Datasets:
metadata
license: other
license_name: cecill-b
license_link: https://cecill.info/licences/Licence_CeCILL-B_V1-en.html
task_categories:
- text-generation
- feature-extraction
language:
- en
tags:
- theorem-proving
- formal-methods
- coq
- mathcomp
- algebra
- mathematics
size_categories:
- 10K<n<100K
dataset_info:
features:
- name: fact
dtype: string
- name: type
dtype: string
- name: library
dtype: string
- name: imports
list: string
- name: filename
dtype: string
- name: symbolic_name
dtype: string
- name: docstring
dtype: string
splits:
- name: train
num_bytes: 10218663
num_examples: 19924
download_size: 1831894
dataset_size: 10218663
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
Coq-MathComp
Structured dataset from the Mathematical Components library (MathComp) for Coq.
Dataset Description
- Source: math-comp/math-comp (v2.5.0)
- Entries: 19,924
- Files processed: 115
- License: CeCILL-B
Schema
| Column | Type | Description |
|---|---|---|
| fact | string | Declaration body |
| type | string | Lemma, Definition, HB.structure, HB.mixin, Canonical, etc. |
| library | string | Module (algebra, boot, fingroup, character, etc.) |
| imports | list | Require/Import statements |
| filename | string | Source file path |
| symbolic_name | string | Declaration identifier |
Statistics
By Type
| Type | Count |
|---|---|
| Lemma | 14,917 |
| Definition | 2,850 |
| Notation | 808 |
| Canonical | 425 |
| HB.instance | 247 |
| Fixpoint | 138 |
| Coercion | 116 |
| Variant | 104 |
| Theorem | 63 |
| HB.structure | 51 |
| HB.mixin | 50 |
By Library
| Library | Count |
|---|---|
| algebra | 7,455 |
| boot | 4,591 |
| fingroup | 1,995 |
| character | 1,864 |
| solvable | 1,747 |
| order | 1,197 |
| field | 1,048 |
About MathComp
Mathematical Components is a library of formalized mathematics for Coq, including algebra, number theory, and finite group theory. It uses the SSReflect proof language and Hierarchy Builder (HB) for structure definitions.
Use Cases
- Retrieval/RAG for Coq/MathComp
- Learning SSReflect patterns
- Algebraic formalization research
- Training embeddings for formal proofs