description
stringlengths 171
4k
| code
stringlengths 94
3.98k
| normalized_code
stringlengths 57
4.99k
|
|---|---|---|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def read_array():
x = []
x1 = []
x = input()
x = x.split(" ")
for v in x:
x1.append(int(v))
return x1
x = int(input())
re = []
for r in range(x):
x = read_array()
a = x[0]
b = x[1]
if b > a:
re.append(b - a)
elif a % b == 0:
re.append(0)
else:
re.append(b - a % b)
for v in re:
print(v)
|
FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
tc = int(input())
for i in range(tc):
A = input().split()
if int(A[0]) <= int(A[1]):
print(int(A[1]) - int(A[0]))
elif int(A[0]) % int(A[1]) == 0:
print(0)
else:
print(int(A[1]) * (int(A[0]) // int(A[1]) + 1) - int(A[0]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
results = []
for _ in range(int(input())):
a, b = map(int, input().split())
if a % b:
results.append(str(b - a % b))
else:
results.append("0")
print("\n".join(results))
|
ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = input()
arr = []
arr1 = []
arr2 = []
for i in range(int(n)):
arr.append(list(map(int, input().split())))
for j in range(int(n)):
arr1.append(int(arr[j][0]) % int(arr[j][1]))
arr2.append(int(arr[j][1]) - int(arr1[j]))
if arr2[j] == arr[j][1]:
arr2[j] = 0
print(arr2[j])
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def get_min(n, s):
str_n = str(n)
d = len(str_n)
count = 0
sum_digits = sum([int(i) for i in str_n])
if sum_digits <= s:
return 0
for i in range(d):
count += int(str_n[i])
if count > s or count == s and sum_digits > s:
return 10 ** (d - i) - int(str_n[i:])
t = int(input())
for i in range(t):
n, s = list(map(int, input().split()))
print(get_min(n, s))
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR VAR VAR RETURN BIN_OP BIN_OP NUMBER BIN_OP VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def digsum(n):
ret = 0
while n > 0:
ret += n % 10
n = n // 10
return ret
def solve():
n, s = map(int, input().split())
ans = 0
i = 0
while digsum(n) > s and i < 20:
d = n % pow(10, i + 1)
d = digsum(d)
if d != 0:
n += (10 - d) * pow(10, i)
ans += (10 - d) * pow(10, i)
i += 1
print(ans)
for _ in range(int(input())):
solve()
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR NUMBER VAR VAR BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
q, w = input().split()
Q = list(map(int, reversed(q)))
s = sum(Q)
w = int(w)
ans = 0
i = 0
while s > w:
if Q[i] != 0:
add = 10 - Q[i]
s -= Q[i]
ans += add * 10**i
Q[i] += add
s += 1
if i + 1 < len(Q):
Q[i + 1] += 1
else:
Q.append(1)
i += 1
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR VAR VAR VAR VAR VAR BIN_OP VAR BIN_OP NUMBER VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(t):
a, b = map(int, input().split())
if a < b:
print(b - a, flush=True)
else:
q = a // b
r = a % b
if r == 0:
print(0, flush=True)
else:
ans = (q + 1) * b - a
print(ans, flush=True)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = [int(i) for i in input().split()]
num = str(n)
sum = 0
for i in num:
sum += int(i)
i = -1
ans = 0
while sum > s:
x = int(num[i])
temp = 10 - x
temp = temp * 10 ** (abs(i) - 1)
ans += temp
n += temp
num = str(n)
t = 0
for j in num:
t += int(j)
sum = t
i -= 1
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def solver(n, s):
if n <= s:
return 0
if sum(map(int, list(str(n)))) <= s:
return 0
memo = []
X = list(str(n))
for _ in range(1, len(X)):
memo.append(int(str(n)[:_]) + 1)
memo.append(n)
memo = memo[::-1]
for i in range(1, len(X) + 1):
memo[i - 1] = str(memo[i - 1]) + "0" * (i - 1)
memo.append("1" + "0" * len(X))
for i in memo:
reached = sum(map(int, list(i)))
if reached <= s:
return int(i) - n
t = int(input())
Testcase = [list(map(int, input().split())) for i in range(t)]
for n, s in Testcase:
opt = solver(n, s)
print(opt)
|
FUNC_DEF IF VAR VAR RETURN NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR RETURN NUMBER ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP STRING BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
def sm(v):
return sum([int(i) for i in str(v)])
for it in range(t):
n, s = [int(i) for i in input().split()]
start = n
cur = 1
for i in range(20):
d = n % cur
if d != 0:
n += cur - d
if sm(n) <= s:
print(n - start)
break
cur *= 10
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR BIN_OP VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
def sum_d(string):
return sum(int(x) for x in string)
for _ in range(t):
n, s = list(map(int, input().split()))
start = str(n)
if sum_d(start) <= s:
print(0)
continue
for digits in range(1, len(start) + 1):
if sum_d(start[-digits:]) == 0:
continue
new_str = [x for x in start]
for x in range(digits):
new_str[-1 - x] = "0"
if digits == len(start):
new_str.insert(0, "1")
else:
for x in range(len(start) - digits):
if new_str[len(start) - digits - 1 - x] == "9":
new_str[len(start) - digits - 1 - x] = 0
if x == len(start) - digits - 1:
new_str.insert(0, "1")
else:
new_str[len(start) - digits - 1 - x] = (
int(new_str[len(start) - digits - 1 - x]) + 1
)
break
if sum_d(new_str) <= s:
new_val = 0
for val in new_str:
new_val *= 10
new_val += int(val)
print(new_val - n)
break
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER VAR STRING IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER STRING FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR STRING ASSIGN VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER IF VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER STRING ASSIGN VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = input()
for i in range(int(t)):
s = input()
l = s.split(" ")
l = list(map(int, l))
if l[0] % l[1] == 0:
print(0)
else:
k = 0
print((int(l[0] / l[1]) + 1) * l[1] - l[0])
|
ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER NUMBER VAR NUMBER VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def solve():
A = list(map(int, input().split()))
x = A[0] % A[1]
if x == 0:
print(0)
elif A[0] > A[1]:
print(A[1] - x)
else:
print(A[1] - A[0])
T = int(input())
for i in range(T):
solve()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
reader = (s.rstrip() for s in sys.stdin)
input = reader.__next__
def gift():
for _ in range(t):
a, b = list(map(int, input().split()))
c = a % b
if c == 0:
yield 0
else:
yield b - c
t = int(input())
ans = gift()
print(*ans, sep="\n")
|
IMPORT ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR NUMBER EXPR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR STRING
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def sum(n):
d = 0
for i in list(str(n)):
d += int(i)
return d
for i in range(int(input())):
n, s = map(int, input().split())
ans = []
while sum(n) > s:
ans.insert(0, str((10 - n % 10) % 10))
n = n // 10 + (1 if n % 10 else 0)
if len(ans) == 0:
print(0)
continue
print("".join(ans))
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST WHILE FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
user = int(input())
userData = []
for i in range(0, user):
data = input()
data = data.split(" ")
userData.append(data)
for i in range(0, len(userData)):
a = int(userData[i][0])
b = int(userData[i][1])
if a % b == 0:
print(0)
else:
print(b * (1 + int(a / b)) - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP NUMBER FUNC_CALL VAR BIN_OP VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def main():
t = int(input())
while t > 0:
t = t - 1
l = str(input())
l = l.split()
a = int(l[0])
b = int(l[1])
fun(a, b)
def fun(a, b):
if a % b == 0:
print("0")
else:
print(b - a % b)
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR FUNC_DEF IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def is_prime(n):
if n <= 1:
return False
for i in range(2, n):
if n % i == 0:
return False
return True
def check_div(a, b):
if a % b == 0:
return 0
if a < b:
return b - a
else:
rest = a // b + 1
return b * rest - a
cases = int(input())
for _ in range(cases):
a, b = list(map(int, input().split()))
print(check_div(a, b))
|
FUNC_DEF IF VAR NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN NUMBER FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER IF VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
a = [int(i) for i in str(n)]
ans = 0
i = 0
if sum(a) <= s:
print(0)
continue
while ans < s and i < len(a):
ans += a[i]
i += 1
b = []
for j in range(i - 1, len(a)):
b.append(a[j])
c = "".join(str(i) for i in b)
d = 10 ** len(c)
print(d - int(c))
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER WHILE VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
l = []
for _ in range(int(input())):
n, s = map(int, input().split())
new = n
d = []
sum = 0
while 1:
sum = sum + new % 10
d.append(new % 10)
new = new // 10
if new == 0:
break
d = d[::-1]
if sum <= s:
l.append(0)
continue
if d[0] >= s and sum > s:
l.append(10 ** len(d) - n)
continue
sum = 0
for i in range(len(d)):
sum = sum + d[i]
if sum >= s:
index = i
break
new = n % 10 ** (len(d) - index)
l.append(10 ** (len(d) - index) - new)
for i in l:
print(i)
|
ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for i in range(0, n):
p = input().rstrip().split(" ")
if int(p[0]) % int(p[1]) == 0:
print(0)
elif int(p[0]) < int(p[1]):
print(int(p[1]) - int(p[0]))
else:
A = int(p[0]) // int(p[1]) + 1
B = A * int(p[1])
print(B - int(p[0]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING IF BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
t = n
sm = 0
q = 1
while t:
sm += t % 10
t //= 10
ans = 0
while sm > s:
ans += q * (10 - n % 10)
n += 10 - n % 10
sm = 0
while n % 10 == 0:
n //= 10
q *= 10
t = n
while t:
sm += t % 10
t //= 10
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for t in range(int(input())):
a, b = map(int, input().split())
if a % b == 0:
ans = 0
else:
ans = (a // b + 1) * b - a
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
numbers = [[int(x) for x in input().split()] for y in range(n)]
div = []
for x in range(len(numbers)):
if numbers[x][0] % numbers[x][1] == 0:
div.append(0)
else:
div.append(numbers[x][1] - numbers[x][0] % numbers[x][1])
for x in div:
print(x)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def digsum(n):
summ = 0
while n:
summ += n % 10
n //= 10
return summ
t = int(input())
for i in range(t):
n, s = map(int, input().split())
if digsum(n) <= s:
print(0)
else:
n1 = n
n_str = "0" + str(n)
n2 = []
for char in n_str:
num = int(char)
n2.append(num)
l = len(n2)
for j in range(len(n2)):
n2[l - 1] = 0
n2[l - 2] += 1
if sum(n2) <= s:
break
l -= 1
n2 = n2[::-1]
n3 = 0
for i in range(len(n2)):
n3 += n2[i] * 10**i
print(n3 - n1)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP STRING FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def solve(a, b):
if a % b == 0:
print(0)
else:
print(b * (a // b + 1) - a)
def main():
t = int(input())
for i in range(t):
l = list(map(int, input().split()))
solve(l[0], l[1])
main()
|
FUNC_DEF IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def su(x):
s = 0
for d in x:
s += int(d)
return s
for _ in range(int(input())):
n, s = input().split()
s = int(s)
if su(n) <= s:
print(0)
else:
le = len(n) + 1
ans = ["0"]
for d in n:
ans.append(d)
while le > 0:
ans[le - 1] = "0"
k = le - 1
fl = 1
while fl == 1:
if ans[k - 1] == "9":
ans[k - 1] = "0"
k -= 1
else:
ans[k - 1] = str(int(ans[k - 1]) + 1)
fl = 0
if su(ans) <= s:
st = "".join(ans)
print(int(st) - int(n))
break
else:
le -= 1
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP VAR NUMBER STRING VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
cases = int(input(""))
for i in range(cases):
actual_sum = 0
flag = False
info = input("").split(" ")
digit_sum = int(info[1])
corrector_digits = 0
for j in range(len(info[0])):
actual_sum = actual_sum + int(info[0][j])
if actual_sum >= digit_sum and flag == False:
if j > 0:
corrector_digits = int(info[0][0:j]) + 1
flag = True
if actual_sum <= digit_sum:
print("0")
continue
if corrector_digits == 0:
print(10 ** int(len(info[0])) - int(info[0]))
continue
if corrector_digits != 0:
while corrector_digits < int(info[0]):
corrector_digits = corrector_digits * 10
print(corrector_digits - int(info[0]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR NUMBER VAR IF VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF VAR NUMBER WHILE VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
a = []
for i in range(n):
r = input()
a.append(r)
for i in range(len(a)):
b = a[i]
for j in range(len(b)):
if b[j] == " ":
c = j
d = int(b[:c])
e = int(b[c + 1 :])
if d % e == 0:
print(0)
else:
print(e - d % e)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for i in range(int(input())):
s = list(map(int, input().split()))
if s[0] > s[1]:
if s[0] % s[1] == 0:
print(0)
else:
print((int(s[0] / s[1]) + 1) * s[1] - s[0])
else:
print(s[1] - s[0])
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
rw = int(input())
for wewq in range(rw):
n, s = map(int, input().split())
p = list(map(int, list(str(n))))
ps = 0
for i in p:
ps += i
p.reverse()
if ps <= s:
print(0)
continue
for i in range(len(p)):
ps -= p[i]
p[i] = 0
k9 = 0
j = i
while j < len(p) and p[j] == 9:
j += 1
k9 += 1
if ps + 1 <= s or ps + 1 <= s - k9 * 9:
if i == len(p) - 1:
p = p + [1]
else:
p[i + 1] += 1
break
for i in range(len(p)):
if p[i] == 10:
p[i] = 0
if i == len(p) - 1:
p = p + [1]
else:
p[i + 1] += 1
a = ""
p.reverse()
for i in p:
a += str(i)
print(int(a) - n)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR VAR EXPR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR LIST NUMBER VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR LIST NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR STRING EXPR FUNC_CALL VAR FOR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def nod(a, b):
while a != b:
a, b = max(a, b), min(a, b)
if a % b == 0:
a -= (a // b - 1) * b
else:
a -= a // b * b
return a
for i in range(int(input())):
a, b = [int(x) for x in input().split()]
if a % b == 0:
print(0)
else:
print((a // b + 1) * b - a)
|
FUNC_DEF WHILE VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
while t > 0:
ab = input().split()
a = int(ab[0])
b = int(ab[1])
if a >= b:
c = float(a % b)
if c == 0:
print(int(c))
else:
f = float(a / b)
d = int(f)
e = b * (d + 1)
print(e - a)
else:
print(b - a)
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
def divisor(a, b):
while a != b:
if a > b:
a = a - b
elif a < b:
b = b - a
return a
num = input()
for index in range(0, int(num)):
i = 0
str = input().split()
a = int(str[0])
b = int(str[1])
if a % b == 0:
print(0)
elif a % b != 0:
if b > a:
print(b - a)
else:
print(b * (a // b + 1) - a)
|
IMPORT FUNC_DEF WHILE VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
sum_of_digit = 0
m = n
digit_cnt = 0
while m:
sum_of_digit += m % 10
digit_cnt += 1
m //= 10
if sum_of_digit <= s:
print(0)
continue
m = n
digit_cnt2 = 0
flag = 0
while m:
sum_of_digit -= m % 10
m //= 10
digit_cnt2 += 1
if m and sum_of_digit <= s - 1:
m += 1
while digit_cnt2:
digit_cnt2 -= 1
m *= 10
print(m - n)
flag = 1
break
if flag:
continue
m = 1
while digit_cnt:
digit_cnt -= 1
m *= 10
print(m - n)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER VAR NUMBER WHILE VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR NUMBER WHILE VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
t = int(sys.stdin.readline().split()[0])
for line in sys.stdin:
a = int(line.split()[0])
b = int(line.split()[1])
steps = 0
if a % b == 0:
print("0")
else:
print(b - a % b)
|
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(t):
a, b = map(int, input().split())
cop_b = b
c = 0
i = 2
if a % b == 0:
c = 0
elif a > b:
remainder = a // b + 1
c = abs(a - remainder * b)
elif a < b:
c = b - a
print(c)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for i in range(int(input())):
n, s = map(int, input().split())
l = list(map(int, list(str(n))))
if sum(l) <= s:
print(0)
continue
i = 0
q = l[0]
while q < s:
i += 1
q += l[i]
req = len(l[i:])
x = "".join(map(str, l[i:]))
req_num = int(x)
mov = 10**req - req_num
print(mov)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER WHILE VAR VAR VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = input()
answears = []
for _ in range(int(n)):
res = [""]
last_index = 0
num = input()
for i in num:
if i != " ":
res[last_index] += i
else:
res.append("")
last_index += 1
if int(res[0]) % int(res[1]) != 0:
buf = int(res[0]) / int(res[1])
answears.append(round((int(buf) + 1 - buf) * int(res[1])))
else:
answears.append(0)
for i in answears:
print(i)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR LIST STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR STRING VAR VAR VAR EXPR FUNC_CALL VAR STRING VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def main():
t = int(input())
for _ in range(t):
n, s = input().split(" ")
s = int(s)
total = 0
for nn in n:
total += int(nn)
ans = 0
p = 1
ten = 1
carry = False
while total > s:
num = int(n[-p])
if carry:
num += 1
if num == 0:
carry = False
else:
ans += ten * (10 - num)
total -= num - 1
carry = True
ten *= 10
p += 1
print(ans)
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
a = list(map(int, list(str(n))))
if sum(a) <= s:
print(0)
else:
tot = 0
b = a[::-1]
i = 0
while i < len(b) and sum(b) > s:
if b[i] == 0:
i += 1
continue
else:
tot += (10 - b[i]) * 10**i
b[i] = 0
if i != len(b) - 1:
b[i + 1] += 1
i += 1
print(tot)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def check(n, s):
sum = 0
while n:
sum += n % 10
n //= 10
if sum <= s:
return True
else:
return False
t = int(input())
while t:
n, s = input().split(" ")
n = int(n)
s = int(s)
t -= 1
p = 0
cnt = 0
while True:
if check(n, s):
break
num = n % 10
if num != 0:
cnt += (10 - num) * 10**p
n //= 10
if num != 0:
n += 1
p += 1
print(cnt)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def suma(num):
res = 0
while num > 0:
res += num % 10
num = num // 10
return res
t = int(input())
for _ in range(t):
n, s = map(int, input().split())
_n = n
k = 10
if suma(n) > s:
while True:
n += k // 10
if n % k == 0:
k *= 10
if suma(n) <= s:
break
print(n - _n)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR WHILE NUMBER VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def main():
n = int(input())
arr = []
for i in range(0, n):
a, b = input().split()
a, b = int(a), int(b)
if a % b == 0:
arr.append(0)
elif a % b != 0:
arr.append(b - a % b)
for i in arr:
print(i)
if __name__ == main():
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def dig(n):
sum = 0
for i in str(n):
sum += int(i)
return sum
t = int(input())
for z in range(t):
n, s = map(int, input().split())
p = ""
l = list(map(int, str(n).rstrip()))
if dig(n) <= s:
print(0)
else:
for i in range(len(l) - 1, -1, -1):
if l[i] > 0:
p += str(10 - l[i])
l[i - 1] += 1
else:
p += "0"
if dig(int(p[::-1]) + n) <= s:
break
print(p[::-1])
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP NUMBER VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR STRING IF FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
a, b = [int(i) for i in input().split()]
div = a / b
if div == a // b:
print(0)
else:
print((a // b + 1) * b - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
testCase = int(input())
for i in range(testCase):
a, b = map(int, input().split())
i = 1
r1 = a / b
r2 = int(a / b)
if r1 > r2:
r2 = r2 + 1
print(r2 * b - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(t):
n, s = input().split(" ")
tmp = int(n)
n = str(n)
s = int(s)
ar = [0]
m = len(n)
for j in range(m):
ar.append(ar[-1] + ord(n[j]) - ord("0"))
if ar[-1] <= s:
print(0)
continue
check = False
for j in range(len(ar) - 1, 0, -1):
if ar[j] + 1 <= s:
ans = 0
cur = 10
for t in range(j + 1, m):
cur *= 10
ans = cur * (ord(n[j - 1]) - ord("0") + 1)
for t in range(j - 1, 0, -1):
cur = cur * 10
ans = ans + (ord(n[t - 1]) - ord("0")) * cur
print(ans - tmp)
check = True
break
if check:
continue
ans = 1
for j in range(m):
ans *= 10
print(ans - tmp)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING IF VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF BIN_OP VAR VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR STRING NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR STRING VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
a = int(input())
i = 1
while i < a + 1:
b, c = input().split()
j = 0
sum = 0
while j < len(b):
sum += int(b[j])
j += 1
num = []
for x in b:
num += x
ans = 0
k = 1
while sum > int(c) and len(num) - k > 0:
if int(num[len(num) - k]) > 0:
ans += (10 - int(num[len(num) - k])) * 10 ** (k - 1)
sum += 1 - int(num[len(num) - k])
num[len(num) - k] = 0
num[len(num) - k - 1] = int(num[len(num) - k - 1]) + 1
k += 1
if k <= len(num) and sum <= int(c):
print(ans)
elif int(b) != int(c) and sum != int(c):
print(int(10 ** len(num)) - int(b))
else:
print("0")
i += 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR LIST FOR VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR BIN_OP NUMBER FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
def divisible(a, b):
number = a % b
if number == 0:
return 0
return b - number
for i in range(n):
a = list(map(int, input().split()))
print(divisible(a[0], a[1]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = input("")
results = ""
for i in range(int(t)):
x = input("").split(" ")
a = int(x[0])
b = int(x[1])
if a % b == 0:
r = 0
else:
c = a % b
r = b - c
results += str(r) + "\n"
print(results)
|
ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
a, b = map(int, input().split())
if a % b == 0:
print("0")
else:
down = a // b
down += 1
print(abs(a - b * down))
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
import time
sysinput = sys.stdin.readline
start_time = time.time()
def inp():
return int(sysinput())
def inlt():
return list(map(int, sysinput().split()))
def insr():
s = sysinput()
return list(s[: len(s) - 1])
def invr():
return map(int, sysinput().split())
t = inp()
while t > 0:
t -= 1
n, s = inlt()
k = n
number = []
order = 0
suma = 0
while True:
suma += k - 10 * (k // 10)
number.append(k - 10 * (k // 10))
order += 1
if k // 10 == 0:
break
k = k // 10
number.append(0)
inc = 0
for i in range(order):
if suma > s and number[i] != 0:
inc += (10 - number[i]) * 10**i
number[i] = 0
j = i + 1
while True:
if j >= order:
break
if number[j] + 1 == 10:
number[j] = 0
j += 1
else:
number[j] += 1
break
elif suma <= s:
break
suma = sum(number)
print(inc)
|
IMPORT IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR RETURN FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE NUMBER IF VAR VAR IF BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
n, s = map(int, input().split())
nsum = 0
ns = str(n)
for ni in ns:
nsum += int(ni)
if nsum <= s:
print(0)
continue
for i in range(19):
p = pow(10, i + 1)
plus = p - n % p
new_n = n + plus
ns = str(new_n)
nsum = 0
for ni in ns:
nsum += int(ni)
if nsum <= s:
print(plus)
break
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, m = map(int, input().split())
ans = 0
q = int(n / m)
n1 = m * q
if n % m == 0:
print(0)
if m > n:
print(m - n)
if n % m != 0 and m < n:
n2 = m * (q + 1)
print(n2 - n)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
ii = lambda: sys.stdin.readline().strip()
idata = lambda: [int(x) for x in ii().split()]
def solve():
n, s = idata()
n = list(str(n))
summ = 0
ans = 0
for i in range(len(n)):
n[i] = int(n[i])
summ = sum(n)
if summ <= s:
print(0)
else:
n = n[::-1]
n += [0]
i = 0
c = 1
while summ > s:
if n[i] != 0:
summ -= n[i] - 1
ans += (10 - n[i]) * c
n[i] = 10
j = 0
while n[i + j] == 10:
if j:
summ -= 9
j += 1
n[i + j] += 1
i += j - 1
c *= 10 ** (j - 1)
i += 1
c *= 10
print(ans)
return
for t in range(int(ii())):
solve()
|
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER VAR LIST NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(t):
T = 0
n, b = [str(x) for x in input().split()]
s = int(b)
if len(n) == 1:
if int(n) > s:
print(10 - int(n))
else:
print(0)
continue
sm = 0
f = 0
k = 0
for j in range(len(n)):
sm += int(n[j])
k = j
if sm >= s:
break
for j in range(len(n)):
f += int(n[j])
if f <= s:
print(0)
continue
moves = 0
stri = ""
if k == 0:
moves = 1
for j in range(len(n)):
moves *= 10
print(moves - int(n))
else:
for j in range(len(n)):
if j == k - 1:
stri += str(1)
elif j >= k:
stri += str(0)
print(int(stri) - int(n[k:]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR IF VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for case in range(int(input())):
n, s = [int(x) for x in input().split()]
cur = [int(x) for x in str(n)]
cur.insert(0, 0)
ans = int(1e19)
temp = [x for x in cur]
if sum(temp) <= s:
print(0)
continue
for i in range(len(cur) - 1, 0, -1):
if temp[i] == 0:
continue
temp[i] = 0
j = i - 1
while temp[j] == 9:
temp[j] = 0
j -= 1
temp[j] += 1
if sum(temp) <= s:
temp2 = [str(x) for x in temp]
print(int("".join(temp2)) - n)
break
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL STRING VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def solve(n, s):
sn = str(n)
ans = ""
len_sn = len(sn)
for i in range(len_sn - 1, -1, -1):
ans = str(int(sn[0 : i + 1]) + 1)
digit_sum = sum(int(d) for d in ans)
if digit_sum <= s:
ret = int(ans.ljust(len_sn, "0"))
if ret < n:
ret *= 10
return ret
return int("1" + "0" * len_sn)
t = int(input())
for _ in range(t):
n, s = map(int, input().split())
digit_sum = sum(int(d) for d in str(n))
if digit_sum <= s:
print(0)
else:
nf = solve(n, s)
print(nf - n)
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR STRING IF VAR VAR VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR BIN_OP STRING BIN_OP STRING VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
rr = lambda: input().strip()
rrm = lambda: map(int, rr().split())
def solve():
n, s = rrm()
n = str(n)
l = len(n)
x = s
for i in range(l):
x = int(n[i])
if x >= s:
break
else:
s -= x
else:
return 0
if s < 10 and x == s:
x = n[:i] + str(s) + "0" * (l - i - 1)
if x == n:
return 0
ans = 10 ** (l - i) - int(n[i:])
return ans
T = int(rr())
for _ in range(T):
ans = solve()
print(ans)
|
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR RETURN NUMBER IF VAR NUMBER VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP STRING BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def solve(a, b):
divided = a / b
if divided != int(divided):
remainder = b * (int(divided) + 1) - a
else:
remainder = 0
return remainder
count = int(input())
for i in range(count):
a, b = list(map(int, input().split()))
answer = solve(a, b)
print(answer)
|
FUNC_DEF ASSIGN VAR BIN_OP VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
while t > 0:
l = [int(i) for i in input().split()]
if l[0] % l[1] == 0:
print("0")
else:
q = l[0] // l[1]
print((q + 1) * l[1] - l[0])
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
def ans(n, s):
n = str(n)
if sum(map(int, n)) <= s:
return 0
candidates = set()
for i in range(1, len(n)):
na, nb = n[:i], n[i:]
na = str(int(na) + 1)
nb = "0" * len(nb)
if sum(map(int, na)) + sum(map(int, nb)) <= s:
candidates.add(int(na + nb) - int(n))
big = "1" + "0" * len(n)
candidates.add(int(big) - int(n))
small = "1" + "0" * (len(n) - 1)
if int(small) - int(n) >= 0:
candidates.add(int(small) - int(n))
return min(candidates)
def ans_slow(n, s):
for i in range(0, 10**200):
big = n + i
big = str(big)
if sum(map(int, big)) <= s:
return i
T = int(input())
for t in range(T):
n, s = input().split()
n = int(n)
s = int(s)
print(ans(n, s))
|
IMPORT FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP STRING FUNC_CALL VAR VAR IF BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP STRING BIN_OP STRING BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN FUNC_CALL VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
n, s = map(int, input().split())
st = str(n)
if sum(map(int, st)) <= s:
print(0)
else:
su = 0
t = 0
options = []
st = "0" + st
for i, c in enumerate(st):
su += int(c)
if su >= s:
break
else:
options.append((t * 10 + int(c) + 1) * 10 ** (len(st) - 1 - i))
t *= 10
t += int(c)
print(min(options) - n)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR BIN_OP STRING VAR FOR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR VAR NUMBER BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def dsum(k):
s = 0
while k > 0:
s += k % 10
k //= 10
return s
t = int(input())
for _ in range(t):
n, s = [int(i) for i in input().split()]
if dsum(n) <= s:
print(0)
continue
moves = 0
d = 0
while dsum(n) > s:
d += 1
e = 10**d
if n % e:
new_n = n + e - n % e
moves += new_n - n
n = new_n
print(moves)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR IF BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
readLine = lambda: sys.stdin.readline()
readInt = lambda: int(sys.stdin.readline())
readInts = lambda: [int(x) for x in sys.stdin.readline().split(" ")]
def main():
t = readInt()
for _ in range(t):
a, b = readInts()
if a % b == 0:
print(0)
else:
print(b - a % b)
main()
|
IMPORT ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
lst = []
for i in range(n):
stp = 0
a, b = input().split()
a = int(a)
b = int(b)
if b > a:
stp = b - a
lst.append(stp)
elif a % b == 0:
lst.append(0)
else:
stp = a % b
c = int(a / b)
c = c + 1
d = int(c * b)
stp2 = min(a - stp, d - a)
lst.append(stp2)
for i in lst:
print(i)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for _ in range(n):
q = input().split(" ")
a, b = int(q[0]), int(q[1])
if a % b == 0:
print(0)
continue
x = a // b
m = (x + 1) * b - a
print(m)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(0, int(input())):
n, s = list(map(int, input().split(" ")))
r = str(n)
ans = 0
actu = 0
for i in range(0, len(r)):
actu += int(r[i])
i = len(r) - 1
while actu > s:
actu = 0
n += (10 - int(r[i])) * 10 ** (len(r) - 1 - i)
ans += (10 - int(r[i])) * 10 ** (len(r) - 1 - i)
r = str(n)
for j in range(0, len(r) - 1):
actu += int(r[j])
i -= 1
print(ans)
|
FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR NUMBER VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
x = int(input())
a = list()
for i in range(x):
s = list(map(int, input().split()))
a.append(s)
for i in a:
if i[0] % i[1] == 0:
print("0")
else:
l = i[0] // i[1]
print((l + 1) * i[1] - i[0])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
for _ in range(int(input())):
n, s = map(int, sys.stdin.readline().split())
n_list = list(str(n))
for i in range(len(n_list)):
n_list[i] = int(n_list[i])
cnt = 0
if sum(n_list) <= s:
cnt = 0
elif n_list[0] >= s:
cnt = 10 ** len(n_list) - n
else:
for i in range(1, len(n_list)):
if sum(n_list[0 : i + 1]) >= s:
j = "".join(map(str, n_list[0:i]))
cnt = (int(j) + 1) * 10 ** len(n_list[i:]) - n
break
print(cnt)
|
IMPORT FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP NUMBER FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(t):
n, s = map(int, input().split())
number = list(str(n))
summation = 0
for digit in number:
summation += int(digit)
flag = True
if summation <= s:
flag = False
exponent = 0
add = 0
cost = 0
if flag:
for digit in number[::-1]:
if int(digit) + add == 0:
add = 0
else:
cost += (10 - (int(digit) + add)) * 10**exponent
summation -= int(digit)
if not add:
summation += 1
add = 1
exponent += 1
if summation <= s:
break
print(cost)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR FOR VAR VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR BIN_OP NUMBER VAR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def calc(n):
ans = 0
for i in n:
ans += int(i)
return ans
for nt in range(int(input())):
n, s = input().split()
s = int(s)
f = calc(n)
if f <= s:
print(0)
continue
n = n[::-1]
if n[0] == "0":
ans = [0]
flag = 0
diff = f - s
else:
ans = [10 - int(n[0])]
flag = 1
diff = f - s - int(n[0])
for i in range(1, len(n)):
x = int(n[i])
if flag:
x += 1
diff += 1
if diff <= 0:
break
if x == 0:
flag = 0
diff -= int(n[i])
ans.append(0)
continue
flag = 1
ans.append(10 - x)
diff -= x
new = []
flag = 0
for i in ans[::-1]:
if i != 0 or i == 0 and flag:
flag = 1
new.append(i)
else:
continue
print("".join(map(str, new)))
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR NUMBER STRING ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR LIST BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
count = int(input())
num = []
for y in range(count):
n = 2
a = list(map(int, input("").strip().split()))[:n]
x = a[0] % a[1]
if x == 0:
value = 0
else:
value = a[1] - x
num.append(value)
for i in num:
print(i)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for j in range(int(input())):
n, s = tuple(map(int, input().split()))
n1 = str(n)
l = list(map(int, n1))
if s >= sum(l):
print(0)
else:
t = sum(l)
diff = t - s
z = 0
for i in reversed(range(len(l))):
if t <= s:
break
elif l[i] != 0:
t -= l[i]
z += (10 - l[i]) * pow(10, len(l) - 1 - i)
if i > 0:
l[i - 1] += 1
t += 1
else:
t += 1
print(z)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR VAR NUMBER VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR IF VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
tests = int(input())
aaa = []
bbb = []
for i in range(0, tests):
ab = list(map(int, input().split()))
aaa.append(ab[0])
bbb.append(ab[1])
for i in range(0, tests):
a = aaa[i]
b = bbb[i]
if a % b == 0:
print(0)
else:
print(b - a % b)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
a = int(input())
h = []
for i in range(0, a):
x, y = list(map(int, input().split()))
res = 0
if x % y == 0:
res = 0
else:
d = int(x // y) + 1
res = y * d - x
h.append(res)
print(*h, sep="\n")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR STRING
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for i in range(0, n):
x, y = [int(a) for a in input().split()]
if x >= y:
if x % y != 0:
f = x // y
d = (f + 1) * y - x
else:
d = 0
else:
d = y - x
print(d)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
a, b = [int(s) for s in input().split()]
x = a // b
if a % b == 0:
print(0)
else:
print(abs(a - (x + 1) * b))
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def func(collection):
if len(collection) == 2 and collection[1] >= 0 and collection[0] >= 0:
if collection[0] % collection[1] == 0:
return 0
else:
return abs(collection[0] % collection[1] - collection[1])
temp_ls = []
mv_ls = []
i = 0
temp = True
while temp == True:
if i == 0:
message = int(input(""))
elif i <= message:
temp_ls = list(map(int, input("").split(" ")))
mv_ls.append(func(temp_ls))
else:
temp = False
i += 1
for i in range(len(mv_ls)):
print(f"{mv_ls[i]}", end="\n")
|
FUNC_DEF IF FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER VAR NUMBER NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER RETURN NUMBER RETURN FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING IF VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def main():
for _ in range(int(input())):
a, b = map(int, input().rstrip().split(" "))
c = 0
k = a // b
if a % b == 0:
print("0")
else:
s = b * (k + 1) - a
print(s)
main()
|
FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
x = int(input())
for z in range(x):
n1, s = input().split()
n = n1
s = int(s)
sm = 0
for k in range(len(n)):
sm = sm + int(n[k])
if sm <= s:
print(0)
else:
if int(n[0]) >= s or n[0] == "9":
n = "0" + n
n = list(n)
bruh = 0
i = 0
while bruh < s and i < len(n):
bruh += int(n[i])
i += 1
i = i - 2
while n[i] == "9":
n[i] = "0"
i = i - 1
n[i] = str(int(n[i]) + 1)
for a in range(i + 1, len(n)):
n[a] = "0"
c = "".join(n)
print(int(c) - int(n1))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER STRING ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR STRING ASSIGN VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR STRING ASSIGN VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
q = int(input())
def solve():
for i in range(q):
arr = [int(i) for i in input().split()]
moves = 0
if arr[0] % arr[1] == 0:
print(str(0))
else:
print(str(arr[1] - arr[0] % arr[1]))
solve()
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
I = sys.stdin.readline
pr = sys.stdout.write
def main():
for _ in range(int(I())):
a, b = map(int, I().split())
pr(f"{(b * (a // b + 1) - a) * bool(a % b)}\n")
main()
|
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR STRING EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
w = int(input())
a = []
c = 0
for i in range(0, w):
p = input().split()
a.append(p)
for i in range(0, w):
r = a[i]
t = 0
x = int(r[0])
y = int(r[1])
z = x % y
if z == 0:
w = 0
elif x > y:
w = z - y
elif x <= y:
w = y - x
print(abs(w))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
x = int(input())
listnew = list()
for i in range(0, x):
list1 = input().split(" ")
list2 = [int(i) for i in list1]
a = list2[0]
b = list2[1]
if a % b == 0:
listnew.append(0)
else:
c = a // b
d = (c + 1) * b - a
listnew.append(d)
for i in listnew:
print(i)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
input = sys.stdin.readline
def inp():
return int(input())
def inlt():
return list(map(int, input().split()))
def insr():
s = input()
return list(s[: len(s) - 1])
def invr():
return map(int, input().split())
def digitSum(x):
c = 0
while x:
c += x % 10
x //= 10
return c
def solve(x, y):
if digitSum(x) <= y:
return 0
xStr = str(x)
attempt = 10 ** len(xStr) - x
for i in range(len(xStr)):
newNumber = int(xStr[: i + 1]) + 1
newNumber *= 10 ** (len(xStr) - i - 1)
if digitSum(newNumber) <= y:
attempt = newNumber - x
return attempt
lines = inp()
for i in range(lines):
v = inlt()
print(solve(*v))
|
IMPORT ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR RETURN FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF IF FUNC_CALL VAR VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
str1 = str(n)
s1 = 0
s2 = 0
for j in str1:
s2 = s2 + int(j)
if s2 <= s:
print(0)
continue
for i in range(len(str1)):
s1 += int(str1[i])
if s1 < s:
continue
else:
ans = str1[i:]
print(10 ** len(ans) - int(ans))
break
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for tc in range(t):
s1, n = input().split(" ")
n = int(n)
ans = 0
s = list(s1)
for i in s:
ans += int(i)
if ans <= n:
print(0)
continue
else:
dig = []
for i in s:
dig.append(i)
sz = len(dig)
ptr = sz - 2
while ptr >= 0:
dig[ptr] = str(int(dig[ptr + 1]) + int(dig[ptr]))
ptr -= 1
ptr = sz - 2
while ptr >= -1:
if ans - int(dig[ptr + 1]) + 1 <= n:
break
ptr -= 1
while ptr >= 0 and s[ptr] == "9":
ptr -= 1
if ptr == -1:
ptr = 1
nn = ["1"]
nn += s
while ptr <= sz:
nn[ptr] = "0"
ptr += 1
nn1 = ""
nn1 = nn1.join(nn)
print(int(nn1) - int(s1))
else:
nn = s
nn[ptr] = str(int(nn[ptr]) + 1)
ptr += 1
while ptr < sz:
nn[ptr] = "0"
ptr += 1
nn1 = ""
nn1 = nn1.join(nn)
print(int(nn1) - int(s1))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF BIN_OP BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER WHILE VAR NUMBER VAR VAR STRING VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST STRING VAR VAR WHILE VAR VAR ASSIGN VAR VAR STRING VAR NUMBER ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR STRING VAR NUMBER ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
out = ""
while t > 0:
t -= 1
a, b = [int(i) for i in input().split(" ")]
x = a % b
if x == 0:
out += f"0\n"
else:
out += f"{b - x}\n"
print(out)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR STRING VAR BIN_OP VAR VAR STRING EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for i in range(int(input())):
a, b = list(map(int, input().split()))
if a % b != 0:
next = a // b + 1
print(next * b - a)
else:
print(0)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def sod(n):
sum = 0
while n:
sum += n % 10
n //= 10
return sum
t = int(input())
for _ in range(t):
n, s = map(int, input().split())
sum = sod(n)
if sum <= s:
print(0)
continue
t = list(str(n))
m = len(t)
idx = -1
cnt = 0
for i in range(m):
cnt += int(t[i])
if cnt < s:
idx = i
while idx >= 0 and t[idx] == "9":
idx -= 1
if idx == -1:
t = "0" * (m + 1)
t = list(t)
t[0] = "1"
else:
t[idx] = chr(ord(t[idx]) + 1)
idx += 1
for i in range(idx, m):
t[i] = "0"
x = str()
for c in t:
x = x + c
print(int(x) - n)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR WHILE VAR NUMBER VAR VAR STRING VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP STRING BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER STRING ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR STRING ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def isSum(n, k):
sumi = 0
for i in range(0, len(n)):
sumi += int(n[i])
if sumi <= k:
return True
else:
return False
for _ in range(int(input())):
n, k = map(int, input().split())
n = list(str(n))
sumi = 0
for i in range(0, len(n)):
sumi += int(n[i])
if sumi <= k:
print(0)
elif len(n) == 1:
if sumi > k:
print(10 - int(n[0]))
else:
j = 1
count = 0
for i in range(len(n) - 1, -1, -1):
if i != 0:
count += 10**j - int(n[i]) * 10 ** (j - 1)
n[i] = str(0)
n[i - 1] = str(int(n[i - 1]) + 1)
j += 1
if isSum(n, k) == True:
break
else:
count += 10**j - int(n[i]) * 10 ** (j - 1)
print(count)
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR BIN_OP NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input().strip())
t = []
def numb(m):
m = m.split()
a = int(m[0])
b = int(m[1])
if a <= b:
return b - a
elif a % b == 0:
return 0
else:
count = a // b
b = b * (count + 1)
return b - a
for i in range(n):
m = input().strip()
t.append(numb(m))
for i in range(len(t)):
print(t[i])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR RETURN BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER RETURN BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
testCases = int(input())
cases = []
for i in range(testCases):
cases.append(input())
for i in range(testCases):
txt = cases[i].split(" ")
a = int(txt[0])
b = int(txt[1])
if a % b == 0:
print("0")
else:
result = a % b
skips = b - result
print(skips)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for x in range(int(input())):
n = input().split()
a = int(n[0])
b = int(n[1])
if a % b == 0:
print(0)
else:
num = int(a / b + 1)
print(b * num - a)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
n, s = input().split()
s = int(s)
n = int(n)
def check(n):
res = 0
for i in str(n):
i = int(i)
res += i
return res
ans = 0
if check(n) <= s:
print(ans)
else:
ans = 0
pow = 1
for i in range(len(str(n))):
dig = n // pow % 10
ad = pow * ((10 - dig) % 10)
n += ad
ans += ad
if check(n) <= s:
break
pow *= 10
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR RETURN VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
input = sys.stdin.readline
def f(n):
res = 0
for _ in range(20):
res += n % 10
n //= 10
return res
for _ in range(int(input())):
n, s = map(int, input().split())
if f(n) <= s:
print(0)
continue
now = 0
for i in range(len(str(n))):
now += (10 - n % 10) * pow(10, i)
n //= 10
n += 1
if f(n) <= s:
print(now)
break
|
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR NUMBER VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
n, s = map(int, input().split())
n = "{0:019d}".format(n)
if sum([int(x) for x in n]) <= s:
print(0)
continue
cnt = 0
for i, x in enumerate(n):
if cnt + int(x) + 1 <= s:
cnt += int(x)
else:
break
print((int(n[i - 1]) + 1) * 10 ** (19 - i) - int(n[i - 1 :]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL STRING VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF BIN_OP BIN_OP VAR FUNC_CALL VAR VAR NUMBER VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP NUMBER BIN_OP NUMBER VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.