description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) a = [] for i in range(t): b = list(map(int, input().split())) if b[0] % b[1] != 0: f = b[0] // b[1] + 1 a.append(f * b[1] - b[0]) else: a.append(0) for i in a: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def digit_sum(st): ans = 0 for i in st: ans += int(i) return ans for _ in range(int(input())): n, s = map(int, input().split()) o = n plus = 10 while digit_sum(str(n)) > s: n = n - n % plus n += plus plus = plus * 10 print(n - o)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
tc = int(input()) for i in range(tc): s = str(input()) l = s.split() div = int(l[0]) / int(l[1]) if div % 1 == 0: print(0) else: div = int(div) + 1 print(div * int(l[1]) - int(l[0]))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for v in [[int(t) for t in input().split()] for _ in range(int(input()))]: a, b = v r = a % b print(0 if r == 0 else b - r)
FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR NUMBER NUMBER BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import stdin def main(): input = lambda: stdin.readline()[:-1] T = int(input()) for _ in [0] * T: A, B = map(int, input().split()) if not A % B: print(0) else: print(B - A % B) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def getSteps(a, b): if a % b == 0: return 0 else: return (a // b + 1) * b - a n = int(input()) for i in range(n): inp = input().split() a = int(inp[0]) b = int(inp[1]) print(getSteps(a, b))
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): a, b = list(map(int, input().split())) if a % b == 0: print(0) elif a < b: print(b - a) elif a > b: d = int(a // b) + 1 print(d * b - a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def carryAdd(arr, start): carry = 1 n = len(arr) for i in range(start, n): if arr[i] < 9: arr[i] += 1 carry = 0 break else: arr[i] = 0 if carry == 1: arr.append(1) return arr t = int(input()) for _ in range(t): x = input().split() n = x[0][::-1] arr = [] sum1 = 0 for i in range(len(n)): arr.append(int(n[i])) sum1 += arr[-1] s = int(x[1]) n = len(arr) if sum1 <= s: print(0) else: for i in range(len(arr) - 1): if arr[i] == 0: continue arr[i] = 0 if arr[i + 1] < 9: arr[i + 1] += 1 else: arr = carryAdd(arr, i + 1) sum1 = sum(arr) if sum1 <= s: break sum1 = sum(arr) if sum1 > s: arr[-1] = 0 arr.append(1) ans = "" for i in range(len(arr) - 1, -1, -1): ans += str(arr[i]) ans = int(ans) print(ans - int(x[0]))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for i in range(int(input())): n, s = map(int, input().split()) n = str(n) e = [] for a in range(len(n)): e.append(int(n[a])) if sum(e) <= s: print(0) else: t = 0 for b in range(len(e)): y = len(e) - b - 1 if sum(e) <= s: l = 0 elif e[y] != 0: j = (10 - e[y]) * 10**b t += j e[y] = 0 if b + 1 != len(e): if e[y - 1] != 9: e[y - 1] += 1 else: e[y - 1] = 0 e[y - 2] += 1 print(t)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) ncopy = n total = 0 strn = str(n) strn = strn[::-1] strn = list(map(int, strn)) strn.append(0) for i in range(0, len(strn)): total = sum(map(int, str(n))) if total <= s: break else: p = 10 - strn[i] if p == 10: p = 0 else: if i > 0: n = n + p * 10**i else: n = n + p strn[i + 1] += 1 print(n - ncopy)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP NUMBER VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): result = 0 line = input().split() a = int(line[0]) b = int(line[1]) if a % b == 0: print(result) continue elif a < b: print(b - a) continue elif a == b: print(0) continue else: k = a x = 2 * b - a if x > 0: print(x) else: print(f"{b - a % b}")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): a, b = input().split() a, b = int(a), int(b) if a % b == 0: print(0) elif a % b == a: print(b - a) elif a % b < b: print(b - a % b)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): a, b = map(int, input().split()) c = a // b if c == a / b: d = c * b else: d = (c + 1) * b print(d - a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import stdin, stdout n = int(stdin.readline()) q = list() for i in range(0, n): l = stdin.readline() l = l.split(" ") l = [int(i) for i in l] if l[1] > l[0]: q.append(l[1] - l[0]) elif l[0] % l[1] == 0: q.append(0) else: q.append((l[0] // l[1] + 1) * l[1] - l[0]) for i in q: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER VAR NUMBER VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for i in range(int(input())): a, b = map(int, input().split(" ")) if a >= b: print(a % b == 0 and "0" or abs(a - (a // b + 1) * b)) else: print(b - a)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER STRING FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
