Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
1
2.11k
type
stringclasses
27 values
library
stringclasses
888 values
imports
listlengths
0
81
filename
stringlengths
9
106
symbolic_name
stringlengths
1
113
docstring
stringlengths
0
1.34k
Consensus\<comment> \<open>To avoid name clashes\<close> begin
locale
Abortable_Linearizable_Modules
[ "RDR" ]
Abortable_Linearizable_Modules/Consensus.thy
Consensus
null
single_use: fixes r rs shows "\<bottom> \<star> ([r]@rs) = Some (snd r)" proof (induct rs) case Nil thus ?case by simp next case (Cons r rs) thus ?case by auto qed
lemma
Abortable_Linearizable_Modules
[ "RDR" ]
Abortable_Linearizable_Modules/Consensus.thy
single_use
null
bot: "\<exists> rs . s = \<bottom> \<star> rs" proof (cases s) case None hence "s = \<bottom> \<star> []" by auto thus ?thesis by blast next case (Some v) obtain r where "\<bottom> \<star> [r] = Some v" by force thus ?thesis using Some by metis qed
lemma
Abortable_Linearizable_Modules
[ "RDR" ]
Abortable_Linearizable_Modules/Consensus.thy
bot
null
prec_eq_None_or_equal: fixes s1 s2 assumes "s1 \<preceq> s2" shows "s1 = None \<or> s1 = s2" using assms single_use proof - { assume 1:"s1 \<noteq> None" and 2:"s1 \<noteq> s2" obtain r rs where 3:"s1 = \<bottom> \<star> ([r]@rs)" using bot using 1 by (metis append_butlast_last_id pre_RDR.exec.simps(1)) obtain rs' where 4:"s2 = s1 \<star> rs'" using assms by (auto simp add:less_eq_def) have "s2 = \<bottom> \<star> ([r]@(rs@rs'))" using 3 4 by (metis exec_append) hence "s1 = s2" using 3 by (metis single_use) with 2 have False by auto } thus ?thesis by blast qed interpretation RDR \<delta> \<gamma> \<bottom> proof (unfold_locales) fix s r assume "contains s r" show "s \<bullet> r = s" proof - obtain rs where "s = \<bottom> \<star> rs" and "rs \<noteq> []" using \<open>contains s r\<close> by (auto simp add:contains_def, force) thus ?thesis by (metis \<delta>.simps(2) rev_exhaust single_use) qed
lemma
Abortable_Linearizable_Modules
[ "RDR" ]
Abortable_Linearizable_Modules/Consensus.thy
prec_eq_None_or_equal
null
Idempotence= SLin + fixes id1 id2 :: nat assumes id1:"0 < id1" and id2:"id1 < id2" begin lemmas ids = id1 id2
locale
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
Idempotence
Idempotence of the SLin I/O automaton
compositionwhere "composition \<equiv> hide ((ioa 0 id1) \<parallel> (ioa id1 id2)) {act . \<exists>p c av . act = Switch id1 p c av }" lemmas comp_simps = hide_def composition_def ioa_def par2_def is_trans_def start_def actions_def asig_def trans_def lemmas trans_defs = Inv_def Lin_def Resp_def Init_def Abort_def Reco_def declare if_split_asm [split]
definition
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
composition
null
trans_elim: fixes s t a s' t' P assumes "(s,t) \<midarrow>a\<midarrow>composition\<longrightarrow> (s',t')" obtains (Invoke1) i p c where "Inv p c s s' \<and> t = t'" and "i < id1" and "a = Invoke i p c" | (Invoke2) i p c where "Inv p c t t' \<and> s = s'" and "id1 \<le> i \<and> i < id2" and "a = Invoke i p c" | (Switch1) p c av where "Abort p c av s s' \<and> Init p c av t t'" and "a = Switch id1 p c av" | (Switch2) p c av where "s = s' \<and> Abort p c av t t'" and "a = Switch id2 p c av" | (Response1) i p ou where "Resp p ou s s'\<and> t = t'" and "i < id1" and "a = Response i p ou" | (Response2) i p ou where "Resp p ou t t' \<and> s = s'" and "id1 \<le> i \<and> i < id2" and "a = Response i p ou" | (Lin1) "Lin s s' \<and> t = t'" and "a = Linearize 0" | (Lin2) "Lin t t' \<and> s = s'" and "a = Linearize id1" | (Reco2) "Reco t t' \<and> s = s'" and "a = Recover id1" proof %invisible (cases a) case (Invoke i p c) with assms have "(Inv p c s s' \<and> t = t' \<and> i < id1) \<or> (Inv p c t t' \<and> s = s' \<and> id1 \<le> i \<and> i < id2)" by auto
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
trans_elim
null
f:: "(('a,'b,'c)SLin_state * ('a,'b,'c)SLin_state) \<Rightarrow> ('a,'b,'c)SLin_state" where "f (s1, s2) = \<lparr>pending = \<lambda> p. (if status s1 p \<noteq> Aborted then pending s1 p else pending s2 p), initVals = {}, abortVals = abortVals s2, status = \<lambda> p. (if status s1 p \<noteq> Aborted then status s1 p else status s2 p), dstate = (if dstate s2 = \<bottom> then dstate s1 else dstate s2), initialized = True\<rparr>"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
f
Definition of the Refinement Mapping
P1where "P1 (s1,s2) = (\<forall> p . status s1 p \<in> {Pending, Aborted} \<longrightarrow> fst (pending s1 p) = p)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P1
Invariants
P2where "P2 (s1,s2) = (\<forall> p . status s2 p \<noteq> Sleep \<longrightarrow> fst (pending s2 p) = p)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P2
null
P3where "P3 (s1,s2) = (\<forall> p . (status s2 p = Ready \<longrightarrow> initialized s2))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P3
null
P4where "P4 (s1,s2) = ((\<forall> p . status s2 p = Sleep) = (initVals s2 = {}))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P4
Used to prove P19 only
P5where "P5 (s1,s2) = (\<forall> p . status s1 p \<noteq> Sleep \<and> initialized s1 \<and> initVals s1 = {})"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P5
Used to prove P19 only
P6where "P6 (s1,s2) = (\<forall> p . (status s1 p \<noteq> Aborted) = (status s2 p = Sleep))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P6
null
P7where "P7 (s1,s2) = (\<forall> c . status s1 c = Aborted \<and> \<not> initialized s2 \<longrightarrow> (pending s2 c = pending s1 c \<and> status s2 c \<in> {Pending, Aborted}))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P7
null
P8where "P8 (s1,s2) = (\<forall> iv \<in> initVals s2 . \<exists> rs \<in> pendingSeqs s1 . iv = dstate s1 \<star> rs)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P8
Only used in the proof of P8a
P8awhere "P8a (s1,s2) = (\<forall> ivs \<in> initSets s2 . \<exists> rs \<in> pendingSeqs s1 . \<Sqinter>ivs = dstate s1 \<star> rs)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P8a
Only used in the proof of P8a
P9where "P9 (s1,s2) = (initialized s2 \<longrightarrow> dstate s1 \<preceq> dstate s2)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P9
null
P10where "P10 (s1,s2) = ((\<not> initialized s2) \<longrightarrow> (dstate s2 = \<bottom>))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P10
null
P11where "P11 (s1,s2) = (initVals s2 = abortVals s1)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P11
null
P12where "P12 (s1,s2) = (initialized s2 \<longrightarrow> \<Sqinter> (initVals s2) \<preceq> dstate s2)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P12
null
P13where "P13 (s1,s2) = (finite (initVals s2) \<and> finite (abortVals s1) \<and> finite (abortVals s2))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P13
null
P14where "P14 (s1,s2) = (initialized s2 \<longrightarrow> initVals s2 \<noteq> {})"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P14
null
P15where "P15 (s1,s2) = (\<forall> av \<in> abortVals s1 . dstate s1 \<preceq> av)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P15
null
P16where "P16 (s1,s2) = (dstate s2 \<noteq> \<bottom> \<longrightarrow> initialized s2)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P16
null
P17where \<comment> \<open>For the Response1 case of the refinement proof, in case a response is produced in the first instance and the second instance is already initialized\<close> "P17 (s1,s2) = (initialized s2 \<longrightarrow> (\<forall> p . ((status s1 p = Ready \<or> (status s1 p = Pending \<and> contains (dstate s1) (pending s1 p))) \<longrightarrow> (\<exists> rs . dstate s2 = dstate s1 \<star> rs \<and> (\<forall> r \<in> set rs . fst r \<noteq> p))) \<and> ((status s1 p = Pending \<and> \<not> contains (dstate s1) (pending s1 p)) \<longrightarrow> (\<exists> rs . dstate s2 = dstate s1 \<star> rs \<and> (\<forall> r \<in> set rs . fst r = p \<longrightarrow> r = pending s1 p)))))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P17
null
P18where "P18 (s1,s2) = (abortVals s2 \<noteq> {} \<longrightarrow> (\<exists> p . status s2 p \<noteq> Sleep))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P18
Only used for proving P19
P19where "P19 (s1,s2) = (abortVals s2 \<noteq> {} \<longrightarrow> abortVals s1 \<noteq> {})"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P19
Only used for proving P19
P20where "P20 (s1,s2) = (\<forall> av \<in> abortVals s2 . dstate s2 \<preceq> av)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P20
null
P21where "P21 (s1,s2) = (\<forall> av \<in> abortVals s2 . \<Sqinter>(abortVals s1) \<preceq> av)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P21
null
P22where "P22 (s1,s2) = (initialized s2 \<longrightarrow> dstate (f (s1,s2)) = dstate s2)"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P22
null
P23where "P23 (s1,s2) = ((\<not> initialized s2) \<longrightarrow> pendingSeqs s1 \<subseteq> pendingSeqs (f (s1,s2)))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P23
null
P25where "P25 (s1,s2) = (\<forall> ivs . (ivs \<in> initSets s2 \<and> initialized s2 \<and> dstate s2 \<preceq> \<Sqinter>ivs) \<longrightarrow> (\<exists> rs' \<in> pendingSeqs (f (s1,s2)) . \<Sqinter>ivs = dstate s2 \<star> rs'))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P25
null
P26where "P26 (s1,s2) = (\<forall> p . (status s1 p = Aborted \<and> \<not> contains (dstate s2) (pending s1 p)) \<longrightarrow> (status s2 p \<in> {Pending,Aborted} \<and> pending s1 p = pending s2 p))"
fun
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P26
null
P1_invariant: shows "invariant (composition) P1" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P1 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P1 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P1 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P1_invariant
null
P2_invariant: shows "invariant (composition) P2" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P2 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P2 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P2 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P2_invariant
null
P16_invariant: shows "invariant (composition) P16" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P16 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P16 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P16 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P16_invariant
null
P3_invariant: shows "invariant (composition) P3" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P3 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P3 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P3 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P3_invariant
null
P4_invariant: shows "invariant (composition) P4" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P4 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P4 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P4 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P4_invariant
null
P5_invariant: shows "invariant (composition) P5" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P5 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P5 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P5 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P5_invariant
null
P13_invariant: shows "invariant (composition) P13" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P13 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P13 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P13 (t1,t2)" using trans and hyp by (cases rule:trans_elim, auto) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P13_invariant
null
P20_invariant: shows "invariant (composition) P20" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P20 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P20 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" and reach: "reachable (composition) (s1,s2)" from reach have P16:"P16 (s1,s2)" using P16_invariant and ids by (metis IOA.invariant_def) show "P20 (t1,t2)" using trans and hyp and P16 by (cases rule:trans_elim, auto simp add:safeInits_def safeAborts_def initAborts_def uninitAborts_def bot) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P20_invariant
null
P18_invariant: shows "invariant (composition) P18" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P18 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P18 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P18 (t1,t2)" using trans and hyp by (cases rule:trans_elim, auto) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P18_invariant
null
P14_invariant: shows "invariant (composition) P14" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P14 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P14 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P14 (t1,t2)" using trans and hyp by (cases rule:trans_elim, auto simp add:safeInits_def) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P14_invariant
null
P15_invariant: shows "invariant (composition) P15" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P15 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P15 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" and reach: "reachable (composition) (s1,s2)" from reach have P5:"P5 (s1,s2)" using P5_invariant and ids by (metis IOA.invariant_def) show "P15 (t1,t2)" using trans and hyp and P5 by (cases rule:trans_elim, auto simp add:less_eq_def safeAborts_def initAborts_def) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P15_invariant
null
P6_invariant: shows "invariant (composition) P6" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P6 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P6 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P6 (t1,t2)" using trans and hyp by (cases rule:trans_elim, force+) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P6_invariant
null
P7_invariant: shows "invariant (composition) P7" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P7 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P7 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P7 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P7_invariant
null
P10_invariant: shows "invariant (composition) P10" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P10 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P10 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P10 (t1,t2)" using trans and hyp by (cases rule:trans_elim) auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P10_invariant
null
P11_invariant: shows "invariant (composition) P11" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P11 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P11 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" show "P11 (t1,t2)" using trans and hyp by (cases rule:trans_elim, force+) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P11_invariant
null
P8_invariant: shows "invariant (composition) P8" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P8 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P8 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" and reach: "reachable (composition) (s1,s2)" from reach have P5:"P5 (s1,s2)" using P5_invariant and ids by (metis IOA.invariant_def) from reach have P1:"P1 (s1,s2)" using P1_invariant and ids by (metis IOA.invariant_def) from reach have P11:"P11 (s1,s2)" using P11_invariant and ids by (metis IOA.invariant_def) show "P8 (t1,t2)" using trans and hyp proof (cases rule:trans_elim) case (Invoke1 i p c) assume "P8 (s1,s2)" have "pendingSeqs s1 \<subseteq> pendingSeqs t1" proof - have "pending t1 = (pending s1)(p := (p,c))" and "status t1 = (status s1)(p := Pending)" and "status s1 p = Ready" using Invoke1(1) by auto hence "pendingReqs s1 \<subseteq> pendingReqs t1" by (simp add:pendingReqs_def) force thus ?thesis by (auto simp add:pendingSeqs_def) qed moreover have "initVals t2 = initVals s2" and "dstate t1 = dstate s1"
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P8_invariant
null
P8a_invariant: shows "invariant (composition) P8a" proof (auto simp:invariant_def) fix s1 s2 ivs assume 1:"reachable (composition) (s1,s2)" and 2:"ivs \<in> initSets s2" have 3:"finite ivs \<and> ivs \<noteq> {}" proof - have "P13 (s1,s2)" using P13_invariant 1 by (metis IOA.invariant_def) thus ?thesis using 2 finite_subset by (auto simp add:initSets_def) qed have 4:"\<forall> av \<in> ivs . \<exists> rs \<in> pendingSeqs s1 . av = dstate s1 \<star> rs" proof - have P8:"P8 (s1,s2)" using P8_invariant 1 by (metis IOA.invariant_def) thus ?thesis using 2 by (auto simp add:initSets_def) qed show "\<exists> rs \<in> pendingSeqs s1 . \<Sqinter>ivs = dstate s1 \<star> rs" using 3 4 glb_common_set by (simp add:pendingSeqs_def, metis) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P8a_invariant
null
P12_invariant: shows "invariant (composition) P12" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P12 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P12 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" and reach: "reachable (composition) (s1,s2)" from reach have P13:"P13 (s1,s2)" using P13_invariant by (metis IOA.invariant_def) from reach have P14:"P14 (s1,s2)" using P14_invariant by (metis IOA.invariant_def) show "P12 (t1,t2)" using trans and hyp proof (cases rule:trans_elim) case (Invoke1 i p c) assume "P12 (s1,s2)" thus "P12 (t1,t2)" using Invoke1(1) by auto next case Lin1 assume "P12 (s1,s2)" thus "P12 (t1,t2)" using Lin1(1) by auto next case (Response1 i p ou) assume "P12 (s1,s2)" thus "P12 (t1,t2)" using Response1(1) by auto next case (Switch1 p c av) assume ih:"P12 (s1,s2)"
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P12_invariant
null
P19_invariant: shows "invariant (composition) P19" proof (auto simp only:invariant_def) fix s1 s2 assume 1:"reachable (composition) (s1,s2)" have P4:"P4 (s1,s2)" using P4_invariant 1 by (simp add:invariant_def) moreover have P18:"P18 (s1,s2)" using P18_invariant 1 by (metis IOA.invariant_def) moreover have P11:"P11 (s1,s2)" using P11_invariant 1 by (metis IOA.invariant_def) moreover ultimately show "P19 (s1,s2)" by auto qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P19_invariant
null
P9_invariant: shows "invariant (composition) P9" proof (auto simp only:invariant_def) fix s1 s2 assume 1:"reachable (composition) (s1,s2)" have P12:"P12 (s1,s2)" using P12_invariant 1 by (simp add:invariant_def) have P15:"P15 (s1,s2)" using P15_invariant 1 by (metis IOA.invariant_def) have P13:"P13 (s1,s2)" using P13_invariant 1 by (metis IOA.invariant_def) have P14:"P14 (s1,s2)" using P14_invariant 1 by (metis IOA.invariant_def) have P11:"P11 (s1,s2)" using P11_invariant 1 by (metis IOA.invariant_def) have "initialized s2 \<Longrightarrow> dstate s1 \<preceq> \<Sqinter>(abortVals s1)" using P13 P15 P14 P11 boundedI by simp thus "P9 (s1,s2)" using P12 P11 by simp (metis trans) qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P9_invariant
null
P17_invariant: shows "invariant (composition) P17" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P17 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P17 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" and reach:"reachable (composition) (s1,s2)" show "P17 (t1,t2)" using trans and hyp proof (cases rule:trans_elim) case (Invoke1 i p c) assume "P17 (s1,s2)" thus "P17 (t1,t2)" using Invoke1(1) by fastforce next case (Response1 i p ou) assume "P17 (s1,s2)" thus "P17 (t1,t2)" using Response1(1) by auto next case (Switch1 p c av) assume "P17 (s1,s2)" thus "P17 (t1,t2)" using Switch1(1) by auto next case (Invoke2 i p c) assume "P17 (s1,s2)" thus "P17 (t1,t2)" using Invoke2(1) by force next case (Response2 i p ou) assume "P17 (s1,s2)"
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P17_invariant
null
P21_invariant: shows "invariant (composition) P21" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P21 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P21 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" and reach: "reachable (composition) (s1,s2)" show "P21 (t1,t2)" proof (cases "initialized t2") case True moreover have P12:"P12 (t1,t2)" using P12_invariant reach trans by (metis invariant_def reachable_n) moreover have P11:"P11 (t1,t2)" using P11_invariant reach trans by (metis IOA.invariant_def reachable_n) moreover have P20:"P20 (t1,t2)" using P20_invariant reach trans by (metis IOA.invariant_def reachable_n) ultimately show "P21 (t1,t2)" by simp (metis pre_RDR.trans) next case False show "P21 (t1,t2)" using trans proof (cases rule:trans_elim) case (Switch2 p c av) obtain av where "abortVals t2 = abortVals s2 \<union> {av}"
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P21_invariant
null
P22_invariant: shows "invariant (composition) P22" proof (auto simp only:invariant_def) fix s1 s2 assume 1:"reachable (composition) (s1,s2)" have P9:"P9 (s1,s2)" using P9_invariant 1 by (simp add:invariant_def) show "P22 (s1,s2)" proof (simp only:P22.simps, rule impI) assume "initialized s2" show "dstate (f (s1,s2)) = dstate s2" proof (cases "dstate s2 = \<bottom>") case False thus ?thesis by auto next case True show "dstate (f (s1,s2)) = dstate s2" proof - have "dstate s1 \<preceq> dstate s2" using \<open>initialized s2\<close> and \<open>P9 (s1,s2)\<close> by auto hence "dstate s1 = dstate s2" using True by (metis antisym bot) thus ?thesis by auto qed qed qed qed
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P22_invariant
null
P23_invariant: shows "invariant (composition) P23" proof (auto simp only:invariant_def) fix s1 s2 assume 1:"reachable (composition) (s1,s2)" show "P23 (s1,s2)" proof (simp only:P23.simps, clarify) fix rs assume 2:"\<not>initialized s2" and 3:"rs\<in>pendingSeqs s1" show "rs\<in> pendingSeqs (f (s1,s2))" proof - { fix r assume 3:"r \<in> pendingReqs s1" have 4:"status s1 (fst r) = Pending \<or> status s1 (fst r) = Aborted" and 5:"pending s1 (fst r) = r" proof - have "P1 (s1,s2)" using 1 P1_invariant by (metis invariant_def) thus "status s1 (fst r) = Pending \<or> status s1 (fst r) = Aborted" and "pending s1 (fst r) = r" using 3 by (auto simp add:pendingReqs_def) qed have "r \<in> pendingReqs (f (s1,s2))" using 4 proof assume "status s1 (fst r) = Pending" with 5 show ?thesis by (auto simp add:pendingReqs_def) (metis SLin_status.distinct(9)) next assume 6:"status s1 (fst r) = Aborted" have 7:"pending s1 (fst r) = pending s2 (fst r)
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P23_invariant
null
P26_invariant: shows "invariant (composition) P26" proof (rule invariantI, simp_all only:split_paired_all) fix s1 s2 assume "(s1,s2) \<in> ioa.start (composition)" thus "P26 (s1,s2)" using ids by (auto simp add:comp_simps) next fix s1 s2 t1 t2 a assume hyp: "P26 (s1,s2)" and trans:"(s1,s2) \<midarrow>a\<midarrow>composition\<longrightarrow> (t1,t2)" and reach:"reachable composition (s1,s2)" show "P26 (t1,t2)" using trans and hyp proof (cases rule:trans_elim) case Lin2 hence 1:"dstate s2 \<preceq> dstate t2" by auto (metis less_eq_def) have 2:"t2 = s2\<lparr>dstate := dstate t2\<rparr>" and 3:"s1 = t1" using Lin2(1) by auto show ?thesis proof (simp, clarify) fix p assume 4:"status t1 p = Aborted" and 5:"\<not> contains (dstate t2) (pending t1 p)" have 6:"status s1 p = Aborted" using 3 4 by auto have 7:"pending s1 p = pending t1 p" using 3 by simp have 8:"\<not> contains (dstate s2) (pending s1 p)" using 1 5 7 by simp (metis contains_star less_eq_def) have 11:"status s2 p \<in> {Pending,Aborted}" and 9:"pending s1 p = pending s2 p" using hyp 6 8 by auto show "(status t2 p = Pending \<or> status t2 p = Aborted)
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P26_invariant
null
P25_invariant: shows "invariant (composition) P25" proof (auto simp only:invariant_def) fix s1 s2 assume reach:"reachable (composition) (s1,s2)" show "P25 (s1,s2)" proof (simp only:P25.simps, clarify) fix ivs assume 1:"ivs \<in> initSets s2" and 2:"initialized s2" and 3:"dstate s2 \<preceq> \<Sqinter>ivs" obtain rs' where 4:"dstate s2 \<star> rs' = \<Sqinter>ivs" and 5:"rs' \<in> pendingSeqs s1" and 6:"\<forall> r \<in> set rs' . \<not> contains (dstate s2) r" proof - have 5:"dstate s1 \<preceq> dstate s2" proof - have P9:"P9 (s1,s2)" using P9_invariant reach by (simp add:invariant_def) thus ?thesis using 2 by auto qed obtain rs where 6:"\<Sqinter>ivs = dstate s1 \<star> rs" and 7:"rs \<in> pendingSeqs s1" proof - have P8a:"P8a (s1,s2)" using P8a_invariant reach by (simp add:invariant_def) thus ?thesis using that 1 by auto qed have "\<exists> rs' . dstate s2 \<star> rs' = \<Sqinter> ivs \<and> rs' \<in> pendingSeqs s1" using 3 5 6 7 consistency[of "dstate s1" "dstate s2" "\<Sqinter>ivs" rs] by (force simp add:pendingSeqs_def) with this obtain rs' where "\<Sqinter>ivs = dstate s2 \<star> rs'" and "rs' \<in> pendingSeqs s1" by metis
lemma
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
P25_invariant
null
idempotence: shows "((composition) =<| (ioa 0 id2))" proof - have same_input_sig:"inp (composition) = inp (ioa 0 id2)" \<comment> \<open>First we show that both automata have the same input and output signature\<close> using ids by auto moreover have same_output_sig:"out (composition) = out (ioa 0 id2)" \<comment> \<open>Then we show that output signatures match\<close> using ids by auto moreover have "traces (composition) \<subseteq> traces (ioa 0 id2)" \<comment> \<open>Finally we show trace inclusion\<close> proof - have "ext (composition) = ext (ioa 0 id2)" \<comment> \<open>First we show that they have the same external signature\<close> using same_input_sig and same_output_sig by simp moreover have "is_ref_map f (composition) (ioa 0 id2)" \<comment> \<open>Then we show that @{text f_comp} is a refinement mapping\<close> proof (auto simp only:is_ref_map_def) fix s1 s2 assume 1:"(s1,s2) \<in> ioa.start (composition)" show "f (s1,s2) \<in> ioa.start (ioa 0 id2)" proof - have 2:"ioa.start (ioa 0 id2) = start (0::nat)" by simp have 3:"ioa.start (composition) = start (0::nat) \<times> start id1" by fastforce show ?thesis using 1 2 3 by simp
theorem
Abortable_Linearizable_Modules
[ "SLin", "Simulations" ]
Abortable_Linearizable_Modules/Idempotence.thy
idempotence
null
IOA= Sequences
locale
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
IOA
This theory is inspired and draws material from the IOA theory of Nipkow and Müller
'asignature = inputs::"'a set" outputs::"'a set" internals::"'a set" context IOA begin
record
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
'a
This theory is inspired and draws material from the IOA theory of Nipkow and Müller
actions:: "'a signature \<Rightarrow> 'a set" where "actions asig \<equiv> inputs asig \<union> outputs asig \<union> internals asig"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
actions
Signatures
externals:: "'a signature \<Rightarrow> 'a set" where "externals asig \<equiv> inputs asig \<union> outputs asig"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
externals
Signatures
locals:: "'a signature \<Rightarrow> 'a set" where "locals asig \<equiv> internals asig \<union> outputs asig"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
locals
null
is_asig:: "'a signature \<Rightarrow> bool" where "is_asig triple \<equiv> inputs triple \<inter> outputs triple = {} \<and> outputs triple \<inter> internals triple = {} \<and> inputs triple \<inter> internals triple = {}"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_asig
null
internal_inter_external: assumes "is_asig sig" shows "internals sig \<inter> externals sig = {}" using assms by (auto simp add:internals_def externals_def is_asig_def)
lemma
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
internal_inter_external
null
hide_asigwhere "hide_asig asig actns \<equiv> \<lparr>inputs = inputs asig - actns, outputs = outputs asig - actns, internals = internals asig \<union>actns\<rparr>"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
hide_asig
null
intwhere "int A \<equiv> internals (asig A)"
abbreviation
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
int
null
is_ioa::"('s,'a) ioa \<Rightarrow> bool" where "is_ioa A \<equiv> is_asig (asig A) \<and> (\<forall> triple \<in> trans A . (fst o snd) triple \<in> act A)"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_ioa
null
hidewhere "hide A actns \<equiv> A\<lparr>asig := hide_asig (asig A) actns\<rparr>"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
hide
null
is_trans::"'s \<Rightarrow> 'a \<Rightarrow> ('s,'a)ioa \<Rightarrow> 's \<Rightarrow> bool" where "is_trans s1 a A s2 \<equiv> (s1,a,s2) \<in> trans A" notation is_trans ("_ \<midarrow>_\<midarrow>_\<longrightarrow> _" [81,81,81,81] 100)
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_trans
null
rename_setwhere "rename_set A ren \<equiv> {b. \<exists> x \<in> A . ren b = Some x}"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
rename_set
null
renamewhere "rename A ren \<equiv> \<lparr>asig = \<lparr>inputs = rename_set (inp A) ren, outputs = rename_set (out A) ren, internals = rename_set (int A) ren\<rparr>, start = start A, trans = {tr. \<exists> x . ren (fst (snd tr)) = Some x \<and> (fst tr) \<midarrow>x\<midarrow>A\<longrightarrow> (snd (snd tr))}\<rparr>"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
rename
null
reachable:: "('s,'a) ioa \<Rightarrow> 's \<Rightarrow> bool" for A :: "('s,'a) ioa" where reachable_0: "s \<in> start A \<Longrightarrow> reachable A s" | reachable_n: "\<lbrakk> reachable A s; s \<midarrow>a\<midarrow>A\<longrightarrow> t \<rbrakk> \<Longrightarrow> reachable A t"
inductive
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
reachable
Reachable states and invariants
invariantwhere "invariant A P \<equiv> (\<forall> s . reachable A s \<longrightarrow> P(s))"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
invariant
null
invariantI: fixes A P assumes "\<And> s . s \<in> start A \<Longrightarrow> P s" and "\<And> s t a . \<lbrakk>reachable A s; P s; s \<midarrow>a\<midarrow>A\<longrightarrow> t\<rbrakk> \<Longrightarrow> P t" shows "invariant A P" proof - { fix s assume "reachable A s" hence "P s" proof (induct rule:reachable.induct) fix s assume "s \<in> start A" thus "P s" using assms(1) by simp next fix a s t assume "reachable A s" and "P s" and " s \<midarrow>a\<midarrow>A\<longrightarrow> t" thus "P t" using assms(2) by simp qed } thus ?thesis by (simp add:invariant_def) qed
theorem
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
invariantI
null
is_ioa_famwhere "is_ioa_fam fam \<equiv> \<forall> i \<in> ids fam . is_ioa (memb fam i)"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_ioa_fam
null
compatible2where "compatible2 A B \<equiv> out A \<inter> out B = {} \<and> int A \<inter> act B = {} \<and> int B \<inter> act A = {}"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
compatible2
null
compatible::"('id, ('s,'a)ioa) family \<Rightarrow> bool" where "compatible fam \<equiv> finite (ids fam) \<and> (\<forall> i \<in> ids fam . \<forall> j \<in> ids fam . i \<noteq> j \<longrightarrow> compatible2 (memb fam i) (memb fam j))"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
compatible
null
asig_comp2where "asig_comp2 A B \<equiv> \<lparr>inputs = (inputs A \<union> inputs B) - (outputs A \<union> outputs B), outputs = outputs A \<union> outputs B, internals = internals A \<union> internals B\<rparr>"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
asig_comp2
null
asig_comp::"('id, ('s,'a)ioa) family \<Rightarrow> 'a signature" where "asig_comp fam \<equiv> \<lparr> inputs = \<Union>i\<in>(ids fam). inp (memb fam i) - (\<Union>i\<in>(ids fam). out (memb fam i)), outputs = \<Union>i\<in>(ids fam). out (memb fam i), internals = \<Union>i\<in>(ids fam). int (memb fam i) \<rparr>"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
asig_comp
null
par2(infixr "\<parallel>" 10) where "A \<parallel> B \<equiv> \<lparr>asig = asig_comp2 (asig A) (asig B), start = {pr. fst pr \<in> start A \<and> snd pr \<in> start B}, trans = {tr. let s = fst tr; a = fst (snd tr); t = snd (snd tr) in (a \<in> act A \<or> a \<in> act B) \<and> (if a \<in> act A then fst s \<midarrow>a\<midarrow>A\<longrightarrow> fst t else fst s = fst t) \<and> (if a \<in> act B then snd s \<midarrow>a\<midarrow>B\<longrightarrow> snd t else snd s = snd t) }\<rparr>"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
par2
null
par::"('id, ('s,'a)ioa) family \<Rightarrow> ('id \<Rightarrow> 's,'a)ioa" where "par fam \<equiv> let ids = ids fam; memb = memb fam in \<lparr> asig = asig_comp fam, start = {s . \<forall> i\<in>ids . s i \<in> start (memb i)}, trans = { (s, a, s') . (\<exists> i\<in>ids . a \<in> act (memb i)) \<and> (\<forall> i\<in>ids . if a \<in> act (memb i) then s i \<midarrow>a\<midarrow>(memb i)\<longrightarrow> s' i else s i = (s' i)) } \<rparr>" lemmas asig_simps = hide_asig_def is_asig_def locals_def externals_def actions_def hide_def compatible_def asig_comp_def lemmas ioa_simps = rename_def rename_set_def is_trans_def is_ioa_def par_def
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
par
null
'atrace = "'a list"
type_synonym
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
'a
null
'atrace_module = traces::"'a trace set" asig::"'a signature" context IOA begin
record
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
'a
null
is_exec_frag_of::"('s,'a)ioa \<Rightarrow> ('s,'a)execution \<Rightarrow> bool" where "is_exec_frag_of A (s,(ps#p')#p) = (snd p' \<midarrow>fst p\<midarrow>A\<longrightarrow> snd p \<and> is_exec_frag_of A (s, (ps#p')))" | "is_exec_frag_of A (s, [p]) = s \<midarrow>fst p\<midarrow>A\<longrightarrow> snd p" | "is_exec_frag_of A (s, []) = True"
fun
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_exec_frag_of
null
is_exec_of::"('s,'a)ioa \<Rightarrow> ('s,'a)execution \<Rightarrow> bool" where "is_exec_of A e \<equiv> fst e \<in> start A \<and> is_exec_frag_of A e"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_exec_of
null
filter_actwhere "filter_act \<equiv> map fst"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
filter_act
null
schedulewhere "schedule \<equiv> filter_act o snd"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
schedule
null
tracewhere "trace sig \<equiv> filter (\<lambda> a . a \<in> externals sig) o schedule"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
trace
null
is_schedule_ofwhere "is_schedule_of A sch \<equiv> (\<exists> e . is_exec_of A e \<and> sch = filter_act (snd e))"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_schedule_of
null
is_trace_ofwhere "is_trace_of A tr \<equiv> (\<exists> sch . is_schedule_of A sch \<and> tr = filter (\<lambda> a. a \<in> ext A) sch)"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
is_trace_of
null
traceswhere "traces A \<equiv> {tr. is_trace_of A tr}"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
traces
null
traces_alt: shows "traces A = {tr . \<exists> e . is_exec_of A e \<and> tr = trace (ioa.asig A) e}" proof - { fix t assume a:"t \<in> traces A" have "\<exists> e . is_exec_of A e \<and> trace (ioa.asig A) e = t" proof - from a obtain sch where 1:"is_schedule_of A sch" and 2:"t = filter (\<lambda> a. a \<in> ext A) sch" by (auto simp add:traces_def is_trace_of_def) from 1 obtain e where 3:"is_exec_of A e" and 4:"sch = filter_act (snd e)" by (auto simp add:is_schedule_of_def) from 4 and 2 have "trace (ioa.asig A) e = t" by (simp add:trace_def schedule_def) with 3 show ?thesis by fast qed } moreover { fix e assume "is_exec_of A e" hence "trace (ioa.asig A) e \<in> traces A" by (force simp add:trace_def schedule_def traces_def is_trace_of_def is_schedule_of_def is_exec_of_def) } ultimately show ?thesis by blast qed lemmas trace_simps = traces_def is_trace_of_def is_schedule_of_def filter_act_def is_exec_of_def trace_def schedule_def
lemma
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
traces_alt
null
proj_trace::"'a trace \<Rightarrow> ('a signature) \<Rightarrow> 'a trace" (infixr "\<bar>" 12) where "proj_trace t sig \<equiv> filter (\<lambda> a . a \<in> actions sig) t"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
proj_trace
null
ioa_implements:: "('s1,'a)ioa \<Rightarrow> ('s2,'a)ioa \<Rightarrow> bool" (infixr "=<|" 12) where "A =<| B \<equiv> inp A = inp B \<and> out A = out B \<and> traces A \<subseteq> traces B"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
ioa_implements
null
cons_execwhere "cons_exec e p \<equiv> (fst e, (snd e)#p)"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
cons_exec
Operations on Executions
append_execwhere "append_exec e e' \<equiv> (fst e, (snd e)@(snd e'))"
definition
Abortable_Linearizable_Modules
[ "Main", "Sequences" ]
Abortable_Linearizable_Modules/IOA.thy
append_exec
Operations on Executions
End of preview. Expand in Data Studio

Isabelle-AFP

Structured dataset from the Isabelle Archive of Formal Proofs (AFP) - the largest repository of formal proofs in Isabelle/HOL.

Schema

Column Type Description
fact string Declaration body
type string lemma, definition, theorem, fun, locale, datatype, etc.
library string AFP entry name (project)
imports list Theory imports
filename string Source file path
symbolic_name string Declaration identifier
docstring string Documentation (20% coverage)

Statistics

By Type (Top 15)

Type Count
lemma 228,980
definition 35,811
fun 10,758
abbreviation 6,005
theorem 5,892
locale 5,773
corollary 3,185
type_synonym 2,369
primrec 2,111
instance 2,087
instantiation 1,743
datatype 1,527
class 1,491
inductive 1,317
proposition 922

Top AFP Entries

Entry Count
Crypto_Standards 10,367
AutoCorres2 8,760
JinjaThreads 4,937
Cook_Levin 3,008
ConcurrentHOL 2,989

About AFP

The Archive of Formal Proofs is a collection of proof libraries for Isabelle/HOL, maintained by the Isabelle community. It contains formalized mathematics, verified algorithms, and program verification.

Use Cases

  • Retrieval/RAG for Isabelle/HOL
  • Training embeddings for formal proofs
  • Cross-prover research (compare with Coq, Lean, Agda)
  • Verified software research
Downloads last month
14

Collection including phanerozoic/Isabelle-AFP