description
stringlengths 171
4k
| code
stringlengths 94
3.98k
| normalized_code
stringlengths 57
4.99k
|
|---|---|---|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
k1 = 0
for i in s:
if i == "1":
k1 += 1
k0 = 0
for i in s:
if i == "0":
k0 += 1
if i == "2":
break
ans = "0" * k0 + "1" * k1
i = 0
while i < len(s):
if s[i] == "2":
ans += "2"
i += 1
while i < len(s) and s[i] != "2":
if s[i] == "0":
ans += "0"
i += 1
else:
i += 1
print(ans)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER IF VAR STRING ASSIGN VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR STRING VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR STRING IF VAR VAR STRING VAR STRING VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input("")
num = 0
flag = False
for numero in s:
if numero == "1":
num += 1
if "2" not in s or "0" not in s:
s = "".join(sorted(s))
print(s)
quit()
for elemento in s:
if elemento == "0":
print("0", end="")
elif elemento == "2" and not flag == True:
for i in range(num):
print("1", end="")
flag = True
print("2", end="")
else:
if elemento == "1":
continue
if elemento == "2":
print("2", end="")
print("")
|
ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER IF STRING VAR STRING VAR ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FOR VAR VAR IF VAR STRING EXPR FUNC_CALL VAR STRING STRING IF VAR STRING VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING STRING ASSIGN VAR NUMBER EXPR FUNC_CALL VAR STRING STRING IF VAR STRING IF VAR STRING EXPR FUNC_CALL VAR STRING STRING EXPR FUNC_CALL VAR STRING
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
s1 = ""
c = 0
p = s.count("1")
s = s.replace("1", "")
for i in range(len(s)):
if s[i] == "1":
s1 += s[i]
s = s.replace(s[i], "3", 1)
elif s[i] == "0" and c == 0:
s1 += "0"
s = s.replace(s[i], "3", 1)
else:
c = 1
s2 = ""
s1 += "1" * p
for i in range(len(s)):
if s[i] == "2" or s[i] == "0":
s2 += s[i]
print("".join(sorted(s1)) + s2)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR STRING NUMBER IF VAR VAR STRING VAR NUMBER VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR STRING NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING VAR BIN_OP STRING VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR STRING VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL STRING FUNC_CALL VAR VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
n = list(input())
if "2" in n:
k = n.index("2")
new = "".join(n[k:])
grew = "".join(n[:k])
eazy = grew.count("0") * "0" + grew.count("1") * "1"
hard = new.count("1") * "1"
for el in new:
if el != "1":
hard += el
print(eazy + hard)
else:
grew = "".join(n)
eazy = grew.count("0") * "0" + grew.count("1") * "1"
print(eazy)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL STRING VAR VAR ASSIGN VAR FUNC_CALL STRING VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR STRING STRING BIN_OP FUNC_CALL VAR STRING STRING ASSIGN VAR BIN_OP FUNC_CALL VAR STRING STRING FOR VAR VAR IF VAR STRING VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR STRING STRING BIN_OP FUNC_CALL VAR STRING STRING EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input().strip()
if "2" not in s:
print("".join(sorted(s)))
exit()
z = s.index("2")
an = []
an.append("".join(sorted(s[:z])))
xx = s[z:].count("1")
an.append("1" * xx)
for i in range(z, len(s)):
if s[i] != "1":
an.append(s[i])
print("".join(an))
|
ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF STRING VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR LIST EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP STRING VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
s = [int(i) for i in s]
s.reverse()
ans = [0] * len(s)
f = 0
r0, r1 = 0, 0
for i in s:
if i == 2:
while r0:
r0 -= 1
ans[f] = 0
f += 1
ans[f] = 2
f += 1
elif i == 1:
r1 += 1
else:
r0 += 1
while r1:
r1 -= 1
ans[f] = 1
f += 1
while r0:
r0 -= 1
ans[f] = 0
f += 1
ans.reverse()
for i in ans:
print(i, end="")
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR IF VAR NUMBER WHILE VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER WHILE VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER WHILE VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
a = input()
ones = 0
for i in a:
if i == "1":
ones += 1
frontZeroes = 0
for i in a:
if i == "2":
break
if i == "0":
frontZeroes += 1
b = "0" * frontZeroes + "1" * ones
if a.count("2") > 0:
for i in range(a.index("2"), len(a)):
if a[i] != "1":
b += a[i]
print(b)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING IF VAR STRING VAR NUMBER ASSIGN VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR IF FUNC_CALL VAR STRING NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR STRING FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
n = input()
lenght = len(n)
if not "1" in n:
print(n)
elif not "2" in n:
zero = n.count("0")
string = ""
lenght -= zero
while zero:
zero -= 1
string += "0"
while lenght:
lenght -= 1
string += "1"
print(string)
elif not "0" in n:
zero = n.count("1")
string = ""
lenght -= zero
while zero:
zero -= 1
string += "1"
while lenght:
lenght -= 1
string += "2"
print(string)
else:
zero = n.count("0")
unu = n.count("1")
doi = n.count("2")
partial0 = 0
i = lenght - 1
d = ""
while i >= 0:
part = 0
if doi:
while n[i] != "2":
if n[i] == "0":
part += 1
i -= 1
zero -= part
while part:
part -= 1
d += "0"
while i >= 0:
if n[i] != "2":
break
i -= 1
doi -= 1
d += "2"
else:
break
while unu:
d += "1"
unu -= 1
while zero:
zero -= 1
d += "0"
d = d[::-1]
print(d)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF STRING VAR EXPR FUNC_CALL VAR VAR IF STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR STRING VAR VAR WHILE VAR VAR NUMBER VAR STRING WHILE VAR VAR NUMBER VAR STRING EXPR FUNC_CALL VAR VAR IF STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR STRING VAR VAR WHILE VAR VAR NUMBER VAR STRING WHILE VAR VAR NUMBER VAR STRING EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR STRING WHILE VAR NUMBER ASSIGN VAR NUMBER IF VAR WHILE VAR VAR STRING IF VAR VAR STRING VAR NUMBER VAR NUMBER VAR VAR WHILE VAR VAR NUMBER VAR STRING WHILE VAR NUMBER IF VAR VAR STRING VAR NUMBER VAR NUMBER VAR STRING WHILE VAR VAR STRING VAR NUMBER WHILE VAR VAR NUMBER VAR STRING ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
count_ones = 0
for c in s:
if c == "1":
count_ones += 1
s = s.replace("1", "")
index = s.find("2")
if index == -1:
index = len(s)
ones = "1" * count_ones
new_string = s[:index] + ones + s[index:]
print(new_string)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = str(input())
s1 = ""
j = 0
k = 0
i = 0
l = 0
flag1 = 0
while i < len(s):
if s[i] == "2":
break
if s[i] == "0":
j += 1
elif s[i] == "1":
k += 1
i += 1
s1 += "0" * j + "1" * k
j = 0
k = 0
z1 = i
while i < len(s):
if s[i] == "2":
s1 += "2"
elif s[i] == "0":
s1 += "0"
else:
k += 1
i += 1
s1 = s1[:z1] + k * "1" + s1[z1:]
print(s1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR STRING IF VAR VAR STRING VAR STRING VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR STRING VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
l = list(input())
s = l.count("1")
ls = []
for i in range(len(l)):
if l[i] == "1":
ls.append(i)
ls.sort(reverse=True)
for i in range(len(ls)):
del l[ls[i]]
set1 = set(l)
if "2" in set1:
m = l.index("2")
l1 = l[:m]
l2 = l[m:]
li = l1 + ["1"] * s + l2
print("".join(li))
else:
li = l + ["1"] * s
print("".join(li))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP LIST STRING VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR ASSIGN VAR BIN_OP VAR BIN_OP LIST STRING VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
answer = ""
p = 0
o = 1
for i in s:
if i == "1":
p = p + 1
for i in s:
if i == "0":
answer = answer + "0"
elif i == "2":
answer = answer + "1" * (o * p)
o = 0
answer = answer + "2"
answer = answer + "1" * (o * p)
print(answer)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING ASSIGN VAR BIN_OP VAR NUMBER FOR VAR VAR IF VAR STRING ASSIGN VAR BIN_OP VAR STRING IF VAR STRING ASSIGN VAR BIN_OP VAR BIN_OP STRING BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR BIN_OP VAR BIN_OP STRING BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = list(map(int, input()))
try:
first_two = s.index(2)
start = sorted(s[:first_two])
end = []
for c in s[first_two:]:
if c == 1:
start.append(c)
else:
end.append(c)
sor = start + end
except:
sor = sorted(s)
print("".join(map(str, sor)))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST FOR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = list(input())
ans = ""
t = False
cnt1 = 0
f2 = -1
pc = {"0": 0, "1": 0, "2": 0}
for i in range(len(s)):
if s[i] == "2":
t = True
if f2 == -1:
f2 = i
if not t:
pc[s[i]] += 1
if s[i] == "1" and t:
cnt1 += 1
if f2 == -1:
print("0" * pc["0"] + "1" * pc["1"])
exit()
ans = "0" * pc["0"] + "1" * (pc["1"] + cnt1)
for i in range(f2, len(s)):
if s[i] != "1":
ans += s[i]
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT STRING STRING STRING NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR VAR STRING VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING VAR STRING BIN_OP STRING VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP STRING VAR STRING BIN_OP STRING BIN_OP VAR STRING VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
a = input()
count1 = 0
result = ""
for i in a:
if i == "1":
count1 += 1
else:
result += i
index = len(result) + 1
for i in range(len(result)):
if result[i] == "2":
index = i + 1
break
print(result[: index - 1] + "1" * count1 + result[index - 1 :])
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR VAR IF VAR STRING VAR NUMBER VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP STRING VAR VAR BIN_OP VAR NUMBER
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
a = input()
s = ""
final = ""
count = 0
for i in a:
if i == "1":
count += 1
else:
s += i
s += "2"
i = s.find("2")
print(s[:i] + "1" * count + s[i:-1])
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR NUMBER
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
temp = [int(x) for x in list(input())]
n = len(temp)
cnt1 = 0
cnt0 = 0
line = []
for i in temp:
if i == 1:
cnt1 += 1
else:
line.append(i)
k = len(line)
for i in range(len(line)):
if line[i] == 2:
k = i
break
cnt0 += 1
ans = [0] * cnt0 + [1] * cnt1 + line[k:]
print("".join([str(x) for x in ans]))
|
ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP LIST NUMBER VAR BIN_OP LIST NUMBER VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
c1 = s.count("1")
cc = "1" * c1
if c1 == 0:
print(s)
elif s.count("2") == 0:
print("0" * s.count("0") + cc)
else:
ans = ""
for i in range(len(s)):
if s[i] != "1":
ans += s[i]
ind = ans.index("2")
ans1 = [ans[:ind], cc, ans[ind:]]
print("".join(ans1))
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP STRING VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR STRING NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING FUNC_CALL VAR STRING VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR LIST VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = list(input())
a = []
k1 = 0
for i in range(len(s)):
if s[i] == "1":
k1 += 1
else:
a.append(s[i])
f = True
i = 0
a.append("a")
while i <= len(a):
if i == len(a) - 1 and f or a[i] == "2" and f:
f = False
for j in range(k1):
print(1, end="")
if i == len(a) - 1:
break
print(a[i], end="")
i += 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR STRING WHILE VAR FUNC_CALL VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR VAR STRING VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER STRING IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR STRING VAR NUMBER
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
import sys
input = sys.stdin.readline
s = input().strip("\n")
b = []
c = 0
last = -1
for i in range(len(s)):
if s[i] == "1":
c += 1
else:
b.append(s[i])
if s[i] == "2" and last == -1:
last = len(b) - 1
if last != -1:
b = "".join(b[:last]) + "1" * c + "".join(b[last:])
else:
b = "".join(b) + "1" * c
print(b)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR VAR STRING VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL STRING VAR VAR BIN_OP STRING VAR FUNC_CALL STRING VAR VAR ASSIGN VAR BIN_OP FUNC_CALL STRING VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
a = list(input())
a = [int(i) for i in a]
l = len(a)
i = 0
c = []
prev = 0
flag = False
b = []
fin = []
for i in a:
if i is 1 or flag is False and i is 0:
fin.append(i)
if i is 2:
flag = True
b.append(i)
if flag and i is 0:
b.append(i)
fin.sort()
print("".join([str(i) for i in fin]) + "".join([str(i) for i in b]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
a = []
cnt = 0
for x in s:
if x == "1":
cnt += 1
else:
a.append(x)
i = 0
while i < len(a) and a[i] == "0":
i += 1
print("0" * i + "1" * cnt + "".join(a[i:]))
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR FUNC_CALL STRING VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = list(input())
tmp = ""
res = ""
if "0" not in s or "2" not in s:
res = "".join(sorted(s))
else:
ind = s.index("2")
res += "".join(sorted(s[:ind]))
ones = s[ind:].count("1")
res += ones * "1"
lst = [x for x in s[ind:] if x != "1"]
res += "".join(lst)
print(res)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING IF STRING VAR STRING VAR ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR STRING VAR BIN_OP VAR STRING ASSIGN VAR VAR VAR VAR VAR VAR STRING VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = str(input())
answer = []
ed_count = 0
prev_null = 0
prev_twos = 0
for el in s:
if el == "1":
ed_count += 1
elif el == "0":
if prev_null == 0:
if prev_twos != 0:
answer.append([2, prev_twos])
prev_twos = 0
prev_null += 1
else:
if prev_twos == 0:
if prev_null != 0:
answer.append([0, prev_null])
prev_null = 0
prev_twos += 1
if prev_twos != 0:
answer.append([2, prev_twos])
prew_twos = 0
if prev_null != 0:
answer.append([0, prev_null])
prev_null = 0
if len(answer) != 0 and answer[0][0] == 0:
print("{}".format(answer[0][0]) * answer[0][1], end="")
print("1" * ed_count, end="")
z = len(answer)
min_in = 0
if z != 0 and answer[0][0] == 0:
min_in += 1
for i in range(min_in, z):
print(str(answer[i][0]) * answer[i][1], end="")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER IF VAR STRING IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR LIST NUMBER VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR LIST NUMBER VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR LIST NUMBER VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR LIST NUMBER VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL STRING VAR NUMBER NUMBER VAR NUMBER NUMBER STRING EXPR FUNC_CALL VAR BIN_OP STRING VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER NUMBER NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR VAR NUMBER STRING
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
a = ""
b = ""
for i in s:
if i == "1":
a += i
else:
b += i
n = b.find("2")
if n == -1:
ans = b + a
else:
ans = b[:n] + a + b[n:]
print(ans)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING FOR VAR VAR IF VAR STRING VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
u = list(map(int, input()))
n = len(u)
d0 = 0
d1 = 0
d2 = 0
dd0 = []
dd2 = []
m0 = 0
for i in range(n):
if u[i] == 1:
d1 += 1
elif u[i] == 0:
if dd2 == [] and d2 == 0:
m0 = 1
d0 += 1
if d2 != 0:
dd2.append(d2)
d2 = 0
else:
d2 += 1
if d0 != 0:
dd0.append(d0)
d0 = 0
if d0 != 0:
dd0.append(d0)
else:
dd2.append(d2)
ans = []
i = 0
while len(ans) < n:
if m0:
if len(dd0) > i:
for j in range(dd0[i]):
ans.append(0)
if i == 0:
for j in range(d1):
ans.append(1)
if len(dd2) > i:
for j in range(dd2[i]):
ans.append(2)
else:
if i == 0:
for j in range(d1):
ans.append(1)
if len(dd2) > i:
for j in range(dd2[i]):
ans.append(2)
if len(dd0) > i:
for j in range(dd0[i]):
ans.append(0)
i += 1
for i in ans:
print(i, end="")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER IF VAR LIST VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR IF VAR IF FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
oneCnt = s.count("1")
sNo1s = s.replace("1", "")
oneStr = "1" * oneCnt
first2 = sNo1s.find("2")
if first2 < 0:
print(sNo1s + oneStr)
else:
print(sNo1s[:first2] + oneStr + sNo1s[first2:])
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
input_ = list(map(str, input().split("2")))
result = ""
z_counter = 0
z_list = []
o_counter = 0
for st in input_:
for s in st[:]:
if s == "1":
o_counter += 1
elif s == "0":
z_counter += 1
z_list.append(z_counter)
z_counter = 0
for i, z in enumerate(z_list):
result += "0" * z
if i == 0:
result += "1" * o_counter
if i == len(z_list) - 1:
break
result += "2"
print(result)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR FOR VAR VAR IF VAR STRING VAR NUMBER IF VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP STRING VAR IF VAR NUMBER VAR BIN_OP STRING VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR STRING EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
t = "".join(c for c in s if c != "1")
i = (t + "2").find("2")
print(t[:i], "1" * s.count("1"), t[i:], sep="")
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL STRING VAR VAR VAR VAR STRING ASSIGN VAR FUNC_CALL BIN_OP VAR STRING STRING EXPR FUNC_CALL VAR VAR VAR BIN_OP STRING FUNC_CALL VAR STRING VAR VAR STRING
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
n = input()
t = n.count("1")
n = n.replace("1", "")
if "2" in n:
r = n.index("2")
print("0" * r + "1" * t + n[r:])
else:
print("0" * n.count("0") + "1" * t)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING IF STRING VAR ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING FUNC_CALL VAR STRING BIN_OP STRING VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
oc = 0
zc = 0
id2 = len(s)
for i in range(len(s)):
if s[i] == "1":
oc += 1
for i in range(len(s)):
if s[i] == "0":
zc += 1
if s[i] == "2":
id2 = i
break
for i in range(zc):
print("0", end="")
for i in range(oc):
print("1", end="")
for i in range(id2, len(s)):
if s[i] == "1":
continue
else:
print(s[i], end="")
print()
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING STRING FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
x = ""
c = 0
for i in s:
if i != "1":
x += i
else:
c += 1
if len(x) == len(s):
print(s)
else:
z = x.find("2")
if z != -1:
for i in range(z):
print(x[i], end="")
print("1" * c + x[z:])
else:
print(x + "1" * c)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP STRING VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
inpt = input()
inp = list(str(inpt))
temp = []
for i in inp:
temp.append(int(i))
nums = temp[::-1]
countZero = 0
countOne = 0
res = []
for i in range(len(nums)):
if nums[i] == 0:
countZero += 1
elif nums[i] == 1:
countOne += 1
else:
res += [0] * countZero
res.append(2)
countZero = 0
res += [1] * countOne
res += [0] * countZero
res = res[::-1]
res = "".join(str(item) for item in res)
print(res)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR BIN_OP LIST NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP LIST NUMBER VAR VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = list(input())
ss = ""
cnt = [0, 0, 0]
i = 0
cnt = 0
while i != len(s) and s[i] in ["0", "1"]:
cnt += s[i] == "0"
i += 1
print("0" * cnt + "1" * s.count("1"), end="")
while i != len(s):
if s[i] in ["0", "2"]:
print(s[i], end="")
i += 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR LIST NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR LIST STRING STRING VAR VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING FUNC_CALL VAR STRING STRING WHILE VAR FUNC_CALL VAR VAR IF VAR VAR LIST STRING STRING EXPR FUNC_CALL VAR VAR VAR STRING VAR NUMBER
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
ind = 0
zeros = 0
ones = 0
while ind < len(s) and s[ind] != "2":
if s[ind] == "0":
zeros += 1
else:
ones += 1
ind += 1
suff = ""
while ind < len(s):
if s[ind] == "1":
ones += 1
else:
suff += s[ind]
ind += 1
print("0" * zeros + "1" * ones + suff)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR STRING IF VAR VAR STRING VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR STRING WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
n = list(map(str, list(input())))
a = ""
b = ""
for i in n:
if i == "1":
a += "1"
else:
b += i
n = b.find("2")
if n == -1:
print(b + a)
else:
print(b[:n] + a + b[n:])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING FOR VAR VAR IF VAR STRING VAR STRING VAR VAR ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
one = s.count("1")
if one == 0:
print(s)
exit()
ind = s.find("2")
ans = ""
for i in range(len(s)):
if i == ind:
ans += "1" * one
if s[i] == "1":
continue
ans += s[i]
if ind == -1:
ans += "1" * one
print(ans)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP STRING VAR IF VAR VAR STRING VAR VAR VAR IF VAR NUMBER VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
k = input()
a = k.count("1")
k = k.replace("1", "")
b = (k + "2").find("2")
k = k[:b] + "1" * a + k[b:]
print(k)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL BIN_OP VAR STRING STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
a = input()
n = len(a)
s_zero = [0] * (n + 2)
if a[0] == "0":
s_zero[0] = 1
ans = ""
a += "2"
for i in range(1, n + 1):
if a[i] == "0":
s_zero[i] = s_zero[i - 1] + 1
else:
s_zero[i] = s_zero[i - 1]
pre = -1
two = 0
one = 0
zero = 0
for i in range(n + 1):
if a[i] == "2":
if pre == -1:
pre = i
else:
cnt = s_zero[i] - s_zero[pre - 1]
ans += "2" + "0" * cnt
zero += cnt
two += 1
pre = i
zero = a.count("0") - zero
one = a.count("1") - one
ans = "0" * zero + "1" * one + ans
print(ans)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER IF VAR NUMBER STRING ASSIGN VAR NUMBER NUMBER ASSIGN VAR STRING VAR STRING FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR STRING ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR STRING IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP STRING BIN_OP STRING VAR VAR VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR STRING VAR ASSIGN VAR BIN_OP FUNC_CALL VAR STRING VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
t = str(input(""))
A = []
count = 0
s = ""
check = 0
j = 0
for i in range(len(t)):
if t[i] != "1":
s += t[i]
else:
count += 1
for i in range(len(s)):
if s[i] == "2":
j = i
break
else:
j = len(s)
k = j - 1
ans = s[0:j] + "1" * count + s[j:]
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP STRING VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
num_ones = s.count("1")
s = s.replace("1", "")
if "2" in s:
first_two = s.index("2")
s = s[0:first_two] + "1" * num_ones + s[first_two:]
else:
s += "1" * num_ones
print(s)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING IF STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP STRING VAR VAR VAR VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
a = ""
s = s[::-1]
o = 0
z = 0
i = 0
while i != len(s):
if s[i] == "2":
a = a + "0" * z + "2"
z = 0
if s[i] == "0":
z += 1
if s[i] == "1":
o += 1
i += 1
a = a + "1" * o + "0" * z
a = a[::-1]
print(a)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP STRING VAR STRING ASSIGN VAR NUMBER IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP STRING VAR BIN_OP STRING VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
def main():
s = input()
if "1" in s:
t = s.replace("1", "")
u, v, *_ = t.split("2", 1) + ["*"]
print(u, "1" * (len(s) - len(t)), *(["2", v] if v != "*" else []), sep="")
else:
print(s)
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR IF STRING VAR ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR STRING NUMBER LIST STRING EXPR FUNC_CALL VAR VAR BIN_OP STRING BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR STRING LIST STRING VAR LIST STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
line = list(input())
count = 0
for i in range(len(line) - 1, -1, -1):
if line[i] == "1":
del line[i]
count += 1
try:
two = line.index("2")
newline = line[:two] + ["1"] * count + line[two:]
except:
newline = line + ["1"] * count
print(*newline, sep="")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR STRING VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP LIST STRING VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP LIST STRING VAR EXPR FUNC_CALL VAR VAR STRING
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
import sys
s = input()
cnt = 0
ans = []
for x in s:
if x == "1":
cnt += 1
else:
ans.append(x)
for i in range(len(ans)):
if ans[i] == "2":
break
else:
print("".join(ans) + "1" * cnt)
sys.exit()
print("".join(ans[:i]) + "1" * cnt + "".join(ans[i:]))
|
IMPORT ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR IF VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL STRING VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL STRING VAR VAR BIN_OP STRING VAR FUNC_CALL STRING VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
def main():
s = input()
pos = s.find("2")
pos = len(s) if pos < 0 else pos
print("0" * s[:pos].count("0") + "1" * s.count("1") + s[pos:].replace("1", ""))
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP STRING FUNC_CALL VAR VAR STRING BIN_OP STRING FUNC_CALL VAR STRING FUNC_CALL VAR VAR STRING STRING EXPR FUNC_CALL VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
prefix = ""
suffix = ""
middle = ""
seen2 = False
for c in s:
if c == "2":
seen2 = True
suffix += c
elif c == "1":
middle += c
elif seen2:
suffix += c
else:
prefix += c
print("%s%s%s" % (prefix, middle, suffix))
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING ASSIGN VAR NUMBER VAR VAR IF VAR STRING VAR VAR IF VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP STRING VAR VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
def main():
string = input()
chars = []
cnt = 0
for c in string:
if c != "1":
chars.append(c)
else:
cnt += 1
res = "".join(chars)
if "2" in string:
print(res[: res.find("2")] + "1" * cnt + res[res.find("2") :])
else:
print(res + "1" * cnt)
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL STRING VAR IF STRING VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR FUNC_CALL VAR STRING BIN_OP STRING VAR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input().strip()
ones = s.count("1")
s = "".join(filter(lambda c: c != "1", s))
indx = s.find("2")
if indx == -1:
print(s + "1" * ones)
else:
print(s[:indx] + "1" * ones + s[indx:])
|
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR STRING VAR ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
t = 1
for test in range(t):
n = list(input())
firstZeros = 0
onesCount = 0
for i in n:
if i == "1":
onesCount += 1
index = 0
for i in n:
if i == "0":
firstZeros += 1
elif i == "2":
break
index += 1
print("0" * firstZeros, end="")
print("1" * onesCount, end="")
zeroCount = 0
for i in range(index, len(n)):
if n[i] == "2":
print("0" * zeroCount, end="")
print("2", end="")
zeroCount = 0
elif n[i] == "0":
zeroCount += 1
print("0" * zeroCount)
|
ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER IF VAR STRING VAR NUMBER EXPR FUNC_CALL VAR BIN_OP STRING VAR STRING EXPR FUNC_CALL VAR BIN_OP STRING VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP STRING VAR STRING EXPR FUNC_CALL VAR STRING STRING ASSIGN VAR NUMBER IF VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR BIN_OP STRING VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
l, m, r = "", "", ""
for c in s:
if c == "1":
m += c
elif c == "2":
r += c
elif r == "":
l += c
else:
r += c
print(l + m + r)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR STRING STRING STRING FOR VAR VAR IF VAR STRING VAR VAR IF VAR STRING VAR VAR IF VAR STRING VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
a = [i for i in input()]
n = a.count("1")
b = [i for i in a if i != "1"]
if "2" in b:
x = b.index("2")
print("".join(b[:x]) + n * "1" + "".join(b[x:]))
else:
print("".join(b) + n * "1")
|
ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR VAR VAR STRING IF STRING VAR ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL STRING VAR VAR BIN_OP VAR STRING FUNC_CALL STRING VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL STRING VAR BIN_OP VAR STRING
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
n = len(s)
t, e = 0, 0
r = ""
for i in range(n):
t += s[i] == "1"
for i in range(n):
if s[i] == "0":
r += "0"
elif s[i] == "2":
if not e:
r += "1" * t
t, e = 0, 1
r += "2"
if not e:
r += "1" * t
print(r)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR VAR VAR VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR STRING IF VAR VAR STRING IF VAR VAR BIN_OP STRING VAR ASSIGN VAR VAR NUMBER NUMBER VAR STRING IF VAR VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
s = list(s)
uns = 0
for n in s:
if n == "1":
uns += 1
aindanao = 1
for a in s:
if a == "2" and aindanao:
aindanao = 0
for i in range(uns):
print("1", end="")
if a != "1":
print(a, end="")
if aindanao:
aindanao = 0
for i in range(uns):
print("1", end="")
print()
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING STRING IF VAR STRING EXPR FUNC_CALL VAR VAR STRING IF VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING STRING EXPR FUNC_CALL VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = list(str(input()))
s = [int(i) for i in s]
X = []
temp = []
for i in s:
if i != 2:
temp.append(i)
else:
X.append(temp)
temp = []
else:
X.append(temp)
ans = [[] for i in range(len(X))]
for j, x in enumerate(X):
for i in x:
if i == 1:
ans[0].append(1)
else:
ans[j].append(0)
for i, x in enumerate(ans):
if x:
x = list(sorted(x))
x = [str(j) for j in x]
ans[i] = "".join(x)
else:
ans[i] = ""
ans = "2".join(ans)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR VAR FOR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL STRING VAR ASSIGN VAR VAR STRING ASSIGN VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = list(input())
for i in range(len(s)):
s[i] = int(s[i])
n = len(s)
ans = [i for i in s if i == 0 or i == 2]
c1 = sum([(1) for i in s if i == 1])
f2 = n
for i in range(len(ans)):
if ans[i] == 2:
f2 = i
break
ans1 = ans[:f2] + [(1) for i in range(c1)] + ans[f2:]
print("".join([str(i) for i in ans1]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
c = 0
l = len(s)
for i in range(len(s)):
if s[i] == "1":
c += 1
s = s.replace("1", "")
s1 = ""
if len(s) == 0:
s1 = c * "1"
print(s1)
exit(0)
for i in range(len(s)):
if s[i] == "2":
s1 = s1 + c * "1"
s1 += s[i:]
break
s1 += s[i]
if len(s1) != l:
s1 += c * "1"
print(s1)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR STRING IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP VAR BIN_OP VAR STRING VAR VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR BIN_OP VAR STRING EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
l = ""
for x in s:
if x != "1":
l += x
two = s.count("2")
one = s.count("1")
ans = ""
if two > 0:
flag = 1
for i in range(len(l)):
if l[i] == "2" and flag == 1:
ans += "1" * one + "2"
flag = 0
else:
ans += l[i]
else:
ans = l
ans += "1" * one
print(ans)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING FOR VAR VAR IF VAR STRING VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR STRING IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER VAR BIN_OP BIN_OP STRING VAR STRING ASSIGN VAR NUMBER VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = list(input())
data = []
n = len(s)
for i in range(n):
s[i] = int(s[i])
cnt = 0
for some in s:
if some == 1:
cnt += 1
else:
data.append(some)
index = -1
for i in range(len(data)):
if data[i] == 2:
index = i
break
if index >= 0:
k = data[:index] + [(1) for _ in range(cnt)] + data[index:]
for i in range(n):
k[i] = str(k[i])
print("".join(k))
else:
k = data + [(1) for _ in range(cnt)]
for i in range(n):
k[i] = str(k[i])
print("".join(k))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR ASSIGN VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
ones = 0
a = []
for i in s:
if i == "1":
ones += 1
else:
a.append(i)
two = -1
for i in range(len(a)):
if a[i] == "2" and two == -1:
print(ones * "1", end="")
two = i
print(a[i], end="")
if two == -1:
print(ones * "1", end="")
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR IF VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR STRING STRING ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR STRING STRING
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
was2 = False
i = 0
am1 = 0
s1 = ""
for i in range(len(s)):
if s[i] == "1":
am1 += 1
for i in range(len(s)):
if s[i] == "2":
if not was2:
s1 += "1" * am1 + "2"
was2 = True
else:
s1 += "2"
if s[i] == "0":
s1 += "0"
if not was2:
s1 += "1" * am1
print(s1)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING IF VAR VAR BIN_OP BIN_OP STRING VAR STRING ASSIGN VAR NUMBER VAR STRING IF VAR VAR STRING VAR STRING IF VAR VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
n = 0
m = 0
h = ""
for i in range(len(s)):
if s[i] == "1":
m += 1
for i in range(len(s)):
if s[i] == "0":
n += 1
if s[i] == "2":
h += "0" * n + "1" * m + "2"
n = 0
m = 0
h += "0" * n + "1" * m
print(h)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
string = input()
string = [x for x in string]
count_0 = []
count_1 = []
count_2 = []
counting_0 = 0
counting_1 = 0
counting_2 = 0
for number in string:
if number == "1":
counting_1 += 1
elif number == "0":
counting_0 += 1
else:
count_0.append(counting_0)
counting_0 = 0
count_2.append("2")
count_0.append(counting_0)
count_1.append(counting_1)
answer = []
first = True
for idx, qtd_0 in enumerate(count_0):
while qtd_0 > 0:
answer.append("0")
qtd_0 -= 1
while count_1[0] and first:
answer.append("1")
count_1[0] -= 1
first = False
if len(count_0) > 1 and idx < len(count_2) and count_2[idx] == "2":
answer.append("2")
print("".join(answer))
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER IF VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR STRING VAR NUMBER WHILE VAR NUMBER VAR EXPR FUNC_CALL VAR STRING VAR NUMBER NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = list(input())
zeroes, ones, twos = s.count("0"), s.count("1"), s.count("2")
news = []
for i in range(len(s)):
if s[i] != "1":
news.append(s[i])
if not twos:
print("".join(news) + "1" * ones)
exit()
p = news.index("2")
newss = news[:p] + [str("1" * ones)] + news[p:]
print("".join(newss))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR IF VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL STRING VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR LIST FUNC_CALL VAR BIN_OP STRING VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
m = len(s)
if "2" in s:
index = s.find("2")
s = "".join(list(sorted(list(s[:index])))) + s[index:].replace("1", "").rjust(
m - index, "1"
)
else:
s = "".join(list(sorted(list(s))))
print(s)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR STRING STRING BIN_OP VAR VAR STRING ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
def min_tr(s):
c = s.count("1")
if s[0] == "1" and s.count(s[0]) == len(s):
return s
if s.count("2") == 0:
return "".join(sorted(s))
new = ""
for i in range(len(s)):
if s[i] == "0":
new += "0"
elif s[i] == "2":
while c > 0:
new += "1"
c -= 1
new += "2"
while c > 0:
new += "1"
c -= 1
return new
print(min_tr(input()))
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER STRING FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR RETURN VAR IF FUNC_CALL VAR STRING NUMBER RETURN FUNC_CALL STRING FUNC_CALL VAR VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR STRING IF VAR VAR STRING WHILE VAR NUMBER VAR STRING VAR NUMBER VAR STRING WHILE VAR NUMBER VAR STRING VAR NUMBER RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
def main():
s = input()
index = s.find("2")
ones = 0
if index != -1:
for i in range(index, len(s)):
if s[i] == "1":
ones += 1
l = list(s[0:index])
l.sort()
tmp = "".join(l)
for i in range(ones):
tmp += "1"
l = list(s[index:])
for c in l:
if c != "1":
tmp += c
print(tmp)
else:
l = list(s)
l.sort()
print("".join(l))
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL STRING VAR FOR VAR FUNC_CALL VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR VAR IF VAR STRING VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
t = input()
t = t + "2"
Z = []
U = 0
c = 0
for i in t:
if i == "1":
U += 1
elif i == "0":
c += 1
else:
Z.append(c)
c = 0
for i in range(Z[0]):
print("0", end="")
for i in range(U):
print("1", end="")
for j in range(1, len(Z)):
print("2", end="")
for i in range(Z[j]):
print("0", end="")
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER IF VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING STRING FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING STRING FOR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING STRING
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
num = input()
length = len(num)
first_2 = num.find("2")
if first_2 == -1:
first_2 = length
zeros_before_first_two = num[:first_2].count("0")
ones = num.count("1")
print("0" * zeros_before_first_two, end="")
print("1" * ones, end="")
for i in range(first_2, length):
if num[i] != "1":
print(num[i], end="")
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP STRING VAR STRING EXPR FUNC_CALL VAR BIN_OP STRING VAR STRING FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR STRING
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
z = ""
t = ""
o = ""
f = 0
for i in range(len(s)):
if s[i] == "0":
t += "0"
elif s[i] == "2":
t += "2"
else:
o += "1"
for i in range(len(t)):
if t[i] == "2":
t = t[:i] + o + t[i:]
f = 1
break
if f == 0:
t = t + o
print(t)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR STRING IF VAR VAR STRING VAR STRING VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
ans = []
seen = False
ones = 0
for c in input():
if c == "0":
if not seen:
print("0", end="")
else:
ans.append("0")
elif c == "1":
ones += 1
elif c == "2":
seen = True
ans.append("2")
print(*(["1"] * ones), sep="", end="")
print("".join(ans), end="")
|
ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR IF VAR STRING IF VAR EXPR FUNC_CALL VAR STRING STRING EXPR FUNC_CALL VAR STRING IF VAR STRING VAR NUMBER IF VAR STRING ASSIGN VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP LIST STRING VAR STRING STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR STRING
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
ones = 0
o = []
first_two = -1
for i, x in enumerate(s):
if x == "0":
o.append(x)
elif x == "1":
ones += 1
else:
if first_two == -1:
first_two = len(o)
o.append(x)
if first_two == -1:
first_two = len(o)
one_str = "1" * ones
print("".join(o[:first_two]) + one_str + "".join(o[first_two:]))
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR STRING EXPR FUNC_CALL VAR VAR IF VAR STRING VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL STRING VAR VAR VAR FUNC_CALL STRING VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
c1 = s.count("1")
if "2" not in s:
lens = len(s)
print("0" * (lens - c1) + "1" * c1)
else:
f2 = s.index("2")
s1 = s[:f2]
s2 = "".join(c for c in s[f2:] if c != "1")
c0 = s1.count("0")
print("0" * c0 + "1" * c1 + s2)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING IF STRING VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING BIN_OP VAR VAR BIN_OP STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL STRING VAR VAR VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
index = [0]
n = len(s)
zero = []
one = []
zo = 0
on = 0
for i in range(n):
if s[i] == "2" and i != 0:
index.append(i)
zero.append(zo)
one.append(on)
zo = 0
on = 0
elif s[i] == "0":
zo = zo + 1
elif s[i] == "1":
on = on + 1
if index[-1] != n - 1:
index.append(n)
zero.append(zo)
one.append(on)
S = set(s)
ans = ""
b = len(index)
if len(S) == 1:
ans = ans + s
elif len(S) == 2:
if "0" in S and "1" in S:
ans = "0" * s.count("0") + "1" * s.count("1")
elif "1" in S and "2" in S:
ans = "1" * s.count("1") + "2" * s.count("2")
else:
ans = ans + s
else:
b = len(one)
if s[0] != "2":
ans = ans + "0" * s[: index[1]].count("0")
else:
ans = ans + "0" * s[: index[0]].count("0")
ans = ans + "1" * s.count("1")
p = ""
a = s.find("2")
for i in range(a, n):
if s[i] != "1":
p = p + s[i]
ans = ans + p
print(ans)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF FUNC_CALL VAR VAR NUMBER IF STRING VAR STRING VAR ASSIGN VAR BIN_OP BIN_OP STRING FUNC_CALL VAR STRING BIN_OP STRING FUNC_CALL VAR STRING IF STRING VAR STRING VAR ASSIGN VAR BIN_OP BIN_OP STRING FUNC_CALL VAR STRING BIN_OP STRING FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER STRING ASSIGN VAR BIN_OP VAR BIN_OP STRING FUNC_CALL VAR VAR NUMBER STRING ASSIGN VAR BIN_OP VAR BIN_OP STRING FUNC_CALL VAR VAR NUMBER STRING ASSIGN VAR BIN_OP VAR BIN_OP STRING FUNC_CALL VAR STRING ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
x1 = s.count("1")
if s.count("2") == 0:
print(s.count("0") * "0" + x1 * "1")
else:
x = s.index("2")
s1 = s[:x]
s2 = s[x:]
x0 = s1.count("0")
s2 = s2.replace("1", "")
print("0" * x0 + "1" * x1 + s2)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING IF FUNC_CALL VAR STRING NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR STRING STRING BIN_OP VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
n = len(s)
_0, _1, i = 0, 0, 0
while i < n and s[i] != "2":
if s[i] == "0":
_0 += 1
elif s[i] == "1":
_1 += 1
i += 1
front = "0" * _0 + "1" * _1
end = ""
for c in s[i:]:
if c == "1":
front += c
else:
end += c
print(front + end)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR VAR STRING IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR ASSIGN VAR STRING FOR VAR VAR VAR IF VAR STRING VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
x = s.count("1")
s = s.replace("1", "")
s = "1" * x + s
u = 0
z = 0
l = 0
ans = ""
for i in range(len(s)):
if s[i] == "2":
ans += "0" * z + "1" * u + "2"
z = 0
u = 0
elif s[i] == "1":
u += 1
elif s[i] == "0":
z += 1
ans += "0" * z + "1" * u
print(ans)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR BIN_OP BIN_OP STRING VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR NUMBER VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
def solve(s):
ones = s.count("1")
stripped = "".join([i for i in s if i != "1"])
for i in range(len(stripped)):
if stripped[i] == "2":
return stripped[:i] + "1" * ones + stripped[i:]
return stripped + "1" * ones
s = input().strip()
print(solve(s))
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL STRING VAR VAR VAR VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING RETURN BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR RETURN BIN_OP VAR BIN_OP STRING VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
temp1 = ""
temp2 = ""
for x in s:
if x == "0" or x == "2":
temp1 += x
else:
temp2 += x
put = False
for i in range(len(temp1)):
if temp1[i] == "2":
temp1 = temp1[:i] + temp2 + temp1[i:]
put = True
break
if not put:
temp1 = temp1 + temp2
print(temp1)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING FOR VAR VAR IF VAR STRING VAR STRING VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
ones, s = s.count("1"), s.replace("1", "")
print(
s[: s.index("2")] + "1" * ones + s[s.index("2") :] if "2" in s else s + "1" * ones
)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING STRING EXPR FUNC_CALL VAR STRING VAR BIN_OP BIN_OP VAR FUNC_CALL VAR STRING BIN_OP STRING VAR VAR FUNC_CALL VAR STRING BIN_OP VAR BIN_OP STRING VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
string = ""
c0 = 0
c1 = 0
c2 = 0
state = 0
p = 9999999
for i in range(len(s)):
if state == 0:
if s[i] == "1":
c1 += 1
elif s[i] == "0":
c0 += 1
else:
c2 += 1
for j in range(c0):
string += "0"
p = min(p, len(string))
c0 = 0
state = 1
elif state == 1:
if s[i] == "1":
c1 += 1
elif s[i] == "2":
c2 += 1
else:
c0 += 1
for j in range(c2):
string += "2"
c2 = 0
state = 0
if p == 9999999:
stt = ""
for j in range(c0):
stt += "0"
for j in range(c1):
stt += "1"
else:
stt = string[0:p]
for j in range(c1):
stt += "1"
stt += string[p:]
if state == 0:
for j in range(c0):
stt += "0"
for j in range(c2):
stt += "2"
else:
for j in range(c2):
stt += "2"
for j in range(c0):
stt += "0"
print(stt)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR VAR STRING FOR VAR FUNC_CALL VAR VAR VAR STRING ASSIGN VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR VAR STRING VAR VAR VAR IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR STRING FOR VAR FUNC_CALL VAR VAR VAR STRING FOR VAR FUNC_CALL VAR VAR VAR STRING FOR VAR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
p = ""
c0, c1 = 0, 0
for i in range(len(s)):
if s[i] == "0":
c0 += 1
if s[i] == "1":
c1 += 1
if s[i] == "2":
p += "0" * c0 + "1" * c1 + "2"
c0, c1 = 0, 0
p += "0" * c0 + "1" * c1
if p.find("2") == -1:
print(p)
else:
c1 = 0
s2 = ""
for i in range(p.find("2"), len(s)):
if p[i] == "2":
s2 += "2"
if p[i] == "0":
s2 += "0"
if p[i] == "1":
c1 += 1
ans = p[0 : p.find("2")] + "1" * c1 + s2
print(ans)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR STRING ASSIGN VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR IF FUNC_CALL VAR STRING NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR STRING FUNC_CALL VAR VAR IF VAR VAR STRING VAR STRING IF VAR VAR STRING VAR STRING IF VAR VAR STRING VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR STRING BIN_OP STRING VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
x = input()
x = x[::-1]
y = ["0"] * len(x)
ji = 0
ji1 = 0
flag = 0
for i in range(len(x)):
if x[i] == "1":
ji1 += 1
if x[i] == "2":
flag = 1
ji = max(ji, i - ji1)
y[ji] = "2"
if flag:
y = y[::-1]
for i in range(len(y)):
if y[i] == "2":
for j in range(ji1):
y[i - j - 1] = "1"
break
else:
for i in range(ji1):
y[i] = "1"
y = y[::-1]
print("".join(y))
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP LIST STRING FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR STRING IF VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR STRING ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
ch = input()
p = ch.find("2")
if p == -1:
p = len(ch)
a = ch[0:p].count("0")
b = ch.count("1")
st = "0" * a + "1" * b + ch[p:].replace("1", "")
print(st)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR FUNC_CALL VAR VAR STRING STRING EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
cnt = 0
s1 = s2 = s3 = ""
flag = 0
for i in s:
if flag:
if i == "1":
cnt = cnt + 1
else:
s3 = s3 + i
elif i == "0":
s1 = s1 + i
elif i == "1":
cnt = cnt + 1
else:
s3 = i
flag = 1
for i in range(cnt):
s2 = s2 + "1"
print(s1 + s2 + s3)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR IF VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR STRING ASSIGN VAR BIN_OP VAR VAR IF VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
n = len(s)
tp = ""
ans = ""
c0, c1, c2 = 0, 0, 0
for e in s:
if e == "1":
c1 = c1 + 1
elif e == "0":
c0 = c0 + 1
else:
c2 = c2 + 1
if c2 == 0:
r = "0" * c0 + "1" * c1
print(r)
else:
r = ""
z = s.index("2")
lp = s[:z]
qw = lp.count("0")
p = 0
while z < n:
a = s[z]
if a == "1":
p = p + 1
z = z + 1
else:
c = 0
while z < n and s[z] == a:
c = c + 1
z = z + 1
r = r + a * c
ans = "0" * qw + "1" * c1 + r
print(ans)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER FOR VAR VAR IF VAR STRING ASSIGN VAR BIN_OP VAR NUMBER IF VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR IF VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
fixed = set(["0", "2"])
def sort(ss):
out = []
count = 0
for a in ss:
if a in fixed:
out.append(a)
else:
count += 1
ind = 0
for a in out:
if a == "0":
ind += 1
continue
break
out.insert(ind, "".join(["1" for b in range(count)]))
return "".join(out)
print(sort(input()))
|
ASSIGN VAR FUNC_CALL VAR LIST STRING STRING FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR FUNC_CALL STRING STRING VAR FUNC_CALL VAR VAR RETURN FUNC_CALL STRING VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
def helper(s):
zero = s.count("0")
one = s.count("1")
two = s.count("2")
if zero == 0:
return "1" * one + "2" * two
elif one == 0:
return s
elif two == 0:
return "0" * zero + "1" * one
else:
l = ""
r = ""
f = False
for i in s:
if i == "1":
continue
if i == "2":
f = True
if f:
r += i
else:
l += i
return l + "1" * one + r
s = input()
print(helper(s))
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER RETURN BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR IF VAR NUMBER RETURN VAR IF VAR NUMBER RETURN BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING IF VAR STRING ASSIGN VAR NUMBER IF VAR VAR VAR VAR VAR RETURN BIN_OP BIN_OP VAR BIN_OP STRING VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
k = input()
l = list(k)
l.sort()
c = l.count("1")
s = ""
count = 0
one = 0
if c == 0:
print(k)
else:
for i in range(len(l)):
if k[i] == "0":
count += 1
elif k[i] == "2":
break
one = c + 0
maxi = count
for i in range(len(l)):
if l[i] == "0" and count > 0:
s += l[i]
count -= 1
elif l[i] == "1" and one > 0:
one -= 1
s += l[i]
for i in range(len(k)):
if k[i] == "0" and maxi > 0:
maxi -= 1
elif k[i] == "0" and maxi == 0:
s = s + k[i]
elif k[i] == "2":
s = s + k[i]
print(s)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR VAR STRING VAR NUMBER VAR NUMBER VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER VAR NUMBER IF VAR VAR STRING VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
a = list(input())
n = len(a)
if "2" not in a or "0" not in a:
print("".join(sorted(a)))
else:
ind = a.index("2")
i = n - 1
ans = []
count = 0
while i >= ind:
if a[i] != "1":
ans.append(a[i])
else:
count += 1
i -= 1
ans = sorted(a[: i + 1] + ["1"] * count) + ans[::-1]
print("".join(ans))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF STRING VAR STRING VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP LIST STRING VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
pref = []
cnt1 = s.count("1")
s = s.replace("1", "")
i = 0
while i < len(s) and s[i] != "2":
i += 1
end = ""
if i != len(s):
end = s[i:]
s = s[:i] + "1" * cnt1 + end
print(s)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR STRING VAR NUMBER ASSIGN VAR STRING IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
l = len(s)
count_1 = s.count("1")
new_out = ""
red = "".join([c for c in s if c != "1"])
out = ""
try:
insert = red.index("2")
out = red[:insert] + "1" * count_1 + red[insert:]
except:
out = red + "1" * count_1
print(out)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR STRING ASSIGN VAR FUNC_CALL STRING VAR VAR VAR VAR STRING ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
st = input()
kol_1 = st.count("1")
stroka = []
lena = 0
for elem in st:
if elem != "1":
stroka += [elem]
lena += 1
i = 0
while i < lena and stroka[i] != "2":
i += 1
stroka = stroka[0:i] + ["1"] * kol_1 + stroka[i:]
print("".join(map(str, stroka)))
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR LIST VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP LIST STRING VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = list(input())
s.append("2")
l = []
c = s.count("1")
f = 0
for i in range(len(s)):
if s[i] == "2" and f == 0:
for j in range(c):
l.append("1")
f = 1
l.append("2")
elif s[i] != "1":
l.append(s[i])
l = l[: len(s) - 1]
print("".join(l))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = input()
cnt1 = 0
ans = ""
for i in s:
if i != "1":
ans += i
else:
cnt1 += 1
f = 0
for i in range(len(ans)):
if ans[i] == "2":
ans = ans[0:i] + "1" * cnt1 + ans[i : len(ans)]
f += 1
break
if f == 0:
ans += "1" * cnt1
print(ans)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR VAR IF VAR STRING VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP STRING VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = list(map(int, list(input())))
c = [0, 0, 0]
ans = list()
f = True
for el in s:
if el == 0 and c[2] > 0:
ans.append("0" * c[0])
if f:
ans.append("1" * s.count(1))
f = False
ans.append("2" * c[2])
c = [0, 0, 0]
if el != 1:
c[el] += 1
ans.append("0" * c[0])
ans.append("2" * c[2])
if f:
if 0 not in s:
ans.insert(0, "1" * s.count(1))
elif 2 not in s:
ans.insert(-1, "1" * s.count(1))
else:
ans.insert(1, "1" * s.count(1))
f = False
print("".join(ans))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP STRING VAR NUMBER IF VAR EXPR FUNC_CALL VAR BIN_OP STRING FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP STRING VAR NUMBER ASSIGN VAR LIST NUMBER NUMBER NUMBER IF VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP STRING VAR NUMBER EXPR FUNC_CALL VAR BIN_OP STRING VAR NUMBER IF VAR IF NUMBER VAR EXPR FUNC_CALL VAR NUMBER BIN_OP STRING FUNC_CALL VAR NUMBER IF NUMBER VAR EXPR FUNC_CALL VAR NUMBER BIN_OP STRING FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER BIN_OP STRING FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
def min_ternary_string(seq):
zero_two = [ch for ch in seq if ch != "1"]
ones = seq.count("1")
i = 0
while i < len(zero_two):
if zero_two[i] == "2":
break
i += 1
return "".join(zero_two[:i]) + "1" * ones + "".join(zero_two[i:])
print(min_ternary_string(input()))
|
FUNC_DEF ASSIGN VAR VAR VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER RETURN BIN_OP BIN_OP FUNC_CALL STRING VAR VAR BIN_OP STRING VAR FUNC_CALL STRING VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
def writeRestOfString(TS, result, indexOfFirstTwo):
size = len(TS)
for num in TS[indexOfFirstTwo:size]:
result += str(num)
return result
def removeAllOnesAfterFirstTwo(TS, indexOfFirstTwo):
i = indexOfFirstTwo
size = len(TS)
beginOfTS = TS[0:indexOfFirstTwo]
restOfTS = ""
while i < size:
if TS[i] != "1":
restOfTS += str(TS[i])
i += 1
return beginOfTS + restOfTS
def countZerosAndOnes(TS, limit):
i = 0
zeros = 0
ones = 0
while i < limit:
if TS[i] == 1:
ones += 1
else:
zeros += 1
i += 1
return zeros, ones
def countOnes(TS, limit):
i = 0
ones = 0
while i < limit:
if TS[i] == 1:
ones += 1
i += 1
return ones
def countZeros(TS, limit):
i = 0
zeros = 0
while i < limit:
if TS[i] == 0:
zeros += 1
i += 1
return zeros
def writeZeros(result, zeros):
i = 1
while i <= zeros:
result += str(0)
i += 1
return result
def writeOnes(result, ones):
i = 1
while i <= ones:
result += str(1)
i += 1
return result
def checkForFirstTwo(TS):
i = 0
size = len(TS)
while i < size:
if TS[i] == 2 or TS[i] == "2":
return i
i += 1
return None
def changeStringWithOnlyOnesAndZeros(TS):
size = len(TS)
result = ""
zeros, ones = countZerosAndOnes(TS, size)
result = writeZeros(result, zeros)
result = writeOnes(result, ones)
return result
def changeString(TS, indexOfFirstTwo):
result = ""
size = len(TS)
zeros = countZeros(TS, indexOfFirstTwo)
ones = countOnes(TS, size)
result = writeZeros(result, zeros)
result = writeOnes(result, ones)
result = writeRestOfString(TS, result, indexOfFirstTwo)
indexOfFirstTwo = checkForFirstTwo(result)
result = removeAllOnesAfterFirstTwo(result, indexOfFirstTwo)
return result
def splitString(string):
characters = []
size = len(string)
i = 0
while i < size:
characters.append(int(string[i]))
i += 1
return characters
ternaryString = input()
TSArray = splitString(ternaryString)
indexOfFirstTwo = checkForFirstTwo(TSArray)
if indexOfFirstTwo != None:
print(changeString(TSArray, indexOfFirstTwo))
else:
print(changeStringWithOnlyOnesAndZeros(TSArray))
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR STRING WHILE VAR VAR IF VAR VAR STRING VAR FUNC_CALL VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR VAR FUNC_CALL VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR VAR FUNC_CALL VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR IF VAR VAR NUMBER VAR VAR STRING RETURN VAR VAR NUMBER RETURN NONE FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NONE EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = list(input())
one = 0
res = ""
for x in s:
if x == "1":
one += 1
else:
res += x
ans = -1
for i in range(len(res)):
if res[i] == "2":
ans = i
break
new_s = "1" * one
if ans == -1:
s = res + new_s
elif ans == 0:
s = new_s + res
else:
s = res[:ans] + new_s + res[ans:]
print(s)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR VAR IF VAR STRING VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR VAR ASSIGN VAR BIN_OP STRING VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
-----Input-----
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
-----Output-----
Print a single string β the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
-----Examples-----
Input
100210
Output
001120
Input
11222121
Output
11112222
Input
20
Output
20
|
s = list(input())
count = 0
for i in range(len(s) - 1, -1, -1):
if s[i] == "1":
count += 1
del s[i]
try:
mark = s.index("2")
except:
mark = -1
if mark == -1:
s.extend(["1"] * count)
else:
s = s[:mark] + ["1"] * count + s[mark:]
print(*s, sep="")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR STRING VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP LIST STRING VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP LIST STRING VAR VAR VAR EXPR FUNC_CALL VAR VAR STRING
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.