num = int(input()) x = 0 c = 0 for i in range(num): a, b = [int(j) for j in input().split(" ")] if a % b == 0: print(0) elif a < b: print(b - a) else: x = a % b c = b - x print(c)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) l = [] for i in range(t): n, s = map(int, input().split()) dig = 0 x = n sum = 0 l1 = [] while x > 0: dig += 1 sum += x % 10 l1.append(x % 10) x //= 10 if sum <= s: l.append(0) else: y = 10**dig sum = 0 a = dig for j in range(dig - 1, -1, -1): sum += l1[j] if sum >= s: break a -= 1 n = n % 10**a l.append(10**a - n) for i in l: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def count_moves(a, b): return (b - a % b) % b number_of_tests = int(input()) for _ in range(number_of_tests): a, b = [int(x) for x in input().split()] result = count_moves(a, b) print(result)
FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) l = [] for x in range(n): s = list(map(int, input().split(" "))) a, b = s[0], s[1] if a % b != 0: r = a // b + 1 a = b * r l.append(a - s[0]) for x in l: print(x)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): num, s = input().split() s = int(s) ss = 0 l = len(num) for e in num: ss += int(e) if ss <= s: print("0") continue if int(num[0]) >= s: tt = int("1" + "0" * l) print(tt - int(num)) continue i = 0 temp = 0 while i < l and temp + int(num[i]) < s: temp += int(num[i]) i += 1 tt = int(num[:i]) tt += 1 tt *= 10 ** (l - i) print(tt - int(num))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP STRING BIN_OP STRING VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR BIN_OP NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): a = 0 s, m = map(int, input().split()) a = m - s % m if a % m != 0: print(a) else: print(0)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
c = int(input()) j = 0 e = [] d = [] for i in range(0, c): k = 0 a, b = [int(x) for x in input().split()] j = 0 k = a % b if k != 0: print(int(b) - int(k)) else: print("0")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def abc(n, m): c = 0 a = "0" b = "" for j in str(n): c += int(j) if c >= m: b += "0" else: a += j c = "" flag = 1 for j in a[-1::-1]: if flag: if j == "9": c += "0" else: c += str(int(j) + 1) flag = 0 else: c += j if flag: c += "1" return int(c[-1::-1] + b) - n def sum(n): c = 0 while n > 0: c += n % 10 n = n // 10 return c t = int(input()) for _ in range(t): n, m = map(int, input().split()) if sum(n) <= m: print(0) continue print(abc(n, m))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR STRING VAR VAR ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR NUMBER NUMBER IF VAR IF VAR STRING VAR STRING VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER VAR VAR IF VAR VAR STRING RETURN BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER VAR VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def div(a, b): if a % b == 0: return 0 else: p = a // b return b * (p + 1) - a n = int(input()) for i in range(0, n): xy = input().split() x = xy[0] y = xy[1] ans = div(int(x), int(y)) print(ans)
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP VAR VAR RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
mod = 10**9 + 7 def readInt(): return int(input()) def readIntList(): return list(map(int, input().split())) def readStringList(): return list(input()) def readStringListWithSpace(): return list(input().split()) def readString(): return input() def getNumSum(n): res = 0 while n > 0: res += n % 10 n //= 10 return res t = readInt() for _ in range(t): n, s = readIntList() if getNumSum(n) <= s: print(0) continue ans, pw = 0, 1 for i in range(19): dig = n // pw % 10 temp = pw * ((10 - dig) % 10) n += temp ans += temp if getNumSum(n) <= s: print(int(ans)) break pw *= 10
ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) num = [] for d in str(n): num.append(int(d)) if sum(num) <= s: print("0") else: moves = 0 diff = sum(num) - s for i in range(len(num) - 1, -1, -1): diff -= num[i] if i != 0 and num[i] != 0: num[i - 1] += 1 diff += 1 if num[i] != 0: moves += (10 - num[i]) * 10 ** (len(num) - 1 - i) if diff <= 0: break print(moves)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR VAR VAR IF VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys def get_ints(): return map(int, sys.stdin.readline().strip().split()) def get_array(): return list(map(int, sys.stdin.readline().strip().split())) def input(): return sys.stdin.readline().strip() mod = 10**9 + 7 for _ in range(int(input())): a, b = get_ints() if a % b == 0: print(0) continue if a % b != 0: val = (a // b + 1) * b diff = val - a print(diff)
IMPORT FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
a = input() b = [] count = 0 for i in range(int(a)): l = input().split() b.append(int(l[0])) b.append(int(l[1])) for i in range(0, len(b) - 1, 2): if b[i] % b[i + 1] == 0: print("0") else: print((b[i] // b[i + 1] + 1) * b[i + 1] - b[i])
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) ans = 0 for i in range(t): a, b = map(int, input().split()) ans = a % b ans = ans if a + ans % b == 0 or ans == 0 else b - ans print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
q = int(input()) while q: q -= 1 n, s = [int(x) for x in input().split()] a = list(reversed([int(str(n)[i]) for i in range(len(str(n)))])) price = 1 i = 0 ans = 0 while sum(a) > s: if a[i] == 0: price *= 10 i += 1 continue k = 10 - a[i] z = a[i] - 1 ans += k * price price *= 10 a[i] = 0 i += 1 if i >= len(a): a.append(1) else: a[i] += 1 j = i while a[j] >= 10: c = a[j] % 10 d = a[j] // 10 if j + 1 >= len(a): a.append(d) else: a[j + 1] += d a[j] = c j += 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def calSum(n): x = 0 while n != 0: x += n % 10 n //= 10 return x for _ in range(int(input())): n, s = map(int, input().split()) orig = n sm = calSum(orig) if sm <= s: print(0) else: count = 1 while sm > s: w = n % 10**count n += 10**count - w sm = calSum(n) count += 1 print(n - orig)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def s(n): c = 0 for i in str(n): c += int(i) return c def solve(a, b): temp = str(a) suma = 0 text = "0" for i in range(len(temp)): if suma + int(temp[i]) < b: suma += int(temp[i]) text += temp[i] else: sol = int(f"{int(text) + 1}{(len(temp) - i) * '0'}") print(sol - a) break t = int(input()) for i in range(t): a, b = [int(j) for j in input().split()] if s(a) <= b: print(0) else: solve(a, b)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(x, n): sm = 0 for i in range(n + 1): sm += int(x[i]) return sm t = int(input()) for _ in range(t): n, s = map(int, input().split()) st = str(n) i = 0 sm = 0 while i < len(st) and sm + int(st[i]) < s: sm += int(st[i]) i += 1 if i == len(st): print(0) continue new = "" x = 10 for j in range(len(st) - 1, i, -1): if x - int(st[j]) == 10: new = "0" + new else: new = str(x - int(st[j])) + new x = 9 j = 0 while j <= 9: sd = solve(str(n + int(str(j) + new)), i) if sd <= s: print(int(str(j) + new)) break j += 1
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): s1, s = input().split() s = int(s) a = list(map(int, list(s1))) cs = sum(a) ans = [] t = 0 while cs > s: if a == []: break ce = a.pop() ce += t t = 0 if ce == 0: ans.append(0) continue cs -= ce - 1 t = 1 ans.append(10 - ce) ans1 = 0 n = len(ans) - 1 for i in reversed(ans): ans1 += i * 10**n n -= 1 print(ans1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR VAR IF VAR LIST ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR BIN_OP NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): a, b = map(int, input().split()) modu = a % b if modu == 0: print(0) else: div = int(a / b) ans = (div + 1) * b - a print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for t in range(int(input())): n, s = input().split() s = int(s) nn = ["0", "0", "0"] + list(n) su = 0 for i in n: su += int(i) ptr = 1 while su > s: su -= int(nn[-ptr]) su += 1 nn[-ptr] = "0" nn[-ptr - 1] = str(1 + int(nn[-ptr - 1])) itr = 1 while int(nn[-ptr - itr]) >= 10: su -= 10 su += int(nn[-ptr - itr]) // 10 nn[-ptr - itr - 1] = str( int(nn[-ptr - itr - 1]) + int(nn[-ptr - itr]) // 10 ) nn[-ptr - itr] = str(int(nn[-ptr - 1]) % 10) itr += 1 ptr += 1 print(int("".join(nn)) - int(n))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST STRING STRING STRING FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL STRING VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) for i in range(0, n): x = list(map(int, input().split())) a = int(x[0]) b = int(x[1]) x = a % b if x == 0: pass else: x = b - x count = x print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) s = [] for i in range(n): a, b = input().split() a = int(a, 10) b = int(b, 10) if a % b == 0: k = 0 s.append(k) else: d = int(a / b) k = b * (d + 1) - a s.append(k) for i in range(len(s)): print(s[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): case = input().split() n, s = case[0], int(case[1]) if sum([int(c) for c in n]) <= s: print(0) continue acc = 0 for i, digit in enumerate(n): if acc + int(digit) < s: acc += int(digit) else: rest = int(n[i:]) moves = 10 ** len(str(rest)) - rest print(moves) break
