description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
You have an array $a$ of length $n$. For every positive integer $x$ you are going to perform the following operation during the $x$-th second: Select some distinct indices $i_{1}, i_{2}, \ldots, i_{k}$ which are between $1$ and $n$ inclusive, and add $2^{x-1}$ to each corresponding position of $a$. Formally, $a_{i_{j}} := a_{i_{j}} + 2^{x-1}$ for $j = 1, 2, \ldots, k$. Note that you are allowed to not select any indices at all. You have to make $a$ nondecreasing as fast as possible. Find the smallest number $T$ such that you can make the array nondecreasing after at most $T$ seconds. Array $a$ is nondecreasing if and only if $a_{1} \le a_{2} \le \ldots \le a_{n}$. You have to answer $t$ independent test cases. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 10^{4}$)Β β€” the number of test cases. The first line of each test case contains single integer $n$ ($1 \le n \le 10^{5}$)Β β€” the length of array $a$. It is guaranteed that the sum of values of $n$ over all test cases in the input does not exceed $10^{5}$. The second line of each test case contains $n$ integers $a_{1}, a_{2}, \ldots, a_{n}$ ($-10^{9} \le a_{i} \le 10^{9}$). -----Output----- For each test case, print the minimum number of seconds in which you can make $a$ nondecreasing. -----Example----- Input 3 4 1 7 6 5 5 1 2 3 4 5 2 0 -4 Output 2 0 3 -----Note----- In the first test case, if you select indices $3, 4$ at the $1$-st second and $4$ at the $2$-nd second, then $a$ will become $[1, 7, 7, 8]$. There are some other possible ways to make $a$ nondecreasing in $2$ seconds, but you can't do it faster. In the second test case, $a$ is already nondecreasing, so answer is $0$. In the third test case, if you do nothing at first $2$ seconds and select index $2$ at the $3$-rd second, $a$ will become $[0, 0]$.
for _ in range(int(input())): n = int(input()) a = list(map(int, input().split())) b = a.copy() for i in range(n - 1): if b[i] > b[i + 1]: b[i + 1] = b[i] s = max([(b[i] - a[i]) for i in range(n)]) print(len(bin(s)) - 2 if s != 0 else 0)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER
You have an array $a$ of length $n$. For every positive integer $x$ you are going to perform the following operation during the $x$-th second: Select some distinct indices $i_{1}, i_{2}, \ldots, i_{k}$ which are between $1$ and $n$ inclusive, and add $2^{x-1}$ to each corresponding position of $a$. Formally, $a_{i_{j}} := a_{i_{j}} + 2^{x-1}$ for $j = 1, 2, \ldots, k$. Note that you are allowed to not select any indices at all. You have to make $a$ nondecreasing as fast as possible. Find the smallest number $T$ such that you can make the array nondecreasing after at most $T$ seconds. Array $a$ is nondecreasing if and only if $a_{1} \le a_{2} \le \ldots \le a_{n}$. You have to answer $t$ independent test cases. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 10^{4}$)Β β€” the number of test cases. The first line of each test case contains single integer $n$ ($1 \le n \le 10^{5}$)Β β€” the length of array $a$. It is guaranteed that the sum of values of $n$ over all test cases in the input does not exceed $10^{5}$. The second line of each test case contains $n$ integers $a_{1}, a_{2}, \ldots, a_{n}$ ($-10^{9} \le a_{i} \le 10^{9}$). -----Output----- For each test case, print the minimum number of seconds in which you can make $a$ nondecreasing. -----Example----- Input 3 4 1 7 6 5 5 1 2 3 4 5 2 0 -4 Output 2 0 3 -----Note----- In the first test case, if you select indices $3, 4$ at the $1$-st second and $4$ at the $2$-nd second, then $a$ will become $[1, 7, 7, 8]$. There are some other possible ways to make $a$ nondecreasing in $2$ seconds, but you can't do it faster. In the second test case, $a$ is already nondecreasing, so answer is $0$. In the third test case, if you do nothing at first $2$ seconds and select index $2$ at the $3$-rd second, $a$ will become $[0, 0]$.
t = int(input()) for _ in range(t): n = int(input()) a = list(map(int, input().split())) max_val = a[0] max_diff = 0 for i in range(1, n): if a[i] > max_val: max_val = a[i] if max_val - a[i] > max_diff: max_diff = max_val - a[i] total = 0 num = 1 count = 0 while max_diff > total: total += num num *= 2 count += 1 print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You have an array $a$ of length $n$. For every positive integer $x$ you are going to perform the following operation during the $x$-th second: Select some distinct indices $i_{1}, i_{2}, \ldots, i_{k}$ which are between $1$ and $n$ inclusive, and add $2^{x-1}$ to each corresponding position of $a$. Formally, $a_{i_{j}} := a_{i_{j}} + 2^{x-1}$ for $j = 1, 2, \ldots, k$. Note that you are allowed to not select any indices at all. You have to make $a$ nondecreasing as fast as possible. Find the smallest number $T$ such that you can make the array nondecreasing after at most $T$ seconds. Array $a$ is nondecreasing if and only if $a_{1} \le a_{2} \le \ldots \le a_{n}$. You have to answer $t$ independent test cases. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 10^{4}$)Β β€” the number of test cases. The first line of each test case contains single integer $n$ ($1 \le n \le 10^{5}$)Β β€” the length of array $a$. It is guaranteed that the sum of values of $n$ over all test cases in the input does not exceed $10^{5}$. The second line of each test case contains $n$ integers $a_{1}, a_{2}, \ldots, a_{n}$ ($-10^{9} \le a_{i} \le 10^{9}$). -----Output----- For each test case, print the minimum number of seconds in which you can make $a$ nondecreasing. -----Example----- Input 3 4 1 7 6 5 5 1 2 3 4 5 2 0 -4 Output 2 0 3 -----Note----- In the first test case, if you select indices $3, 4$ at the $1$-st second and $4$ at the $2$-nd second, then $a$ will become $[1, 7, 7, 8]$. There are some other possible ways to make $a$ nondecreasing in $2$ seconds, but you can't do it faster. In the second test case, $a$ is already nondecreasing, so answer is $0$. In the third test case, if you do nothing at first $2$ seconds and select index $2$ at the $3$-rd second, $a$ will become $[0, 0]$.
for _ in range(int(input())): size = int(input()) array, time, check = list(map(int, input().split())), -1000000000.0, 0 for x in array: time = max(time, x) check = max(check, time - x) print(check and len(f"{check:b}"))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FUNC_CALL VAR VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
n = input() ones = 0 final_str = "" for char in n: if char == "1": ones += 1 else: final_str += char actual_final_str = "" for i in range(len(final_str)): if final_str[i] == "2": actual_final_str += "1" * ones + final_str[i:] break if i == len(final_str) - 1: actual_final_str += final_str[i] + "1" * ones break else: actual_final_str += final_str[i] if len(actual_final_str) < len(n): actual_final_str += "1" * ones print(actual_final_str)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR VAR IF VAR STRING VAR NUMBER VAR VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR BIN_OP BIN_OP STRING VAR VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() + "2" cnt1 = s.count("1") s = s.replace("1", "") pos = s.find("2") print(s[:pos] + "1" * cnt1 + s[pos:-1])
ASSIGN VAR BIN_OP FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR NUMBER
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
class Numero: def __init__(self, num): self.qtd_0 = num.count("0") self.qtd_1 = num.count("1") self.qtd_2 = num.count("2") string = input() num = Numero(string) if "1" in string: string = string.replace("1", "") if "2" in string: string = string[: string.index("2")] + "1" * num.qtd_1 + string[string.index("2") :] else: string += "1" * num.qtd_1 print(string)
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF STRING VAR ASSIGN VAR FUNC_CALL VAR STRING STRING IF STRING VAR ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR STRING BIN_OP STRING VAR VAR FUNC_CALL VAR STRING VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() head = "" tail = "" for ch in s: if ch == "1": head += ch elif ch == "0" and len(tail) == 0: head = ch + head else: tail += ch print(head + tail)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING FOR VAR VAR IF VAR STRING VAR VAR IF VAR STRING FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
while True: try: def soln(s): n = len(s) zeon = [] one = 0 for i in range(n): if s[i] != "1": zeon.append(s[i]) else: one += 1 ans = [] for j in range(len(zeon)): if zeon[j] == "2": for i in range(one): ans.append("1") one = 0 ans.append(zeon[j]) for j in range(one): ans.append("1") print("".join(ans)) def read(): s = input() soln(s) if __name__ == "__main__": read() except EOFError: break
WHILE NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR IF VAR STRING EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() c = s.count("1") s = s.replace("1", "") x = s.find("2") if x == -1: print(s + "1" * c) else: print(s[: int(x)] + "1" * c + s[int(x) :])
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR BIN_OP STRING VAR VAR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() a = "".join([i for i in s if i in ["0", "2"]]) b = "1" * s.count("1") print(a[: a.find("2")] + b + a[a.find("2") :] if "2" in s else a + b)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL STRING VAR VAR VAR VAR LIST STRING STRING ASSIGN VAR BIN_OP STRING FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING VAR BIN_OP BIN_OP VAR FUNC_CALL VAR STRING VAR VAR FUNC_CALL VAR STRING BIN_OP VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() l = len(s) z = -1 c0 = 0 c1 = 0 c2 = 0 loc = -1 for i in range(l): c = s[i] if c == "0": c0 += 1 if c == "1": c1 += 1 if c == "2": c2 += 1 if z == -1: z = c0 loc = i if z == -1: for i in range(c0): print(0, end="") for i in range(c1): print(1, end="") print() else: for i in range(z): print(0, end="") for i in range(c1): print(1, end="") for i in range(loc, l): if s[i] != "1": print(s[i], end="") print()
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR STRING VAR NUMBER IF VAR STRING VAR NUMBER IF VAR STRING VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER STRING EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER STRING FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
def solve(x): result_string = "" ones_count = 0 nulls_before = 0 i = 0 while i < len(x) and x[i] != "2": if x[i] == "1": ones_count += 1 elif x[i] == "0": nulls_before += 1 i += 1 while i < len(x): if x[i] == "1": ones_count += 1 else: result_string += x[i] i += 1 return "0" * nulls_before + "1" * ones_count + result_string x = input() print(solve(x))
FUNC_DEF ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR STRING IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR NUMBER VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER VAR VAR VAR VAR NUMBER RETURN BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() try: first = s.index("2") final = list(s[:first]) final.sort() final = "".join(final) extra = "" for j in range(first, len(s)): if s[j] in ["2", "0"]: extra += s[j] else: final += "1" print(final + extra) except: l = list(s[:]) l.sort() print("".join(l))
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR LIST STRING STRING VAR VAR VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
a = input() b = len(a) x = a.count("1") y = "" for i in range(b): if a[i] != "1": y += a[i] if "2" in a: print(y[: y.index("2")] + "1" * x + y[y.index("2") :]) else: print("".join(sorted(list(y))) + "1" * x)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR VAR IF STRING VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR FUNC_CALL VAR STRING BIN_OP STRING VAR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP STRING VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() len1 = s.count("1") index2 = s.find("2") if index2 == -1: s = list(s) s.sort() print("".join(s)) else: temp = s[:index2] zero = temp.count("0") result = "0" * zero + "1" * len1 + s[index2:].replace("1", "") print(result)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR FUNC_CALL VAR VAR STRING STRING EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
from sys import exit s = input() q = [(-1) for i in range(len(s))] ans = [] q = -1 for i in range(len(s)): if s[i] != "1": ans.append(s[i]) for i in range(len(ans)): if ans[i] == "2": q = i break ind = q if ind == -1: ind = len(ans) for i in range(ind): print(ans[i], end="") print(s.count("1") * "1", end="") for i in range(ind, len(ans)): print(ans[i], end="")
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR VAR ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING STRING STRING FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
def scanf(obj=list, type=int): return obj(map(type, input().split())) s = input()[-1::-1] ans = "" z = on = 0 for i in range(len(s)): if s[i] == "0": z += 1 if s[i] == "1": on += 1 if s[i] == "2": ans += "0" * z + "2" z = 0 ans += "1" * on + "0" * z print(ans[-1::-1])
FUNC_DEF VAR VAR RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR STRING ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR BIN_OP BIN_OP STRING VAR STRING ASSIGN VAR NUMBER VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR NUMBER NUMBER
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
def main(): ss = [] s = input() last = "" _0s = 0 _1s = 0 _2s = 0 for c in reversed(s): if c == "0": ss.append("2" * _2s) _2s = 0 _0s += 1 elif c == "1": _1s += 1 else: ss.append("0" * _0s) _0s = 0 _2s += 1 ss.append("0" * _0s + "1" * _1s + "2" * _2s) print("".join(reversed(ss))) main()
FUNC_DEF ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR STRING EXPR FUNC_CALL VAR BIN_OP STRING VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR STRING VAR NUMBER EXPR FUNC_CALL VAR BIN_OP STRING VAR ASSIGN VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() if len(set(s)) == 1: print(s) else: noOnes = "" oneCount = 0 for i in range(len(s)): if s[i] == "1": oneCount += 1 else: noOnes += s[i] for i in range(len(noOnes)): if noOnes[i] == "2": noOnes = noOnes[:i] + "1" * oneCount + noOnes[i:] break if i == len(noOnes) - 1: noOnes = noOnes + "1" * oneCount print(noOnes)
ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
params = input() params = list(params) zero = 0 one = 0 x = 0 while x < params.__len__(): if params[x] == "1": one += 1 params.pop(x) else: x += 1 x = 0 while x < params.__len__(): if params[x] == "2": break else: zero += 1 params.pop(x) params.insert(0, "1" * one) params.insert(0, "0" * zero) s = "" print(s.join(params))
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR IF VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR IF VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER BIN_OP STRING VAR EXPR FUNC_CALL VAR NUMBER BIN_OP STRING VAR ASSIGN VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
r = list(input()) s = "" count = 0 for i in r: if i == "1": count = count + 1 else: s = s + i ans = "" u = 0 while u < len(s): if s[u] == "2": break else: u = u + 1 ans = s[:u] + count * "1" + s[u:] print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR STRING ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR STRING VAR VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() ln = len(s) o = s.count("1") t = z = b = c = 0 for i in range(ln): if s[i] == "0" or s[i] == "2": if s[i] == "0": z = 1 c += 1 elif s[i] == "2": if z and c and not b: for j in range(c): print(0, end="") for j in range(o): print(1, end="") print(2, end="") b = 1 o = 0 c = 0 elif not b: for j in range(o): print(1, end="") print(2, end="") b = 1 o = 0 else: for j in range(c): print(0, end="") print(2, end="") c = 0 for i in range(c): print(0, end="") for i in range(o): print(1, end="")
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR STRING IF VAR VAR STRING ASSIGN VAR NUMBER VAR NUMBER IF VAR VAR STRING IF VAR VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER STRING EXPR FUNC_CALL VAR NUMBER STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER STRING EXPR FUNC_CALL VAR NUMBER STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER STRING EXPR FUNC_CALL VAR NUMBER STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() answer = "" zero = one = 0 finished = False for num in s: if num == "0": if finished == False: zero += 1 else: answer += num if num == "1": one += 1 if num == "2": finished = True answer += num z = "".join(["0"] * zero) o = "".join(["1"] * one) print(z + o + answer)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING IF VAR NUMBER VAR NUMBER VAR VAR IF VAR STRING VAR NUMBER IF VAR STRING ASSIGN VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL STRING BIN_OP LIST STRING VAR ASSIGN VAR FUNC_CALL STRING BIN_OP LIST STRING VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() ones = s.count("1") s = s.replace("1", "") indTwo = s.find("2") if indTwo != -1: print(s[:indTwo] + "1" * ones + s[indTwo:]) else: print(s + "1" * ones)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP STRING VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() ans = "" cnt = 0 for char in s: if char == "1": cnt += 1 else: ans += char pos = 0 while pos < len(ans) and ans[pos] == "0": pos += 1 res = ans[:pos] + "1" * cnt + ans[pos:] print(res)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR STRING VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
count1 = 0 result = [] a = input() for i in a: if i == "1": count1 += 1 elif i == "0" or i == "2": result.append(i) try: index = result.index("2") temp = result[index:] result = result[:index] + ["1"] * count1 + temp except ValueError: result.extend(["1"] * count1) print("".join(result))
ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR STRING VAR NUMBER IF VAR STRING VAR STRING EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP LIST STRING VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP LIST STRING VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() n = len(s) ans = "" flag = 0 for i in range(n): if s[i] == "1": ans += "1" for i in range(n): if s[i] == "1": continue elif s[i] == "2": ans += "2" flag = 1 elif flag == 0: ans = "0" + ans else: ans += "0" print(ans)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING IF VAR VAR STRING VAR STRING ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP STRING VAR VAR STRING EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
def main(): s = input() n = len(s) nums = [[], [], []] if n == 1: print(s) return 0 for i in range(n): nums[int(s[i])].append(i) if len(nums[0]) == 0: temp = len(nums[1]) print("1" * temp + "2" * (n - temp)) elif len(nums[2]) == 0: temp = len(nums[0]) print("0" * temp + "1" * (n - temp)) else: S = [i for i in s if i != "1"] temp = len(nums[1]) for i in range(len(S)): if S[i] == "2": break print("".join(S[:i]) + temp * "1" + "".join(S[i:])) return 0 main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST LIST LIST LIST IF VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING BIN_OP VAR VAR IF FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING BIN_OP VAR VAR ASSIGN VAR VAR VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL STRING VAR VAR BIN_OP VAR STRING FUNC_CALL STRING VAR VAR RETURN NUMBER EXPR FUNC_CALL VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
a = input() ans = a.replace("1", "") + "2" t = ans.find("2") print(ans[:t] + "1" * a.count("1") + ans[t:-1])
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR STRING STRING STRING ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING FUNC_CALL VAR STRING VAR VAR NUMBER
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
a = input() + "2" f = a.index("2") b = a[f:] o = "" for i in b: if i != "1": o += i a = a[:f] print(a.count("0") * "0" + a.count("1") * "1" + b.count("1") * "1" + o[:-1])
ASSIGN VAR BIN_OP FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR ASSIGN VAR STRING FOR VAR VAR IF VAR STRING VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR STRING STRING BIN_OP FUNC_CALL VAR STRING STRING BIN_OP FUNC_CALL VAR STRING STRING VAR NUMBER
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
a = input() x = len(a) q = 0 a = a.replace("1", "") if len(a) != 0: if a[0] == "2": print("1" * (x - len(a)) + a) exit(0) else: for i in range(len(a) - 1): print(a[i], end="") if a[i + 1] == "2": print("1" * (x - len(a)) + a[i + 1 :]) q = 1 break if q == 0: print("0", end="") if q == 0: print("1" * (x - len(a)))
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING STRING IF FUNC_CALL VAR VAR NUMBER IF VAR NUMBER STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING BIN_OP VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR STRING IF VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING BIN_OP VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING STRING IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP STRING BIN_OP VAR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() t = "" num = 0 for i in range(len(s)): if s[i] == "1": num += 1 else: t += s[i] s = num * "1" + t p = s.split("0") q = [] for k in p: q.append("".join(sorted(list(k)))) p = "0".join(q) p = p.split("2") q = [] for k in p: q.append("".join(sorted(list(k)))) p = "2".join(q) print(p)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() ans = "" count_0 = 0 count_1 = 0 done = False for val in s: if val == "0": if not done: count_0 += 1 else: ans += val if val == "1": count_1 += 1 if val == "2": done = True ans += val print("".join(["0"] * count_0) + "".join(["1"] * count_1) + ans)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING IF VAR VAR NUMBER VAR VAR IF VAR STRING VAR NUMBER IF VAR STRING ASSIGN VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL STRING BIN_OP LIST STRING VAR FUNC_CALL STRING BIN_OP LIST STRING VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = list(str(input())) empty = "" for i in range(len(s)): zero = 0 if s[i] == "2": for t in range(i + 1, len(s)): if s[t] == "0": zero += 1 if s[t] == "2": break empty += "2" + "0" * zero empty = (s.count("0") - empty.count("0")) * "0" + "1" * s.count("1") + empty print(empty)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR BIN_OP STRING BIN_OP STRING VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING STRING BIN_OP STRING FUNC_CALL VAR STRING VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
def main(): s = list(map(int, input())) cnt0, cnt1 = 0, 0 ans = [] for a in s: if a == 1: cnt1 += 1 elif a == 2: ans.append(a) elif a == 0: if not ans: cnt0 += 1 else: ans.append(a) s = "0" * cnt0 + "1" * cnt1 + "".join(map(str, ans)) print(s) def __starting_point(): main() __starting_point()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR VAR IF VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() t = [x for x in s if x != "1"] if not t: print(s) else: o = ["1"] * (len(s) - len(t)) try: i = t.index("2") print("".join(t[:i] + o + t[i:])) except ValueError: print("".join(t + o))
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR STRING IF VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST STRING BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING BIN_OP VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = list(input()) if ( len(s) == s.count("1") or len(s) == s.count("2") or len(s) == s.count("0") or len(s) == s.count("0") + s.count("2") ): print("".join(s)) elif len(s) == s.count("1") + s.count("0"): print("0" * s.count("0") + "1" * s.count("1")) elif len(s) == s.count("1") + s.count("2"): print("1" * s.count("1") + "2" * s.count("2")) else: a, si = s.count("1"), [i for i in s if i != "1"] str = "".join(si) b = str.index("2") str = str[:b] + "1" * a + str[b:] print(str)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR IF FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING FUNC_CALL VAR STRING BIN_OP STRING FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING FUNC_CALL VAR STRING BIN_OP STRING FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR STRING VAR VAR VAR VAR STRING ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
n = list(map(int, input())) mmm = True if len(n) > 1000: if n[0] == 2: xxx = len(n) - 1 for i in range(1, 1000): if n[i] == 2 or n[i] == 0: mmm = False break else: mmm = False else: mmm = False _javob_ = [] v = 0 c = 0 hh = True nn = True i = 0 q = len(n) - 1 while i <= q and mmm == False: nn = True if n[i] == 1: v += 1 n.pop(i) i -= 1 if i < 0: i += 1 nn == False if len(n) < 1: break if n[i] == 2: hh = False if n[i] == 0 and hh == True: c += 1 n[i] = 3 q = len(n) - 1 if nn == False: i -= 1 i += 1 i = 0 z = 0 while z != c and i <= len(n) - 1 and mmm == False: if n[i] == 3: n.pop(i) i -= 1 z += 1 i += 1 if c > 0 and mmm == False: for i in range(c): _javob_.append(0) if v > 0: for i in range(v): _javob_.append(1) if mmm == False: _javob_ = _javob_ + n else: for ll in range(xxx): _javob_.append(1) _javob_.append(2) for j in range(len(_javob_)): print(_javob_[j], end="")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER IF VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
import sys input = sys.stdin.readline s = input()[:-1] one = 0 ans = [] for i in range(len(s)): if s[i] == "1": one += 1 else: ans.append(s[i]) ans2 = [] for i in range(len(ans)): if ans[i] == "2": for _ in range(one): ans2.append("1") for j in range(i, len(ans)): ans2.append(ans[j]) break else: ans2.append(ans[i]) else: for _ in range(one): ans2.append("1") print("".join(ans2))
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
import sys def input(): return sys.stdin.readline().strip() s = input() freq = {"0": 0, "1": 0} i = 0 while i < len(s): if s[i] == "2": break else: freq[s[i]] += 1 i += 1 suf_s = "" while i < len(s): if s[i] == "1": freq[s[i]] += 1 else: suf_s += s[i] i += 1 pre_s = "0" * freq["0"] + "1" * freq["1"] print(pre_s + suf_s)
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT STRING STRING NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR STRING WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP STRING VAR STRING BIN_OP STRING VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = list(input()) ans = [[], [], []] for c in s: if c == "1": ans[1].append("1") elif 0 < len(ans[2]) or c == "2": ans[2].append(c) else: ans[0].append(c) print("".join(map(lambda ls: "".join(ls), ans)))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST LIST LIST LIST FOR VAR VAR IF VAR STRING EXPR FUNC_CALL VAR NUMBER STRING IF NUMBER FUNC_CALL VAR VAR NUMBER VAR STRING EXPR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL STRING VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
TN = 1 def solution(): s = list(input()) n = len(s) ed = 0 ans = "" for i in range(n): if s[i] != "1": ans += s[i] else: ed += 1 k = (ans + "2").index("2") print(ans[:k] + "1" * ed + ans[k:]) while TN != 0: solution() TN -= 1
ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL BIN_OP VAR STRING STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
import sys input = sys.stdin.readline read_tuple = lambda _type: map(_type, input().split(" ")) def solve(): a = list(input().replace("\n", "")) delete_ones = [] count_ones = 0 for a_i in a: if a_i == "1": count_ones += 1 else: delete_ones.append(a_i) ans = [] for elem in delete_ones: if elem == "2" and count_ones: ans.append("1" * count_ones) count_ones = 0 ans.append(elem) if count_ones: ans.append("1" * count_ones) count_ones = 0 print("".join(ans)) solve()
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR STRING STRING ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR VAR IF VAR STRING VAR EXPR FUNC_CALL VAR BIN_OP STRING VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR BIN_OP STRING VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() n = len(s) a = 0 b = 0 for i in range(n): if s[i] == "1": b += 1 st = 0 res = "" for i in range(n): if s[i] == "2": for i in range(a): res += "0" for i in range(b): res += "1" res += "2" a = 0 b = 0 elif s[i] == "0": a += 1 for i in range(a): res += "0" for i in range(b): res += "1" print(res)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING FOR VAR FUNC_CALL VAR VAR VAR STRING FOR VAR FUNC_CALL VAR VAR VAR STRING VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR STRING VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR STRING FOR VAR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
si = input() so = "" ones = 0 for i in range(len(si)): if si[i] == "1": ones = ones + 1 i = 0 twos_found = False for i in range(len(si)): if si[i] == "2" and not twos_found: twos_found = True if ones > 0: so = so + "1" * ones if si[i] == "0" or si[i] == "2": so = so + si[i] if ones > 0 and not twos_found: so = so + "1" * ones print(so)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP STRING VAR IF VAR VAR STRING VAR VAR STRING ASSIGN VAR BIN_OP VAR VAR VAR IF VAR NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
from sys import stdin line = stdin.readline().rstrip() count0 = 0 count1 = 0 index = 0 found2 = False for c in line: index += 1 if c == "0": count0 += 1 if c == "2": found2 = True break while count0 > 0: count0 -= 1 print("0", end="") for c in line: if c == "1": print("1", end="") if found2: print("2", end="") for i in range(index, len(line)): if line[i] != "1": print(line[i], end="")
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR NUMBER IF VAR STRING VAR NUMBER IF VAR STRING ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING STRING FOR VAR VAR IF VAR STRING EXPR FUNC_CALL VAR STRING STRING IF VAR EXPR FUNC_CALL VAR STRING STRING FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
def moveTwos(lst): totalTwos = 0 for index, ele in enumerate(lst): if ele == 2: totalTwos += 1 if ele == 1: lst[index - totalTwos], lst[index] = lst[index], lst[index - totalTwos] if ele == 0: totalTwos = 0 return lst def moveOnes(lst): totalOnes = 0 for index, ele in enumerate(lst): if ele == 1: totalOnes += 1 if ele == 0: lst[index - totalOnes], lst[index] = lst[index], lst[index - totalOnes] if ele == 2: totalOnes = 0 return lst def moveOnesLeft(lst): totalOnes = 0 for index in range(len(lst) - 1, -1, -1): ele = lst[index] if ele == 1: totalOnes += 1 else: lst[index + totalOnes], lst[index] = lst[index], lst[index + totalOnes] return lst def main(): inp = [int(i) for i in str(input())] ans = moveOnes(moveTwos(moveOnesLeft(inp))) for i in ans: print(i, end="") main()
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
def trocaElemento(ternary, biggerElemIndex, smallerElemIndex): temp = ternary[smallerElemIndex] ternary[smallerElemIndex] = ternary[biggerElemIndex] ternary[biggerElemIndex] = temp return ternary entrada = input() ternary = list(entrada) i = 0 one = 0 ans = "" while i < len(ternary): if ternary[i] == "0": ans = ans + "0" if ternary[i] == "1": one = one + 1 if ternary[i] == "2": ans = ans + "2" i = i + 1 flag = False i = 0 while i < len(ans): if ans[i] == "2" and not flag: flag = True for x in range(one): print("1", end="") print(ans[i], end="") i = i + 1 if not flag: for x in range(one): print("1", end="")
FUNC_DEF ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP VAR STRING IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR STRING ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING STRING EXPR FUNC_CALL VAR VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER IF VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() d = [0, 0] i = 0 while i < len(s) and s[i] != "2": d[int(s[i])] += 1 i += 1 a1 = 0 a2 = "" while i < len(s): if s[i] == "1": a1 += 1 else: a2 += s[i] i += 1 print("0" * d[0] + "1" * d[1] + "1" * a1 + a2)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR STRING VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP STRING VAR NUMBER BIN_OP STRING VAR NUMBER BIN_OP STRING VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() o, z, fpB, fp, sp = "", 0, True, "", "" for x in s: if fpB: if x == "0": fp += "0" elif x == "1": o += "1" else: sp += "2" fpB = False elif x != "1": sp += x else: o += "1" print(fp + o + sp)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR STRING NUMBER NUMBER STRING STRING FOR VAR VAR IF VAR IF VAR STRING VAR STRING IF VAR STRING VAR STRING VAR STRING ASSIGN VAR NUMBER IF VAR STRING VAR VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() res = "" if s.count("2") > 0: res = sorted(s[: s.index("2")]) res += ["1"] * (s.count("1") - res.count("1")) lim = len(res) res += s[s.index("2") :] s = "" for i in range(len(res)): if i >= lim and res[i] == "1": continue s += res[i] print(s) else: print("0" * s.count("0") + "1" * s.count("1"))
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING IF FUNC_CALL VAR STRING NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR BIN_OP LIST STRING BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR STRING VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING FUNC_CALL VAR STRING BIN_OP STRING FUNC_CALL VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
n = input() n = list(n) check_zero = True check_two = True sub = ["", "", ""] for c in range(len(n)): if n[c] == "0": check_two = False if check_zero: n[c] = "X" sub[0] = sub[0] + "0" elif n[c] == "1": n[c] = "X" sub[1] = sub[1] + "1" elif n[c] == "2": check_zero = False if check_two: n[c] = "X" sub[2] = sub[2] + "2" output = "".join([i for i in sub]) + "".join([j for j in n if j != "X"]) print(output)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST STRING STRING STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR NUMBER IF VAR ASSIGN VAR VAR STRING ASSIGN VAR NUMBER BIN_OP VAR NUMBER STRING IF VAR VAR STRING ASSIGN VAR VAR STRING ASSIGN VAR NUMBER BIN_OP VAR NUMBER STRING IF VAR VAR STRING ASSIGN VAR NUMBER IF VAR ASSIGN VAR VAR STRING ASSIGN VAR NUMBER BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP FUNC_CALL STRING VAR VAR VAR FUNC_CALL STRING VAR VAR VAR VAR STRING EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
def solve(s): count = 0 c = 0 while c < len(s): if s[c] == "1": count += 1 del s[c] else: c += 1 i = -1 if "2" in s: i = s.index("2") ones = "" for x in range(0, count): ones += "1" ans = "" if i >= 0: ans = "".join(s[0:i]) + ones[:] + "".join(s[i:]) else: ans = "".join(s[:]) + ones[:] return ans def main(): s = list(input()) ans = solve(s) print(ans) main()
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR NUMBER VAR VAR STRING ASSIGN VAR STRING IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL STRING VAR NUMBER VAR VAR FUNC_CALL STRING VAR VAR ASSIGN VAR BIN_OP FUNC_CALL STRING VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() temp = None paste = None zero, one = 0, 0 for i in range(len(s)): if s[i] == "2": temp = s[i:] break elif s[i] == "1": one += 1 elif s[i] == "0": zero += 1 if temp is not None: for x in temp: if x == "1": one += 1 paste = temp.replace("1", "") ans = "0" * zero + "1" * one if paste is not None: ans += paste print(ans)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NONE ASSIGN VAR NONE ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR NUMBER IF VAR NONE FOR VAR VAR IF VAR STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR IF VAR NONE VAR VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = str(input()) k = min([i for i in range(len(s)) if s[i] == "2"] + [len(s)]) z = len([c for c in s[:k] if c == "0"]) n = len([c for c in s if c == "1"]) print("0" * z + "1" * n + "".join(c for c in s[k:] if c != "1"))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR STRING LIST FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR FUNC_CALL STRING VAR VAR VAR VAR VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
import sys def input(): return sys.stdin.readline().strip() s = input() freq = {"0": 0, "1": 0} i = 0 while i < len(s): if s[i] == "2": break else: freq[s[i]] += 1 i += 1 s = list(s[i:]) suf_s = "" for i in s: if i == "1": freq[i] += 1 else: suf_s += i pre_s = "" for i in range(freq["0"]): pre_s += "0" for i in range(freq["1"]): pre_s += "1" print(pre_s + suf_s)
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT STRING STRING NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR STRING FOR VAR VAR IF VAR STRING VAR VAR NUMBER VAR VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR STRING VAR STRING FOR VAR FUNC_CALL VAR VAR STRING VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
def countc(s, c): k = 0 for x in s: if x == c: k += 1 return k s = input() n = len(s) k = countc(s, "1") if "0" not in s: s1 = "1" * k + "2" * (n - k) elif "2" not in s: s1 = "0" * (n - k) + "1" * k else: c = 0 for i in range(n): if s[i] == "0": c += 1 elif s[i] == "2": break s1 = "0" * c + "1" * k for j in range(i, n): if s[j] != "1": s1 += s[j] print(s1)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR STRING IF STRING VAR ASSIGN VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING BIN_OP VAR VAR IF STRING VAR ASSIGN VAR BIN_OP BIN_OP STRING BIN_OP VAR VAR BIN_OP STRING VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR STRING VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = [i for i in input()] n = len(s) c = 0 p = 1 << 64 ans = "" for i in range(n): if s[i] == "1": c += 1 else: ans += s[i] for i in range(len(ans)): if ans[i] == "2": p = min(p, i) if p == 1 << 64: ans += c * "1" print(ans) else: s1 = ans[0:p] s2 = ans[p:] print(s1 + "1" * c + s2)
ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR BIN_OP NUMBER NUMBER VAR BIN_OP VAR STRING EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP STRING VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
instr = input() one_count = 0 first_2 = -1 pref2 = "" postf2 = "" for i in range(len(instr)): if instr[i] == "0": pref2 += "0" elif instr[i] == "1": one_count += 1 else: first_2 = i break if first_2 != -1: for i in range(first_2 + 1, len(instr)): if instr[i] == "0": postf2 += "0" elif instr[i] == "1": one_count += 1 else: postf2 += "2" if first_2 != -1: outstr = pref2 + "1" * one_count + "2" + postf2 else: outstr = pref2 + "1" * one_count print(outstr)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR STRING IF VAR VAR STRING VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR STRING VAR STRING IF VAR VAR STRING VAR NUMBER VAR STRING IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP STRING VAR STRING VAR ASSIGN VAR BIN_OP VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
a = input() if "2" in a: b = a.split("2") one = a.count("1") ze = a.count("0") k = "" for i in b[1:]: k += "2" l = i.count("0") k += "0" * l ze -= l print("0" * ze + "1" * one + k) else: print("".join(sorted(a)))
ASSIGN VAR FUNC_CALL VAR IF STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR STRING FOR VAR VAR NUMBER VAR STRING ASSIGN VAR FUNC_CALL VAR STRING VAR BIN_OP STRING VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
str = input() new1 = "" new3 = "" count = 0 state = 1 for char in str: if char == "1": count += 1 else: if char == "2" and state == 1: state = 2 if state == 1: new1 += char else: new3 += char new2 = "1" * count new = new1 + new2 + new3 print(new)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER IF VAR STRING VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR VAR VAR VAR ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() num0 = [] cnt0 = 0 num1 = 0 for i in range(len(s)): if s[i] == "0": cnt0 += 1 elif s[i] == "1": num1 += 1 else: num0.append(cnt0) cnt0 = 0 num0.append(cnt0) print("0" * num0[0], end="") print("1" * num1, end="") for i in num0[1:]: print("2", end="") print("0" * i, end="")
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP STRING VAR NUMBER STRING EXPR FUNC_CALL VAR BIN_OP STRING VAR STRING FOR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING STRING EXPR FUNC_CALL VAR BIN_OP STRING VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() l = len(s) i = 0 while i < l and s[i] != "2": i += 1 a = sorted(s[0:i]) fir = [] sec = [] while i < l: if s[i] == "1": fir += [s[i]] else: sec += [s[i]] i += 1 r = a + fir + sec print("".join(r))
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR LIST ASSIGN VAR LIST WHILE VAR VAR IF VAR VAR STRING VAR LIST VAR VAR VAR LIST VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
a = [0, 0, 0, 0] s = input() n = len(s) k = n i = n - 1 answer = [] while i >= 0: if s[i] == "0": a[0] += 1 if s[i] == "2": k = i a[2] += 1 if s[i] == "1": a[1] += 1 i -= 1 i = 0 while i < k: if s[i] == "0": answer.append("0") i += 1 i = 0 while i < a[1]: answer.append("1") i += 1 i = k while i < n: if s[i] != "1": answer.append(s[i]) i += 1 string = "" for a in answer: string += str(a) print(string)
ASSIGN VAR LIST NUMBER NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR LIST WHILE VAR NUMBER IF VAR VAR STRING VAR NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR VAR VAR NUMBER NUMBER IF VAR VAR STRING VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR STRING VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR NUMBER EXPR FUNC_CALL VAR STRING VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR STRING FOR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
n = list(input()) def sw(w): ones = w.count("1") a = list(filter(lambda x: x != "1", w)) if "2" in a: i = a.index("2") print("".join(a[:i]) + "1" * ones + "".join(a[i:])) else: print("".join(a) + "1" * ones) sw(n)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR STRING VAR IF STRING VAR ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL STRING VAR VAR BIN_OP STRING VAR FUNC_CALL STRING VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL STRING VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
N = list(input()) N = [int(i) for i in N] n = len(N) two = n + 1 for i in range(n): if N[i] == 2: two = i break N2 = "" ones = 0 zeros = 0 for i in range(n - 1, -1, -1): if two <= i: if N[i] == 0: N2 = "0" + N2 elif N[i] == 2: N2 = "2" + N2 else: ones += 1 elif N[i] == 0: zeros += 1 else: ones += 1 print(zeros * "0" + ones * "1" + N2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP STRING VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP STRING VAR VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR STRING BIN_OP VAR STRING VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
def main(): s = input() zerotwo = "".join([c for c in s if c != "1"]) ones = "1" * (len(s) - len(zerotwo)) i = 0 while i < len(zerotwo) and zerotwo[i] == "0": i += 1 print(zerotwo[0:i] + ones + zerotwo[i:]) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL STRING VAR VAR VAR VAR STRING ASSIGN VAR BIN_OP STRING BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR VAR VAR VAR EXPR FUNC_CALL VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() s1 = [] s2 = [] s3 = [] f = 0 for i in range(0, len(s)): if s[i] == "1": s2.append("1") else: if s[i] == "2": f = 1 if f == 1: s3.append(s[i]) else: s1.append(s[i]) print("".join(s1 + s2 + s3))
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR STRING IF VAR VAR STRING ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING BIN_OP BIN_OP VAR VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() m = s.count("1") lis = [] for i in s: if i == "1": continue lis.append(i) ans = "".join(lis) k = ans.find("2") if k == -1: k = len(ans) print(ans[:k] + "1" * m + ans[k:])
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR VAR IF VAR STRING EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s, t, k = input(), "", 0 for i in s: if i != "1": t += i else: k += 1 i = t.index("2") if "2" in t else len(t) print(t[:i] + "1" * k + t[i:])
ASSIGN VAR VAR VAR FUNC_CALL VAR STRING NUMBER FOR VAR VAR IF VAR STRING VAR VAR VAR NUMBER ASSIGN VAR STRING VAR FUNC_CALL VAR STRING FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
strArr = list(input()) pos = -1 for i in range(len(strArr)): pos = i if strArr[i] == "2": break if pos == len(strArr) - 1 and strArr[pos] != "2": pos = len(strArr) ans = "" if pos != -1: for i in range(0, pos): if strArr[i] == "0": ans += str(strArr[i]) for i in range(len(strArr)): if strArr[i] == "1": ans += str(strArr[i]) for i in range(pos, len(strArr)): if strArr[i] != "1": ans += str(strArr[i]) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR IF VAR VAR STRING IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR STRING IF VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR STRING VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
lis = list(input()) o = z = i = 0 ans = "" n = len(lis) while i < n and lis[i] != "2": if lis[i] == "0": z += 1 else: o += 1 i += 1 ans = "0" * z + "1" * o o = z = t = 0 ans += "1" * lis[i:].count("1") while i < n: while i < n and lis[i] == "2": t += 1 i += 1 while i < n and lis[i] != "2": if lis[i] == "0": z += 1 i += 1 ans += "2" * t + "0" * z t = z = 0 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR VAR STRING IF VAR VAR STRING VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR ASSIGN VAR VAR VAR NUMBER VAR BIN_OP STRING FUNC_CALL VAR VAR STRING WHILE VAR VAR WHILE VAR VAR VAR VAR STRING VAR NUMBER VAR NUMBER WHILE VAR VAR VAR VAR STRING IF VAR VAR STRING VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() tot_zeroes = 0 cnt_ones = 0 cnt_two = 0 s1 = [] for i in s: if i == "0": tot_zeroes += 1 if i == "1": cnt_ones += 1 if i == "2": cnt_two += 1 idx = len(s) + 1 for i in range(len(s)): if s[i] == "2": idx = i break for k in range(idx, len(s)): if s[k] != "1": s1.append(s[k]) cnt = 0 for j in range(i + 1, len(s)): if s[j] == "0": cnt += 1 starting_zeroes = tot_zeroes - cnt new_s = [] for j in range(starting_zeroes): new_s.append("0") for j in range(cnt_ones): new_s.append("1") for j in s1: new_s.append(j) for j in new_s: print(j, end="")
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR IF VAR STRING VAR NUMBER IF VAR STRING VAR NUMBER IF VAR STRING VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
word = input() count_ones = 0 cur_word = "" for c in word: if int(c) == 1: count_ones += 1 if int(c) != 1: cur_word = cur_word + c res = "" found = 0 for c in cur_word: if int(c) == 2 and found == 0: found = 1 for i in range(count_ones): res += "1" res += "2" else: res += c if found == 0: for i in range(count_ones): res += "1" print(res)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR STRING VAR STRING VAR VAR IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
def main(): a = [int(x) for x in list(input().strip())] aux = [0] * 3 ans = [] aux[int(a[0])] = 1 prev = 0 temp = 0 for i in range(len(a) - 1): aux[int(a[i + 1])] = 1 if abs(a[i] - a[i + 1]) > 1 or sum(aux) > 2: temp = a[prev : i + 1] prev = i + 1 temp.sort() ans += temp aux = [0] * 3 aux[int(a[i + 1])] = 1 ans += sorted(a[prev:]) if 2 in a and 1 in a: st = ans.index(2) et = ans[st + 1 :].count(1) ans = ans[:st] + [1] * et + [kk for kk in ans[st:] if kk != 1] print("".join(str(x) for x in ans)) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER IF FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR FUNC_CALL VAR VAR VAR IF NUMBER VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP LIST NUMBER VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() count1 = s.count("1") string02 = s.replace("1", "") index1 = string02.find("2") if not index1 == -1: answer = string02[:index1] + "1" * count1 + string02[index1:] else: answer = string02 + "1" * count1 print(answer)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() one = s.count("1") ans = str() pos = -1 n = len(s) for i in range(n): if s[i] == "2": pos = i break if pos == -1: print("".join(sorted(s))) else: k = s[:pos] zero = k.count("0") ans = str() ans = "0" * zero + "1" * one + s[pos:] flag = False for i in ans: if flag and i == "1": continue if i == "2": flag = True print(i, end="")
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR STRING IF VAR STRING ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
S = input() x = S.count("1") T = S.replace("1", "") if "2" in T: ans = T[: T.index("2")] + "1" * x + T[T.index("2") :] else: ans = T + "1" * x print(ans)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING IF STRING VAR ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR STRING BIN_OP STRING VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() one = len(list(filter(lambda x: x == "1", s))) for elem in s: if elem == "2": if one != 0: print(one * "1", end="") one = 0 print(elem, end="") if elem == "0": print(elem, end="") if one != 0: print(one * "1")
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR STRING VAR FOR VAR VAR IF VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR STRING STRING ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR STRING IF VAR STRING EXPR FUNC_CALL VAR VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() ones = s.count("1") s_tmp = s.split("2") s_out = s_tmp[0].count("0") * "0" + ones * "1" for pocket in s_tmp[1:]: s_out += "2" + pocket.count("0") * "0" print(s_out)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR NUMBER STRING STRING BIN_OP VAR STRING FOR VAR VAR NUMBER VAR BIN_OP STRING BIN_OP FUNC_CALL VAR STRING STRING EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
x = input() c = x.count("1") x = x.replace("1", "") z = x.find("2") if z != -1: x = x[0 : int(z)] + "1" * c + x[int(z) :] print(x) else: print(x + "1" * c)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP STRING VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP STRING VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
m = input() m = list(m) output = [] for i in range(len(m)): if m[i] == "2": break if m[i] == "0": output.append("0") m[i] = "X" for i in range(len(m)): if m[i] == "1": output.append("1") m[i] = "X" for i in range(len(m)): if m[i] == "0": break if m[i] == "2": output.append("2") m[i] = "X" m = list(filter("X".__ne__, m)) print("".join(output + m))
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING IF VAR VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING IF VAR VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING VAR EXPR FUNC_CALL VAR FUNC_CALL STRING BIN_OP VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
from sys import stdin line = stdin.readline().rstrip() string1 = "1" * line.count("1") line = line.replace("1", "") pos = line.find("2") if pos == -1: print(line + string1) else: print(line[:pos] + string1 + line[pos:])
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP STRING FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() tmp = "" s = s[::-1] xx = z = it = 0 for c in s: if c == "2": tmp = tmp + "0" * z + "2" z = 0 if c == "0": z += 1 if c == "1": xx += 1 it = it + 1 tmp = tmp + "1" * xx + "0" * z print(tmp[::-1])
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER FOR VAR VAR IF VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP STRING VAR STRING ASSIGN VAR NUMBER IF VAR STRING VAR NUMBER IF VAR STRING VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP STRING VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR NUMBER
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() ones = 0 ans = "" for i in range(len(s)): if s[i] == "1": ones += 1 else: ans += s[i] for i in range(len(ans)): if ans[i] == "2": ans = ans[:i] + "1" * ones + ans[i:] break if len(ans) != len(s): ans += "1" * ones print(ans)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP STRING VAR VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() n = len(s) ans = [] cnt1 = 0 for i in range(n): if s[i] != "1": ans.append(s[i]) else: cnt1 += 1 ans.append("9") for i, char in enumerate(ans): if char != "0": res = ans[0:i] + ["1"] * cnt1 + ans[i:] break print("".join(map(str, res))[0:n])
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING FOR VAR VAR FUNC_CALL VAR VAR IF VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP LIST STRING VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR NUMBER VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
from sys import stdin, stdout def rint(): return map(int, stdin.readline().split()) s = input() cnt = 0 for i in range(len(s)): if s[i] == "1": cnt += 1 ans = "" found = False for i in range(len(s)): if s[i] == "0": ans += "0" continue if s[i] == "1": pass if s[i] == "2": if found == False: ans += "1" * cnt found = True ans += "2" if found == False: ans += "1" * cnt print(ans)
FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR STRING IF VAR VAR STRING IF VAR VAR STRING IF VAR NUMBER VAR BIN_OP STRING VAR ASSIGN VAR NUMBER VAR STRING IF VAR NUMBER VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
def swap(ls, index1, index2): aux = ls[index1] ls[index1] = ls[index2] ls[index2] = aux return def main(): ori = input() if ori == "" or len(ori) > 100000: return ori = list(ori) n = len(ori) i = 0 while i != n: if ori[i] == "2": break i += 1 bl = [] al = [] cl = [] for j in range(i): if ori[j] == "0": al.append("0") elif ori[j] == "1": bl.append("1") for j in range(i, n): if ori[j] == "1": bl.append("1") else: cl.append(ori[j]) for i in range(len(al)): print(al[i], end="") for i in range(len(bl)): print(bl[i], end="") for i in range(len(cl)): print(cl[i], end="") print() return main()
FUNC_DEF ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR RETURN FUNC_DEF ASSIGN VAR FUNC_CALL VAR IF VAR STRING FUNC_CALL VAR VAR NUMBER RETURN ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR STRING VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR STRING IF VAR VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR RETURN EXPR FUNC_CALL VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() q = s.index("2") if "2" in s else len(s) w = s.count("1") e = s[:q].count("0") a = "0" * e + "1" * w for i in s[q:]: if i != "1": a += i print(a)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING VAR FUNC_CALL VAR STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR FOR VAR VAR VAR IF VAR STRING VAR VAR EXPR FUNC_CALL VAR VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
a = input() b = a.count("1") c = 0 j = len(a) for i in range(len(a)): if a[i] == "0": c = c + 1 if a[i] == "2": j = i break d = [] for i in range(j, len(a)): if a[i] != "1": d.append(a[i]) print("0" * c + "1" * b + "".join(d))
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR STRING ASSIGN VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR FUNC_CALL STRING VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
t = input() n = len(t) count0 = 0 count1 = 0 count2 = 0 flag, i = 0, 0 for i in range(n): if t[i] == "1": count1 += 1 for i in range(n): if t[i] == "0": count0 += 1 if t[i] == "2": flag = 1 break for j in range(count0): print("0", end="") for j in range(count1): print("1", end="") if flag == 1: for k in range(i, n): if t[k] == "2": print(t[k], end="") if t[k] == "0": print(t[k], end="") k += 1
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING STRING IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR STRING IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR STRING VAR NUMBER
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() n = len(s) onec = s.count("1") zeroc = s.count("0") twoc = s.count("2") karma = 0 if "2" in s: karma = 0 else: karma = 1 if karma: print("0" * zeroc + "1" * onec) else: s = list(s) s = [i for i in s if i != "1"] twoind = s.index("2") s = s[0:twoind] + ["1"] * onec + s[twoind:] print(*s, sep="")
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF STRING VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP LIST STRING VAR VAR VAR EXPR FUNC_CALL VAR VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = [i for i in input()] s.reverse() ans = "" c0, c1 = 0, 0 for i in s: if i == "2": ans += c0 * "0" ans += "2" c0 = 0 elif i == "0": c0 += 1 else: c1 += 1 ans += c1 * "1" ans += c0 * "0" for i in range(len(s) - 1, -1, -1): print(ans[i], end="")
ASSIGN VAR VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR IF VAR STRING VAR BIN_OP VAR STRING VAR STRING ASSIGN VAR NUMBER IF VAR STRING VAR NUMBER VAR NUMBER VAR BIN_OP VAR STRING VAR BIN_OP VAR STRING FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() comeco0 = "" comeco1 = "" final = "" achei2 = False for num in s: if num == "0": if achei2 == False: comeco0 += "0" else: final += "0" if num == "1": comeco1 += "1" if num == "2": achei2 = True final += "2" print(comeco0, end="") print(comeco1, end="") print(final, end="")
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING IF VAR NUMBER VAR STRING VAR STRING IF VAR STRING VAR STRING IF VAR STRING ASSIGN VAR NUMBER VAR STRING EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
n = list(input()) if set(n) == {1, 2} or set(n) == {0, 1}: n.sort() print("".join(n)) else: count = n.count("1") l = ["1"] * count for i in range(len(n)): if n[i] != "1": l.append(n[i]) count2 = 0 for i in range(count, len(n)): if l[i] == "0": count2 += 1 else: break final = ["0"] * count2 + ["1"] * count for i in range(count + count2, len(n)): final.append(l[i]) print("".join(final))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP LIST STRING VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER ASSIGN VAR BIN_OP BIN_OP LIST STRING VAR BIN_OP LIST STRING VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() b = list(s) d = [] count_of_1 = 0 first_index_of_2 = None for ix, c in enumerate(b): if c == "1": count_of_1 += 1 else: d.append(c) if c == "2" and first_index_of_2 is None: first_index_of_2 = len(d) - 1 ans = ( d[:first_index_of_2] + ["1"] * count_of_1 + (d[first_index_of_2:] if first_index_of_2 is not None else []) ) print("".join(ans))
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NONE FOR VAR VAR FUNC_CALL VAR VAR IF VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR STRING VAR NONE ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP LIST STRING VAR VAR NONE VAR VAR LIST EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
s = input() a = s.count("1") l = [] for i in s: if i != "1": l.append(i) b = ["1"] * a c = len(l) for i in range(len(l)): if l[i] == "2": c = i break ans = l[0:c] + b + l[c : len(l)] for i in ans: print(str(i), end="")
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR VAR IF VAR STRING EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST STRING VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR VAR VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
a = input() b = "" i0 = 0 i1 = 0 i2 = 0 tmpi0 = 0 c = [] flag = False for i in range(len(a)): if a[i] == "1": i1 += 1 elif i0 != 0 and a[i] == "2": b += "0" * i0 i0 = 0 elif i2 != 0 and a[i] == "0": b += "2" * i2 i2 = 0 if a[i] == "2": i2 += 1 if a[i] == "0": i0 += 1 b += "0" * i0 + "2" * i2 flag = True for i in range(len(b)): if flag and b[i] == "2": flag = False print("1" * i1 + "2", end="") i1 = 0 else: print(b[i], end="") print("1" * i1, end="")
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR NUMBER VAR VAR STRING VAR BIN_OP STRING VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR VAR STRING VAR BIN_OP STRING VAR ASSIGN VAR NUMBER IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR NUMBER VAR BIN_OP BIN_OP STRING VAR BIN_OP STRING VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR STRING ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING VAR STRING STRING ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP STRING VAR STRING
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
l = list(input()) + ["2"] i = 0 l = sorted(l[: l.index("2")]) + l[l.index("2") :] ones = l.count("1") zeros = l[: l.index("2")].count("0") s = ["0"] * zeros + ["1"] * ones + list("".join(l[l.index("2") :]).replace("1", "")) print("".join(s[:-1]))
ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR LIST STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING STRING ASSIGN VAR BIN_OP BIN_OP BIN_OP LIST STRING VAR BIN_OP LIST STRING VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL STRING VAR FUNC_CALL VAR STRING STRING STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR NUMBER
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2'). You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa). For example, for string "010210" we can perform the following moves: "010210" $\rightarrow$ "100210"; "010210" $\rightarrow$ "001210"; "010210" $\rightarrow$ "010120"; "010210" $\rightarrow$ "010201". Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above. You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero). String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$. -----Input----- The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive). -----Output----- Print a single string β€” the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero). -----Examples----- Input 100210 Output 001120 Input 11222121 Output 11112222 Input 20 Output 20
arr = input() arr = list(arr) n = len(arr) zeros_after = 0 ones_after = 0 i = 0 while i < n: if arr[i] == "2": break i += 1 x = i while i < n: if arr[i] == "0": zeros_after += 1 elif arr[i] == "1": ones_after += 1 i += 1 first = arr[0:x] first.sort() for i in range(x, n): if arr[i] == "1": arr[i] = "3" ans = [] for i in arr: if i != "3": ans.append(i) for i in range(ones_after): first.append("1") print("".join(first + ans[x:]))
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR STRING VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR STRING ASSIGN VAR VAR STRING ASSIGN VAR LIST FOR VAR VAR IF VAR STRING EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING BIN_OP VAR VAR VAR