description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
testCase = int(input()) def func(arr, k): t, cnt = -1, 0 for i in range(len(arr)): if arr[i] != t: cnt += 1 t = arr[i] if cnt == k + 1: return [0] * i + [(j - arr[i - 1]) for j in arr[i:]] return [0] * len(arr) for tc in range(testCase): m, flag = 0, 0 n, k = map(int, input().split()) num = list(map(int, input().split())) while num.count(0) != len(num): t = num.copy() num = func(num, k) if t == num: flag = 1 break m += 1 print(-1 if flag else m)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR BIN_OP VAR NUMBER RETURN BIN_OP BIN_OP LIST NUMBER VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR VAR RETURN BIN_OP LIST NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR WHILE FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for _ in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) if k == 1 and [a[0]] * n != a: print(-1) continue cnt = 0 while a.count(0) != n: cnt += 1 b = [a[0]] for i in range(1, n): if a[i] == b[-1]: continue else: b.append(a[i]) if len(b) < k: break c = b[k - 1] for i in range(n): a[i] = max(0, a[i] - c) print(cnt)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER BIN_OP LIST VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR NUMBER VAR VAR NUMBER ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
import sys def main(): T = int(input()) for ti in range(T): n, k = map(int, input().split()) A = set(int(v) for v in input().split()) if k == 1: if len(A) == 1: print(1) else: print(-1) continue if len(A) == 1: print(1) else: print((len(A) - 3 + k) // (k - 1)) main()
IMPORT FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
import sys input = lambda: sys.stdin.readline().rstrip("\r\n") t = int(input()) for _ in range(t): n, k = map(int, input().split()) a = [int(x) for x in input().split()] cnt = 0 for i in range(1, n): if a[i] - a[i - 1] != 0: cnt += 1 if k == 1 and cnt >= 1: print(-1) continue ans = 1 cnt -= k cnt += 1 if cnt <= 0: print(1) continue ans += cnt // (k - 1) + int(cnt % (k - 1) != 0) print(ans)
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
import sys input = sys.stdin.readline t = int(input()) for _ in range(t): n, k = map(int, input().split()) arr = list(map(int, input().split())) if k == 1: if len(set(arr)) != 1: print(-1) else: print(1) continue else: ans = 1 pos = 0 cnt = 0 prev = -1 while pos < n: if prev < arr[pos]: cnt += 1 if cnt > k: ans += 1 cnt = 1 continue prev = arr[pos] pos += 1 print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
import sys def minp(): return sys.stdin.readline().strip() def mint(): return int(minp()) def mints(): return map(int, minp().split()) def solve(): n, k = mints() p = -5 q = -1 for i in mints(): if i != p: q += 1 p = i if k == 1: if q > 0: print(-1) else: print(1) return print(max((q + k - 2) // (k - 1), 1)) for i in range(mint()): solve()
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
n = int(input()) for i in range(n): a, b = [int(i) for i in input().split()] c = [int(i) for i in input().split()] e = b count = 1 if len(set(c)) == b: print(1) elif b - 1 == 0: print(-1) else: while e < len(set(c)): e = e + (b - 1) count = count + 1 print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER WHILE VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for _ in range(t): n, k = [int(x) for x in input().split()] a = [int(x) for x in input().split()] x = len(set(a)) if k == 1: if x > 1: ans = -1 else: ans = 1 elif x <= k: ans = 1 else: x -= k ans = 1 ans += x // (k - 1) if x % (k - 1) != 0: ans += 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER VAR VAR ASSIGN VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
def ceil(a, b): return (a + b - 1) // b def solve(): N, K = map(int, input().split()) A = set([int(x) for x in input().split()]) if K == 1: return 1 if len(A) == 1 else -1 if len(A) <= K: return 1 return ceil(len(A) - K, K - 1) + 1 TC = int(input()) for _ in range(TC): print(solve())
FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER RETURN FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF FUNC_CALL VAR VAR VAR RETURN NUMBER RETURN BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for i in range(t): n, k = map(int, input().strip().split(" ")) lst = list(map(int, input().strip().split(" "))) l = len(list(set(lst))) if k == 1 and l > 1: print(-1) else: j = 1 while True: p1 = k * j - (j - 1) p2 = k * (j + 1) - j if l <= p1: print(j) break elif l > p1 and l <= p2: print(j + 1) break else: j += 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for tc in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) if len(set(a)) <= k: print(1) elif k == 1: print(-1) else: print(int((len(set(a)) - k - 0.1) // (k - 1) + 2))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for _ in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) temp = len(set(a)) if k != 1: r = temp + k - 3 print(max(1, r // (k - 1))) elif temp == 1: print(1) else: print(-1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for t in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) a.append(-9) count = 0 for i in range(n): if a[i] != a[i + 1]: count += 1 plus, score = 0, 0 if k == 1 and count > 1: print(-1) continue while True: score = k + (k - 1) * plus if score >= count: break plus += 1 print(plus + 1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER WHILE NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
def ceil_div(y, k): return (y + (k - 1)) // k t = int(input()) for i in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) b = set(a) d = len(b) zero = False for x in b: if x == 0: zero = True if k == 1: if d > 1: print(-1) else: print(1) continue if zero: print(ceil_div(d - 1, k - 1)) elif d <= k: print(1) else: d -= k print(1 + ceil_div(d, k - 1))
FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for _ in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) if k == 1: f = True for i in range(1, n): if a[i] != a[i - 1]: f = False if f: print(1) else: print(-1) continue m = [[0] * n] sum_arr = [0] * n i = 1 m[0][0] = a[0] cur_b = 0 last = 0 while True: temp_k = k - 1 tt = False while temp_k != 0: if a[i] != a[i - 1]: temp_k -= 1 m[cur_b][i] = a[i] - last i += 1 if i == n: tt = True break if tt: break l_i = n for j in range(i, n): m[cur_b][j] = m[cur_b][i - 1] if a[j] != a[j - 1] and l_i == n: l_i = j i = l_i if i == n: break cur_b += 1 m.append([0] * n) print(len(m))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP LIST NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) ans = [] for _ in range(t): n, k = [int(i) for i in input().split()] A = [int(i) for i in input().split()] if k == 1: if len(set(A)) != 1: ans += [-1] else: ans += [1] elif len(set(A)) <= k: ans += [1] else: if (len(set(A)) - k) % (k - 1) == 0: add = 0 else: add = 1 ans += [(len(set(A)) - k) // (k - 1) + 1 + add] for i in ans: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR LIST NUMBER VAR LIST NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR LIST NUMBER IF BIN_OP BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR LIST BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for _ in range(t): n, k = list(map(int, input().split())) arr = list(map(int, input().split())) lis = [0] * 101 for i in range(n): lis[arr[i]] = 1 a = lis.count(1) if k == 1 and a > 1: print(-1) else: s = 0 while a > k: a -= k - 1 s += 1 print(s + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for i in range(int(input())): n, k = [int(num) for num in input().split()] x = list(map(int, input().split())) if len(set(x)) <= k: print(1) elif k < 2: print(-1) else: c = len(set(x)) c1 = c - k c1 = c1 // (k - 1) if (c - k) % (k - 1) == 0: print(c1 + 1) else: print(c1 + 2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER IF BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for _ in range(t): n, k = map(int, input().split(" ")) a = list(map(int, input().split(" "))) s = set(a) num = len(s) if k == 1 and num > 1: print(-1) else: num -= k k -= 1 count = 1 while num > 0: num -= k count += 1 print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
ans = [] for t in range(int(input())): n, k = map(int, input().split()) (*a,) = map(int, input().split()) h = {} for v in a: h[v] = True u = len(h) if k == 1: ans.append(1 if u == 1 else -1) else: ans.append(max(1, (u - 1 + k - 2) // (k - 1))) for a in ans: print(a)
ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for _ in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) a = list(set(a)) a.sort() count = 1 if k == 1 and len(a) > 1: print(-1) else: while sum(a) != 0: if len(a) < k: count += 1 break max_ele = a[k - 1] for i in range(len(a)): if a[i] >= max_ele: a[i] -= max_ele elif a[i] < max_ele: a[i] = 0 a = list(set(a)) a.sort() count += 1 print(count - 1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for i in range(t): n, k = map(int, input().split()) length = len(set(input().split(" "))) if k == 1 and length > 1: print(-1) elif k >= length: print(1) else: length -= k k -= 1 print((length + k - 1) // k + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
import sys input = sys.stdin.readline for _ in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) if k == 1: if n == 1: print(1) elif all(a[i] == a[0] for i in range(n)): print(1) else: print(-1) continue res = 1 s = set([]) pos = 0 while pos < n: s.add(a[pos]) if len(s) > k: break else: pos += 1 while pos < n: res += 1 base = a[pos - 1] s = set([0]) while pos < n: s.add(a[pos] - base) if len(s) > k: break else: pos += 1 print(res)
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR LIST ASSIGN VAR NUMBER WHILE VAR VAR EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR NUMBER WHILE VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR LIST NUMBER WHILE VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
from sys import stdin input = stdin.readline for _ in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) cnt = len(set(a)) if k == 1 and cnt > 1: print(-1) continue cnt = max(0, cnt - k) if cnt == 0: print(1) continue ans = 1 k -= 1 ans += (cnt + k - 1) // k print(ans)
ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
import sys def input(): return sys.stdin.readline().strip() def list2d(a, b, c): return [[c for j in range(b)] for i in range(a)] def list3d(a, b, c, d): return [[[d for k in range(c)] for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [ [[[e for l in range(d)] for k in range(c)] for j in range(b)] for i in range(a) ] def ceil(x, y=1): return int(-(-x // y)) def INT(): return int(input()) def MAP(): return map(int, input().split()) def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)] def Yes(): print("Yes") def No(): print("No") def YES(): print("YES") def NO(): print("NO") INF = 10**19 MOD = 10**9 + 7 EPS = 10**-10 for _ in range(INT()): N, K = MAP() A = LIST() ans = INF for i in range(1, N + 1): B = [1] * i k = 1 for j in range(1, N): if A[j] - A[j - 1] != 0: B[k % i] += 1 k += 1 mx = 0 for k in range(i): mx = max(mx, B[k]) if mx <= K: ans = min(ans, i) break if ans == INF: print(-1) else: print(ans)
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF NUMBER RETURN FUNC_CALL VAR BIN_OP VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF NONE RETURN VAR NONE FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
import sys input = sys.stdin.readline inp, ip = lambda: int(input()), lambda: [int(w) for w in input().split()] for _ in range(inp()): n, k = ip() x = ip() dis = len(set(x)) if dis <= k: print(1) continue if 0 in x and dis > 1 and k == 1: print(-1) continue if k == 1: if dis == 1: print(1) else: print(-1) continue ans = 1 dis -= k ans += (dis - 1) // (k - 1) + 1 print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF NUMBER VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
def solve(): n, k = map(int, input().split()) a = list(map(int, input().split())) if n == 1: print(1) return diff = 1 ans = 1 for i, v in enumerate(a): if i > 0: if v == a[i - 1]: continue else: diff += 1 if diff > k: ans += 1 diff = 2 if diff > k: print(-1) else: print(ans) return def main(): t = 1 t = int(input()) for _ in range(t): solve() main()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
import sys input = sys.stdin.readline I = lambda: list(map(int, input().split())) (t,) = I() for _ in range(t): n, k = I() l = I() st = len(set(l)) m = 1 if k == 1 and st != 1: m = -1 elif k >= st: m = 1 else: m = 1 + (st - 2) // (k - 1) print(m)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
(T,) = map(int, input().split()) for _ in range(T): N, K = map(int, input().split()) X = list(map(int, input().split())) if K == 1: if len(set(X)) == 1: print(1) else: print(-1) continue b = 0 vs = set() c = 0 R = 1 for x in X: if x - b not in vs: c += 1 if not c > K: vs.add(x - b) if c > K: c = 1 R += 1 b = x vs = set() if x - b not in vs: c += 1 vs.add(x - b) print(R)
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR IF BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for query in range(int(input())): nk = input().split() n = int(nk[0]) k = int(nk[1]) a = [(int(x) - 1) for x in input().split()] x = [False] * 101 count = 0 for y in range(n): x[a[y]] = True for y in range(101): if x[y]: count += 1 if count != 1 and k == 1: print(-1) continue if count == 1: print(1) continue if (count - 1) % (k - 1) == 0: print((count - 1) // (k - 1)) else: print((count - 1) // (k - 1) + 1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for _ in range(int(input())): n, k = map(int, input().split()) a = [int(x) for x in input().split()] l = len(set(a)) if l == 1: print(1) elif l <= k: print(1) elif k == 1 and l != 1: print(-1) else: ans = 0 sumi = -1 while sumi != 0: sumi = 0 ans += 1 nc = k s = a[0] for z in range(n): if nc: if s != a[z]: nc -= 1 if nc: s = a[z] a[z] -= s sumi += a[z] print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR IF VAR VAR VAR VAR NUMBER IF VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
def solve(A, n, k): prev = -1 dist = [] for it in A: if it != prev: dist.append(it) prev = it td = len(dist) if k == 1: if td == 1: return 1 else: return -1 if td <= k: return 1 ans = (td - 2) // (k - 1) + 1 return ans for case in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) ans = solve(a, n, k) print(ans)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
TC = int(input()) for tc in range(TC): N, K = map(int, input().split()) A = list(map(int, input().split())) result = 0 tmp = A.copy() noZeros = True while noZeros: noZeros = False count = 0 last = -1 for i in range(N): if count >= K: if last == 0: result = -2 noZeros = False break tmp[i] -= last if tmp[i] > 0: noZeros = True elif tmp[i] > last: last = tmp[i] count += 1 tmp[i] = 0 else: tmp[i] = 0 result += 1 print(result)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for _ in range(int(input())): n, k = map(int, input().split(" ")) ans = 0 arr = [int(num) for num in input().split(" ")] if k == 1 and len(set(arr)) != 1: ans = -1 elif arr[0] == 0 and len(set(arr)) == 1: ans = 1 else: while arr[0] != 0 or len(set(arr)) != 1: i = 0 a = set() a.add(arr[0]) while i < n and len(set(a)) <= k: a.add(arr[i]) if len(a) > k: break else: arr[i] = 0 i = i + 1 for j in range(i, n): arr[j] = arr[j] - arr[i - 1] ans = ans + 1 print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER WHILE VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
testcases = int(input()) for testcase in range(testcases): temparr = input() temparr = temparr.split() n = int(temparr[0]) k = int(temparr[1]) temparr = input() temparr = temparr.split() arr = [] dicts = {} for i in temparr: arr.append(int(i)) dicts[i] = 1 if k == 1 and len(dicts) == 1: print(1) continue elif k == 1 and len(dicts) >= 1: print(-1) continue count = 0 while sum(arr) != 0: curk = 0 curmax = 0 dicts = {} for i in range(n): curelem = arr[i] if curelem not in dicts and curk < k: curmax = curelem dicts[curelem] = 1 curk += 1 arr[i] = 0 elif curelem in dicts: arr[i] = 0 elif curk == k: arr[i] -= curmax count += 1 print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR DICT FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for i in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) if k == 1 and len(set(a)) > 1: print(-1) else: m = 0 while a != [0] * n: k1 = k tmp = -1 for i in range(n): if k1 > 0 and a[i] > tmp: tmp = a[i] a[i] -= tmp k1 -= 1 else: a[i] -= tmp m += 1 print(m)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
( lambda W: [ ( lambda N, K, n: ( print(1 if all(n[i] == n[i + 1] for i in range(N - 1)) else -1) if K == 1 else ( lambda b, k: ( lambda ns, bs, ks: print( len( list( W( lambda i: n[-1] and ( bs(0, -1), ks(0, 0), [ ( ns(i, n[i] - b[0]) if k[0] == K else ( n[i] != b[0] and ( bs(0, n[i]), ks(0, k[0] + 1), ), ns(i, 0), ) ) for i in range(N) ], ), (i for i in range(999)), ) ) ) ) )(n.__setitem__, b.__setitem__, k.__setitem__) )([0], [0]) ) )(*map(int, input().split()), list(map(int, input().split()))) for t in range(int(input())) ] )(__import__("itertools").takewhile)
EXPR FUNC_CALL FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR NUMBER NUMBER FUNC_CALL VAR NUMBER NUMBER VAR NUMBER VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER VAR VAR VAR NUMBER FUNC_CALL VAR NUMBER VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR NUMBER VAR VAR VAR LIST NUMBER LIST NUMBER FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR STRING
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) while t: n, k = map(int, input().split()) a = list(map(int, input().split())) ans = 0 flag = 0 while True: s = list(set(a)) s.sort() if len(s) >= k: val = s[k - 1] else: val = s[-1] if val == 0 and len(s) > 1: flag = 1 break if val == 0 and len(s) == 1: break for i in range(n): if a[i] - val >= 0: a[i] -= val else: a[i] = 0 ans += 1 if flag: print(-1) else: print(ans) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
from sys import stdin T = int(stdin.readline().strip()) for caso in range(T): n, k = map(int, stdin.readline().strip().split()) a = list(map(int, stdin.readline().strip().split())) x = len(set(a)) - k if x <= 0: print(1) continue if k == 1: print(-1) continue ans = 1 + x // (k - 1) if x % (k - 1) != 0: ans += 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for _ in range(int(input())): n, k = map(int, input().split()) data = set(map(int, input().split())) if len(data) > 1 and k == 1: print(-1) elif len(data) <= k: print(1) elif (len(data) - k) % (k - 1) == 0: print(1 + (len(data) - k) // (k - 1)) else: print(1 + (len(data) - k) // (k - 1) + 1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP BIN_OP FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for _ in range(t): n, k = map(int, input().split()) A = list(map(int, input().split())) c = len(set(A)) if k - 1 == 0: if c - 1 > 0: print(-1) else: print(1) else: ans = (c - 1 + (k - 1) - 1) // (k - 1) print(max(1, ans))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
import sys z = sys.stdin.readline for _ in range(int(input())): n, k = map(int, z().split()) a = [*map(int, z().split())] s = len(set(a)) print(1 - 2 * (s > 1) if k < 2 else max(1, -((1 - s) // (k - 1))))
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER BIN_OP NUMBER BIN_OP NUMBER VAR NUMBER FUNC_CALL VAR NUMBER BIN_OP BIN_OP NUMBER VAR BIN_OP VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
def calc(sa, k): if sa == k: return 1 if k == 1 and sa > 1: return -1 result = 0 if sa > k: sa -= k result += 1 result += sa // (k - 1) if sa % (k - 1) != 0: result += 1 return result T = int(input()) for t in range(T): st = input().split() k = int(st[1]) a = input().split() a = list(dict.fromkeys(a)) sa = len(a) print(calc(sa, k))
FUNC_DEF IF VAR VAR RETURN NUMBER IF VAR NUMBER VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for _ in range(int(input())): n, k = map(int, input().split()) a = set([int(x) for x in input().split()]) if k == 1: print(-1 if len(a) > 1 else 1) else: print(max(1, (len(a) + k - 2 - 1) // (k - 1)))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER BIN_OP VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
import sys input = sys.stdin.readline def main(): t = int(input()) for _ in range(t): N, K = [int(x) for x in input().split()] A = [int(x) for x in input().split()] acnt = len(set(A)) if K == 1 and acnt != 1: print(-1) continue acnt -= K if acnt <= 0: print(1) continue ans = 1 ans += -(-acnt // (K - 1)) print(ans) main()
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for _ in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) s = set() def arrsum(): s.clear() m = 1 for i in range(n): s.add(a[i]) if len(s) == k: break sm = 0 for i in range(n): if a[i] - sm not in s: if len(s) < k: s.add(a[i] - sm) else: m += 1 mx = max(s) sm += mx s.clear() s.add(0) s.add(a[i] - sm) if len(s) > k: return -1 return m print(arrsum())
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR IF FUNC_CALL VAR VAR VAR RETURN NUMBER RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
import sys sys.setrecursionlimit(10**5) int1 = lambda x: int(x) - 1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.readline()) def MI(): return map(int, sys.stdin.readline().split()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def SI(): return sys.stdin.readline()[:-1] for _ in range(II()): n, k = MI() aa = LI() cnt = 0 for i in range(n - 1): if aa[i] != aa[i + 1]: cnt += 1 if cnt == 0: print(1) continue if k == 1: print(-1) continue ans = (cnt + k - 2) // (k - 1) print(ans)
IMPORT EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR STRING FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for _ in range(int(input())): n, k = map(int, input().split()) l = list(map(int, input().split())) d = {} ans = 1 for i in l: d[i] = d.get(i, 0) + 1 if k == 1: if len(d) != 1: print(-1) else: print(ans) elif len(d) <= k: print(ans) else: p = sorted(list(d.keys())) v = p[:k] j = 0 for i in range(n): if l[i] - v[j] == 0: l[i] = 0 else: if j + 1 < k: j += 1 l[i] -= v[j] d = {} for i in l: d[i] = d.get(i, 0) + 1 p = sorted(list(d.keys())) while len(p) > 0: v = p[:k] ans += 1 j = 0 for i in range(n): if l[i] - v[j] == 0: l[i] = 0 else: if j + 1 < k: j += 1 l[i] -= v[j] d = {} for i in l: d[i] = d.get(i, 0) + 1 p = sorted(list(d.keys())) if p == [0]: break print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR NUMBER VAR VAR VAR VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR NUMBER VAR VAR VAR VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR LIST NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for _ in range(t): n, k = map(int, input().split()) l = list(map(int, input().split())) ll = list(set(l)) if k == 1 and len(ll) == 1: print(1) elif k == 1 and len(ll) != 1: print(-1) else: d = len(ll) c = 0 while d > k: d = d - k + 1 c += 1 if d > 0: print(c + 1) else: print(c)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
def mi(): return map(int, input().split()) for _ in range(int(input())): n, k = mi() a = list(set(list(mi()))) uniq = len(a) if k == 1: if uniq > 1: print(-1) else: print(1) continue if uniq <= k: print(1) continue uniq -= k print(1 + (uniq + k - 2) // (k - 1))
FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for j in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) r = set(a) e = len(r) - k if k == 1 and len(r) != 1: print(-1) elif k == 1 and len(r) == 1: print(1) elif e <= 0: print(1) elif e % (k - 1) == 0: print(e // (k - 1) + 1) else: print(e // (k - 1) + 2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for _ in range(t): n, k = map(int, input().split()) inp = [int(j) for j in input().split()] cnt = 0 flag = 0 while 1: temp = list(set(inp)) temp.sort() if len(temp) >= k: minVal = temp[k - 1] else: minVal = temp[-1] if minVal == 0: if len(temp) <= 1: break else: flag = 1 break for i in range(n): if inp[i] - minVal < 0: inp[i] = 0 else: inp[i] = inp[i] - minVal cnt += 1 if flag == 1: print(-1) else: print(cnt)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for _ in range(int(input())): N, M = [int(i) for i in input().split(" ")] A = [int(i) for i in input().split(" ")] count = 1 for i in range(1, N): if A[i] != A[i - 1]: count += 1 if M == 1: if count == 1: print(1) else: print(-1) elif M >= count: print(1) else: ans = 0 count -= M ans = 1 if count % (M - 1) == 0: ans += count // (M - 1) print(ans) else: ans += count // (M - 1) + 1 print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for _ in range(int(input())): n, k = map(int, input().split()) A = list(map(int, input().split())) if k == 1 and len(set(A)) != 1: print(-1) continue m = 0 while True: m += 1 used = 1 if m > 1 else 0 last = 0 if m > 1 else -1 for i in range(n): if used == k or A[i] == last: A[i] -= last else: last = A[i] used += 1 A[i] -= last if all(v == 0 for v in A): break print(m)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for _ in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) s = set(a) if len(s) > 1 and k == 1: print(-1) continue if len(s) <= k: print(1) continue ans = 1 + (len(s) - k) // (k - 1) if (len(s) - k) % (k - 1): ans += 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP BIN_OP FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for _ in range(t): n, k = map(int, input().split()) a = [int(x) for x in input().split()] aS = set(a) u = len(aS) answer = 0 if 0 not in aS: u -= min(k - 1, u - 1) answer += 1 k -= 1 if k == 0: if u == 1: print(answer) else: print(-1) else: allSame = (u + k - 2) // k print(answer + allSame)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF NUMBER VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for you in range(t): l = input().split() n = int(l[0]) k = int(l[1]) l = input().split() li = [int(i) for i in l] if k == 1: poss = 1 for i in li: if i != li[0]: poss = 0 break if poss: print(1) else: print(-1) continue count = 0 for i in range(n - 1): if li[i] != li[i + 1]: count += 1 count += 1 for i in range(1, 400): if (i - 1) * (k - 1) + k >= count: ans = i break print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for i in range(t): n, k = map(int, input().split()) lst = list(map(int, input().split())) s = set(lst) l = len(s) if k == 1 and l > 1: print(-1) elif k == 1 and l == 1: print(1) elif k < l: if (l - 1) % (k - 1) == 0: print((l - 1) // (k - 1)) else: print((l - 1) // (k - 1) + 1) elif k >= l: print(1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR IF BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
def solve(n, k, arr): num = len(set(arr)) if k == 1: if num == 1: return 1 return -1 if num <= k: return 1 return (num + k - 3) // (k - 1) t = int(input()) for i in range(t): n, k = map(int, input().split()) arr = list(map(int, input().split())) print(solve(n, k, arr))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER IF VAR VAR RETURN NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for _ in range(int(input())): n, k = list(map(int, input().split())) l = list(map(int, input().split())) dist = len(set(l)) if dist <= k: print(1) continue if k == 1: print(-1) else: ans = (dist - k) // (k - 1) + 1 if (dist - k) % (k - 1): ans += 1 print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for _ in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) a1 = set(a) d = len(a1) j = 0 m = 0 tot = 0 while tot < d and k - (j > 0) > 0: t = k - (j > 0) tot += t m += 1 j += 1 if tot < d: print(-1) else: print(m)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for i in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) g = [0] * 105 for j in range(n): g[a[j]] = g[a[j]] + 1 c = 0 for j in range(105): if g[j] > 0: c = c + 1 if c <= k: print("1") elif k == 1 and c > 1: print("-1") else: if (c - 1) % (k - 1) == 0: c = (c - 1) // (k - 1) else: c = (c - 1) // (k - 1) + 1 print(c)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
a = int(input()) for k in range(0, a): b = list(map(int, input().split())) h = list(map(int, input().split())) if h.count(h[0]) != len(h) and b[1] == 1 and len(h) > 1: print(-1) else: c = [] for i in range(0, len(h)): if h[i] not in c: c.append(h[i]) i = 0 while c.count(0) != len(c): j = 0 h = 0 if c.count(0) != 0: h = h + 1 while h < b[1]: if c.count(0) != len(c): if c[j] != 0: c[j] = 0 h = h + 1 else: break j = j + 1 j = j - 1 h = c[j] j = j + 1 while j < len(c): c[j] = c[j] - h j = j + 1 i = i + 1 print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR NUMBER IF FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
import sys input = sys.stdin.readline for _ in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) cnt = 0 for i in range(1, n): if a[i] > a[i - 1]: cnt += 1 if k == 1: if [a[0]] * n == a: print(1) else: print(-1) else: print(max(1, (cnt + k - 2) // (k - 1)))
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER IF BIN_OP LIST VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for t in range(int(input())): n, k = map(int, input().split()) v = list(map(int, input().split())) fv = [0] * 101 for x in v: fv[x] += 1 dist = 0 for i in range(0, 101): if fv[i] > 0: dist += 1 k = min(k, dist) if k == 1: print(-1 if dist > 1 else 1) else: print(1 + (dist - 2) // (k - 1))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
game = int(input()) for i in range(game): n, k = map(int, input().split()) a = list(map(int, input().split())) b = set(a) p = len(b) q = 0 count = 0 j = 1 if k == 1: if p == 1: print(1) else: print(-1) elif p <= k: print(1) else: q = p - k while (q - 0.1) // ((k - 1) * j) != 0: count += 1 j += 1 print(count + 2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR WHILE BIN_OP BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
a = int(input()) for i in range(a): n, k = map(int, input().split()) z = list(map(int, input().split())) ans = list(set(z)) if len(ans) > 1 and k == 1: print(-1) continue else: t = len(ans) cnt = 0 flag = 0 while 1: if flag == 0: t -= k flag = 1 cnt += 1 else: t -= k - 1 cnt += 1 if t <= 0: break print(cnt)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF VAR NUMBER VAR VAR ASSIGN VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
from sys import setrecursionlimit, stdin, stdout class Tail_Recursion_Optimization: def __init__(self, RECURSION_LIMIT, STACK_SIZE): setrecursionlimit(RECURSION_LIMIT) threading.stack_size(STACK_SIZE) return None class SOLVE: def solve(self): R = stdin.readline W = stdout.write ans = [] for i in range(int(R())): n, k = [int(x) for x in R().split()] a = [int(x) for x in R().split()] a = list(set(a)) if k == 1 and len(a) > 1: ans.append("-1") continue elif len(a) <= k: ans.append("1") continue cnt = 1 while len(a) > k: taken = a[k - 1] for j in range(k): a[j] = 0 for j in range(k, len(a)): a[j] -= taken cnt += 1 a = list(set(a)) ans.append(str(cnt)) W("\n".join(ans)) return 0 def main(): s = SOLVE() s.solve() main()
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN NONE CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
from sys import * input = stdin.readline for _ in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) start = a[0] cn = 1 dsnt = 1 flag = 1 for i in a: if i != start and k != 1 and dsnt == k: cn += 1 dsnt = 2 start = i if i != start: start = i dsnt += 1 if dsnt > k: flag = 0 break if flag == 0: stdout.write(str(-1) + "\n") else: stdout.write(str(cn) + "\n")
ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR NUMBER STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
def solution(n, k, a): res = 1 if k == 1: for i in range(1, n): if a[i] != a[0]: return -1 return 1 cnt = 1 cur = a[0] for index in range(1, n): if cur == a[index]: continue if cnt == k: res += 1 cnt = 1 cnt += 1 cur = a[index] return res t = int(input()) for _ in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) print(solution(n, k, a))
FUNC_DEF ASSIGN VAR NUMBER IF VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for _ in range(int(input())): n, k = map(int, input().split()) arr = list(map(int, input().split())) arr = list(set(arr)) arr.sort() n = len(arr) if k >= 1 and n == 1: print(1) continue if k == 1 and n > 1: print(-1) continue c = len(arr) - 1 ans = c / (k - 1) if int(ans) == ans: ans = int(ans) else: ans = int(ans) + 1 print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for _ in range(int(input())): n, k = [int(i) for i in input().split()] a = [int(i) for i in input().split()] b = [] while True: b_i = [] ind = 0 for num in range(k): b_i.append(a[ind]) for ind_a, el in enumerate(a): if ind != ind_a: if a[ind] == a[ind_a]: b_i.append(a[ind_a]) elif a[ind] > a[ind_a]: continue else: ind = ind_a break b_i.extend([b_i[-1]] * (n - ind)) ind_a = 0 nexus = a.copy() while ind_a < n: a[ind_a] = 0 if b_i[-1] > a[ind_a] else a[ind_a] - b_i[-1] ind_a += 1 flag = 0 if nexus == a: flag = 1 break b.append(b_i.copy()) if a[-1] == 0: break print(len(b) if flag == 0 else -1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST WHILE NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP LIST VAR NUMBER BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR WHILE VAR VAR ASSIGN VAR VAR VAR NUMBER VAR VAR NUMBER BIN_OP VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for _ in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) if k == 1 and len(set(a)) > 1: print(-1) else: s = set() prev = None result = 1 for x in a: if x != prev: s.add(x) prev = x if len(s) > k: result += 1 s = {0, x} print(result)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NONE ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for i in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) if k == 1 and len(set(a)) > 1: print(-1) elif k == 1: print(1) else: c = 0 while True: if c == 1: k -= 1 for j in range(k): m = min(a) for e in range(n): if a[e] != 101: a[e] -= m if a[e] == 0: a[e] = 101 c += 1 for e in range(n): if a[e] != 101: break else: break print(c)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) for _ in range(t): n, k = map(int, input().split()) a = [int(i) for i in input().split()] st = set(a) if k == 1 and len(st) > 1: print(-1) continue res = 0 b = [0] * n b[0] = a[0] while True: kek1 = 0 kek = 0 for i in range(1, n): if a[i] != a[i - 1]: kek1 += 1 if kek1 < k: kek = a[i] b[i] = kek for i in range(0, n): a[i] -= b[i] res += 1 b[0] = 0 if a.count(0) == len(a): break print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER VAR NUMBER WHILE NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER NUMBER IF FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
mod = 10**9 + 7 def solve(): ans = -1 n, k = map(int, input().split()) a = list(map(int, input().split())) d = {} for x in a: d[x] = 1 if k == 1: if len(d) != 1: ans = -1 else: ans = 1 else: l = len(d) ans = max((l + k - 3) // (k - 1), 1) print(ans) t = int(input()) while t > 0: solve() t -= 1
ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR NUMBER IF VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
def is_sorted(li): temp = list(li) for i in range(0, len(li)): if li[i] != temp[i]: return False return True def process(): n, k = list(map(int, input().split())) li = list(map(int, input().split())) if is_sorted(li) == False: print("-1") return elif k == 1 and len(set(li)) == 1: print("1") return elif k > 1: ans = 0 s = len(set(li)) ans = 1 s -= k while s > 0: ans += 1 s -= k - 1 print(ans) else: print("-1") return tests = int(input()) for i in range(tests): process()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING RETURN IF VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING RETURN IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR VAR WHILE VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING RETURN ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
T = int(input()) while T > 0: n, k = map(int, input().split()) arr = list(map(int, input().split())) index = 0 count = 0 ss = 0 prev = -1 res = 0 find = True while index < n: temp = arr[index] - ss if prev == temp: index += 1 continue else: prev = temp count += 1 if count > k: find = False break if count == k: ss += prev res += 1 prev = 0 count = 1 index += 1 if find is False: print(-1) else: if count > 1 or res == 0: res += 1 print(res) T -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
for _ in range(int(input())): n, k = map(int, input().split()) A = [int(x) for x in input().split()] if k == 1: flag = 0 for i in A: if A[0] != i: flag = 1 if flag == 1: print(-1) else: print(1) else: x = set(A) if len(x) <= k: print(1) else: print(max(1, (len(x) - 1 + (k - 2)) // (k - 1)))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER
You are given a non-decreasing array of non-negative integers $a_1, a_2, \ldots, a_n$. Also you are given a positive integer $k$. You want to find $m$ non-decreasing arrays of non-negative integers $b_1, b_2, \ldots, b_m$, such that: The size of $b_i$ is equal to $n$ for all $1 \leq i \leq m$. For all $1 \leq j \leq n$, $a_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j}$. In the other word, array $a$ is the sum of arrays $b_i$. The number of different elements in the array $b_i$ is at most $k$ for all $1 \leq i \leq m$. Find the minimum possible value of $m$, or report that there is no possible $m$. -----Input----- The first line contains one integer $t$ ($1 \leq t \leq 100$): the number of test cases. The first line of each test case contains two integers $n$, $k$ ($1 \leq n \leq 100$, $1 \leq k \leq n$). The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100$, $a_n > 0$). -----Output----- For each test case print a single integer: the minimum possible value of $m$. If there is no such $m$, print $-1$. -----Example----- Input 6 4 1 0 0 0 1 3 1 3 3 3 11 3 0 1 2 2 3 3 3 4 4 4 4 5 3 1 2 3 4 5 9 4 2 2 3 5 7 11 13 13 17 10 7 0 1 1 2 3 3 4 5 5 6 Output -1 1 2 2 2 1 -----Note----- In the first test case, there is no possible $m$, because all elements of all arrays should be equal to $0$. But in this case, it is impossible to get $a_4 = 1$ as the sum of zeros. In the second test case, we can take $b_1 = [3, 3, 3]$. $1$ is the smallest possible value of $m$. In the third test case, we can take $b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]$ and $b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2]$. It's easy to see, that $a_i = b_{1, i} + b_{2, i}$ for all $i$ and the number of different elements in $b_1$ and in $b_2$ is equal to $3$ (so it is at most $3$). It can be proven that $2$ is the smallest possible value of $m$.
t = int(input()) while t > 0: n, k = map(int, input().split()) a = [int(i) for i in input().split()] a = set(a) count = len(a) ans = 0 if k == 1 and count > 1: print(-1) else: ans = 1 count -= k k -= 1 while count > 0: count -= k ans += 1 print(ans) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR NUMBER WHILE VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
n = int(input()) coordinates = [] for i in range(n): coordinates.append([int(i) for i in input().split()]) coordinates[i].append(i + 1) coordinates.sort() remaining = [] i = 0 while i < len(coordinates): if i < len(coordinates) - 1 and coordinates[i][:2] == coordinates[i + 1][:2]: print(coordinates[i][3], coordinates[i + 1][3]) i += 2 else: remaining.append(coordinates[i]) i += 1 coordinates = list(remaining) remaining = [] i = 0 while i < len(coordinates): if i < len(coordinates) - 1 and coordinates[i][0] == coordinates[i + 1][0]: print(coordinates[i][3], coordinates[i + 1][3]) i += 2 else: remaining.append(coordinates[i]) i += 1 coordinates = list(remaining) for i in range(int(len(coordinates)) // 2): print(coordinates[2 * i][3], coordinates[2 * i + 1][3])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
import sys def main(): n = int(sys.stdin.readline()) points = [None] * n for i in range(n): x, y, z = map(int, sys.stdin.readline().split()) points[i] = [x, y, z, i] points.sort() for _ in range(n // 2): best = 1 for i in range(2, len(points)): x1 = abs(points[best][0] - points[0][0]) y1 = abs(points[best][1] - points[0][1]) z1 = abs(points[best][2] - points[0][2]) x2 = abs(points[i][0] - points[0][0]) y2 = abs(points[i][1] - points[0][1]) z2 = abs(points[i][2] - points[0][2]) if ( x2 * y2 * z2 < x1 * y1 * z1 or min(points[best][0], points[0][0]) <= points[i][0] <= max(points[best][0], points[0][0]) and min(points[best][1], points[0][1]) <= points[i][1] <= max(points[best][1], points[0][1]) and min(points[best][2], points[0][2]) <= points[i][2] <= max(points[best][2], points[0][2]) ): best = i print(points[0][3] + 1, points[best][3] + 1) del points[best] del points[0] main()
IMPORT FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NONE VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST VAR VAR VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR NUMBER NUMBER IF BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER NUMBER VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER NUMBER VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER NUMBER VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER BIN_OP VAR VAR NUMBER NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
n = int(input()) a = [tuple(map(int, input().split())) for _ in range(n)] s = {a[q]: (q + 1) for q in range(n)} a.sort() q, q1 = 0, 1 d, d1, d2 = [[[a[0]]]], [], [] while q1 < n: while q1 < n and a[q][0] == a[q1][0]: while q1 < n and a[q][1] == a[q1][1]: d[-1][-1].append(a[q1]) q1 += 1 if q1 < n and a[q][0] == a[q1][0]: d[-1].append([a[q1]]) q = q1 q1 += 1 if q1 < n: d.append([[a[q1]]]) q = q1 q1 += 1 for q in range(len(d)): for q1 in range(len(d[q])): for q2 in range(1, len(d[q][q1]), 2): print(s[d[q][q1][q2 - 1]], s[d[q][q1][q2]]) if len(d[q][q1]) % 2 == 1: d[q][q1] = d[q][q1][-1] else: d[q][q1] = -1 for q in range(len(d)): d1.append([]) for q1 in range(len(d[q])): if d[q][q1] != -1: d1[-1].append(d[q][q1]) for q in range(len(d1)): for q1 in range(1, len(d1[q]), 2): print(s[d1[q][q1 - 1]], s[d1[q][q1]]) if len(d1[q]) % 2 == 1: d2.append(d1[q][-1]) for q in range(1, len(d2), 2): print(s[d2[q - 1]], s[d2[q]])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR LIST LIST LIST VAR NUMBER LIST LIST WHILE VAR VAR WHILE VAR VAR VAR VAR NUMBER VAR VAR NUMBER WHILE VAR VAR VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER LIST VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR LIST LIST VAR VAR ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
n = int(input()) li = [] for i in range(n): a, b, c = map(int, input().split()) li.append([a, b, c, i + 1]) li.sort() i = 0 l = len(li) a = [] while i < l: if i < l - 1 and li[i][:2] == li[i + 1][:2]: print(li[i][3], li[i + 1][3]) i += 2 else: a.append(li[i]) i += 1 li = list(a) l = len(li) i = 0 a = [] while i < l: if i < l - 1 and li[i][0] == li[i + 1][0]: print(li[i][3], li[i + 1][3]) i += 2 else: a.append(li[i]) i += 1 li = list(a) l = len(li) i = 0 while i < l - 1: print(li[i][3], li[i + 1][3]) i += 2
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST WHILE VAR VAR IF VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR IF VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
n = int(input()) d = {} f = {} a = [] for i in range(n): x = [p for p in input().split()] l = [] for j in range(3): l.append(int(x[j])) a.append(l) d["*".join(x)] = i + 1 a.sort() i = 0 for k in range(0, n // 2): for i in range(0, len(a) - 1): flag = 0 ymin = min(a[i + 1][1], a[i][1]) ymax = max(a[i + 1][1], a[i][1]) zmin = min(a[i][2], a[i + 1][2]) zmax = max(a[i][2], a[i + 1][2]) for j in range(i + 2, len(a)): if a[j][0] > a[i + 1][0]: break if ymin <= a[j][1] <= ymax and zmin <= a[j][2] <= zmax: flag = 1 break if flag == 0: b = [] for ii in range(3): b.append(str(a[i][ii])) c = [] for ii in range(3): c.append(str(a[i + 1][ii])) print(d["*".join(b)], d["*".join(c)]) p = a[i + 1] a.remove(a[i]) a.remove(p) break
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL STRING VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR FUNC_CALL STRING VAR VAR FUNC_CALL STRING VAR ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
from sys import setrecursionlimit, stdin setrecursionlimit(10**7) def iin(): return int(stdin.readline()) def lin(): return list(map(int, stdin.readline().split())) def main(): n = iin() point = [(lin() + [i + 1]) for i in range(n)] point.sort(reverse=True) p1 = [] while point: x, y, z, pos = point.pop() if len(point) > 0 and x == point[-1][0] and y == point[-1][1]: x1, y1, z1, pos1 = point.pop() print(pos, pos1) else: p1.append([x, y, z, pos]) point = p1 point.sort(reverse=True) p1 = [] while point: x, y, z, pos = point.pop() if len(point) > 0 and x == point[-1][0]: p2 = point.pop() print(pos, p2[3]) else: p1.append([x, y, z, pos]) point = p1 point.sort(reverse=True) for i in range(0, len(point), 2): print(point[i][3], point[i + 1][3]) main()
EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR LIST BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST WHILE VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST WHILE VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
import sys reader = (s.rstrip() for s in sys.stdin) input = reader.__next__ n = int(input()) points = [] for i in range(n): x, y, z = map(int, input().split()) points.append((x, y, z, i + 1)) points.sort() ans = [] for i in range(n - 1): if ( points[i] and points[i][0] == points[i + 1][0] and points[i][1] == points[i + 1][1] ): ans.append([points[i][-1], points[i + 1][-1]]) points[i] = points[i + 1] = None remain = [i for i in range(n) if points[i]] for i in range(len(remain) - 1): j1 = remain[i] j2 = remain[i + 1] if points[j1] and points[j1][0] == points[j2][0]: ans.append([points[j1][-1], points[j2][-1]]) points[j1] = points[j2] = None remain = [i for i in range(n) if points[i]] for i in range(0, len(remain), 2): ans.append([points[remain[i]][-1], points[remain[i + 1]][-1]]) for i in ans: print(*i)
IMPORT ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR LIST VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER NONE ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR LIST VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NONE ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR LIST VAR VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
import sys input = sys.stdin.buffer.readline def dis(xx, yy): val = abs(xx[0] - yy[0]) + abs(xx[1] - yy[1]) + abs(xx[2] - yy[2]) return val n = int(input()) ar = [] for i in range(n): ar.append(list(map(int, input().split()))) se = set({}) for i in range(n): if not i in se: se.add(i) dist = float("inf") ind = -1 for j in range(n): if not j in se: if dist > dis(ar[i], ar[j]): dist = dis(ar[i], ar[j]) ind = j se.add(ind) sys.stdout.write(str(i + 1) + " " + str(ind + 1) + "\n")
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR DICT FOR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER STRING FUNC_CALL VAR BIN_OP VAR NUMBER STRING
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
import sys input = sys.stdin.readline INF = float("inf") def compress(array): array2 = sorted(set(array)) memo = {value: index for index, value in enumerate(array2)} for i in range(len(array)): array[i] = memo[array[i]] return array def distance(a, b): ax, ay, az = a bx, by, bz = b dist = ((ax - bx) ** 2 + (ay - by) ** 2 + (az - bz) ** 2) ** 0.5 return dist n = int(input()) a = [list(map(int, input().split())) for i in range(n)] a_t = list(map(list, zip(*a))) a_t[0] = compress(a_t[0]) a_t[1] = compress(a_t[1]) a_t[2] = compress(a_t[2]) a = list(map(list, zip(*a_t))) used = [False] * n for i in range(n): if used[i]: continue used[i] = True dist = INF ind = -1 for j in range(n): if used[j]: continue tmp_dist = distance(a[i], a[j]) if tmp_dist < dist: ind = j dist = tmp_dist used[ind] = True print(i + 1, ind + 1)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
n = int(input()) d = {} c = 1 while n: n -= 1 l = tuple(map(int, input().split())) d[c] = l c += 1 for i in d: if d[i] != -1: ans = 1e18 k = [-1, -1] x1 = d[i][0] y1 = d[i][1] z1 = d[i][2] for j in d: if d[j] != -1 and i != j: x2 = d[j][0] y2 = d[j][1] z2 = d[j][2] aa = abs(x1 - x2) + abs(y1 - y2) + abs(z1 - z2) if aa < ans: ans = aa k[0] = i k[1] = j print(k[0], k[1]) d[k[0]] = -1 d[k[1]] = -1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER VAR ASSIGN VAR NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
n = int(input()) points = [] for i in range(n): points.append(list(map(int, input().split()))) selected = {} ans = [] j = 0 k = 0 while len(selected) != n: if j not in selected: first = points[j] else: j += 1 continue if k not in selected and k != j: second = points[k] temp = k else: k += 1 continue for i in range(2, n): if i not in selected and i != j: if ( min(first[0], second[0]) <= points[i][0] and points[i][0] <= max(first[0], second[0]) and min(first[1], second[1]) <= points[i][1] and points[i][1] <= max(first[1], second[1]) and min(first[2], second[2]) <= points[i][2] and points[i][2] <= max(first[2], second[2]) ): second = points[i] temp = i selected[j] = 1 selected[temp] = 1 ans.append([j + 1, temp + 1]) for i in ans: print(i[0], i[1])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR LIST BIN_OP VAR NUMBER BIN_OP VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
n = int(input()) coord = [] for i in range(n): coord.append(tuple(list(map(int, input().split())) + [i + 1])) coord.sort() def odind(l): l.sort() for i in range(len(l) // 2): print(l[2 * i][-1], l[2 * i + 1][-1]) if len(l) % 2 == 0: return [] return l[-1] def dvad(l): cx = {} ans1 = [] for x, y, n in l: if x in cx: cx[x].append([y, n]) else: cx[x] = [[y, n]] for x, j in cx.items(): v = odind(j) if len(v) != 0: ans1.append(tuple([x] + v)) ans1.sort() for i in range(len(ans1) // 2): print(ans1[2 * i][-1], ans1[2 * i + 1][-1]) if len(ans1) % 2 == 0: return [] return ans1[-1] def trid(l): cx = {} ans1 = [] for x, y, z, n in l: if x in cx: cx[x].append((y, z, n)) else: cx[x] = [(y, z, n)] for x, j in cx.items(): v = list(dvad(j)) if len(v) != 0: ans1.append(tuple([x] + v)) ans1.sort() for i in range(len(ans1) // 2): print(ans1[2 * i][-1], ans1[2 * i + 1][-1]) trid(coord)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR LIST BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER RETURN LIST RETURN VAR NUMBER FUNC_DEF ASSIGN VAR DICT ASSIGN VAR LIST FOR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR LIST VAR VAR ASSIGN VAR VAR LIST LIST VAR VAR FOR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP LIST VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER RETURN LIST RETURN VAR NUMBER FUNC_DEF ASSIGN VAR DICT ASSIGN VAR LIST FOR VAR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR LIST VAR VAR VAR FOR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP LIST VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
n = int(input()) arr = [] for i in range(n): x, y, z = map(int, input().split(" ")) arr.append([x, y, z, i + 1]) v = set() inf = 10**18 res = [] for i in range(n): if arr[i][3] not in v: curr = inf for j in range(i + 1, n): if arr[j][3] not in v: d = ( abs(arr[i][0] - arr[j][0]) + abs(arr[i][1] - arr[j][1]) + abs(arr[i][2] - arr[j][2]) ) if d < curr: curr = d ans = arr[j][3] else: pass v.add(arr[i][3]) v.add(ans) res.append([arr[i][3], ans]) else: pass for item in res: print(item[0], item[1])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR LIST VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR NUMBER VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
n = int(input()) points = [] for i in range(n): x, y, z = map(int, input().split()) points.append((x, y, z, i + 1)) points.sort() x_points = {} for p in points: x, y, z, i = p if x in x_points: x_points[x].append(p) else: x_points[x] = [p] x_to_remove = [] for x, pp in x_points.items(): if len(pp) >= 2: y_points = {} for p in pp: x, y, z, i = p if y in y_points: y_points[y].append(p) else: y_points[y] = [p] y_to_remove = [] for y, ppp in y_points.items(): if len(ppp) >= 2: ppp.sort() for i in range(0, len(ppp) - 1, 2): print(ppp[i][3], ppp[i + 1][3]) if len(ppp) % 2: y_points[y] = [ppp[-1]] else: y_to_remove.append(y) for y in y_to_remove: del y_points[y] indexes = [(ppp[0][3], y) for y, ppp in sorted(y_points.items())] for i in range(0, len(indexes) - 1, 2): print(indexes[i][0], indexes[i + 1][0]) if len(indexes) % 2: x_points[x] = y_points[indexes[-1][1]] else: x_to_remove.append(x) for x in x_to_remove: del x_points[x] indexes = [pp[0][3] for x, pp in sorted(x_points.items())] for i in range(0, len(indexes), 2): print(indexes[i], indexes[i + 1])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR LIST VAR ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR LIST VAR ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR LIST VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER NUMBER VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER NUMBER VAR VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
n = int(input()) x = [] y = [] z = [] for i in range(n): X, Y, Z = map(int, input().split()) x.append(X) y.append(Y) z.append(Z) remove = 0 Re = [] for i in range(2001): Re.append(0) ad = 2 * 3 * 10**8 + 1 for i in range(n): dis = ad if Re[i] == 0: for j in range(i + 1, n): if Re[j] == 0: m = abs(x[i] - x[j]) + abs(y[i] - y[j]) + abs(z[i] - z[j]) if m < dis: dis = m a = i b = j print(a + 1, b + 1) Re[a] = 1 Re[b] = 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR IF VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
def dist(p1, p2): return ( (p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]) + (p1[2] - p2[2]) * (p1[2] - p2[2]) ) n = int(input()) seq = set([tuple([int(c) for c in input().split()] + [i]) for i in range(n)]) while seq: p1 = seq.pop() mn = float("infinity") p2 = -1 for e in seq: d = dist(p1, e) if d < mn: mn = d p2 = e print(p1[3] + 1, p2[3] + 1) seq.remove(p2)
FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR LIST VAR VAR FUNC_CALL VAR VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
import sys input = lambda: sys.stdin.readline().rstrip() N = int(input()) D = {} ans = [] for i in range(N): x, y, z = map(int, input().split()) if z in D: if y in D[z]: D[z][y].append((x, i)) else: D[z][y] = [(x, i)] else: D[z] = {y: [(x, i)]} E = {} for z in D: for y in D[z]: D[z][y] = sorted(D[z][y]) while len(D[z][y]) >= 2: a, b = D[z][y].pop(), D[z][y].pop() ans.append((a[1], b[1])) if len(D[z][y]): if z in E: E[z].append((y, D[z][y][0][1])) else: E[z] = [(y, D[z][y][0][1])] F = [] for z in E: E[z] = sorted(E[z]) while len(E[z]) >= 2: a, b = E[z].pop(), E[z].pop() ans.append((a[1], b[1])) if len(E[z]): F.append((z, E[z][0][1])) F = sorted(F) while len(F) >= 2: a, b = F.pop(), F.pop() ans.append((a[1], b[1])) ans = [(a[0] + 1, a[1] + 1) for a in ans] sans = [" ".join(map(str, a)) for a in ans] print("\n".join(sans))
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR LIST VAR VAR ASSIGN VAR VAR DICT VAR LIST VAR VAR ASSIGN VAR DICT FOR VAR VAR FOR VAR VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR WHILE FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR LIST VAR VAR VAR VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR WHILE FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER VAR VAR ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
from sys import stdin def input(): return stdin.readline()[:-1] def intput(): return int(input()) def sinput(): return input().split() def intsput(): return list(map(int, sinput())) def solve1d(points): points.sort() rem = False if len(points) % 2: rem = points.pop() return [points, rem] def solve2d(points): solut = [] rem = False groups = {} for p in points: if p[1] not in groups: groups[p[1]] = [] groups[p[1]].append(p) gg = sorted(groups.values(), key=lambda x: x[0][1]) for gridx in range(len(gg)): gr = gg[gridx] abc = solve1d(gr) solut += abc[0] if abc[1] and gridx < len(gg) - 1: testing = sorted(gg[gridx + 1], key=lambda x: abs(x[0] - abc[1][0])) tget = testing[0] solut.append(abc[1]) solut.append(tget) gg[gridx + 1].remove(tget) elif abc[1]: rem = abc[1] return [solut, rem] def solve3d(points): solut = [] rem = False groups = {} for p in points: if p[2] not in groups: groups[p[2]] = [] groups[p[2]].append(p) gg = sorted(groups.values(), key=lambda x: x[0][2]) for gridx in range(len(gg)): gr = gg[gridx] abc = solve2d(gr) solut += abc[0] if abc[1] and gridx < len(gg) - 1: testing = sorted( gg[gridx + 1], key=lambda x: (abs(x[0] - abc[1][0]), abs(x[1] - abc[1][1])), ) tget = testing[0] solut.append(abc[1]) solut.append(tget) gg[gridx + 1].remove(tget) elif abc[1]: rem = abc[1] return [solut, rem] n = intput() cod = [intsput() for _ in range(n)] pp, r = solve3d(cod) for i in range(len(pp) // 2): print(cod.index(pp[i * 2]) + 1, cod.index(pp[i * 2 + 1]) + 1)
FUNC_DEF RETURN FUNC_CALL VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR RETURN LIST VAR VAR FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR VAR IF VAR NUMBER VAR ASSIGN VAR VAR NUMBER LIST EXPR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER ASSIGN VAR VAR NUMBER RETURN LIST VAR VAR FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR VAR IF VAR NUMBER VAR ASSIGN VAR VAR NUMBER LIST EXPR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER ASSIGN VAR VAR NUMBER RETURN LIST VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
def main(): n = int(input()) lkz = {} lky = {} for i in range(n): px, py, pz = map(int, input().split()) if pz not in lkz: lkz[pz] = set() lkz[pz].add(py) lky[pz, py] = [(pz, py, px, i + 1)] else: lkz[pz].add(py) if (pz, py) not in lky: lky[pz, py] = [(pz, py, px, i + 1)] else: lky[pz, py].append((pz, py, px, i + 1)) ans = [] final_list = [] for pz in lkz: curr_list = [] for py in lkz[pz]: if len(lky[pz, py]) > 1: lky[pz, py].sort() for i in range(0, len(lky[pz, py]) // 2): p1 = lky[pz, py][2 * i] p2 = lky[pz, py][2 * i + 1] ans.append((p1[3], p2[3])) if len(lky[pz, py]) % 2 == 1: curr_list.append(lky[pz, py][-1]) if len(curr_list) > 1: curr_list.sort() for i in range(0, len(curr_list) // 2): ans.append((curr_list[2 * i][3], curr_list[2 * i + 1][3])) if len(curr_list) % 2 == 1: final_list.append(curr_list[-1]) final_list.sort() for i in range(0, len(final_list) // 2): ans.append((final_list[2 * i][3], final_list[2 * i + 1][3])) for pair in ans: print(*pair) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR LIST VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR LIST VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR ASSIGN VAR LIST FOR VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
This is an easier version of the problem. In this version, $n \le 2000$. There are $n$ distinct points in three-dimensional space numbered from $1$ to $n$. The $i$-th point has coordinates $(x_i, y_i, z_i)$. The number of points $n$ is even. You'd like to remove all $n$ points using a sequence of $\frac{n}{2}$ snaps. In one snap, you can remove any two points $a$ and $b$ that have not been removed yet and form a perfectly balanced pair. A pair of points $a$ and $b$ is perfectly balanced if no other point $c$ (that has not been removed yet) lies within the axis-aligned minimum bounding box of points $a$ and $b$. Formally, point $c$ lies within the axis-aligned minimum bounding box of points $a$ and $b$ if and only if $\min(x_a, x_b) \le x_c \le \max(x_a, x_b)$, $\min(y_a, y_b) \le y_c \le \max(y_a, y_b)$, and $\min(z_a, z_b) \le z_c \le \max(z_a, z_b)$. Note that the bounding box might be degenerate. Find a way to remove all points in $\frac{n}{2}$ snaps. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 2000$; $n$ is even), denoting the number of points. Each of the next $n$ lines contains three integers $x_i$, $y_i$, $z_i$ ($-10^8 \le x_i, y_i, z_i \le 10^8$), denoting the coordinates of the $i$-th point. No two points coincide. -----Output----- Output $\frac{n}{2}$ pairs of integers $a_i, b_i$ ($1 \le a_i, b_i \le n$), denoting the indices of points removed on snap $i$. Every integer between $1$ and $n$, inclusive, must appear in your output exactly once. We can show that it is always possible to remove all points. If there are many solutions, output any of them. -----Examples----- Input 6 3 1 0 0 3 0 2 2 0 1 0 0 1 3 0 0 1 0 Output 3 6 5 1 2 4 Input 8 0 1 1 1 0 1 1 1 0 1 1 1 2 2 2 3 2 2 2 3 2 2 2 3 Output 4 5 1 6 2 7 3 8 -----Note----- In the first example, here is what points and their corresponding bounding boxes look like (drawn in two dimensions for simplicity, as all points lie on $z = 0$ plane). Note that order of removing matters: for example, points $5$ and $1$ don't form a perfectly balanced pair initially, but they do after point $3$ is removed. [Image]
import sys input = sys.stdin.buffer.readline con = 10**9 + 7 INF = float("inf") def getlist(): return list(map(int, input().split())) def main(): N = int(input()) n = N // 2 node = [] for i in range(N): x, y, z = getlist() node.append([x, y, z, i]) for i in range(n - 1): ans = [] x1 = node[-1][0] y1 = node[-1][1] z1 = node[-1][2] ans.append(node[-1][3] + 1) val = INF ind = 0 q = 0 for j in range(N - 2 * i - 1): x2 = node[j][0] y2 = node[j][1] z2 = node[j][2] if abs(x1 - x2) + abs(y1 - y2) + abs(z1 - z2) < val: ind = j q = node[j][3] + 1 val = abs(x1 - x2) + abs(y1 - y2) + abs(z1 - z2) ans.append(q) print(" ".join(list(map(str, ans)))) del node[-1] del node[ind] print(node[0][3] + 1, node[1][3] + 1) main()
IMPORT ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR STRING FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR LIST ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR