description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
N = int(input()) a = [] b = [] for i in range(N): vs = input().split() a.append(int(vs[0])) b.append(int(vs[1])) for i in range(N): o = a[i] % b[i] if o == 0: print(0) else: print(b[i] - o)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = input().split() s = int(s) c = 0 for i in n: c += int(i) if c <= s: print(0) else: for j in reversed(range(len(n))): c -= int(n[j]) if c + 1 <= s: break m = 10 ** (len(n) - j) x = int(n[j:]) print(m - x)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(): a, b = map(int, input().split()) x = a // b if b * x < a: x += 1 print(x * b - a) t = int(input()) for _ in range(t): solve() t -= 1
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def count(n_, s_): divisor = 10 result = 0 while True: if sum([int(x) for x in n_]) <= int(s_): break delta = divisor - int(n_) % divisor n_ = str(int(n_) + delta) result += delta divisor *= 10 return result results = [] for _ in range(int(input())): n, s = input().split() results.append(count(n, s)) for result in results: print(result)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): n, s = list(map(int, input().split())) n = str(n) arr = [int(n[i]) for i in range(len(n) - 1, -1, -1)] count = 0 checks = sum(arr) arr.append(0) arr.append(0) arr.append(0) arr.append(0) arr.append(0) arr.append(0) arr.append(0) arr.append(0) arr.append(0) if checks <= s: print(0) else: for i in range(0, len(n)): if checks <= s: break else: if arr[i] == 10: arr[i + 1] = arr[i + 1] + 1 checks = checks - arr[i] + 1 arr[i] = 0 if arr[i] != 0: x = 10 - arr[i] arr[i] = 10 checks = checks + x count += x * 10**i if arr[i] == 10: checks = checks - arr[i] + 1 arr[i] = 0 arr[i + 1] = arr[i + 1] + 1 print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP NUMBER VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def sum_digits(stri): out = 0 for i in range(len(stri)): out += int(stri[i]) return out def findLastNonZero(n): for i in range(len(n)): if n[len(n) - i - 1] != "0": return len(n) - i - 1 lol = int(input()) for i in range(lol): nums = input().split() n = nums[0] s = int(nums[1]) moves = 0 while sum_digits(n) > s: curr_pos = findLastNonZero(n) curr_digit = len(n) - curr_pos - 1 curr_num = int(n[curr_pos]) n = int(n) temp = (10 - curr_num) * 10**curr_digit n += temp n = str(n) moves += temp print(moves)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER STRING RETURN BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) result = [] while t: a, b = list(map(int, input().split())) check = a % b if check: steps = b - a % b result.append(steps) else: result.append(0) t -= 1 for res in result: print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) for i in range(n): x = list(map(int, input().split())) if x[0] % x[1] == 0: print("0") if x[0] % x[1] != 0: k = x[0] // x[1] c = x[1] * (k + 1) z = c - x[0] print(z)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def somaalg(numero): soma = 0 while numero: soma += numero % 10 numero //= 10 return soma t = int(input()) for i in range(t): n, s = [int(i) for i in input().split()] moves = 0 potdez = 1 while True: if somaalg(n) <= s: break else: alg = n // potdez % 10 moves += (10 - alg) * potdez n += (10 - alg) * potdez potdez = potdez * 10 print(int(moves))
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR VAR BIN_OP BIN_OP NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) l = [0] * n for i in range(n): l[i] = list(map(int, input().split())) if l[i][0] % l[i][1] == 0: print(0) else: print(l[i][1] - l[i][0] % l[i][1])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def inp(): return int(input()) def inlt(): return list(map(int, input().split())) def main(): for t in range(inp()): l = inlt() if l[0] % l[1] == 0: print("0") elif l[0] < l[1]: print(-(l[0] - l[1])) else: r = l[0] / l[1] r = round(r) * l[1] while r <= l[0]: r += l[1] print(r - l[0]) return def lcm(a, b): return abs(a * b) main()
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER WHILE VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER RETURN FUNC_DEF RETURN FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def main(): t = int(input()) for tt in range(t): n, s = input().split() s = int(s) k = len(n) + 1 stt = int(n) n = [0] + [int(i) for i in n] if sum(n) <= s: print(0) continue bst = 10 ** (k - 1) for i in range(1, k): if n[i] == 0: continue new = n.copy() new[i - 1] += 1 new[i:] = [0] * (k - i) if sum(new) > s: continue nm = 0 for j in range(k): nm = nm * 10 + new[j] if bst - stt >= nm - stt: bst = nm print(bst - stt) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP LIST NUMBER BIN_OP VAR VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR IF BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) lst = [] for i in range(t): lst.append([p for p in map(int, input().split(" "))]) cnt = 0 for a in lst: c, d = a if c % d != 0: cnt = d - c % d print(cnt) cnt = 0
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def divisibile(a, b): if a % b == 0: return 0 count = b - a % b return count n = int(input()) for i in range(n): x = list(map(int, input().rstrip().split())) a = x[0] b = x[1] print(divisibile(a, b))
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(): a, b = list(map(int, input().split())) if a % b == 0: return 0 nn = a + b - (a + b) % b return nn - a T = int(input()) for t in range(T): print(solve())
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solution(line, n): crnt_sum = 0 res = [] for idx, item in enumerate(line): crnt_sum += item if crnt_sum < n: res.append(item) elif crnt_sum == n and (idx == len(line) - 1 or sum(line[idx + 1 :]) == 0): res.append(item) else: res.extend([0] * (len(line) - idx)) while True: if idx == 0: res[0] = 0 res = [1] + res break elif res[idx - 1] != 9: res[idx - 1] += 1 break else: res[idx - 1] = 0 idx -= 1 return "".join(tuple(map(str, res))) return "".join(tuple(map(str, res))) n = int(input()) for _ in range(n): line, n = input().split() z = int(line) line = tuple(map(int, list(line))) n = int(n) print(int(solution(line, n)) - z)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR VAR WHILE NUMBER IF VAR NUMBER ASSIGN VAR NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR IF VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER RETURN FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR RETURN FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(a, b): if a % b == 0: return 0 return b - a % b t = int(input()) while t: a, b = map(int, input().split()) print(solve(a, b)) t -= 1
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for h in range(t): s = input().split() a = int(s[0]) b = int(s[1]) if a % b == 0: print(0) elif a >= b: k = b * (a // b + 1) print(k - a) else: print(b - a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for i in range(int(input())): a, b = (int(j) for j in input().split()) d1 = int(a / b) d2 = int((a + b - 1) / b) if d1 * b < a: print(d2 * b - a) else: print(d1 * b - a)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def digit(n): res = 0 for i in str(n): res += int(i) return res t = int(input()) while t > 0: n, s = map(int, input().split(" ")) var = 0 if digit(n) <= s: print(0) t -= 1 continue n = str(n) x = 1 for i in n: if var + int(i) >= s: break var += int(i) x += 1 if x == 0: d = "0" * len(n) f = "1" + d print(int(n) - int(f)) t -= 1 continue y = len(n[x - 1 :]) k = n[: x - 1] if k == "": ans = "1" + "0" * y else: ans = str(int(k) + 1) + "0" * y print(int(ans) - int(n)) t -= 1
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP STRING FUNC_CALL VAR VAR ASSIGN VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR STRING ASSIGN VAR BIN_OP STRING BIN_OP STRING VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP STRING VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
try: for _ in range(int(input())): a, b = map(int, input().split()) if a % b != 0: print((a // b + 1) * b - a) else: print(0) except Exception as e: print(e)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import time p = int(input()) for i in range(p): k = 0 a, b = map(int, input().split()) if a / b != a // b: print((a // b + 1) * b - a) elif b > a: print(b - a) else: print(0)
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
l_del = [] kol = int(input()) for i in range(kol): a, b = map(int, input().split()) if a % b != 0: l_del.append(b - a % b) else: l_del.append(0) for i in range(kol): print(l_del[i])
ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def divisible(): t = [int(i) for i in input().split()] a = t[0] b = t[1] sum = 0 if a % b == 0: print(sum) else: c = int(a / b) c = c + 1 c = b * c sum = c - a print(sum) x = int(input()) for i in range(0, x): divisible()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys n = int(sys.stdin.readline().rstrip()) l = [] answer = [] for i in range(0, n): k = list(map(int, input().split())) l.append(k) for i in range(0, n): if l[i][0] % l[i][1] == 0: count = 0 answer.append(count) else: temp = l[i][0] // l[i][1] temp = temp + 1 count = temp * l[i][1] - l[i][0] answer.append(count) for i in range(0, n): print(answer[i])
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def main(): t = int(input()) while t: a, b = map(int, input().split()) if a % b == 0: print(0) else: rem = a // b print((rem + 1) * b - a) t -= 1 main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def answer(): n = int(input()) ans = [] while n: c = input().split() a, b = int(c[0]), int(c[1]) if a % b: ans.append(b - a % b) else: ans.append(0) n -= 1 i = 0 while i < len(ans): print(ans[i]) i += 1 answer()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) n = str(n) x = len(n) z = 0 for i in range(x): z += int(n[i]) if z <= s: print("0") continue if x == 1: print(10 - int(n[0])) continue i = 0 z = 0 while z < s and i < x: z += int(n[i]) if z >= s: break i += 1 if i == 0: p = "1" + "0" * x else: p = str(int(n[:i]) + 1) + "0" * (x - i) print(int(p) - int(n))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP STRING BIN_OP STRING VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP STRING BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): n, s = map(int, input().split()) m = str(n) t = 0 for i in range(len(m)): t += int(m[i]) if t <= s: print(0) else: temp = 0 m = list(m) m.reverse() m = [int(d) for d in m] m.append(0) m.append(0) cnt = 0 for i in range(len(m)): cnt += (10 - m[i]) * 10**i if i != len(m) - 1: temp += m[i] - 1 m[i + 1] += 1 else: temp += m[i] - 1 if temp >= t - s: print(cnt) break else: ans = 10 ** len(m) - n print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def summ(n: int) -> int: sn = str(n) s = 0 for i in range(len(sn)): s += int(sn[i]) return s t = int(input()) for _ in range(t): n, k = [int(i) for i in input().split()] if summ(n) <= k: print(0) else: ind = 0 ans = 0 while summ(n) > k: cur = str(n)[::-1][ind] dif = (10 - int(cur)) % 10 ans += dif * 10**ind n += dif * 10**ind ind += 1 print(ans)
FUNC_DEF VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR VAR BIN_OP VAR BIN_OP NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys from itertools import combinations, combinations_with_replacement, permutations for _ in range(int(input())): liStr = input().split() n = int(liStr[0]) s = int(liStr[1]) sInitial = 0 nStrOK = str(n) for i in nStrOK: sInitial += int(i) if sInitial <= s: print("0") continue nStr = str(n) nLen = len(nStr) ans = pow(10, nLen) - n ctr = 0 while ctr < nLen: p1 = nStr[0 : ctr + 1] intP1 = int(p1) + 1 p2 = nStr[ctr + 1 :] comp = intP1 * pow(10, len(p2)) strComp = str(comp) sCur = 0 for i in strComp: sCur += int(i) if sCur <= s: ans = comp - n ctr += 1 print(ans)
IMPORT FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def sumofdigit(n): sum = 0 while n: sum += n % 10 n = n // 10 return sum t = int(input()) for _ in range(t): n, s = list(map(int, input().strip().split())) N = n fact = 10 while 1: if sumofdigit(n) <= s: break temp = fact - n % fact n = n + temp fact = fact * 10 print(n - N)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) n1 = str(n) l = list(n1) sum1 = sum(list(map(int, str(n)))) moves = sum2 = 0 for i in l: sum2 += int(i) if sum2 == s: print(0) continue i = 0 while sum1 > s: dec = 10 - n % 10 moves += 10**i * dec n += dec n //= 10 sum1 = sum(list(map(int, str(n)))) i += 1 print(moves)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) for i in range(n): a, b = map(int, input().split()) b1 = 0 if a > b: if a % b != 0: b1 = a // b + 1 b2 = b * b1 print(b2 - a) else: print(0) else: print(b - a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import stdin, stdout rr = lambda: input().strip() rri = lambda: int(rr()) rrm = lambda: [int(x) for x in rr().split()] def sol(): a, b = rrm() if a % b == 0: return 0 return b - a % b T = rri() for t in range(T): ans = sol() print(ans)
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for i in range(int(input())): a, b = map(int, input().split(" ")) if a % b == 0: print("0") else: steps = 0 temp = a // b print(b * (temp + 1) - a)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): n, s = map(int, input().split()) j = 0 n = str(n) k = 0 while j < len(n) and k + int(n[j]) <= s: k += int(n[j]) j += 1 if j == len(n): print(0) elif j == 0: print(int("1" + "0" * len(n)) - int(n)) else: h = str((int(n[:j]) + 1) * 10 ** (len(n) - j)) l = True while l: j = 0 k = 0 while j < len(h) and k + int(h[j]) <= s: k += int(h[j]) j += 1 if j == 0: h = "1" + "0" * len(n) l = False elif j != len(h): h = str((int(h[:j]) + 1) * 10 ** (len(h) - j)) else: l = False print(int(h) - int(n))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) for _ in range(n): a = input().split(" ") aa = 0 x = int(a[0]) y = int(a[1]) if x % y == 0: print(aa) elif x < y: print(y - x) elif x > y: print(y - x % y)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for t in range(int(input())): n, s = map(int, input().split()) l = [0] l = l + list(map(int, str(n))) su = sum(l) if su <= s: print(0) continue st = "" for i in range(len(l) - 1, -1, -1): su = sum(l) if su <= s: print(int(st)) break elif l[i] == 0: st = "0" + st else: st = str(10 - l[i]) + st l[i] = 0 l[i - 1] = l[i - 1] + 1