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t: n, s = input().split() s = int(s) li = list(n) to, p, total = 0, 0, 0 for i in range(len(li)): total = total + int(li[i]) for i in range(len(li)): to = to + int(li[i]) if to >= s: p = i + 1 break if total <= int(s): t -= 1 print(0) continue st = "0" * (len(n) - p + 1) st = "1" + st n = n[p - 1 :] print(int(st) - int(n)) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP STRING BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
a = int(input()) t = [] for i in range(0, a): s = input().split() if int(s[0]) >= int(s[1]): if int(s[0]) % int(s[1]) == 0: t.append(0) else: t.append(int(s[1]) - int(s[0]) % int(s[1])) else: t.append(int(s[1]) - int(s[0])) for i in t: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(): a, b = map(int, input().split()) if a % b == 0: print(0) else: print((a // b + 1) * b - a) for i in " " * int(input()): solve()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR FOR VAR BIN_OP STRING FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
cf = int(input()) for _ in range(cf): sn, x = input().split() x = int(x) n = [0] * len(sn) s = 0 for i in range(len(n)): n[i] = int(sn[i]) s += n[i] if s <= x: print(0) continue ans = 0 deg = -1 for i in range(len(n) - 1, -1, -1): deg += 1 if n[i] == 0: continue ans += (10 - n[i]) * 10**deg if i == 0: break n[i] = 0 for j in range(i - 1, -1, -1): if n[j] < 9: n[j] += 1 break n[j] = 0 if j == 0: n = [1] + n break s = 0 for j in range(len(n)): s += n[j] if s <= x: break print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR IF VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) a = [int(k) for k in str(n)] if sum(a) <= s: print(0) continue total = 0 i = 0 while i < len(a): if a[i] + total < s: total += a[i] i += 1 else: break if i == len(a): print(0) continue if i == 0: print(10 ** len(a) - n if sum(a) > s else 0) continue for j in range(i - 1, -1, -1): if a[j] == 9: a[j] = 0 else: a[j] += 1 break for j in range(i, len(a)): a[j] = 0 ans = int("".join(str(k) for k in a)) - n print(ans if ans >= 0 else 10 ** len(a) - n)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def disum(x): ans = 0 while x: ans += x % 10 x //= 10 return ans def solve(): n, s = map(int, input().split()) if disum(n) <= s: return 0 mii = 1 while 1: now = n + mii now //= mii now *= mii if disum(now) <= s: return now - n mii *= 10 t = int(input()) for i in range(t): print(solve())
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR RETURN NUMBER ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR RETURN BIN_OP VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) l1 = [] while n > 0: l = list(map(int, input().split())) if l[0] % l[1] == 0: l1.append(0) else: l1.append(l[1] - l[0] % l[1]) n = n - 1 for i in range(len(l1)): print(l1[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def main(): for _ in range(int(input())): n, t = map(int, input().split()) s = sum(map(int, str(n))) ans = 0 mod = 10 value = n if s <= t: print(0) continue while s > t: if n == n // mod: ans = 1 * mod break n = (n // mod + 1) * mod s = sum(map(int, str(n))) mod *= 10 if not ans: ans = n print(ans - value) main()
FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER WHILE VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): n, s = map(int, input().strip().split(" ")) n = str(n) n1 = int(n) l = len(n) c = 0 s1 = 0 for j in range(l): s1 += int(n[j]) if s1 < s: c += 1 if s1 <= s: print("0") else: l -= c k = 10**l - n1 % 10**l print(k)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys input = sys.stdin.readline t = int(input()) for _ in range(t): n, s = (int(i) for i in input().split()) res = 0 deg = 10 while sum(int(i) for i in str(n)) > s: res += deg - n % deg n += deg - n % deg deg *= 10 print(res)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def main(a, b): if a % b == 0: return 0 else: index = (int(a / b) + 1) * b return abs(index - a) t = int(input()) for t_itr in range(t): ab = list(map(int, input().rstrip().split())) a = ab[0] b = ab[1] res = main(a, b) print(res)
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR RETURN FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t > 0: t -= 1 n, x = map(int, input().split()) c = 0 if n % x == 0: print(0) elif n < x: print(x - n) else: k = x - n % x print(k)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def sum_of_digits(n): x = 0 for i in str(n): x += int(i) return x for _ in range(int(input())): n, s = map(int, input().split()) moves = 0 for i in range(1, len(str(n)) + 2): if sum_of_digits(n) <= s: print(moves) break a = n % 10**i moves += 10**i - a n += 10**i - a
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP NUMBER VAR VAR VAR BIN_OP BIN_OP NUMBER VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def move(a, b): x = a % b if x == 0: print(0) else: print(b - x) t = int(input()) for i in range(t): a, b = map(int, input().split()) move(a, b)
FUNC_DEF ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for i in range(int(input())): a, b = map(int, input().split()) sum1 = 0 nd1 = 0 nd2 = 0 stop = 0 sum2 = 0 rev = int(str(a)[::-1]) sa = a while a != 0: sum1 += a % 10 a = a // 10 nd1 = nd1 + 1 if sum2 + rev % 10 < b: sum2 += rev % 10 stop = rev % 10 + stop * 10 rev = rev // 10 nd2 += 1 if sum1 <= b: print(0) else: stop += 1 stop = stop * 10 ** (nd1 - nd2) print(stop - sa)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def add(a, b): return -a % b t = int(input()) for _ in range(t): a, b = map(int, input().split(" ")) print(add(a, b))
FUNC_DEF RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def mod(a, b): if a % b == 0: return b else: return a % b for t in range(int(input())): a, b = map(int, input().split()) print(b - mod(a, b))
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN VAR RETURN BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
times = int(input()) for round in range(times): numbers = input() a = int(numbers.split()[0]) b = int(numbers.split()[1]) c = a // b d = (c + 1) * b - a if a % b == 0: d = 0 print(d)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) a = list() b = list() r = list() for i in range(n): x, y = input().split(" ") a.append(int(x)) b.append(int(y)) if a[i] % b[i] == 0: r.append(0) else: r.append(b[i] - a[i] % b[i]) for i in r: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def main(): t = int(input()) while t > 0: t -= 1 a, b = [int(i) for i in input().split(" ")] if a % b == 0: print(0) else: print(b - a % b) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def get_x(n): x = 0 while n > 0: x += n % 10 n = n // 10 return x def find(k, s): pos = 1 init = get_x(k) n = 0 while init > s: n += pos * (10 - k % 10) pos *= 10 k = k // 10 + 1 init = get_x(k) return n for i in range(int(input())): k, s = [int(j) for j in input().split()] print(find(k, s))
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def sum1(a, b): s = str(a) r = 0 index = 0 for i in s: if r + int(i) >= b: return index r += int(i) index += 1 return -1 def sum2(a): s = str(a) r = 0 for i in s: r += int(i) return r for _ in range(int(input())): a, b = map(int, input().split()) s = sum2(a) if s > b: index = sum1(a, b) k = len(str(a)) - index if index == 0: print(10**k - a) else: abc = int(str(int(str(a)[:index]) + 1) + (len(str(a)) - index) * "0") print(abc - a) else: print(0)
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR FUNC_CALL VAR VAR VAR NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
p1 = int(input()) for p in range(p1): a, b = input().split() a = int(a) b = int(b) d = b i = 0 e = None c = 0 len_a = len(str(a)) while i < len_a: d -= int(str(a)[i]) if d <= 0 and e is None: e = i if d < 0: c = len_a - e c = 10**c c = c - int(str(a)[e:]) break else: i += 1 print(c)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NONE ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR NONE ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): n, s = map(int, input().split()) c = 0 i = 0 j = 0 ans = 0 while sum(list(map(int, list(str(n))))) > s: c = (10 - n // 10**j % 10) % 10 * 10**j n += c ans += c j += 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER NUMBER BIN_OP NUMBER VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solution(nums): if nums[0] % nums[1] == 0: return "0\n" target = (nums[0] // nums[1] + 1) * nums[1] return str(target - nums[0]) + "\n" casesNum = int(input()) output = "" for i in range(casesNum): output += solution(list(map(int, input().split()))) print(output)
FUNC_DEF IF BIN_OP VAR NUMBER VAR NUMBER NUMBER RETURN STRING ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER VAR NUMBER RETURN BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) resultList = [] while t > 0: a, b = [int(i) for i in input().split()] if b > a: moves = b - a elif a % b == 0: moves = 0 else: moves = b - a % b resultList.append(moves) t -= 1 for result in resultList: print(result)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(): n, s = [int(x) for x in input().split(" ")] t, c = list(str(n)), 0 lt = len(t) for k, v in enumerate(t): c += int(v) if c >= s: if (k == lt - 1 or int("".join(t[k + 1 :])) == 0) and c == s: return 0 else: return int("1" + "0" * (lt - k)) - int("".join(t[k:])) return 0 t = int(input()) for i in range(t): print(solve())
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR BIN_OP VAR NUMBER FUNC_CALL VAR FUNC_CALL STRING VAR BIN_OP VAR NUMBER NUMBER VAR VAR RETURN NUMBER RETURN BIN_OP FUNC_CALL VAR BIN_OP STRING BIN_OP STRING BIN_OP VAR VAR FUNC_CALL VAR FUNC_CALL STRING VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(str, input().split()) s = int(s) l = [0, int(n[0])] for i in range(1, len(n)): l.append(l[-1] + int(n[i])) if l[-1] > s: break if l[-1] <= s: print(0) else: i = len(l) - 1 while l[i] >= s: i -= 1 if i == 0: thing = 1 else: thing = int(n[:i]) + 1 thing *= 10 ** (len(n) - i) print(thing - int(n))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST NUMBER FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR IF VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = input() for i in range(int(t)): n = input() listn = n.split() a = int(listn[0]) b = int(listn[1]) mod1 = a % b if mod1 == 0: c = 0 else: c = b - a % b print(c)
ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
z = int(input()) def sm(x): ans = 0 while x > 0: ans += x % 10 x //= 10 return ans for _ in range(z): n, s = map(int, input().split()) ans = 10000000000000000000000000000 if sm(n) <= s: print(0) continue goal = n for i in range(len(str(n)) + 1): goal = int(str(n)[: len(str(n)) - i] + "0" * i) + 10**i if sm(goal) <= s: ans = min(ans, goal - n) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP STRING VAR BIN_OP NUMBER VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import stdin stdin.readline def mp(): return list(map(int, stdin.readline().strip().split())) def it(): return int(stdin.readline().strip()) def su(s): return sum(map(int, str(s))) for _ in range(it()): n, s = mp() if su(n) <= s: print(0) continue else: i = 0 ans = 0 while i < 20: d = n // 10**i p = (10 - d) % 10 * 10**i n += p ans += p if su(n) <= s: print(ans) break i += 1
EXPR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP NUMBER VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import stdin, stdout input = stdin.readline print = lambda x: stdout.write(str(x) + "\n") def findsum(d): sums = 0 while d: sums += d % 10 d //= 10 return sums for _ in range(int(input())): n, s = map(int, input().split()) upd = n i = len(str(upd)) - 1 while findsum(upd) > s: t = str(upd) while i != -1 and t[i] == "0": i -= 1 if i == -1: upd = 10 ** len(t) break upd -= int(t[i]) * 10 ** (len(t) - i - 1) upd += 10 ** (len(t) - i) print(upd - n)
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR NUMBER VAR VAR STRING VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def count(x, y): if x % y == 0: return 0 elif x < y: return y - x else: c = x // y c += 1 c = y * c - x return c n = int(input()) while n > 0: ar = [int(f) for f in input().split()] x = ar[0] y = ar[1] print(count(x, y)) n -= 1
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER IF VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t > 0: t -= 1 n, x = input().split() n = int(n) x = int(x) ans = 0 b = True while b: b = False s = str(n) sum = 0 for i in range(0, len(s)): if sum + int(s[i]) > x: k = s[i:] tmp = 10 ** len(k) k = int(k) ans += tmp - k n += tmp - k b = True break sum += int(s[i]) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys T = int(input()) for _ in range(T): n, s = map(int, input().split()) v = str(n) A = [] cs = 0 for i in range(len(v)): cs = cs + int(v[i]) A.append(cs + 1) ans = int("1" + "0" * len(v)) - n for i in range(len(v)): if A[i] > s: if i > 0: st = v[: i - 1] + str(int(v[i - 1])) + "0" * (len(v) - i) vv = int(st) val = pow(10, len(v) - i) rv = val - vv % val st = vv + rv ans = st - n break sv = 0 for i in range(len(v)): sv = sv + int(v[i]) if sv <= s: ans = 0 print(ans)
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP STRING BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
case = input() for i in range(int(case)): data = input() data = data.split() a, b = [int(x) for x in data] if a % b == 0: print(0) continue print(b - a % b)
ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) m = [] for i in range(t): ab = list(map(int, input().split(" "))) a = ab[0] b = ab[1] x = a % b y = b - x if y == b: m.append(0) else: m.append(y) for i in m: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
a = int(input()) p = 0 for b in range(0, a): c = input().split() d1 = int(c[0]) d2 = int(c[1]) if d1 >= d2: if d1 % d2 == 0: p = 0 elif d1 % d2 != 0: p = int(d1 / d2) if d2 * p > d1: p = d2 * p - d1 elif d1 > d2 * p: p = d2 * (p + 1) - d1 elif d2 > d1: p = d2 - d1 print("{}".format(p))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) while n: x, y = input().split() x = int(x) y = int(y) if x % y == 0: print("0") else: print(y - x % y) n -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import stdin, stdout input = stdin.buffer.readline def rec(a, i, c): res = 10**20 if c < 0: return res if i >= len(a): return int(a) if a[i] != "9" and c - int(a[i]) - 1 >= 0: res = int(a[:i] + str(int(a[i]) + 1) + "0" * len(a[i + 1 :])) return min(res, rec(a, i + 1, c - int(a[i]))) for _ in range(int(input())): n, s = map(int, input().split()) x = rec(str(n), 0, s) if x == 10**20: print(10 ** len(str(n)) - n) else: print(x - n)
ASSIGN VAR VAR FUNC_DEF ASSIGN VAR BIN_OP NUMBER NUMBER IF VAR NUMBER RETURN VAR IF VAR FUNC_CALL VAR VAR RETURN FUNC_CALL VAR VAR IF VAR VAR STRING BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP STRING FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR IF VAR BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) testCases = [] for x in range(n): testCases.append([int(x) for x in input().split()]) for x in testCases: moves = 0 if x[0] % x[1] != 0: moves = x[1] - x[0] % x[1] print(moves)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def find_moves(lst): if lst[0] < lst[1]: num_moves = lst[1] - lst[0] elif lst[0] % lst[1] == 0: num_moves = 0 else: num_moves = lst[1] - lst[0] % lst[1] return num_moves n = int(input()) res = [] for i in range(n): a, b = map(int, input().split()) temp = find_moves([a, b]) res.append(temp) for i in res: print(i)
FUNC_DEF IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR LIST VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
output = [] t = int(input()) for i in range(0, t): a, b = input().split() a = int(a) b = int(b) if a % b == 0: output += [0] elif a > b: output += [abs(a % b - b)] else: output += [abs(b - a)] for x in output: print(x)
ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR LIST NUMBER IF VAR VAR VAR LIST FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR LIST FUNC_CALL VAR BIN_OP VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
l = [] for i in range(int(input())): a, b = list(map(int, input().split())) if a % b == 0: l.append(0) else: c = abs(a - b * (a // b + 1)) l.append(c) for i in l: print(i)
ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) for i in range(n): cmd = input() main = map(int, cmd.split()) lst = list(main) a = lst[0] b = lst[1] if a % b == 0: print(0) else: n = a // b nxt = b * (n + 1) final = nxt - a print(final)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def getInts(): return [int(s) for s in input().split()] def getInt(): return int(input()) def getStrs(): return [s for s in input().split()] def getStr(): return input() def listStr(): return list(input()) def solve(): A, B = getInts() return -A % B T = getInt() for t in range(T): ans = solve() print(ans)
FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
T = int(input()) for t in range(T): n, s = input().split() fixn = n n_list = [0] + [int(i) for i in n] m = len(n_list) s = int(s) cur_sum = sum(n_list) ans = 0 right_pointer = m - 1 while cur_sum > s: while n_list[right_pointer] == 0: right_pointer -= 1 n_list[right_pointer - 1] += 1 n_list[right_pointer] = 0 new_pointer = right_pointer - 1 while n_list[new_pointer] >= 10: n_list[new_pointer] %= 10 n_list[new_pointer - 1] += 1 new_pointer -= 1 cur_sum = sum(n_list) tmp = 0 for i in range(m): tmp *= 10 tmp += n_list[i] print(tmp - int(fixn))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR WHILE VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): l = list(map(int, input().split())) a = l[0] b = l[1] k = 0 if a % b == 0: k = 0 if a < b and a % b != 0: k = b - a if a > b and a % b != 0: k = b - a % b print(k)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
