description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for _ in range(int(input())): n, x = map(int, input().split()) a = [int(x) for x in input().split()] f0 = not max(a) == min(a) == x print(f0 * ((x not in a and sum(a) != x * n) + 1))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for i in range(0, t): n, x = map(int, input().split()) a = list(map(int, input().split())) b = [0] * n sum = 0 m = 0 for i in range(0, n): if a[i] == x: m = 1 for i in range(0, n): a[i] = x - a[i] if a == b: print(0) else: for i in range(0, n): sum = sum + a[i] if sum == 0 or m == 1: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for _ in range(t): n, x = map(int, input().split()) a = list(map(int, input().split())) s = a[0] same = x == a[0] was = same for i in range(1, len(a)): s += a[i] same = same and a[i] == a[i - 1] was = was or a[i] == x if same: print(0) elif s % n == 0 and s // n == x or was: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR VAR IF VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for i in range(t): n, k = [int(x) for x in input().split()] arr = [int(x) for x in input().split()] inc = 0 dec = 0 one = False for x in arr: aux = x - k if aux == 0: one = True elif aux < 0: inc -= aux elif aux > 0: dec += aux if inc == dec == 0: print(0) elif inc == dec or one: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR VAR IF VAR NUMBER VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for w in range(t): n, x = map(int, input().split()) a = list(map(int, input().split())) pr = True for i in range(n - 1): if a[i] != a[i + 1]: pr = False break if pr and a[0] == x: print(0) continue pr = False for i in range(n): if a[i] == x: pr = True break if pr: print(1) continue s = 0 for q in a: s += q if n * x == s: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
import sys def input(): return sys.stdin.readline().strip() def list2d(a, b, c): return [[c for j in range(b)] for i in range(a)] def list3d(a, b, c, d): return [[[d for k in range(c)] for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [ [[[e for l in range(d)] for k in range(c)] for j in range(b)] for i in range(a) ] def ceil(x, y=1): return int(-(-x // y)) def INT(): return int(input()) def MAP(): return map(int, input().split()) def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)] def Yes(): print("Yes") def No(): print("No") def YES(): print("YES") def NO(): print("NO") INF = 10**19 MOD = 10**9 + 7 EPS = 10**-10 for _ in range(INT()): N, X = MAP() A = LIST() se = set(A) if len(se) == 1 and list(se)[0] == X: print(0) continue cnt = 0 for a in A: cnt += X - a if cnt == 0 or X in se: print(1) else: print(2)
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF NUMBER RETURN FUNC_CALL VAR BIN_OP VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF NONE RETURN VAR NONE FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP VAR VAR IF VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
import sys t = int(sys.stdin.readline().strip()) for i in range(t): n, x = map(int, sys.stdin.readline().split()) line = list(map(int, sys.stdin.readline().split())) top = 0 bot = 0 if line.count(x) == n: print(0) continue elif line.count(x) > 0: print(1) continue for j in range(n): if line[j] < x: bot += x - line[j] if line[j] > x: top += line[j] - x if bot == top: print(1) else: print(2)
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR VAR VAR IF VAR VAR VAR VAR BIN_OP VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def main(): n, x = map(int, input().split()) arr = list(map(int, input().split())) zero, one = True, False diff = 0 for i in range(n): diff += arr[i] - x if arr[i] == x: one = True else: zero = False if zero: print("0") elif one or diff == 0: print("1") else: print("2") for _ in range(int(input())): main()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING IF VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def MI(): return map(int, input().split()) for _ in range(int(input())): n, x = MI() arr = list(MI()) c = arr.count(x) s = sum(arr) if c == n: print(0) elif s % n == 0 and s // n == x: print(1) elif c > 0: print(1) else: print(2)
FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for _ in range(t): line = [int(n) for n in input().split(" ")] n, x = line[0], line[1] arr = [int(n) for n in input().split(" ")] if sum([(1 if y == x else 0) for y in arr]) > 0: if sum([(1 if y == x else 0) for y in arr]) == n: print("0") elif sum([(1 if y == x else 0) for y in arr]) > 1: print("1") else: one = False s = sum(arr) for i in range(1, n): sum_at_x = x * i remaining_sum = s - sum_at_x if remaining_sum % (n - i) == 0: one = True if one or sum(arr) % len(arr) == 0 and sum(arr) // len(arr) == x: print("1") else: print("2") elif sum(arr) % len(arr) == 0 and sum(arr) // len(arr) == x: print("1") else: print("2")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR VAR VAR EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING IF BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for _ in range(int(input())): n, x = map(int, input().split()) a = list(map(int, input().split())) if a.count(x) == n: print("0") continue sm = 0 for i in a: sm += x - i if sm == 0 or x in a: print("1") else: print("2")
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP VAR VAR IF VAR NUMBER VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
I = lambda: map(int, input().split()) (t,) = I() exec("n,x=I();*s,=I();print([0,2-(x in s or sum(s)==x*n)][{*s}!={x}]);" * t)
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP STRING VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