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) ans = [] def solve(): cnt = 0 a, b = map(int, input().split()) if a % b != 0: return (a // b + 1) * b - a else: return 0 for i in range(t): ans.append(solve()) for i in range(t): print(ans[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER RETURN BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
x = int(input()) rows, cols = x, 2 a = [[0] * cols] * rows b = [] for i in range(0, x): a[i][0], a[i][1] = map(int, input().split()) if a[i][1] > a[i][0]: b.append(int(a[i][1] - a[i][0])) elif a[i][0] % a[i][1] == 0: b.append(0) else: b.append(int(a[i][1] - a[i][0] % a[i][1])) for i in range(0, x): print(b[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST BIN_OP LIST NUMBER VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
T = int(input()) for _ in range(T): line = input() n, s = line.split()[:2] a = [int(c) for c in n] s = int(s) t = sum(a) if t <= s: ans = 0 else: for i, p in enumerate(range(len(a))[::-1]): if p > 0: a[p - 1] += 1 t += 1 t -= a[p] a[p] = 0 if t <= s: ans = 10 ** (i + 1) - int(n[p:]) break print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def Divisible(a, b): return 0 if a % b == 0 else (a // b + 1) * b - a n = int(input()) for _ in range(n): ab = list(map(int, input().split(" "))) a = ab[0] b = ab[1] print(Divisible(a, b))
FUNC_DEF RETURN BIN_OP VAR VAR NUMBER NUMBER BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): a, b = map(int, input().split()) k = a // b s = b * k while s < a: s = b * (k + 1) print(s - a)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) def sum(tmp): result = 0 for i in str(tmp): result += int(i) return result def solve(n, s): if sum(n) <= s: return 0 n = str(n) i = 0 while s - int(n[i]) > 0: s -= int(n[i]) i += 1 tmp = n[i:] return 10 ** len(tmp) - int(tmp) for i in range(t): n, s = map(int, input().split()) print(solve(n, s))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF IF FUNC_CALL VAR VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR RETURN BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys DEBUG = False if DEBUG: import sys sys.stdin = open("input.txt", "r") sys.stdout = open("output.txt", "w") def solve(): a, b = map(int, input().split()) if a % b == 0: return 0 tmp = a // b + 1 return b * tmp - a t = int(input()) for _ in range(t): print(solve())
IMPORT ASSIGN VAR NUMBER IF VAR IMPORT ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING STRING FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def make_div_eff(a, b): if a % b == 0: return 0 else: return b - a % b t = int(input()) while t > 0: inp = input().split() inp = [int(c) for c in inp] a, b = inp[0], inp[1] res = make_div_eff(a, b) print(res) t -= 1
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for t in range(int(input())): n, s = map(int, input().split()) m = n ans = n d = 0 while True: a = m c = 0 while a > 0: c += a % 10 a //= 10 if c <= s: ans = m * 10**d - n break if m % 10 == 0: m //= 10 d += 1 else: m += 10 - m % 10 print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP NUMBER VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = list(map(int, input().split())) ns = str(n) dsum = 0 for d in ns: dsum += int(d) if dsum <= s: print(0) continue digits = 0 dsum = 0 for d in ns: d = int(d) if dsum + d > s - 1: break digits += 1 dsum += d num = ns[0:digits] if digits else "0" num = str(int(num) + 1) num += (len(ns) - digits) * "0" print(int(num) - n)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR VAR ASSIGN VAR VAR VAR NUMBER VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def aux(n, s): if sum(ord(x) - 48 for x in str(n)) <= s: return 0 if n % 10 == 0: return 10 * aux(n // 10, s) d = 10 - n % 10 return d + 10 * aux(n // 10 + 1, s) for t in range(int(input())): n, s = map(int, input().split()) print(aux(n, s))
FUNC_DEF IF FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR RETURN NUMBER IF BIN_OP VAR NUMBER NUMBER RETURN BIN_OP NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER RETURN BIN_OP VAR BIN_OP NUMBER FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def fun(a, b): if a % b == 0: print("0") else: rem = (a + b) % b if rem == 0: print(a) else: print(b - rem) for _ in range(int(input())): a, b = map(int, input().split()) fun(a, b)
FUNC_DEF IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) solve = 0 for i in range(t): a, b = input().split() if int(a) % int(b) != 0: print((int(a) // int(b) + 1) * int(b) - int(a)) else: print(0)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for ex in range(t): n, s = [int(i) for i in input().split()] di = list() n1 = n while n1 > 0: di.append(n1 % 10) n1 //= 10 di_s = sum(di) ans = -1 if di_s <= s: print(0) else: for i in range(len(di)): if di_s + 1 <= s: ans = (n // 10**i + 1) * 10**i - n break else: di_s -= di[i] if ans == -1: print(10 ** len(di) - n) else: print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER BIN_OP NUMBER VAR VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) out = [] for i in range(0, t): a, b = map(int, input().split(" ")) if a < b: out.append(b - a) elif a > b and a % b != 0: c = int(a / b) + 1 c = c * b out.append(c - a) else: out.append(0) for i in out: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) i = 0 lst = list() result = list() while i < n: data = input() for j in data.split(): lst.append(int(j)) i = i + 1 l = len(lst) k = 0 while k < l - 1: remainder = lst[k] % lst[k + 1] if remainder == 0: result.append(remainder) else: a = lst[k + 1] - remainder result.append(a) k = k + 2 for a in result: print(a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t: a, b = [int(x) for x in input().split()] if a % b == 0: print("0") t -= 1 continue a = (int(a / b) + 1) * b - a print(int(a)) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
cases = int(input()) for case in range(cases): numbers = input().split() number, factor = int(numbers[0]), int(numbers[1]) remainder = number % factor if remainder: print(factor - remainder) else: print(0)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): string, k = map(str, input().split()) k = int(k) arr = [] sums = 0 for ch in string[::-1]: sums += int(ch) arr.append(int(ch)) arr.append(0) if sums <= k: print(0) continue ans = 0 count = 1 last = 0 for i in range(len(arr)): if last + arr[i] == 0: count = count * 10 continue elif sums - arr[i] - last >= k: ans += count * (10 - arr[i] - last) sums = sums - arr[i] - last + 1 last = 1 else: ans += count * (10 - arr[i] - last) break count = count * 10 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) ans = [] for i in range(t): a, b = map(int, input().split()) z = (a // b + (a % b != 0)) * b - a ans.append(z) for i in ans: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): n, s = map(int, input().split()) m = str(n) if sum([int(i) for i in m]) <= s: print(0) else: lo = 0 p = 0 while int(m[lo]) + p < s: p += int(m[lo]) lo += 1 l = len(m) - lo x = m[:lo] if x == "": x = 0 else: x = int(x) n1 = x * 10**l + 10**l print(n1 - n)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR IF VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP NUMBER VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): n, s = input().split() c = [] n = [int(u) for u in n] s = int(s) j = len(n) - 1 sm = 0 for x in n: sm += x if sm <= s: print(0) else: while sm > s and j >= 0: if n[j] != 0 and j != 0: sm -= n[j] - 1 c.append(10 - n[j]) n[j] = 0 n[j - 1] += 1 elif n[j] == 0 and j != 0: c.append(0) elif n[j] != 0 and j == 0: sm -= n[j] - 1 c.append(10 - n[j]) n[j] = 0 j -= 1 d = c[-1::-1] k = "" for x in d: k += str(x) print(int(k))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER WHILE VAR VAR VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER VAR VAR ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR STRING FOR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) def inc(x): pos = 0 for i in range(len(x)): if x[i] != 0: pos = i while x[pos] == 9: x[pos] = 0 pos -= 1 if pos < 0: break if pos < 0: return [1] + x else: x[pos] += 1 return x for i in range(t): n, s = map(int, input().split()) arr = list(map(int, list(str(n)))) while sum(arr) > s: arr = inc(arr) print(int("".join(map(str, arr))) - n)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR NUMBER RETURN BIN_OP LIST NUMBER VAR VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
inp = int(input()) x = 0 y = True t = 0 for num in range(inp): inp1 = input().split() y = True while y: if int(inp1[0]) < int(inp1[1]): x = int(inp1[1]) - int(inp1[0]) print(x) x = 0 y = False elif int(inp1[0]) % int(inp1[1]) != 0: t = int(inp1[0]) // int(inp1[1]) t += 1 x = int(inp1[1]) * t - int(inp1[0]) print(x) x = 0 t = 0 y = False else: print(x) x = 0 y = False
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def no_of_moves(a, b): moves = 0 if a % b == 0: return 0 elif a < b: moves += b - a elif a > b: moves += a - a % b + b - a return moves def main(): t = int(input()) moves = [] for i in range(t): a, b = [int(i) for i in input().split()] move_count = no_of_moves(a, b) moves.append(move_count) for count in moves: print(count) main()
FUNC_DEF ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER RETURN NUMBER IF VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) l = [input() for i in range(n)] for j in l: a = int(j.split()[0]) b = int(j.split()[1]) print((a // b + 1) * b - a if a % b != 0 else "0")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import stdin, stdout t = int(stdin.readline()) while t: a, b = map(int, stdin.readline().split(" ")) if b > a: stdout.write(str(b - a)) stdout.write("\n") elif a % b: stdout.write(str(b % a - a % b)) stdout.write("\n") else: stdout.write(str(0)) stdout.write("\n") t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR STRING IF BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR STRING VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t != 0: a, b = map(int, input().split()) x = None if a % b == 0: x = a / b else: x = a // b + 1 x = int(x) print(f"{x * b - a}") t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NONE IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def is_divisible(a, b): if b == 0: return 0 if a % b == 0: return 0 factor = a // b next_divisible = (factor + 1) * b count = next_divisible - a return count t = int(input()) for i in range(t): a, b = input().split(" ") a = int(a) b = int(b) print(is_divisible(a, b))
FUNC_DEF IF VAR NUMBER RETURN NUMBER IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
h = int(input()) l = [] for i in range(h): a = [] n, s = list(map(int, input().split())) k = str(n) sum = 0 for i in range(len(k)): sum += int(k[i]) if sum == s and i != len(k) - 1 and n % 10 ** (len(k) - i - 1) != 0: l.append((n // 10 ** (len(k) - i) + 1) * 10 ** (len(k) - i) - n) break elif sum == s and i == len(k) - 1: l.append(0) break elif sum > s: l.append((n // 10 ** (len(k) - i) + 1) * 10 ** (len(k) - i) - n) break elif sum < s and i == len(k) - 1: l.append(0) break for i in l: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR VAR IF VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR VAR IF VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for t in range(int(input())): t1 = input().split(" ") n = "0" + t1[0] s = int(t1[1]) sum = 0 f = 0 a = [] for i in range(len(n)): sum += int(n[i]) a.append(int(n[i])) if sum > s: f = i break if sum > s: for j in range(f, -1, -1): sum -= a[j] a[j] = 0 a[j - 1] += 1 sum += 1 if sum <= s: break else: print(0) continue i = 1 sub = 0 for j in range(f, -1, -1): sub += a[j] * i i *= 10 sub = sub * 10 ** (len(n) - f - 1) print(abs(sub - int(t1[0])))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def comp(lis, i, s): ans = "" carry = 0 k = len(lis) - 1 while k >= i and lis[k] == 0: ans = "0" + ans k -= 1 if k < i: return int(2e18) ans = str(10 - lis[k]) + ans lis[k] = 0 for j in range(k - 1, i - 1, -1): ans = str(9 - lis[j]) + ans lis[j] = 0 ans = int(ans) lis[i - 1], carry = (lis[i - 1] + 1) % 10, (lis[i - 1] + 1) // 10 for j in range(i - 2, -1, -1): lis[j], carry1 = (lis[j] + carry) % 10, (lis[j] + carry) // 10 carry = carry1 if sum(lis) <= s: return ans else: return int(2e18) for vishal in range(int(input())): n, s = list(map(int, input().split())) su, nn = 0, n lis = [] while nn: su += nn % 10 lis.append(nn % 10) nn //= 10 lis.append(0) lis.append(0) lis.reverse() if su <= s: print("0") continue ans = int(2e18) for i in range(len(lis) - 1, 0, -1): ans = min(ans, comp(lis[:], i, s)) print(ans)
FUNC_DEF ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP STRING VAR VAR NUMBER IF VAR VAR RETURN FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR IF FUNC_CALL VAR VAR VAR RETURN VAR RETURN FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR LIST WHILE VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def sumOfDigit(n): list_of_number = list(map(int, str(n).strip())) return sum(list_of_number) for _ in range(int(input())): n, s = map(int, input().split()) temp = n modulo = 10 while sumOfDigit(temp) > s: temp = n // modulo * modulo temp += modulo modulo *= 10 print(temp - n)
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR RETURN FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) def dig_sum(num): res = 0 while num: res += num % 10 num //= 10 return res def rec_solve(num, s): dg = dig_sum(num) if dg <= s: return 0 lst = num % 10 return rec_solve(num // 10 + 1, s) * 10 + (10 - lst) def solve(): n, s = map(int, input().split()) print(rec_solve(n, s)) for _ in range(t): solve()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN BIN_OP BIN_OP FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER BIN_OP NUMBER VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
num = int(input()) sol = [] for i in range(num): n, s = [int(c) for c in input().split()] if n == s or sum(int(x) for x in str(n)) <= s: sol.append(0) continue rn = str(n) for i in range(0, len(rn)): idk = abs(10 ** (i + 1) - int(rn[len(rn) - 1 - i :])) if sum(int(x) for x in str(n + idk)) <= s: sol.append(idk) break for i in sol: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
T = int(input()) n = [0] * T m = [0] * T ns = [0] * T for t in range(T): n[t], m[t] = [int(i) for i in input().split(" ")] def ans(n, m): if n < m: return m - n elif n % m == 0: return 0 else: return m - n % m for t in range(T): print(ans(n[t], m[t]))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF IF VAR VAR RETURN BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def div(x, y): r = x % y return y - r t = int(input()) for i in range(t): x, y = [int(v) for v in input().split(" ")] if x % y == 0: print(0) else: print(div(x, y))
FUNC_DEF ASSIGN VAR BIN_OP VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys input = sys.stdin.readline ins = lambda: input().rstrip() ini = lambda: int(input().rstrip()) inm = lambda: map(int, input().rstrip().split()) inl = lambda: list(map(int, input().split())) out = lambda x, s="\n": print(s.join(map(str, x))) def sum(n): ans = 0 while n > 0: ans += n % 10 n //= 10 return ans ans = [] t = ini() for _ in range(t): n, s = inm() tmp = 0 count = 1 while True: if sum(n) <= s: break else: tmp += (10 - n % 10) * count count *= 10 n = (n + 10) // 10 ans.append(tmp) out(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR STRING FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def get_output(query): divisor = query[1] dividend = query[0] remainder = dividend % divisor add = dividend + remainder sub = dividend - remainder if add % divisor == 0: return add - dividend elif sub % divisor == 0: return dividend + (divisor - remainder) - dividend test_cases = int(input()) for i in range(test_cases): query = [int(i) for i in input().split()] print(get_output(query))
FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER RETURN BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER RETURN BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): line = input() line = list(map(int, line.split())) a, b = line if a >= b: c = (b - a % b) % b print(c) else: print(b - a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): s, n = input().split() n = int(n) s = "0" + s sm = 0 for i in range(len(s)): sm += int(s[i]) if sm <= n: print(0) continue acm = 0 i = 0 prev = 0 while i < len(s): acm += int(s[i]) if s[i] != "0": prev = i if acm >= n: break i += 1 print((int(s[:prev]) + 1) * 10 ** (len(s) - prev) - int(s))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR STRING ASSIGN VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def getInts(): return list(map(int, input().split())) [T] = getInts() for case in range(T): [a, b] = getInts() if a % b == 0: print(0) continue if a < b: print(b - a) else: print(b - a % b)
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN LIST VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN LIST VAR VAR FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t != 0: a, b = map(int, input().split()) if b > a: print(b - a) elif b == a: print(0) else: r = int(a / b) m = a % b if m == 0: print(0) else: print((r + 1) * b - a) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
k = int(input()) j = [] for i in range(k): n = list(map(int, input().split())) x = n[0] % n[1] j.append(n[1] - x if x != 0 else x) print("\n".join(str(q) for q in j))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def cal(x): ans = 0 while x: ans += x % 10 x //= 10 return ans T = int(input()) for case in range(T): n, s = map(int, input().split()) p = 10 if cal(n) <= s: print(0) continue while True: x = n % p y = p - x k = n + y if cal(k) <= s: print(y) break p = p * 10
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER WHILE NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
ans = [] for _ in range(int(input())): N, M = map(int, input().split()) if N % M == 0: i = 0 elif N <= M: i = M - N else: i = M - N % M ans.append(i) for i in ans: print(i)
ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
n = int(input()) data = list(map(int, input().split())) sorted_data = sorted(data) ans = {} for i in range(0, n): ans[sorted_data[i]] = sorted_data[(i + 1) % n] for v in data: print(ans[v], end=" ")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
n, a = int(input()), [int(i) for i in input().split()] b, m = a[:], dict() b.sort() for i in range(len(b) - 1): m[b[i]] = b[i + 1] m[b[-1]] = b[0] for i in range(len(a)): a[i] = m[a[i]] if len(set(b)) == n: print(*a) else: print(-1)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
def solve(): n = int(input()) a = list(map(int, input().split())) b = sorted(a) + [min(a)] for i in range(n): a[i] = str(b[b.index(a[i]) + 1]) print(" ".join(a)) return solve()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR LIST FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR RETURN EXPR FUNC_CALL VAR
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
inf = lambda: map(int, input().split()) (n,) = inf() a = list(inf()) p = sorted([i for i in range(n)], key=lambda x: a[x]) b = [0] * n for i in range(n): b[p[i]] = a[p[(i + 1) % n]] for i in range(n): print(b[i], end=" ") print()
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
n = int(input()) A = input().split() A = [int(i) for i in A] if n != len(set(A)): print(-1) else: B = A[:] B.sort() C = [n + 100] * n for i in range(0, n): C[i] = A.index(B[i]) D = [n + 100] * n for i in range(0, n): D[C[i]] = A[C[(i + 1) % n]] for x in D: print(x, end=" ") print()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
import sys input() a = list(map(int, input().split())) b = sorted(a) for i in a: sys.stdout.write(str(b[b.index(i) - 1])) sys.stdout.write(" ") sys.stdout.write("\n")
IMPORT EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
input() t, s = zip(*sorted((int(q), i) for i, q in enumerate(input().split()))) for i, q in sorted((i, q) for q, i in zip(t[1:] + t[:1], s)): print(q)
EXPR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
import sys def inp(): return sys.stdin.readline().rstrip("\r\n") def N(): return int(inp()) def lis(): return list(map(int, inp().split())) def stringlis(): return list(map(str, inp().split())) def take(): return map(int, inp().split()) def strsep(): return map(str, inp().split()) def fsep(): return map(float, inp().split()) def testcase(t): for p in range(t): solve() def solve(): n = N() ar = lis() t = sorted(ar) ans = [] for i in ar: ind = t.index(i) ind = (ind + 1) % n ans.append(t[ind]) print(*ans) solve()
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
n = int(input()) a = list(map(int, input().split())) b = a.copy() a.sort() c = [] for i in range(n): c.append(a[(a.index(b[i]) + 1) % n]) print(*c)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
n = int(input()) A = [int(a) for a in input().split(" ")] R = sorted(A) for i in range(n): if A[i] == R[-1]: A[i] = R[0] else: A[i] = R[R.index(A[i]) + 1] print(" ".join([str(a) for a in A]))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
n = int(input()) l = [int(i) for i in input().split(" ")] index = [] nums = sorted(l) for i in l: index.append(nums.index(i)) indexbis = [int(i - 1) for i in index] for i in range(n): if indexbis[i] == min(indexbis): indexbis[i] = n - 1 break for i in indexbis: print(l[index.index(i)], end=" ")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR FUNC_CALL VAR VAR STRING
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
n = int(input()) a = list(map(int, input().split())) arr = sorted(a, reverse=True) ans = [None for x in range(n)] for i in range(n - 1): pos = a.index(arr[i]) ans[pos] = arr[i + 1] for i in range(n): if ans[i] == None: ans[i] = arr[0] print(*ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NONE VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NONE ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
n = int(input()) A = list(map(int, input().split())) S = sorted(A) P = {S[i]: S[(i + 1) % n] for i in range(n)} B = [P[a] for a in A] print(" ".join(map(str, B)))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
n = int(input()) a = list(map(int, input().split())) sorted_a = sorted(a) shifted_sorted_a = [sorted_a[-1]] + sorted_a[:-1] for i in range(len(a)): pos_in_sorted = sorted_a.index(a[i]) print(shifted_sorted_a[pos_in_sorted], end=" ")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING
You are given an array a with n distinct integers. Construct an array b by permuting a such that for every non-empty subset of indices S = {x_1, x_2, ..., x_{k}} (1 ≤ x_{i} ≤ n, 0 < k < n) the sums of elements on that positions in a and b are different, i. e. $\sum_{i = 1}^{k} a_{x_{i}} \neq \sum_{i = 1}^{k} b_{x_{i}}$ -----Input----- The first line contains one integer n (1 ≤ n ≤ 22) — the size of the array. The second line contains n space-separated distinct integers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 10^9) — the elements of the array. -----Output----- If there is no such array b, print -1. Otherwise in the only line print n space-separated integers b_1, b_2, ..., b_{n}. Note that b must be a permutation of a. If there are multiple answers, print any of them. -----Examples----- Input 2 1 2 Output 2 1 Input 4 1000 100 10 1 Output 100 1 1000 10 -----Note----- An array x is a permutation of y, if we can shuffle elements of y such that it will coincide with x. Note that the empty subset and the subset containing all indices are not counted.
n = int(input()) a = [int(i) for i in input().split()] b = sorted(a) s = {} for i in range(-1, n - 1): s[b[i + 1]] = b[i] print(" ".join([str(s[i]) for i in a]))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR VAR