testcases = int(input()) for testcase in range(testcases): temparr = input() temparr = temparr.split() a = temparr[0] a = a[::-1] b = int(temparr[1]) arr = [] for i in a: arr.append(int(i)) arr.append(0) ans = [] cursum = sum(arr) if cursum <= b: print(0) continue nn = len(arr) carry = 0 for i in range(nn - 1): if arr[i] == 0: ans.append("0") continue else: diff = 10 - arr[i] ans.append(str(diff)) arr[i] = 0 j = i + 1 arr[i + 1] += 1 while j < nn: if arr[j] == 10: arr[j] = 0 arr[j + 1] += 1 j += 1 continue else: break cursum = sum(arr) if cursum <= b: break ans = ans[::-1] print("".join(ans))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP NUMBER VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER WHILE VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def sumDigits(n): res = 0 while n: res += n % 10 n //= 10 return res t = int(input()) while t: n, s = map(int, input().split()) steps = 0 multipler = 1 while sumDigits(n) > s: toZero = 10 - n % 10 if toZero == 10: toZero = 0 steps += multipler * toZero n = (n + toZero) // 10 multipler *= 10 print(steps) t -= 1
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t: n, m = input().split() n, m = int(n), int(m) c = 0 if n % m == 0: pass else: c = m - n % m print(c) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) matrix = [] answer_list = [] for _ in range(t): matrix.append(list(map(int, input().split()))) for row in range(len(matrix)): for col in range(1, len(matrix[row])): if matrix[row][col - 1] % matrix[row][col] != 0: remainder = matrix[row][col - 1] % matrix[row][col] answer = matrix[row][col] - remainder answer_list.append(answer) elif matrix[row][col - 1] % matrix[row][col] == 0: answer = matrix[row][col - 1] % matrix[row][col] answer_list.append(answer) for i in answer_list: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR IF BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR IF BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(n, s): dns = [(ord(x) - ord("0")) for x in str(n)] if sum(dns) <= s: return 0 m = len(dns) for i, d in enumerate(dns): if d >= s: return 10 ** (m - i) - n % 10 ** (m - i) s -= d return 42 for _ in range(int(input())): n, s = [int(x) for x in input().split()] print(solve(n, s))
FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP NUMBER BIN_OP VAR VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR VAR VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) while n > 0: a, b = list(map(int, input().split(" "))) if a <= b: print(b - a) else: r = a % b if r == 0: print(0) else: print(b - r) n = n - 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) x = [] for i in range(n): y = str(input()) z = y.split(" ") a, b = int(z[0]), int(z[1]) m = a % b if m == 0: x.append(m) else: x.append(b - m) for i in x: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): d, s = input().split() n = [int(i) for i in d] s = int(s) if sum(n) <= s: print(0) else: c = 0 t = len(n) for i in range(len(n)): if c + n[i] < s: c += n[i] else: break f = d[i:] t = t - i g = 10**t - int(f) print(g)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t, k, f = int(input()), 0, 0 for _ in range(t): k = 0 z = [int(s) for s in input().split()] a, b = z[0], z[1] if b >= a: print(b - a) elif a % b == 0: print(0) else: f = a // b f = f + 1 print(b * f - a)
ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) def moves(a): s = int(a[0]) % int(a[1]) if (int(a[0]) + s) % int(a[1]) != 0: print(int(a[1]) - s) else: print(s) for i in range(0, n): a = input().split(" ") moves(a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): a, b = map(int, input().rstrip().split()) k = a // b k += 1 ans = b * k - a print(ans) if b != ans else print(0)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) result = [] while t > 0: a, b = list(map(int, input().split())) result.append((b - a % b) % b) t = t - 1 for x in result: print(x)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def add_list(p): total = sum(n1[0 : p + 1], 1) return total t = int(input()) for i in range(t): n, s = map(int, input().split()) n1 = list(map(int, str(n))) count = 0 n1.insert(0, 0) for i2 in range(len(n1)): count += n1[i2] if count > s: break if count <= s: print(0) else: for i3 in range(i2 - 1, -1, -1): if s >= add_list(i3): print( (int(str(n1[0 : i3 + 1])[1:-1:3]) + 1) * 10 ** (len(n1) - i3 - 1) - n ) break
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER NUMBER NUMBER NUMBER BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR