description
stringlengths 171
4k
| code
stringlengths 94
3.98k
| normalized_code
stringlengths 57
4.99k
|
|---|---|---|
This is the hard version of the problem. The difference between the versions is the constraint on n and the required number of operations. You can make hacks only if all versions of the problem are solved.
There are two binary strings a and b of length n (a binary string is a string consisting of symbols 0 and 1). In an operation, you select a prefix of a, and simultaneously invert the bits in the prefix (0 changes to 1 and 1 changes to 0) and reverse the order of the bits in the prefix.
For example, if a=001011 and you select the prefix of length 3, it becomes 011011. Then if you select the entire string, it becomes 001001.
Your task is to transform the string a into b in at most 2n operations. It can be proved that it is always possible.
Input
The first line contains a single integer t (1β€ tβ€ 1000) β the number of test cases. Next 3t lines contain descriptions of test cases.
The first line of each test case contains a single integer n (1β€ nβ€ 10^5) β the length of the binary strings.
The next two lines contain two binary strings a and b of length n.
It is guaranteed that the sum of n across all test cases does not exceed 10^5.
Output
For each test case, output an integer k (0β€ kβ€ 2n), followed by k integers p_1,β¦,p_k (1β€ p_iβ€ n). Here k is the number of operations you use and p_i is the length of the prefix you flip in the i-th operation.
Example
Input
5
2
01
10
5
01011
11100
2
01
01
10
0110011011
1000110100
1
0
1
Output
3 1 2 1
6 5 2 5 3 1 2
0
9 4 1 2 10 4 1 2 1 5
1 1
Note
In the first test case, we have 01β 11β 00β 10.
In the second test case, we have 01011β 00101β 11101β 01000β 10100β 00100β 11100.
In the third test case, the strings are already the same. Another solution is to flip the prefix of length 2, which will leave a unchanged.
|
for _ in range(int(input())):
n = int(input())
s = input()
s1 = input()
if s == s1:
print("0")
continue
ans = []
s2 = s + "0"
i = 0
while s2[i] == "1":
i += 1
if i != 0:
ans.append(i)
for j in range(i + 1, n + 1):
if s2[j] == "1" and s2[j - 1] == "0":
tmp = j
elif s2[j] == "0" and s2[j - 1] == "1":
ans.append(tmp)
ans.append(j)
s3 = "0" + s1
if s1.count("0") == n:
print(len(ans), *ans)
continue
tmp = n
for j in range(n, -1, -1):
if s3[j] == "0" and s3[j - 1] == "1":
tmp = j - 1
elif s3[j] == "1" and s3[j - 1] == "0":
ans.append(tmp)
if j != 1:
ans.append(j - 1)
print(len(ans), *ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR LIST ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR NUMBER WHILE VAR VAR STRING VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR STRING VAR BIN_OP VAR NUMBER STRING ASSIGN VAR VAR IF VAR VAR STRING VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP STRING VAR IF FUNC_CALL VAR STRING VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR VAR STRING VAR BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR STRING VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
This is the hard version of the problem. The difference between the versions is the constraint on n and the required number of operations. You can make hacks only if all versions of the problem are solved.
There are two binary strings a and b of length n (a binary string is a string consisting of symbols 0 and 1). In an operation, you select a prefix of a, and simultaneously invert the bits in the prefix (0 changes to 1 and 1 changes to 0) and reverse the order of the bits in the prefix.
For example, if a=001011 and you select the prefix of length 3, it becomes 011011. Then if you select the entire string, it becomes 001001.
Your task is to transform the string a into b in at most 2n operations. It can be proved that it is always possible.
Input
The first line contains a single integer t (1β€ tβ€ 1000) β the number of test cases. Next 3t lines contain descriptions of test cases.
The first line of each test case contains a single integer n (1β€ nβ€ 10^5) β the length of the binary strings.
The next two lines contain two binary strings a and b of length n.
It is guaranteed that the sum of n across all test cases does not exceed 10^5.
Output
For each test case, output an integer k (0β€ kβ€ 2n), followed by k integers p_1,β¦,p_k (1β€ p_iβ€ n). Here k is the number of operations you use and p_i is the length of the prefix you flip in the i-th operation.
Example
Input
5
2
01
10
5
01011
11100
2
01
01
10
0110011011
1000110100
1
0
1
Output
3 1 2 1
6 5 2 5 3 1 2
0
9 4 1 2 10 4 1 2 1 5
1 1
Note
In the first test case, we have 01β 11β 00β 10.
In the second test case, we have 01011β 00101β 11101β 01000β 10100β 00100β 11100.
In the third test case, the strings are already the same. Another solution is to flip the prefix of length 2, which will leave a unchanged.
|
for _ in range(int(input())):
length = int(input())
a = list(input())
b = list(input())
count = length - 1
c_list = []
invert = 0
reverse = 1
le = 0
ri = length - 1
while count != -1:
if reverse:
if int(a[ri]) != (invert + int(b[count])) % 2:
if a[ri] == a[le]:
c_list.append(count + 1)
else:
c_list.append(1)
c_list.append(count + 1)
reverse = 1 - reverse
invert = 1 - invert
le += 1
else:
ri -= 1
elif int(a[le]) != (invert + int(b[count])) % 2:
if a[ri] == a[le]:
c_list.append(count + 1)
else:
c_list.append(1)
c_list.append(count + 1)
reverse = 1 - reverse
invert = 1 - invert
ri -= 1
else:
le += 1
count -= 1
print(len(c_list), *c_list)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR IF FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP NUMBER VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
This is the hard version of the problem. The difference between the versions is the constraint on n and the required number of operations. You can make hacks only if all versions of the problem are solved.
There are two binary strings a and b of length n (a binary string is a string consisting of symbols 0 and 1). In an operation, you select a prefix of a, and simultaneously invert the bits in the prefix (0 changes to 1 and 1 changes to 0) and reverse the order of the bits in the prefix.
For example, if a=001011 and you select the prefix of length 3, it becomes 011011. Then if you select the entire string, it becomes 001001.
Your task is to transform the string a into b in at most 2n operations. It can be proved that it is always possible.
Input
The first line contains a single integer t (1β€ tβ€ 1000) β the number of test cases. Next 3t lines contain descriptions of test cases.
The first line of each test case contains a single integer n (1β€ nβ€ 10^5) β the length of the binary strings.
The next two lines contain two binary strings a and b of length n.
It is guaranteed that the sum of n across all test cases does not exceed 10^5.
Output
For each test case, output an integer k (0β€ kβ€ 2n), followed by k integers p_1,β¦,p_k (1β€ p_iβ€ n). Here k is the number of operations you use and p_i is the length of the prefix you flip in the i-th operation.
Example
Input
5
2
01
10
5
01011
11100
2
01
01
10
0110011011
1000110100
1
0
1
Output
3 1 2 1
6 5 2 5 3 1 2
0
9 4 1 2 10 4 1 2 1 5
1 1
Note
In the first test case, we have 01β 11β 00β 10.
In the second test case, we have 01011β 00101β 11101β 01000β 10100β 00100β 11100.
In the third test case, the strings are already the same. Another solution is to flip the prefix of length 2, which will leave a unchanged.
|
for _ in range(int(input())):
n = int(input())
a = input()
b = input()
ans = []
inv, rev = 0, 0
cnt = 0
for i in range(n - 1, -1, -1):
c = cnt // 2
if cnt % 2 == 1:
rev = n - c - 1
else:
rev = c
front = a[rev]
if inv % 2 == 1:
if front == "0":
front = "1"
else:
front = "0"
if front == b[i]:
ans.append(1)
inv += 1
ans.append(i + 1)
cnt += 1
print(len(ans), *ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER IF VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING IF VAR VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
This is the hard version of the problem. The difference between the versions is the constraint on n and the required number of operations. You can make hacks only if all versions of the problem are solved.
There are two binary strings a and b of length n (a binary string is a string consisting of symbols 0 and 1). In an operation, you select a prefix of a, and simultaneously invert the bits in the prefix (0 changes to 1 and 1 changes to 0) and reverse the order of the bits in the prefix.
For example, if a=001011 and you select the prefix of length 3, it becomes 011011. Then if you select the entire string, it becomes 001001.
Your task is to transform the string a into b in at most 2n operations. It can be proved that it is always possible.
Input
The first line contains a single integer t (1β€ tβ€ 1000) β the number of test cases. Next 3t lines contain descriptions of test cases.
The first line of each test case contains a single integer n (1β€ nβ€ 10^5) β the length of the binary strings.
The next two lines contain two binary strings a and b of length n.
It is guaranteed that the sum of n across all test cases does not exceed 10^5.
Output
For each test case, output an integer k (0β€ kβ€ 2n), followed by k integers p_1,β¦,p_k (1β€ p_iβ€ n). Here k is the number of operations you use and p_i is the length of the prefix you flip in the i-th operation.
Example
Input
5
2
01
10
5
01011
11100
2
01
01
10
0110011011
1000110100
1
0
1
Output
3 1 2 1
6 5 2 5 3 1 2
0
9 4 1 2 10 4 1 2 1 5
1 1
Note
In the first test case, we have 01β 11β 00β 10.
In the second test case, we have 01011β 00101β 11101β 01000β 10100β 00100β 11100.
In the third test case, the strings are already the same. Another solution is to flip the prefix of length 2, which will leave a unchanged.
|
for _ in range(int(input())):
n = int(input())
a = list(map(int, list(input())))
b = list(map(int, list(input())))
ans = []
flg = a[0]
for i in range(n - 1):
if flg != a[i + 1]:
flg ^= 1
ans.append(i + 1)
for i in range(n - 1, -1, -1):
if flg != b[i]:
flg ^= 1
ans.append(i + 1)
print(len(ans), end=" ")
for i in ans:
print(i, end=" ")
print("")
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR STRING
|
This is the hard version of the problem. The difference between the versions is the constraint on n and the required number of operations. You can make hacks only if all versions of the problem are solved.
There are two binary strings a and b of length n (a binary string is a string consisting of symbols 0 and 1). In an operation, you select a prefix of a, and simultaneously invert the bits in the prefix (0 changes to 1 and 1 changes to 0) and reverse the order of the bits in the prefix.
For example, if a=001011 and you select the prefix of length 3, it becomes 011011. Then if you select the entire string, it becomes 001001.
Your task is to transform the string a into b in at most 2n operations. It can be proved that it is always possible.
Input
The first line contains a single integer t (1β€ tβ€ 1000) β the number of test cases. Next 3t lines contain descriptions of test cases.
The first line of each test case contains a single integer n (1β€ nβ€ 10^5) β the length of the binary strings.
The next two lines contain two binary strings a and b of length n.
It is guaranteed that the sum of n across all test cases does not exceed 10^5.
Output
For each test case, output an integer k (0β€ kβ€ 2n), followed by k integers p_1,β¦,p_k (1β€ p_iβ€ n). Here k is the number of operations you use and p_i is the length of the prefix you flip in the i-th operation.
Example
Input
5
2
01
10
5
01011
11100
2
01
01
10
0110011011
1000110100
1
0
1
Output
3 1 2 1
6 5 2 5 3 1 2
0
9 4 1 2 10 4 1 2 1 5
1 1
Note
In the first test case, we have 01β 11β 00β 10.
In the second test case, we have 01011β 00101β 11101β 01000β 10100β 00100β 11100.
In the third test case, the strings are already the same. Another solution is to flip the prefix of length 2, which will leave a unchanged.
|
TC = int(input())
for tc in range(TC):
N = int(input())
S = input()
T = input()
i = N - 1
j = 0
result = []
rev = False
while j <= i:
if rev:
while j < i and S[j] != T[i - j]:
j += 1
if j > i:
break
elif i > j:
if S[i] != T[i - j]:
result.append(1)
result.append(i - j + 1)
rev = not rev
i -= 1
else:
if S[j] == T[0]:
result.append(1)
i -= 1
else:
while i >= 0 and S[i] == T[i - j]:
i -= 1
if j > i:
break
elif i > j:
if S[j] == T[i - j]:
result.append(1)
result.append(i - j + 1)
rev = not rev
j += 1
else:
if S[j] != T[0]:
result.append(1)
j += 1
print(len(result), end=" ")
for r in result:
print(r, end=" ")
print()
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR VAR IF VAR WHILE VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR NUMBER IF VAR VAR IF VAR VAR IF VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER WHILE VAR NUMBER VAR VAR VAR BIN_OP VAR VAR VAR NUMBER IF VAR VAR IF VAR VAR IF VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
|
This is the hard version of the problem. The difference between the versions is the constraint on n and the required number of operations. You can make hacks only if all versions of the problem are solved.
There are two binary strings a and b of length n (a binary string is a string consisting of symbols 0 and 1). In an operation, you select a prefix of a, and simultaneously invert the bits in the prefix (0 changes to 1 and 1 changes to 0) and reverse the order of the bits in the prefix.
For example, if a=001011 and you select the prefix of length 3, it becomes 011011. Then if you select the entire string, it becomes 001001.
Your task is to transform the string a into b in at most 2n operations. It can be proved that it is always possible.
Input
The first line contains a single integer t (1β€ tβ€ 1000) β the number of test cases. Next 3t lines contain descriptions of test cases.
The first line of each test case contains a single integer n (1β€ nβ€ 10^5) β the length of the binary strings.
The next two lines contain two binary strings a and b of length n.
It is guaranteed that the sum of n across all test cases does not exceed 10^5.
Output
For each test case, output an integer k (0β€ kβ€ 2n), followed by k integers p_1,β¦,p_k (1β€ p_iβ€ n). Here k is the number of operations you use and p_i is the length of the prefix you flip in the i-th operation.
Example
Input
5
2
01
10
5
01011
11100
2
01
01
10
0110011011
1000110100
1
0
1
Output
3 1 2 1
6 5 2 5 3 1 2
0
9 4 1 2 10 4 1 2 1 5
1 1
Note
In the first test case, we have 01β 11β 00β 10.
In the second test case, we have 01011β 00101β 11101β 01000β 10100β 00100β 11100.
In the third test case, the strings are already the same. Another solution is to flip the prefix of length 2, which will leave a unchanged.
|
for _ in range(int(input())):
n = int(input())
ar = list(map(int, list(input())))
br = list(map(int, list(input())))
ar.append(0)
br.append(0)
ans = 0
x1 = []
x2 = []
for i in range(1, n + 1):
if ar[i] != ar[i - 1]:
x1.append(i)
ans += 1
if br[i] != br[i - 1]:
x2.append(i)
ans += 1
print(ans, *(x1 + x2[::-1]))
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER
|
This is the hard version of the problem. The difference between the versions is the constraint on n and the required number of operations. You can make hacks only if all versions of the problem are solved.
There are two binary strings a and b of length n (a binary string is a string consisting of symbols 0 and 1). In an operation, you select a prefix of a, and simultaneously invert the bits in the prefix (0 changes to 1 and 1 changes to 0) and reverse the order of the bits in the prefix.
For example, if a=001011 and you select the prefix of length 3, it becomes 011011. Then if you select the entire string, it becomes 001001.
Your task is to transform the string a into b in at most 2n operations. It can be proved that it is always possible.
Input
The first line contains a single integer t (1β€ tβ€ 1000) β the number of test cases. Next 3t lines contain descriptions of test cases.
The first line of each test case contains a single integer n (1β€ nβ€ 10^5) β the length of the binary strings.
The next two lines contain two binary strings a and b of length n.
It is guaranteed that the sum of n across all test cases does not exceed 10^5.
Output
For each test case, output an integer k (0β€ kβ€ 2n), followed by k integers p_1,β¦,p_k (1β€ p_iβ€ n). Here k is the number of operations you use and p_i is the length of the prefix you flip in the i-th operation.
Example
Input
5
2
01
10
5
01011
11100
2
01
01
10
0110011011
1000110100
1
0
1
Output
3 1 2 1
6 5 2 5 3 1 2
0
9 4 1 2 10 4 1 2 1 5
1 1
Note
In the first test case, we have 01β 11β 00β 10.
In the second test case, we have 01011β 00101β 11101β 01000β 10100β 00100β 11100.
In the third test case, the strings are already the same. Another solution is to flip the prefix of length 2, which will leave a unchanged.
|
from sys import stdin, stdout
def main():
t = int(stdin.readline())
for case in range(t):
n = int(stdin.readline())
a = stdin.readline()
b = stdin.readline()
k = 0
seq = []
flips = 0
checks = n
ax, ay, d = 0, n - 1, 1
by = n - 1
while checks > 0:
ch = a[ax]
if flips % 2 == 1:
if a[ax] == "1":
ch = "0"
else:
ch = "1"
if ch == b[by]:
k += 2
seq.append(1)
else:
k += 1
ax += d
d *= -1
ax, ay = ay, ax
seq.append(checks)
flips += 1
checks -= 1
by -= 1
stdout.write(str(k))
stdout.write(" ")
stdout.write(" ".join(map(str, seq)))
stdout.write("\n")
return
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER ASSIGN VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING IF VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING RETURN EXPR FUNC_CALL VAR
|
This is the hard version of the problem. The difference between the versions is the constraint on n and the required number of operations. You can make hacks only if all versions of the problem are solved.
There are two binary strings a and b of length n (a binary string is a string consisting of symbols 0 and 1). In an operation, you select a prefix of a, and simultaneously invert the bits in the prefix (0 changes to 1 and 1 changes to 0) and reverse the order of the bits in the prefix.
For example, if a=001011 and you select the prefix of length 3, it becomes 011011. Then if you select the entire string, it becomes 001001.
Your task is to transform the string a into b in at most 2n operations. It can be proved that it is always possible.
Input
The first line contains a single integer t (1β€ tβ€ 1000) β the number of test cases. Next 3t lines contain descriptions of test cases.
The first line of each test case contains a single integer n (1β€ nβ€ 10^5) β the length of the binary strings.
The next two lines contain two binary strings a and b of length n.
It is guaranteed that the sum of n across all test cases does not exceed 10^5.
Output
For each test case, output an integer k (0β€ kβ€ 2n), followed by k integers p_1,β¦,p_k (1β€ p_iβ€ n). Here k is the number of operations you use and p_i is the length of the prefix you flip in the i-th operation.
Example
Input
5
2
01
10
5
01011
11100
2
01
01
10
0110011011
1000110100
1
0
1
Output
3 1 2 1
6 5 2 5 3 1 2
0
9 4 1 2 10 4 1 2 1 5
1 1
Note
In the first test case, we have 01β 11β 00β 10.
In the second test case, we have 01011β 00101β 11101β 01000β 10100β 00100β 11100.
In the third test case, the strings are already the same. Another solution is to flip the prefix of length 2, which will leave a unchanged.
|
for vishal in range(int(input())):
n = int(input())
a = input()
b = input()
ans = []
avals = []
i, j, k = 0, n - 1, 0
while k < n:
if k % 2 == 0:
avals.append(a[i])
i += 1
else:
avals.append(str(int(not int(a[j]))))
j -= 1
k += 1
k = 0
for i in range(len(b) - 1, -1, -1):
if avals[k] != b[i]:
ans.append(i)
else:
ans.append(0)
ans.append(i)
k += 1
print(len(ans), end=" ")
for i in ans:
print(i + 1, end=" ")
print(end="\n")
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR STRING
|
This is the hard version of the problem. The difference between the versions is the constraint on n and the required number of operations. You can make hacks only if all versions of the problem are solved.
There are two binary strings a and b of length n (a binary string is a string consisting of symbols 0 and 1). In an operation, you select a prefix of a, and simultaneously invert the bits in the prefix (0 changes to 1 and 1 changes to 0) and reverse the order of the bits in the prefix.
For example, if a=001011 and you select the prefix of length 3, it becomes 011011. Then if you select the entire string, it becomes 001001.
Your task is to transform the string a into b in at most 2n operations. It can be proved that it is always possible.
Input
The first line contains a single integer t (1β€ tβ€ 1000) β the number of test cases. Next 3t lines contain descriptions of test cases.
The first line of each test case contains a single integer n (1β€ nβ€ 10^5) β the length of the binary strings.
The next two lines contain two binary strings a and b of length n.
It is guaranteed that the sum of n across all test cases does not exceed 10^5.
Output
For each test case, output an integer k (0β€ kβ€ 2n), followed by k integers p_1,β¦,p_k (1β€ p_iβ€ n). Here k is the number of operations you use and p_i is the length of the prefix you flip in the i-th operation.
Example
Input
5
2
01
10
5
01011
11100
2
01
01
10
0110011011
1000110100
1
0
1
Output
3 1 2 1
6 5 2 5 3 1 2
0
9 4 1 2 10 4 1 2 1 5
1 1
Note
In the first test case, we have 01β 11β 00β 10.
In the second test case, we have 01011β 00101β 11101β 01000β 10100β 00100β 11100.
In the third test case, the strings are already the same. Another solution is to flip the prefix of length 2, which will leave a unchanged.
|
t = int(input())
for i in range(t):
n = int(input())
x = input()
y = input()
a = []
b = []
for j in x:
a.append(j)
for j in y:
b.append(j)
p = []
j = 0
while j < n:
if a[j] != b[j]:
if j == n - 1:
if j != 0:
p.append(j + 1)
p.append(1)
p.append(j + 1)
else:
p.append(1)
j += 1
elif a[j + 1] == b[j + 1]:
if j != 0:
p.append(j + 1)
p.append(1)
p.append(j + 1)
else:
p.append(1)
j += 2
elif a[j + 1] != b[j + 1]:
if a[j] == a[j + 1]:
p.append(j + 2)
p.append(2)
p.append(j + 2)
j += 2
elif j == n - 2:
if j != 0:
p.append(j + 2)
p.append(1)
p.append(2)
p.append(1)
p.append(j + 2)
else:
p.append(1)
p.append(2)
p.append(1)
j += 2
elif a[j + 2] == b[j + 2]:
p.append(j + 2)
p.append(1)
p.append(2)
p.append(1)
p.append(j + 2)
j += 3
elif a[j] == a[j + 2]:
p.append(j + 3)
p.append(3)
p.append(j + 3)
j += 3
elif a[j + 1] == a[j + 2]:
if j != 0:
p.append(j + 1)
p.append(1)
p.append(j + 1)
else:
p.append(1)
p.append(j + 3)
p.append(2)
p.append(j + 3)
j += 3
else:
j += 1
print(len(p), end=" ")
print(*p)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR VAR
|
This is the hard version of the problem. The difference between the versions is the constraint on n and the required number of operations. You can make hacks only if all versions of the problem are solved.
There are two binary strings a and b of length n (a binary string is a string consisting of symbols 0 and 1). In an operation, you select a prefix of a, and simultaneously invert the bits in the prefix (0 changes to 1 and 1 changes to 0) and reverse the order of the bits in the prefix.
For example, if a=001011 and you select the prefix of length 3, it becomes 011011. Then if you select the entire string, it becomes 001001.
Your task is to transform the string a into b in at most 2n operations. It can be proved that it is always possible.
Input
The first line contains a single integer t (1β€ tβ€ 1000) β the number of test cases. Next 3t lines contain descriptions of test cases.
The first line of each test case contains a single integer n (1β€ nβ€ 10^5) β the length of the binary strings.
The next two lines contain two binary strings a and b of length n.
It is guaranteed that the sum of n across all test cases does not exceed 10^5.
Output
For each test case, output an integer k (0β€ kβ€ 2n), followed by k integers p_1,β¦,p_k (1β€ p_iβ€ n). Here k is the number of operations you use and p_i is the length of the prefix you flip in the i-th operation.
Example
Input
5
2
01
10
5
01011
11100
2
01
01
10
0110011011
1000110100
1
0
1
Output
3 1 2 1
6 5 2 5 3 1 2
0
9 4 1 2 10 4 1 2 1 5
1 1
Note
In the first test case, we have 01β 11β 00β 10.
In the second test case, we have 01011β 00101β 11101β 01000β 10100β 00100β 11100.
In the third test case, the strings are already the same. Another solution is to flip the prefix of length 2, which will leave a unchanged.
|
t = int(input())
for _ in range(t):
n = int(input())
arr = list(input().rstrip("\n"))
arr1 = list(input().rstrip("\n"))
arr = [int(x) for x in arr]
arr1 = [int(x) for x in arr1]
result = []
if arr == arr1:
print(0)
else:
if n == 1:
print("1 1")
continue
prev = arr[0]
for i in range(1, n):
if prev != arr[i]:
result.append(i)
prev = arr[i]
if arr[-1] == 1:
last = 1
else:
last = 0
for i in range(n - 1, -1, -1):
if arr1[i] != last:
result.append(i + 1)
if last == 0:
last = 1
else:
last = 0
print(len(result), end=" ")
print(*result)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR LIST IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR VAR
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
t = int(input())
while t:
s = input()
l = len(s)
if l == 1:
print("NO")
t -= 1
continue
if l % 2 == 0:
if s[: len(s) // 2] == s[len(s) // 2 :]:
print("YES")
else:
print("NO")
else:
i = 0
j = l // 2 + 1
count = 0
while i <= l // 2 and j < l:
if s[i] == s[j]:
i += 1
j += 1
continue
else:
i += 1
count += 1
if i > l // 2 and j >= l and count < 2:
print("YES")
t -= 1
continue
i = 0
j = l // 2 + 1
flag = True
while i < l // 2 and j < l:
if s[i] == s[j]:
i += 1
j += 1
continue
else:
flag = False
break
if i == l // 2 and j == l and flag == True:
print("YES")
t -= 1
continue
i = 0
j = l // 2
count = 0
while i < l // 2 and j < l:
if s[i] == s[j]:
i += 1
j += 1
continue
else:
j += 1
count += 1
if i >= l // 2 and j >= l - 1 and count < 2:
print("YES")
t -= 1
continue
print("NO")
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING VAR NUMBER IF BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING VAR NUMBER EXPR FUNC_CALL VAR STRING VAR NUMBER
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def check(a, b):
p = 0
a = list(a)
b = list(b)
for i in a:
if b[p] == i:
p += 1
if p == len(b):
break
if p == len(b):
return True
return False
for t in range(int(input())):
s = str(input())
l = len(s)
if l == 1:
print("NO")
elif l % 2 != 0:
s1a = s[0 : l // 2]
s1b = s[l // 2 : l]
s2a = s[0 : l // 2 + 1]
s2b = s[l // 2 + 1 : l]
if check(s1b, s1a) or check(s2a, s2b):
print("YES")
else:
print("NO")
else:
s1 = s[0 : l // 2]
s2 = s[l // 2 : l]
if s1 == s2:
print("YES")
else:
print("NO")
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def is_subsequence(a, lstart, lend, rstart, rend):
mismatch = 0
i = lstart
j = rstart
while i <= lend:
if a[i] != a[j]:
mismatch += 1
j += 1
else:
i += 1
j += 1
if mismatch > 1:
return False
return True
for t in range(int(input())):
a = input()
n = len(a)
if len(a) == 1:
print("NO")
elif len(a) % 2 == 0:
if a[0 : n // 2] == a[n // 2 : n]:
print("YES")
else:
print("NO")
elif len(a) % 2 != 0:
if is_subsequence(a, 0, n // 2 - 1, n // 2, n - 1) + is_subsequence(
a, n // 2 + 1, n - 1, 0, n // 2
):
print("YES")
else:
print("NO")
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR WHILE VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
for case in range(int(input())):
s = input()
n = len(s) // 2
if len(s) == 1:
print("NO")
elif len(s) % 2 == 0:
print("YES" if s[0:n] == s[n:] else "NO")
else:
match = True
skip = 0
for i in range(n):
if s[i + skip] != s[i + n + 1]:
if skip == 1 or s[i + 1] != s[i + n + 1]:
match = False
break
skip = 1
if match:
print("YES")
continue
match = True
skip = 0
for i in range(n):
if s[n - 1 - i] != s[2 * n - i - skip]:
if skip == 1 or s[n - 1 - i] != s[2 * n - i - 1]:
match = False
break
skip = 1
if match:
print("YES")
else:
print("NO")
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR VAR VAR STRING STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR IF VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
t = int(input())
for _ in range(t):
s = input()
l = len(s)
lh = int(l / 2)
if l % 2 == 0:
if s[:lh] == s[lh:]:
print("YES")
else:
print("NO")
elif l == 1:
print("NO")
else:
left = s[:lh]
right = s[lh:]
k = 0
i = 0
j = 0
flag1 = True
while i < len(left):
if j < len(right) and left[i] == right[j]:
i += 1
j += 1
elif j < len(right) - 1 and left[i] == right[j + 1] and k < 2:
i += 1
j += 2
k += 1
else:
flag1 = False
break
left = s[: lh + 1]
right = s[lh + 1 :]
k = 0
i = 0
j = 0
flag2 = True
while j < len(right):
if i < len(left) and left[i] == right[j] and k < 2:
i += 1
j += 1
elif i < len(left) - 1 and left[i + 1] == right[j] and k < 2:
i += 2
j += 1
k += 1
else:
flag2 = False
break
if flag1 or flag2:
print("YES")
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
case = int(input())
for i in range(case):
st = input()
x = len(st)
if x == 1:
print("NO")
elif x % 2 == 0:
if st[: x // 2] == st[x // 2 :]:
print("YES")
else:
print("NO")
else:
top = 0
to = 0
l = [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
]
for j in range(x):
l[ord(st[j]) - 97] += 1
for j in range(26):
if l[j] % 2 != 0:
to = j + 97
break
for j in range(x):
if to == ord(st[j]):
if j == 0:
s0 = st[j + 1 :]
elif j == x - 1:
s0 = st[:j]
else:
s0 = st[:j] + st[j + 1 :]
if s0[: (x - 1) // 2] == s0[(x - 1) // 2 :]:
print("YES")
top = 1
break
if top != 1:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
t = int(input())
for _ in range(t):
s = input()
if len(s) % 2 == 0:
ok = True
for i in range(len(s) // 2):
if s[i] != s[i + len(s) // 2]:
ok = False
break
if ok:
print("YES")
else:
print("NO")
elif len(s) == 1:
print("NO")
else:
idx1 = 0
idx2 = len(s) // 2
ok = False
while idx1 < len(s) // 2 and idx2 < len(s):
if s[idx1] != s[idx2]:
idx2 += 1
else:
idx1 += 1
idx2 += 1
if idx1 == len(s) // 2:
ok = ok or True
idx1 = len(s) // 2 + 1
idx2 = 0
while idx1 < len(s) and idx2 <= len(s) // 2:
if s[idx1] != s[idx2]:
idx2 += 1
else:
idx1 += 1
idx2 += 1
if idx1 == len(s):
ok = ok or True
if ok:
print("YES")
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def is_subsequence(A, B):
i = 0
j = 0
while i < len(A) and j < len(B):
if B[j] == A[i]:
i += 1
j += 1
return i == len(A)
def is_dish_special(S):
len_over_2 = len(S) // 2
if len(S) % 2 == 0:
return is_subsequence(S[0:len_over_2], S[len_over_2:])
else:
return is_subsequence(S[0:len_over_2], S[len_over_2:]) or is_subsequence(
S[len_over_2 + 1 :], S[0 : len_over_2 + 1]
)
D = int(input())
for d in range(D):
S = input().strip()
if len(S) == 1:
print("NO")
elif is_dish_special(S):
print("YES")
else:
print("NO")
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER RETURN FUNC_CALL VAR VAR NUMBER VAR VAR VAR RETURN FUNC_CALL VAR VAR NUMBER VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
q = int(input())
for _ in range(0, q):
s = input()
if len(s) == 1:
print("NO")
elif len(s) % 2 == 0:
t = len(s) // 2
n = len(s)
if s[0:t] == s[t:n]:
print("YES")
else:
print("NO")
else:
n = int(len(s) // 2)
l = len(s)
flag = False
s1 = s[0:n]
s2 = s[n:l]
s3 = s[0 : n + 1]
s4 = s[n + 1 : l]
j = 0
count = 0
i = 0
while i < n:
if not s1[i] == s2[j]:
j = j + 1
count += 1
if count > 1:
break
else:
j += 1
i += 1
if count > 1:
break
if count >= 2:
j = 0
count = 0
i = 0
while j < n:
if not s3[i] == s4[j]:
i = i + 1
count += 1
if count > 1:
break
else:
i = i + 1
j = j + 1
if count > 1:
break
if count >= 2:
print("NO")
else:
print("YES")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def r(s, b):
n, m = len(s), 0
if n == 1:
return False
i, j, f = 0, n // 2 + b, False
while m < n // 2:
if s[i] != s[j]:
if f:
return False
else:
f = True
if b:
i += 1
else:
j += 1
else:
i += 1
j += 1
m += 1
return True
def sp(s):
n = len(s)
if n % 2 == 0:
return all(s[i] == s[n // 2 + i] for i in range(n // 2))
else:
return r(s, True) or r(s, False)
for d in range(int(input())):
print("YES" if sp(input()) else "NO")
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER RETURN NUMBER ASSIGN VAR VAR VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR IF VAR RETURN NUMBER ASSIGN VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER RETURN FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR STRING STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
for _ in range(int(input())):
s = input().strip()
l = len(s)
c, cc = 0, 0
lbt = len(s) // 2
s1 = s[:lbt]
s2 = s[lbt:]
ans = "YES"
if l == 1:
ans = "NO"
elif l % 2 == 0:
if s[:lbt] == s[lbt:]:
ans = "YES"
else:
ans = "NO"
elif ans != "NO":
i, j = 0, lbt + 1
c = 0
while i < lbt + 1 and j < l:
if s[i] == s[j]:
c += 1
i += 1
j += 1
else:
i += 1
if i < lbt + 1 and j < l and s[i] == s[j]:
c += 1
i += 1
j += 1
else:
break
if c != lbt:
c, i, j = 0, 0, lbt
while i < lbt and j < l:
if s[i] == s[j]:
c += 1
i += 1
j += 1
else:
j += 1
if i < lbt and j < l and s[i] == s[j]:
c += 1
i += 1
j += 1
else:
break
if c == lbt:
ans = "YES"
else:
ans = "NO"
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR STRING IF VAR NUMBER ASSIGN VAR STRING IF BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR ASSIGN VAR STRING ASSIGN VAR STRING IF VAR STRING ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER VAR WHILE VAR VAR VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR STRING ASSIGN VAR STRING EXPR FUNC_CALL VAR VAR
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
t = int(input())
for _ in range(t):
s = input()
l = len(s)
if l == 1:
print("NO")
elif l % 2 == 0:
if s[: l // 2] == s[l // 2 :]:
print("YES")
else:
print("NO")
else:
flag = 0
dica = {}
pele = 0
for i in range(l):
if s[i] in dica.keys():
dica[s[i]].append(i)
else:
dica[s[i]] = [i]
for k in dica.keys():
if len(dica[k]) % 2 != 0:
flag += 1
pele = k
if flag != 1:
print("NO")
else:
flag = 0
for i in dica[pele]:
ns = s[:i] + s[i + 1 :]
if ns[: (l - 1) // 2] == ns[(l - 1) // 2 :]:
print("YES")
flag = 1
break
if flag == 0:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR LIST VAR FOR VAR FUNC_CALL VAR IF BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def isdoub(s):
if len(s) == 1:
return "NO"
if len(s) % 2 == 0:
if s[0 : len(s) // 2] == s[len(s) // 2 :]:
return "YES"
return "NO"
for _ in range(2):
u = s[0 : len(s) // 2]
v = s[len(s) // 2 :]
for i in range(len(v)):
if i >= len(u) or u[i] != v[i]:
v = v[:i] + v[i + 1 :]
break
if u == v:
return "YES"
s = "".join(reversed(s))
return "NO"
for _ in range(int(input())):
print(isdoub(input()))
|
FUNC_DEF IF FUNC_CALL VAR VAR NUMBER RETURN STRING IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN STRING RETURN STRING FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR RETURN STRING ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR RETURN STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
d = int(input())
ans = []
n = d
while d > 0:
flag = 0
s = input()
l = len(s)
l1 = int(l / 2)
a = []
for i in range(26):
a.append([])
if l % 2 == 1:
count = [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
]
for i in range(l):
count[ord(s[i]) - 97] = count[ord(s[i]) - 97] + 1
a[ord(s[i]) - 97].append(i)
for i in range(26):
if count[i] % 2 == 1:
l2 = len(a[i])
for j in range(l2):
pos = a[i][j]
if l1 <= pos:
str1 = s[0:l1]
else:
str1 = s[0:pos] + s[pos + 1 : l1 + 1]
if l1 > pos:
str2 = s[l1 + 1 :]
else:
str2 = s[l1:pos] + s[pos + 1 :]
if str1 == str2 and str1 != "" and str2 != "":
flag = 1
break
else:
str1 = s[0:l1]
str2 = s[l1:]
if str1 == str2:
flag = 1
if flag == 1:
ans.append("YES")
else:
ans.append("NO")
d = d - 1
for i in range(n):
print(ans[i])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR WHILE VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR LIST IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR LIST NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR STRING VAR STRING ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def is_subseq(x, y):
i = 0
for c in x:
while i < len(y) and y[i] != c:
i += 1
if i == len(y):
return False
i += 1
return True
t = int(input())
while t:
t -= 1
a = input()
n = len(a)
if n > 1 and (
is_subseq(a[: n // 2], a[n // 2 :])
or is_subseq(a[(n + 1) // 2 :], a[: (n + 1) // 2])
):
print("YES")
else:
print("NO")
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN NUMBER VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
import sys
n = int(input())
for i in range(n):
s = input()
m = len(s)
if m == 1:
sys.stdout.write("NO\n")
elif m % 2 != 0:
i = 0
j = int(m / 2) + 1
flag = False
Flag = True
while j < m:
if s[i] != s[j]:
if not flag:
flag = True
i += 1
else:
Flag = False
break
else:
i += 1
j += 1
if not Flag:
i = 0
j = int(m / 2)
flag = False
Flag = True
while j < m:
if s[i] != s[j]:
if not flag:
flag = True
j += 1
else:
Flag = False
break
else:
i += 1
j += 1
if Flag:
sys.stdout.write("YES\n")
else:
sys.stdout.write("NO\n")
else:
sys.stdout.write("YES\n")
elif s[: int(m / 2)] == s[int(m / 2) :]:
sys.stdout.write("YES\n")
else:
sys.stdout.write("NO\n")
|
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR IF VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR NUMBER IF VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR IF VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING IF VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
t = int(input())
for i in range(t):
s = input()
if len(s) == 0 or len(s) == 1:
print("NO")
else:
if len(s) % 2 == 0:
flag = False
half = int(len(s) / 2)
if s[0:half] == s[half : len(s)]:
flag = True
else:
flag = False
else:
flag = False
l = int((len(s) + 1) / 2)
news = s
for j in range(l):
if j == l - 1:
news = s[0:j] + s[j + 1 : len(s)]
half = int(len(news) / 2)
if news[0:half] == news[half : len(news)]:
flag = True
break
else:
flag = False
break
if s[j] == s[l + j]:
pass
else:
news = s[0:j] + s[j + 1 : len(s)]
if (
news[0 : int(len(news) / 2)]
== news[int(len(news) / 2) : len(news)]
):
flag = True
break
else:
news = s[0 : l + j] + s[l + 1 + j : len(s)]
if (
news[0 : int(len(news) / 2)]
== news[int(len(news) / 2) : len(news)]
):
flag = True
break
if flag:
print("YES")
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR IF VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
for _ in range(int(input())):
s = input()
n = len(s)
if n == 1:
print("NO")
continue
if n % 2 == 0:
if s[: n // 2] == s[n // 2 :]:
print("YES")
else:
print("NO")
continue
A, B = s[: n // 2], s[n // 2 :]
if B[1:] == A:
print("YES")
continue
elif B[:-1] == A:
print("YES")
continue
elif B[-1] != B[0]:
i, j = 0, 0
while i != n // 2:
if A[i] == B[j]:
i += 1
j += 1
elif A[i:] != B[j + 1 :]:
print("NO")
break
else:
print("YES")
break
else:
i, j, t1 = 0, 0, False
while i != n // 2:
if A[i] == B[j]:
i += 1
j += 1
elif A[i:] == B[j + 1 :]:
t1 = True
break
else:
break
i, j, t2 = 0, 1, False
while i != n // 2:
if A[i] == B[j]:
i += 1
j += 1
elif A[i + 1 :] == B[j:-1]:
t2 = True
break
else:
break
if t1 or t2:
print("YES")
else:
print("NO")
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
for _ in range(int(input())):
s = input()
n = len(s)
ans = "NO"
if len(s) == 1:
ans = "NO"
elif n % 2 == 0:
if s[: n // 2] == s[n // 2 :]:
ans = "YES"
else:
s1 = s[: n // 2]
s2 = s[n // 2 :]
index = n // 2
for i in range(n // 2):
if s1[i] != s2[i]:
index = i
break
if s1 == s2[:index] + s2[index + 1 :]:
ans = "YES"
else:
s1 = s[: n // 2 + 1]
s2 = s[n // 2 + 1 :]
index = n // 2
for i in range(n // 2):
if s1[i] != s2[i]:
index = i
break
if s2 == s1[:index] + s1[index + 1 :]:
ans = "YES"
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR STRING IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR STRING IF BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR STRING ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR IF VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR STRING ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR IF VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR STRING EXPR FUNC_CALL VAR VAR
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
t = int(input())
while t > 0:
s = input()
n = len(s)
f = 0
if n == 1:
f = 0
elif len(s) % 2 == 0:
if s[0 : n // 2] == s[n // 2 :]:
f = 1
else:
l = (n + 1) // 2
for i in range(l):
if i == l - 1:
a = s[0:i] + s[i + 1 : len(s)]
h = len(a) // 2
if a[0:h] == a[h : len(a)]:
f = 1
break
else:
f = 0
break
if s[i] == s[l + i]:
pass
else:
a = s[0:i] + s[i + 1 : len(s)]
if a[0 : len(a) // 2] == a[len(a) // 2 : len(a)]:
f = 1
break
else:
a = s[0 : l + i] + s[l + 1 + i : len(s)]
if a[0 : len(a) // 2] == a[len(a) // 2 : len(a)]:
f = 1
break
if f == 0:
print("NO")
else:
print("YES")
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR IF VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING VAR NUMBER
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def ds(x, z):
w = len(x)
q = len(z)
i = 0
j = 0
f = 0
h = 0
while i < w and j < q:
if x[i] == z[j]:
i += 1
j += 1
else:
f += 1
i += 1
if f > 1:
h = 1
break
if h == 0:
return True
else:
return False
d = int(input())
while d != 0:
s = str(input())
b = len(s)
if b == 1:
print("NO")
elif b % 2 == 0:
f = b // 2
r = s[0:f]
p = s[f:]
if r == p:
print("YES")
else:
print("NO")
else:
f = b // 2
r = s[0 : f + 1]
p = s[f + 1 :]
y = s[0:f]
t = s[f:]
if ds(r, p):
print("YES")
elif ds(t, y):
print("YES")
else:
print("NO")
d -= 1
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER VAR ASSIGN VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER VAR ASSIGN VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING VAR NUMBER
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def offbyone(plus, ref):
lp = len(plus)
if lp == 2:
return ref == plus[0] or ref == plus[1]
sm = lp // 2
if plus[:sm] == ref[:sm]:
return offbyone(plus[sm:], ref[sm:])
elif plus[sm + 1 :] == ref[sm:]:
return offbyone(plus[: sm + 1], ref[:sm])
else:
return False
def specialname(z):
yes = "YES"
no = "NO"
lz = len(z)
if lz == 1:
return no
hl = lz // 2
if lz % 2 == 0:
if z[:hl] == z[hl:]:
return yes
else:
return no
elif offbyone(z[: hl + 1], z[hl + 1 :]) or offbyone(z[hl:], z[:hl]):
return yes
else:
return no
for _ in range(int(input())):
print(specialname(input().strip()))
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR RETURN FUNC_CALL VAR VAR VAR VAR VAR IF VAR BIN_OP VAR NUMBER VAR VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR RETURN NUMBER FUNC_DEF ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR RETURN VAR RETURN VAR IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR RETURN VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
D = int(input())
for i in range(D):
now = input()
len_now = len(now)
if len_now == 1:
print("NO")
continue
elif len_now % 2 == 0:
first = 0
mid = len_now // 2
second = mid
while first < mid and now[first] == now[second]:
first = first + 1
second = second + 1
if first == mid:
print("YES")
continue
else:
print("NO")
continue
else:
flag = 0
error = 0
first = 0
mid = len_now // 2
second = mid + 1
while first < mid and now[first] == now[second]:
first = first + 1
second = second + 1
if first == mid:
print("YES")
continue
first = 0
second = mid + 1
error = 0
while first <= mid:
if now[first] == now[second]:
first = first + 1
second = second + 1
else:
error = error + 1
if error > 1:
break
else:
first = first + 1
if first == mid + 1 and error == 1:
print("YES")
continue
first = 0
second = mid
error = 0
while second < len_now:
if now[first] == now[second]:
first = first + 1
second = second + 1
else:
error = error + 1
if error > 1:
break
else:
second = second + 1
if second == len_now and error == 1:
print("YES")
continue
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def isDouble(s):
if len(s) % 2 == 1:
return False
else:
return s[: len(s) // 2] == s[len(s) // 2 :]
def cal(s):
l = [0] * 26
i = 0
while i < len(s):
k = ord(s[i])
l[k - 97] += 1
i += 1
i = 0
c = []
while i < 26:
if l[i] % 2 == 1:
c += [i]
i += 1
if len(c) == 1:
return chr(c[0] + 97)
else:
return False
def isSpecial(s):
if len(s) % 2 == 0:
return s[: len(s) // 2] == s[len(s) // 2 :]
elif len(s) == 1:
return False
else:
c = cal(s)
if c == False:
return False
else:
i = 0
while i < len(s):
if s[i] == c:
if isDouble(s[:i] + s[i + 1 :]):
return True
i += 1
return False
test = int(input())
while test != 0:
test -= 1
s = input()
if isSpecial(s):
print("YES")
else:
print("NO")
|
FUNC_DEF IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER RETURN NUMBER RETURN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER VAR LIST VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER RETURN FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER RETURN NUMBER FUNC_DEF IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER RETURN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def specialname(z):
yes = "YES"
no = "NO"
lz = len(z)
if lz == 1:
return no
hl = lz // 2
if lz % 2 == 0:
if z[:hl] == z[hl:]:
return yes
else:
return no
else:
hist = dict()
for c in z:
if c in hist:
hist[c] += 1
else:
hist[c] = 1
if len(hist) == 1:
return yes
oddc = ""
for c, f in hist.items():
if f % 2 == 1:
if oddc != "":
return no
else:
oddc = c
w = z.replace(oddc, "")
if w[: len(w) // 2] != w[len(w) // 2 :]:
return no
pos = -1
rc = hist[oddc]
while rc > 0:
pos = z.find(oddc, pos + 1)
w = z[:pos] + z[pos + 1 :]
if w[:hl] == w[hl:]:
return yes
while z[pos] == oddc:
rc -= 1
if rc == 0:
return no
pos += 1
for _ in range(int(input())):
print(specialname(input().strip()))
|
FUNC_DEF ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR RETURN VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER RETURN VAR ASSIGN VAR STRING FOR VAR VAR FUNC_CALL VAR IF BIN_OP VAR NUMBER NUMBER IF VAR STRING RETURN VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR STRING IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR RETURN VAR WHILE VAR VAR VAR VAR NUMBER IF VAR NUMBER RETURN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
t = int(input())
while t:
t -= 1
s = input()
l = len(s)
if l == 1:
print("NO")
continue
flag = 0
if l % 2 == 0:
for i in range(l // 2):
if s[i] != s[i + l // 2]:
flag = 1
break
else:
for i in range(l // 2):
if s[i] != s[i + l // 2 + 1]:
flag = 1
break
if flag:
flag = 0
vis = 0
i = 0
j = l // 2 + 1
while i <= l // 2:
if s[i] != s[j]:
if vis == 1:
flag = 1
break
else:
i += 1
vis = 1
else:
i += 1
j += 1
if flag:
flag = 0
vis = 0
i = 0
j = l // 2
while i < l // 2:
if s[i] != s[j]:
if vis == 1:
flag = 1
break
else:
j += 1
vis = 1
else:
i += 1
j += 1
if flag == 0:
print("YES")
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER IF VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR NUMBER IF VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
for _ in range(int(input())):
s = input()
s = list(s)
s1 = s
f = 0
l = len(s)
if l >= 2:
for i in range(l):
if l % 2 == 0:
ln = l
tp1 = s1[: ln // 2]
tp2 = s1[ln // 2 :]
if str(tp1) == str(tp2):
f = 1
break
elif i == 0:
tmp = s1[i + 1 :]
ln = l - 1
tp1 = tmp[: ln // 2]
tp2 = tmp[ln // 2 :]
if str(tp1) == str(tp2):
f = 1
break
else:
tmp = s1[:i]
tmp2 = s1[i + 1 :]
temp = tmp + tmp2
ln = l - 1
tp1 = temp[: ln // 2]
tp2 = temp[ln // 2 :]
if str(tp1) == str(tp2):
f = 1
break
if f == 1:
print("YES")
else:
print("NO")
elif l == 1:
print("NO")
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
__author__ = "masterchief"
def solve():
d = int(input())
for dish in range(d):
dish_special()
def dish_special():
name = input()
special_name = False
len_name = len(name)
mid = len_name // 2
if len_name == 1:
pass
elif len_name % 2:
if match(name[:mid], name[mid:], 1) or match(
name[mid + 1 :], name[: mid + 1], 1
):
special_name = True
elif match(name[:mid], name[mid:]):
special_name = True
print("YES") if special_name else print("NO")
def match(seq_template, seq_search, fault_tolerance=0):
len_template = len(seq_template)
len_search = len(seq_search)
faults = 0
i = 0
while i < len_template:
if seq_template[i] != seq_search[i + faults]:
faults += 1
else:
i += 1
if faults > fault_tolerance:
return False
return True
solve()
|
ASSIGN VAR STRING FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER IF BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR NUMBER EXPR VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING FUNC_DEF NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER EXPR FUNC_CALL VAR
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def check_equal(a, b):
index = 0
for i in a:
while index < len(b) and i != b[index]:
index += 1
if index >= len(b):
return False
index += 1
return True
def Dob_String(n):
size = len(n)
midpoint = size // 2
if check_equal(n[0:midpoint], n[midpoint:size]):
return "YES"
elif size % 2 != 0 and check_equal(n[midpoint + 1 : size], n[0 : midpoint + 1]):
return "YES"
else:
return "NO"
T = int(input())
for _ in range(T):
n = input()
if len(n) > 1:
print(Dob_String(n))
else:
print("NO")
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN NUMBER VAR NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR RETURN STRING IF BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER BIN_OP VAR NUMBER RETURN STRING RETURN STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def fnd(s, ch):
a = []
for i in range(len(s)):
if ch == s[i]:
a += [i]
return a
t = int(input())
for _ in range(t):
s = input()
n = len(s)
if len(s) == 1:
print("NO")
elif n % 2 == 0:
if s[0 : n // 2] == s[n // 2 : n]:
print("YES")
else:
print("NO")
else:
d = [0] * 26
for i in range(n):
d[ord(s[i]) - 97] += 1
f = 1
p = 0
k = [0] * 2
x = 0
for i in range(26):
if d[i] % 2 != 0:
p += 1
k[x] = i
x += 1
if p > 1:
f = 0
break
if f == 0:
print("NO")
elif s[0 : n // 2] == s[n // 2 : n]:
print("YES")
else:
ch1 = chr(k[0] + 97)
pos = fnd(s, ch1)
m = 0
for i in range(len(pos)):
t = s[0 : pos[i]] + s[pos[i] + 1 : n]
if t[0 : n // 2] == t[n // 2 : n]:
m = 1
break
if m:
print("YES")
else:
print("NO")
|
FUNC_DEF ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR LIST VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER NUMBER IF VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR VAR NUMBER VAR IF VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
t = int(input())
for ti in range(t):
s = input().strip()
l = len(s)
if l == 1:
print("NO")
elif l % 2 == 0:
if s[: l // 2] == s[l // 2 :]:
print("YES")
else:
print("NO")
else:
special = False
x = 0
for c in s:
x = x ^ ord(c)
c = chr(x)
if c in s:
k = (l - 1) // 2
n = s.count(c)
i = 0
while (n > 0) & (not special):
i = s.find(c, i)
news = s[:i] + s[i + 1 :]
if news[:k] == news[k:]:
special = True
break
n = n - 1
i = i + 1
if special:
print("YES")
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def isCool(s):
l = len(s)
if l == 1:
return False
if l % 2 == 0:
return True if isCool2(s) else False
mid = True
idx = -1
for x in range(l // 2):
if s[x] != s[l // 2 + x]:
idx = x
break
if idx == -1:
return True
idx2 = -1
for x in range(l // 2):
if s[x] != s[l // 2 + x + 1]:
idx2 = x
break
if idx2 == -1:
return True
a = s[:idx] + s[idx + 1 :]
idx += l // 2
b = s[:idx] + s[idx + 1 :]
idx = idx2
c = s[:idx] + s[idx + 1 :]
idx += l // 2
d = s[:idx] + s[idx + 1 :]
if isCool2(a) or isCool2(b) or isCool2(c) or isCool2(d):
return True
def isCool2(s):
l = len(s)
idx = -1
for x in range(l // 2):
if s[x] != s[l // 2 + x]:
idx = x
break
if idx == -1:
return True
else:
return False
n = int(input())
for x in range(n):
s = input()
print("YES" if isCool(s) else "NO")
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN NUMBER IF BIN_OP VAR NUMBER NUMBER RETURN FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR VAR IF VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR VAR IF VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR STRING STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def check(s, l):
a = s[: l >> 1]
b = s[l >> 1 :]
cc = 0
i, j = 0, 0
while cc < 2 and i < l >> 1 and j < l - (l >> 1):
if a[i] != b[j]:
cc += 1
j += 1
else:
i += 1
j += 1
if cc <= 1:
return True
a = s[: (l >> 1) + 1]
b = s[(l >> 1) + 1 :]
cc = 0
i, j = 0, 0
while cc < 2 and i < (l >> 1) + 1 and j < l - (l >> 1) - 1:
if a[i] != b[j]:
cc += 1
i += 1
else:
i += 1
j += 1
if cc <= 1:
return True
return False
t = int(input())
for k in range(t):
s = input()
l = len(s)
if l == 1:
print("NO")
continue
if l & 1:
if check(s, l):
print("YES")
else:
print("NO")
elif s[0 : l >> 1] == s[l >> 1 :]:
print("YES")
else:
print("NO")
|
FUNC_DEF ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER RETURN NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER WHILE VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING IF VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
sub1 = ""
sub2 = ""
substr = ""
for x in range(int(input())):
str = input().strip()
m = [(0) for i in range(123)]
l = len(str)
if l is 1:
print("NO")
continue
for y in range(l):
m[int(ord(str[y]))] += 1
count = 0
for y in range(97, 123):
if m[y] % 2 is not 0:
count += 1
if count is 1:
ch1 = chr(y)
if count > 1:
break
if count > 1:
print("NO")
continue
if count is 0:
if l % 2 is not 0:
print("NO")
else:
sub1 = str[0 : l // 2]
sub2 = str[l // 2 : l]
if sub1 == sub2:
print("YES")
else:
print("NO")
elif count is 1:
flag = 0
for y in range(l):
if str[y] is ch1:
substr = str[0:y] + str[y + 1 : l]
len1 = l - 1
sub1 = substr[0 : len1 // 2]
sub2 = substr[len1 // 2 : len1]
if sub1 == sub2:
print("YES")
flag = 1
break
if flag is 0:
print("NO")
|
ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
for t in range(int(input())):
s = list(input())
l = len(s)
if l == 1:
print("NO")
continue
if l % 2 == 0:
print("YES" if s[: l // 2] == s[l // 2 :] else "NO")
else:
s1 = s[: l // 2]
s2 = s[l // 2 : l]
for v, (a, b) in enumerate(zip(s1, s2)):
if not a == b:
s2.pop(v)
break
else:
s2.pop()
if s1 == s2:
print("YES")
else:
s1 = s[: l // 2 + 1]
s2 = s[l // 2 + 1 :]
for v, (a, b) in enumerate(zip(s1, s2)):
if not a == b:
s1.pop(v)
break
else:
s1.pop()
print("YES" if s1 == s2 else "NO")
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER STRING STRING ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR FOR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER FOR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR STRING STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
def check(x, y):
i = 0
j = 0
if len(x) < len(y):
x, y = y, x
pos = len(x) - 1
while i < len(x) and j < len(y):
if x[i] == y[j]:
i += 1
j += 1
else:
pos = i
break
del x[pos]
if x == y:
return True
return False
t = int(input())
while t:
t -= 1
a = list(input())
n = len(a)
if n % 2 == 0:
if a[: n // 2] == a[n // 2 :]:
print("YES")
else:
print("NO")
elif n > 1 and (
check(a[: n // 2], a[n // 2 :]) or check(a[(n + 1) // 2 :], a[: (n + 1) // 2])
):
print("YES")
else:
print("NO")
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING IF VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
One day, Chef prepared D brand new dishes. He named the i-th dish by a string Si. After the cooking, he decided to categorize each of these D dishes as special or not.
A dish Si is called special if it's name (i.e. the string Si) can be represented in the form of a double string by removing at most one (possibly zero) character from it's name from any position.
A string is called a double string if it can be represented as a concatenation of two identical, non-empty strings.
e.g. "abab" is a double string as it can be represented as "ab" + "ab" where + operation denotes concatenation.
Similarly, "aa", "abcabc" are double strings whereas "a", "abba", "abc" are not.
-----Input-----
- First line of the input contains an integer D denoting the number of dishes prepared by Chef on that day.
- Each of the next D lines will contain description of a dish.
- The i-th line contains the name of i-th dish Si.
-----Output-----
For each of the D dishes, print a single line containing "YES" or "NO" (without quotes) denoting whether the dish can be called as a special or not.
-----Constraints-----
- 1 β€ D β€ 106
- 1 β€ |Si| β€ 106.
- Each character of string Si will be lower case English alphabet (i.e. from 'a' to 'z').
-----Subtasks-----
Subtask #1 : (20 points)
- Sum of |Si| in an input file doesn't exceed 2 * 103
Subtask 2 : (80 points)
- Sum of |Si| in an input file doesn't exceed 2 * 106
-----Example-----
Input:
3
aba
abac
abcd
Output:
YES
NO
NO
-----Explanation-----
Example case 1.
We can remove the character at position 1 (0-based index) to get "aa" which is a double string. Hence, it is a special dish.
Example case 2.
It is not possible to remove the character at any of the position to get the double string. Hence, it is not a special dish.
|
f = 0
t = int(input())
while t > 0:
t -= 1
o = 0
s = input()
s = list(s)
n = len(s)
if len(s) == 1:
print("NO")
continue
if len(s) % 2 == 1:
for i in range(n):
ls = s.copy()
ls.pop(i)
if ls[0 : int(len(ls) / 2)] == ls[int(len(ls) / 2) : int(len(ls))]:
print("YES")
o = 1
break
if o == 0:
print("NO")
elif s[0 : int(len(s) / 2)] == s[int(len(s) / 2) : int(len(s))]:
print("YES")
else:
print("NO")
|
ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR IF VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
from sys import stdin, stdout
n = int(stdin.readline())
arr = list(map(int, stdin.readline().split()))
ma_x = 0
c = 0
for i in arr:
if i > ma_x:
ma_x = i
if i > 0:
c += 1
if c == 1:
ma_x = 0
ans = 0
for i in range(1, ma_x + 1):
s = 0
end = 0
while end < n:
s += arr[end]
if arr[end] > i or s <= 0:
s = 0
start = end + 1
ans = max(ans, s - i)
end += 1
stdout.write(str(ans) + "\n")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
def maxSubArraySum(a, size):
j = 30
ans = 0
while j >= 1:
max1 = 0
max_so_far = 0
max_ending_here = 0
for i in range(size):
if a[i] > j:
max_ending_here = 0
elif a[i] <= j:
max_ending_here = max_ending_here + a[i]
max1 = max(max1, a[i])
if max_ending_here < 0:
max_ending_here = 0
elif max_so_far < max_ending_here:
max_so_far = max_ending_here
j -= 1
ans = max(ans, max_so_far - max1)
return ans
n = int(input())
num1 = list(map(int, input().split()))
print(maxSubArraySum(num1, n))
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
def algo(i, j, arr, y):
ans = maxi = t = 0
for x in range(i, j + 1):
maxi += arr[x]
if maxi < 0:
t = x + 1
maxi = 0
else:
ans = max(ans, maxi - y)
return ans
n = int(input())
arr = list(map(int, input().split()))
d = [[] for _ in range(1, 31)]
for i in range(n):
if arr[i] > 0:
d[arr[i] - 1].append(i)
ans = 0
for t in range(1, 31):
se = set()
for rr in d[t - 1]:
if rr not in se:
se.add(rr)
i = 0
fl = 0
for i in range(rr - 1, -1, -1):
if arr[i] > t:
fl = 1
break
se.add(i)
i += fl
j = n - 1
fl = 0
for j in range(rr + 1, n):
if arr[j] > t:
fl = 1
break
se.add(j)
j -= fl
ans = max(ans, algo(i, j, arr, t))
print(ans)
|
FUNC_DEF ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
MAX_VAL = 61
n = int(input())
lst = list(map(int, input().split(" ")))
msum = [[(-10000000) for i in range(MAX_VAL)] for i in range(n)]
ans = -10000000
for i in reversed(range(n)):
for j in range(lst[i], 31):
msum[i][j] = lst[i] if i == n - 1 else max(msum[i + 1][j] + lst[i], lst[i])
ans = max(ans, msum[i][j] - j)
print(int(ans))
|
ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
def rs():
return input().strip()
def ri():
return int(input())
def ria():
return list(map(int, input().split()))
def ia_to_s(a):
return " ".join([str(s) for s in a])
def solve(n, a):
ans = 0
for i in range(31):
s = 0
for j in a:
if j <= i:
s = max(0, s + j)
else:
s = 0
ans = max(ans, s - i)
return ans
def main():
n = ri()
a = ria()
print(solve(n, a))
main()
|
FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
input = sys.stdin.readline
flush = sys.stdout.flush
def buildM():
for i in reversed(range(1, n)):
segM[i] = max(segM[2 * i], segM[2 * i + 1])
return
def buildS():
for i in reversed(range(1, n + 1)):
segSM[i] = max(segSM[2 * i], segSM[2 * i + 1])
segSm[i] = min(segSm[2 * i], segSm[2 * i + 1])
return
def queryM(l, r):
res = -31
l += n
r += n
while l < r:
if l & 1:
res = max(res, segM[l])
l += 1
if r & 1:
r -= 1
res = max(res, segM[r])
l >>= 1
r >>= 1
return res
def querySM(l, r):
res = -30 * 10**5 - 1
l += n + 1
r += n + 1
while l < r:
if l & 1:
res = max(res, segSM[l])
l += 1
if r & 1:
r -= 1
res = max(res, segSM[r])
l >>= 1
r >>= 1
return res
def querySm(l, r):
res = 30 * 10**5 + 1
l += n + 1
r += n + 1
while l < r:
if l & 1:
res = min(res, segSm[l])
l += 1
if r & 1:
r -= 1
res = min(res, segSm[r])
l >>= 1
r >>= 1
return res
n = int(input())
a = list(map(int, input().split()))
S = [0] * (n + 1)
for i in range(n):
S[i + 1] = S[i] + a[i]
segM = [0] * n + a
segSM = [0] * (n + 1) + S
segSm = [0] * (n + 1) + S
buildM()
buildS()
ans = -(10**9)
for i, x in enumerate(a):
score = 0
l = 0
r = i
while l < r:
m = l + r >> 1
if queryM(m, i + 1) == x:
r = m
else:
l = m + 1
ll = l
l = i
r = n - 1
while l < r:
m = (l + r >> 1) + 1
if queryM(i, m + 1) == x:
l = m
else:
r = m - 1
rr = r
score += S[i] - querySm(ll, i + 1)
score += querySM(i + 1, rr + 2) - S[i + 1]
if score > ans:
ans = score
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER RETURN FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER RETURN FUNC_DEF ASSIGN VAR NUMBER VAR VAR VAR VAR WHILE VAR VAR IF BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP NUMBER NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP NUMBER NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP LIST NUMBER VAR VAR ASSIGN VAR BIN_OP BIN_OP LIST NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP LIST NUMBER BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
n = int(input())
a = list(map(int, input().split()))
ans = 0
for i in range(-30, 31):
b = [(int(-1000000000.0) if x > i else x) for x in a]
dp = b.copy()
for j in range(1, n):
dp[j] = max(dp[j - 1] + b[j], b[j])
ans = max(ans, max(dp) - i)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
def max_sum(arr):
n = len(arr)
dp = [(0) for i in range(n)]
dp[0] = arr[0]
for i in range(1, n):
dp[i] = max(dp[i - 1] + arr[i], arr[i])
return max(dp)
n = int(input())
l = input().split()
li = [int(i) for i in l]
maxa = 0
for mx in range(-30, 31):
copy = list(li)
for i in range(n):
if copy[i] > mx:
copy[i] = -1000000000000
maxa = max(max_sum(copy) - mx, maxa)
print(maxa)
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR VAR RETURN FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
def mcss(l, r):
if l > r:
return 0
s = 0
ret = 0
for i in range(l, r + 1):
s += aa[i]
ret = max(ret, s)
s = max(s, 0)
return ret
n = int(input())
aa = list(map(int, input().split()))
ans = 0
for maxa in range(1, 31):
l = 0
for r, a in enumerate(aa):
if a > maxa:
ans = max(ans, mcss(l, r - 1) - maxa)
l = r + 1
ans = max(ans, mcss(l, n - 1) - maxa)
print(ans)
|
FUNC_DEF IF VAR VAR RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
from sys import stdin
inp = lambda: stdin.readline().strip()
n = int(inp())
a = [int(x) for x in inp().split()]
ans = 0
for maximum in range(31):
curr = 0
best = 0
for i in range(n):
if a[i] <= maximum:
val = a[i]
else:
val = -100000000000
curr += val
best = min(best, curr)
ans = max(ans, curr - best - maximum)
print(ans)
|
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
n = int(input())
a = [int(x) for x in input().split()]
a = [0] + a
f = [None for i in range(n + 1)]
g = [(0) for i in range(n + 1)]
ans = 0
for m in range(-30, 31):
for i in range(1, n + 1):
g[i] = 0 if a[i] > m else max(0, g[i - 1] + a[i])
if f[i - 1] is None:
f[i] = None if a[i] != m else m + g[i - 1]
elif a[i] == m:
f[i] = g[i - 1] + m
elif a[i] < m:
f[i] = f[i - 1] + a[i]
else:
f[i] = None
for i in range(1, n + 1):
if f[i] is not None:
ans = max(ans, f[i] - m)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NONE VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER FUNC_CALL VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR BIN_OP VAR NUMBER NONE ASSIGN VAR VAR VAR VAR VAR NONE BIN_OP VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR NONE FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR NONE ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
input = sys.stdin.readline
n = int(input())
a = list(map(int, input().split()))
INF = 10**9
ans = -INF
for mx in range(31):
b = [0] * n
for i in range(n):
if a[i] > mx:
b[i] = -INF
else:
b[i] = a[i]
dp = [0] * n
dp[0] = max(b[0], 0)
for i in range(1, n):
dp[i] = max(0, dp[i - 1] + b[i], b[i])
res = max(dp) - mx
ans = max(ans, res)
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
n = int(input())
a = list(map(int, input().split()))
if max(a) <= 0:
exit(print(0))
ans = [0] * 31
for i in range(1, 31):
mi = su = 0
for x in a:
if x > i:
mi = anss = 0
continue
su += x
ans[i] = max(ans[i], su - mi)
mi = min(mi, su)
print(max(ans[i] - i for i in range(31)))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR NUMBER
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
q = int(input())
w = list(map(int, input().split()))
ans = 0
for i in range(-30, 31):
a = [(-1000000000.0 if x > i else x) for x in w]
m = 0
ma = 0
for j in a:
m += j
if ma < m:
ma = m
elif m < 0:
m = 0
ans = max(ans, ma - i if i > 0 else ma)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
from sys import stdin
input = stdin.readline
def main():
n = int(input())
l = [int(i) for i in input().split(" ")]
maxi = 0
for i in range(1, 31):
if i in l:
score = 0
for j in l:
if j <= i:
score += j
maxi = max(maxi, score - i)
score = max(score, 0)
else:
score = 0
print(maxi)
main()
|
ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
mod = 1000000007
eps = 10**-9
def main():
import sys
input = sys.stdin.readline
class Bit:
def __init__(self, n):
self.size = n
self.tree = [0] * (n + 1)
def sum(self, i):
s = 0
while i > 0:
s += self.tree[i]
i -= i & -i
return s
def add(self, i, x):
while i <= self.size:
self.tree[i] += x
i += i & -i
def lower_bound(self, w):
if w <= 0:
return 0
x = 0
k = 1 << self.size.bit_length() - 1
while k:
if x + k <= self.size and self.tree[x + k] < w:
w -= self.tree[x + k]
x += k
k >>= 1
return x + 1
class SegmentTree:
def __init__(self, A, initialize=True, segfunc=min, ident=2000000000):
self.N = len(A)
self.LV = (self.N - 1).bit_length()
self.N0 = 1 << self.LV
self.segfunc = segfunc
self.ident = ident
if initialize:
self.data = (
[self.ident] * self.N0 + A + [self.ident] * (self.N0 - self.N)
)
for i in range(self.N0 - 1, 0, -1):
self.data[i] = segfunc(self.data[i * 2], self.data[i * 2 + 1])
else:
self.data = [self.ident] * (self.N0 * 2)
def update(self, i, x):
i += self.N0 - 1
self.data[i] = x
for _ in range(self.LV):
i >>= 1
self.data[i] = self.segfunc(self.data[i * 2], self.data[i * 2 + 1])
def query(self, l, r):
l += self.N0 - 1
r += self.N0 - 1
ret_l = self.ident
ret_r = self.ident
while l < r:
if l & 1:
ret_l = self.segfunc(ret_l, self.data[l])
l += 1
if r & 1:
ret_r = self.segfunc(self.data[r - 1], ret_r)
r -= 1
l >>= 1
r >>= 1
return self.segfunc(ret_l, ret_r)
N = int(input())
A = list(map(int, input().split()))
cs = [0] * (N + 1)
B = []
for i, a in enumerate(A):
cs[i + 1] = cs[i] + A[i]
B.append((a, i + 1))
B.sort(key=lambda x: x[0], reverse=True)
ma = SegmentTree(cs, segfunc=max, ident=-2000000000)
mi = SegmentTree(cs)
bit = Bit(N)
ans = 0
for a, i in B:
if a <= 0:
break
bit.add(i, 1)
k = bit.sum(i)
r = bit.lower_bound(k + 1)
l = bit.lower_bound(k - 1)
ans = max(ans, ma.query(i + 1, r + 1) - mi.query(l + 1, i + 2) - a)
print(ans)
main()
|
IMPORT ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FUNC_DEF IMPORT ASSIGN VAR VAR CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR VAR VAR BIN_OP VAR VAR RETURN VAR FUNC_DEF WHILE VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR FUNC_DEF IF VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR NUMBER WHILE VAR IF BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR NUMBER CLASS_DEF FUNC_DEF NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP LIST VAR VAR VAR BIN_OP LIST VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP LIST VAR BIN_OP VAR NUMBER FUNC_DEF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_DEF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR WHILE VAR VAR IF BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER RETURN FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
input = sys.stdin.buffer.readline
def print(val):
sys.stdout.write(str(val) + "\n")
i_kart = int(input())
lista = [int(x) for x in input().split()]
wynik = 0
for i in range(31):
if lista[0] > i:
max_local = max_total = 0
else:
max_local = max_total = lista[0]
for x in lista[1:]:
if x > i:
continue
max_local = max(x, max_local + x)
max_total = max(max_total, max_local)
wynik = max(wynik, max_total - i)
print(wynik)
|
IMPORT ASSIGN VAR VAR FUNC_DEF EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER FOR VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
n = int(input())
l = list(map(int, input().split()))
d = set(l)
ans = 0
tot = 0
for j in range(31):
if j not in d:
continue
tot = -999999999999999999999
cur = 0
for i in range(n):
if l[i] > j:
cur = 0
continue
else:
cur += l[i]
if cur < 0:
cur = 0
tot = max(tot, cur)
ans = max(tot - j, ans)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
n = int(input())
a = list(map(int, input().split()))
s = 0
ss = [0] * 31
ss_ind = [0] * 31
met = [False] * 31
sums = [a[0]]
for i in range(1, n):
sums.append(sums[-1] + a[i])
ans = 0
for i in range(n):
if a[i] >= 0:
met[a[i]] = True
for j in range(31):
if a[i] > j:
ss[j] = 0
met[j] = False
elif ss[j] + a[i] < 0:
ss[j] = 0
met[j] = False
else:
ss[j] += a[i]
if met[j]:
ans = max(ans, ss[j] - j)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
def max_subarray(li, x):
if len(li) == 0:
return 0
li = [0] + li
min_so_far = [0]
index = -1
ans = 0
for p in range(1, len(li)):
if li[p] == x:
index = p
li[p] += li[p - 1]
if index != -1:
ans = max(ans, li[p] - min_so_far[index - 1])
min_so_far.append(min(min_so_far[p - 1], li[p]))
return max(0, ans - x)
t = 1
for _ in range(t):
n = int(input())
s = list(map(int, input().split()))
l = []
for i in range(31):
l.append([-1])
for i in range(n):
for j in range(1, s[i]):
l[j].append(i)
for j in range(1, 31):
l[j].append(n)
ans = 0
for i in range(30, 0, -1):
for j in range(1, len(l[i])):
p = max_subarray(s[l[i][j - 1] + 1 : l[i][j]], i)
ans = max(ans, p)
print(ans)
|
FUNC_DEF IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR RETURN FUNC_CALL VAR NUMBER BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR LIST NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
from sys import stdin
input = stdin.readline
def main():
test = 1
for _ in range(test):
n = int(input())
ara = [int(x) for x in input().split()]
ans = 0
for mx in range(min(ara), max(ara) + 1):
sum = 0
for x in ara:
sum += x
if x > mx or sum < 0:
sum = 0
continue
ans = max(ans, sum - mx)
print(ans)
main()
|
ASSIGN VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
from sys import stdin
input = stdin.buffer.readline
n = int(input())
(*a,) = map(int, input().split())
ans = 0
for i in range(31):
s = 0
for j in a:
if j <= i:
s = max(0, s + j)
else:
s = 0
ans = max(ans, s - i)
print(ans)
|
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
from sys import stdin, stdout
def yet_another_yet_another_task(a):
n = len(a)
preSum = [(0) for i in range(n)]
postSum = [(0) for i in range(n)]
preSum[0] = a[0]
postSum[n - 1] = a[n - 1]
for i in range(1, n):
preSum[i] = preSum[i - 1] + a[i]
for i in range(n - 2, -1, -1):
postSum[i] = postSum[i + 1] + a[i]
preSumSegmentTree = SegmentTree(0, n - 1, preSum)
postSumSegmentTree = SegmentTree(0, n - 1, postSum)
st = []
leftSum = [(0) for i in range(n)]
for i in range(n):
j = i
while len(st) > 0 and st[-1][0] <= a[i]:
j = st.pop()[1]
st.append([a[i], j])
leftSum[i] = postSumSegmentTree.query(j, i) - postSum[i]
st = []
rightSum = [(0) for i in range(n)]
for i in range(n - 1, -1, -1):
j = i
while len(st) > 0 and st[-1][0] <= a[i]:
j = st.pop()[1]
st.append([a[i], j])
rightSum[i] = preSumSegmentTree.query(i, j) - preSum[i]
res = 0
for i in range(n):
res = max(res, leftSum[i] + rightSum[i])
return res
class SegmentTree:
def __init__(self, i, j, sum):
self.l = i
self.r = j
m = (i + j) // 2
if i == j:
self.maxVal = sum[i]
return
if i > j:
return -1000000000
self.lst = SegmentTree(i, m, sum)
self.rst = SegmentTree(m + 1, j, sum)
if self.lst is not None and self.rst is not None:
self.maxVal = max(self.lst.maxVal, self.rst.maxVal)
elif self.lst is None:
self.maxVal = self.rst.maxVal
elif self.rst is None:
self.maxVal = self.lst.maxVal
def query(self, i, j):
if j < self.l or self.r < i:
return -1000000000
if i <= self.l and self.r <= j:
return self.maxVal
ql = -1000000000
qr = -1000000000
if self.lst is not None:
ql = self.lst.query(i, j)
if self.rst is not None:
qr = self.rst.query(i, j)
return max(ql, qr)
def yet_another_yet_another_task2(a):
res = 0
for i in range(1, 31):
mxr = 0
mnr = 0
for j in a:
if j > i:
mxr = 0
mnr = 0
else:
mxr += j
mnr = min(mxr, mnr)
res = max(res, mxr - mnr - i)
return res
n = int(stdin.readline())
a = list(map(int, stdin.readline().split()))
stdout.write(str(yet_another_yet_another_task(a)) + "\n")
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR LIST ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR LIST VAR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR LIST VAR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR RETURN VAR CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR RETURN IF VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR IF VAR NONE VAR NONE ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NONE ASSIGN VAR VAR IF VAR NONE ASSIGN VAR VAR FUNC_DEF IF VAR VAR VAR VAR RETURN NUMBER IF VAR VAR VAR VAR RETURN VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NONE ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NONE ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR STRING
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
from itertools import accumulate
p2D = lambda x: print(*x, sep="\n")
def II():
return int(sys.stdin.readline())
def MI():
return map(int, sys.stdin.readline().split())
def LI():
return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number):
return [LI() for _ in range(rows_number)]
def SI():
return sys.stdin.readline()[:-1]
class SparseTableMax:
def __init__(self, aa):
w = len(aa)
h = w.bit_length()
table = [aa] + [([-1] * w) for _ in range(h - 1)]
tablei1 = table[0]
for i in range(1, h):
tablei = table[i]
for j in range(w - (1 << i) + 1):
rj = j + (1 << i - 1)
tablei[j] = max(tablei1[j], tablei1[rj])
tablei1 = tablei
self.table = table
def max(self, l, r):
i = (r - l).bit_length() - 1
tablei = self.table[i]
Lmax = tablei[l]
Rmax = tablei[r - (1 << i)]
if Lmax > Rmax:
Rmax = Lmax
return Rmax
class SparseTableMin:
def __init__(self, aa):
w = len(aa)
h = w.bit_length()
table = [aa] + [([-1] * w) for _ in range(h - 1)]
tablei1 = table[0]
for i in range(1, h):
tablei = table[i]
for j in range(w - (1 << i) + 1):
rj = j + (1 << i - 1)
tablei[j] = min(tablei1[j], tablei1[rj])
tablei1 = tablei
self.table = table
def min(self, l, r):
i = (r - l).bit_length() - 1
tablei = self.table[i]
Lmin = tablei[l]
Rmin = tablei[r - (1 << i)]
if Lmin < Rmin:
Rmin = Lmin
return Rmin
def main():
inf = 10**16
n = II()
aa = LI()
ll = [0] * n
stack = []
for i, a in enumerate(aa):
while stack and stack[-1][-1] <= a:
stack.pop()
if stack:
ll[i] = stack[-1][0] + 1
stack.append((i, a))
rr = [n] * n
stack = []
for i in range(n - 1, -1, -1):
a = aa[i]
while stack and stack[-1][-1] <= a:
stack.pop()
if stack:
rr[i] = stack[-1][0]
stack.append((i, a))
cs = [0] + [s for s in accumulate(aa)]
mn = SparseTableMin(cs)
mx = SparseTableMax(cs)
ans = -inf
for i in range(n):
l, r = ll[i], rr[i]
cur = mx.max(i + 1, r + 1) - mn.min(l, i + 1) - aa[i]
if cur > ans:
ans = cur
print(ans)
main()
|
IMPORT ASSIGN VAR FUNC_CALL VAR VAR STRING FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR NUMBER CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST VAR BIN_OP LIST NUMBER VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP NUMBER VAR IF VAR VAR ASSIGN VAR VAR RETURN VAR CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST VAR BIN_OP LIST NUMBER VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP NUMBER VAR IF VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR WHILE VAR VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR WHILE VAR VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
a = int(input())
z = list(map(int, input().split()))
res = 0
ans = 0
for i in range(1, 31):
res = 0
for j in range(len(z)):
res += z[j]
if z[j] > i:
res = 0
res = max(res, 0)
ans = max(ans, res - i)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
def solution(a):
ans = 0
for mx in range(31):
cum_sum = 0
cum_sum_min = 0
for val in a:
cum_sum += -10000000.0 if val > mx else val
cum_sum_min = min(cum_sum_min, cum_sum)
ans = max(ans, cum_sum - cum_sum_min - mx)
return ans
n = int(input())
a = list(map(int, input().split()))
print(int(solution(a)))
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
n = int(input())
l = list(map(int, input().split()))
m = 0
for x in range(1, 31):
s = 0
for i in range(n):
if l[i] > x:
s = 0
else:
s += l[i]
m = max(m, s - x)
if s < 0:
s = 0
print(m)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
input = sys.stdin.readline
n = int(input())
a = list(map(int, input().split()))
mx = 0
cur = [0] * 30
for i in range(30):
cur[i] = [0, 0]
for i in a:
for j in range(30):
if i == j + 1 and cur[j][1] == 0:
cur[j][1] = i
cur[j][0] -= i
cur[j][0] += i
if i > j + 1:
cur[j][0] = 0
cur[j][1] = 0
if cur[j][0] < 0:
if cur[j][1] == 0:
cur[j][0] = 0
elif cur[j][0] < -j:
cur[j][0] = 0
cur[j][1] = 0
if cur[j][0] > mx and cur[j][1] > 0:
mx = cur[j][0]
print(mx)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR LIST NUMBER NUMBER FOR VAR VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER IF VAR VAR NUMBER NUMBER IF VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER IF VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER IF VAR VAR NUMBER VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
n = int(input())
l = list(map(int, input().split()))
ans = 0
s = set()
for i in l:
if i > 0:
s.add(i)
for i in s:
now = 0
for j in l:
if j > i:
now -= float("INF")
else:
now += j
if now <= 0:
now = 0
else:
ans = max(ans, now - i)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR FUNC_CALL VAR STRING VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
N = int(input())
A = [int(_) for _ in input().split()]
dp = [([0] * 63) for _ in range(N + 1)]
dp[0][A[0] + 30] = A[0]
answer = 0
for i in range(1, N):
el = A[i]
iel = el + 30
dp[i][iel] = max(dp[i][iel], el)
answer = max(answer, dp[i][iel] - max(el, 0))
for m in range(-30, 31):
im = m + 30
if el > m:
dp[i][iel] = max(dp[i][iel], dp[i - 1][im] + el)
answer = max(answer, dp[i][iel] - max(el, 0))
elif dp[i - 1][im] > 0:
dp[i][im] = max(dp[i][im], dp[i - 1][im] + el)
answer = max(answer, dp[i][im] - max(m, 0))
print(answer)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
input = sys.stdin.readline
n = int(input())
a = list(map(int, input().split()))
ans = 0
for M in range(-30, 31):
acc = 0
min_acc = 0
for ai in a:
acc += ai if ai <= M else -(10**18)
ans = max(ans, acc - min_acc - M)
min_acc = min(min_acc, acc)
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR VAR VAR BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
INF = int(1000000000.0)
def kadane(temp):
sm, t = -INF, -INF
for x in temp:
t = max(x, x + t)
sm = max(sm, t)
return sm
n = int(input())
arr = [int(x) for x in input().split()]
ans = 0
maxes = set([x for x in arr if x > 0])
for mx in maxes:
temp = []
for ind, val in enumerate(arr):
if val > mx:
temp.append(-INF)
else:
temp.append(val)
ans = max(ans, kadane(temp) - mx)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR NUMBER FUNC_DEF ASSIGN VAR VAR VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER FOR VAR VAR ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
from itertools import groupby
n = int(input())
a = list(map(int, input().split()))
INF = 100000000000000
dp = [([-INF] * 61) for i in range(n)]
ans = -INF
for i in range(n):
if i == 0:
dp[i][a[i] + 30] = 0
continue
dp[i][a[i] + 30] = 0
for j in range(61):
if dp[i - 1][j] == -INF:
continue
if j <= a[i] + 30:
dp[i][a[i] + 30] = max(
dp[i][a[i] + 30], dp[i - 1][j] + a[i] - (a[i] + 30 - j)
)
else:
dp[i][j] = dp[i - 1][j] + a[i]
ans = max(ans, max(dp[i]))
print(max(ans, 0))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR IF VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
from sys import gettrace, stdin
if not gettrace():
def input():
return next(stdin)[:-1]
def main():
n = int(input())
aa = [int(a) for a in input().split()]
mlss = [0] * n
dp = [[0] * 31]
for a in aa[:-1]:
dp.append([0] * 31)
for i in range(max(0, a), 31):
dp[-1][i] = max(0, dp[-2][i] + a)
for i in range(1, n):
mlss[i] = dp[i][max(aa[i], 0)]
mrss = [0] * n
dp = [[0] * 31]
for a in aa[-1:0:-1]:
dp.append([0] * 31)
for i in range(max(0, a), 31):
dp[-1][i] = max(0, dp[-2][i] + a)
dp.reverse()
for i in range(n - 2, -1, -1):
mrss[i] = dp[i][max(aa[i], 0)]
best = 0
for a, mls, mrs in zip(aa, mlss, mrss):
best = max(best, mls + mrs)
print(best)
main()
|
IF FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR LIST BIN_OP LIST NUMBER NUMBER FOR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR LIST BIN_OP LIST NUMBER NUMBER FOR VAR VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
input = sys.stdin.readline
N = int(input())
A = list(map(int, input().split()))
INF = 10**12
ans = -INF
dp = [-INF] * 62
for i, a in enumerate(A):
ndp = [-INF] * 62
ndp[a] = max(0, dp[a] + a)
for k in range(-30, a):
ndp[a] = max(ndp[a], dp[k] + k)
for k in range(a + 1, 31):
ndp[a] = max(ndp[a], dp[k] + a)
ans = max(ans, ndp[a])
for k in range(a + 1, 31):
ndp[k] = dp[k] + a
ans = max(ans, ndp[k])
dp = ndp
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP LIST VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
from itertools import accumulate
input = sys.stdin.readline
n = int(input())
a = [0] + list(map(int, input().split()))
acc = list(accumulate(a))
mxls = [0]
ans = 0
l = 0
acmn = 1000000000
acmnls = [acmn] * (n + 1)
for i in range(1, n + 1):
if mxls[i - 1] < a[i]:
t = i
mxls.append(a[i])
while t >= 2 and mxls[t - 1] < a[i]:
mxls[t - 1] = a[i]
t -= 1
acmn = acmnls[t - 1]
for j in range(t, i + 1):
acmn = min(acmn, acc[j - 1] + mxls[j])
acmnls[j] = acmn
else:
mxls.append(a[i])
acmn = min(acmn, acc[i - 1] + mxls[i])
acmnls[i] = acmn
ans = max(ans, acc[i] - acmn)
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR VAR WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
n = int(input())
a = [int(x) for x in input().split()]
mx = 1
ans = 0
while mx <= 30:
loc = 0
for x in a:
if x > mx:
loc = 0
continue
loc += x
if loc < 0:
loc = 0
ans = max(ans, loc - mx)
mx += 1
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
from itertools import accumulate
input = sys.stdin.readline
class SegTree:
def __init__(self, init_val, n, ide_ele, seg_func):
self.segfunc = seg_func
self.num = 2 ** (n - 1).bit_length()
self.ide_ele = ide_ele
self.seg = [self.ide_ele] * 2 * self.num
for i in range(n):
self.seg[i + self.num - 1] = init_val[i]
for i in range(self.num - 2, -1, -1):
self.seg[i] = self.segfunc(self.seg[2 * i + 1], self.seg[2 * i + 2])
def update(self, k, x):
k += self.num - 1
self.seg[k] = x
while k + 1:
k = (k - 1) // 2
self.seg[k] = self.segfunc(self.seg[k * 2 + 1], self.seg[k * 2 + 2])
def query(self, p, q):
if q <= p:
return self.ide_ele
p += self.num - 1
q += self.num - 2
res = self.ide_ele
while q - p > 1:
if p & 1 == 0:
res = self.segfunc(res, self.seg[p])
if q & 1 == 1:
res = self.segfunc(res, self.seg[q])
q -= 1
p = p // 2
q = (q - 1) // 2
if p == q:
res = self.segfunc(res, self.seg[p])
else:
res = self.segfunc(self.segfunc(res, self.seg[p]), self.seg[q])
return res
n = int(input())
xs = [0] + list(map(int, input().split()))
X = list(accumulate(xs))
xis = [(i, x) for i, x in enumerate(xs)]
xis = sorted(xis, key=lambda x: x[1])[::-1]
bx = None
tmp = []
F = [(0, n + 1)] * (n + 1)
sti1 = SegTree([0] * (n + 1), n + 1, -1, max)
sti2 = SegTree([n + 1] * (n + 1), n + 1, 10**18, min)
for i, x in xis:
if bx == x:
pass
else:
for j in tmp:
sti1.update(j, j)
sti2.update(j, j)
tmp = []
F[i] = sti1.query(0, i), sti2.query(i, n + 1)
tmp.append(i)
bx = x
st1 = SegTree(X, n + 1, -(10**18), max)
st2 = SegTree(X, n + 1, 10**18, min)
R = 0
for i in range(1, n + 1):
k, l = F[i]
R = max(R, st1.query(i, l) - st2.query(k, i) - xs[i])
print(R)
|
IMPORT ASSIGN VAR VAR CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR BIN_OP NUMBER FUNC_CALL BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP LIST VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_DEF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR WHILE BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_DEF IF VAR VAR RETURN VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR WHILE BIN_OP VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR NONE ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP LIST BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER NUMBER VAR FOR VAR VAR VAR IF VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP NUMBER NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP NUMBER NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
def solve_excluding(a, u):
best_sum = 0
current_sum = 0
seen = False
seen_at_some_point = False
for el in a:
if el > u or current_sum + el < 0:
current_sum = 0
seen = False
else:
current_sum += el
if el == u:
seen = True
if current_sum >= best_sum and seen:
best_sum = current_sum
seen_at_some_point = True
return seen_at_some_point, best_sum
n = int(input())
a = [int(x) for x in input().split()]
best = 0
for u in range(-30, 31):
seen, total = solve_excluding(a, u)
if seen:
total -= u
if total > best:
best = total
print(best)
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER RETURN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
input = sys.stdin.readline
n = int(input())
a = list(map(int, input().split()))
ans = 0
for M in range(-30, 31):
b = a[:]
for i in range(n):
if b[i] > M:
b[i] = -(10**18)
acc = 0
min_acc = 0
for bi in b:
acc += bi
ans = max(ans, acc - min_acc - M)
min_acc = min(min_acc, acc)
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
n = int(input())
a = list(map(int, input().split()))
ans = 0
for m in range(1, 31):
now = 0
for v in a:
if v > m:
now = 0
continue
now = max(now + v, 0)
ans = max(ans, now - m)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
def findMax(a, cand, prefix):
heap = []
minPrefix = 0
result = float("-inf")
maxSeen = float("-inf")
for i in range(1, len(prefix)):
maxSeen = max(maxSeen, a[i - 1])
if maxSeen > cand:
maxSeen = float("-inf")
minPrefix = i
else:
if maxSeen == cand:
result = max(result, prefix[i] - prefix[minPrefix] - maxSeen)
if prefix[i] < prefix[minPrefix]:
minPrefix = i
return result
n = int(input())
a = [int(x) for x in input().split()]
prefix = [0]
for val in a:
prefix.append(prefix[-1] + val)
result = 0
for cand in range(-30, 31):
result = max(result, findMax(a, cand, prefix))
print(result)
|
FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
input = sys.stdin.buffer.readline
def I():
return list(map(int, input().split()))
def sieve(n):
a = [1] * n
for i in range(2, n):
if a[i]:
for j in range(i * i, n, i):
a[j] = 0
return a
n = int(input())
arr = I()
ans = 0
for i in range(-32, 33):
maxs = -33
f = 0
currmax = -33
for j in range(n):
if arr[j] == i:
f = 1
if arr[j] > i:
currmax = -33
continue
currmax = max(arr[j] + currmax, arr[j])
maxs = max(currmax, maxs)
if f:
ans = max(maxs - i, ans)
print(ans)
|
IMPORT ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
n = int(input())
A = list(map(int, input().split()))
s = max(A)
ans = 0
for val in range(s, 0, -1):
mv, cv = 0, 0
for i in range(n):
if A[i] <= val:
cv = cv + A[i]
mv = max(mv, cv)
if cv < 0:
cv = 0
else:
cv = 0
ans = max(mv - val, ans)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
n = int(input())
cards = [int(x) for x in input().split()]
possibleVals = set()
for x in cards:
possibleVals.add(x)
ans = -999999999
for v in possibleVals:
segmentHasV = True if v == cards[0] else False
maxContiguousSum = cards[0]
if maxContiguousSum > v:
maxContiguousSum = -9999999999
if segmentHasV:
ans = max(ans, maxContiguousSum - v)
for i in range(1, len(cards)):
e = cards[i]
if e == v:
segmentHasV = True
if e > v:
e = -9999999999
maxContiguousSum = max(maxContiguousSum + e, e)
if segmentHasV == True:
ans = max(ans, maxContiguousSum - v)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
n = int(input())
arr = list(map(int, input().split()))
ans = 0
for i in range(1, 31):
mu_now = 0
fin = 0
for j in range(n):
if arr[j] > i:
fin = 0
mu_now = 0
continue
mu_now += arr[j]
if arr[j] == i:
fin = 1
mu_now = max(mu_now, 0)
if fin:
ans = max(ans, mu_now - i)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
input = sys.stdin.buffer.readline
n = int(input())
ls = list(map(int, input().split()))
m = max(ls)
def get_max(ls):
ma = [([0] * n) for _ in range(m + 1)]
for i in range(1, m + 1):
mx = 0
for j, u in enumerate(ls):
mx += u
if mx <= 0 or u > i:
mx = 0
ma[i][j] = mx
return ma
ml, mr = get_max(ls), get_max(list(reversed(ls)))
mr = [list(reversed(u)) for u in mr]
mx = 0
for i, u in enumerate(ls):
if u <= 0:
continue
lv = ml[u][i - 1] if i > 0 else 0
rv = mr[u][i + 1] if i < n - 1 else 0
mx = max(mx, lv + rv)
print(mx)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
input = sys.stdin.readline
n = int(input())
l = input().split()
li = [int(i) for i in l]
maxa = -(10**9)
for i in range(-32, 32):
l = []
for j in range(n):
if li[j] <= i:
l.append(li[j])
else:
if l == []:
continue
dp = [(0) for ok in range(len(l))]
dp[0] = l[0]
for k in range(1, len(l)):
dp[k] = max(dp[k - 1] + l[k], l[k])
z = max(dp)
maxa = max(z - i, maxa)
l = []
if l != []:
dp = [(0) for ok in range(len(l))]
dp[0] = l[0]
for k in range(1, len(l)):
dp[k] = max(dp[k - 1] + l[k], l[k])
z = max(dp)
maxa = max(z - i, maxa)
l = []
print(maxa)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR IF VAR LIST ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR LIST IF VAR LIST ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
from sys import stdin
input = stdin.buffer.readline
n = int(input())
aa = [int(i) for i in input().split()]
ans = -(10**9 + 7)
for i in range(0, 31):
msf = 0
for j in range(0, n):
if aa[j] <= i:
msf += aa[j]
msf = max(msf, 0)
ans = max(ans, msf - i)
else:
msf = 0
print(ans)
|
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
def solve():
n = int(input())
l = list(map(int, input().split()))
count = 0
for i in l:
if i > 0:
count += 1
if count <= 1:
print(0)
return
arr = [0] * 31
for i in range(30, 0, -1):
a = 0
b = 0
sub = 0
for y in l:
if y > i:
a = 0
b = 0
continue
b += y
if sub < b - a:
sub = b - a
if b < a:
a = b
arr[i] = sub
print(max([(arr[i] - i) for i in range(31)]))
solve()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
def kandane(a):
best = -(10**10)
current = 0
for i in range(len(a)):
if current >= 0:
current += a[i]
else:
current = a[i]
best = max(current, best)
return best
n = int(input())
arr = [int(i) for i in input().split()]
ans = 0
for pot_max in range(1, 31):
barr = [(a if a <= pot_max else -10000000) for a in arr]
ans = max(ans, kandane(barr) - pot_max)
print(ans)
|
FUNC_DEF ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
import sys
def I():
return sys.stdin.readline().rstrip()
def f(l, st, en):
m = -1
for i in range(st, en):
m = max(m, l[i])
if m <= 0:
return 0
s = 0
ms = 0
for i in range(st, en):
x = l[i]
s += x
ms = max(ms, s)
s = max(s, 0)
ans = max(ms - m, 0)
le = st
ri = st - 1
while le < en:
le = ri + 1
ri = le
while ri < en and l[ri] < m:
ri += 1
if le < ri - 1:
ans = max(ans, f(l, le, ri))
return ans
n = int(I())
print(f(list(map(int, I().split())), 0, n))
|
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER VAR
|
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$.
First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$.
Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible.
What segment should Alice choose so that the score is maximum possible? Output the maximum score.
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 10^5$) β the number of cards.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β the values on the cards.
-----Output-----
Print a single integer β the final score of the game.
-----Examples-----
Input
5
5 -2 10 -1 4
Output
6
Input
8
5 2 5 3 -30 -30 6 9
Output
10
Input
3
-10 6 -15
Output
0
-----Note-----
In the first example Alice chooses a segment $[1;5]$ β the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$.
In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$.
In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
|
n = int(input())
ar = list(map(int, input().split()))
ans = 0
for i in range(0, 31):
a, b = 0, 0
for e in ar:
e = e if e <= i else -float("inf")
a = max(e, a + e)
b = max(a, b)
ans = max(ans, b - i)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.