val = 0
seen = set()
for i in range(k):
hash_val = (hash_val * 26 + (ord(S[i]) - ord_a)) % mod
seen.add(hash_val)
power = 26**k % mod
for i in range(1, n - k + 1):
hash_val = (
(hash_val * 26 - (ord(S[i - 1]) - ord_a) * power) % mod
+ (ord(S[i + k - 1]) - ord_a)
) % mod
if hash_val in seen:
return i
seen.add(hash_val)
return None
low = 0
high = len(S)
res = ""
while low < high:
mid = (low + high) // 2
idx = find_len_k_dup(mid)
if idx is not None:
res = S[idx : idx + mid]
low = mid + 1
else:
high = mid
return res
|
CLASS_DEF FUNC_DEF VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR RETURN NONE ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR STRING WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NONE ASSIGN VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR RETURN VAR VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def findRepSubstrGivenLength(
self, nums: List[int], l: int, base: int, modulus: int
) -> int:
n = len(nums)
h = 0
for i in range(l):
h = (h * base + nums[i]) % modulus
seen = {h}
for start in range(1, n - l + 1):
h = (
h * base - nums[start - 1] * pow(base, l, modulus) + nums[start + l - 1]
) % modulus
if h in seen:
return start
seen.add(h)
return -1
def longestDupSubstring(self, S: str) -> str:
if not S:
return ""
nums = [(ord(S[i]) - ord("a")) for i in range(len(S))]
base = 26
modulus = 2**32
left = 1
right = len(S)
while left <= right:
mid = left + (right - left) // 2
if self.findRepSubstrGivenLength(nums, mid, base, modulus) != -1:
left = mid + 1
else:
right = mid - 1
start = self.findRepSubstrGivenLength(nums, left - 1, base, modulus)
return S[start : start + left - 1]
|
CLASS_DEF FUNC_DEF VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER VAR FUNC_DEF VAR IF VAR RETURN STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
def code(t):
return ord(t) - ord("a") + 1
def check(length):
seen = collections.defaultdict(list)
MOD = 10**9 + 7
P = 113
INV_P = pow(P, MOD - 2, MOD)
h = 0
power = 1
for i, x in enumerate(S):
h = (h + power * code(x)) % MOD
if i < length - 1:
power = power * P % MOD
else:
if h in seen:
for j in seen[h]:
if S[i - (length - 1) : i + 1] == S[j : j + length]:
return S[j : j + length], True
seen[h].append(i - (length - 1))
h = (h - code(S[i - (length - 1)])) * INV_P % MOD
return "", False
res = ""
l, r = 1, len(S) - 1
while l <= r:
mid = (l + r) // 2
sub, is_check = check(mid)
if is_check:
res = sub
l = mid + 1
else:
r = mid - 1
return res
|
CLASS_DEF FUNC_DEF VAR FUNC_DEF RETURN BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF VAR VAR FOR VAR VAR VAR IF VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR RETURN VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR RETURN STRING NUMBER ASSIGN VAR STRING ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR IF VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
n = len(S)
modulus = 2**32
a = 26
nums = [(ord(c) - ord("a")) for c in S]
def search(L):
nonlocal a, n, modulus
aL = pow(a, L, modulus)
h = 0
for i in range(L):
h = (h * a + nums[i]) % modulus
seen = {h}
for start in range(1, n - L + 1):
h = (h * a - nums[start - 1] * aL + nums[start + L - 1]) % modulus
if h in seen:
return start
seen.add(h)
return -1
l, r = 1, n
while l <= r:
mid = l + r >> 1
if search(mid) != -1:
l = mid + 1
else:
r = mid - 1
start = search(r)
return S[start : start + r]
|
CLASS_DEF FUNC_DEF VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR VAR NUMBER VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR RETURN VAR VAR BIN_OP VAR VAR VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
ords = [(ord(ch) - 97) for ch in S]
mod = 2**32
seen = set()
def has_dup_with_length(length):
seen.clear()
p = pow(26, length, mod)
hashed_prefix = 0
for i in range(length):
hashed_prefix = (hashed_prefix * 26 + ords[i]) % mod
seen.add(hashed_prefix)
for i in range(length, len(S)):
hashed_prefix = (
hashed_prefix * 26 + ords[i] - ords[i - length] * p
) % mod
if hashed_prefix in seen:
return i - length + 1
seen.add(hashed_prefix)
start, lo, hi = 0, 0, len(S) - 1
while lo < hi:
mid_length = (lo + hi + 1) // 2
idx = has_dup_with_length(mid_length)
if idx:
start = idx
lo = mid_length
else:
hi = mid_length - 1
return S[start : start + lo]
|
CLASS_DEF FUNC_DEF VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP VAR VAR VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
def check(sz):
seen = defaultdict(list)
cur, base, MOD = 0, 256, (1 << 31) - 1
h = (1 << sz * 8) % MOD
for i in range(sz):
cur *= base
cur += ord(S[i])
cur %= MOD
seen[cur].append(0)
for i in range(sz, len(S)):
cur *= base
cur += ord(S[i])
cur -= ord(S[i - sz]) * h
cur %= MOD
for j in seen[cur]:
if S[j : j + sz] == S[i - sz + 1 : i + 1]:
return True, S[i - sz + 1 : i + 1]
seen[cur].append(i - sz + 1)
return False, ""
lo, hi = 1, len(S)
res = ""
while lo <= hi:
mid = (lo + hi) // 2
flag, tmp = check(mid)
if flag:
lo = mid + 1
res = tmp
else:
hi = mid - 1
return res
|
CLASS_DEF FUNC_DEF VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR FOR VAR VAR VAR IF VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER RETURN NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN NUMBER STRING ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR STRING WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR IF VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
n = len(S)
nums = [(ord(S[i]) - ord("a")) for i in range(n)]
def search(position):
h = 0
for i in range(position):
h = (h * 26 + nums[i]) % 2**32
seen = {h}
const = 26**position % 2**32
for start in range(1, n - position + 1):
h = (
h * 26 - nums[start - 1] * const + nums[start + position - 1]
) % 2**32
if h in seen:
return start
seen.add(h)
return -1
left, right = 1, n
while left <= right:
pivot = (left + right) // 2
if search(pivot) != -1:
left = pivot + 1
else:
right = pivot - 1
start = search(left - 1)
return S[start : start + left - 1]
|
CLASS_DEF FUNC_DEF VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP NUMBER NUMBER IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR VAR NUMBER VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
def rk(m):
mp = {}
p = b ** (m - 1)
p %= mod
y = 0
for i in range(m):
y = y * b + num[i]
y %= mod
mp[y] = 0
for i in range(1, n - m + 1):
y = ((y - num[i - 1] * p % mod) * b % mod + num[i - 1 + m]) % mod
if y not in mp:
mp[y] = i
else:
return i
return n
n = len(S)
b = 26
mod = 2**32
num = []
for i in range(n):
num.append(ord(S[i]) - ord("a"))
l = 1
r = n
while l < r:
m = (l + r) // 2
if rk(m) == n:
r = m
else:
l = m + 1
x = l - 1
if x == 0:
return ""
k = rk(x)
return S[k : k + x]
|
CLASS_DEF FUNC_DEF VAR FUNC_DEF ASSIGN VAR DICT ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR VAR VAR RETURN VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER RETURN STRING ASSIGN VAR FUNC_CALL VAR VAR RETURN VAR VAR BIN_OP VAR VAR VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
n = len(S)
low = 0
high = n - 1
nums = [(ord(S[i]) - ord("a")) for i in range(n)]
def findDuplicate(L):
h = 0
a = 26
modulus = 2**32
for i in range(L):
h = (h * a + nums[i]) % modulus
seen = {h}
aL = pow(a, L, modulus)
for start in range(1, n - L + 1):
h = (h * a - nums[start - 1] * aL + nums[start + L - 1]) % modulus
if h in seen:
return start
seen.add(h)
return -1
res = ""
while low < high:
mid = (low + high + 1) // 2
start = findDuplicate(mid)
if start != -1:
low = mid
res = S[start : start + mid]
else:
high = mid - 1
return res
|
CLASS_DEF FUNC_DEF VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR STRING WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
base, mod = 26, 2**63 - 1
n = len(S)
A = [(ord(ch) - ord("a")) for ch in S]
def k_dup(k):
curr = 0
for i in range(k):
curr = (curr * base + A[i]) % mod
seen = {curr}
for i in range(1, n - k + 1):
curr = (base * curr - pow(base, k, mod) * A[i - 1] + A[i + k - 1]) % mod
if curr in seen:
return i
seen.add(curr)
return 0
l, r, ans = 0, n, 0
while l < r:
mid = l + r + 1 >> 1
pos = k_dup(mid)
if pos:
l = mid
ans = pos
else:
r = mid - 1
return S[ans : ans + l]
|
CLASS_DEF FUNC_DEF VAR ASSIGN VAR VAR NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR NUMBER VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR BIN_OP VAR VAR VAR
|
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
|
class Solution:
def longestDupSubstring(self, S: str) -> str:
n = len(S)
BASE = 26
MOD = (1 << 63) - 1
POWS = [1] * n
for i in range(1, n):
POWS[i] = POWS[i - 1] * BASE % MOD
def search(k):
seen = set()
h = 0
for i in range(k):
h = (h * BASE + ord(S[i]) - 97) % MOD
seen.add(h)
for i in range(k, n):
h = (
(h - (ord(S[i - k]) - 97) * POWS[k - 1]) * BASE + ord(S[i]) - 97
) % MOD
s = S[i - k + 1 : i + 1]
if h in seen:
return i
seen.add(h)
return -1
l, r = 0, n - 1
while l <= r:
m = (l + r) // 2
if search(m) >= 0:
l = m + 1
else:
r = m - 1
if r < 0:
return ""
i = search(r)
return S[i - r + 1 : i + 1]
|
CLASS_DEF FUNC_DEF VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER RETURN STRING ASSIGN VAR FUNC_CALL VAR VAR RETURN VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
import sys
ints = (int(x) for x in sys.stdin.read().split())
sys.setrecursionlimit(3000)
def main():
a, b, c, d = (next(ints) for i in range(4))
ans = 0
A = (b - a + 1) * (c - b + 1)
h = min(c - b, b - a)
lo, hi = min(a + c, b + b), max(a + c, b + b)
for z in range(min(a + b, c), d + 1):
if z < a + b:
pass
elif z < lo:
A -= 1 + z - (a + b)
elif z < hi:
A -= 1 + h
elif z <= b + c:
A -= 1 + (b + c) - z
else:
assert A == 0
if c <= z <= d:
ans += A
print(ans)
return
main()
|
IMPORT ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER FUNC_DEF ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP NUMBER VAR IF VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
s = 0
for z in range(c, d + 1):
if b + c <= z:
break
u = min(b + b, a + c)
v = max(b + b, a + c)
if z >= v:
s += (b + c - z) * (b + c - z + 1) // 2
elif u <= z:
s += (b + c - v) * (b + c - v + 1) // 2 + (min(c - b, b - a) + 1) * (v - z)
elif z >= a + b:
s += (c - b + 1) * (b - a + 1) - (z - a - b + 2) * (z - b - a + 1) // 2
else:
s += (c - b + 1) * (b - a + 1)
print(s)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER NUMBER IF VAR VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER NUMBER BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR IF VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
s = 0
mz = d - c + 1
for x in range(a, b + 1):
ym = max(b, c - x + 1)
ny = c - ym + 1
nzm = min(ym + x - c, mz)
if x > mz:
n = mz - nzm + 1
s += n * (2 * nzm + n - 1) // 2 + (ny - n) * mz
else:
s += ny * (nzm * 2 + ny - 1) // 2
print(s)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER NUMBER BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
import sys
from itertools import accumulate
def input():
return sys.stdin.readline().strip()
def list2d(a, b, c):
return [([c] * b) for i in range(a)]
def list3d(a, b, c, d):
return [[([d] * c) for j in range(b)] for i in range(a)]
def list4d(a, b, c, d, e):
return [[[([e] * d) for j in range(c)] for j in range(b)] for i in range(a)]
def ceil(x, y=1):
return int(-(-x // y))
def INT():
return int(input())
def MAP():
return map(int, input().split())
def LIST(N=None):
return list(MAP()) if N is None else [INT() for i in range(N)]
def Yes():
print("Yes")
def No():
print("No")
def YES():
print("YES")
def NO():
print("NO")
INF = 10**18
MOD = 10**9 + 7
a, b, c, d = MAP()
MAX = 10**6 + 7
imos = [0] * MAX
for ai in range(a, b + 1):
imos[ai + b] += 1
imos[ai + c + 1] -= 1
imos = list(accumulate(imos))
acc = list(accumulate(imos[::-1]))[::-1]
ans = 0
for z in range(c, d + 1):
ans += acc[z + 1]
print(ans)
|
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF NUMBER RETURN FUNC_CALL VAR BIN_OP VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF NONE RETURN VAR NONE FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = [int(x) for x in input().split()]
xymin = a + b
xymax = b + c
cntsPeak = min(b - a, c - b) + 1
xytotal = list(range(xymin, xymax + 1))
cnts = list(range(len(xytotal), 0, -1))
for i in range(len(xytotal)):
cnts[i] = min(i + 1, cntsPeak)
j = 1
for i in range(len(cnts) - 1, -1, -1):
if j == cntsPeak:
break
cnts[i] = j
j += 1
ans = 0
for i in range(len(xytotal)):
ans += cnts[i] * max(0, min(xytotal[i] - 1, d) - c + 1)
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
import sys
def read_input(input_path=None):
if input_path is None:
f = sys.stdin
else:
f = open(input_path, "r")
a, b, c, d = map(int, f.readline().split())
return a, b, c, d
def f(x):
if x < 1:
return 0
else:
return x * (x + 1) * (x + 2) // 6
def sol(a, b, c, d):
ans = (
(a + 2 * b - c) * (b + 1 - a) * (c + 1 - b) // 2
+ f(c - a - b)
- f(c - 2 * b - 1)
- f(b + c - d - 1)
+ f(a + c - d - 2)
+ f(2 * b - d - 2)
- f(a + b - d - 3)
)
return [f"{ans}"]
def solve(input_path=None):
return sol(*read_input(input_path))
def main():
for line in sol(*read_input()):
print(f"{line}")
main()
|
IMPORT FUNC_DEF NONE IF VAR NONE ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR STRING ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR RETURN VAR VAR VAR VAR FUNC_DEF IF VAR NUMBER RETURN NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER FUNC_DEF ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER RETURN LIST VAR FUNC_DEF NONE RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
import sys
try:
sys.stdin = open("input.txt", "r")
sys.stdout = open("output.txt", "w")
except:
pass
input = sys.stdin.readline
a, b, c, d = map(int, input().split())
ans = 0
for i in range(a, b + 1):
ans += 1
if c + (i - 1) <= d:
ans += i - 1
else:
ans += d - c
if c - (i - 1) >= b:
ans += i - 1
else:
ans += c - b
if c + (i - 2) <= d:
calculate = (i - 2) * (i - 1) // 2
if c - (i - 2) >= b:
pass
else:
sub = b - (c - (i - 2))
subSum = sub * (sub + 1) // 2
calculate -= subSum
ans += calculate
else:
calculate = (i - 2) * (i - 1) // 2
if c - (i - 2) >= b:
sub = c + (i - 2) - d
subSum = sub * (sub + 1) // 2
ans += calculate - subSum
else:
sub = c + (i - 2) - d
subSum = sub * (sub + 1) // 2
sub2 = b - (c - (i - 2))
subSum2 = sub2 * (sub2 + 1) // 2
ans += calculate - subSum - subSum2
gar = max(sub2 - (d - c), 0)
ans += gar * (gar + 1) // 2
print(max(ans, 1))
|
IMPORT ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR IF BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def s(j):
j -= A + B
if t1 >= j and t2 >= j:
return j + 1
elif t1 >= j:
return t2 + 1
elif t2 >= j:
return t1 + 1
else:
return t1 + t2 - j + 1
A, B, C, D = map(int, input().split())
ans = 0
t1 = B - A
t2 = C - B
for i in range(A + B, B + C + 1):
if i > D:
ans += s(i) * (D - C + 1)
else:
ans += max(s(i) * (i - C), 0)
print(ans)
|
FUNC_DEF VAR BIN_OP VAR VAR IF VAR VAR VAR VAR RETURN BIN_OP VAR NUMBER IF VAR VAR RETURN BIN_OP VAR NUMBER IF VAR VAR RETURN BIN_OP VAR NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
ans = 0
n = d + c + 3
ar = [0] * n
for x in range(a, b + 1):
ar[x + b] += 1
ar[x + c + 1] -= 1
for i in range(n - 1):
ar[i + 1] += ar[i]
for i in range(n - 1):
ar[i + 1] += ar[i]
for i in range(c, d + 1):
ans += ar[-1] - ar[i]
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def solve(x, a, b, c, d):
low = b
high = c
yleft = -1
while low <= high:
mid = (low + high) // 2
if x + mid > c:
yleft = mid
high = mid - 1
else:
low = mid + 1
if yleft < b or yleft > c:
return 0
zleft = min(x + yleft - 1, d)
if zleft < c or zleft > d:
return 0
a0 = zleft - c + 1
ydiff = c - yleft + 1
zdiff = d - zleft + 1
if ydiff <= zdiff:
ans = ydiff * (2 * a0 + ydiff - 1) // 2
else:
ans = zdiff * (2 * a0 + zdiff - 1) // 2
ydiff -= zdiff
ans += ydiff * (d - c + 1)
return ans
def main():
a, b, c, d = map(int, input().split())
ans = 0
for x in range(a, b + 1):
ans += solve(x, a, b, c, d)
print(ans)
main()
|
FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER NUMBER VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = [int(x) for x in input().split()]
if a == b == c == d:
print("1")
else:
p = b + c - (a + b)
arr = [(0) for x in range(0, p + 1)]
for i in range(a, b + 1):
arr[i + b - (a + b)] = arr[i + b - (a + b)] + 1
if i + c + 1 - (a + b) < len(arr):
arr[i + c + 1 - (a + b)] = arr[i + c + 1 - (a + b)] - 1
for j in range(1, len(arr)):
arr[j] = arr[j] + arr[j - 1]
for k in range(len(arr) - 2, -1, -1):
arr[k] = arr[k] + arr[k + 1]
count = 0
for m in range(c, d + 1):
if m - (a + b) >= len(arr) - 1:
count += 0
elif m - (a + b) < 0:
count += arr[0]
else:
count += arr[m + 1 - (a + b)]
print(count)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
sol = 0
z = c
sm = min(c - b, b - a)
bg = max(c - b, b - a)
while b + c >= z and z <= d:
mn = a + b
m1 = mn + sm
mx = b + c
m2 = mx - sm
maxi = (sm + 1) * (bg + 1)
if mn > z:
sol += maxi
if mn <= z and m1 > z:
foo = z + 1 - mn
sol += maxi
sol -= foo * (foo + 1) // 2
if m1 <= z and m2 > z:
foo = sm * (sm + 1)
foo //= 2
maxi -= foo
foo = z + 1 - m1
maxi -= (sm + 1) * foo
sol += maxi
if m2 <= z and mx > z:
foo = mx - z
sol += foo * (foo + 1) // 2
z += 1
print(sol)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
ans = 0
arr = [0] * (2 * d + 5)
for i in range(a, b + 1):
arr[i + b] += 1
arr[i + c + 1] -= 1
s = 0
for ii in range(2 * d + 5):
s += arr[ii]
if c < ii:
ans += min(ii - c, d - c + 1) * s
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR VAR IF VAR VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
N = int(1000000.0) + 77
a, b, c, d = map(int, input().split())
l = [0] * N
for i in range(a, b + 1):
l[i + b] += 1
l[i + c + 1] -= 1
for i in range(a, b + c + 2):
l[i] = l[i] + l[i - 1]
for i in range(a, d + c + 2):
l[i] = l[i] + l[i - 1]
ans = 0
for i in range(c, d + 1):
z = l[d + c + 1] - l[i]
ans += z
print(ans)
|
ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def prog():
a, b, c, d = map(int, input().split())
psum = [(0) for i in range(d + 2)]
left = [(False) for i in range(d + 2)]
right = [(False) for i in range(d + 2)]
for i in range(a + b, min(2 * b + 1, d + 2)):
left[i] = True
for i in range(a + c, min(b + c + 1, d + 2)):
right[i] = True
maximum = (b - a + 1) * (c - b + 1)
for i in range(min(a + b + 1, d + 2)):
psum[i] = maximum
bars = 0
for i in range(a + b + 1, d + 2):
if left[i - 1] == True:
bars += 1
if right[i - 2] == True:
bars -= 1
psum[i] = psum[i - 1] - bars
total = 0
for i in range(c + 1, d + 2):
total += psum[i]
print(total)
prog()
|
FUNC_DEF ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
xplusy = [0] * (10**6 + 10)
for x in range(a, b + 1):
xplusy[x + b] += 1
xplusy[x + c + 1] -= 1
for i in range(1, 10**6 + 10):
xplusy[i] += xplusy[i - 1]
for i in range(1, 10**6 + 10):
xplusy[i] += xplusy[i - 1]
ans = 0
allxy = (b - a + 1) * (c - b + 1)
for z in range(c, d + 1):
ans += allxy - xplusy[z]
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
A, B, C, D = map(int, input().split())
def gauss_count(n):
if n <= 0:
return 0
return n * (n + 1) // 2
count = 0
for z in range(C, D + 1):
if A + B > z:
count += (B - A + 1) * (C - B + 1)
else:
x0 = z - C + 1
y0 = z - B + 1
incl1 = gauss_count(B - x0 + 1)
excl1 = gauss_count(A - x0)
excl2 = gauss_count(B - y0)
count += incl1 - excl1 - excl2
print(count)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF IF VAR NUMBER RETURN NUMBER RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def int_array():
return list(map(int, input().strip().split()))
def total(start, times):
an = start + times - 1
summ = times * (start + an) // 2
return summ
a, b, c, d = int_array()
ans = 0
for i in range(c, d + 1):
b_first = i + 1 - b
b_last = i + 1 - a
if b_first > c:
continue
if b_last <= c:
if b_last < b:
b_range = c - b + 1
a_range = b - a + 1
ans += a_range * b_range
else:
extra = c - b_last
b_range = b_last - b_first + 1
ans += b_range * (b_range + 1) // 2
an = 1 + (b_range - 1)
ans += extra * an
if b_first < b:
extra = b - b_first
ans -= extra * (extra + 1) // 2
else:
b_range = min(b_last, c) - b_first + 1
ans += b_range * (b_range + 1) // 2
if b_first < b:
extra = b - b_first
ans -= extra * (extra + 1) // 2
print(ans)
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR NUMBER RETURN VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR IF VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
A, B, C, D = [int(i) for i in input().split()]
count_ymz = [None for i in range(D - B + 1)]
for i in range(len(count_ymz)):
count_ymz[i] = min(C, D - i) - max(C - i, B) + 1
pre_count_ymz = [None for i in range(len(count_ymz))]
pre_count_ymz[0] = count_ymz[0]
for i in range(1, len(count_ymz)):
pre_count_ymz[i] = pre_count_ymz[i - 1] + count_ymz[i]
ans = 0
for x in range(A, B + 1):
if x > D - B + 1:
ans += pre_count_ymz[-1]
else:
ans += pre_count_ymz[x - 1]
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NONE VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR NONE VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
ans = 0
for i in range(a + b, b + c + 1):
counter = min(min(i - a, c) - max(i - b, b) + 1, b - a + 1)
ans += counter * max(min(i, d + 1) - c, 0)
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
A, B, C, D = map(int, input().split())
ans = 0
howmany = [(0) for i in range(10**6 + 1)]
cnt = 0
for i in range(A + B + 1):
if A <= i <= B and B <= A + B - i <= C:
cnt += 1
howmany[A + B] = cnt
for z in range(A + B + 1, B + C + 1):
if z <= min(A + C, 2 * B):
cnt += 1
elif min(A + C, 2 * B) < z <= max(A + C, 2 * B):
pass
elif max(A + C, 2 * B) < z:
cnt -= 1
howmany[z] = cnt
for i in range(1, 10**6 + 1):
howmany[i] += howmany[i - 1]
for i in range(C, D + 1):
ans += howmany[10**6] - howmany[i]
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP NUMBER VAR VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR VAR BIN_OP NUMBER VAR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP NUMBER VAR IF FUNC_CALL VAR BIN_OP VAR VAR BIN_OP NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP NUMBER NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def summ(x):
return x * (x + 1) // 2
a, b, c, d = map(int, input().split())
ans = 0
for i in range(a, b + 1):
lb = i + b
if lb > d:
ans += (c - b + 1) * (d - c + 1)
continue
x = b
if lb < c:
rb = 0
x = c - i
if i > d - c + 1:
ans += (i - (d - c + 1)) * (d - c + 1)
ans += summ(min(d - c + 1, c + i - c)) - summ(max(0, x + i - c - 1))
print(ans)
|
FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def ip():
return int(input())
def Ip():
return map(int, input().split())
N = 500001
a, b, c, d = Ip()
l = [0] * (2 * N)
k = [0] * (2 * N)
for i in range(a, b + 1):
l[i + b] += 1
l[i + c + 1] -= 1
for i in range(1, 2 * N):
k[i] = l[i] + k[i - 1]
for i in range(len(k) - 2, -1, -1):
k[i] += k[i + 1]
ans = 0
for i in range(c, d + 1):
ans += k[i + 1]
print(ans)
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP NUMBER VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def count_triangles(a, b, c, d):
bc = c - b + 1
dc = d - c + 1
mx = min(bc, dc)
l = -1
r = d - b + 1
ttl = 0
cnt = [(0) for i in range(d + 1)]
while l < r:
l += 1
r -= 1
ttl += 1
cnt[l] = min(ttl, mx)
cnt[r] = cnt[l]
sum = [(0) for i in range(d + 1)]
sum[0] = cnt[0]
for i in range(1, d + 1):
sum[i] = sum[i - 1] + cnt[i]
res = 0
for i in range(a, b + 1):
res += sum[i - 1]
return res
def count_triangles2(a, b, c, d):
res = 0
for i in range(c, d + 1):
if a + b > i:
res += (b - a + 1) * (c - b + 1)
continue
if b + c < i:
break
l = a
h = c
comb = 0
while l <= b <= h:
if l + h > i:
comb += b - l + 1
h -= 1
else:
l += 1
res += comb
return res
abcd = input().split(" ")
a = int(abcd[0])
b = int(abcd[1])
c = int(abcd[2])
d = int(abcd[3])
res = count_triangles(a, b, c, d)
print(res)
|
FUNC_DEF ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR IF BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
ans = 0
for diff in range(max(0, c - a - b + 1), c - a + 1):
k = min(b - a, diff) - max(0, diff - c + b)
kk = min(diff, c - b) - max(0, diff - b + a)
ch = (min(a + b + diff, d + 1) - c) * (min(k, kk, diff) + 1)
if k >= 0 and kk >= 0:
ans += ch
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
for _ in range(1):
a, b, c, d = map(int, input().split())
ans = 0
for i in range(a, b + 1):
x = b + i - 1
y = c + i - 1
if y < c:
pass
elif x > d:
m = y - x + 1
ans += m * (d - c + 1)
else:
m = max(0, y - d)
ans += m * (d - c + 1)
m = min(d - c + 1, min(d, y) - c + 1)
if m < 0:
pass
else:
ans += m * (m + 1) // 2
m = max(1, max(c, x) - c + 1) - 1
ans -= m * (m + 1) // 2
print(ans)
|
FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
total, temp = 0, 0
freq = [0] * 2000007
for x in range(a, b + 1):
freq[x + b] += 1
freq[x + c + 1] -= 1
for i in range(1, b + c + 2):
freq[i] += freq[i - 1]
for i in range(b + c + 1, -1, -1):
freq[i] += freq[i + 1]
for z in range(c, d + 1):
total += freq[z + 1]
print(total)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER NUMBER VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
count = 0
for s in range(max(a + b, c), b + c + 1):
m = max(min(s - b, b) - max(s - c, a) + 1, 0)
n = max(min(s - 1, d) - c + 1, 0)
count += m * n
print(count)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def solve():
a, b, c, d = [int(x) for x in input().split()]
count, left = 0, b
for z in range(c, d + 1):
x = z - left + 1
while x > b and left <= c:
left += 1
x = z - left + 1
if x < a:
x = a
if left > c:
break
avail = b - x + 1
l = x - a
count += avail * (c - left + 1)
if c - left + 1 == l:
l -= 1
count += l * (l + 1) // 2
elif c - left + 1 < l:
l = c - left + 1
l -= 1
count += l * (l + 1) // 2
else:
l -= 1
count += l * (l + 1) // 2
l += 1
count += l * (c - left + 1 - l)
print(count)
solve()
|
FUNC_DEF ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER WHILE VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def main():
a, b, c, d = map(int, input().split())
cnt = [0] * (b + c + 1)
mid1 = min(a + c, 2 * b)
mid2 = max(a + c, 2 * b)
for z in range(c + 1, b + c + 1):
if z < a + b:
continue
if z > 2 * c:
continue
if z < mid1:
cnt[z] = z - a - b + 1
elif z > mid2:
cnt[z] = b + c - z + 1
else:
cnt[z] = mid1 - a - b + 1
cum = [0] * (b + c + 2)
for z in range(b + c, c, -1):
cum[z] = cum[z + 1] + cnt[z]
res = sum(cum[c + 1 : d + 2])
return res
print(main())
|
FUNC_DEF ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR VAR IF VAR BIN_OP NUMBER VAR IF VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
prefix = [0] * max(b + c + 1, d + 2)
for i in range(a, b + 1):
mins = i + b
maxs = i + c
prefix[maxs] += 1
prefix[mins - 1] -= 1
for i in range(len(prefix) - 2, -1, -1):
prefix[i] += prefix[i + 1]
ans = 0
for i in range(len(prefix) - 2, -1, -1):
prefix[i] += prefix[i + 1]
for i in range(c, d + 1):
ans += prefix[i + 1]
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
A, B, C, D = map(int, input().split())
li = [0] * (B + C + 2)
for i in range(A, B + 1):
twosidemin = i + B
twosidemax = i + C
li[twosidemin] += 1
li[twosidemax + 1] -= 1
for i in range(1, len(li)):
li[i] = li[i - 1] + li[i]
answer = 0
summ = li[0]
for i in range(1, len(li)):
summ += li[i]
li[i] = li[i - 1] + li[i]
for i in range(C, min(B + C + 1, D + 1)):
answer += summ - li[i]
print(answer)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
A, b, c, d = map(int, input().split())
ans = 0
for a in range(A, b + 1):
if a + b < c:
t = c - a
t += 1
if t > c:
continue
else:
sv = c - t + 1
tv = d - c + 1
if sv > tv:
ans = ans + sv * tv - (tv - 1) * tv // 2
else:
ans = ans + sv * (sv + 1) // 2
elif a + b >= c:
t = a + b
if t > d:
ans = ans + (c - b + 1) * (d - c + 1)
continue
tb = b
ans = ans + (t - c) * (c - b + 1)
b += 1
sv = c - b + 1
tv = d - t + 1
if sv > tv:
ans = ans + sv * tv - (tv - 1) * tv // 2
else:
ans = ans + sv * (sv + 1) // 2
b = tb
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
import sys
input = sys.stdin.buffer.readline
def solution():
a, b, c, d = map(int, input().split())
ans = [0] * 1000002
for i in range(a, b + 1):
ans[i + b] += 1
ans[i + c + 1] -= 1
for i in range(1, 1000002):
ans[i] += ans[i - 1]
for i in range(1000000, -1, -1):
ans[i] += ans[i + 1]
sol = 0
for i in range(c, d + 1):
sol += ans[i + 1]
print(sol)
solution()
|
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
import sys
input = sys.stdin.readline
a, b, c, d = map(int, input().split())
ans = 0
pattern = 0
min_diff = min(b - a + 1, c - b + 1)
for xy_sum in range(a + b, b + c + 1):
pattern = min(xy_sum - a - b + 1, b + c - xy_sum + 1)
if pattern > min_diff:
pattern = min_diff
z_ceil = min(d + 1, xy_sum)
z_floor = c
if z_ceil > z_floor:
val = (z_ceil - z_floor) * pattern
ans += val
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def f(n):
if n <= 0:
return 0
else:
return n
def l(p, q, s):
return f(s + 1) - f(s - p) - f(s - q) + f(s - p - q - 1)
a, b, c, d = list(map(int, input().split()))
p = b - a
q = c - b
r = d - c
ans = 0
for i in range(1, c + b - d + 1):
ans += l(p, q, d + i - a - b)
if c == d:
print(ans)
else:
ans *= d - c + 1
for i in range(d, c, -1):
m = l(p, q, i - a - b)
ans += m * (i - c)
print(ans)
|
FUNC_DEF IF VAR NUMBER RETURN NUMBER RETURN VAR FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
Min1 = max(c + 1, a + b)
cnt = 0
for i in range(Min1, b + c + 1):
cntZ = min(d, i - 1) - c + 1
cntXY = min(b, i - b) - max(a, i - c) + 1
cnt = cnt + cntZ * cntXY
print(cnt)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
import sys
def main():
import sys
input = sys.stdin.readline
a, b, c, d = map(int, input().split())
al = rec(a, b, b, c)
ans = 0
for z in range(c, d + 1):
t = 0
if b + c <= z:
break
if a + b > z:
t = al
elif c - b <= b - a:
if z <= a + c:
t = al - tri1(a, b, z - b, z - a)
elif z >= 2 * b:
t = tri2(z - c, z - b, b, c)
else:
t = rec(z - b, b, b, c) + tri2(z - c, b, z - b, c) - (c - b + 1)
elif z <= 2 * b:
t = al - tri1(a, b, z - b, z - a)
elif z >= a + c:
t = tri2(z - c, z - b, b, c)
else:
t = rec(a, b, z - a, c) + tri2(a, z - b, b, z - a) - (b - a + 1)
ans += t
print(ans)
def rec(l, r, b, t):
return (r - l + 1) * (t - b + 1)
def tri1(l, b, r, t):
assert r - l == t - b
R = rec(l, r, b, t)
ol = r - l + 1
return (R - ol) // 2 + ol
def tri2(l, b, r, t):
assert r - l == t - b
R = rec(l, r, b, t)
ol = r - l + 1
return (R - ol) // 2
main()
|
IMPORT FUNC_DEF IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR IF BIN_OP VAR VAR BIN_OP VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR IF VAR BIN_OP NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER FUNC_DEF BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_DEF BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
dp = [0] * (b + c + 2)
su = 0
for i in range(a, b + 1):
sl = b + i
sh = c + i
dp[sl] += 1
dp[sh + 1] -= 1
for i in range(1, b + c + 2):
dp[i] = dp[i] + dp[i - 1]
for i in range(len(dp) - 3, -1, -1):
dp[i] = dp[i + 1] + dp[i]
for i in range(c, d + 1):
if i < len(dp) - 1:
su += dp[i + 1]
print(su)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def cnt(x):
return x * (x + 1) // 2
t = 1
while t > 0:
t -= 1
a, b, c, d = map(int, input().split())
ans = 0
for x in range(a, b + 1):
l, r = x + b, x + c
ans += cnt(min(r, d) - c) - cnt(max(min(l - 1, d) - c, 0))
ans += max(0, r - max(d, l - 1)) * (d - c + 1)
print(ans)
|
FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
maxa = c + b
mini = b + a
lene = maxa - mini + 1
ans = [(0) for i in range(lene)]
c1 = b - a + 1
c2 = c - b + 1
mini = min(c1, c2)
ans[0] = 1
ans[-1] = 1
for i in range(1, len(ans) // 2):
if i + 1 > mini:
ans[i] = mini
ans[-1 * (i + 1)] = mini
else:
ans[i] = i + 1
ans[-1 * (i + 1)] = i + 1
if len(ans) % 2 == 1:
ans[len(ans) // 2] = mini
total = 0
mini = a + b
for i in range(len(ans)):
ram = i + mini
if ram <= c:
continue
elif ram > d:
total += ans[i] * (d - c + 1)
else:
total += ans[i] * (ram - c)
print(total)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR IF VAR VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
zmax = b + c
zmin = max(c, a + b)
res = 0
for z in range(zmin, zmax + 1):
xmax = min(b, z - b)
xmin = max(a, z - c)
if xmin <= xmax:
res += min(z - c, d - c + 1) * (xmax - xmin + 1)
print(res)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
strli = input().split(" ")
A = int(strli[0])
B = int(strli[1])
C = int(strli[2])
D = int(strli[3])
count = 0
numX = B - A + 1
numY = C - B + 1
for z in range(C, D + 1, 1):
yG = z - A
if yG < B:
count += numY * numX
continue
elif yG >= C:
validYs = C - yG
add1sLeft = numX + validYs - 1
validYs = 0
if add1sLeft > 0:
if add1sLeft <= numY:
count += (1 + add1sLeft) * add1sLeft / 2
else:
count += (1 + numY) * numY / 2
add1sLeft -= numY
count += numY * add1sLeft
else:
validYs = C - yG
if validYs + numX - 1 <= numY:
count += (validYs + (validYs + numX - 1)) * numX / 2
else:
opsToMax = numY - validYs
count += (validYs + numY) / 2 * (opsToMax + 1)
count += numY * (numX - 1 - opsToMax)
print(round(count))
|
ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def read_int():
return int(input())
def read_ints():
return list(map(int, input().split(" ")))
a, b, c, d = read_ints()
ans = 0
m = min(c - b, d - c)
n = max(c - b, d - c)
for delta in range(d - b + 1):
right = 0
if delta <= m:
right = delta + 1
elif delta <= n:
right = m + 1
else:
right = d - b - delta + 1
left = max(0, b - max(delta + 1, a) + 1)
ans += left * right
print(ans)
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
ans = 0
for x in range(a, b + 1):
min_, max_ = max(b, c - x + 1), min(c, d - x + 1)
ta, tb = min_ + x - c, max_ + x - c
ans += (ta + tb) * max(tb - ta + 1, 0) // 2 + (d - c + 1) * min(c - max_, c - b + 1)
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = list(map(int, input().split()))
y = c
otvet = 0
for x in range(a, b + 1):
z = x + y - 1
tr_xy = min(z, d) - c + 1
y_kolvo = min(z - c, c - b)
y_v_z = max(0, min(z - d, y_kolvo))
an = tr_xy - y_kolvo + y_v_z
otvet += y_v_z * tr_xy + (tr_xy * tr_xy + tr_xy - an * an + an) // 2
print(otvet)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def sumn(n1, n2):
return (n2 * (n2 + 1) - (n1 - 1) * n1) // 2
a, b, c, d = map(int, input().split())
cnt = 0
for u in range(a, b + 1):
for i in range(max(b, c - u), c + 1):
if u + i > d:
cnt += (d - c + 1) * (c - i + 1)
break
elif c < u + i <= d:
if u + c >= d:
t = d - u
cnt += (u - c) * (t - i + 1) + sumn(i, t)
i = t + 1
cnt += (d - c + 1) * (c - i + 1)
break
else:
cnt += (u - c) * (c - i + 1) + sumn(i, c)
break
print(cnt)
|
FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
s = 0
k = 0
l = 0
rar = min(b - a, c - b)
rer = max(b - a, c - b)
while l <= rar:
if a + b + l > c:
s += (k + 1) * (min(a + b + l, d + 1) - c)
k += 1
l += 1
k -= 1
while l <= rer:
if a + b + l > c:
s += (k + 1) * (min(a + b + l, d + 1) - c)
l += 1
k -= 1
while k >= 0:
if a + b + l > c:
s += (k + 1) * (min(a + b + l, d + 1) - c)
k -= 1
l += 1
print(s)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR WHILE VAR VAR IF BIN_OP BIN_OP VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER WHILE VAR VAR IF BIN_OP BIN_OP VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER WHILE VAR NUMBER IF BIN_OP BIN_OP VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
import sys
(*data,) = sys.stdin.read().split("\n")[::-1]
def input():
return data.pop()
def fprint(*args, **kwargs):
print(*args, **kwargs, flush=True)
def eprint(*args, **kwargs):
print(*args, **kwargs, file=sys.stderr)
def ari(start, end, n):
return (start + end) * n // 2
a, b, c, d = map(int, input().split())
ans = 0
for x in range(a, b + 1):
mn_y = max(c - x + 1, b)
mx_y = c
start_d_num = min(mn_y + x, d + 1) - c
end_d_num = min(mx_y + x, d + 1) - c
n = end_d_num - start_d_num + 1
ans += ari(start_d_num, start_d_num + n - 1, n)
mn_y += n
ans += (mx_y + 1 - mn_y) * (d + 1 - c)
print(ans)
|
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING NUMBER FUNC_DEF RETURN FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR VAR VAR NUMBER FUNC_DEF EXPR FUNC_CALL VAR VAR VAR VAR FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
from itertools import accumulate
a, b, c, d = map(int, input().split())
ans = 0
cnt = 0
ls = [0] * (b + c + 1)
for i in range(a + b, b + c + 1):
if not (i - a <= c and i - b <= b):
ls[i] = min(c - b + 1, b - a + 1)
elif i - a <= c and i - b > b:
ls[i] = min(i - a - b + 1, b - a + 1)
elif i - b <= b and i - a > c:
ls[i] = min(c - b + 1, i - b - a + 1)
else:
ls[i] = min(i - a - b + 1, i - b - a + 1)
if ls[a + 2 * b + c - i]:
ls[i] = ls[a + 2 * b + c - i]
acc = list(accumulate(ls))
for z in range(c, d + 1):
if z >= b + c:
continue
ans += acc[-1] - acc[z]
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER IF VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
import sys
A, B, C, D = map(int, sys.stdin.readline().split())
def count(n):
upper = min(B - A, C - B) + 1
est = min(n - A, C) - max(B, n - B) + 1
return min(upper, est)
ans = 0
for rest in range(max(A + B, C + 1), B + C + 1):
num_avail_z = min(D - C + 1, rest - C)
ans += num_avail_z * count(rest)
print(ans)
|
IMPORT ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER RETURN FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def main():
a, b, c, d = map(int, input().split())
q = c - b + 1
su = 0
d = min(d, b + c - 1)
for z in range(c, d + 1):
ma = q - max(b, z - b + 1) + b
minx = max(a, z - c + 1)
l = q - max(b, z - minx + 1) + b
if l == ma:
su += ma * (b - minx + 1)
elif b - minx + 1 >= ma - l + 1:
su += (b - minx + 1 - ma + l - 1) * ma
su += sun(ma, l)
else:
su += sun(b - minx + 1, l)
print(su)
def sun(a, b):
return (a + b) * (a - b + 1) // 2
main()
|
FUNC_DEF ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
s = 0
for z in range(c, min(d + 1, b + c)):
if z - a <= c:
s += (b - a + 1) * (c - max(b - 1, z - a))
if z - a >= b:
x = min(z - a - b + 1, b - a)
s += (b - a) * x - (x - 1) * x / 2
elif z - a > c:
x = min(b + c - z, c - b + 1)
s += (b + c - z) * x - (x - 1) * x / 2
print(int(s))
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR VAR IF BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
A, B, C, D = map(int, input().split())
def n_x(d):
return min(max(0, B - d), B - A + 1)
c = 0
m = min(D - C + 1, C - B + 1)
dist = D - B + 1
for delta in range(0, dist):
if delta < m:
c += (delta + 1) * n_x(delta)
elif dist - delta - 1 < m:
c += (dist - delta) * n_x(delta)
else:
c += m * n_x(delta)
print(c)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def main():
t = 1
for _ in range(t):
a, b, c, d = map(int, input().split())
ans = 0
for i in range(b, c + 1):
mix = min(b, max(a, c - i + 1))
mx = min(b, max(a, d - i + 1))
if mx + i <= c:
continue
ok = min(d, mx + i - 1) - c + 1
l = min(ok, mix + i - c)
l -= 1
ans += ok * (ok + 1) // 2
ans -= l * (l + 1) // 2
ans += (b - mx) * ok
print(ans)
return
main()
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
ans = 0
for i in range(max(a + b, c), b + c + 1):
if i == a + b or i == b + c:
ans += min(i - c, d - c + 1)
elif i - b < b:
ans += min(max(0, i - b - a + 1), c - b + 1) * min(i - c, d - c + 1)
elif i - b > b:
ans += min(max(0, c + 1 - i + b), b + 1 - a) * min(i - c, d - c + 1)
else:
ans += min(c + 1 - b, b + 1 - a) * min(i - c, d - c + 1)
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
import sys
sum = 0
a, b, c, d = map(int, input().split())
for i in range(max(a + b, c + 1), c + b + 1):
sum += (min(d + 1, i) - c) * (min(i - b, b) - max(i - c, a) + 1)
print(sum)
|
IMPORT ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
A, B, C, D = map(int, input().split())
ans = 0
bg = max(C + 1, A + B)
for i in range(bg, B + C + 1):
res = i - A - B
x, y = A, B
if res > B - A:
x = B
res -= B - A
else:
x += res
res = 0
y += res
ans += (min(x - A, C - y) + 1) * (min(i - 1, D) - C + 1)
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR NUMBER VAR VAR VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
[a, b, c, d] = input().split(" ")
a = int(a)
b = int(b)
c = int(c)
d = int(d)
ans = (a + 2 * b - c) * (b + 1 - a) * (c + 1 - b) // 2
if a + b - c < 0:
ans += (c - a - b) * (c - a - b + 1) * (c - a - b + 2) // 6
if 2 * b - c < 0:
ans -= (c - 2 * b - 1) * (c - 2 * b) * (c - 2 * b + 1) // 6
if b > d + 1 - c:
ans -= (b + c - d - 1) * (b + c - d) * (b + c - d + 1) // 6
if a > d + 1 - c:
ans += (a + c - d) * (a + c - d - 1) * (a + c - d - 2) // 6
if 2 * b - c > d + 1 - c:
ans += (2 * b - d) * (2 * b - d - 1) * (2 * b - d - 2) // 6
if a + b - c > d + 1 - c:
ans = (d + 1 - c) * (b + 1 - a) * (c + 1 - b)
print(ans)
|
ASSIGN LIST VAR VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP BIN_OP VAR VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER NUMBER IF BIN_OP BIN_OP NUMBER VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER BIN_OP VAR BIN_OP NUMBER VAR BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER NUMBER IF VAR BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER NUMBER IF VAR BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER NUMBER IF BIN_OP BIN_OP NUMBER VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP NUMBER VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER NUMBER IF BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
inp = input().split()
a = int(inp[0])
b = int(inp[1])
c = int(inp[2])
d = int(inp[3])
ans = c + 1
other = ans - a + 1 - b
other2 = b - a + 1
correct = min(other, other2)
if correct < 0:
correct = 0
i = ans
k = 0
condition = min(b * 2, c + a)
condition2 = max(b * 2, c + a)
count = 0
while i <= b + c:
if k <= d - c:
k = k + 1
count = count + k * correct
if i < condition:
correct = correct + 1
elif i >= condition2:
correct = correct - 1
if other < 0:
correct = 0
other += 1
i = i + 1
print(count)
|
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR VAR ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
A, B, C, D = map(int, input().split())
ans = 0
for z in range(C, D + 1):
y_STEPS = {(0): B, (1): max(B, z - B), (2): max(B, min(C, z - A + 1)), (3): C}
y_MIN = min(max(0, 2 * B - z), B - A + 1)
y_MAX = max(0, min(B - A + 1, C + B - z))
ans += (y_STEPS[3] - y_STEPS[2]) * y_MAX
ans += (y_MIN + y_MAX) * (y_STEPS[2] - y_STEPS[1] + 1) // 2
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER NUMBER NUMBER VAR FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = [int(x) for x in input().split()]
maxAmt = min(b - a + 1, c - b + 1)
low = b + a
high = c + b
sums = {high: 1}
for x in range(high - 1, low - 1, -1):
sums[x] = sums[x + 1] + min(maxAmt, x - low + 1, high - x + 1)
total = 0
for x in range(c, d + 1):
if x + 1 <= high:
if x + 1 in sums:
total += sums[x + 1]
elif x < high:
total += sums[low]
print(total)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR DICT VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER VAR IF BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
import sys
A, B, C, D = map(int, sys.stdin.readline().split())
N = D * 3
a = [0] * N
ans = 0
for i in range(A, B + 1):
a[i + B] += 1
a[i + C + 1] -= 1
for i in range(1, N):
a[i] += a[i - 1]
for i in range(1, N):
a[i] += a[i - 1]
for i in range(C, D + 1):
ans += a[N - 1] - a[i]
print(ans)
|
IMPORT ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
def an(l, r):
return (r - l) * (r - l + 1) // 2 + (r - l + 1) * l
ans = 0
for x in range(a, b + 1):
l = b + x - 1
r = c + x - 1
if l > d:
ans += (d - c + 1) * (c - b + 1)
elif l >= c and r <= d:
ans += an(l - c + 1, r - c + 1)
elif l >= c and r > d:
ans += an(l - c + 1, d - c + 1) + (d - c + 1) * (r - d)
elif l < c and r <= d:
ans += an(c - c + 1, r - c + 1)
elif l < c and r > d:
ans += an(c - c + 1, d - c + 1) + (d - c + 1) * (r - d)
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR IF VAR VAR VAR VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
import sys
def MI():
return map(int, sys.stdin.readline().split())
def main():
a, b, c, d = MI()
cnt = []
for z in range(c + 1, c + b + 1):
b1 = z - b
c1 = z - a
l = max(b, b1)
r = min(c, c1)
cur = max(r - l + 1, 0)
cnt.append(cur)
m = len(cnt)
for i in range(m - 2, -1, -1):
cnt[i] += cnt[i + 1]
print(sum(cnt[: d - c + 1]))
main()
|
IMPORT FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def countGreater(arr, n, k):
l = 0
r = n - 1
leftGreater = n
while l <= r:
m = int(l + (r - l) / 2)
if arr[m] >= k:
leftGreater = m
r = m - 1
else:
l = m + 1
return n - leftGreater
a, b, c, d = map(int, input().split())
s = dict()
l = []
for i in range(c, d + 1):
l.append(i)
for i in range(a + b, b + c + 1):
if i - a > c:
st = i - c
else:
st = a
if i - b < b:
end = i - b
else:
end = b
s.update({i: end - st + 1})
ans = 0
for i in s:
ans += (len(l) - countGreater(l, len(l), i)) * s[i]
print(ans)
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN BIN_OP VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR DICT VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
from itertools import accumulate
from sys import stdin, stdout
def MI():
return map(int, stdin.readline().split())
a, b, c, d = MI()
ans = 0
arr = [0] * (b + c + 2)
for x in range(a, b + 1):
arr[x + b] += 1
arr[x + c + 1] -= 1
psum = list(accumulate(arr))
psum = list(accumulate(psum))
e = min(d, b + c)
for z in range(c, e + 1):
ans += psum[-1] - psum[z]
stdout.write(str(ans) + "\n")
|
FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
N = int(1000000.0 + 7)
seg = [(0) for i in range(N)]
a, b, c, d = map(int, input().split())
for i in range(a, b + 1):
seg[i + c + 1] -= 1
seg[i + b] += 1
for i in range(1, N):
seg[i] += seg[i - 1]
for i in range(1, N):
seg[i] += seg[i - 1]
ans = 0
for i in range(c, d + 1):
ans += seg[N - 1] - seg[i]
print(ans)
|
ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def fun(x):
val = x * (x + 1) // 2
return val
a, b, c, d = map(int, input().split())
ans = 0
for i in range(a, b + 1):
rr = min(c + i - 1, d)
s3 = rr - c + 1
x = rr - i + 1
if x <= b:
s2 = c - b + 1
ans += s2 * s3
else:
ans += (c - x) * s3
s2 = x - b + 1
if s2 >= s3:
ans += fun(s3)
else:
ans += fun(s3) - fun(s3 - s2)
print(ans)
|
FUNC_DEF ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER RETURN VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
def main():
a, b, c, d = map(int, input().split())
ans = 0
for x in range(a, b + 1):
k = max(c + 1 - x, b)
p = min(d - c + 1, x)
q = min(d - c + 1, x + k - c)
ans += p * (p + 1) // 2 - q * (q - 1) // 2 + (c - k - p + q) * p
print(ans)
main()
|
FUNC_DEF ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
ans = 0
for t in range(a + b, b + c + 1):
M = min(b, t - b)
m = max(a, t - c)
dx = M - m + 1
if c <= t - 1 <= d:
dx *= t - 1 - c + 1
ans += dx
elif t - 1 > d:
dx *= d - c + 1
ans += dx
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR VAR IF BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split(" "))
li = [0] * int(pow(10, 6) + 2)
n = int(pow(10, 6) + 2)
for i in range(a, b + 1):
li[i + b] += 1
li[i + c + 1] -= 1
for i in range(1, n):
li[i] += li[i - 1]
for i in range(1, n):
li[i] += li[i - 1]
ans = 0
for i in range(c, d + 1):
ans += li[n - 1] - li[i]
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
ans = (b - a + 1) * (c - b + 1) * (d - c + 1)
arr = [0] * (d + 5)
for i in range(a, b + 1):
if i + b < len(arr):
arr[i + b] += 1
if i + c + 1 < len(arr):
arr[i + c + 1] -= 1
for i in range(1, len(arr)):
arr[i] += arr[i - 1]
for i in range(1, len(arr)):
arr[i] += arr[i - 1]
for i in range(c, d + 1):
ans -= arr[i]
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
A, B, C, D = [int(i) for i in input().split()]
ans = 0
for x in range(A, B + 1):
ans += max(0, C - max(D - x + 1, B) + 1) * (D - C + 1)
m = max(0, min(C, D - x) - max(B, C - x + 1) + 1)
ans += m * (x - C)
ans += m * (min(C, D - x) + max(B, C - x + 1)) // 2
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
import sys
input = sys.stdin.readline
def sum1(x):
k = min(d, c + x - 1, b + x - 1)
if k < c:
return 0
else:
return (c - b + 1) * (k - c + 1)
def sum2(x):
k = min(d, c + x - 1)
l = max(b + x, c)
if k < l:
return 0
else:
return (c + x) * (k - l + 1) - (k + l) * (k - l + 1) // 2
a, b, c, d = map(int, input().split())
res = 0
for x in range(a, b + 1):
res += sum1(x) + sum2(x)
print(res)
|
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR RETURN NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
A, B, C, D = map(int, input().split())
X = B - A + 1
Y = C - B + 1
def cnt(c):
if A + B > c:
return X * Y
if B + C <= c:
return 0
m = B + C - c
if X > Y:
if m <= Y:
return m * (m + 1) // 2
elif m <= X:
return (m + m - Y + 1) * Y // 2
else:
n = X + Y - 1 - m
return X * Y - n * (n + 1) // 2
elif m <= X:
return m * (m + 1) // 2
elif m <= Y:
return (m + m - X + 1) * X // 2
else:
n = X + Y - 1 - m
return X * Y - n * (n + 1) // 2
ans = 0
for c in range(C, D + 1):
ans += cnt(c)
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_DEF IF BIN_OP VAR VAR VAR RETURN BIN_OP VAR VAR IF BIN_OP VAR VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR RETURN BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR RETURN BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
A, B, C, D = map(int, input().split())
out = 0
for s in range(A + B, B + C + 1):
xSmall = max(A, s - C)
xBig = min(B, s - B)
count = xBig - xSmall + 1
if count < 0:
continue
zCount = max(0, min(s - 1, D) - C + 1)
out += count * zCount
print(out)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Like any unknown mathematician, Yuri has favourite numbers: $A$, $B$, $C$, and $D$, where $A \leq B \leq C \leq D$. Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $x$, $y$, and $z$ exist, such that $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
-----Input-----
The first line contains four integers: $A$, $B$, $C$ and $D$ ($1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$) — Yuri's favourite numbers.
-----Output-----
Print the number of non-degenerate triangles with integer sides $x$, $y$, and $z$ such that the inequality $A \leq x \leq B \leq y \leq C \leq z \leq D$ holds.
-----Examples-----
Input
1 2 3 4
Output
4
Input
1 2 2 5
Output
3
Input
500000 500000 500000 500000
Output
1
-----Note-----
In the first example Yuri can make up triangles with sides $(1, 3, 3)$, $(2, 2, 3)$, $(2, 3, 3)$ and $(2, 3, 4)$.
In the second example Yuri can make up triangles with sides $(1, 2, 2)$, $(2, 2, 2)$ and $(2, 2, 3)$.
In the third example Yuri can make up only one equilateral triangle with sides equal to $5 \cdot 10^5$.
|
a, b, c, d = map(int, input().split())
def ncombi(n):
if n <= 0:
return 0
else:
return n * (n + 1) // 2
ans = 0
for x in range(c, d + 1):
ans += (
ncombi(b + c - x)
- ncombi(2 * b - x - 1)
- ncombi(a + c - x - 1)
+ (2 * b - x - 1 > b - a) * ncombi(2 * b - x - 2 + a - b)
)
print(ans)
|
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF IF VAR NUMBER RETURN NUMBER RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER BIN_OP VAR VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.