import sys input = sys.stdin.readline t = int(input()) for i in range(t): n, x = map(int, input().split()) a = list(map(int, input().split())) s1 = 0 s2 = 0 s3 = 0 for i in range(n): if a[i] > x: s1 += a[i] - x if a[i] < x: s2 += x - a[i] if a[i] == x: s3 += x if s1 == 0 and s2 == 0: print(0) elif s3 != 0 or s1 == s2: print(1) else: print(2)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR VAR VAR IF VAR VAR VAR VAR BIN_OP VAR VAR VAR IF VAR VAR VAR VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for _ in range(t): l1 = [int(x) for x in input().split()] n, x = l1[0], l1[1] l2 = [int(x) for x in input().split()] diff = sum([(y - x) for y in l2]) if l2.count(x) == len(l2): print(0) elif diff == 0: print(1) elif x in l2: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def solve(n, x, acc): count_x = sum([(1 if a == x else 0) for a in acc]) if count_x == n: return 0 if count_x > 0 or n * x == sum(acc): return 1 return 2 t = int(input()) for _ in range(t): n, x = tuple(map(int, input().strip().split())) acc = list(map(int, input().strip().split())) print(solve(n, x, acc))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR VAR IF VAR VAR RETURN NUMBER IF VAR NUMBER BIN_OP VAR VAR FUNC_CALL VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for t in range(int(input())): n, x = map(int, input().split()) x += 4000 a = [] for v in list(map(int, input().split())): b = v + 4000 if b != x: a.append(b) s = sum(a) if len(a) == 0: print(0) elif len(a) != n or s % len(a) == 0 and s // len(a) == x: print(1) else: print(2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR VAR BIN_OP VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for _ in range(int(input())): n, x = map(int, input().split()) a = list(map(int, input().split())) s = sum(i - x for i in a) q = set(a) if s == 0: print(1 if len(q) - 1 else 0) else: print(1 if x in q else 2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for _ in range(t): n, x = map(int, input().split()) a = list(map(int, input().split())) sum, same = 0, 0 for i in a: sum += x - i if i == x: same += 1 if same == n: print(0) elif same > 1: print(1) elif same == 0 and sum == 0: print(1) elif same == 0: print(2) else: print(1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) while t > 0: t = t - 1 n, x = map(int, input().split()) lst = list(map(int, input().split())) sum = ct = 0 for i in range(len(lst)): if lst[i] == x: ct += 1 sum += lst[i] if ct == n: print(0) elif sum == n * x or ct > 0: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for _ in range(int(input())): n, x = map(int, input().split()) l = list(map(int, input().split())) f = False if len(set(l)) == 1 and l[0] == x: print(0) continue ne = po = 0 for i in l: if i == x: f = True break elif x - i > 0: po += x - i else: ne += x - i if f or abs(po) == abs(ne): print(1) else: print(2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def testcase(): n, x = map(int, input().split()) arr = list(map(int, input().split())) if arr.count(x) == n: print(0) else: mark = [(False) for _ in arr] for i in range(n): if arr[i] == x: mark[i] = True marks = mark.count(True) total = sum(arr) if x == 0: if marks > 0 or total == 0: print(1) else: print(2) elif marks > 0 or total / x == n: print(1) else: print(2) return t = int(input()) for _ in range(t): testcase()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
from sys import stdin, stdout def INI(): return int(stdin.readline()) def INL(): return [int(_) for _ in stdin.readline().split()] def INS(): return stdin.readline() def MOD(): return pow(10, 9) + 7 def OPS(ans): stdout.write(str(ans) + "\n") def OPL(ans): [stdout.write(str(_) + " ") for _ in ans] stdout.write("\n") for _ in range(INI()): n, x = INL() A = INL() s = 0 c = 0 for _ in range(n): s += x - A[_] c += int(A[_] == x) if c == n: OPS(0) elif s == 0 or x in A: OPS(1) else: OPS(2)
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_DEF RETURN BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER FUNC_DEF EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING FUNC_DEF EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING VAR VAR EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
from sys import stdin N = int(stdin.readline()) for case in range(N): n, x = map(int, stdin.readline().split()) array = [int(i) for i in stdin.readline().split() if int(i) != x] difference = n - len(array) if sum(array) == x * len(array): if len(array) == 0: print(0) else: print(1) elif difference == 0: print(2) else: print(1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR BIN_OP VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for i in range(int(input())): a, x = [int(i) for i in input().split()] s = [int(i) for i in input().split()] print( {(0): {(0): "2", (1): "1"}, (1): {(0): "0", (1): "0"}}[ s == [x for i in range(a)] ][x in s or sum(s) == x * a] )
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR DICT NUMBER NUMBER DICT NUMBER NUMBER STRING STRING DICT NUMBER NUMBER STRING STRING VAR VAR VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def solve(): n, x = map(int, input().split()) a = list(map(int, input().split())) ans = 2 s = sum(a) if a.count(x) == n: ans = 0 elif s == n * x or a.count(x) > 0: ans = 1 print(ans) t = int(input()) while t > 0: solve() t -= 1
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF VAR BIN_OP VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def process(): n, x = list(map(int, input().split())) li = list(map(int, input().split())) if len(set(li)) == 1 and li[0] == x: return 0 elif x in li or sum(li) % n == 0 and sum(li) // n == x: return 1 else: return 2 tests = int(input()) for i in range(tests): print(process())
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR RETURN NUMBER IF VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for _ in range(t): num, x = map(int, input().split()) l = list(map(int, input().split())) p = 0 n = 0 s = 0 for i in l: if i > x: p += i - x elif i == x: s += 1 else: n += x - i if s == num: print("0") elif s > 0 or p == n: print("1") else: print("2")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR NUMBER VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for _ in range(t): n, x = map(int, input().split()) l = list(map(int, input().split())) k = [(z == x) for z in l] if all(k): print(0) elif sum(l) == n * x or any(k): print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def func(a, x): ans = 0 for i in a: ans += x - i return ans == 0 for _ in range(int(input())): n, x = map(int, input().split()) a = list(map(int, input().split())) if min(a) == max(a) == x: print(0) elif func(a, x) or x in a: print(1) else: print(2)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP VAR VAR RETURN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
import sys input = sys.stdin.readline t = int(input()) for ii in range(t): n, x = map(int, input().split()) A = list(map(int, input().split())) B = [] c = A.count(x) for i in range(n): if A[i] != x: B.append(A[i]) if B == []: print(0) elif c > 0 or sum(B) == x * len(B): print(1) else: print(2)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR IF VAR LIST EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) def killjoy(n, x, arr): Sum, Count = 0, 0 for i in range(n): if arr[i] == x: Count += 1 Sum += arr[i] if Count == n: return 0 elif Count > 0 or x * n == Sum: return 1 return 2 for i in range(t): n, x = input().split() arr = list(map(int, input().split())) print(killjoy(int(n), int(x), arr))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER VAR VAR VAR IF VAR VAR RETURN NUMBER IF VAR NUMBER BIN_OP VAR VAR VAR RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for zzz in range(t): output = 2 flag = True numAccounts, killjoysRating = map(int, input().split()) rankings = list(map(int, input().split())) if list(set(rankings)) == [killjoysRating]: print(0) continue if sum(rankings) / len(rankings) == killjoysRating: print(1) continue if killjoysRating in rankings: print(1) continue print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR LIST VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for i in range(t): n, x = map(int, input().split(" ")) counter = 0 s = 0 li = [int(b) for b in input().split()] for k in li: if k == x: counter += 1 s += k if counter == n: print(0) elif counter > 0 or s == n * x: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR IF VAR VAR VAR NUMBER VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
import sys input = sys.stdin.readline T = int(input()) for _ in range(T): N, x = map(int, input().split()) A = list(map(int, input().split())) flag = 0 for i in A: if i != x: flag = 1 break if flag != 0: ans = 0 v = 0 for i in range(N): ans = ans + A[i] if A[i] == x: v = v + 1 if ans == x * N: flag = 1 elif v > 0: flag = 1 else: flag = 2 print(flag)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for t in range(int(input())): n, x = map(int, input().split()) arr = list(map(int, input().split())) if arr.count(x) == n: print(0) continue diff = 0 for i in range(n): diff += x - arr[i] if diff == 0: print(1) elif arr.count(x) == 0: print(2) else: print(1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for _ in range(t): n, x = map(int, input().split()) a = list(map(lambda y: int(y) - x, input().split())) s = sum(a) c = a.count(0) if not any(a): print(0) elif s == 0 or c: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
from sys import stdin for _ in range(int(stdin.readline())): n, x = map(int, stdin.readline().split()) arr = list(map(int, stdin.readline().split())) ans = [] for ele in arr: ans.append(x - ele) k = ans.count(0) if k == n: print(0) elif k > 0: print(1) elif sum(ans) == 0: print(1) else: print(2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
from sys import stdin nii = lambda: map(int, stdin.readline().split()) lnii = lambda: list(map(int, stdin.readline().split())) t = int(input()) for tt in range(t): n, x = nii() a = lnii() if a.count(x) == n: print(0) continue cnt = sum(i - x for i in a) if cnt == 0 or x in a: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR IF VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def solve(): n, x = [int(v) for v in input().split()] arr = [int(v) for v in input().split()] if all(x == v for v in arr): print(0) elif x in arr or sum(v - x for v in arr) == 0: print(1) else: print(2) t = int(input()) for _ in range(t): solve()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def floornum(): t = int(input()) for i in range(t): n, x = [int(x) for x in input().split()] a = [int(item) for item in input().split()] sum = 0 k = 0 for j in a: sum += j if j != x: k = 1 if k == 0: print("0", end="\n") elif sum / n == x or x in a: print("1", end="\n") else: print("2", end="\n") floornum()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING STRING IF BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING STRING EXPR FUNC_CALL VAR STRING STRING EXPR FUNC_CALL VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def che(l, x): b = True for i in range(f): if l[i] != x: b = False break return b n = int(input()) for i in range(n): f, x = map(int, input().split()) l = list(map(int, input().split()))[:f] if che(l, x) == True: print(0) elif x in l or sum(l) / f == x: print(1) elif x not in l and sum(l) / f != x: print(2)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR BIN_OP FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR BIN_OP FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for _ in range(int(input())): n, x = map(int, input().split(" ")) l = list(map(int, input().split(" "))) flag1, flag2 = False, False def count(n, x, l): l.sort() if l.count(x) == n: return 0 elif l.count(x) > 0: return 1 elif sum(l) % n == 0 and sum(l) // n == x: return 1 else: return 2 print(count(n, x, l))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER NUMBER FUNC_DEF EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR RETURN NUMBER IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER IF BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
n = int(input()) for _ in range(n): n, x = [int(v) for v in input().split()] accts = [int(v) for v in input().split()] diff = [(x - a) for a in accts if x - a != 0] if not diff: print(0) continue if x in accts: print(1) continue neg = pos = 0 for v in diff: if v < 0: neg -= v elif v > 0: pos += v if neg == pos: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR VAR IF VAR NUMBER VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def is_already_infected(ratings, x): for i in ratings: if i != x: return False return True def solve(): n, x = [int(x) for x in input().split(" ")] ratings = [int(x) for x in input().split(" ")] if is_already_infected(ratings, x): print(0) return if x in ratings: print(1) return changes = 0 for i in ratings: changes += i - x if changes == 0: print(1) else: print(2) for i in range(int(input())): solve()
FUNC_DEF FOR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN IF VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for i in range(t): n, x = [int(k) for k in input().split()] flag1 = True flag2 = False rating = [int(k) for k in input().split()] s = 0 for k in range(n): if rating[k] == x: flag2 = True else: flag1 = False s += rating[k] if flag1: print(0) elif flag2 or s == x * n: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR IF VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
T = int(input()) for t in range(T): n = input().split() x = int(n[1]) n = int(n[0]) a = input().split() sum = 0 f = 0 for i in a: if int(i) == x: f += 1 sum += int(i) if f == n: print(0) elif f > 0 or sum / n == x: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF FUNC_CALL VAR VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
I = lambda: map(int, input().split()) (t,) = I() for _ in [0] * t: n, x = I() (*s,) = I() print([0, 2 - (x in s or sum(s) == x * n)][{*s} != {x}])
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR LIST NUMBER BIN_OP NUMBER VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def solve(arr, x): if arr.count(x) == len(arr): return 0 diff = sum(v - x for v in arr) cnt = arr.count(x) if diff == 0: return 1 if cnt: return 1 return 2 for _ in range(int(input())): n, x = map(int, input().split()) (*arr,) = map(int, input().split()) print(solve(arr, x))
FUNC_DEF IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN NUMBER IF VAR RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for _ in range(t): n, x = map(int, input().split()) arr = list(map(int, input().split())) def soln(): setArr = set(arr) if len(setArr) == 1 and arr[0] == x: return 0 avg = sum(arr) / n if avg == x or x in setArr: return 1 return 2 result = soln() print(result)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR RETURN NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def iinput(): return [int(i) for i in input().split()] t = int(input()) for _ in range(t): n, x = iinput() mas = iinput() if set(mas) == set(list([x])): print(0) elif sum(mas) / n == x or x in mas: print(1) else: print(2)
FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR LIST VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for z in range(t): n, x = map(int, input().split()) l = list(map(int, input().split())) sum_l = sum(l) count_e = l.count(x) if count_e == n: print("0") elif count_e > 0: print("1") elif sum_l == n * x: print("1") else: print("2")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for _ in range(t): n, x = list(map(int, input().split())) l = list(map(int, input().split())) if set(l) == {x}: print(0) else: s = 0 f = 0 for i in range(n): s = s + l[i] - x if l[i] == x: f = 1 if s == 0 or f: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) ns = [] xs = [] arrs = [] for _ in range(t): enter = input().split(" ") enter = [int(x) for x in enter] ns.append(enter[0]) xs.append(enter[1]) arrs.append([int(x) for x in input().split(" ")]) for i in range(t): n = ns[i] x = xs[i] arr = arrs[i] all_equal = True difference = 0 is_in = False for a in arr: if x - a != 0: all_equal = False else: is_in = True difference += x - a if all_equal == True: print(0) elif difference == 0 or is_in == True: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for q in range(t): n, m = map(int, input().split()) a = list(map(int, input().split())) z = 0 flag = 0 while a[z] == m: if z == n - 1: flag = 1 break z += 1 if flag == 1: print(0) elif flag == 0 and sum(a) / n == m: print(1) elif m in a: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for t in range(int(input())): diff_arr = [] total_days = 0 p, x = map(int, input().split()) ratings = list(map(int, input().split())) all_same = True total_d = 0 already_infected = False for r in ratings: v = x - r total_d -= v if r != x: all_same = False else: already_infected = True if all_same: total_days = 0 elif total_d == 0 or already_infected: total_days = 1 else: total_days = 2 print(total_days)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for w in range(int(input())): n, x = tuple(map(int, input().split())) a = list(map(int, input().split())) b = [] count = 0 for i in range(n): b.append(a[i] - x) if a[i] == x: count += 1 if count == n: print(0) elif count >= 1 or sum(b) == 0: print(1) else: print(2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
import sys input = sys.stdin.readline def print(val): sys.stdout.write(str(val) + "\n") def prog(): for _ in range(int(input())): n, x = map(int, input().split()) a = list(map(int, input().split())) fail = False had_one = False for i in range(n): if a[i] != x: fail = True break for i in range(n): if a[i] == x: had_one = True if not fail: print(0) else: s = sum(a) if s == x * n or had_one: print(1) else: print(2) prog()
IMPORT ASSIGN VAR VAR FUNC_DEF EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def solve(): n, x = map(int, input().split()) a = list(map(int, input().split())) b = [] for y in a: if y != x: b.append(y) if len(b) == 0: return 0 s = 0 for y in b: s += x - y if s == 0 or x in a: return 1 return 2 t = int(input()) i = 0 while i < t: print(solve()) i += 1
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP VAR VAR IF VAR NUMBER VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
import sys ii = lambda: sys.stdin.readline().strip() idata = lambda: [int(x) for x in ii().split()] def solve(): n, x = idata() data = idata() flag = 0 summ = 0 for i in range(n): summ += data[i] if data[i] == x: flag += 1 if flag == n: print(0) return if flag: print(1) return if summ // n == x and summ % n == 0: print(1) return print(2) return for t in range(int(ii())): solve()
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN IF VAR EXPR FUNC_CALL VAR NUMBER RETURN IF BIN_OP VAR VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN EXPR FUNC_CALL VAR NUMBER RETURN FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for t in range(int(input())): o = list(map(int, input().split())) n = o[0] x = o[1] flag, sum = int(0), int(0) a = list(map(int, input().split())) for i in range(n): if a[i] == x: flag += 1 sum += a[i] if flag == n: print(0) elif flag > 0 or sum % n == 0 and sum // n == x: print(1) else: print(2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def kill(arr, n, m): flag = 1 for i in range(n): if arr[i] != m: flag = 0 break if flag == 1: return 0 f2 = 0 for i in range(n): if arr[i] == m: f2 = 1 break if f2 == 1: return 1 f3 = 0 res = 0 for i in range(n): res += arr[i] - m if res == 0: return 1 return 2 t = int(input()) for i in range(t): n, m = map(int, input().split()) arr = list(map(int, input().split())) print(kill(arr, n, m))
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR IF VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def inp(): return int(input()) def linp(): return list(map(int, input().split())) def minp(): return map(int, input().split()) for _ in range(inp()): n, x = minp() a = linp() i = 0 num = 0 b = 0 d = True while i < n: if a[i] > x: b += a[i] - x elif a[i] == x: d = False else: num += x - a[i] i += 1 if b + num == 0: print(0) elif not d or b == num: print(1) else: print(2)
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR BIN_OP VAR VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER VAR BIN_OP VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
import sys import time readline = sys.stdin.readline INF = 1 << 60 def read_int(): return int(readline()) def read_int_n(): return list(map(int, readline().split())) def read_float(): return float(readline()) def read_float_n(): return list(map(float, readline().split())) def read_str(): return readline().strip() def read_str_n(): return readline().strip().split() def ep(*args): print(*args, file=sys.stderr) def mt(f): import time def wrap(*args, **kwargs): s = time.perf_counter() ret = f(*args, **kwargs) e = time.perf_counter() ep(e - s, "sec") return ret return wrap def slv(N, X, A): if len(set(A) - {X}) == 0: return 0 d = 0 for a in A: d += X - a if d == 0: return 1 if X in A: return 1 return 2 def main(): for _ in range(read_int()): N, X = read_int_n() A = read_int_n() print(slv(N, X, A)) main()
IMPORT IMPORT ASSIGN VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR VAR VAR FUNC_DEF IMPORT FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR STRING RETURN VAR RETURN VAR FUNC_DEF IF FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
from sys import stdin for _ in range(int(input())): n, m = map(int, stdin.readline().rstrip().split(" ")) l = list(map(int, stdin.readline().rstrip().split(" "))) x = set(l) if m in x: if len(x) == 1: print(0) else: print(1) else: c = 0 for i in range(n): c += l[i] - m if c == 0: print(1) else: print(2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
test_num = int(input()) def solve(): n, x = map(int, input().split()) accounts = list(map(int, input().split())) has_equal = False has_unequal = False acc_sum = 0 for account in accounts: if account == x: has_equal = True else: has_unequal = True acc_sum += account if not has_unequal: print(0) elif has_equal or acc_sum == n * x: print(1) else: print(2) for i in range(test_num): solve()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR VAR IF VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def read_line(type=int): return list(map(type, input().split())) t = int(input()) for _ in range(t): n, x = read_line() d = read_line() s = set(d) ans = 0 diff = list(map(lambda i: i - x, d)) if len(s) == 1 and x in s: ans = 0 elif sum(diff) == 0: ans = 1 elif x in d: ans = 1 else: ans = 2 print(ans)
FUNC_DEF VAR RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for ik in range(int(input())): n, k = map(int, input().split()) l = list(map(int, input().split())) l.sort() se = set(l) if n == 1: if l[0] == k: print(0) else: print(1) if l[0] == l[-1] == k: print(0) elif sum(l) == n * k: print(1) elif k in se: print(1) else: print(2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for _ in range(int(input())): n, ra = map(int, input().split()) su = 0 f = 1 g = 0 oth = list(map(int, input().split())) for a in range(n): f = f and oth[a] == ra g = g or oth[a] == ra su += oth[a] - ra if f: print(0) elif su == 0 or g: print(1) else: print(2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR IF VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
import sys input = sys.stdin.readline T = int(input()) for t in range(T): N, X = [int(_) for _ in input().split()] A = [int(_) for _ in input().split()] if all([(el == X) for el in A]): print(0) continue s = 0 for el in A: s += X - el if s == 0: print(1) continue nb_eqs = len([el for el in A if el == X]) if nb_eqs: print(1) continue print(2)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
y = lambda: map(int, input().split()) for _ in range(int(input())): n, x = y() a = [*y()] if all(i == x for i in a): print(0) continue if x in a or sum(a) == x * n: print(1) continue print(2)
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def Str_to_List(Str): List = Str.split(" ") for i in range(len(List)): List[i] = int(List[i]) return List def Min_turns(List): Sum = 0 All = True Infected = False x = List[0] for i in range(len(List)): if List[i] != x: All = False for i in range(1, len(List)): if List[i] == x: Infected = True for i in range(1, len(List)): Sum += x - List[i] if All == True: return 0 elif Sum == 0 or Infected == True: return 1 else: return 2 trials = int(input("")) for i in range(trials): List1 = Str_to_List(input("")) List2 = Str_to_List(input("")) List = [List1[1]] for i in range(len(List2)): List.append(List2[i]) print(Min_turns(List))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR IF VAR NUMBER RETURN NUMBER IF VAR NUMBER VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
gans = [] for _ in range(int(input())): n, x = map(int, input().split()) u = sorted(list(map(int, input().split()))) sm = sum(u) if u[0] == u[-1] == x: gans.append(0) elif sm % n == 0 and sm // n == x or x in u: gans.append(1) else: gans.append(2) print("\n".join(map(str, gans)))
ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
import sys input = sys.stdin.readline t = int(input()) for _ in range(t): n, x = map(int, input().split()) a = list(map(int, input().split())) sum_a = sum(a) cnt = 0 for i in range(n): if x == a[i]: cnt += 1 if cnt == n: print(0) continue if sum_a == n * x: print(1) continue if cnt >= 1: print(1) continue print(2)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
import sys reader = (s.rstrip() for s in sys.stdin) input = reader.__next__ def gift(): for _ in range(t): n, x = list(map(int, input().split())) arry = list(map(int, input().split())) rem = [] for i in range(n): if arry[i] != x: rem.append(arry[i]) if len(rem) == 0: yield 0 elif abs(sum(arry) / n - x) < 0.1**10 or len(rem) != n: yield 1 else: yield 2 t = int(input()) ans = gift() print(*ans, sep="\n")
IMPORT ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR NUMBER IF FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR BIN_OP NUMBER NUMBER FUNC_CALL VAR VAR VAR EXPR NUMBER EXPR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR STRING
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
N = int(input()) Ans = [] for i in range(N): M, R = map(int, input().split()) A = list(map(int, input().split())) p = 0 q = 0 total = 0 for j in range(M): if A[j] != R: p = 1 for j in range(M): if A[j] == R: q = 1 total += A[j] - R if p == 0: Ans.append(0) elif total == 0 or q == 1: Ans.append(1) else: Ans.append(2) for i in Ans: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER VAR BIN_OP VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for _ in range(int(input())): n, x = map(int, input().split()) arr = list(map(int, input().split())) arr.sort() left_sum = 0 for i in arr: if i < x: left_sum += abs(x - i) right_sum = 0 for i in arr: if i > x: right_sum += abs(i - x) only_x = False for i in arr: if i == x: only_x = True break if left_sum == 0 and right_sum == 0: print(0) elif right_sum == left_sum or only_x: print(1) else: print(2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def read_line(): return list(map(int, input().split())) T = int(input()) for _ in range(T): n, x = list(map(int, input().split())) l = read_line() t = 0 all_eq = True has_eq = False for a in l: t += a - x if a != x: all_eq = False else: has_eq = True if all_eq: print(0) elif t == 0 or has_eq: print(1) else: print(2)
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
for i in range(0, int(input())): n, x = map(int, input().split()) a = list(map(int, input().split())) a = sorted(a) m = 0 f = 0 l = 0 if a[0] == a[-1] == x: print("0") else: for j in a: if j < x: m += abs(x - j) elif j == x: l = 1 break else: f += abs(x - j) if l == 1: print("1") elif m == f: print("1") else: print("2")
FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR STRING FOR VAR VAR IF VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
t = int(input()) for _ in range(t): n, x = map(int, input().split()) A = list(map(int, input().split())) A = [(a - x) for a in A] flag1 = False flag2 = True for a in A: if a != 0: flag2 = False else: flag1 = True if flag2: print(0) continue if flag1: print(1) elif sum(A) == 0: print(1) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def count_x(arr, n, x): count = 0 for i in range(n): if arr[i] == x: count += 1 return count def deviation(arr, n, x): result = 0 for i in range(n): result += arr[i] - x return result def kill_joy(arr, n, x): infected_count = count_x(arr, n, x) if infected_count == n: return 0 elif infected_count != 0: return 1 elif deviation(arr, n, x) == 0: return 1 else: return 2 t = int(input()) for _ in range(t): n, x = list(map(int, input().split())) arr = list(map(int, input().split())) print(kill_joy(arr, n, x))
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR RETURN NUMBER IF VAR NUMBER RETURN NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large). Killjoy's account is already infected and has a rating equal to $x$. Its rating is constant. There are $n$ accounts except hers, numbered from $1$ to $n$. The $i$-th account's initial rating is $a_i$. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed. Contests are regularly held on Codeforces. In each contest, any of these $n$ accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer. Find out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change. It can be proven that all accounts can be infected in some finite number of contests. -----Input----- The first line contains a single integer $t$ $(1 \le t \le 100)$Β β€” the number of test cases. The next $2t$ lines contain the descriptions of all test cases. The first line of each test case contains two integers $n$ and $x$ ($2 \le n \le 10^3$, $-4000 \le x \le 4000$)Β β€” the number of accounts on Codeforces and the rating of Killjoy's account. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ $(-4000 \le a_i \le 4000)$Β β€” the ratings of other accounts. -----Output----- For each test case output the minimal number of contests needed to infect all accounts. -----Example----- Input 3 2 69 68 70 6 4 4 4 4 4 4 4 9 38 -21 83 50 -59 -77 15 -71 -78 20 Output 1 0 2 -----Note----- In the first test case it's possible to make all ratings equal to $69$. First account's rating will increase by $1$, and second account's rating will decrease by $1$, so the sum of all changes will be equal to zero. In the second test case all accounts will be instantly infected, because all ratings (including Killjoy's account's rating) are equal to $4$.
def solve(n, k): s = list(map(int, input().split())) cnt = 0 for i in s: if i == k: cnt += 1 if cnt == n: return 0 if cnt > 0: return 1 s = list(map(lambda x: x - k, s)) if sum(s) == 0: return 1 return 2 t = int(input()) while t > 0: n, k = map(int, input().split()) print(solve(n, k)) t -= 1
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER IF VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
n, k = map(int, input().split()) ans = [[3 * i + 1, 3 * i + 2, 3 * i + 3, 3 * i + 5] for i in range(0, 2 * n, 2)] print(ans[-1][-1] * k) s = "" for arr in ans: s += " ".join([str(x * k) for x in arr]) s += "\n" print(s)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR STRING FOR VAR VAR VAR FUNC_CALL STRING FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR STRING EXPR FUNC_CALL VAR VAR
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
n, k = map(int, input().split()) print((6 * n - 1) * k) maxx = -1 for i in range(0, n): a, b, c, d = k * (6 * i + 1), k * (6 * i + 2), k * (6 * i + 3), k * (6 * i + 5) print(a, b, c, d)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
n, k = [int(i) for i in input().split()] print((6 * n - 1) * k) for a in range(n): val = 6 * a print((val + 1) * k, (val + 2) * k, (val + 3) * k, (val + 5) * k)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
n, k = map(int, input().split()) print(k * (6 * n - 1)) for i in range(1, n + 1): x = (i - 1) * 6 + 1 print(k * x, end=" ") print(k * (x + 1), end=" ") print(k * (x + 2), end=" ") print(k * (x + 4))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
import sys __author__ = "neki" global primes, primeDiv def gcdPrime(a, b): if b == 0 or a == 0: return 0 if b == 1 or a == 1: return 1 if b > a: return gcdPrime(a, b % a) return gcdPrime(b, a % b) def gcdPrimeSet(set, a): result = [] if len(set) >= 4: return [x for x in set] for i in set: if gcdPrime(i, a) == 0: result.append(i) return result words = str(input()).split() n = int(words[0]) k = int(words[1]) sets = [] for i in range(n): sets.append(set()) el = -1 for i in range(len(sets)): el += 2 while len(sets[i]) < 4: if el % 2 == 0: el += 1 sets[i].add(el) sets[i].add(el + 1) sets[i].add(el + 2) el += 4 while len(gcdPrimeSet(sets[i], el)) > 0: el += 2 sets[i].add(el) print(k * el) for s in sets: for i in range(4): print(k * s.pop(), end=" ") print()
IMPORT ASSIGN VAR STRING FUNC_DEF IF VAR NUMBER VAR NUMBER RETURN NUMBER IF VAR NUMBER VAR NUMBER RETURN NUMBER IF VAR VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_DEF ASSIGN VAR LIST IF FUNC_CALL VAR VAR NUMBER RETURN VAR VAR VAR FOR VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER WHILE FUNC_CALL VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER WHILE FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR VAR FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
a, k = map(int, input().split()) print(k * (a * 6 - 1)) i = int(1) while True: x = i * 6 - 5 print(x * k, x * k + k, x * k + 2 * k, x * k + 4 * k) i += 1 if i > a: break
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER WHILE NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP NUMBER VAR BIN_OP BIN_OP VAR VAR BIN_OP NUMBER VAR VAR NUMBER IF VAR VAR
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
n, k = map(int, input().split()) print(k * (2 * (3 * n) - 1)) now = 1 m = 2 for i in range(n): print(k * m, end=" ") for j in range(3): print(k * now, end=" ") now += 2 m += 6 print()
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP NUMBER BIN_OP NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR STRING FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR STRING VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
l = input().split(" ") n = int(l[0]) k = int(l[1]) print((6 * n - 1) * k) for i in range(n): print( str((6 * i + 1) * k) + " " + str((6 * i + 2) * k) + " " + str((6 * i + 3) * k) + " " + str((6 * i + 5) * k) )
ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR STRING FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR STRING FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR STRING FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
x, y = map(int, input().split()) z = [] print((6 * x - 1) * y) for i in range(0, x): z.append((6 * i + 1) * y) z.append((6 * i + 3) * y) z.append((6 * i + 4) * y) z.append((6 * i + 5) * y) print(*z) z.clear()
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
n, k = map(int, input().split()) print((6 * n - 1) * k) print( "\n".join( "%i %i %i %i" % tuple(k * (6 * i + j) for j in (1, 2, 3, 5)) for i in range(n) ) )
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL STRING BIN_OP STRING FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR VAR VAR NUMBER NUMBER NUMBER NUMBER VAR FUNC_CALL VAR VAR
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
n, k = map(int, input().split()) print(k * (6 * n - 1)) for i in range(n): print(k * (6 * i + 1), k * (6 * i + 3), k * (6 * i + 4), k * (6 * i + 5))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
n, k = map(int, input().split()) print((6 * n - 1) * k) for i in range(1, n + 1): m = i * 6 - 5 print(k * m, k * (m + 1), k * (m + 2), k * (m + 4))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
n, k = map(int, input().split()) l = [1, 2, 3, 5] print((6 * n - 1) * k) for i in range(n): for j in l: print((6 * i + j) * k, end=" ") print()
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST NUMBER NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR STRING EXPR FUNC_CALL VAR
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
k = 0 i = 1 a = [] while k < 10000: b = [] b.append(i) b.append(i + 1) b.append(i + 2) b.append(i + 4) i += 6 a.append(b) k += 1 n, k = tuple(map(int, input().split())) print(a[n - 1][3] * k) for i in range(0, n): print(a[i][0] * k, a[i][1] * k, a[i][2] * k, a[i][3] * k)
ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR NUMBER ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
import sys def solve(): n, k = rv() res = list() cur = 1 for i in range(n): while cur % 2 == 0: cur += 1 res.append((cur * k, (cur + 1) * k, (cur + 2) * k, (cur + 4) * k)) cur += 5 print(res[-1][-1]) print("\n".join(" ".join(map(str, l)) for l in res)) def prt(l): return print(" ".join(l)) def rv(): return map(int, input().split()) def rl(n): return [list(map(int, input().split())) for _ in range(n)] if sys.hexversion == 50594544: sys.stdin = open("test.txt") solve()
IMPORT FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL STRING VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
inp = input().split(" ") def result(sets, maximum_divisor): output = list() output.append(str(int(maximum_divisor) * (6 * int(sets) - 1))) for i in range(int(sets)): output.append( str(int(maximum_divisor) * (6 * int(i) + 1)) + " " + str(int(maximum_divisor) * (6 * int(i) + 3)) + " " + str(int(maximum_divisor) * (6 * int(i) + 4)) + " " + str(int(maximum_divisor) * (6 * int(i) + 5)) ) return output for i in result(inp[0], inp[1]): print(i)
ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER STRING FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER STRING FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER STRING FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Dreamoon likes to play with sets, integers and $gcd$. $\operatorname{gcd}(a, b)$ is defined as the largest positive integer that divides both a and b. Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements s_{i}, s_{j} from S, $\operatorname{gcd}(s_{i}, s_{j}) = k$. Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution. -----Input----- The single line of the input contains two space separated integers n, k (1 ≀ n ≀ 10 000, 1 ≀ k ≀ 100). -----Output----- On the first line print a single integer β€” the minimal possible m. On each of the next n lines print four space separated integers representing the i-th set. Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them. -----Examples----- Input 1 1 Output 5 1 2 3 5 Input 2 2 Output 22 2 4 6 22 14 18 10 16 -----Note----- For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since $\operatorname{gcd}(2,4) = 2 \neq 1$.
