description
stringlengths 171
4k
| code
stringlengths 94
3.98k
| normalized_code
stringlengths 57
4.99k
|
|---|---|---|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for ii in range(t):
n, s = input().split()
s = int(s)
start = 0
for i in n:
start += int(i)
if start <= s:
print(0)
continue
count = 0
ptr = len(n) - 1
while start >= s:
start -= int(n[ptr])
ptr -= 1
if ptr < 0:
break
a = len(n) - 1 - ptr
if start > s:
print(10 ** len(n) - int(n))
continue
else:
num = []
for i in range(len(n) - 1, ptr, -1):
num.append(n[i])
num = num[::-1]
num = "".join(num)
num = int(num)
print(10**a - num)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
s, n = map(str, input().split())
n = int(n)
m = len(s)
pos = -1
temp = 0
tt = 0
for i in range(0, m):
tt += ord(s[i]) - ord("0")
if tt <= n:
print(0)
continue
for i in range(0, m):
ch = ord(s[i]) - ord("0")
if temp + ch < n:
temp += ch
else:
pos = i
break
ans = ""
flag = True
for i in range(m - 1, pos - 1, -1):
if flag:
ans += chr((ord("9") - ord(s[i]) + 1) % 10 + ord("0"))
else:
ans += chr(ord("9") - ord(s[i]) + ord("0"))
if s[i] != "0":
flag = False
finans = ""
flag = False
for i in range(len(ans) - 1, -1, -1):
if ans[i] != "0":
flag = True
if flag:
finans += ans[i]
print(finans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR VAR VAR NUMBER NUMBER FUNC_CALL VAR STRING VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING IF VAR VAR STRING ASSIGN VAR NUMBER ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
def solve(n, s):
digits = [int(x) for x in str(n)]
if sum(digits) <= s:
return 0
if digits[0] > s:
targ = int("1" + "0" * len(digits))
return targ - n
lft = [0]
nd = 0
while sum(lft) < s:
lft.append(digits[nd])
nd += 1
if True:
ith = nd - 1
while lft[ith] == 9:
ith -= 1
lft[ith] += 1
lft = lft[: ith + 1]
lft.extend([0] * (len(digits) - ith))
targ = int("".join([str(x) for x in lft]))
return targ - n
IN = [x.strip() for x in sys.stdin.readlines()]
T = int(IN[0])
cur = 0
for ti in range(T):
n, s = [int(x) for x in IN[cur + 1].split(" ")]
res = solve(n, s)
print(res)
cur += 1
|
IMPORT FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR RETURN NUMBER IF VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER IF NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
digits = list(map(int, str(n)))
n_dig_sum = sum(digits)
if n_dig_sum <= s:
print(0)
else:
moves = 0
i = -1
j = 0
while n_dig_sum > s:
moves += (10 - digits[i]) * 10**j
digits[i] = 0
if i == -len(digits):
digits = [1] + digits
else:
digits[i - 1] += 1
n_dig_sum = sum(digits)
i -= 1
j += 1
print(moves)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
test_case = int(input())
for i in range(test_case):
val = list(map(int, input().split(" ")))
if val[0] % val[1] == 0:
print(0)
continue
else:
res = val[1] - val[0] % val[1]
print(res)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(str, input().split())
n = "0" + n
l = []
for a in n:
l.append(int(a))
sum = 0
s = int(s)
i = 1
while i < len(l):
sum = sum + l[i]
if sum <= s:
i = i + 1
else:
sum = sum - l[i]
for j in range(i, len(l)):
l[j] = 0
i = i - 1
sum = sum - l[i]
l[i] += 1
new = 0
for a in l:
new = new * 10 + int(a)
print(new - int(n))
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = input()
n = int(n)
for i in range(n):
a, b = (int(z) for z in input().split())
if a % b == 0:
ans = 0
else:
ans = b - a % b
print(ans)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def func(n):
for i in range(n):
k = list(map(int, input().split()))
print((k[1] - k[0] % k[1]) % k[1])
n = int(input())
func(n)
|
FUNC_DEF FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
def ceil(n, k):
return n // k + (n % k != 0)
for i in range(n):
a, b = map(int, input().split())
t = ceil(a, b)
print(b * t - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def dsum(num):
s = 0
while num > 0:
s += num % 10
num //= 10
return s
T = int(input())
for t in range(T):
num, s = [int(x) for x in input().strip().split(" ")]
pow10 = 1
current_added = 0
for i in range(18):
if dsum(num) <= s:
break
pos = (10 - num // pow10 % 10) * pow10
num += pos
current_added += pos
pow10 *= 10
print(current_added)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
x = int(input())
for i in range(x):
found = False
a, b = input().split()
a = int(a)
b = int(b)
if a % b == 0 and not found:
print(0)
found = True
if a < b and not found:
print(b - a)
found = True
elif not found:
print(b - a % b)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def solve():
n, s = input().split()
s = int(s)
sd = sum(list(map(int, n)))
ans = 0
point = 0
a = int(n)
n = n[::-1]
debug = 0
while s < sd:
a += 10**point * (10 - int(n[point]))
ans += 10**point * (10 - int(n[point]))
point += 1
n = str(a)[::-1]
sd = sum(list(map(int, n)))
print(ans)
t = int(input())
for i in range(t):
solve()
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
def main():
next(sys.stdin)
for line in sys.stdin:
a, b = tuple(map(lambda x: int(x), line.split()))
if a % b == 0:
print(0)
else:
m = a // b
print((m + 1) * b - a)
main()
|
IMPORT FUNC_DEF EXPR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
from sys import stdin, stdout
t = int(stdin.readline())
for _ in range(t):
n, s = stdin.readline().split()
s = int(s)
sum = 0
movs = 0
for i in range(len(n)):
sum += int(n[i])
if sum >= s:
p = int(n[min(i + 1, len(n) - 1) :])
if sum != s or p != 0 and i != len(n) - 1:
movs = 10 ** (len(n) - i) - int(n[i:])
break
print(movs)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def calc(n, s):
curr = 0
n1 = str(n)
for i in range(len(n1)):
curr += ord(n1[i]) - ord("0")
if curr <= s:
return 0
curr = 0
i = 0
while i < len(n1) and curr + int(n1[i]) + 1 <= s:
curr += ord(n1[i]) - ord("0")
i += 1
return 10 ** (len(n1) - i) - int(n1[i:])
t = int(input())
for i in range(t):
n, s = list(map(int, input().split()))
print(calc(n, s))
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING IF VAR VAR RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR NUMBER RETURN BIN_OP BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def getSum(n):
sum = 0
while n != 0:
sum += int(n % 10)
n //= 10
return sum
t = int(input())
for _ in range(t):
n, s = [int(s) for s in input().split(" ")]
str_n = str(n)
if getSum(n) <= s:
print(0)
else:
zeroes = 0
sum = 0
j = 0
for i in range(len(str_n)):
sum += int(str_n[i])
if sum >= s:
break
number = str_n[i:]
length = len(number)
print(10**length - int(number))
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
def gets():
return sys.stdin.readline().strip()
def get():
return int(sys.stdin.readline().strip())
def geti():
return map(int, sys.stdin.readline().strip().split())
def getli():
return list(map(int, sys.stdin.readline().strip().split()))
for _ in range(get()):
a, b = geti()
if a % b == 0:
print(0)
else:
n = a // b + 1
print(n * b - a)
|
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def su(tmp):
ans = 0
for i in tmp:
ans += int(i)
return ans
for _ in range(int(input())):
n, s = map(int, input().split())
tmp = list(str(n))
a = su(tmp)
if s >= a:
print(0)
else:
aa = ans = 0
c = 1
tmp = ["0"] + tmp
for i in range(len(tmp) - 1, 0, -1):
if tmp[i] == "0":
c *= 10
continue
aa += int(tmp[i])
ans += (10 - int(tmp[i])) * c
tmp[i] = "0"
j = i - 1
while j >= 0 and tmp[j] == "9":
tmp[j] = "0"
j -= 1
tmp[j] = str(int(tmp[j]) + 1)
c *= 10
if su(tmp) <= s:
break
if su(tmp) > s:
ans += (10 - int(tmp[i])) * c
print(ans)
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST STRING VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR STRING VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR STRING ASSIGN VAR VAR STRING VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
a, b = map(int, input().split())
curr = a // b
if not curr:
if a >= b:
print(0)
else:
print(b - a)
else:
while curr * b < a:
curr += 1
print(curr * b - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR WHILE BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def stepdiv(a, b):
return (b - a % b) % b
for _ in range(int(input().strip())):
a, b = list(map(int, input().strip().split(" ")))
print(stepdiv(a, b))
|
FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def fun(n):
p = 0
while n:
p += n % 10
n //= 10
return p
for _ in range(int(input())):
n, s = map(int, input().split())
orig = n
while fun(n) > s:
mod = 10
while n % mod == 0:
mod *= 10
n += mod - n % mod
print(n - orig)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
l = list()
while t > 0:
t = t - 1
a, b = map(int, input().split())
if a > b:
if a % b != 0:
c = a // b
c += 1
d = c * b - a
l.append(d)
else:
d = 0
l.append(d)
else:
c = b - a
l.append(c)
for x in range(len(l)):
print(l[x])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
l = []
while n > 0:
l.append(n % 10)
n = n // 10
ts = sum(l)
ans = 0
l1 = []
c = 0
f = 0
if ts <= s:
print(0)
else:
j = 0
for i in range(len(l)):
if l[i] == 0:
l1.append(0)
else:
j = i
break
for i in range(j, len(l)):
if l[i] == 0:
l1.append(9)
l[i] = 0
c = 1
elif l[i] == 9 and c == 1:
l1.append(0)
l[i] = 0
c = 1
elif l[i] == 9 and c == 0:
l1.append(1)
l[i] = 0
c = 1
else:
l1.append(10 - l[i] - c)
l[i] = 0
c = 1
if c + sum(l) <= s:
break
i = len(l1) - 1
while l1[i] == 0:
l1.pop()
i -= 1
for i in range(len(l1) - 1, -1, -1):
print(l1[i], end="")
print()
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def divisible(a, b):
s = 0
if a > b and a % b != 0:
s = b - (a - b) % b
elif a <= b:
s = b - a
return s
l = []
n = int(input())
for i in range(n):
m = input().split()
l.append(m)
for i in l:
print(divisible(int(i[0]), int(i[1])))
|
FUNC_DEF ASSIGN VAR NUMBER IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
pin = sys.stdin.readline
pout = sys.stdout.write
ran = range
m = int(pin())
mape = map
for i in ran(m):
a, b = mape(int, pin().split())
if a % b == 0:
pout("0\n")
else:
print(b - a % b)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
N = int(input())
ab = []
for n in range(N):
a, b = (int(i) for i in input().split())
ab.append((a, b))
for a, b in ab:
mod = a % b
ans = b - mod if mod != 0 else 0
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR FOR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
input = sys.stdin.readline
for i in range(int(input())):
a, b = map(int, input().split())
n = a
if a % b != 0:
n = a // b * b + b
print(n - a)
|
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(t):
n, s = map(int, input().split())
digits = [int(x) for x in str(n)]
sum = 0
for j in range(len(digits)):
sum += digits[j]
if sum <= s:
print("0")
continue
elif digits[0] > s or digits[0] + 1 > s:
ans = [0] * len(digits)
ans.insert(0, 1)
newans = "".join([str(x) for x in ans])
newans = int(newans)
newdigits = "".join([str(x) for x in digits])
newdigits = int(newdigits)
newans = newans - newdigits
else:
current = digits[0]
put = 0
for j in range(1, len(digits)):
if digits[j] + 1 + current > s:
put = j
break
else:
current += digits[j]
ans = [0] * (len(digits) - put)
ans.insert(0, 1)
newans = "".join([str(x) for x in ans])
newans = int(newans)
newdigits = "".join([str(digits[x]) for x in range(put, len(digits))])
newdigits = int(newdigits)
newans = newans - newdigits
print(newans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def sumnum(n):
s = 0
while n:
s += n % 10
n = n // 10
return s
for _ in range(int(input())):
n, s = map(int, input().split())
pw = 1
ans = 0
for i in range(18):
z = sumnum(n)
if z <= s:
break
dig = n // pw % 10
add = (10 - dig) % 10 * pw
n += add
ans += add
pw *= 10
print(ans)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for qwerty in range(t):
n, s = input().split()
s = int(s)
v = 0
pos = len(n) - 1
for i in range(len(n)):
v += int(n[i])
if v <= s:
a = int(n)
else:
v = 0
for i in range(len(n)):
v += int(n[i])
if v >= s:
pos = i
break
if pos == 0:
a = 1
for i in range(len(n)):
a *= 10
else:
pos -= 1
a = 0
for i in range(len(n)):
a *= 10
a += int(n[i])
if i == pos:
a += 1
break
for i in range(len(n) - pos - 1):
a *= 10
print(a - int(n))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for i in range(n):
z = input().split()
a = int(z[0])
b = int(z[1])
d = a // b
if a % b == 0:
print(0)
else:
print((d + 1) * b - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
while t > 0:
t -= 1
n, m = input().split()
n = int(n)
m = int(m)
j = int(0)
if n % m == 0:
print(0)
else:
j = m - n % m
print(j)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
testcase = int(input())
i = 0
answer = []
while i < testcase:
a, b = map(int, input().split())
if a % b == 0:
answer.append(0)
else:
answer.append(b - a % b)
i += 1
for c in answer:
print(c)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def digits_sum(num):
s = 0
while num != 0:
s = s + num % 10
num = num // 10
return s
a = int(input())
i = 0
while i < a:
inputs = input().split(" ")
num = int(inputs[0])
num2 = int(inputs[1])
temp = num
iterator = 0
while iterator < 19:
temp2 = (10**iterator - num % 10**iterator) % 10**iterator
num = num + temp2
if digits_sum(num) <= num2:
print(num - temp)
break
iterator = iterator + 1
i = i + 1
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
def sum_digits(n):
summ = 0
while n:
summ += n % 10
n //= 10
return summ
for _ in range(t):
n, s = map(int, input().split())
ans = 0
pow_ten = 10
for i in range(18):
if sum_digits(n) > s:
ans += pow_ten - n % pow_ten
n += pow_ten - n % pow_ten
pow_ten *= 10
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
langs = {"po": "FILIPINO", "desu": "JAPANESE", "masu": "JAPANESE", "mnida": "KOREAN"}
res = []
for i in range(n):
a, b = list(map(lambda x: int(x), input().split()))
dif = a / b
if dif > int(dif):
dif = int(dif) + 1
res.append(b * int(dif) - a)
for w in res:
print(w)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR DICT STRING STRING STRING STRING STRING STRING STRING STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
values = [int(x) for x in input().split()]
a, b = values[0], values[1]
if a % b == 0:
print(0)
elif a > b:
div = (int(a / b) + 1) * b
print(div - a)
else:
print(b - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
a = 0
i = 0
b = 0
while i < n:
x, y = map(int, input().split())
if x % y == 0:
a = 0
else:
b = x % y
a = y - b
print(a)
i = i + 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
i = 0
y = []
while i < t:
a, b = map(int, input().split())
a = int(a)
b = int(b)
i += 1
if a % b == 0:
y.append(a % b)
else:
y.append((a // b + 1) * b - a)
for i in y:
print(i)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def addition(x, y):
print([0, y - x % y][x % y != 0])
t = int(input())
for i in range(t):
a, b = [int(x) for x in input().split()]
addition(a, b)
|
FUNC_DEF EXPR FUNC_CALL VAR LIST NUMBER BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input(""))
for i in range(0, n):
p, q = input("").split(" ")
a = int(p)
b = int(q)
c = a // b
if a % b == 0:
print(0)
else:
print(b - a % b)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def divi(a, b):
if b >= a:
return b - a
mod = a % b
if mod == 0:
return 0
return b - mod
t = int(input())
l = []
for i in range(t):
l.append(divi(*list(map(int, input().split(" ")))))
for i in range(t):
print(l[i])
|
FUNC_DEF IF VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
answer = []
def sum(n):
result = 0
while n > 0:
result += n % 10
n = n // 10
return result
for t in range(t):
n, s = list(map(int, input().split(" ")))
nv = len(str(n))
count = 0
pow = 1
while sum(n) > s:
digit = n // pow % 10
temp = pow * ((10 - digit) % 10)
count += temp
n += temp
pow *= 10
answer.append(str(int(count)))
print("\n".join(answer))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def divisible(a, b):
c = 0
if a % b == 0 and a > b:
c = 0
elif a > b:
rem = a // b
d = b * (rem + 1)
f = d - a
c = f
elif a < b:
c = b - a
print(c)
t = int(input())
while t > 0:
t -= 1
a, b = map(int, input().split())
divisible(a, b)
|
FUNC_DEF ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
result = []
t = int(input())
for i in range(0, t):
a, b = [int(x) for x in input().split()]
if a % b == 0:
result.append(0)
else:
result.append(b * (a // b + 1) - a)
for i in range(0, len(result)):
print(result[i])
|
ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def solve(arr):
if arr[0] % arr[1] == 0:
return 0
else:
return abs(arr[0] % arr[1] - arr[1])
for i in range(int(input())):
print(solve(list(map(int, input().split(" ")))))
|
FUNC_DEF IF BIN_OP VAR NUMBER VAR NUMBER NUMBER RETURN NUMBER RETURN FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
n, s = [int(x) for x in input().split()]
arr = [int(x) for x in str(n)]
currsum = sum(arr)
while currsum > s:
for j in range(len(arr) - 1, -1, -1):
if arr[j] != 0:
break
arr[j] = 0
j -= 1
if j == -1:
arr.insert(0, 0)
j += 1
while arr[j] == 9:
arr[j] = 0
j -= 1
if j == -1:
arr.insert(0, 0)
j += 1
break
arr[j] += 1
currsum = sum(arr)
newN = int("".join([str(x) for x in arr]))
print(newN - n)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER VAR NUMBER WHILE VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
numCases = int(input())
for i in range(1, numCases + 1):
line = input()
arrNums = line.split(" ")
num1 = int(arrNums[0])
num2 = int(arrNums[1])
if num1 % num2 != 0:
print(num2 - num1 % num2)
else:
print(0)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
T = int(input())
def f_sum(n):
s = last = pw = ctr = 0
fg = False
while n != 0:
k = n % 10
n = n // 10
if not fg and k != 0:
last = k
fg = True
pw = ctr
ctr += 1
s += k
return [s, last, pw]
arr = []
for _ in range(T):
n, s = list(map(int, input().split()))
ans = 0
while True:
su, last, pw = f_sum(n)
if su <= s:
break
number = 10 - last
number = number * 10**pw
ans = ans + number
n = n + number
arr.append(ans)
for i in arr:
print(i)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR VAR RETURN LIST VAR VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
ansl = []
for i in range(n):
a, b = map(int, input().split())
m = 0
if a < b:
m = b - a
elif a % b == 0:
m = 0
else:
m = b - a % b
ansl += [m]
for r in ansl:
print(r)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR LIST VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def divisibility(list1):
a = list1[0]
b = list1[1]
if a < b:
print(b - a)
elif a > b and a % b == 0:
print(0)
elif a > b:
print(b - a % b)
elif a == b:
print(0)
t = int(input())
for i in range(t):
list1 = list(map(int, input().rstrip().split()))
divisibility(list1)
|
FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
ns = str(n)
l = len(ns)
i = 0
sum_ = 0
p = n
a = []
while p > 0:
a.append(p % 10)
p //= 10
a.reverse()
sum_ = sum(a)
if sum_ <= s:
print("0")
continue
m = 0
i = 0
while m + a[i] < s:
m += a[i]
i += 1
j = 0
ans = 0
while j < i:
ans = ans * 10 + a[j]
j += 1
ans += 1
ans = ans * 10 ** (l - i)
print(ans - n)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR LIST WHILE VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
l = []
for i in range(t):
l.append(list(map(int, input().split())))
for ll in l:
print((ll[1] - ll[0] % ll[1]) % ll[1])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
x = int(input())
c = []
d = []
for i in range(x):
a, b = list(map(int, input().split()))
c.append(a)
d.append(b)
for i in range(x):
if c[i] % d[i] == 0:
print("0")
elif c[i] > d[i]:
f = c[i] % d[i]
print(d[i] - f)
else:
print(d[i] - c[i])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
n = str(n)
l = 10
ct = 0
i = -1
while sum(map(int, list(n))) > s:
k = l - int(n[i:])
if k != 0:
ct += k
n = str(int(n) + k)
l *= 10
i -= 1
print(ct)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for x in range(t):
inp = input().split()
a = int(inp[0])
b = int(inp[1])
moves = 0
if a % b == 0:
pass
elif a < b:
moves = b - a
elif a > b:
rest = 1 - a / b % 1
moves = round(rest * b)
print(moves)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
tasks = []
for i in range(t):
tasks.append(list(map(int, input().split())))
for i in range(t):
n, s = tasks[i]
str_n = str(n)
if sum([int(str_n[j]) for j in range(len(str_n))]) <= s:
print(0)
else:
x = len(str(n))
while sum([int(j) for j in "0" + str(n)[:-x]]) < s and x > 0:
x -= 1
x += 1
print((int(("0" + str(n))[:-x]) + 1) * 10**x - n)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP STRING FUNC_CALL VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP STRING FUNC_CALL VAR VAR VAR NUMBER BIN_OP NUMBER VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
string = str(n)
l = len(string)
tot = 0
for j in string:
tot += int(j)
if tot <= s:
print(0)
continue
cnt = 0
tens = ""
summ = 0
i = 0
while i < l and summ + int(string[i]) < s:
tens += string[i]
summ += int(string[i])
cnt += 1
i += 1
if tens == "":
tens = "0"
tens = str(int(tens) + 1)
tens += (l - cnt) * "0"
print(int(tens) - n)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR STRING ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(0, t):
n, m = map(int, input().split())
if n % m == 0:
print(0)
else:
z = min(n, m)
p = max(n, m)
k = n // m + 1
k = k * z
print(abs(k - p))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def sum_digits(n):
x = n
ans = 0
while x > 0:
ans += x % 10
x = x // 10
return ans
t = int(input())
for i in range(t):
a, b = input().split()
a = int(a)
b = int(b)
x = a
if sum_digits(x) > b:
for i in range(20):
dig = x % 10 ** (i + 1) // 10**i
if dig != 0:
x += (10 - dig) * 10**i
if sum_digits(x) <= b:
break
print(x - a)
|
FUNC_DEF ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER VAR IF VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
test = int(input())
for ans in range(test):
n, s = map(int, input().split())
add = 0
x = 10
while n > 0:
sums = sum(map(int, str(n)))
if sums <= s:
break
else:
add += x - n % x
n = n + (x - n % x)
x = x * 10
print(add)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(0, t, 1):
arr = [str(string) for string in input().split()]
n = arr[0]
s = arr[1]
l1 = len(n)
l2 = len(s)
s_sum = int(s)
n_sum = 0
j = 0
while j != l1:
if int(n[j]) + n_sum <= s_sum:
n_sum += int(n[j])
else:
break
j += 1
if j == l1:
print(0)
elif j == 0:
ans = 10 ** len(n) - int(n)
print(ans)
elif int(n[0]) == s_sum and n_sum > s_sum:
ans = 10 ** len(n) - int(n)
print(ans)
else:
exceeder = int(n[j])
offset = exceeder - (s_sum - n_sum)
flag = 0
new_str = ""
while j != 0:
prev_index_num = int(n[j - 1])
prev_index_num += 1
if prev_index_num == 10 or n_sum + 1 > s_sum:
n_sum -= int(n[j - 1])
j -= 1
continue
for k in range(0, j - 1):
new_str += n[k]
new_str += str(prev_index_num)
for k in range(j, l1, 1):
new_str += "0"
flag = 1
break
if flag == 0:
ans = 10 ** len(n) - int(n)
print(ans)
else:
ans = int(new_str) - int(n)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR STRING WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR NUMBER VAR STRING ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
d = []
for i in range(t):
n = list(map(int, input().split()))
d.append(n)
for j in range(t):
a = d[j][0]
b = d[j][1]
if a == b:
print(0)
elif a % b == 0:
print(0)
else:
print(b - a % b)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
T = int(input())
for _ in range(T):
n, s = list(map(int, input().split()))
a = list(map(int, str(n)))
a = a[::-1]
if sum(a) <= s:
print(0)
continue
ans = 0
i = 0
n = len(a)
while sum(a) > s and i < n:
ans += (10 - a[i]) * 10**i
a[i] = 0
if i + 1 >= n:
a.append(0)
a[i + 1] = a[i + 1] + 1
i += 1
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def div(l):
a = 0
b = l[0]
if l[0] % l[1] == 0:
a = 0
else:
a = l[1] - l[0] % l[1]
print(a)
t = int(input())
while t > 0:
l = list(map(int, input().split()))
div(l)
t = t - 1
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def is_good(n, s):
return sum(int(i) for i in str(n)) <= s
for _ in range(int(input())):
n, s = map(int, input().split())
count = 0
m = 1
while True:
m *= 10
if sum(int(i) for i in str(n)) <= s:
break
num = n % m
count += m - num
n += m - num
print(count)
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
lst = list()
for i in range(n):
lst.append(input().split())
for j in range(n):
if int(lst[j][0]) % int(lst[j][1]):
x = int(lst[j][1]) - int(lst[j][0]) % int(lst[j][1])
print(x)
else:
x = 0
print(x)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
num = int(input())
div = []
for i in range(num):
arr = [i for i in input().split()][:2]
j = 0
if int(arr[0]) % int(arr[1]) == 0:
div.append(0)
else:
div.append(int(arr[1]) - int(arr[0]) % int(arr[1]))
print(*div, sep="\n")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR STRING
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def sumcal(x):
s = 0
while x:
s += x % 10
x //= 10
return s
for _ in range(int(input())):
n, s = list(map(int, input().split()))
i = n
b = 10
while sumcal(n) > s:
n += b - n % b
b *= 10
print(n - i)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
a = int(input())
k = []
t = []
p = 0
for i in range(a):
p = 0
k = list(map(int, input().split()))
if k[0] < k[1]:
print(k[1] - k[0])
elif k[0] == k[1]:
print("0")
else:
if k[0] % k[1] != 0:
l = k[0] % k[1]
p = k[1] - l
print(p)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
nstr = str(n)
sum = []
sum.append(int(nstr[0]))
for i in range(1, len(nstr)):
lval = sum[-1]
sum.append(lval + int(nstr[i]))
ind = 0
while ind < len(nstr):
if sum[ind] >= s:
break
ind += 1
res = nstr[:ind] + "0" * (len(nstr) - ind)
if sum[-1] <= s:
print(int(nstr) - n)
else:
res = res[: ind - 1] + chr(int(res[ind - 1]) + ord("0")) + res[ind:]
print(int(res) + 10 ** (len(nstr) - ind) - n)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP STRING BIN_OP FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR STRING VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
from sys import stdin, stdout
class SOLVE:
def solve(self):
R = stdin.readline
W = stdout.write
ans = []
for i in range(int(input())):
n, s = [x for x in R().split()]
s = int(s)
if sum([int(x) for x in n]) <= s:
ans += ["0"]
continue
temps = 0
for j in range(len(n)):
temps += int(n[j])
if temps >= s:
ans += [
str(
int(str(int("0" + n[:j]) + 1) + (len(n) - j) * "0") - int(n)
)
]
break
W("\n".join(ans))
def main():
s = SOLVE()
s.solve()
main()
|
CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR LIST STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR LIST FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP STRING VAR VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR STRING FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
a = int(input())
w = list()
for i in range(a):
b = input().split()
b1 = int(b[0])
b2 = int(b[1])
val = 0
d = 0
if b1 % b2 != 0:
d = int(b1 / b2) + 1
val = b2 * d - b1
else:
val = 0
w.append(val)
for i in w:
print(i)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(0, t):
a, b = map(int, input().split())
c = a
a1 = str(a)
yy = len(a1)
summ = 0
a2 = []
for j in range(0, yy):
summ = summ + int(a1[j])
a2.append(int(a1[j]))
if summ <= b:
print(0)
else:
s1 = summ - b
j = yy - 1
while j >= 0:
s1 = s1 - int(a1[j])
a2[j] = 0
if j != 0:
if a1[j - 1] != "9":
a2[j - 1] += 1
else:
while a1[j - 1] == "9":
a2[j - 1] = 0
s1 = s1 - 9
j -= 1
if j == 0:
break
if j > 0:
a2[j - 1] += 1
else:
a2.insert(0, 1)
else:
a2.insert(0, 1)
if s1 < 0:
break
j -= 1
str1 = ""
for ii in a2:
str1 = str1[0:] + str(ii)
a22 = int(str1)
print(a22 - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING VAR BIN_OP VAR NUMBER NUMBER WHILE VAR BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR STRING FOR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, m = map(int, input().split())
c = 0
if n % m == 0:
print(c)
elif n < m:
m = m - n
print(m)
else:
k = n // m
k = k + 1
k = k * m
k = k - n
print(k)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
j = []
def cont(a, b):
if a % b == 0:
j.append(0)
elif b > a:
j.append(b - a)
else:
h = a % b
ans = b - h
j.append(ans)
for i in range(n):
a, b = map(int, input().split())
cont(a, b)
print(*j, sep="\n")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_DEF IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR STRING
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
l = []
for i in range(n):
a, b = map(int, input().split())
l.append(a)
l.append(b)
i = 0
while i < 2 * n - 1:
ct = 0
if l[i] % l[i + 1] != 0:
q = int(l[i] / l[i + 1])
ct = l[i + 1] * (q + 1) - l[i]
i += 2
print(ct)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
a, b = map(int, input().split())
start_a = a
t = 0
s = 0
for i in str(a):
s += int(i)
while s > b:
s = 0
for i in str(a):
s += int(i)
if s > b:
break
if s > b:
a = (a // 10 ** (len(str(a)) - 1) + 1) * 10 ** (len(str(a)) - 1)
f_ans = 0
r = a - start_a
answer = r
for i in range(0, len(str(r))):
s = 0
some_a = start_a + int(str(r)[i:])
for j in str(some_a):
s += int(j)
if s <= b and some_a - start_a >= 0:
answer = str(r)[i:]
print(answer)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER BIN_OP NUMBER BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def getSum(n):
sum1 = 0
while n != 0:
sum1 = sum1 + 1
n = n // 10
return sum1
def getNearest(n):
c = 10 - n % 10
c = c + n
return c
def getSum1(n):
sum = 0
while n != 0:
sum = sum + n % 10
n = n // 10
return sum
c = int(input())
for i in range(c):
a, b = [int(x) for x in input().split()]
res = list(map(int, str(a)))
if getSum1(a) <= b:
print("0")
else:
e = 0
g = 0
h = 0
f = len(res)
for i in range(f):
e = e * 10 + res[i]
h = i
g = g + res[i]
if g >= b:
break
e = getNearest(e)
f = f - (h + 1)
e = e * 10**f
e = e - a
print(e)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(t):
n, k = map(int, input().split())
if n % k == 0:
p = 0
else:
r = int(n / k) + 1
p = k * r - n
print(p)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def fun(a, b):
if a % b == 0:
return 0
else:
x = a // b
y = (x + 1) * b
return y - a
for _ in range(int(input())):
a, b = list(map(int, input().split()))
print(fun(a, b))
|
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR RETURN BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for t in range(int(input())):
n, s = map(int, input().split())
dif = sum(map(int, str(n))) - s
if dif <= 0:
print(0)
continue
n2 = n
sm = 0
k = 0
while sm - 1 < dif:
sm += n % 10
n //= 10
k += 1
k = 10**k
print(k - n2 % k)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
while t:
t -= 1
a, b = input().split()
a = int(a)
b = int(b)
if a <= b:
print(b - a)
elif a % b == 0:
print(0)
else:
res = a // b
mul_res = b * (res + 1)
print(mul_res - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
from sys import exit
def i():
return input()
def ii():
return int(input())
def iis():
return map(int, input().split())
def liis():
return list(map(int, input().split()))
def print_array(a):
print(" ".join(map(str, a)))
t = ii()
for _ in range(t):
a, b = iis()
div = a // b
if b * div == a:
print(0)
else:
print(b * (div + 1) - a)
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def is_div(a, b):
if a % b == 0:
return 0
else:
return b - a % b
test_cases = [list(map(int, input().split())) for _ in range(int(input()))]
for t in test_cases:
print(is_div(t[0], t[1]))
|
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
N = int(input())
data = []
for i in range(N):
data.append(input().split())
for j in range(2):
data[i][j] = int(data[i][j])
def res(a):
x = a[0]
y = a[1]
cnt = 0
if x % y != 0:
cnt = y - x % y
else:
cnt = x % y
return str(cnt)
for i in range(N):
print(res(data[i]) + "\n")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR STRING
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def noMoves(arr):
a = arr[0]
b = arr[1]
c = a // b
d = a / b
if c == d:
return 0
return b * (c + 1) - a
i = int(input())
for j in range(0, i):
arr = [int(num) for num in input().split()]
print(noMoves(arr))
|
FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR RETURN NUMBER RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
a, b = [int(i) for i in input().split()]
if b * (a // b + 2 - 1) - a == b:
print(0)
else:
print(b * (a // b + 2 - 1) - a)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
st = "0" * (19 - len(str(n))) + str(n)
sm = 0
for i in st:
sm += int(i)
moves = 0
if sm <= s:
print(moves)
continue
else:
diff = sm - s
st = st[::-1]
pw = 1
prof = int(st[0]) - 1
st_t = st[0]
moves = 10 - int(st_t)
pw += 1
for i in range(1, len(st)):
if prof >= diff:
break
st_t += st[i]
prof += int(st[i])
moves = 10**pw - int(st_t[::-1])
pw += 1
print(moves)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP STRING BIN_OP NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def construct(s, index):
if index == 0:
return "1" + "0" * len(s)
mid = str(int(s[index - 1]) + 1)
if len(mid) < 2:
return s[: index - 1] + str(int(s[index - 1]) + 1) + "0" * (len(s) - index)
can = s[: index - 1] + "0" + "0" * (len(s) - index)
p = len(s) - index + 1
return str(int(can) + 10**p)
def num_dec(s, target):
tot = 0
for i in s:
tot += int(i)
amount = tot - target
if amount <= 0:
return 0
for i in range(len(s) - 1, -1, -1):
if amount <= -1:
j = int(construct(s, i))
return j - int(s)
amount -= int(s[i])
if amount <= -1:
j = int(construct(s, i))
return j - int(s)
for _ in range(int(input())):
x_t = input().split()
s = x_t[0]
tar = int(x_t[1])
print(num_dec(s, tar))
|
FUNC_DEF IF VAR NUMBER RETURN BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER IF FUNC_CALL VAR VAR NUMBER RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP STRING BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER STRING BIN_OP STRING BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER RETURN FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP NUMBER VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def ProcessInputs():
A, B = map(int, input().strip().split())
if A % B == 0:
print(0)
return
else:
print(B - A % B)
return
T = int(input())
for _ in range(T):
ProcessInputs()
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR RETURN ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def main():
for _ in range(int(input())):
a, b = list(map(int, input().split()))
if a % b == 0:
print("0")
else:
s = int(a // b)
s = s + 1
b = b * s
a = b - a
print(a)
main()
|
FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def ekline():
t = int(input())
for i in range(t):
a, b = map(int, input().split())
if a % b != 0:
if a > b:
c = b * (a // b + 1)
print(c - a)
elif a < b:
print(b - a)
else:
print(0)
ekline()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
input = sys.stdin.buffer.readline
def print(val):
sys.stdout.write(str(val) + "\n")
def prog():
for _ in range(int(input())):
n, s = map(int, input().split())
n = str(n)[::-1]
prefix = [0]
for i in range(len(n)):
prefix.append(prefix[-1] + int(n[i]))
if prefix[len(n)] <= s:
print(0)
continue
finished = False
for i in range(len(n)):
if n[i] == "9":
continue
best = 1 + prefix[len(n)] - prefix[i]
if best <= s:
added_to = n[:i][::-1]
print(10 ** len(added_to) - int(added_to))
finished = True
break
if not finished:
print(10 ** len(n) - int(n[::-1]))
prog()
|
IMPORT ASSIGN VAR VAR FUNC_DEF EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
tc = int(input())
while tc:
num_str, n = input().split()
n = int(n)
digSum = sum(map(int, num_str))
if digSum <= n:
print(0)
else:
tempSum = 0
for i, d in enumerate(num_str):
if tempSum + int(d) < n:
tempSum += int(d)
else:
break
print(10 ** len(num_str[i:]) - int(num_str[i:]))
tc -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def main():
result = str()
for i in range(int(input())):
a, b = map(int, input().split())
if a == b or a % b == 0:
r = 0
else:
r = (a // b + 1) * b - a
result += f"{r}\n"
print(result.strip())
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
def check_sum(n):
s = 0
for i in n:
s += int(i)
return s
while t:
a = input().split()
n, s = int(a[0]), int(a[1])
moves = 0
sumi = check_sum(str(n))
if sumi <= s:
print(0)
t -= 1
continue
l = len(str(n))
cnt = 1
orig = str(n)
old_no = str(n)
while sumi > s:
new_no = orig[0 : l - cnt] + "9" * cnt
moves = int(new_no) - int(orig)
sumi = check_sum(orig[0 : l - cnt]) + 1
cnt += 1
print(moves + 1)
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR WHILE VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP STRING VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
i = 0
while i < t:
riga = list(map(int, input().strip().split()))
a = riga[0]
b = riga[1]
c = a % b
mosse = 0
if c != 0:
mosse = b - c
else:
mosse = 0
print(mosse)
i = i + 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
n, s = tuple([int(i) for i in input().split()])
cs = sum([int(i) for i in str(n)])
if cs <= s:
print(0)
continue
digs = 0
for i in str(n)[::-1]:
cs -= int(i)
digs += 1
if cs + 1 <= s:
break
val = 10**digs - n % 10**digs
print(val)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
n1 = n
l = []
while n:
l.append(n % 10)
n = n // 10
l.append(0)
x = sum(l)
i = 0
while x > k:
x -= l[i]
l[i] = 0
l[i + 1] += 1
if l[i + 1] < 10:
x += 1
else:
while l[i + 1] == 10:
l[i + 1] = 0
l[i + 2] += 1
x -= 9
i += 1
x += 1
i += 1
s = ""
for i in l:
s = str(i) + s
print(int(s) - n1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR LIST WHILE VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER WHILE VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR STRING FOR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.