Coq-MathComp / README.md
phanerozoic's picture
Add placeholder docstring column for schema consistency
ed33595 verified
metadata
license: other
license_name: cecill-b
license_link: https://cecill.info/licences/Licence_CeCILL-B_V1-en.html
task_categories:
  - text-generation
  - feature-extraction
language:
  - en
tags:
  - theorem-proving
  - formal-methods
  - coq
  - mathcomp
  - algebra
  - mathematics
size_categories:
  - 10K<n<100K
dataset_info:
  features:
    - name: fact
      dtype: string
    - name: type
      dtype: string
    - name: library
      dtype: string
    - name: imports
      list: string
    - name: filename
      dtype: string
    - name: symbolic_name
      dtype: string
    - name: docstring
      dtype: string
  splits:
    - name: train
      num_bytes: 10218663
      num_examples: 19924
  download_size: 1831894
  dataset_size: 10218663
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*

Coq-MathComp

Structured dataset from the Mathematical Components library (MathComp) for Coq.

Dataset Description

Schema

Column Type Description
fact string Declaration body
type string Lemma, Definition, HB.structure, HB.mixin, Canonical, etc.
library string Module (algebra, boot, fingroup, character, etc.)
imports list Require/Import statements
filename string Source file path
symbolic_name string Declaration identifier

Statistics

By Type

Type Count
Lemma 14,917
Definition 2,850
Notation 808
Canonical 425
HB.instance 247
Fixpoint 138
Coercion 116
Variant 104
Theorem 63
HB.structure 51
HB.mixin 50

By Library

Library Count
algebra 7,455
boot 4,591
fingroup 1,995
character 1,864
solvable 1,747
order 1,197
field 1,048

About MathComp

Mathematical Components is a library of formalized mathematics for Coq, including algebra, number theory, and finite group theory. It uses the SSReflect proof language and Hierarchy Builder (HB) for structure definitions.

Use Cases

  • Retrieval/RAG for Coq/MathComp
  • Learning SSReflect patterns
  • Algebraic formalization research
  • Training embeddings for formal proofs

Related Datasets