description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
import sys n = int(input()) a = [int(x) for x in input().split()] if all(x <= 0 for x in a): print(0) import sys sys.exit(0) pvs = list(reversed(sorted([x for x in set(a) if x > 0]))) obest = 0 for v in pvs: cv = 0 poss = False for x in a: if x == v: poss = True cv += x obest = max(obest, cv - v) elif x < v: cv += x if poss and cv - v > obest: obest = cv - v if cv < 0: cv = 0 poss = False else: cv = 0 print(obest)
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER IMPORT EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR VAR VAR VAR IF VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
import sys input = sys.stdin.readline def main(): n = int(input()) a = list(map(int, input().split())) ans = 0 for m in range(31): v = 0 for x in a: if x > m: v = 0 else: v = max(v, 0) + x ans = max(ans, v - m) print(ans) main()
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
import sys def input(): return sys.stdin.readline().strip() def list2d(a, b, c): return [([c] * b) for i in range(a)] def list3d(a, b, c, d): return [[([d] * c) for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [[[([e] * d) for j in range(c)] for j in range(b)] for i in range(a)] def ceil(x, y=1): return int(-(-x // y)) def INT(): return int(input()) def MAP(): return map(int, input().split()) def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)] def Yes(): print("Yes") def No(): print("No") def YES(): print("YES") def NO(): print("NO") INF = 10**10 MOD = 10**9 + 7 N = INT() A = LIST() nums = sorted(set(A), reverse=1) ans = -INF for num in nums: dp0 = [-INF] * (N + 1) dp1 = [-INF] * (N + 1) for i in range(N): if A[i] < num: dp0[i + 1] = max(dp0[i + 1], dp0[i] + A[i], A[i]) dp1[i + 1] = max(dp1[i + 1], dp1[i] + A[i], A[i]) elif A[i] == num: dp1[i + 1] = max(dp1[i + 1], dp0[i] + A[i], A[i]) dp1[i + 1] = max(dp1[i + 1], dp1[i] + A[i], A[i]) ans = max(ans, max(dp1) - num) print(ans)
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF NUMBER RETURN FUNC_CALL VAR BIN_OP VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF NONE RETURN VAR NONE FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FOR VAR VAR ASSIGN VAR BIN_OP LIST VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
from sys import stdin input = stdin.buffer.readline n = int(input()) (*a,) = map(int, input().split()) ans = 0 for x in range(0, 31): if not x in a: continue mx = a[0] if a[0] <= x else 0 sm, mn = 0, 0 for i in range(n): if a[i] > x: continue sm += a[i] mx = max(mx, sm - mn) mn = min(mn, sm) ans = max(ans, mx - x) print(ans)
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
n = int(input()) A = list(map(int, input().split())) for a in A: if a > 0: break else: print(0) exit() if n == 1: print(0) exit() ans = -1 INF = 10**18 for M in range(1, 31): dp = [0] * n if A[0] > M: dp[0] = -INF else: dp[0] = A[0] for i in range(1, n): if A[i] > M: a = -INF else: a = A[i] dp[i] = max(dp[i - 1] + a, a) ans = max(ans, max(dp) - M) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR IF VAR NUMBER VAR ASSIGN VAR NUMBER VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
import sys input = sys.stdin.readline def prog(): n = int(input()) cards = list(map(int, input().split())) maxes = [0] for m in range(1, 31): ans = 0 value = 0 for card in cards: if card <= m: value = max(card, value + card) else: value = 0 ans = max(value, ans) maxes.append(ans - m) print(max(maxes)) prog()
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
n = int(input()) a = list(map(int, input().split())) + [100] ans = 0 for i in range(-30, 31): b = [] for x in a: if x <= i: b.append(x) elif b: m = 0 t = 0 for y in b: t += y ans = max(ans, t - m - i) m = min(m, t) b = [] print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR LIST NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
N = int(input()) As = list(map(int, input().split())) dp = [-100] * 70 dp[0] = 0 ans = 0 for i, A in enumerate(As): new_dp = [-100] * 70 new_dp[A] = A for ma in range(-30, A + 1): new_dp[A] = max(new_dp[A], dp[ma] + A) for ma in range(A + 1, 31): new_dp[ma] = dp[ma] + A dp = new_dp ans = max(ans, max(dp[i] - i for i in range(-30, 31))) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
import sys ninf = -100000000 [n] = [int(i) for i in sys.stdin.readline().split()] cards = [int(i) for i in sys.stdin.readline().split()] dp = [[(0) for i in range(n)] for j in range(61)] for i in range(61): if cards[0] <= i - 30: dp[i][0] = cards[0] else: dp[i][0] = ninf for j in range(1, n): for i in range(61): if cards[j] <= i - 30: dp[i][j] = max(dp[i][j - 1] + cards[j], cards[j]) else: dp[i][j] = ninf ans = 0 for j in range(n): for i in range(61): ans = max(ans, dp[i][j] - (i - 30)) print(ans)
IMPORT ASSIGN VAR NUMBER ASSIGN LIST VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
n = int(input()) a = list(map(int, input().split())) max_sum = 0 for j in range(1, 31): if j not in a: continue dp = [(0) for i in range(n)] dp[0] = a[0] valid_sums = [] prev = False for i in range(n): if a[i] <= j: if prev: dp[i] = max(0, a[i], a[i] + dp[i - 1]) if a[i] == j: valid = True valid_sums.append(dp[i]) elif valid: valid_sums.append(a[i] + dp[i - 1]) else: dp[i] = a[i] prev = True if a[i] == j: valid = True valid_sums.append(dp[i]) else: valid = False else: prev = False valid = False max_sum = max(max_sum, max(valid_sums) - j) print(max_sum)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR IF VAR ASSIGN VAR VAR FUNC_CALL VAR NUMBER VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
def solve(n, ar): ans = 0 for i in range(1, 31): sum = 0 for j in range(n): if sum < 0: sum = 0 sum += ar[j] if ar[j] > i: sum = 0 if sum - i > ans: ans = sum - i print(ans) n = int(input()) ar = list(map(int, input().split())) solve(n, ar)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
x = int(input()) a = list(map(int, input().split())) res = 0 for i in range(32): s, max1, s1 = 0, 0, 0 for j in a: if j <= i: s += j max1 = max(max1, s - s1) s1 = min(s1, s) else: s1 = 0 s = 0 res = max(res, max1 - i) print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER FOR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
def calc(x, mx): if x > mx: return float("-inf") else: return x def calcmax(arr): max_so_far = float("-inf") currmax = 0 for i in arr: currmax += i if currmax > max_so_far: max_so_far = currmax if currmax < 0: currmax = 0 return max_so_far n = int(input()) arr = [int(c) for c in input().split()] ans = float("-inf") for i in range(-30, 31): a = [calc(x, i) for x in arr] ans = max(ans, calcmax(a) - i) print(ans)
FUNC_DEF IF VAR VAR RETURN FUNC_CALL VAR STRING RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
def do(arr): res = 0 for i in range(30, -31, -1): temp = 0 for x in arr: if x > i: temp = 0 else: res = max(res, temp + x - i) temp = max(0, temp + x) return res input() lst = list(map(int, input().split())) print(do(lst))
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR RETURN VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
n = int(input()) s = list(map(int, input().split())) ans = 0 inf = -99999999999999999 for mx in range(31): c = b = 0 for i in s: if i > mx: i = inf c += i b = min(b, c) ans = max(ans, c - b - mx) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
n = int(input()) l = list(map(int, input().split())) curr = 0 best = 0 prevs = [0] * 31 for v in l: curr += v if v >= 0: for i in range(0, v): prevs[i] = curr for i in range(v, 31): best = max(curr - prevs[i] - i, best) else: for i in range(31): prevs[i] = min(prevs[i], curr) print(best)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR VAR VAR VAR IF VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
inf = int(1000000.0) n = int(input()) lis = list(map(int, input().split())) final = 0 for i in range(30, 0, -1): s = 0 ans = 0 for j in range(n): a = lis[j] if lis[j] > i: a = -inf s += a s = max(0, s) ans = max(ans, s) final = max(ans - i, final) print(final)
ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
import sys input = sys.stdin.readline def build(a, index, beg, end, tree): if beg == end: tree[index][0] = a[beg] tree[index][1] = a[beg] else: mid = (beg + end) // 2 build(a, 2 * index + 1, beg, mid, tree) build(a, 2 * index + 2, mid + 1, end, tree) tree[index][0] = tree[2 * index + 1][0] + tree[2 * index + 2][0] tree[index][1] = max( tree[2 * index + 1][1], tree[2 * index + 1][0] + tree[2 * index + 2][1] ) def query(index, beg, end, l, r): result = [-1, -1] if beg > r or end < l: return result if beg >= l and end <= r: return tree[index] mid = (beg + end) // 2 if l > mid: return query(2 * index + 2, mid + 1, end, l, r) if r <= mid: return query(2 * index + 1, beg, mid, l, r) left = query(2 * index + 1, beg, mid, l, r) right = query(2 * index + 2, mid + 1, end, l, r) result[0] = left[0] + right[0] result[1] = max(left[1], left[0] + right[1]) return result n = int(input()) arr = list(map(int, input().split())) tree = [[0, 0] for j in range(3 * n)] build(arr, 0, 0, n - 1, tree) fw = [(0) for k in range(n)] bw = [(0) for k in range(n)] cur_max = bw[n - 1] = arr[n - 1] i = n - 2 p = [n - 1] bw[n - 1] = 0 d = dict() q = 0 d[arr[n - 1]] = n - 1 while i >= 0: if arr[i] > 0: r = 1000000 for j in range(arr[i] + 1, 31): if j in d.keys(): r = min(r, d[j]) if r > p[0]: bw[i] = max(0, cur_max) else: bw[i] = max(0, query(0, 0, n - 1, i + 1, r - 1)[1]) cur_max = max(arr[i], cur_max + arr[i]) if arr[i] == cur_max: p = [i] q = 1 else: p.append(i) q += 1 d[arr[i]] = i i += -1 tree = [[0, 0] for j in range(3 * n)] build(arr[::-1], 0, 0, n - 1, tree) cur_max, max_so_far = arr[0], arr[0] p = [0] q = 0 d = dict() d[arr[0]] = 0 for i in range(1, n): if arr[i] > 0: r = -1 for j in range(arr[i] + 1, 31): if j in d.keys(): r = max(r, d[j]) if r < p[0]: fw[i] = max(0, cur_max) else: fw[i] = max(0, query(0, 0, n - 1, n - 1 - i + 1, n - 1 - r - 1)[1]) cur_max = max(arr[i], cur_max + arr[i]) if arr[i] == cur_max: p = [i] q = 1 else: p.append(i) q += 1 d[arr[i]] = i f = 0 f = max(f, fw[n - 1], bw[0]) j = 1 while j < n - 1: f = max(f, fw[j] + bw[j]) j += 1 print(f)
IMPORT ASSIGN VAR VAR FUNC_DEF IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR ASSIGN VAR VAR NUMBER VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER FUNC_DEF ASSIGN VAR LIST NUMBER NUMBER IF VAR VAR VAR VAR RETURN VAR IF VAR VAR VAR VAR RETURN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR RETURN FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR IF VAR VAR RETURN FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST NUMBER NUMBER VAR FUNC_CALL VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR LIST BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER IF VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR NUMBER NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR IF VAR VAR VAR ASSIGN VAR LIST VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR LIST NUMBER NUMBER VAR FUNC_CALL VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER NUMBER NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER IF VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR NUMBER NUMBER BIN_OP VAR NUMBER BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR IF VAR VAR VAR ASSIGN VAR LIST VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
import sys def I(): return sys.stdin.readline().rstrip() def f(l): m = max(l) if m <= 0: return 0 s = 0 ms = 0 for x in l: s += x ms = max(ms, s) s = max(s, 0) ans = max(ms - m, 0) le = 0 ri = -1 while le < len(l): le = ri + 1 ri = le while ri < len(l) and l[ri] < m: ri += 1 if le < ri - 1: ans = max(ans, f(l[le:ri])) return ans I() print(f(list(map(int, I().split()))))
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR RETURN VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
a = [] n = 0 def tryit(mx): gs = 0 cs = 0 cmx = -float("inf") for i in a: if i > mx: cs = 0 cmx = -float("inf") continue cs = max(i, cs + i) if cs == i: cmx = i cmx = max(cmx, i) gs = max(gs, cs - cmx) return gs n = int(input()) a = list(map(int, input().split())) cs = 0 gs = 0 mx = -float("inf") ans = 0 for i in range(-30, 31): ans = max(ans, tryit(i)) print(ans)
ASSIGN VAR LIST ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
def solve(n, d): maxScore = 0 maxer = float("-inf") res = 0 for i in range(31): sub = float("-inf") curr = float("-inf") for j in range(len(d)): now = d[j] if d[j] > i: now = float("-inf") sub = max(sub + now, now) curr = max(curr, sub) res = max(curr - i, res) return res def main(): n = int(input()) d = input() d = [int(i) for i in d.split()] ans = solve(n, d) print(ans) main()
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Alice and Bob are playing yet another card game. This time the rules are the following. There are $n$ cards lying in a row in front of them. The $i$-th card has value $a_i$. First, Alice chooses a non-empty consecutive segment of cards $[l; r]$ ($l \le r$). After that Bob removes a single card $j$ from that segment $(l \le j \le r)$. The score of the game is the total value of the remaining cards on the segment $(a_l + a_{l + 1} + \dots + a_{j - 1} + a_{j + 1} + \dots + a_{r - 1} + a_r)$. In particular, if Alice chooses a segment with just one element, then the score after Bob removes the only card is $0$. Alice wants to make the score as big as possible. Bob takes such a card that the score is as small as possible. What segment should Alice choose so that the score is maximum possible? Output the maximum score. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 10^5$) β€” the number of cards. The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($-30 \le a_i \le 30$) β€” the values on the cards. -----Output----- Print a single integer β€” the final score of the game. -----Examples----- Input 5 5 -2 10 -1 4 Output 6 Input 8 5 2 5 3 -30 -30 6 9 Output 10 Input 3 -10 6 -15 Output 0 -----Note----- In the first example Alice chooses a segment $[1;5]$ β€” the entire row of cards. Bob removes card $3$ with the value $10$ from the segment. Thus, the final score is $5 + (-2) + (-1) + 4 = 6$. In the second example Alice chooses a segment $[1;4]$, so that Bob removes either card $1$ or $3$ with the value $5$, making the answer $5 + 2 + 3 = 10$. In the third example Alice can choose any of the segments of length $1$: $[1;1]$, $[2;2]$ or $[3;3]$. Bob removes the only card, so the score is $0$. If Alice chooses some other segment then the answer will be less than $0$.
INF = 100000000000000000000000000000000000000000000000000 n, a, resp = int(input()), list(map(int, input().split())), 0 for ale in range(31): corrente, melhor = 0, 0 for i in range(n): val = -INF if a[i] > ale else a[i] corrente += val melhor = min(melhor, corrente) resp = max(resp, corrente - melhor - ale) print(resp)
ASSIGN VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
Frog Gorf is traveling through Swamp kingdom. Unfortunately, after a poor jump, he fell into a well of $n$ meters depth. Now Gorf is on the bottom of the well and has a long way up. The surface of the well's walls vary in quality: somewhere they are slippery, but somewhere have convenient ledges. In other words, if Gorf is on $x$ meters below ground level, then in one jump he can go up on any integer distance from $0$ to $a_x$ meters inclusive. (Note that Gorf can't jump down, only up). Unfortunately, Gorf has to take a break after each jump (including jump on $0$ meters). And after jumping up to position $x$ meters below ground level, he'll slip exactly $b_x$ meters down while resting. Calculate the minimum number of jumps Gorf needs to reach ground level. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 300000$) β€” the depth of the well. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le i$), where $a_i$ is the maximum height Gorf can jump from $i$ meters below ground level. The third line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($0 \le b_i \le n - i$), where $b_i$ is the distance Gorf will slip down if he takes a break on $i$ meters below ground level. -----Output----- If Gorf can't reach ground level, print $-1$. Otherwise, firstly print integer $k$ β€” the minimum possible number of jumps. Then print the sequence $d_1,\,d_2,\,\ldots,\,d_k$ where $d_j$ is the depth Gorf'll reach after the $j$-th jump, but before he'll slip down during the break. Ground level is equal to $0$. If there are multiple answers, print any of them. -----Examples----- Input 3 0 2 2 1 1 0 Output 2 1 0 Input 2 1 1 1 0 Output -1 Input 10 0 1 2 3 5 5 6 7 8 5 9 8 7 1 5 4 3 2 0 0 Output 3 9 4 0 -----Note----- In the first example, Gorf is on the bottom of the well and jump to the height $1$ meter below ground level. After that he slip down by meter and stays on height $2$ meters below ground level. Now, from here, he can reach ground level in one jump. In the second example, Gorf can jump to one meter below ground level, but will slip down back to the bottom of the well. That's why he can't reach ground level. In the third example, Gorf can reach ground level only from the height $5$ meters below the ground level. And Gorf can reach this height using a series of jumps $10 \Rightarrow 9 \dashrightarrow 9 \Rightarrow 4 \dashrightarrow 5$ where $\Rightarrow$ is the jump and $\dashrightarrow$ is slipping during breaks.
import sys input = sys.stdin.readline def solve(): n = int(input()) A = [0] + list(map(int, input().split())) B = [0] + list(map(int, input().split())) ans = [] lo, hi = n, n - A[n] if hi <= 0: print(1) print(0) return while lo > 0: nextStep = hi idx = hi for i in range(hi, lo + 1): j = i + B[i] if nextStep > j - A[j]: nextStep = j - A[j] idx = i if nextStep == hi > 0: print(-1) return ans.append(idx) if nextStep <= 0: ans.append(0) print(len(ans)) print(*ans) return lo, hi = hi - 1, nextStep return solve()
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN WHILE VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR IF VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN EXPR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN ASSIGN VAR VAR BIN_OP VAR NUMBER VAR RETURN EXPR FUNC_CALL VAR
Frog Gorf is traveling through Swamp kingdom. Unfortunately, after a poor jump, he fell into a well of $n$ meters depth. Now Gorf is on the bottom of the well and has a long way up. The surface of the well's walls vary in quality: somewhere they are slippery, but somewhere have convenient ledges. In other words, if Gorf is on $x$ meters below ground level, then in one jump he can go up on any integer distance from $0$ to $a_x$ meters inclusive. (Note that Gorf can't jump down, only up). Unfortunately, Gorf has to take a break after each jump (including jump on $0$ meters). And after jumping up to position $x$ meters below ground level, he'll slip exactly $b_x$ meters down while resting. Calculate the minimum number of jumps Gorf needs to reach ground level. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 300000$) β€” the depth of the well. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le i$), where $a_i$ is the maximum height Gorf can jump from $i$ meters below ground level. The third line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($0 \le b_i \le n - i$), where $b_i$ is the distance Gorf will slip down if he takes a break on $i$ meters below ground level. -----Output----- If Gorf can't reach ground level, print $-1$. Otherwise, firstly print integer $k$ β€” the minimum possible number of jumps. Then print the sequence $d_1,\,d_2,\,\ldots,\,d_k$ where $d_j$ is the depth Gorf'll reach after the $j$-th jump, but before he'll slip down during the break. Ground level is equal to $0$. If there are multiple answers, print any of them. -----Examples----- Input 3 0 2 2 1 1 0 Output 2 1 0 Input 2 1 1 1 0 Output -1 Input 10 0 1 2 3 5 5 6 7 8 5 9 8 7 1 5 4 3 2 0 0 Output 3 9 4 0 -----Note----- In the first example, Gorf is on the bottom of the well and jump to the height $1$ meter below ground level. After that he slip down by meter and stays on height $2$ meters below ground level. Now, from here, he can reach ground level in one jump. In the second example, Gorf can jump to one meter below ground level, but will slip down back to the bottom of the well. That's why he can't reach ground level. In the third example, Gorf can reach ground level only from the height $5$ meters below the ground level. And Gorf can reach this height using a series of jumps $10 \Rightarrow 9 \dashrightarrow 9 \Rightarrow 4 \dashrightarrow 5$ where $\Rightarrow$ is the jump and $\dashrightarrow$ is slipping during breaks.
def task5(n, a, b): F = [None] * (n + 1) paths = [[] for i in range(n + 1)] F[n] = 0 visited = set() current = [n] high = n while True: new_vertexes = [] for i in current: for j in range(i - a[i], high + 1): k = j + b[j] if k not in visited: new_vertexes.append(k) visited.add(k) if F[k] is None: paths[k] = i, j F[k] = F[i] + 1 elif F[i] + 1 < F[k]: paths[k] = i, j F[k] = F[i] + 1 high = min(high, i - a[i]) current = new_vertexes if not current: break path = [] if F[0] is not None: current = paths[0] while current[0] != n: path.append(current[1]) current = paths[current[0]] path.append(current[1]) return -1 if F[0] is None else F[0], path[::-1] def main(): n = int(input().strip()) arr_a = [0] + list(map(int, input().strip().split())) arr_b = [0] + list(map(int, input().strip().split())) result = task5(n, arr_a, arr_b) print(result[0]) if result[1]: print(*result[1], sep=" ") main()
FUNC_DEF ASSIGN VAR BIN_OP LIST NONE BIN_OP VAR NUMBER ASSIGN VAR LIST VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST VAR ASSIGN VAR VAR WHILE NUMBER ASSIGN VAR LIST FOR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR NONE ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR IF VAR ASSIGN VAR LIST IF VAR NUMBER NONE ASSIGN VAR VAR NUMBER WHILE VAR NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER RETURN VAR NUMBER NONE NUMBER VAR NUMBER VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER STRING EXPR FUNC_CALL VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: start = 0 sliding_window_counter = collections.Counter() result = 0 for end in range(len(nums)): sliding_window_counter[nums[end]] += 1 while sliding_window_counter[0] > 1: sliding_window_counter[nums[start]] -= 1 start += 1 result = max(result, end - start) return result
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER WHILE VAR NUMBER NUMBER VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: se = set(nums) if 0 not in se: return len(nums) - 1 elif 1 not in se: return 0 count = 0 flag = 0 ls = [] for i in nums: if i == 0: if flag == 0: count += 1 else: flag = 0 ls.append(count) count = 1 elif flag == 1: count += 1 else: flag = 1 ls.append(count) count = 1 ls.append(count) ind = 0 ans = 0 while ind < len(ls): if ls[ind] != 0: if ls[ind] == 1: if ind == 0 and ind < len(ls) - 1: ans = max(ans, ls[ind + 1]) elif ind == len(ls) - 1 and ind > 0: ans = max(ans, ls[ind - 1]) elif ind < len(ls) - 1 and ind > 0: ans = max(ans, ls[ind - 1] + ls[ind + 1]) elif ind == 0 and ind < len(ls) - 1: ans = max(ans, ls[ind + 1]) elif ind == len(ls) - 1 and ind > 0: ans = max(ans, ls[ind - 1]) elif ind < len(ls) - 1 and ind > 0: ans = max(ans, max(ls[ind - 1], ls[ind + 1])) ind += 2 return ans
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF NUMBER VAR RETURN BIN_OP FUNC_CALL VAR VAR NUMBER IF NUMBER VAR RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR IF VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: i, r = 0, 1 for j in range(len(nums)): if nums[j] == 0: r -= 1 if r < 0: print("yes") if nums[i] == 0: r += 1 i += 1 return j - i
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR NUMBER VAR NUMBER VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: prevStart = -1 candidates = [] if 0 not in nums: return len(nums) - 1 for i in range(len(nums)): if nums[i] == 1: if prevStart == -1: prevStart = i continue elif prevStart != -1: candidates.append([prevStart, i - 1]) prevStart = -1 if prevStart != -1: candidates.append([prevStart, len(nums) - 1]) res = [0] for i in range(len(candidates)): if i == len(candidates) - 1: res.append(candidates[i][1] - candidates[i][0] + 1) elif candidates[i + 1][0] - candidates[i][1] == 2: res.append(candidates[i + 1][1] - candidates[i][0]) else: res.append(candidates[i][1] - candidates[i][0] + 1) return max(res)
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST IF NUMBER VAR RETURN BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR LIST VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR LIST VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER RETURN FUNC_CALL VAR VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: start, end, maxlen, k = 0, 0, 0, 1 while end < len(nums): if nums[end] == 0: k = k - 1 if k < 0: if nums[start] == 0: k += 1 start = start + 1 end = end + 1 continue if k >= 0 or nums[end] == 1: maxlen = max(maxlen, end - start) end = end + 1 return maxlen
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR VAR VAR VAR NUMBER NUMBER NUMBER NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: deleted = False max_, cur_cnt, last_cnt = 0, 0, 0 idx, size = 0, len(nums) while idx < size and nums[idx] == 0: idx += 1 for i in range(idx, size): if nums[i] == 1: cur_cnt += 1 max_ = max(max_, cur_cnt) else: if not deleted: deleted = True else: cur_cnt -= last_cnt last_cnt = cur_cnt if size == sum(nums): return size - 1 return max_
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR WHILE VAR VAR VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR ASSIGN VAR NUMBER VAR VAR ASSIGN VAR VAR IF VAR FUNC_CALL VAR VAR RETURN BIN_OP VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: n = len(nums) if sum(nums) == n: return n - 1 dp = [[(0) for x in range(len(nums))] for y in range(2)] dp[0][0] = 1 if nums[0] == 1 else 0 for i in range(1, len(nums)): if nums[i] == 0: dp[0][i] = 0 dp[1][i] = dp[0][i - 1] else: dp[0][i] = dp[0][i - 1] + 1 dp[1][i] = dp[1][i - 1] + 1 return max([i for x in dp for i in x])
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR RETURN BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER NUMBER VAR NUMBER NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER RETURN FUNC_CALL VAR VAR VAR VAR VAR VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, a: List[int]) -> int: ones = 0 old_ones = 0 maxlen = 0 n = len(a) for i in range(n): if a[i] == 1: ones += 1 maxlen = max(maxlen, ones + old_ones) else: old_ones = ones ones = 0 return maxlen if ones < n else n - 1
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER RETURN VAR VAR VAR BIN_OP VAR NUMBER VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: if 0 in nums and 1 in nums: longest = 0 i = nums.index(0) while True: if 0 in nums[:i][::-1]: left_side = nums[:i][::-1].index(0) else: left_side = len(nums[:i][::-1]) if 0 in nums[i + 1 :]: right_side = nums[i + 1 :].index(0) else: right_side = len(nums[i + 1 :]) longest = max(left_side + right_side, longest) try: i = nums[i + 1 :].index(0) + i + 1 except: break return longest elif sum(nums) == 0: return 0 elif sum(nums) == len(nums): return len(nums) - 1
CLASS_DEF FUNC_DEF VAR VAR IF NUMBER VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER WHILE NUMBER IF NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER IF NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER RETURN VAR IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR NUMBER VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: if len(nums) < 1: return 0 res = 0 logs = [] for x in nums: if x == 0: logs.append(res) res = 0 else: res += 1 logs.append(res) if len(logs) == 1: return max(0, logs[0] - 1) return max([(logs[i] + logs[i + 1]) for i in range(len(logs) - 1)])
CLASS_DEF FUNC_DEF VAR VAR IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER RETURN FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER NUMBER RETURN FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: s = [] i = 0 while i < len(nums): if nums[i] == 0: s.append(0) i += 1 else: j = i cnt = 0 while j < len(nums) and nums[j] == 1: cnt += 1 j += 1 s.append(cnt) i = j print(s) if s[0] == len(nums): return len(nums) - 1 maxYet = max(s[0], s[len(s) - 1]) for i in range(1, len(s) - 1): if s[i] == 0: maxYet = max(maxYet, s[i - 1] + s[i + 1]) else: maxYet = max(maxYet, s[i]) return maxYet
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR IF VAR NUMBER FUNC_CALL VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: right = [(0) for _ in range(len(nums))] left = [(0) for _ in range(len(nums))] for i in range(1, len(nums)): if nums[i - 1] == 1: left[i] = 1 + left[i - 1] res = float("-inf") for i in range(len(nums) - 2, -1, -1): if nums[i + 1] == 1: right[i] = 1 + right[i + 1] res = max(res, left[i] + right[i]) return res
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: mc = 0 onep = False for i in range(len(nums)): if nums[i] == 0: c = 0 j = i - 1 while j >= 0 and nums[j] != 0: j -= 1 c += 1 j = i + 1 while j < len(nums) and nums[j] != 0: j += 1 c += 1 if c > mc: mc = c else: onep = True if onep and mc == 0: return len(nums) - 1 elif not onep and mc == 0: return 0 else: return mc
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR VAR NUMBER RETURN BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR NUMBER RETURN NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: groups = [[k, len(list(g))] for k, g in itertools.groupby(nums)] if len(groups) == 1: return groups[0][1] - 1 if groups[0][0] else 0 ans = 0 for i in range(len(groups)): k, klen = groups[i] if k: ans = max(ans, klen) elif i not in [0, len(groups) - 1] and klen == 1: ans = max(ans, groups[i - 1][1] + groups[i + 1][1]) return ans
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR LIST VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER RETURN VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR LIST NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: seq = [0] prev = 0 res = 0 for n in nums: if n: seq[-1] += 1 res = max(prev + seq[-1], res) else: prev = seq[-1] seq.append(0) if len(seq) == 1: res -= 1 return res
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: zero = -1 k = 1 maxi = 0 count = 0 i = 0 while i != len(nums): if nums[i] == 0: if k == 0: i = zero + 1 zero = i maxi = max(count, maxi) count = 0 k = 1 else: k -= 1 zero = i i += 1 else: count += 1 i += 1 maxi = max(count, maxi) if maxi == len(nums): return maxi - 1 else: return maxi
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR VAR RETURN BIN_OP VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: l = 0 r = 0 earliest_one = float("inf") earliest_zero = float("inf") zeros = 1 max_len = 0 while r < len(nums): zeros -= nums[r] == 0 if zeros < 0: zeros += nums[l] == 0 l += 1 r += 1 return r - l - 1
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER IF VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER RETURN BIN_OP BIN_OP VAR VAR NUMBER VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: z = [0] l = [] a = 0 c = 0 for i in range(len(nums)): if a == 1 and nums[i] == 0: z.append(c) c = i - (l[-1] + 1) a = 1 l.append(i) elif nums[i] == 0: a = a + 1 l.append(i) elif nums[i] == 1: c = c + 1 z.append(c) if nums.count(1) == len(nums): return len(nums) - 1 return max(z)
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR LIST NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR NUMBER RETURN FUNC_CALL VAR VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: new_array = list() current_segment = 0 for num in nums: if num == 0: if current_segment > 0: new_array.append(current_segment) current_segment = 0 new_array.append(0) else: current_segment += 1 if current_segment > 0: new_array.append(current_segment) max_length = 0 for idx in range(len(new_array)): max_length = max(max_length, new_array[idx]) if idx > 0 and idx < len(new_array) - 1 and new_array[idx] == 0: if new_array[idx - 1] > 0 and new_array[idx + 1] > 0: max_length = max( max_length, new_array[idx - 1] + new_array[idx + 1] ) if max_length == len(nums): return max_length - 1 else: return max_length
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN BIN_OP VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: i, j = 0, 0 ans, cur = 0, 0 while j < len(nums): cur += nums[j] while i < j and cur < j - i: cur -= nums[i] i += 1 ans = max(ans, cur) j += 1 return min(ans, len(nums) - 1)
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER RETURN FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: c = 0 ind = 0 for i in range(len(nums)): if nums[i] == 0: j = i + 1 k = 0 while j < len(nums) and nums[j] == 1: k += 1 j += 1 j = i - 1 while j >= 0 and nums[j] == 1: k += 1 j -= 1 if k > c: c = k ind = i if ind == 0 and nums[ind] == 1: ind = len(nums) - 1 c = len(nums) - 1 return c
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: max_length = 0 count = 0 for num in nums: if num == 1: count += 1 max_length = max(max_length, count) else: count = 0 if max_length == len(nums): return len(nums) - 1 elif max_length == 0: return 0 num_left = 0 num_right = 0 for i, num in enumerate(nums): if num == 1: num_right += 1 else: max_length = max(max_length, num_left + num_right) if i + 1 < len(nums) and nums[i + 1] == 1: num_left = num_right num_right = 0 else: num_left = 0 num_right = 0 max_length = max(max_length, num_left + num_right) return max_length
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, array: List[int]) -> int: i = 0 lenght = 0 stack = deque() zero = False while i < len(array): if array[i] == 1: stack.append(array[i]) i += 1 elif zero == False: stack.append(array[i]) zero = True i += 1 else: temp = len(stack) - 1 if temp > lenght: lenght = temp while stack[0] != 0: stack.popleft() stack.popleft() zero = False if len(stack) > lenght: lenght = len(stack) - 1 return lenght
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR WHILE VAR NUMBER NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: left = 0 right = 0 zeroes = 1 res = 0 while right < len(nums): if nums[right] == 0: zeroes -= 1 while zeroes < 0: if nums[left] == 0: zeroes += 1 left += 1 res = max(res, right - left) right += 1 return res
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER WHILE VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: if 1 not in nums: return 0 if 0 not in nums: return len(nums) - 1 new = [] i = 0 n = len(nums) while i < n: if nums[i] == 1: cnt = 0 while i < n and nums[i] == 1: cnt += 1 i += 1 new.append(cnt) else: new.append(0) i += 1 mx = max(new) for i in range(1, len(new) - 1): if new[i] == 0: mx = max(mx, new[i - 1] + new[i + 1]) return mx
CLASS_DEF FUNC_DEF VAR VAR IF NUMBER VAR RETURN NUMBER IF NUMBER VAR RETURN BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: left = [] total = 0 for n in nums: if n == 0: total = 0 else: total += n left.append(total) right = [] total = 0 for i in range(len(nums) - 1, -1, -1): if nums[i] == 0: total = 0 else: total += nums[i] right.append(total) right = right[::-1] curMax = 0 for i in range(len(nums) - 2): curMax = max(left[i] + right[i + 2], curMax) return curMax
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: n = len(nums) leftones = [0] * n for i in range(n): if nums[i] == 0: leftones[i] = 0 else: leftones[i] = 1 if i == 0 else leftones[i - 1] + 1 rightones = [0] * n for i in range(n - 1, -1, -1): if nums[i] == 0: rightones[i] = 0 else: rightones[i] = 1 if i == n - 1 else rightones[i + 1] + 1 res = 0 for i in range(1, n - 1): res = max(res, leftones[i - 1] + rightones[i + 1]) return res
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: prev, _next, n = ( [(0) for _ in range(len(nums))], [(0) for _ in range(len(nums))], len(nums), ) count = 0 for i in range(n): num = nums[i] if i == 0: if num: count = 1 elif num: prev[i] = count count += 1 else: prev[i] = count count = 0 count = 0 for i in range(n - 1, -1, -1): num = nums[i] if i == n - 1: if num: count = 1 elif num: _next[i] = count count += 1 else: _next[i] = count count = 0 _max = 0 for i in range(n): num = nums[i] _max = max(_max, prev[i] + _next[i]) return _max
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR VAR VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER IF VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: prev = 0 prev_zero = 0 result = float("-inf") boolean = False count = 0 for i in range(len(nums)): if nums[i] == 0: boolean = True count += 1 if count == 2: count -= 1 prev = prev_zero + 1 prev_zero = i result = max(result, i - prev) return result if boolean == True else len(nums) - 1
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums): n = len(nums) last_zero = None last_one = None cnt = 0 res = 0 for i in range(n): if nums[i] == 1: if last_one is None: last_one = i cnt += 1 elif last_zero is None: last_zero = i else: last_one = last_zero + 1 last_zero = i cnt = i - last_one res = max(res, cnt) if res == n: return n - 1 return res
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NONE ASSIGN VAR NONE ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NONE ASSIGN VAR VAR VAR NUMBER IF VAR NONE ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR RETURN BIN_OP VAR NUMBER RETURN VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: noofones = 0 m = 0 lastoneslen = 0 for i in nums: if i == 1: noofones += 1 else: m = max(m, noofones + lastoneslen) lastoneslen = noofones noofones = 0 m = max(m, noofones + lastoneslen) if m == len(nums): m -= 1 return m
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: n = len(nums) if n == 0: return 0 joined = [(0) for i in range(n)] left = 0 right = 0 for i in range(n): joined[i] += left joined[n - 1 - i] += right if nums[i] == 1: left += 1 else: left = 0 if nums[n - 1 - i] == 1: right += 1 else: right = 0 return max(joined)
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER RETURN FUNC_CALL VAR VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: if not 0 in nums: return len(nums) - 1 ans = 0 tot = 0 prev = 0 for n in nums: if n == 1: tot += 1 else: ans = max(tot + prev, ans) prev = tot tot = 0 return max(prev + tot, ans)
CLASS_DEF FUNC_DEF VAR VAR IF NUMBER VAR RETURN BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER RETURN FUNC_CALL VAR BIN_OP VAR VAR VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: start = end = zeros = ones = maxx = 0 while end < len(nums): if nums[end] == 1: ones += 1 elif nums[end] == 0: zeros += 1 while zeros > 1: if nums[start] == 0: zeros -= 1 start += 1 maxx = max(maxx, end - start) end += 1 return maxx
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR NUMBER WHILE VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: arr = [] count = 0 for i in range(len(nums)): if nums[i] == 1: count += 1 elif nums[i] == 0: arr.append(count) count = 0 arr.append(count) if len(arr) == 1: return arr[0] - 1 maxi = 0 for j in range(1, len(arr)): maxi = max(maxi, arr[j - 1] + arr[j]) return maxi
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER RETURN BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: prev, curr, best = 0, 0, 0 n = len(nums) for i, x in enumerate(nums): if x == 0: best = max(best, prev + curr) if i == n - 1: pass elif nums[i + 1] == 1: prev = curr curr = 0 else: prev = 0 curr = 0 else: curr += 1 best = max(best, prev + curr) if best == n: best -= 1 return best
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR VAR VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: res = [] count = 0 for i, val in enumerate(nums): if val == 0: if count > 0: res.append(count) count = 0 res.append(0) elif val == 1: count += 1 if count > 0: res.append(count) lenRes = len(res) ma = 0 if lenRes > 2: for i in range(1, lenRes - 1): ma = max( max(ma, res[i - 1] + res[i + 1]), max(res[i - 1], res[i]), max(res[i + 1], res[i]), ) return ma elif lenRes == 1 and res[0] > 0: return res[0] - 1 elif lenRes == 1 and res[0] == 0: return ma elif lenRes == 2: return max(res[0], res[1])
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR IF VAR NUMBER VAR NUMBER NUMBER RETURN BIN_OP VAR NUMBER NUMBER IF VAR NUMBER VAR NUMBER NUMBER RETURN VAR IF VAR NUMBER RETURN FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: longest = 0 left = 0 x = 1 for right in range(len(nums)): if not nums[right]: x -= 1 while x < 0: if not nums[left]: x += 1 left += 1 longest = max(longest, right - left + 1) return longest - 1
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER WHILE VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN BIN_OP VAR NUMBER VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: if len(nums) < 2: return 0 len1_prev = 0 len1 = 0 i = 0 res = 0 zc = 0 while i < len(nums): if nums[i] == 1: len1 += 1 else: res = max(res, len1 + len1_prev) if zc == 0: len1_prev = len1 len1 = 0 zc = 1 elif zc == 1: if len1 > 0: len1_prev = len1 len1 = 0 zc = 1 else: len1 = 0 len1_prev = 0 zc = 0 i += 1 res = max(res, len1 + len1_prev) res = min(len(nums) - 1, res) return res
CLASS_DEF FUNC_DEF VAR VAR IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: w_start = 0 d = {} max_len = 0 case = 0 for i in range(0, len(nums)): c = str(nums[i]) if c not in d: d[c] = 0 d[c] += 1 if str(0) in d: while d[str(0)] > 1: t = str(nums[w_start]) d[t] -= 1 w_start += 1 case = 1 max_len = max(max_len, i - w_start + 1 - case) case = 0 return max_len - 1
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER IF FUNC_CALL VAR NUMBER VAR WHILE VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR NUMBER RETURN BIN_OP VAR NUMBER VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, A): if not A: return 0 n = len(A) right = 0 cnt = 0 res = 0 for left in range(n): while right <= n - 1 and (cnt == 0 or A[right] == 1): cnt += A[right] == 0 right += 1 res = max(res, right - left) cnt -= A[left] == 0 return res - 1
CLASS_DEF FUNC_DEF IF VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR BIN_OP VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR NUMBER
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, xs: List[int]) -> int: n = len(xs) if n < 2: return 0 dp = collections.deque() best = 0 for i, x in enumerate(xs): if x: dp.append(i) while dp and i - dp[0] - len(dp) + 1 > 1: dp.popleft() nholes = i - dp[0] - len(dp) + 1 if dp else 1 this_len = len(dp) - (not dp[0] and not nholes) if dp else 0 best = max(best, this_len) return best
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR VAR WHILE VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: i = 0 j = 0 sum = 0 ans = 0 for j, val in enumerate(nums): sum += val while i < j and sum < j - i: sum -= nums[i] i += 1 ans = max(ans, j - i) return ans
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR WHILE VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: zc, oc = 0, 0 for i, v in enumerate(nums): if v: oc += 1 else: zc += 1 if oc == len(nums): return oc - 1 elif zc == len(nums): return 0 elif zc == 1: return oc elif oc == 1: return 1 else: l = r = 0 for i, v in enumerate(nums): if v == 1: l += 1 else: break st = i + 1 po = i maxo, maxi = -1, -1 while st < len(nums): if nums[st] == 1: r += 1 st += 1 continue else: v = l + r if maxo < v: maxo = v maxi = po po = st l = r r = 0 st += 1 maxo = max(maxo, l + r) return maxo
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN NUMBER IF VAR NUMBER RETURN VAR IF VAR NUMBER RETURN NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR NUMBER NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
def get_longest(nums): arr = [(1 - x) for x in nums] l, r = 0, 0 count = 0 max_length = 0 while l < len(arr): if r == len(arr): step = "l" elif l == r: step = "r" elif count + arr[r] > 1: step = "l" else: step = "r" if step == "l": count -= arr[l] l += 1 else: count += arr[r] r += 1 max_length = max(max_length, r - l) return max(0, max_length - 1) class Solution: def longestSubarray(self, nums: List[int]) -> int: return get_longest(nums)
FUNC_DEF ASSIGN VAR BIN_OP NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR STRING IF VAR VAR ASSIGN VAR STRING IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR STRING ASSIGN VAR STRING IF VAR STRING VAR VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER CLASS_DEF FUNC_DEF VAR VAR RETURN FUNC_CALL VAR VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: n = len(nums) prev = 0 cnt = 0 pmax = 0 for i in range(0, n): if nums[i] == 1: cnt += 1 else: prev = cnt cnt = 0 maxm = prev + cnt if maxm > pmax: pmax = maxm if cnt == n: return n - 1 else: return maxm if maxm > pmax else pmax
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR RETURN BIN_OP VAR NUMBER RETURN VAR VAR VAR VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: if 0 not in nums: return len(nums) - 1 arr = [0] count, flag = 0, 0 for idx, num in enumerate(nums): if num == 0: if flag == 1: arr.append(count) count = 0 arr.append(0) flag = 0 elif num == 1: count += 1 flag = 1 if idx == len(nums) - 1: arr.append(count) arr.append(0) maxSum = 0 for i in range(1, len(arr) - 1): if arr[i] == 0: maxSum = max(maxSum, arr[i - 1] + arr[i + 1]) return maxSum
CLASS_DEF FUNC_DEF VAR VAR IF NUMBER VAR RETURN BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: i = 0 ints = [] while i < len(nums): start = i end = i while i < len(nums) and nums[i] == 1: i += 1 end += 1 if start != end: ints.append((start, end)) i += 1 if len(ints) == 1: diff = ints[0][1] - ints[0][0] if diff == len(nums): return diff - 1 else: return diff elif not ints: return 0 max_ones = 0 for seq in range(len(ints) - 1): seq1 = ints[seq] seq2 = ints[seq + 1] length = None if seq2[0] - seq1[1] == 1: length = seq1[1] - seq1[0] + (seq2[1] - seq2[0]) else: length = max(seq1[1] - seq1[0], seq2[1] - seq2[0]) if length > max_ones: max_ones = length return max_ones
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER NUMBER IF VAR FUNC_CALL VAR VAR RETURN BIN_OP VAR NUMBER RETURN VAR IF VAR RETURN NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NONE IF BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: n = len(nums) l, r = [0] * n, [0] * n for i in range(1, n): l[i] = l[i - 1] + 1 if nums[i - 1] == 1 else 0 for i in range(n - 2, -1, -1): r[i] = r[i + 1] + 1 if nums[i + 1] == 1 else 0 ans = max(r[0], l[n - 1]) for i in range(1, n - 1): ans = max(ans, l[i] + r[i]) return ans
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP LIST NUMBER VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: res = zeros = 0 zero_i = None i = 0 for j, v in enumerate(nums): if v == 0: zeros += 1 if zeros == 2: i = zero_i + 1 zeros = 1 zero_i = j res = max(res, j - i) return res
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NONE ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: if all(nums): return len(nums) - 1 m = pre = l = pl = 0 for i, n in enumerate(nums): if n == pre == 1: l += 1 elif n == pre == 0: pl = 0 elif n == 1 != pre: l = 1 else: m = max(m, pl + l) pl = l pre = n return max(m, pl + l) if pre == 1 else m
CLASS_DEF FUNC_DEF VAR VAR IF FUNC_CALL VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: max_len = 0 zero_seen = False for i in range(len(nums)): length = 0 if nums[i] == 0: zero_seen = True l, r = i - 1, i + 1 while l >= 0 and nums[l] == 1: length += 1 l -= 1 while r < len(nums) and nums[r] == 1: length += 1 r += 1 max_len = max(max_len, length) return max_len if zero_seen else len(nums) - 1
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: prev, res, curr = 0, 0, 0 for i in range(len(nums)): if nums[i] == 1: curr += 1 else: if i < len(nums) - 1 and nums[i + 1] != 0: prev = curr else: prev = 0 curr = 0 res = max(res, curr + prev) if res == len(nums): res -= 1 return res
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: if not nums: return 0 if all(nums): return len(nums) - 1 n = len(nums) dp = [([0] * 2) for _ in range(n)] dp[0][0] = 1 if nums[0] == 1 else 0 dp[0][1] = 0 res = 0 for i in range(1, n): if nums[i] == 1: dp[i][0] = dp[i - 1][0] + 1 dp[i][1] = dp[i - 1][1] + 1 else: dp[i][0] = 0 dp[i][1] = dp[i - 1][0] res = max(res, dp[i][1], dp[i][0]) return res
CLASS_DEF FUNC_DEF VAR VAR IF VAR RETURN NUMBER IF FUNC_CALL VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER NUMBER VAR NUMBER NUMBER NUMBER NUMBER ASSIGN VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: low, high = 0, 0 cn = 0 ans = 0 while low < len(nums) and high < len(nums): if nums[high] == 0: if cn < 1: cn += 1 else: while nums[low] != 0: low += 1 low += 1 high += 1 ans = max(ans, high - low) return max(ans, high - low) - 1
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER VAR NUMBER WHILE VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: var = 0 count = 0 max1 = 0 pos = 0 flag = 0 for i in nums: if i == 1: flag = 1 if var == 1: pos = pos + 1 count = count + 1 max1 = max(count, max1) elif i == 0 and var == 1: count = pos pos = 0 elif flag == 1: if var == 0: var = var + 1 else: count = pos if max1 == len(nums): return max1 - 1 return max1
CLASS_DEF FUNC_DEF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF VAR FUNC_CALL VAR VAR RETURN BIN_OP VAR NUMBER RETURN VAR VAR
Given a binary array nums, you should delete one element from it. Return the size of the longest non-empty subarray containing only 1'sΒ in the resulting array. Return 0 if there is no such subarray. Β  Example 1: Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's. Example 2: Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1]. Example 3: Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element. Example 4: Input: nums = [1,1,0,0,1,1,1,0,1] Output: 4 Example 5: Input: nums = [0,0,0] Output: 0 Β  Constraints: 1 <= nums.length <= 10^5 nums[i]Β is eitherΒ 0Β orΒ 1.
class Solution: def longestSubarray(self, nums: List[int]) -> int: if sum(nums) >= len(nums) - 1: return len(nums) - 1 l = 0 while nums[l] == 0: l += 1 if l == len(nums): return 0 r = l + 1 sum_total = nums[l] res = 0 for r in range(r, len(nums)): sum_total += nums[r] if sum_total == r - l - 1: res = max(res, sum_total) while sum_total < r - l: sum_total -= nums[l] l += 1 return max(res, sum_total)
CLASS_DEF FUNC_DEF VAR VAR IF FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR WHILE VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER RETURN FUNC_CALL VAR VAR VAR VAR
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, S, P): char_count_p = {} for c in P: char_count_p[c] = char_count_p.get(c, 0) + 1 char_count_s = {} left, right, matched, required = 0, 0, 0, len(char_count_p) min_window_len, min_window_start = float("inf"), None while right < len(S): if S[right] in char_count_p: char_count_s[S[right]] = char_count_s.get(S[right], 0) + 1 if char_count_s[S[right]] == char_count_p[S[right]]: matched += 1 while matched == required: if right - left + 1 < min_window_len: min_window_len = right - left + 1 min_window_start = left if S[left] in char_count_p: char_count_s[S[left]] -= 1 if char_count_s[S[left]] < char_count_p[S[left]]: matched -= 1 left += 1 right += 1 return ( S[min_window_start : min_window_start + min_window_len] if min_window_start is not None else "-1" )
CLASS_DEF FUNC_DEF ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR DICT ASSIGN VAR VAR VAR VAR NUMBER NUMBER NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR STRING NONE WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR NONE VAR VAR BIN_OP VAR VAR STRING
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): count = 0 mp = [0] * 256 for i in range(len(p)): if mp[ord(p[i])] == 0: count += 1 mp[ord(p[i])] += 1 res = float("inf") start = 0 i, j = 0, 0 while j < len(s): mp[ord(s[j])] -= 1 if mp[ord(s[j])] == 0: count -= 1 if count == 0: while count == 0: if j - i + 1 < res: res = j - i + 1 start = i mp[ord(s[i])] += 1 if mp[ord(s[i])] > 0: count += 1 i += 1 j += 1 if res == float("inf"): return "-1" else: return s[start : start + res]
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER WHILE VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR STRING RETURN STRING RETURN VAR VAR BIN_OP VAR VAR
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): n = len(s) D = {} var = "-1" for k in p: if k in D: D[k] += 1 else: D[k] = 1 i, j = 0, 0 count = len(D) mini = 9999 while j < n: if s[j] in D: D[s[j]] -= 1 if D[s[j]] == 0: count -= 1 while count == 0: if j - i + 1 < mini: mini = j - i + 1 var = s[i : j + 1] if s[i] in D: D[s[i]] += 1 if D[s[i]] > 0: count += 1 i += 1 j += 1 return var
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR STRING FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER WHILE VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): if p == "": return -1 countT, window = {}, {} for c in p: countT[c] = 1 + countT.get(c, 0) l = 0 have, need = 0, len(countT) res, resLen = [-1, -1], float("inf") for r in range(len(s)): c = s[r] window[c] = 1 + window.get(c, 0) if c in countT and window[c] == countT[c]: have += 1 while have == need: if r - l + 1 < resLen: res = [l, r] resLen = r - l + 1 window[s[l]] -= 1 if s[l] in countT and window[s[l]] < countT[s[l]]: have -= 1 l += 1 l, r = res return s[l : r + 1] if resLen != float("inf") else -1
CLASS_DEF FUNC_DEF IF VAR STRING RETURN NUMBER ASSIGN VAR VAR DICT DICT FOR VAR VAR ASSIGN VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR LIST NUMBER NUMBER FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR LIST VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR VAR BIN_OP VAR NUMBER NUMBER
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): no_of_chars = 256 len1 = len(s) len2 = len(p) if len1 < len2: return -1 hash_p = [0] * no_of_chars hash_str = [0] * no_of_chars for i in range(0, len2): hash_p[ord(p[i])] += 1 start, start_index, min_len = 0, -1, float("inf") count = 0 for j in range(0, len1): hash_str[ord(s[j])] += 1 if hash_str[ord(s[j])] <= hash_p[ord(s[j])]: count += 1 if count == len2: while ( hash_str[ord(s[start])] > hash_p[ord(s[start])] or hash_p[ord(s[start])] == 0 ): if hash_str[ord(s[start])] > hash_p[ord(s[start])]: hash_str[ord(s[start])] -= 1 start += 1 len_window = j - start + 1 if min_len > len_window: min_len = len_window start_index = start if start_index == -1: return -1 return s[start_index : start_index + min_len]
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR NUMBER RETURN NUMBER RETURN VAR VAR BIN_OP VAR VAR
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): start = 0 end = 0 freq = [0] * 26 n = len(s) size = 0 st = set(p) m = len(st) freq_target = [0] * 26 for i in p: freq_target[ord(i) - ord("a")] += 1 min_size = 9999999 ans = [-1, -1] curr = 0 while end < n and start <= end: if s[end] in st: index = ord(s[end]) - ord("a") freq[index] += 1 if freq[index] == freq_target[index]: size += 1 curr += 1 while size == m: if curr < min_size: min_size = curr ans = [start, end] if s[start] in st: index = ord(s[start]) - ord("a") freq[index] -= 1 if freq[index] < freq_target[index]: size -= 1 start += 1 curr -= 1 end += 1 if ans == [-1, -1]: return -1 else: i, j = ans return s[i : j + 1]
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER WHILE VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR LIST VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR LIST NUMBER NUMBER RETURN NUMBER ASSIGN VAR VAR VAR RETURN VAR VAR BIN_OP VAR NUMBER
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): if len(s) < len(p): return -1 ans = s + "1" i = 0 j = -1 m = {} for x in p: if x in m: m[x] += 1 else: m[x] = 1 count = 0 while j < len(s): if count != len(p): j += 1 if j == len(s): break if s[j] in m: m[s[j]] -= 1 if m[s[j]] >= 0: count += 1 else: if len(ans) > j - i + 1: ans = s[i : j + 1] if s[i] in m: m[s[i]] += 1 if m[s[i]] > 0: count -= 1 i += 1 if ans == s + "1": return -1 return ans
CLASS_DEF FUNC_DEF IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR STRING RETURN NUMBER RETURN VAR
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): Ans = len(s) Dict = {} for i in p: if i in Dict: Dict[i] = Dict[i] + 1 else: Dict[i] = 1 count = len(Dict) i = 0 start = 0 j = 0 while j < len(s): if s[j] in Dict: Dict[s[j]] = Dict[s[j]] - 1 else: Dict[s[j]] = -1 if Dict[s[j]] == 0: count = count - 1 if count == 0: while count == 0: if Ans > j - i + 1: Ans = j - i + 1 start = i if s[i] in Dict: Dict[s[i]] = Dict[s[i]] + 1 if Dict[s[i]] > 0: count = count + 1 i = i + 1 j = j + 1 if Ans == len(s): return "-1" else: return s[start : start + Ans]
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR VAR IF VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER WHILE VAR NUMBER IF VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN STRING RETURN VAR VAR BIN_OP VAR VAR
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, t): n = len(s) r = {} res = s found = False for c in list(t): if c in r: r[c] += 1 else: r[c] = 1 curr = "" for j in range(n): c = s[j] curr += c if c in r: r[c] -= 1 while len(curr): all_there = True for k in r: if r[k] > 0: all_there = False break if all_there: if len(res) > len(curr): res = curr found = True else: break if curr[0] in r: r[curr[0]] += 1 curr = curr[1:] if not found: return -1 return res
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR IF VAR VAR VAR VAR NUMBER WHILE FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER IF VAR RETURN NUMBER RETURN VAR
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): d = {} for i in p: if i not in d: d[i] = 1 else: d[i] += 1 count = len(d) res = len(s) i, j, st = 0, 0, 0 while i < len(s): if s[i] in d: d[s[i]] -= 1 else: d[s[i]] = -1 if d[s[i]] == 0: count -= 1 if count == 0: while count == 0: if res > i - j + 1: res = i - j + 1 st = j if s[j] in d: d[s[j]] += 1 if d[s[j]] > 0: count += 1 j += 1 i += 1 if res == len(s): return -1 else: return s[st : st + res]
CLASS_DEF FUNC_DEF ASSIGN VAR DICT FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER WHILE VAR NUMBER IF VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN NUMBER RETURN VAR VAR BIN_OP VAR VAR
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): frequencyP = {} for ch in p: frequencyP[ch] = frequencyP.get(ch, 0) + 1 start, end = 0, 0 count = len(p) minLen = float("inf") minStart = 0 while end < len(s): if s[end] in frequencyP: frequencyP[s[end]] -= 1 if frequencyP[s[end]] >= 0: count -= 1 while count == 0: if end - start + 1 < minLen: minLen = end - start + 1 minStart = start if s[start] in frequencyP: frequencyP[s[start]] += 1 if frequencyP[s[start]] > 0: count += 1 start += 1 end += 1 if minLen == float("inf"): return -1 return s[minStart : minStart + minLen]
CLASS_DEF FUNC_DEF ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER WHILE VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR STRING RETURN NUMBER RETURN VAR VAR BIN_OP VAR VAR
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): if len(s) < len(p): return -1 d1 = {} d2 = {} for i in p: if i in d1: d1[i] += 1 else: d1[i] = 1 count = 0 start = 0 l = 9999999999999 ans = "" for i in range(len(s)): if s[i] in d2: d2[s[i]] += 1 else: d2[s[i]] = 1 if s[i] in p and d2[s[i]] == d1[s[i]]: count += 1 if count == len(d1): if l > len(s[start : i + 1]): ans = s[start : i + 1] l = len(s[start : i + 1]) while start < i: if d2[s[start]] != 0: d2[s[start]] -= 1 if s[start] in d1 and d2[s[start]] == d1[s[start]]: start += 1 if l > len(s[start : i + 1]): ans = s[start : i + 1] l = len(s[start : i + 1]) elif s[start] in d1 and d2[s[start]] < d1[s[start]]: if l > len(s[start : i + 1]): ans = s[start : i + 1] l = len(s[start : i + 1]) start += 1 count -= 1 break else: start += 1 if ans == "": return -1 return ans
CLASS_DEF FUNC_DEF IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER WHILE VAR VAR IF VAR VAR VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR VAR IF VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR STRING RETURN NUMBER RETURN VAR
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): need = {} have = {} for char in p: need[char] = need.get(char, 0) + 1 haveNum = 0 needNum = len(need) n = len(s) l = r = 0 minLen = float("inf") res = [-1, -1] while r < n: char = s[r] have[char] = have.get(char, 0) + 1 if char in p and have[char] == need[char]: haveNum += 1 while haveNum == needNum: if minLen > r - l + 1: minLen = r - l + 1 res = [l, r + 1] have[s[l]] -= 1 if s[l] in p and have[s[l]] < need[s[l]]: haveNum -= 1 l += 1 r += 1 [l, r] = res return s[l:r] if [l, r] != [-1, -1] else -1
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR LIST NUMBER NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR VAR IF VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR LIST VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN LIST VAR VAR VAR RETURN LIST VAR VAR LIST NUMBER NUMBER VAR VAR VAR NUMBER
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, t): if t == "": return "" countT, window = {}, {} have = 0 for c in t: countT[c] = 1 + countT.get(c, 0) need = len(countT) res = [-1, -1] resLen = float("infinity") l = 0 for r in range(len(s)): c = s[r] window[c] = 1 + window.get(c, 0) if c in countT and window[c] == countT[c]: have += 1 while have == need: if r - l - 1 < resLen: resLen = r - l - 1 res = [l, r] window[s[l]] -= 1 if s[l] in countT and window[s[l]] < countT[s[l]]: have -= 1 l += 1 l, r = res if resLen != float("infinity"): return s[l : r + 1] return -1
CLASS_DEF FUNC_DEF IF VAR STRING RETURN STRING ASSIGN VAR VAR DICT DICT ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR LIST VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR IF VAR FUNC_CALL VAR STRING RETURN VAR VAR BIN_OP VAR NUMBER RETURN NUMBER
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): n = len(s) m = len(p) if m > n: return "-1" sFreq = [0] * 26 pFreq = [0] * 26 for i in range(m): pFreq[ord(p[i]) - ord("a")] += 1 start = 0 end = 0 count = 0 minLength = float("inf") startIndex = -1 while end < n: sFreq[ord(s[end]) - ord("a")] += 1 if sFreq[ord(s[end]) - ord("a")] <= pFreq[ord(s[end]) - ord("a")]: count += 1 if count == m: while ( sFreq[ord(s[start]) - ord("a")] > pFreq[ord(s[start]) - ord("a")] or pFreq[ord(s[start]) - ord("a")] == 0 ): sFreq[ord(s[start]) - ord("a")] -= 1 start += 1 windowLength = end - start + 1 if windowLength < minLength: minLength = windowLength startIndex = start end += 1 if startIndex == -1: return "-1" else: return s[startIndex : startIndex + minLength]
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR RETURN STRING ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR NUMBER IF VAR VAR WHILE VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER RETURN STRING RETURN VAR VAR BIN_OP VAR VAR
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): n = len(s) if n < len(p): return -1 m = [0] * 256 start = 0 ans = n + 1 cnt = 0 for i in p: m[ord(i)] += 1 if m[ord(i)] == 1: cnt += 1 i = 0 j = 0 while j < n: m[ord(s[j])] -= 1 if m[ord(s[j])] == 0: cnt -= 1 while cnt == 0: if ans > j - i + 1: ans = j - i + 1 start = i m[ord(s[i])] += 1 if m[ord(s[i])] > 0: cnt += 1 i += 1 j += 1 if ans > n: return -1 return s[start : start + ans]
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER WHILE VAR NUMBER IF VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR RETURN NUMBER RETURN VAR VAR BIN_OP VAR VAR
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, c): t_map = {} for char in c: if char in t_map: t_map[char] += 1 else: t_map[char] = 1 left = 0 right = 0 min_len = float("inf") min_start = 0 char_needed = len(t_map) window_map = {} while right < len(s): char = s[right] if char in t_map: if char in window_map: window_map[char] += 1 else: window_map[char] = 1 if window_map[char] == t_map[char]: char_needed -= 1 while char_needed == 0: if right - left + 1 < min_len: min_len = right - left + 1 min_start = left char = s[left] if char in t_map: window_map[char] -= 1 if window_map[char] < t_map[char]: char_needed += 1 left += 1 right += 1 if min_len == float("inf"): return -1 else: return s[min_start : min_start + min_len]
CLASS_DEF FUNC_DEF ASSIGN VAR DICT FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER WHILE VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR STRING RETURN NUMBER RETURN VAR VAR BIN_OP VAR VAR
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): dict1 = {} for i in range(len(p)): dict1[p[i]] = 1 + dict1.get(p[i], 0) ans = "" mc = 0 dmc = len(p) i = -1 j = -1 dict2 = {} while True: flag1 = 0 flag2 = 0 while i < len(s) - 1 and mc < dmc: i += 1 dict2[s[i]] = 1 + dict2.get(s[i], 0) if dict1.get(s[i], 0) >= dict2.get(s[i], 0): mc += 1 flag1 = 1 while j < i and mc == dmc: pst = s[j + 1 : i + 1] if len(ans) == 0 or len(pst) < len(ans): ans = pst j += 1 if dict2.get(s[j], 0) == 1: dict2.pop(s[j]) else: dict2[s[j]] -= 1 if dict2.get(s[j], 0) < dict1.get(s[j], 0): mc -= 1 flag2 = 1 if flag1 == 0 and flag2 == 0: break if len(ans) == 0: return -1 return ans
CLASS_DEF FUNC_DEF ASSIGN VAR DICT FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT WHILE NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER RETURN VAR
Given two strings S and P. Find the smallest window in the string S consisting of all the characters(including duplicates) of the string P. Return "-1" in case there is no such window present. In case there are multiple such windows of same length, return the one with the least starting index. Note : All characters are in Lowercase alphabets. Example 1: Input: S = "timetopractice" P = "toc" Output: toprac Explanation: "toprac" is the smallest substring in which "toc" can be found. Example 2: Input: S = "zoomlazapzo" P = "oza" Output: apzo Explanation: "apzo" is the smallest substring in which "oza" can be found. Your Task: You don't need to read input or print anything. Your task is to complete the function smallestWindow() which takes two string S and P as input paramters and returns the smallest window in string S having all the characters of the string P. In case there are multiple such windows of same length, return the one with the least starting index. Expected Time Complexity: O(|S|) Expected Auxiliary Space: O(n) n = len(p) O Constraints: 1 ≀ |S|, |P| ≀ 10^{5}
class Solution: def smallestWindow(self, s, p): if p == "": return "" reslen = float("inf") need = {} for i in p: need[i] = 1 + need.get(i, 0) needCount = len(need) window = {} haveCount = 0 res = [-1, -1] l = 0 for r in range(len(s)): window[s[r]] = 1 + window.get(s[r], 0) if s[r] in need and window[s[r]] == need[s[r]]: haveCount += 1 while haveCount == needCount: if r - l + 1 < reslen: res = [l, r] reslen = r - l + 1 window[s[l]] -= 1 if s[l] in need and window[s[l]] < need[s[l]]: haveCount -= 1 l += 1 l, r = res return s[l : r + 1] if reslen != float("inf") else -1
CLASS_DEF FUNC_DEF IF VAR STRING RETURN STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR LIST VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR VAR BIN_OP VAR NUMBER NUMBER