n, k = map(int, input().split()) print(k * (6 * (n - 1) + 5)) for i in range(0, n): t = [6 * i + 1, 6 * i + 2, 6 * i + 3, 6 * i + 5] print(" ".join(map(lambda m: str(m * k), t)))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR LIST BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR
Chef is operating a slush machine. The machine produces slush drinks with $M$ flavors (numbered $1$ through $M$); for each valid $i$, the maximum number of drinks with flavour $i$ the machine can produce is $C_i$. Chef expects $N$ customers to come buy slush drinks today. The customers are numbered $1$ through $N$ in the order in which they buy the drinks. For each valid $i$, the favorite flavour of the $i$-th customer is $D_i$ and this customer is willing to pay $F_i$ units of money for a drink with this flavour, or $B_i$ units of money for a drink with any other flavuor. Whenever a customer wants to buy a drink: - if it is possible to sell this customer a drink with their favourite flavour, Chef must sell them a drink with this flavour - otherwise, Chef must sell this customer a drink, but he may choose its flavour Chef wants to make the maximum possible profit. He is asking you to help him decide the flavours of the drinks he should sell to the customers in order to maximise the profit. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $M$. - The second line contains $M$ space-separated integers $C_1, C_2, \ldots, C_M$. - $N$ lines follow. For each valid $i$, the $i$-th of these lines contains three space-separated integers $D_i$, $F_i$ and $B_i$. -----Output----- For each test case, print two lines: - The first of these lines should contain a single integer β€” the maximum profit. - The second line should contain $N$ space-separated integers denoting the flavours of the drinks Chef should sell, in this order. If there are multiple solutions, you may find any one. -----Constraints----- - $1 \le T \le 1,000$ - $2 \le N, M \le 10^5$ - $1 \le D_i \le M$ for each valid $i$ - $1 \le C_i \le N$ for each valid $i$ - $1 \le B_i < F_i \le 10^9$ for each valid $i$ - $C_1+C_2+\ldots+C_M \ge N$ - the sum of $N$ over all test cases does not exceed $10^6$ - the sum of $M$ over all test cases does not exceed $10^6$ -----Example Input----- 1 5 3 1 2 3 2 6 3 2 10 7 2 50 3 1 10 5 1 7 4 -----Example Output----- 33 2 2 3 1 3
for t in range(int(input())): n, m = map(int, input().split()) c = list(map(int, input().split())) ans = 0 ans_li = [] for i in range(n): d, f, b = map(int, input().split()) if c[d - 1] > 0: c[d - 1] -= 1 ans += f ans_li += [d] else: ans_li += ["."] ans += b ctr = 0 for ij in range(len(ans_li)): if ans_li[ij] == ".": while c[ctr] == 0: ctr += 1 ans_li[ij] = ctr + 1 c[ctr] -= 1 print(ans) print(*ans_li)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR VAR LIST VAR VAR LIST STRING VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING WHILE VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Chef is operating a slush machine. The machine produces slush drinks with $M$ flavors (numbered $1$ through $M$); for each valid $i$, the maximum number of drinks with flavour $i$ the machine can produce is $C_i$. Chef expects $N$ customers to come buy slush drinks today. The customers are numbered $1$ through $N$ in the order in which they buy the drinks. For each valid $i$, the favorite flavour of the $i$-th customer is $D_i$ and this customer is willing to pay $F_i$ units of money for a drink with this flavour, or $B_i$ units of money for a drink with any other flavuor. Whenever a customer wants to buy a drink: - if it is possible to sell this customer a drink with their favourite flavour, Chef must sell them a drink with this flavour - otherwise, Chef must sell this customer a drink, but he may choose its flavour Chef wants to make the maximum possible profit. He is asking you to help him decide the flavours of the drinks he should sell to the customers in order to maximise the profit. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $M$. - The second line contains $M$ space-separated integers $C_1, C_2, \ldots, C_M$. - $N$ lines follow. For each valid $i$, the $i$-th of these lines contains three space-separated integers $D_i$, $F_i$ and $B_i$. -----Output----- For each test case, print two lines: - The first of these lines should contain a single integer β€” the maximum profit. - The second line should contain $N$ space-separated integers denoting the flavours of the drinks Chef should sell, in this order. If there are multiple solutions, you may find any one. -----Constraints----- - $1 \le T \le 1,000$ - $2 \le N, M \le 10^5$ - $1 \le D_i \le M$ for each valid $i$ - $1 \le C_i \le N$ for each valid $i$ - $1 \le B_i < F_i \le 10^9$ for each valid $i$ - $C_1+C_2+\ldots+C_M \ge N$ - the sum of $N$ over all test cases does not exceed $10^6$ - the sum of $M$ over all test cases does not exceed $10^6$ -----Example Input----- 1 5 3 1 2 3 2 6 3 2 10 7 2 50 3 1 10 5 1 7 4 -----Example Output----- 33 2 2 3 1 3
for T in range(int(input())): n, m = map(int, input().split()) a = list(map(int, input().split())) b = [0] * n ind = [0] * (n + 1) Di = [0] * (n + 1) Fi = [0] * (n + 1) Bi = [0] * (n + 1) cost = 0 for i in range(n): di, fi, bi = map(int, input().split()) Di[i] = di Fi[i] = fi Bi[i] = bi di = di - 1 if a[di] != 0: a[di] = a[di] - 1 ind[i] = 1 cost = cost + Fi[i] b[i] = Di[i] else: ind[i] = 0 cost = cost + Bi[i] t = 0 for i in range(n): if b[i] == 0: while a[t] == 0: t = t + 1 b[i] = t + 1 a[t] = a[t] - 1 print(cost) print(*b)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER WHILE VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR