blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d9193bc75790a2d9186aed01d3112962d01ca5fd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2825/CH19/EX19.21/Ex19_21.sce
|
37ad01343f6855900fe9496e7e72d68806c4e02c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 256
|
sce
|
Ex19_21.sce
|
//Ex19_21 Pg-965
clc
//Integer part
hex='F8E6'; //binary input
dec_I=hex2dec(hex) //decimal output
//Decimal part
a=3
b=9
dec=dec_I+a*16^(-1)+b*16^(-2) //decimal output
disp("The decimal equivalent of F8E6.39 is")
printf("\n %.4f",dec)
|
ac8c8f9965c700966165ca1003a768cae14c2cdb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1802/CH11/EX11.10/Exa11_10.sce
|
d3e405dc7d6fcefe3d76f6312478cb642ea5abe3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 563
|
sce
|
Exa11_10.sce
|
//Exa 11.10
clc;
clear;
close;
//Given Data :
format('v',9);
MD=10;//in KW
Energy=50000;//in kwh/year(Annual consumption)
//(i) Rs. 100/KW/year max demand plus Rs. 0.20 paise per unit
//(ii) Simple tarrif 0.30 Rs./unit
C1=100;//in Rs.year/KW
C2=0.20;//in Rs. /unit
//Case (i)
AnnualBill1=C1*MD+C2*Energy;//in Rs.
disp(AnnualBill1,"Case(i) Annual Bill of tarrif 1 (in Rs.) :");
C=0.30;//in Rs. /unit
AnnualBill2=C*Energy;//in Rs.
disp(AnnualBill2,"Case(ii) Annual Bill of tarrif 2 (in Rs.) :");
disp("Naturally he will hoose the first tarrif.");
|
ba56ca9de1dddf431d99c0f73c5fff736a93c910
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1760/CH2/EX2.96/EX2_96.sce
|
23085baf492a11562e0d33095d69c41e96a510b9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 119
|
sce
|
EX2_96.sce
|
//EXAMPLE-2.96 PG NO-140
M=0.125;
L1=0.2;
L2=0.15;
K=M/((L1*L2)^0.5)
disp('i) K = '+string (K)+' ');
|
dff5182571261d2a6d54733f6ecac097e8a3b667
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3472/CH2/EX2.2/Example2_2.sce
|
18ba2b484db786110a87bb8dc23c3bd66cb5b852
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,353
|
sce
|
Example2_2.sce
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART I : GENERATION
// CHAPTER 2: THERMAL STATIONS
// EXAMPLE : 2.2 :
// Page number 26
clear ; clc ; close ; // Clear the work space and console
//Given data
amount = 25.0*10**5 // Amount spent in 1 year(Rs)
value_heat = 5000.0 // Heating value(kcal/kg)
cost = 500.0 // Cost of coal per ton(Rs)
n_ther = 0.35 // Thermal efficiency
n_elec = 0.9 // Electrical efficiency
//Calculations
n = n_ther*n_elec // Overall efficiency
consumption = amount/cost*1000 // Coal consumption in 1 year(kg)
combustion = consumption*value_heat // Heat of combustion(kcal)
output = n*combustion // Heat output(kcal)
unit_gen = output/860.0 // Annual heat generated(kWh). 1 kWh = 860 kcal
hours_year = 365*24.0 // Total time in a year(hour)
load_average = unit_gen/hours_year // Average load on the power plant(kW)
//Result
disp("PART I - EXAMPLE : 2.2 : SOLUTION :-")
printf("\nAverage load on power plant = %.2f kW\n", load_average)
printf("\nNOTE: ERROR: Calculation mistake in the final answer in the textbook")
|
98a5bff88372f4f71fc9bf3ee3565fe6ef785a5f
|
446aae2100be19be6950fe030959e4ae6ebf75d3
|
/laboratorios/laboratorio 3/laboratorio3.sce
|
5390cbd5bf946a8cdc60e0dc984994eb1eb27eb5
|
[] |
no_license
|
jhont285/metodos-numericos
|
492dcc5893707393d066ecc53ca6c5f82faaee66
|
388248e2df5a8c73069dfba53cd439f62bb14476
|
refs/heads/master
| 2021-06-07T18:27:18.337510
| 2016-07-21T22:17:24
| 2016-07-21T22:17:24
| 62,011,812
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 870
|
sce
|
laboratorio3.sce
|
clc
// Conjunto de nodos
printf("Conjunto de nodos\n")
X = -5:5
disp(X)
Y = 2.^X
disp(Y)
// Valores a interpolar o extrapolar
printf("\n Valores a interpolar o extrapolar\n")
x1 = 1/2
disp(x1)
x2 = 1/3
disp(x2)
x3 = 1/4
disp(x3)
//Interpolación mediante Lagrange
printf("\n Interpolación mediante Lagrange\n\n")
p1 = UN_Inter_Lagrange(X,Y,x1)
printf("\tp(%f) = %.12f\n",x1,p1)
p2 = UN_Inter_Lagrange(X,Y,x2)
printf("\tp(%f) = %.12f\n",x2,p2)
p3 = UN_Inter_Lagrange(X,Y,x3)
printf("\tp(%f) = %.12f\n",x3,p3)
//Interpolación mediante Newton
printf("\n Interpolación mediante Newton\n\n")
f1 = UN_Inter_Newton(X,Y,x1)
printf("\tp(%f) = %.12f\n",x1,f1)
f2 = UN_Inter_Newton(X,Y,x2)
printf("\tp(%f) = %.12f\n",x2,f2)
f3 = UN_Inter_Newton(X,Y,x3)
printf("\tp(%f) = %.12f\n",x3,f3)
|
8d70dc5e4c6417e1ec44b059f928d536e68ac77e
|
364fc2bac23ae5482a18e5e9392ff63e68642dae
|
/TP2/exo_bis_1.sce
|
e37bf6c16ab5e57aefeeb05581ec85b410f75f82
|
[] |
no_license
|
Raphael-De-Wang/2M310TP
|
259e55e9dc931b0a0102ed7a5dbbb31e82b88295
|
af21ffee07fadeb5b27c5f30d0deb1926972ccee
|
refs/heads/master
| 2021-01-11T14:14:21.447623
| 2017-03-29T20:27:35
| 2017-03-29T20:27:35
| 81,227,258
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 701
|
sce
|
exo_bis_1.sce
|
clear;
// Q1
function rst = div7(n)
if modulo(n,7) == 0 then,
rst = "oui"
else,
rst = "non"
end
endfunction
// testcase
div7(7)
div7(10)
// Q2
function S = Syracuse(n)
S = [n]
count = 1
while n <> 1,
if modulo(n,2) == 0 then,
n = n/2;
else,
n = n * 3 + 1;
end
S(count+1) = n;
count = count + 1;
end
endfunction
// testcase
Syracuse(7)
// Q3
function alt = genQ(n)
alt = (rand(1,n) > 0.5) * 1;
endfunction
function alt = genE(n,s)
alt = [];
for i = (1:10),
cnt = 0;
x = 0;
while x < s,
x = rand();
cnt = cnt + 1
end
alt(i) = cnt;
end
endfunction
// testcase
genQ(10)
genE(10,0.9)
|
765cbf02c29d394993bce17c5763245804fd2357
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/226/CH20/EX20.9/example9_sce.sce
|
453a9cab545d8df8387c59aa2c103fc8470b59c6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 242
|
sce
|
example9_sce.sce
|
//chapter 20
//example 20.9
//page 933
printf("\n")
printf("given")
Ip=.6*10^-6;Iv=2*10^-3;Veb1=2.5;Vpmin=19.2;Vpmax=22.2;Vbb=25;C=1*10^-6;R=18*10^3;Vp=20;
Vpmin=(Vbb-Vpmax)/Ip
Remax=(Vbb-Veb1)/Iv
t=C*R*log((Vbb-Veb1)/(Vbb-Vp))
f=1/t
|
27451fe2d33c1cdafaae41e8ce451467498467b8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/991/CH3/EX3.5/Example3_5.sce
|
2ec8446fe9f9bba22ecbf4744ef232c65b69e621
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 511
|
sce
|
Example3_5.sce
|
//Example 3.5.
clc
format(9)
vinitial=1*10^6
q=1.6*10^-19
V=300
m=9.1*10^-31
vfinal=10.33*10^6
sp=8*10^-3 //separation between plates
v=sqrt(vinitial^2+(2*q*V/m))
disp("The speed acquired by electron due to the applied voltage is")
disp(v,"v(m/s) = sqrt(vinitial^2+(2*q*V/m)) =")
format(8)
va=(vinitial+vfinal)/2
disp("The average velocity,")
disp(va,"vaverage(m/s)= (vinitial + vfinal) / 2 =")
time=sp/va
disp(time,"Therefore, time for travel(seconds)= seperation between plates / vaverage =")
|
969a954c9feb939dd03813dccd4d95e2617e9b05
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/67/CH8/EX8.3/example8_3.sce
|
9494b35906bf1ab199212d6e13d1161c4274092d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 134
|
sce
|
example8_3.sce
|
//Example 8.3
//Compute DFT of x(n)={1,1,0,0} and IDFT of y(n)={1,0,1,0}
clc;
x=[1,1,0,0];
Y=[1,0,1,0];
X=fft(x,-1);
y=fft(Y,1);
|
ea0166fe47d8082b583aa235176247b90800f286
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/599/CH2/EX2.21/example2_21.sce
|
0d578ec8bf3b5130f42983512abff07271b7ff06
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,456
|
sce
|
example2_21.sce
|
clear;
clc;
printf("\t Example 2.21\n");
//stefan tube experiment(pseudo steady state diffusion)
Ml=92; //molecular weight of toluene
T=(303); //temperature in kelvin
pt=1*1.013*10^5; //total pressure in pascal
R=8314; //universal gas constant
t=275*3600; //after 275 hours the level dropped to 80mm from the top
zo=20*10^-3; //intially liquid toluene is at 20mm from top
zt=77.5*10^-3; //finally liquid toluene is at 80mm from top
//air is assumed to be satgnant
d=820; //density in kg/m^3
pa=(57/760)*1.0135*10^5; //vapour pressure of toluene in at 39.4degree celcius
cal=d/Ml; //conc. at length at disxtance l
ca=pt/(R*T); //total conc.
xa1=pa/pt; //mole fraction of toluene at pt1 i.e before evaporation
xb1=1-xa1; //mole fraction of air before evaporation i.e at pt1
xb2=1; //mole fraction of air after evaporation i.e at pt.2
xa2=0; //mole fraction of toluene at point 2
xbm=(xb2-xb1)/(log(xb2/xb1));
//t/(zt-zt0) = (xbm*cal*(zt+zo))/(2*c*(xa1-xa2)*t);
Dab=(xbm*cal*(zt^2-zo^2))/(2*ca*t*(xa1-xa2));
printf("\n the diffusivity of the mixture in stefan tube of toluene in air is :%f*10^-5 m^2/s",Dab/10^-5);
//end
|
c21579a43e25ff2b648d408a7adea158a67206a7
|
8627886261b3eddf8440c0b470cd9ee25c762d97
|
/kr.sci
|
511c8e8ad98d0021ac316268b643d56c879bea16
|
[] |
no_license
|
timurzotov/pvis
|
ba75cf86fae91b6adc8dd3fe9cd2672eea561cca
|
d60e8e241d6ce0ad3a9b2a75c8771f92a9b039ba
|
refs/heads/master
| 2020-09-08T07:59:31.719500
| 2019-11-11T21:14:13
| 2019-11-11T21:14:13
| 221,070,925
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 940
|
sci
|
kr.sci
|
clc;
d=figure();//создаем окно
set(d,'position',[0,0,720,720]);//местоположение и размеры окна
set(d,'figure_name','билет №1');//заголовок окна
set(d,'BackgroundColor',[0,0.6,0.6]);//цвет окна
button1=uicontrol(d,'style','pushbutton','string','Открыть окно.','position',[10,600,300,60],'BackgroundColor',[0,0.9,0.9],'CallBack','a1');
function a1
button2=uicontrol(f,'style','pushbutton','string','Построить график.','position',[195,175,150,30],'BackgroundColor',[1,0.57,0.57],'CallBack','graf');
function graf
x=1:0.1:10;
if button2.value == 0 then
scf;
f=get("current_figure");
f.figure_position=[650,100];
plot(x, (sin(x., '-r');
xgrid(5); xtitle('График функции (sin(x)');
end
endfunction
endfunction
|
a2dfbf0f1fca354caf88e5e28829873ff9e12de1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/29/CH1/EX1.6.5/exa1_6_5.sce
|
254ca960aad7fb98b4a906e5d52649c593052576
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 377
|
sce
|
exa1_6_5.sce
|
//Caption:initial_value
// example 1.6.5
//page 11
//I(s)=(C*s/(RCs+1))*E(s)
//given: E(s)=100/s,R=2 megaohm ,C=1 uF
// so, I(s)=(((1*10^-6)*s)/(2*s+1))*(100/s)
syms t
p=poly([0 10^-6],'s','coeff');
q=poly([1 2],'s','coeff');
r=poly([0 1],'s','coeff');
F1=p/q;
F2=1/r;
F=F1*F2
f=ilaplace(F,s,t);
z=limit(f,t,0);//initial value theorem
z=dbl(z);
disp(z,"i(0+)=")
|
e8e453b5a8dc6e0baf3ec6aff2a1d9cd65caeca0
|
5bc3a272ac3972765259062ed2c4abd8ac31eb84
|
/EE 324 controls lab/lab9/q4.sce
|
6334389da9d0ee26bd8581b4133dd0f9e98be202
|
[] |
no_license
|
ishan-2404/Duaon-mei-yaad-rakhna-XD
|
51a268cb15695d78a1bd086d958f402fe6ee093d
|
bf702ac84c18f7d677a35f9f850e3bfb63a32625
|
refs/heads/main
| 2023-07-13T17:10:57.650902
| 2021-08-14T07:06:22
| 2021-08-14T07:06:22
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 310
|
sce
|
q4.sce
|
s = poly(0,'s');
G = 1/(s^3+3*s^2+2*s);
G = syslin('c',G);
// rlocus
scf(0);
evans(G,25);
kpure(G)
// Nyquist
scf(1);
nyquist(G,.05,40); //~.16
// Bode actual
scf(2);
bode(G)
[gm,fr] = g_margin(G) // gm = 15.5dB
// bode asymptodic
scf(3);
bode(G,'rad');
bode_asymp(G)
|
5396136b11aa81c8ed85c03e68d52ecf4945cc7d
|
727092dff86e9d034d021bbc56565d9336b988aa
|
/Códigos CN/trapezio_integração.sci
|
61e28a504f8d4fb57243002ced0bc9e66853f572
|
[] |
no_license
|
lucasdksan/Numerical-computing
|
c54b855bd50f2a06b1970086f2da63c28883f287
|
a5a5863499bdf46003437140e3fa3123fc4960f8
|
refs/heads/master
| 2023-06-24T16:13:01.094230
| 2021-07-29T15:57:00
| 2021-07-29T15:57:00
| 278,514,165
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 239
|
sci
|
trapezio_integração.sci
|
function I = trapezio(a,b,n)
h = (b-a)/n;
x = a:h:b;
y = f(x);
I = y(1);
for i = 2:n
I = I + 2*y(i);
end
I = (h/2)*(I + y(n+1));
endfunction
function y = f(x)
y = sin(x);
endfunction
|
316b4905cb7d0101c45dff41aaec05eac7c31ee8
|
3ba63edf2b9133e803bbb6533e10276dad0cb500
|
/kolowkium zad 2.sce
|
219b9cb210489bfed2ef338ce7cfe39b37888774
|
[] |
no_license
|
MMaksymow/PU_Kolokwium_2
|
b84b7ace5f15b1ff167428625efbc6553f82779d
|
12623d2e519b9362b65ed48ac2b103e0224ecba3
|
refs/heads/main
| 2023-02-17T11:18:42.192890
| 2021-01-20T12:58:28
| 2021-01-20T12:58:28
| 331,307,376
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 319
|
sce
|
kolowkium zad 2.sce
|
--> function r = funkcja_1 ( x )
> r=log( x + 8 )
> endfunction
--> function r = funkcja_2 ( x )
> r=(x^3 +4*x)/(x^2+sin(x))
> endfunction
xdata = linspace ( 1 , 6 , 50);
ydata1 =funkcja_1(xdata);
ydata2 =funkcja_2(xdata);
plot(xdata,[ydata ydata2],"o-");
xtitle ("Zad_2", "oś X", "oś Y");
|
b71e20d1f7946ba55ebc271ca8bf37fa3c617c3d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/257/CH12/EX12.13/example_12_13.sce
|
316902f9fd21d2a3615a0bd4d450cf88ca807899
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 95
|
sce
|
example_12_13.sce
|
s=%s;
sys1=syslin('c',100*(1+5*s)/(s^4*(s+1)))
nyquist(sys1)
show_margins(sys1,'nyquist')
|
51eb86e9f6c5b56453b2129c6eaf59b16761ce1e
|
fdc5047b7bf8122bad1e621df236b0481226c36e
|
/exemplos/xls-link-0.5.0-src/tests/unit_tests/xls_SetSave.tst
|
a2bf60d8bcba4e0d6d467877301c1925a4043cfe
|
[] |
no_license
|
jpbevila/virtualHartSci
|
aea3c6ba23d054670eb193f441ea7de982b531cc
|
a3f5be6041d230bd9f0fd67e5d7efa71f41cfca5
|
refs/heads/main
| 2023-07-26T23:05:28.044194
| 2021-09-09T11:50:59
| 2021-09-09T11:50:59
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 544
|
tst
|
xls_SetSave.tst
|
// ====================================================================
// Allan CORNET
// DIGITEO 2008 - 2010
// ====================================================================
// <-- CLI SHELL MODE -->
// ====================================================================
r = xls_NewExcel();
assert_checktrue(r);
r = xls_AddWorkbook();
assert_checktrue(r);
r = xls_SetWorksheet(1);
assert_checktrue(r);
// disable "Save" msg box ==> not saved !!!
r = xls_SetSave(%t);
assert_checktrue(xls_Close());
assert_checktrue(xls_Quit());
|
af387ef8657c8c972fbc913bc7d97f91efeea41a
|
67310b5d7500649b9d53cf62226ec2d23468413c
|
/tags/archive/TestCaseGenerator-Plugin-OpeningSequenceCoverage/trunk/tests/large-system-tests/inputs/RadioButton/ground_truth/OpeningSequenceCoverage/length-1/max-150/t85.tst
|
0e327960da6e3d198d09d52b91c0fdfdf057f37f
|
[] |
no_license
|
csnowleopard/guitar
|
e09cb77b2fe8b7e38d471be99b79eb7a66a5eb02
|
1fa5243fcf4de80286d26057db142b5b2357f614
|
refs/heads/master
| 2021-01-19T07:53:57.863136
| 2013-06-06T15:26:25
| 2013-06-06T15:26:25
| 10,353,457
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 661
|
tst
|
t85.tst
|
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<TestCase>
<Step>
<EventId>e37</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e32</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e50</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e12</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e40</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e31</EventId>
<ReachingStep>false</ReachingStep>
</Step>
</TestCase>
|
00daf7448dfd54e1073321be87895275650cd7ff
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2780/CH2/EX2.20/Ex2_20.sce
|
4b13f89cc1119a34a2d036e9f182c5a2ff88ce98
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 332
|
sce
|
Ex2_20.sce
|
clc
//to calculate thickness of the film
mu=1.33 //refractive index of soap film (unitless)
i=45*%pi/180
//the formula is mu=sini/sinr
sinr=0.5317
cosr=sqrt(1-(sinr)^2)
//for destructive interference
lambda=5890*10^-10 //wavelength in m
n=1
t=n*lambda/(2*mu*cosr)
disp("the thickness of the film is t="+string(t)+"m")
|
93e40d23d15c4f8c59945fd852a9bfb625508e91
|
a8592d34f144b71794ebf30f1c2a1b5faf0b053c
|
/sandbox/scilab/08_countour.sce
|
b80dba9fa3210878ec50c49a45c6f1f16f6d00c6
|
[] |
no_license
|
f-fathurrahman/ffr-MetodeNumerik
|
ee9a6a7153b174b1ba3d714fe61ccbd1cb1dd327
|
e3a9da224c0fd5b32e671708e890018a3c4104c4
|
refs/heads/master
| 2023-07-19T22:29:38.810143
| 2023-07-07T10:02:34
| 2023-07-07T10:02:34
| 107,272,110
| 2
| 2
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 766
|
sce
|
08_countour.sce
|
function z = fun1(x, y)
z = sin(x)*cos(y)
endfunction
function z = fun2(x, y)
z = x^2 + y^2
endfunction
x = linspace(-%pi, %pi, 20)
y = linspace(-%pi, %pi, 20)
z1 = feval( x, y, fun1 )
z2 = feval( y, y, fun2 )
disp(size(z1))
clf()
N_level = 10
contour( x, y, z1, N_level ) // Alternatively: contour( x, y, my_surface, 10)
title("A contour plot")
xlabel('x')
ylabel('y')
xs2pdf( gcf(), "images/08_contour_v1.pdf" )
clf()
N_level = 10
contour( x, y, z2, N_level ) // Alternatively: contour( x, y, my_surface, 10)
title("A contour plot")
xlabel('x')
ylabel('y')
xs2pdf( gcf(), "images/08_contour_v2.pdf" )
clf()
plot3d(x, y, z1)
contour( x, y, z1, N_level, flag=[0 2 4])
xs2pdf( gcf(), "images/08_contour_v3.pdf" )
if getscilabmode() ~= "STD"
quit()
end
|
62e21e17c9c108ad59cd49bdea850f0c787b6ba6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2384/CH4/EX4.5/ex4_5.sce
|
a2d6a060eb3aa71f79a59063faf6440f72b5717a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 543
|
sce
|
ex4_5.sce
|
// Exa 4.5
clc;
clear;
close;
format('v',6)
// Given data
R = 7;// in ohm
L = 31.8;// in mH
L = L * 10^-3;// in H
V = 230;// in V
f = 50;// in Hz
X_L = 2*%pi*f*L;// in ohm
Z = sqrt( (R^2)+(X_L^2) );// in ohm
I = V/Z;// in A
disp(I,"The circuit current in A is");
// tand(phi) = X_L/R;
phi = atand(X_L/R);// in degree lag
disp(phi,"The phase angle in degree is");
// Power factor
powerfactor = cosd(phi);// in lag
disp(powerfactor,"The power factor is");
P = V*I*cosd(phi);// in W
disp(P,"The power consumed in W is");
|
0c1a6187ea07b36c7fb1beeeca9bff5f842d4483
|
22ebb77444925f738e01f4ceeae89fac1b2ca711
|
/Single-phase transformer/harmonic.sci
|
429038dbb60eb9f266d635469822b69fe2434431
|
[] |
no_license
|
jacometoss/Transformer
|
4e4b4d39f370b162afd6364a229efc81a5c4ea8d
|
d9bd077b3fbc45dca52dd3367f40a4289b812e54
|
refs/heads/master
| 2021-06-21T14:57:12.644937
| 2020-12-03T19:23:20
| 2020-12-03T19:23:20
| 146,820,465
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,991
|
sci
|
harmonic.sci
|
function [X,armonicas,amplitud,FFT_50_HARM,FFT_50_HARM_SEC_ZERO,FluxT,FluxTSC,HARM]=harmonic(N,h,Muestra,tk,fhz,Np,lmFlux,SeccionI,Senal,nHarm)
w=2*%pi*fhz;
tm=(1:N);
Muestra=Muestra';
A=Muestra(1:N);
X=fft(A',-1);
fs=1/(h);
f=round(fs*(0:(N/2))/N); //:Asociar Frecuencia a un Vector
//*********************************************************************//
//... .... .... .... .... .... .... .... .... .... ... .... .... .... .//
//....Proporciona modulo y argumento en cada espectro de frecuencia....//
//... .... .... .... .... .... .... .... .... .... ... .... .... .... .//
//*********************************************************************//
for i=1:1:202
ang(i)=atan(imag(X(i)),real(X(i)))
//ang(i)=(ang(i)*180)/%pi
//disp([i,round(f(i)),abs(X(i)),ang(i)])
if i==1 then
// disp([i,abs(X(i))/N,ang(i)])
X(i)=(X(i))/N
else
// disp([i,abs(X(i))*2/N,ang(i)])
X(i)=(X(i))*2/N
end
end
X=X';
ejeX=nHarm;
for i=1:1:ejeX
Eje_f(i)=f(i);
end
armonicas=(0:nHarm-1);
amplitud=abs(X(:,1:max(size(Eje_f))));
HARM=zeros(nHarm,4);
select Senal
case 1 then
ConsPi=%pi/2;
kPi=1;
case 2 then
kPi=-1;
ConsPi=-%pi/2;
end
for n=1:nHarm
if n==1 then
disp([n-1,round(Eje_f(n,1)),abs(X(n)),atan(imag(X(n)),real(X(n)))])
HARM(n,1)=(n-1);
HARM(n,2)=round(Eje_f(n,1));
HARM(n,3)=abs(X(1,n)');
HARM(n,4)=kPi*atan(imag(X(n)),real(X(n)))
elseif (modulo(n,2)==0) then
disp([n-1,round(Eje_f(n,1)),abs(X(n)),atan(imag(X(n)),real(X(n)))-ConsPi])
HARM(n,1)=(n-1);
HARM(n,2)=Eje_f(n,1);
HARM(n,3)=abs(X(1,n)');
HARM(n,4)=kPi*atan(imag(X(n)),real(X(n)))-ConsPi;
elseif (modulo(n,2)==1) then
disp([n-1,round(Eje_f(n,1)),abs(X(n)),atan(imag(X(n)),real(X(n)))+ConsPi])
HARM(n,1)=(n-1);
HARM(n,2)=round(Eje_f(n));
HARM(n,3)=abs(X(1,n)');
HARM(n,4)=kPi*atan(imag(X(n)),real(X(n)))+ConsPi;
end
end
//*** ***** ***** ****** ****** ***** ***** ****** ****** ****** *****//
//... .... .... .... ARMÓNICAS PARES E IMPARES ... .... ..... .... ..//
//*** ***** ***** ****** ****** ***** ***** ****** ****** ****** *****//
for i=1:1:nHarm
for j=1:1:max(size(tk))
FFT_HARM(j,i)=HARM(i,3)*sin(w*tk(j)*HARM(i,1)+HARM(i,4));
end
end
FFT_50_HARM=zeros(max(size(tk)),1)
for i=1:1:nHarm
FFT_50_HARM=FFT_50_HARM+FFT_HARM(:,i)
end
for i=4:3:nHarm
for j=1:1:max(size(tk))
HARM_SEC_CERO(j,i)=HARM(i,3)*sin(w*tk(j)*HARM(i,1)+HARM(i,4));
end
end
FFT_50_HARM_SEC_ZERO=zeros(max(size(tk)),1)
for i=1:1:nHarm
FFT_50_HARM_SEC_ZERO=FFT_50_HARM_SEC_ZERO+HARM_SEC_CERO(:,i)
end
[Flux,Fmm]=fluxfmm(MAGCURVE_127_TA(:,1),MAGCURVE_127_TA(:,2),Np,lmFlux,SeccionI)
FluxT=interp1(Fmm,Flux,FFT_50_HARM'*Np)
FluxTSC=interp1(Fmm,Flux,(FFT_50_HARM'-FFT_50_HARM_SEC_ZERO')*Np)
endfunction
|
5cd3478db473cc98e649ea2c34a064ab2bb3d7fb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1928/CH1/EX1.5.2/ex1_5_2.sce
|
4067642d4c3313a35eca44ae9d74f81147535f54
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 559
|
sce
|
ex1_5_2.sce
|
//Chapter-1,Example1_5_2,pg 1-30
//refer diagram from textbook
//in the said arrangement a cation is squeezed into 4 anions in a plane and 5th anion is in upper layer and 6th in bottom layer
//join cation anion centres E and B and complete the triangle EBF
//in triangle EBF m(angle F)=90 and EF=BF
//m(angle B)=m(angle E)=45
//and EB=rc+ra and BF=ra
//cos(45)=ra/(rc+ra)
//assume rc/ra=r
r=(1-cosd(45))/cosd(45) //by arrangimg terms we get value of r
printf("critical radius ratio for ligancy 6 =")
disp(r)
|
80eef1408f71d272bee9244cbf0a298343b0bda7
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set5/s_Electrical_And_Electronic_Principles_And_Technology_J._Bird_1529.zip/Electrical_And_Electronic_Principles_And_Technology_J._Bird_1529/CH10/EX10.13/10_13.sce
|
04d510c0dfc63301c887c9afea361d2d33dfbf18
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 240
|
sce
|
10_13.sce
|
errcatch(-1,"stop");mode(2);//Chapter 10, Problem 13
;
I2=20; //current in amperes
I1=5; //current in amperes
d=20*log10(I2/I1); //in decibel
printf("decibel current ratio = %d dB",d);
exit();
|
9b393fa95e984931ac1e8680eb02faae7418133a
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfi_hp8_vrt_col/~BivLCM-SR-bfi_hp8_vrt_col-PLin-VLin.tst
|
c08a9370b516684486d15648db20391bf19813ff
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205
| 2019-03-04T17:03:26
| 2019-03-04T17:03:26
| 143,070,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 11,974
|
tst
|
~BivLCM-SR-bfi_hp8_vrt_col-PLin-VLin.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.243704D+00
2 -0.387558D-02 0.189396D-02
3 0.776666D-01 -0.237239D-02 0.337620D+00
4 -0.250600D-02 0.658319D-03 -0.308660D-02 0.280581D-02
5 -0.245066D-03 -0.276749D-04 -0.427336D-03 0.161147D-04 0.239239D-02
6 0.610981D-03 0.138957D-03 -0.296556D-03 -0.561327D-04 0.778158D-04
7 0.199090D-02 0.139796D-03 -0.151764D-02 0.605755D-04 0.420089D-03
8 0.580523D-03 0.368776D-04 0.679920D-03 -0.285360D-04 0.258462D-04
9 -0.280876D+00 0.311926D-02 -0.644678D-02 0.499275D-02 0.346873D-01
10 -0.212471D+00 -0.254541D-02 -0.118873D+00 0.106786D-01 0.113145D+00
11 -0.309074D+00 0.224221D-01 -0.281388D-01 0.213860D-02 0.353471D-01
12 -0.549845D+00 0.545066D-02 -0.132268D+01 0.586575D-01 0.215390D-01
13 0.638078D-01 0.627788D-02 -0.140294D+00 0.141096D-02 0.223224D-01
14 0.283887D-01 -0.650422D-02 -0.303380D+00 0.307210D-02 0.613278D-02
15 -0.104910D+01 0.192649D-01 -0.102948D+00 -0.470790D-02 -0.612046D-01
16 -0.263691D-01 -0.258546D-02 -0.265956D-01 0.463624D-04 0.283005D-03
17 0.347362D-02 -0.523286D-03 0.147304D-02 -0.338353D-03 -0.577850D-03
18 -0.125676D+00 -0.452013D-01 -0.470217D+00 -0.101436D-01 -0.324096D-02
19 -0.170245D+00 0.321177D-02 -0.171543D-01 0.316493D-02 -0.150963D-02
20 -0.360616D+00 0.262944D-02 -0.342337D+01 -0.186652D-01 -0.463716D-01
21 0.110766D+00 -0.195338D-02 -0.129777D-01 0.460886D-03 0.329867D-02
22 0.209324D-02 -0.206670D-03 0.484553D-02 -0.420353D-04 -0.323384D-03
23 -0.142737D-01 0.116280D-02 -0.154225D-01 -0.137811D-01 0.561478D-03
24 0.308787D-02 -0.154984D-03 0.357186D-02 -0.436587D-03 0.280991D-03
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.947566D-03
7 0.796437D-03 0.320618D-02
8 0.158409D-03 0.774119D-04 0.265824D-02
9 0.587871D-02 0.370581D-01 0.126412D-01 0.394036D+02
10 0.131288D-01 0.204694D-01 0.787175D-03 0.872645D+00 0.157198D+02
11 0.119152D-01 0.291119D-01 -0.201979D-01 0.749463D+01 0.173288D+01
12 0.125810D-01 0.727726D-02 -0.539114D-01 -0.488535D-01 0.261355D+01
13 0.596978D-01 0.108766D+00 0.278752D-01 0.118783D+01 0.327545D+01
14 0.204966D-01 0.544590D-02 0.252834D+00 0.226594D+01 0.278216D+01
15 0.109694D-02 -0.324515D-01 0.394989D-02 -0.605210D+01 -0.772371D+01
16 -0.567489D-03 0.102708D-03 -0.208064D-04 0.636221D+00 -0.975570D-01
17 -0.147321D-03 -0.402796D-03 -0.232390D-03 -0.650081D-01 -0.174253D-01
18 -0.484175D-01 -0.812036D-01 -0.297882D-01 -0.400567D+01 -0.369797D+00
19 -0.137755D-01 0.419645D-02 -0.834461D-02 0.692311D+00 -0.398823D+00
20 -0.321763D-01 -0.191646D-01 -0.153911D+00 -0.180313D+01 0.105913D+01
21 0.134272D-01 -0.421979D-02 0.990580D-02 -0.308840D+00 0.420976D+00
22 -0.762343D-04 -0.285302D-03 0.662427D-04 -0.112349D-01 -0.195179D-01
23 0.129456D-02 -0.120945D-02 0.171996D-02 -0.349550D+00 0.375185D-01
24 -0.101822D-03 0.403520D-04 -0.221092D-03 0.424529D-01 -0.328261D-02
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.278986D+02
12 0.952546D+01 0.890486D+02
13 -0.228249D+01 -0.265716D+00 0.143048D+02
14 -0.221268D+01 -0.440754D+01 0.607187D+01 0.563456D+02
15 -0.105843D+01 0.671885D+01 -0.122434D+01 -0.451233D+00 0.138167D+03
16 0.222327D+00 0.299512D+00 0.710547D-01 -0.274164D-01 0.734564D+00
17 -0.322198D-01 -0.249471D-01 -0.311341D-01 -0.133270D-01 -0.754563D+00
18 -0.390094D+01 0.247598D+01 -0.469461D+01 -0.714148D+01 0.453471D+02
19 -0.748879D-01 0.372989D-01 -0.629444D+00 -0.929816D+00 0.162184D+01
20 -0.278442D+01 -0.130248D+01 -0.175834D+01 -0.208759D+02 0.267162D+02
21 0.366819D+00 0.732049D+00 0.630460D+00 0.973221D+00 -0.575816D+00
22 -0.235711D-01 -0.402661D-01 -0.165195D-01 0.189086D-01 -0.256279D+00
23 0.485337D-01 -0.594640D+00 -0.173017D-01 0.353553D+00 0.557307D+00
24 0.395850D-01 -0.941348D-01 -0.205818D-01 -0.751683D-01 -0.113986D+00
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.216599D+00
17 -0.148839D-01 0.937945D-02
18 0.366371D+00 -0.228048D+00 0.135215D+03
19 0.183225D+00 -0.220672D-01 0.182315D+01 0.406551D+01
20 0.312052D+00 -0.965796D-01 0.854662D+02 0.235105D+01 0.401751D+03
21 -0.123176D-01 0.181067D-02 0.308789D+00 -0.379976D+01 -0.960477D+00
22 -0.839380D-02 0.325985D-02 -0.598787D+00 -0.145708D-01 -0.362582D+00
23 0.145067D-01 -0.567452D-02 0.772696D+00 -0.335253D-01 0.327363D+01
24 -0.331829D-02 0.366131D-03 -0.344353D+00 -0.556827D-02 -0.191753D+01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.432532D+01
22 -0.198271D-01 0.604957D-02
23 0.138223D+00 -0.112172D-01 0.559429D+00
24 -0.172997D-01 0.182386D-02 -0.323094D-01 0.206217D-01
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.180 1.000
3 0.271 -0.094 1.000
4 -0.096 0.286 -0.100 1.000
5 -0.010 -0.013 -0.015 0.006 1.000
6 0.040 0.104 -0.017 -0.034 0.052
7 0.071 0.057 -0.046 0.020 0.152
8 0.023 0.016 0.023 -0.010 0.010
9 -0.091 0.011 -0.002 0.015 0.113
10 -0.109 -0.015 -0.052 0.051 0.583
11 -0.119 0.098 -0.009 0.008 0.137
12 -0.118 0.013 -0.241 0.117 0.047
13 0.034 0.038 -0.064 0.007 0.121
14 0.008 -0.020 -0.070 0.008 0.017
15 -0.181 0.038 -0.015 -0.008 -0.106
16 -0.115 -0.128 -0.098 0.002 0.012
17 0.073 -0.124 0.026 -0.066 -0.122
18 -0.022 -0.089 -0.070 -0.016 -0.006
19 -0.171 0.037 -0.015 0.030 -0.015
20 -0.036 0.003 -0.294 -0.018 -0.047
21 0.108 -0.022 -0.011 0.004 0.032
22 0.055 -0.061 0.107 -0.010 -0.085
23 -0.039 0.036 -0.035 -0.348 0.015
24 0.044 -0.025 0.043 -0.057 0.040
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.457 1.000
8 0.100 0.027 1.000
9 0.030 0.104 0.039 1.000
10 0.108 0.091 0.004 0.035 1.000
11 0.073 0.097 -0.074 0.226 0.083
12 0.043 0.014 -0.111 -0.001 0.070
13 0.513 0.508 0.143 0.050 0.218
14 0.089 0.013 0.653 0.048 0.093
15 0.003 -0.049 0.007 -0.082 -0.166
16 -0.040 0.004 -0.001 0.218 -0.053
17 -0.049 -0.073 -0.047 -0.107 -0.045
18 -0.135 -0.123 -0.050 -0.055 -0.008
19 -0.222 0.037 -0.080 0.055 -0.050
20 -0.052 -0.017 -0.149 -0.014 0.013
21 0.210 -0.036 0.092 -0.024 0.051
22 -0.032 -0.065 0.017 -0.023 -0.063
23 0.056 -0.029 0.045 -0.074 0.013
24 -0.023 0.005 -0.030 0.047 -0.006
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 0.191 1.000
13 -0.114 -0.007 1.000
14 -0.056 -0.062 0.214 1.000
15 -0.017 0.061 -0.028 -0.005 1.000
16 0.090 0.068 0.040 -0.008 0.134
17 -0.063 -0.027 -0.085 -0.018 -0.663
18 -0.064 0.023 -0.107 -0.082 0.332
19 -0.007 0.002 -0.083 -0.061 0.068
20 -0.026 -0.007 -0.023 -0.139 0.113
21 0.033 0.037 0.080 0.062 -0.024
22 -0.057 -0.055 -0.056 0.032 -0.280
23 0.012 -0.084 -0.006 0.063 0.063
24 0.052 -0.069 -0.038 -0.070 -0.068
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.330 1.000
18 0.068 -0.202 1.000
19 0.195 -0.113 0.078 1.000
20 0.033 -0.050 0.367 0.058 1.000
21 -0.013 0.009 0.013 -0.906 -0.023
22 -0.232 0.433 -0.662 -0.093 -0.233
23 0.042 -0.078 0.089 -0.022 0.218
24 -0.050 0.026 -0.206 -0.019 -0.666
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.123 1.000
23 0.089 -0.193 1.000
24 -0.058 0.163 -0.301 1.000
|
e8173f235c730c6e5d038d3a4160ebc424033acf
|
7df66d80cfee8664f45a7ffd8f571279ce0828b8
|
/Laboratorios/Lab Funciones/1b- test-get_idDepartamento.tst
|
61ad5977afc2447f67ae3b0eb3f37a88f1323174
|
[] |
no_license
|
untxi/basesdatos
|
31154c4dc853368955ad9fd4f54ea77e55aaed54
|
3ba1ec0d60ef961c70c6824560dab5732ee5dde1
|
refs/heads/master
| 2021-08-11T21:13:51.658562
| 2021-08-10T20:11:06
| 2021-08-10T20:11:06
| 122,225,841
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 199
|
tst
|
1b- test-get_idDepartamento.tst
|
PL/SQL Developer Test script 3.0
9
DECLARE
--LOCAL VARIABLES
id NUMBER :=1;
vDepto VARCHAR2(30);
BEGIN
vDepto := GET_NOMBRE_DEPARTAMENTO(id);
DBMS_OUTPUT.put_line(vDepto);
END;
0
0
|
69df4570c5e68e8b4f653bbaa3c235b1d8e4e93c
|
56ae453b5537f39dbd832dd0416f3c804aa1b937
|
/microdaq/macros/microdaq_macros/mdaqDIORead.sci
|
39d5fabcaee0e517afc4b108bcb413e3e0826000
|
[
"BSD-3-Clause"
] |
permissive
|
grtwall/Scilab
|
38bc8bc978e715b770da61482a9ac30e0cb806d3
|
e44e0dc0d357a6baf875d33ddd435a29e053b7f1
|
refs/heads/master
| 2020-07-22T16:48:31.589484
| 2018-07-31T13:15:40
| 2018-07-31T13:15:40
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,294
|
sci
|
mdaqDIORead.sci
|
function state = mdaqDIORead(arg1, arg2)
state = -1;
if argn(2) == 1 then
dio = arg1;
end
if argn(2) == 2 then
link_id = arg1;
dio = arg2;
if link_id < 0 then
error("Invalid link ID!")
return;
end
end
if argn(2) > 2 | argn(2) < 1 then
mprintf("Description:\n");
mprintf("\tReads DIO state\n");
mprintf("Usage:\n");
mprintf("\tstate = mdaqDIORead(linkID, dio)\n")
mprintf("\tlinkID - connection id returned by mdaqOpen() (OPTIONAL)\n");
mprintf("\tdio - DIO number\n");
return;
end
if argn(2) == 1 then
link_id = mdaqOpen();
if link_id < 0 then
disp("ERROR: Unable to connect to MicroDAQ device!");
return;
end
end
result = [];
[state result] = call("sci_mlink_dio_get",..
link_id, 1, "i",..
dio, 2, "i",..
"out",..
[1, 1], 3, "i",..
[1, 1], 4, "i");
if state <> 0 then
state = %T;
else
state = %F;
end
if argn(2) == 1 then
mdaqClose(link_id);
end
if result < 0 then
error(mdaq_error2(result), 10000 + abs(result));
end
endfunction
|
563f9e649c3284dd0e5a9e12e73ff846090f8828
|
4ebea1be375a38f07d1b8536e25cd91584882389
|
/src/test/example012.tst
|
998d9eea4ab3d2e381a2a73e166a2dcecc4553c9
|
[
"MIT"
] |
permissive
|
robertsmeets/rjhg-pl
|
f5c2d850ba7a5e3daa0d4147357d37a275c7100a
|
87721b77f92d5180c34123265fac70dcf54c77a9
|
refs/heads/master
| 2021-05-22T06:46:14.395448
| 2021-02-21T05:54:35
| 2021-02-21T05:54:35
| 32,521,807
| 1
| 1
|
MIT
| 2020-05-17T16:48:51
| 2015-03-19T13:07:49
|
C
|
UTF-8
|
Scilab
| false
| false
| 16
|
tst
|
example012.tst
|
now
is
the
time
|
e6ce24eb3f2db62e62a28a3a6470e27705517b4b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3129/CH17/EX17.1/ex17_1.sce
|
8872889b09b5de4f52bf1c534ee4260a9774b060
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 555
|
sce
|
ex17_1.sce
|
//Finding the Transistor voltage and current with clamping
//Example 17.1(Page No-766)
clc
clear
//given data
Vcc=100;//in volts
Rc=1.5;//in ohms
Vd1=2.1;//in volts
Vd2=0.9;//in volts
Vbe=0.7;// in volts
Vb=15;//in volts
Rb=2.5;//in ohms
B=16;
//part(a)
I1=(Vb-Vd1-Vbe)/Rb;
Ic=B*I1;
printf('(a)Collecter current without clamping:%2.2f A\n',Ic)
//part(b)
Vce=Vbe+Vd1-Vd2;
printf(' (b)Clamping voltage:%.1f V\n',Vce)
//part(c)
IL=(Vcc-Vce)/Rc;
Ic=B*(I1+IL)/(B+1);
printf(' (c)Collector current with clampingIc:%2.2f A\n',Ic)
|
97445d5080dff43dbc10f0ee6706556632d20c39
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2015/CH7/EX7.13/7_13.sce
|
08ae74cd609f456359c82346b554dce9c3bdf851
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,062
|
sce
|
7_13.sce
|
clc
//initialisation of variables
clear
ps1=0.062739 //bar pressure
phi1=0.9 //relative humidity
td1=37 //temp in degrees
td3=10.7 //dew point temparature
ps4=0.02366 //bar pressure
phi4=0.55 //relative humidity
td4=20 //temp in degrees
w12=1.5 //work input in kw
v4=50 //
t4=310 //temp in k
r= 1
w2= 1
w3= 1
hf3= 2
p=1.01325 //pressure in bar
//CALCULATIONS
pv1=phi1*ps1
w1=0.622*(pv1/(p-pv1))
h1=(1.005*td1+w1*(2500+1.86*td1))
pv4=phi4*ps4
w4=0.622*(pv4/(p-pv4))
h4=(1.005*td4+w4*(2500+1.86*td4))
h3=(1.005*td3+w4*(2500+1.86*td3))
pa4=p-pv4
ma=(pa4*v4*100)/(r*t4)
q12=(w12*60)/ma
h2=h1+q12
q23=((h3+(w2-w3)*hf3)-h2)
Q23=-1*q23*ma
q34=h4-h3
Q34=q34*ma
//RESULTS
printf('enthalpy rate 1 is %2fkj/kg of da',h1)
printf('\nenthalpy rate 4 is %2fkj/kg of da',h4)
printf('\nenthalpy rate 3 is %2fkj/kg of da',h3)
printf('\nmass of dry air is %2fkg/min',ma)
printf('\nenthalpy rate 2 is %2fkj/kg of da',h2)
printf('\ncapacity od cooling coil q23 is %2fkj/min',Q23)
printf('\ncapacity od cooling coil q34 is %2fkj/min',Q34)
|
6d6d52e123aedca04352c61e0510752469e4c50b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1085/CH11/EX11.1/ex11_1.sce
|
be07489bf32812d5007a56af5dfcc130e639b2ac
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 714
|
sce
|
ex11_1.sce
|
//Exam:11.1
clc;
clear;
close;
h_1=1;
k_1=1;
l_1=1;
//Miller indices of slip plane
h_2=1;
k_2=-1;
l_2=1;
//Miller indices of stress plane
h_3=1;
k_3=1;
l_3=0;
//Miller indices of slip direction
A=(h_1*h_2+k_1*k_2+l_1*l_2)/(((h_1^2+k_1^2+l_1^2)^(1/2))*((h_2^2+k_2^2+l_2^2)^(1/2)));//Value of cos(x) where x =angle between slip plane and stress plane
B=(h_1*h_3+k_1*k_3+l_1*l_3)/(((h_1^2+k_1^2+l_1^2)^(1/2))*((h_3^2+k_3^2+l_3^2)^(1/2)));//Value of cos(y) where y =angle between slip direction and stress direction
C=(1-A^2)^(1/2);//Value of sin(x)
stress=3.5;//Applied Stress in Mpa
T_cr=stress*A*B*C;//Critical resolved shear stress(in MPa)
disp(T_cr,'Critical resolved shear stress(in MPa)=');
|
62ae9c68b921d085280e854d160c12e181a26ad4
|
42fdf741bf64ea2e63d1546bb08356286f994505
|
/data_for_calibration_paper/Figure_04_IVconverterRampADC.sce
|
c442cc5e2868b729c80752503cfaa64e89d52981
|
[] |
no_license
|
skim819/RASP_Workspace_sihwan
|
7e3cd403dc3965b8306ec203007490e3ea911e3b
|
0799e146586595577c8efa05c647b8cb92b962f4
|
refs/heads/master
| 2020-12-24T05:22:25.775823
| 2017-04-01T22:15:18
| 2017-04-01T22:15:18
| 41,511,563
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,224
|
sce
|
Figure_04_IVconverterRampADC.sce
|
global file_name path fname extension chip_num board_num hex_1na;
cd("/home/ubuntu/RASP_Workspace/data_for_calibration_paper");
path = pwd();
exec('~/rasp30/prog_assembly/libs/scilab_code/diodeADC_v2i.sce',-1);
exec('~/rasp30/prog_assembly/libs/scilab_code/diodeADC_i2v.sce',-1);
exec('~/rasp30/prog_assembly/libs/scilab_code/diodeADC_v2h.sce',-1);
exec('~/rasp30/prog_assembly/libs/scilab_code/diodeADC_h2v.sce',-1);
hex_1na=int(diodeADC_v2h(diodeADC_i2v(1e-09,chip_num,brdtype),chip_num,brdtype));
exec('~/rasp30/prog_assembly/libs/scilab_code/linefit.sce',-1);
exec('~/rasp30/prog_assembly/libs/scilab_code/ekvfit_diodeADC.sce',-1);
diodeADC_iv=csvRead("~/rasp30/prog_assembly/libs/scilab_code/characterization/char_diodeADC/data_diodeADC_chip"+chip_num+brdtype+"_ivdd25V");
Isat=diodeADC_iv(:,2);
Vout=diodeADC_iv(:,3);
Hex_code=diodeADC_iv(:,4);
epsilon=0.004;
plotting="off"; //"on_all" or "on_final" or "off"
[Is, VT, kappa]=ekvfit_diodeADC(Vout, Isat, epsilon, plotting);
//disp('EKV Fit: I_s = '+string(Is)+'A, V_T = '+string(VT)+'V, Kappa = '+string(kappa));
epsilon=1;
[WIfirst, WIlast, Slope_v2h, Offset_v2h, WIN]=linefit(Vout, Hex_code, epsilon);
csvWrite([Is, VT, kappa, Slope_v2h, Offset_v2h],'EKV_diodeADC');
unix_w("cp EKV_diodeADC ~/rasp30/prog_assembly/libs/chip_parameters/EKV_diodeADC/EKV_diodeADC_chip"+chip_num+brdtype);
EKV_diodeADC_para=csvRead("~/rasp30/prog_assembly/libs/chip_parameters/EKV_diodeADC/EKV_diodeADC_chip"+chip_num+brdtype);
Is=EKV_diodeADC_para(1); VT=EKV_diodeADC_para(2); kappa=EKV_diodeADC_para(3); Slope_v2h=EKV_diodeADC_para(4); Offset_v2h=EKV_diodeADC_para(5);
//Isat2=diodeADC_v2i(Vout, chip_num, brdtype);
//Vout2=diodeADC_i2v(Isat2, chip_num, brdtype);
vdd=2.5;
Vfg=vdd-(Vout/2);
scf(2);clf(2);
plot2d("nl",Vfg, Isat, style=1);p = get("hdl"); p.children.mark_style = 9; p.children.thickness = 1; p.children.line_mode="off";
plot2d("nl", Vfg, diodeADC_v2i(Vfg, chip_num, brdtype), style=1);p = get("hdl"); p.children.line_style = 1; p.children.thickness = 3; p.children.thickness = 3;p.children.line_mode="on";
legend("Data","EKV fit","in_lower_left");
xtitle("","Vfg [V]","Iprog [A]"); a=gca();a.data_bounds=[1.3 1e-13; 2.4 5e-4];
title(['EKV Fit: I_s = '+string(Is)+'A, V_T = '+string(VT)+'V, Kappa = '+string(kappa)]);
scf(3);clf(3);
plot2d("ln",Isat, 2*(vdd-Vfg), style=1);p = get("hdl"); p.children.mark_style = 9; p.children.thickness = 1; p.children.line_mode="off";
//plot2d("ln",Isat, 2*(vdd-diodeADC_v2i(Vfg, chip_num, brdtype), style=1);p = get("hdl"); p.children.line_style = 1; p.children.thickness = 3; p.children.thickness = 3;p.children.line_mode="on";
legend("Data","EKV fit","in_upper_left");
xtitle("","Iprog [A])","Vprog [V]");
a=gca();a.data_bounds=[1e-12 0.4; 1e-4 2.4];
//title(['EKV Fit: I_s = '+string(Is)+'A, V_T = '+string(VT)+'V, Kappa = '+string(kappa)]);
scf(4);clf(4);
plot2d("nn", 2*(vdd-Vfg), Hex_code, style=1);p = get("hdl"); p.children.mark_style = 9; p.children.thickness = 1; p.children.line_mode="off";
plot2d("nn", 2*(vdd-Vfg), diodeADC_v2h(Vfg, chip_num, brdtype), style=1);p = get("hdl"); p.children.line_style = 1; p.children.thickness = 3; p.children.thickness = 3;p.children.line_mode="on";
legend("Data","Data for linefit","linefit","in_lower_right");
a=gca();a.data_bounds=[0.4 1000; 2.4 10000];
xtitle("","Vprog [V]","Hex_code");
//title('Vfg vs. Hex code Fit');
//scf(5);clf(5);
//plot2d("nl", diode_ivdd25V(:,4), diode_ivdd25V(:,2), style=1);p = get("hdl"); p.children.mark_style = 9; p.children.thickness = 1; p.children.line_mode="off";
//plot2d("nl", ADC_range_ivdd25V, exp(diode_fit_ivdd25V), style=5);p = get("hdl"); p.children.line_style = 1; p.children.thickness = 3; p.children.thickness = 3;p.children.line_mode="on";
//plot2d("nl", diodeADC_v2h(Vfg, chip_num, brdtype), diodeADC_v2i(Vfg, chip_num, brdtype), style=2);p = get("hdl"); p.children.line_style = 1; p.children.thickness = 3; p.children.thickness = 3;p.children.line_mode="on";
//legend("data","Polyfit","EKV_fit","in_lower_right");
//xtitle("","Hex_code","Isat(A)");
//title('Polyfit vs. EKVfit');
//
//Current_to_ADC(:,3)=diodeADC_v2h(diodeADC_i2v(Current_to_ADC(:,1), chip_num, brdtype), chip_num, brdtype);
//
//disp(Current_to_ADC);
|
7109b7d9b18b0576e16b552e6eef133336f132ce
|
04ebc1029c20752e734a1d83b49a31329d5283fd
|
/trust_game_2/trust game 2.sce
|
0e33095aafc85ef0ff142ab2781a4969f97b764d
|
[] |
no_license
|
jangwoopark/presentation-trust
|
a1293e481da417c914534a30b1969f092f08e115
|
31621ef8b534bca19d4b9d4a5d57792ff8bb058d
|
refs/heads/master
| 2020-06-27T14:50:42.294466
| 2017-09-12T01:51:08
| 2017-09-12T01:51:08
| 97,063,115
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 89,153
|
sce
|
trust game 2.sce
|
scenario = "trust game";
scenario_type = fMRI_emulation;
#scenario_type = fMRI;
scan_period = 3000;
response_matching = simple_matching;
no_logfile = false;
sequence_interrupt=false; #default
active_buttons = 2;
button_codes=0,1;
default_font="arial";
default_font_size=30;
default_text_color=255,255,255;
default_background_color=0,0,0;
begin;
picture { text { caption =
"YOU ARE PLAYER 1
PLAYER 2 IS A PERSON"; }; x=0; y=0; } p1person;
picture { text { caption =
"YOU ARE PLAYER 1
PLAYER 2 IS A COMPUTER"; }; x=0; y=0; } p1computer;
picture { text { caption =
"YOU ARE PLAYER 2
PLAYER 1 IS A PERSON"; }; x=0; y=0; } p2person;
picture { text { caption =
"YOU ARE PLAYER 2
PLAYER 1 IS A COMPUTER"; }; x=0; y=0; } p2computer;
picture { text { caption =
"PLEASE WAIT"; }; x=0; y=0; } wait;
picture { text { caption =
"COMPUTER DECIDED RETURN"; }; x=0; y=0; } decided;
picture { text { caption = "+"; font_size = 50; }; x=0; y=0; } fix;
# sending
text { caption = "PERSON SENT"; } Person;
text { caption = "COMPUTER SENT"; } Comp;
text { caption = "_"; } selling;
picture { text Comp; x=0; y=0; text selling; x=215; y=0; } Sentco;
picture { text Person; x=0; y=0; text selling; x=215; y=0; } Sentpe;
trial { picture Sentco; duration = 3000;} Sentcomp;
trial { picture Sentpe; duration = 3000;} Sentperson;
# selecting
text { caption = " "; font_size = 12; } cross;
text { caption = "SELECT
AMOUNT
FROM"; } select;
text { caption = "10"; } dollar_10;
text { caption = "13"; } dollar_13;
text { caption = "16"; } dollar_16;
text { caption = "19"; } dollar_19;
text { caption = "22"; } dollar_22;
text { caption = "25"; } dollar_25;
text { caption = "28"; } dollar_28;
text { caption = "31"; } dollar_31;
text { caption = "34"; } dollar_34;
text { caption = "37"; } dollar_37;
text { caption = "40"; } dollar_40;
text { caption = "SENDING:"; } sending;
text { caption = "KEEPING:"; } keeping;
text { caption = "_"; } dollar_2;
text { caption = "_"; } dollar_3;
box { height = 486; width = 2; color = 255,255,255; } vert;
box { height = 2; width = 142; color = 255,255,255; } horiz;
box { height = 2; width = 4; color = 255,255,255; } divide;
box { height = 42; width = 140; color = 0,0,0; } zero;
# cursors for 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40
picture { text cross; x=0; y=0;
LOOP $i 10; $t='$i+1';
box { height = '440/10-2'; width = 140; color = 0,0,0; }"red10_10_$t"; x=0; y='-220+(440/(2*10))+$i*440/10';
ENDLOOP;
LOOP $i 11;
box divide; x=68; y='220-$i*(440/10)';
box divide; x=-68; y='220-$i*(440/10)';
ENDLOOP;
text select; x = -250; y = 0;
text dollar_10; x = -250; y = -100;
text sending; x = 250; y = 23;
text dollar_2; x = 400; y = 23;
text keeping; x = 250; y = -23;
text dollar_3; x = 400; y = -23;
box zero; x=0; y=-242;
box vert; x=70; y=-22;
box vert; x=-70; y=-22;
box horiz; x=0; y=220;
box horiz; x=0; y=-264;
} cursor10;
picture {text cross; x=0; y=0;
LOOP $i 13; $t='$i+1';
box { height = '440/13-2'; width = 140; color = 0,0,0; }"red10_13_$t"; x=0; y='-220+(440/(2*13))+$i*440/13';
ENDLOOP;
LOOP $i 14;
box divide; x=68; y='220-$i*(440/13)';
box divide; x=-68; y='220-$i*(440/13)';
ENDLOOP;
text select; x = -250; y = 0;
text dollar_13; x = -250; y = -100;
text sending; x = 250; y = 23;
text dollar_2; x = 400; y = 23;
text keeping; x = 250; y = -23;
text dollar_3; x = 400; y = -23;
box zero; x=0; y=-242;
box vert; x=70; y=-22;
box vert; x=-70; y=-22;
box horiz; x=0; y=220;
box horiz; x=0; y=-264;
} cursor13;
picture { text cross; x=0; y=0;
LOOP $i 16; $t='$i+1';
box { height = '440/16-2'; width = 140; color = 0,0,0; }"red10_16_$t"; x=0; y='-220+(440/(2*16))+$i*440/16';
ENDLOOP;
LOOP $i 17;
box divide; x=68; y='220-$i*(440/16)';
box divide; x=-68; y='220-$i*(440/16)';
ENDLOOP;
text select; x = -250; y = 0;
text dollar_16; x = -250; y = -100;
text sending; x = 250; y = 23;
text dollar_2; x = 400; y = 23;
text keeping; x = 250; y = -23;
text dollar_3; x = 400; y = -23;
box zero; x=0; y=-242;
box vert; x=70; y=-22;
box vert; x=-70; y=-22;
box horiz; x=0; y=220;
box horiz; x=0; y=-264;
} cursor16;
picture { text cross; x=0; y=0;
LOOP $i 19; $t='$i+1';
box { height = '440/19-2'; width = 140; color = 0,0,0; }"red10_19_$t"; x=0; y='-220+(440/(2*19))+$i*440/19';
ENDLOOP;
LOOP $i 20;
box divide; x=68; y='220-$i*(440/19)';
box divide; x=-68; y='220-$i*(440/19)';
ENDLOOP;
text select; x = -250; y = 0;
text dollar_19; x = -250; y = -100;
text sending; x = 250; y = 23;
text dollar_2; x = 400; y = 23;
text keeping; x = 250; y = -23;
text dollar_3; x = 400; y = -23;
box zero; x=0; y=-242;
box vert; x=70; y=-22;
box vert; x=-70; y=-22;
box horiz; x=0; y=220;
box horiz; x=0; y=-264;
} cursor19;
picture { text cross; x=0; y=0;
LOOP $i 22; $t='$i+1';
box { height = '440/22-2'; width = 140; color = 0,0,0; }"red10_22_$t"; x=0; y='-220+(440/(2*22))+$i*440/22';
ENDLOOP;
LOOP $i 23;
box divide; x=68; y='220-$i*(440/22)';
box divide; x=-68; y='220-$i*(440/22)';
ENDLOOP;
text select; x = -250; y = 0;
text dollar_22; x = -250; y = -100;
text sending; x = 250; y = 23;
text dollar_2; x = 400; y = 23;
text keeping; x = 250; y = -23;
text dollar_3; x = 400; y = -23;
box zero; x=0; y=-242;
box vert; x=70; y=-22;
box vert; x=-70; y=-22;
box horiz; x=0; y=220;
box horiz; x=0; y=-264;
} cursor22;
picture { text cross; x=0; y=0;
LOOP $i 25; $t='$i+1';
box { height = '440/25-2'; width = 140; color = 0,0,0; }"red10_25_$t"; x=0; y='-220+(440/(2*25))+$i*440/25';
ENDLOOP;
LOOP $i 26;
box divide; x=68; y='220-$i*(440/25)';
box divide; x=-68; y='220-$i*(440/25)';
ENDLOOP;
text select; x = -250; y = 0;
text dollar_25; x = -250; y = -100;
text sending; x = 250; y = 23;
text dollar_2; x = 400; y = 23;
text keeping; x = 250; y = -23;
text dollar_3; x = 400; y = -23;
box zero; x=0; y=-242;
box vert; x=70; y=-22;
box vert; x=-70; y=-22;
box horiz; x=0; y=220;
box horiz; x=0; y=-264;
} cursor25;
picture { text cross; x=0; y=0;
LOOP $i 28; $t='$i+1';
box { height = '440/28-2'; width = 140; color = 0,0,0; }"red10_28_$t"; x=0; y='-220+(440/(2*28))+$i*440/28';
ENDLOOP;
LOOP $i 29;
box divide; x=68; y='220-$i*(440/28)';
box divide; x=-68; y='220-$i*(440/28)';
ENDLOOP;
text select; x = -250; y = 0;
text dollar_28; x = -250; y = -100;
text sending; x = 250; y = 23;
text dollar_2; x = 400; y = 23;
text keeping; x = 250; y = -23;
text dollar_3; x = 400; y = -23;
box zero; x=0; y=-242;
box vert; x=70; y=-22;
box vert; x=-70; y=-22;
box horiz; x=0; y=220;
box horiz; x=0; y=-264;
} cursor28;
picture { text cross; x=0; y=0;
LOOP $i 31; $t='$i+1';
box { height = '440/31-2'; width = 140; color = 0,0,0; }"red10_31_$t"; x=0; y='-220+(440/(2*31))+$i*440/31';
ENDLOOP;
LOOP $i 32;
box divide; x=68; y='220-$i*(440/31)';
box divide; x=-68; y='220-$i*(440/31)';
ENDLOOP;
text select; x = -250; y = 0;
text dollar_31; x = -250; y = -100;
text sending; x = 250; y = 23;
text dollar_2; x = 400; y = 23;
text keeping; x = 250; y = -23;
text dollar_3; x = 400; y = -23;
box zero; x=0; y=-242;
box vert; x=70; y=-22;
box vert; x=-70; y=-22;
box horiz; x=0; y=220;
box horiz; x=0; y=-264;
} cursor31;
picture { text cross; x=0; y=0;
LOOP $i 34; $t='$i+1';
box { height = '440/34-2'; width = 140; color = 0,0,0; }"red10_34_$t"; x=0; y='-220+(440/(2*34))+$i*440/34';
ENDLOOP;
LOOP $i 35;
box divide; x=68; y='220-$i*(440/34)';
box divide; x=-68; y='220-$i*(440/34)';
ENDLOOP;
text select; x = -250; y = 0;
text dollar_34; x = -250; y = -100;
text sending; x = 250; y = 23;
text dollar_2; x = 400; y = 23;
text keeping; x = 250; y = -23;
text dollar_3; x = 400; y = -23;
box zero; x=0; y=-242;
box vert; x=70; y=-22;
box vert; x=-70; y=-22;
box horiz; x=0; y=220;
box horiz; x=0; y=-264;
} cursor34;
picture { text cross; x=0; y=0;
LOOP $i 37; $t='$i+1';
box { height = '440/37-2'; width = 140; color = 0,0,0; }"red10_37_$t"; x=0; y='-220+(440/(2*37))+$i*440/37';
ENDLOOP;
LOOP $i 38;
box divide; x=68; y='220-$i*(440/37)';
box divide; x=-68; y='220-$i*(440/37)';
ENDLOOP;
text select; x = -250; y = 0;
text dollar_37; x = -250; y = -100;
text sending; x = 250; y = 23;
text dollar_2; x = 400; y = 23;
text keeping; x = 250; y = -23;
text dollar_3; x = 400; y = -23;
box zero; x=0; y=-242;
box vert; x=70; y=-22;
box vert; x=-70; y=-22;
box horiz; x=0; y=220;
box horiz; x=0; y=-264;
} cursor37;
picture { text cross; x=0; y=0;
LOOP $i 40; $t='$i+1';
box { height = '440/40-2'; width = 140; color = 0,0,0; }"red10_40_$t"; x=0; y='-220+(440/(2*40))+$i*440/40';
ENDLOOP;
LOOP $i 41;
box divide; x=68; y='220-$i*(440/40)';
box divide; x=-68; y='220-$i*(440/40)';
ENDLOOP;
text select; x = -250; y = 0;
text dollar_40; x = -250; y = -100;
text sending; x = 250; y = 23;
text dollar_2; x = 400; y = 23;
text keeping; x = 250; y = -23;
text dollar_3; x = 400; y = -23;
box zero; x=0; y=-242;
box vert; x=70; y=-22;
box vert; x=-70; y=-22;
box horiz; x=0; y=220;
box horiz; x=0; y=-264;
} cursor40;
trial { picture p1person; duration = 3000;} p1vsperson;
trial { picture p1computer; duration = 3000;} p1vscomputer;
trial { picture p2person; duration = 3000;} p2vsperson;
trial { picture p2computer; duration = 3000;} p2vscomputer;
trial { picture wait; duration = 6000;} waiting;
trial { picture decided; duration = 3000;} decision;
trial { picture fix; duration = 15000;} fixing;
begin_pcl;
mouse stick = response_manager.get_mouse( 1 );
#joystick stick = response_manager.get_joystick( 1 );
stick.set_min_max( 1, -1, 1 );
stick.set_min_max( 2, -264, 220 );
#stick.set_saturation( 1, 0.999 );
#stick.set_saturation( 2, 0.999 );
#stick.set_dead_zone( 1, 0.001 );
#stick.set_dead_zone( 2, 0.001 );
sub box10 (int duration10)
begin
loop int end_time = clock.time() + duration10
until clock.time() >= end_time
begin
array <int> seq10[10] = {-220, -176, -132, -88, -44, 0, 44, 88, 132, 176};
stick.poll();
cursor10.set_part_x( 1, stick.x() );
cursor10.set_part_y( 1, stick.y() );
if (stick.y()==-264) then zero.set_color(0,0,0); dollar_2.set_caption("_"); dollar_2.redraw();
dollar_3.set_caption("_"); dollar_3.redraw();
end;
if (stick.y()>-264)
then zero.set_color(0,255,0);
dollar_2.set_caption("$0"); dollar_2.redraw();
dollar_3.set_caption("$10"); dollar_3.redraw();
elseif (stick.y()<-264) then zero.set_color(0,0,0);
end;
if (stick.y()>seq10[1])
then red10_10_1.set_color(255,0,0);
dollar_2.set_caption("$1"); dollar_2.redraw();
dollar_3.set_caption("$9"); dollar_3.redraw();
elseif (stick.y()<seq10[1]) then red10_10_1.set_color(0,0,0);
end;
if (stick.y()>seq10[2])
then red10_10_2.set_color(255,0,0);
dollar_2.set_caption("$2"); dollar_2.redraw();
dollar_3.set_caption("$8"); dollar_3.redraw();
elseif (stick.y()<seq10[2]) then red10_10_2.set_color(0,0,0);
end;
if (stick.y()>seq10[3])
then red10_10_3.set_color(255,0,0);
dollar_2.set_caption("$3"); dollar_2.redraw();
dollar_3.set_caption("$7"); dollar_3.redraw();
elseif (stick.y()<seq10[3]) then red10_10_3.set_color(0,0,0);
end;
if (stick.y()>seq10[4])
then red10_10_4.set_color(255,0,0);
dollar_2.set_caption("$4"); dollar_2.redraw();
dollar_3.set_caption("$6"); dollar_3.redraw();
elseif (stick.y()<seq10[4]) then red10_10_4.set_color(0,0,0);
end;
if (stick.y()>seq10[5])
then red10_10_5.set_color(255,0,0);
dollar_2.set_caption("$5"); dollar_2.redraw();
dollar_3.set_caption("$5"); dollar_3.redraw();
elseif (stick.y()<seq10[5]) then red10_10_5.set_color(0,0,0);
end;
if (stick.y()>seq10[6])
then red10_10_6.set_color(255,0,0);
dollar_2.set_caption("$6"); dollar_2.redraw();
dollar_3.set_caption("$4"); dollar_3.redraw();
elseif (stick.y()<seq10[6]) then red10_10_6.set_color(0,0,0);
end;
if (stick.y()>seq10[7])
then red10_10_7.set_color(255,0,0);
dollar_2.set_caption("$7"); dollar_2.redraw();
dollar_3.set_caption("$3"); dollar_3.redraw();
elseif (stick.y()<seq10[7]) then red10_10_7.set_color(0,0,0);
end;
if (stick.y()>seq10[8])
then red10_10_8.set_color(255,0,0);
dollar_2.set_caption("$8"); dollar_2.redraw();
dollar_3.set_caption("$2"); dollar_3.redraw();
elseif (stick.y()<seq10[8]) then red10_10_8.set_color(0,0,0);
end;
if (stick.y()>seq10[9])
then red10_10_9.set_color(255,0,0);
dollar_2.set_caption("$9"); dollar_2.redraw();
dollar_3.set_caption("$1"); dollar_3.redraw();
elseif (stick.y()<seq10[9]) then red10_10_9.set_color(0,0,0);
end;
if (stick.y()>seq10[10])
then red10_10_10.set_color(255,0,0);
dollar_2.set_caption("$10"); dollar_2.redraw();
dollar_3.set_caption("$0"); dollar_3.redraw();
elseif (stick.y()<seq10[10]) then red10_10_10.set_color(0,0,0);
end;
dollar_10.set_caption("$10"); dollar_10.redraw();
cursor10.present();
end;
end;
sub box13 (int duration13)
begin
loop int end_time = clock.time() + duration13
until clock.time() >= end_time
begin
array <int> seq10[13] = {-203, -169, -135, -102, -68, -34, 0, 34, 68, 102, 135, 169, 203};
stick.poll();
cursor13.set_part_x( 1, stick.x() );
cursor13.set_part_y( 1, stick.y() );
if (stick.y()==-264) then zero.set_color(0,0,0); dollar_2.set_caption("_"); dollar_2.redraw();
dollar_3.set_caption("_"); dollar_3.redraw();
end;
if (stick.y()>-264)
then zero.set_color(0,255,0);
dollar_2.set_caption("$0"); dollar_2.redraw();
dollar_3.set_caption("$13"); dollar_3.redraw();
elseif (stick.y()<-264) then zero.set_color(0,0,0);
end;
if (stick.y()>seq10[1])
then red10_13_1.set_color(255,0,0);
dollar_2.set_caption("$1"); dollar_2.redraw();
dollar_3.set_caption("$12"); dollar_3.redraw();
elseif (stick.y()<seq10[1]) then red10_13_1.set_color(0,0,0);
end;
if (stick.y()>seq10[2])
then red10_13_2.set_color(255,0,0);
dollar_2.set_caption("$2"); dollar_2.redraw();
dollar_3.set_caption("$11"); dollar_3.redraw();
elseif (stick.y()<seq10[2]) then red10_13_2.set_color(0,0,0);
end;
if (stick.y()>seq10[3])
then red10_13_3.set_color(255,0,0);
dollar_2.set_caption("$3"); dollar_2.redraw();
dollar_3.set_caption("$10"); dollar_3.redraw();
elseif (stick.y()<seq10[3]) then red10_13_3.set_color(0,0,0);
end;
if (stick.y()>seq10[4])
then red10_13_4.set_color(255,0,0);
dollar_2.set_caption("$4"); dollar_2.redraw();
dollar_3.set_caption("$9"); dollar_3.redraw();
elseif (stick.y()<seq10[4]) then red10_13_4.set_color(0,0,0);
end;
if (stick.y()>seq10[5])
then red10_13_5.set_color(255,0,0);
dollar_2.set_caption("$5"); dollar_2.redraw();
dollar_3.set_caption("$8"); dollar_3.redraw();
elseif (stick.y()<seq10[5]) then red10_13_5.set_color(0,0,0);
end;
if (stick.y()>seq10[6])
then red10_13_6.set_color(255,0,0);
dollar_2.set_caption("$6"); dollar_2.redraw();
dollar_3.set_caption("$7"); dollar_3.redraw();
elseif (stick.y()<seq10[6]) then red10_13_6.set_color(0,0,0);
end;
if (stick.y()>seq10[7])
then red10_13_7.set_color(255,0,0);
dollar_2.set_caption("$7"); dollar_2.redraw();
dollar_3.set_caption("$6"); dollar_3.redraw();
elseif (stick.y()<seq10[7]) then red10_13_7.set_color(0,0,0);
end;
if (stick.y()>seq10[8])
then red10_13_8.set_color(255,0,0);
dollar_2.set_caption("$8"); dollar_2.redraw();
dollar_3.set_caption("$5"); dollar_3.redraw();
elseif (stick.y()<seq10[8]) then red10_13_8.set_color(0,0,0);
end;
if (stick.y()>seq10[9])
then red10_13_9.set_color(255,0,0);
dollar_2.set_caption("$9"); dollar_2.redraw();
dollar_3.set_caption("$4"); dollar_3.redraw();
elseif (stick.y()<seq10[9]) then red10_13_9.set_color(0,0,0);
end;
if (stick.y()>seq10[10])
then red10_13_10.set_color(255,0,0);
dollar_2.set_caption("$10"); dollar_2.redraw();
dollar_3.set_caption("$3"); dollar_3.redraw();
elseif (stick.y()<seq10[10]) then red10_13_10.set_color(0,0,0);
end;
if (stick.y()>seq10[11])
then red10_13_11.set_color(255,0,0);
dollar_2.set_caption("$11"); dollar_2.redraw();
dollar_3.set_caption("$2"); dollar_3.redraw();
elseif (stick.y()<seq10[11]) then red10_13_11.set_color(0,0,0);
end;
if (stick.y()>seq10[12])
then red10_13_12.set_color(255,0,0);
dollar_2.set_caption("$12"); dollar_2.redraw();
dollar_3.set_caption("$1"); dollar_3.redraw();
elseif (stick.y()<seq10[12]) then red10_13_12.set_color(0,0,0);
end;
if (stick.y()>seq10[13])
then red10_13_13.set_color(255,0,0);
dollar_2.set_caption("$13"); dollar_2.redraw();
dollar_3.set_caption("$0"); dollar_3.redraw();
elseif (stick.y()<seq10[13]) then red10_13_13.set_color(0,0,0);
end;
dollar_13.set_caption("$13"); dollar_13.redraw();
cursor13.present();
end;
end;
sub box16 (int duration16)
begin
loop int end_time = clock.time() + duration16
until clock.time() >= end_time
begin
array <int> seq10[16] = {-206, -179, -151, -124, -96, -69, -41, -14, 14, 41, 69, 96, 124, 151, 179, 206};
stick.poll();
cursor16.set_part_x( 1, stick.x() );
cursor16.set_part_y( 1, stick.y() );
if (stick.y()==-264) then zero.set_color(0,0,0); dollar_2.set_caption("_"); dollar_2.redraw();
dollar_3.set_caption("_"); dollar_3.redraw();
end;
if (stick.y()>-264)
then zero.set_color(0,255,0);
dollar_2.set_caption("$0"); dollar_2.redraw();
dollar_3.set_caption("$16"); dollar_3.redraw();
elseif (stick.y()<-264) then zero.set_color(0,0,0);
end;
if (stick.y()>seq10[1])
then red10_16_1.set_color(255,0,0);
dollar_2.set_caption("$1"); dollar_2.redraw();
dollar_3.set_caption("$15"); dollar_3.redraw();
elseif (stick.y()<seq10[1]) then red10_16_1.set_color(0,0,0);
end;
if (stick.y()>seq10[2])
then red10_16_2.set_color(255,0,0);
dollar_2.set_caption("$2"); dollar_2.redraw();
dollar_3.set_caption("$14"); dollar_3.redraw();
elseif (stick.y()<seq10[2]) then red10_16_2.set_color(0,0,0);
end;
if (stick.y()>seq10[3])
then red10_16_3.set_color(255,0,0);
dollar_2.set_caption("$3"); dollar_2.redraw();
dollar_3.set_caption("$13"); dollar_3.redraw();
elseif (stick.y()<seq10[3]) then red10_16_3.set_color(0,0,0);
end;
if (stick.y()>seq10[4])
then red10_16_4.set_color(255,0,0);
dollar_2.set_caption("$4"); dollar_2.redraw();
dollar_3.set_caption("$12"); dollar_3.redraw();
elseif (stick.y()<seq10[4]) then red10_16_4.set_color(0,0,0);
end;
if (stick.y()>seq10[5])
then red10_16_5.set_color(255,0,0);
dollar_2.set_caption("$5"); dollar_2.redraw();
dollar_3.set_caption("$11"); dollar_3.redraw();
elseif (stick.y()<seq10[5]) then red10_16_5.set_color(0,0,0);
end;
if (stick.y()>seq10[6])
then red10_16_6.set_color(255,0,0);
dollar_2.set_caption("$6"); dollar_2.redraw();
dollar_3.set_caption("$10"); dollar_3.redraw();
elseif (stick.y()<seq10[6]) then red10_16_6.set_color(0,0,0);
end;
if (stick.y()>seq10[7])
then red10_16_7.set_color(255,0,0);
dollar_2.set_caption("$7"); dollar_2.redraw();
dollar_3.set_caption("$9"); dollar_3.redraw();
elseif (stick.y()<seq10[7]) then red10_16_7.set_color(0,0,0);
end;
if (stick.y()>seq10[8])
then red10_16_8.set_color(255,0,0);
dollar_2.set_caption("$8"); dollar_2.redraw();
dollar_3.set_caption("$8"); dollar_3.redraw();
elseif (stick.y()<seq10[8]) then red10_16_8.set_color(0,0,0);
end;
if (stick.y()>seq10[9])
then red10_16_9.set_color(255,0,0);
dollar_2.set_caption("$9"); dollar_2.redraw();
dollar_3.set_caption("$7"); dollar_3.redraw();
elseif (stick.y()<seq10[9]) then red10_16_9.set_color(0,0,0);
end;
if (stick.y()>seq10[10])
then red10_16_10.set_color(255,0,0);
dollar_2.set_caption("$10"); dollar_2.redraw();
dollar_3.set_caption("$6"); dollar_3.redraw();
elseif (stick.y()<seq10[10]) then red10_16_10.set_color(0,0,0);
end;
if (stick.y()>seq10[11])
then red10_16_11.set_color(255,0,0);
dollar_2.set_caption("$11"); dollar_2.redraw();
dollar_3.set_caption("$5"); dollar_3.redraw();
elseif (stick.y()<seq10[11]) then red10_16_11.set_color(0,0,0);
end;
if (stick.y()>seq10[12])
then red10_16_12.set_color(255,0,0);
dollar_2.set_caption("$12"); dollar_2.redraw();
dollar_3.set_caption("$4"); dollar_3.redraw();
elseif (stick.y()<seq10[12]) then red10_16_12.set_color(0,0,0);
end;
if (stick.y()>seq10[13])
then red10_16_13.set_color(255,0,0);
dollar_2.set_caption("$13"); dollar_2.redraw();
dollar_3.set_caption("$3"); dollar_3.redraw();
elseif (stick.y()<seq10[13]) then red10_16_13.set_color(0,0,0);
end;
if (stick.y()>seq10[14])
then red10_16_14.set_color(255,0,0);
dollar_2.set_caption("$14"); dollar_2.redraw();
dollar_3.set_caption("$2"); dollar_3.redraw();
elseif (stick.y()<seq10[14]) then red10_16_14.set_color(0,0,0);
end;
if (stick.y()>seq10[15])
then red10_16_15.set_color(255,0,0);
dollar_2.set_caption("$15"); dollar_2.redraw();
dollar_3.set_caption("$1"); dollar_3.redraw();
elseif (stick.y()<seq10[15]) then red10_16_15.set_color(0,0,0);
end;
if (stick.y()>seq10[16])
then red10_16_16.set_color(255,0,0);
dollar_2.set_caption("$16"); dollar_2.redraw();
dollar_3.set_caption("$0"); dollar_3.redraw();
elseif (stick.y()<seq10[16]) then red10_16_16.set_color(0,0,0);
end;
dollar_16.set_caption("$16"); dollar_16.redraw();
cursor16.present();
end;
end;
sub box19 (int duration19)
begin
loop int end_time = clock.time() + duration19
until clock.time() >= end_time
begin
array <int> seq10[19] = {-208, -185, -162, -139, -116, -93, -69, -46, -23,
0, 23, 46, 69, 93, 116, 139, 162, 185, 208};
stick.poll();
cursor19.set_part_x( 1, stick.x() );
cursor19.set_part_y( 1, stick.y() );
if (stick.y()==-264) then zero.set_color(0,0,0); dollar_2.set_caption("_"); dollar_2.redraw();
dollar_3.set_caption("_"); dollar_3.redraw();
end;
if (stick.y()>-264)
then zero.set_color(0,255,0);
dollar_2.set_caption("$0"); dollar_2.redraw();
dollar_3.set_caption("$19"); dollar_3.redraw();
elseif (stick.y()<-264) then zero.set_color(0,0,0);
end;
if (stick.y()>seq10[1])
then red10_19_1.set_color(255,0,0);
dollar_2.set_caption("$1"); dollar_2.redraw();
dollar_3.set_caption("$18"); dollar_3.redraw();
elseif (stick.y()<seq10[1]) then red10_19_1.set_color(0,0,0);
end;
if (stick.y()>seq10[2])
then red10_19_2.set_color(255,0,0);
dollar_2.set_caption("$2"); dollar_2.redraw();
dollar_3.set_caption("$17"); dollar_3.redraw();
elseif (stick.y()<seq10[2]) then red10_19_2.set_color(0,0,0);
end;
if (stick.y()>seq10[3])
then red10_19_3.set_color(255,0,0);
dollar_2.set_caption("$3"); dollar_2.redraw();
dollar_3.set_caption("$16"); dollar_3.redraw();
elseif (stick.y()<seq10[3]) then red10_19_3.set_color(0,0,0);
end;
if (stick.y()>seq10[4])
then red10_19_4.set_color(255,0,0);
dollar_2.set_caption("$4"); dollar_2.redraw();
dollar_3.set_caption("$15"); dollar_3.redraw();
elseif (stick.y()<seq10[4]) then red10_19_4.set_color(0,0,0);
end;
if (stick.y()>seq10[5])
then red10_19_5.set_color(255,0,0);
dollar_2.set_caption("$5"); dollar_2.redraw();
dollar_3.set_caption("$14"); dollar_3.redraw();
elseif (stick.y()<seq10[5]) then red10_19_5.set_color(0,0,0);
end;
if (stick.y()>seq10[6])
then red10_19_6.set_color(255,0,0);
dollar_2.set_caption("$6"); dollar_2.redraw();
dollar_3.set_caption("$13"); dollar_3.redraw();
elseif (stick.y()<seq10[6]) then red10_19_6.set_color(0,0,0);
end;
if (stick.y()>seq10[7])
then red10_19_7.set_color(255,0,0);
dollar_2.set_caption("$7"); dollar_2.redraw();
dollar_3.set_caption("$12"); dollar_3.redraw();
elseif (stick.y()<seq10[7]) then red10_19_7.set_color(0,0,0);
end;
if (stick.y()>seq10[8])
then red10_19_8.set_color(255,0,0);
dollar_2.set_caption("$8"); dollar_2.redraw();
dollar_3.set_caption("$11"); dollar_3.redraw();
elseif (stick.y()<seq10[8]) then red10_19_8.set_color(0,0,0);
end;
if (stick.y()>seq10[9])
then red10_19_9.set_color(255,0,0);
dollar_2.set_caption("$9"); dollar_2.redraw();
dollar_3.set_caption("$10"); dollar_3.redraw();
elseif (stick.y()<seq10[9]) then red10_19_9.set_color(0,0,0);
end;
if (stick.y()>seq10[10])
then red10_19_10.set_color(255,0,0);
dollar_2.set_caption("$10"); dollar_2.redraw();
dollar_3.set_caption("$9"); dollar_3.redraw();
elseif (stick.y()<seq10[10]) then red10_19_10.set_color(0,0,0);
end;
if (stick.y()>seq10[11])
then red10_19_11.set_color(255,0,0);
dollar_2.set_caption("$11"); dollar_2.redraw();
dollar_3.set_caption("$8"); dollar_3.redraw();
elseif (stick.y()<seq10[11]) then red10_19_11.set_color(0,0,0);
end;
if (stick.y()>seq10[12])
then red10_19_12.set_color(255,0,0);
dollar_2.set_caption("$12"); dollar_2.redraw();
dollar_3.set_caption("$7"); dollar_3.redraw();
elseif (stick.y()<seq10[12]) then red10_19_12.set_color(0,0,0);
end;
if (stick.y()>seq10[13])
then red10_19_13.set_color(255,0,0);
dollar_2.set_caption("$13"); dollar_2.redraw();
dollar_3.set_caption("$6"); dollar_3.redraw();
elseif (stick.y()<seq10[13]) then red10_19_13.set_color(0,0,0);
end;
if (stick.y()>seq10[14])
then red10_19_14.set_color(255,0,0);
dollar_2.set_caption("$14"); dollar_2.redraw();
dollar_3.set_caption("$15"); dollar_3.redraw();
elseif (stick.y()<seq10[14]) then red10_19_14.set_color(0,0,0);
end;
if (stick.y()>seq10[15])
then red10_19_15.set_color(255,0,0);
dollar_2.set_caption("$15"); dollar_2.redraw();
dollar_3.set_caption("$4"); dollar_3.redraw();
elseif (stick.y()<seq10[15]) then red10_19_15.set_color(0,0,0);
end;
if (stick.y()>seq10[16])
then red10_19_16.set_color(255,0,0);
dollar_2.set_caption("$16"); dollar_2.redraw();
dollar_3.set_caption("$3"); dollar_3.redraw();
elseif (stick.y()<seq10[16]) then red10_19_16.set_color(0,0,0);
end;
if (stick.y()>seq10[17])
then red10_19_17.set_color(255,0,0);
dollar_2.set_caption("$17"); dollar_2.redraw();
dollar_3.set_caption("$2"); dollar_3.redraw();
elseif (stick.y()<seq10[17]) then red10_19_17.set_color(0,0,0);
end;
if (stick.y()>seq10[18])
then red10_19_18.set_color(255,0,0);
dollar_2.set_caption("$18"); dollar_2.redraw();
dollar_3.set_caption("$1"); dollar_3.redraw();
elseif (stick.y()<seq10[18]) then red10_19_18.set_color(0,0,0);
end;
if (stick.y()>seq10[19])
then red10_19_19.set_color(255,0,0);
dollar_2.set_caption("$19"); dollar_2.redraw();
dollar_3.set_caption("$0"); dollar_3.redraw();
elseif (stick.y()<seq10[19]) then red10_19_19.set_color(0,0,0);
end;
dollar_19.set_caption("$19"); dollar_19.redraw();
cursor19.present();
end;
end;
sub box22 (int duration22)
begin
loop int end_time = clock.time() + duration22
until clock.time() >= end_time
begin
array <int> seq10[22] = {-210, -190, -170, -150, -130, -110, -90, -70, -50, -30, -10,
10, 30, 50, 70, 90, 110, 130, 150, 170, 190, 210};
stick.poll();
cursor22.set_part_x( 1, stick.x() );
cursor22.set_part_y( 1, stick.y() );
if (stick.y()==-264) then zero.set_color(0,0,0); dollar_2.set_caption("_"); dollar_2.redraw();
dollar_3.set_caption("_"); dollar_3.redraw();
end;
if (stick.y()>-264)
then zero.set_color(0,255,0);
dollar_2.set_caption("$0"); dollar_2.redraw();
dollar_3.set_caption("$22"); dollar_3.redraw();
elseif (stick.y()<-264) then zero.set_color(0,0,0);
end;
if (stick.y()>seq10[1])
then red10_22_1.set_color(255,0,0);
dollar_2.set_caption("$1"); dollar_2.redraw();
dollar_3.set_caption("$21"); dollar_3.redraw();
elseif (stick.y()<seq10[1]) then red10_22_1.set_color(0,0,0);
end;
if (stick.y()>seq10[2])
then red10_22_2.set_color(255,0,0);
dollar_2.set_caption("$2"); dollar_2.redraw();
dollar_3.set_caption("$20"); dollar_3.redraw();
elseif (stick.y()<seq10[2]) then red10_22_2.set_color(0,0,0);
end;
if (stick.y()>seq10[3])
then red10_22_3.set_color(255,0,0);
dollar_2.set_caption("$3"); dollar_2.redraw();
dollar_3.set_caption("$19"); dollar_3.redraw();
elseif (stick.y()<seq10[3]) then red10_22_3.set_color(0,0,0);
end;
if (stick.y()>seq10[4])
then red10_22_4.set_color(255,0,0);
dollar_2.set_caption("$4"); dollar_2.redraw();
dollar_3.set_caption("$18"); dollar_3.redraw();
elseif (stick.y()<seq10[4]) then red10_22_4.set_color(0,0,0);
end;
if (stick.y()>seq10[5])
then red10_22_5.set_color(255,0,0);
dollar_2.set_caption("$5"); dollar_2.redraw();
dollar_3.set_caption("$17"); dollar_3.redraw();
elseif (stick.y()<seq10[5]) then red10_22_5.set_color(0,0,0);
end;
if (stick.y()>seq10[6])
then red10_22_6.set_color(255,0,0);
dollar_2.set_caption("$6"); dollar_2.redraw();
dollar_3.set_caption("$16"); dollar_3.redraw();
elseif (stick.y()<seq10[6]) then red10_22_6.set_color(0,0,0);
end;
if (stick.y()>seq10[7])
then red10_22_7.set_color(255,0,0);
dollar_2.set_caption("$7"); dollar_2.redraw();
dollar_3.set_caption("$15"); dollar_3.redraw();
elseif (stick.y()<seq10[7]) then red10_22_7.set_color(0,0,0);
end;
if (stick.y()>seq10[8])
then red10_22_8.set_color(255,0,0);
dollar_2.set_caption("$8"); dollar_2.redraw();
dollar_3.set_caption("$14"); dollar_3.redraw();
elseif (stick.y()<seq10[8]) then red10_22_8.set_color(0,0,0);
end;
if (stick.y()>seq10[9])
then red10_22_9.set_color(255,0,0);
dollar_2.set_caption("$9"); dollar_2.redraw();
dollar_3.set_caption("$13"); dollar_3.redraw();
elseif (stick.y()<seq10[9]) then red10_22_9.set_color(0,0,0);
end;
if (stick.y()>seq10[10])
then red10_22_10.set_color(255,0,0);
dollar_2.set_caption("$10"); dollar_2.redraw();
dollar_3.set_caption("$12"); dollar_3.redraw();
elseif (stick.y()<seq10[10]) then red10_22_10.set_color(0,0,0);
end;
if (stick.y()>seq10[11])
then red10_22_11.set_color(255,0,0);
dollar_2.set_caption("$11"); dollar_2.redraw();
dollar_3.set_caption("$11"); dollar_3.redraw();
elseif (stick.y()<seq10[11]) then red10_22_11.set_color(0,0,0);
end;
if (stick.y()>seq10[12])
then red10_22_12.set_color(255,0,0);
dollar_2.set_caption("$12"); dollar_2.redraw();
dollar_3.set_caption("$10"); dollar_3.redraw();
elseif (stick.y()<seq10[12]) then red10_22_12.set_color(0,0,0);
end;
if (stick.y()>seq10[13])
then red10_22_13.set_color(255,0,0);
dollar_2.set_caption("$13"); dollar_2.redraw();
dollar_3.set_caption("$9"); dollar_3.redraw();
elseif (stick.y()<seq10[13]) then red10_22_13.set_color(0,0,0);
end;
if (stick.y()>seq10[14])
then red10_22_14.set_color(255,0,0);
dollar_2.set_caption("$14"); dollar_2.redraw();
dollar_3.set_caption("$8"); dollar_3.redraw();
elseif (stick.y()<seq10[14]) then red10_22_14.set_color(0,0,0);
end;
if (stick.y()>seq10[15])
then red10_22_15.set_color(255,0,0);
dollar_2.set_caption("$15"); dollar_2.redraw();
dollar_3.set_caption("$7"); dollar_3.redraw();
elseif (stick.y()<seq10[15]) then red10_22_15.set_color(0,0,0);
end;
if (stick.y()>seq10[16])
then red10_22_16.set_color(255,0,0);
dollar_2.set_caption("$16"); dollar_2.redraw();
dollar_3.set_caption("$6"); dollar_3.redraw();
elseif (stick.y()<seq10[16]) then red10_22_16.set_color(0,0,0);
end;
if (stick.y()>seq10[17])
then red10_22_17.set_color(255,0,0);
dollar_2.set_caption("$17"); dollar_2.redraw();
dollar_3.set_caption("$5"); dollar_3.redraw();
elseif (stick.y()<seq10[17]) then red10_22_17.set_color(0,0,0);
end;
if (stick.y()>seq10[18])
then red10_22_18.set_color(255,0,0);
dollar_2.set_caption("$18"); dollar_2.redraw();
dollar_3.set_caption("$4"); dollar_3.redraw();
elseif (stick.y()<seq10[18]) then red10_22_18.set_color(0,0,0);
end;
if (stick.y()>seq10[19])
then red10_22_19.set_color(255,0,0);
dollar_2.set_caption("$19"); dollar_2.redraw();
dollar_3.set_caption("$3"); dollar_3.redraw();
elseif (stick.y()<seq10[19]) then red10_22_19.set_color(0,0,0);
end;
if (stick.y()>seq10[20])
then red10_22_20.set_color(255,0,0);
dollar_2.set_caption("$20"); dollar_2.redraw();
dollar_3.set_caption("$2"); dollar_3.redraw();
elseif (stick.y()<seq10[20]) then red10_22_20.set_color(0,0,0);
end;
if (stick.y()>seq10[21])
then red10_22_21.set_color(255,0,0);
dollar_2.set_caption("$21"); dollar_2.redraw();
dollar_3.set_caption("$1"); dollar_3.redraw();
elseif (stick.y()<seq10[21]) then red10_22_21.set_color(0,0,0);
end;
if (stick.y()>seq10[22])
then red10_22_22.set_color(255,0,0);
dollar_2.set_caption("$22"); dollar_2.redraw();
dollar_3.set_caption("$0"); dollar_3.redraw();
elseif (stick.y()<seq10[22]) then red10_22_22.set_color(0,0,0);
end;
dollar_22.set_caption("$22"); dollar_22.redraw();
cursor22.present();
end;
end;
sub box25 (int duration25)
begin
loop int end_time = clock.time() + duration25
until clock.time() >= end_time
begin
array <int> seq10[25] = {-211, -194, -176, -158, -141, -123, -106, -88, -70, -53, -35, -18,
0, 18, 35, 53, 70, 88, 106, 123, 141, 158, 176, 194, 211};
stick.poll();
cursor25.set_part_x( 1, stick.x() );
cursor25.set_part_y( 1, stick.y() );
if (stick.y()==-264) then zero.set_color(0,0,0); dollar_2.set_caption("_"); dollar_2.redraw();
dollar_3.set_caption("_"); dollar_3.redraw();
end;
if (stick.y()>-264)
then zero.set_color(0,255,0);
dollar_2.set_caption("$0"); dollar_2.redraw();
dollar_3.set_caption("$25"); dollar_3.redraw();
elseif (stick.y()<-264) then zero.set_color(0,0,0);
end;
if (stick.y()>seq10[1])
then red10_25_1.set_color(255,0,0);
dollar_2.set_caption("$1"); dollar_2.redraw();
dollar_3.set_caption("$24"); dollar_3.redraw();
elseif (stick.y()<seq10[1]) then red10_25_1.set_color(0,0,0);
end;
if (stick.y()>seq10[2])
then red10_25_2.set_color(255,0,0);
dollar_2.set_caption("$2"); dollar_2.redraw();
dollar_3.set_caption("$23"); dollar_3.redraw();
elseif (stick.y()<seq10[2]) then red10_25_2.set_color(0,0,0);
end;
if (stick.y()>seq10[3])
then red10_25_3.set_color(255,0,0);
dollar_2.set_caption("$3"); dollar_2.redraw();
dollar_3.set_caption("$22"); dollar_3.redraw();
elseif (stick.y()<seq10[3]) then red10_25_3.set_color(0,0,0);
end;
if (stick.y()>seq10[4])
then red10_25_4.set_color(255,0,0);
dollar_2.set_caption("$4"); dollar_2.redraw();
dollar_3.set_caption("$21"); dollar_3.redraw();
elseif (stick.y()<seq10[4]) then red10_25_4.set_color(0,0,0);
end;
if (stick.y()>seq10[5])
then red10_25_5.set_color(255,0,0);
dollar_2.set_caption("$5"); dollar_2.redraw();
dollar_3.set_caption("$20"); dollar_3.redraw();
elseif (stick.y()<seq10[5]) then red10_25_5.set_color(0,0,0);
end;
if (stick.y()>seq10[6])
then red10_25_6.set_color(255,0,0);
dollar_2.set_caption("$6"); dollar_2.redraw();
dollar_3.set_caption("$19"); dollar_3.redraw();
elseif (stick.y()<seq10[6]) then red10_25_6.set_color(0,0,0);
end;
if (stick.y()>seq10[7])
then red10_25_7.set_color(255,0,0);
dollar_2.set_caption("$7"); dollar_2.redraw();
dollar_3.set_caption("$18"); dollar_3.redraw();
elseif (stick.y()<seq10[7]) then red10_25_7.set_color(0,0,0);
end;
if (stick.y()>seq10[8])
then red10_25_8.set_color(255,0,0);
dollar_2.set_caption("$8"); dollar_2.redraw();
dollar_3.set_caption("$17"); dollar_3.redraw();
elseif (stick.y()<seq10[8]) then red10_25_8.set_color(0,0,0);
end;
if (stick.y()>seq10[9])
then red10_25_9.set_color(255,0,0);
dollar_2.set_caption("$9"); dollar_2.redraw();
dollar_3.set_caption("$16"); dollar_3.redraw();
elseif (stick.y()<seq10[9]) then red10_25_9.set_color(0,0,0);
end;
if (stick.y()>seq10[10])
then red10_25_10.set_color(255,0,0);
dollar_2.set_caption("$10"); dollar_2.redraw();
dollar_3.set_caption("$15"); dollar_3.redraw();
elseif (stick.y()<seq10[10]) then red10_25_10.set_color(0,0,0);
end;
if (stick.y()>seq10[11])
then red10_25_11.set_color(255,0,0);
dollar_2.set_caption("$11"); dollar_2.redraw();
dollar_3.set_caption("$14"); dollar_3.redraw();
elseif (stick.y()<seq10[11]) then red10_25_11.set_color(0,0,0);
end;
if (stick.y()>seq10[12])
then red10_25_12.set_color(255,0,0);
dollar_2.set_caption("$12"); dollar_2.redraw();
dollar_3.set_caption("$13"); dollar_3.redraw();
elseif (stick.y()<seq10[12]) then red10_25_12.set_color(0,0,0);
end;
if (stick.y()>seq10[13])
then red10_25_13.set_color(255,0,0);
dollar_2.set_caption("$13"); dollar_2.redraw();
dollar_3.set_caption("$12"); dollar_3.redraw();
elseif (stick.y()<seq10[13]) then red10_25_13.set_color(0,0,0);
end;
if (stick.y()>seq10[14])
then red10_25_14.set_color(255,0,0);
dollar_2.set_caption("$14"); dollar_2.redraw();
dollar_3.set_caption("$11"); dollar_3.redraw();
elseif (stick.y()<seq10[14]) then red10_25_14.set_color(0,0,0);
end;
if (stick.y()>seq10[15])
then red10_25_15.set_color(255,0,0);
dollar_2.set_caption("$15"); dollar_2.redraw();
dollar_3.set_caption("$10"); dollar_3.redraw();
elseif (stick.y()<seq10[15]) then red10_25_15.set_color(0,0,0);
end;
if (stick.y()>seq10[16])
then red10_25_16.set_color(255,0,0);
dollar_2.set_caption("$16"); dollar_2.redraw();
dollar_3.set_caption("$9"); dollar_3.redraw();
elseif (stick.y()<seq10[16]) then red10_25_16.set_color(0,0,0);
end;
if (stick.y()>seq10[17])
then red10_25_17.set_color(255,0,0);
dollar_2.set_caption("$17"); dollar_2.redraw();
dollar_3.set_caption("$8"); dollar_3.redraw();
elseif (stick.y()<seq10[17]) then red10_25_17.set_color(0,0,0);
end;
if (stick.y()>seq10[18])
then red10_25_18.set_color(255,0,0);
dollar_2.set_caption("$18"); dollar_2.redraw();
dollar_3.set_caption("$7"); dollar_3.redraw();
elseif (stick.y()<seq10[18]) then red10_25_18.set_color(0,0,0);
end;
if (stick.y()>seq10[19])
then red10_25_19.set_color(255,0,0);
dollar_2.set_caption("$19"); dollar_2.redraw();
dollar_3.set_caption("$6"); dollar_3.redraw();
elseif (stick.y()<seq10[19]) then red10_25_19.set_color(0,0,0);
end;
if (stick.y()>seq10[20])
then red10_25_20.set_color(255,0,0);
dollar_2.set_caption("$20"); dollar_2.redraw();
dollar_3.set_caption("$25"); dollar_3.redraw();
elseif (stick.y()<seq10[20]) then red10_25_20.set_color(0,0,0);
end;
if (stick.y()>seq10[21])
then red10_25_21.set_color(255,0,0);
dollar_2.set_caption("$21"); dollar_2.redraw();
dollar_3.set_caption("$4"); dollar_3.redraw();
elseif (stick.y()<seq10[21]) then red10_25_21.set_color(0,0,0);
end;
if (stick.y()>seq10[22])
then red10_25_22.set_color(255,0,0);
dollar_2.set_caption("$22"); dollar_2.redraw();
dollar_3.set_caption("$3"); dollar_3.redraw();
elseif (stick.y()<seq10[22]) then red10_25_22.set_color(0,0,0);
end;
if (stick.y()>seq10[23])
then red10_25_23.set_color(255,0,0);
dollar_2.set_caption("$23"); dollar_2.redraw();
dollar_3.set_caption("$2"); dollar_3.redraw();
elseif (stick.y()<seq10[20]) then red10_25_23.set_color(0,0,0);
end;
if (stick.y()>seq10[24])
then red10_25_24.set_color(255,0,0);
dollar_2.set_caption("$24"); dollar_2.redraw();
dollar_3.set_caption("$1"); dollar_3.redraw();
elseif (stick.y()<seq10[21]) then red10_25_24.set_color(0,0,0);
end;
if (stick.y()>seq10[25])
then red10_25_25.set_color(255,0,0);
dollar_2.set_caption("$25"); dollar_2.redraw();
dollar_3.set_caption("$0"); dollar_3.redraw();
elseif (stick.y()<seq10[25]) then red10_25_25.set_color(0,0,0);
end;
dollar_25.set_caption("$25"); dollar_25.redraw();
cursor25.present();
end;
end;
sub box28 (int duration28)
begin
loop int end_time = clock.time() + duration28
until clock.time() >= end_time
begin
array <int> seq10[28] = {-212, -196, -181, -165, -149, -134, -118, -102, -86, -71, -55, -39, -24, -8,
8, 24, 39, 55, 71, 86, 102, 118, 134, 149, 165, 181, 196, 212};
stick.poll();
cursor28.set_part_x( 1, stick.x() );
cursor28.set_part_y( 1, stick.y() );
if (stick.y()==-264) then zero.set_color(0,0,0); dollar_2.set_caption("_"); dollar_2.redraw();
dollar_3.set_caption("_"); dollar_3.redraw();
end;
if (stick.y()>-264)
then zero.set_color(0,255,0);
dollar_2.set_caption("$0"); dollar_2.redraw();
dollar_3.set_caption("$28"); dollar_3.redraw();
elseif (stick.y()<-264) then zero.set_color(0,0,0);
end;
if (stick.y()>seq10[1])
then red10_28_1.set_color(255,0,0);
dollar_2.set_caption("$1"); dollar_2.redraw();
dollar_3.set_caption("$27"); dollar_3.redraw();
elseif (stick.y()<seq10[1]) then red10_28_1.set_color(0,0,0);
end;
if (stick.y()>seq10[2])
then red10_28_2.set_color(255,0,0);
dollar_2.set_caption("$2"); dollar_2.redraw();
dollar_3.set_caption("$26"); dollar_3.redraw();
elseif (stick.y()<seq10[2]) then red10_28_2.set_color(0,0,0);
end;
if (stick.y()>seq10[3])
then red10_28_3.set_color(255,0,0);
dollar_2.set_caption("$3"); dollar_2.redraw();
dollar_3.set_caption("$25"); dollar_3.redraw();
elseif (stick.y()<seq10[3]) then red10_28_3.set_color(0,0,0);
end;
if (stick.y()>seq10[4])
then red10_28_4.set_color(255,0,0);
dollar_2.set_caption("$4"); dollar_2.redraw();
dollar_3.set_caption("$24"); dollar_3.redraw();
elseif (stick.y()<seq10[4]) then red10_28_4.set_color(0,0,0);
end;
if (stick.y()>seq10[5])
then red10_28_5.set_color(255,0,0);
dollar_2.set_caption("$5"); dollar_2.redraw();
dollar_3.set_caption("$23"); dollar_3.redraw();
elseif (stick.y()<seq10[5]) then red10_28_5.set_color(0,0,0);
end;
if (stick.y()>seq10[6])
then red10_28_6.set_color(255,0,0);
dollar_2.set_caption("$6"); dollar_2.redraw();
dollar_3.set_caption("$22"); dollar_3.redraw();
elseif (stick.y()<seq10[6]) then red10_28_6.set_color(0,0,0);
end;
if (stick.y()>seq10[7])
then red10_28_7.set_color(255,0,0);
dollar_2.set_caption("$7"); dollar_2.redraw();
dollar_3.set_caption("$21"); dollar_3.redraw();
elseif (stick.y()<seq10[7]) then red10_28_7.set_color(0,0,0);
end;
if (stick.y()>seq10[8])
then red10_28_8.set_color(255,0,0);
dollar_2.set_caption("$8"); dollar_2.redraw();
dollar_3.set_caption("$20"); dollar_3.redraw();
elseif (stick.y()<seq10[8]) then red10_28_8.set_color(0,0,0);
end;
if (stick.y()>seq10[9])
then red10_28_9.set_color(255,0,0);
dollar_2.set_caption("$9"); dollar_2.redraw();
dollar_3.set_caption("$19"); dollar_3.redraw();
elseif (stick.y()<seq10[9]) then red10_28_9.set_color(0,0,0);
end;
if (stick.y()>seq10[10])
then red10_28_10.set_color(255,0,0);
dollar_2.set_caption("$10"); dollar_2.redraw();
dollar_3.set_caption("$18"); dollar_3.redraw();
elseif (stick.y()<seq10[10]) then red10_28_10.set_color(0,0,0);
end;
if (stick.y()>seq10[11])
then red10_28_11.set_color(255,0,0);
dollar_2.set_caption("$11"); dollar_2.redraw();
dollar_3.set_caption("$17"); dollar_3.redraw();
elseif (stick.y()<seq10[11]) then red10_28_11.set_color(0,0,0);
end;
if (stick.y()>seq10[12])
then red10_28_12.set_color(255,0,0);
dollar_2.set_caption("$12"); dollar_2.redraw();
dollar_3.set_caption("$16"); dollar_3.redraw();
elseif (stick.y()<seq10[12]) then red10_28_12.set_color(0,0,0);
end;
if (stick.y()>seq10[13])
then red10_28_13.set_color(255,0,0);
dollar_2.set_caption("$13"); dollar_2.redraw();
dollar_3.set_caption("$15"); dollar_3.redraw();
elseif (stick.y()<seq10[13]) then red10_28_13.set_color(0,0,0);
end;
if (stick.y()>seq10[14])
then red10_28_14.set_color(255,0,0);
dollar_2.set_caption("$14"); dollar_2.redraw();
dollar_3.set_caption("$14"); dollar_3.redraw();
elseif (stick.y()<seq10[14]) then red10_28_14.set_color(0,0,0);
end;
if (stick.y()>seq10[15])
then red10_28_15.set_color(255,0,0);
dollar_2.set_caption("$15"); dollar_2.redraw();
dollar_3.set_caption("$13"); dollar_3.redraw();
elseif (stick.y()<seq10[15]) then red10_28_15.set_color(0,0,0);
end;
if (stick.y()>seq10[16])
then red10_28_16.set_color(255,0,0);
dollar_2.set_caption("$16"); dollar_2.redraw();
dollar_3.set_caption("$12"); dollar_3.redraw();
elseif (stick.y()<seq10[16]) then red10_28_16.set_color(0,0,0);
end;
if (stick.y()>seq10[17])
then red10_28_17.set_color(255,0,0);
dollar_2.set_caption("$17"); dollar_2.redraw();
dollar_3.set_caption("$11"); dollar_3.redraw();
elseif (stick.y()<seq10[17]) then red10_28_17.set_color(0,0,0);
end;
if (stick.y()>seq10[18])
then red10_28_18.set_color(255,0,0);
dollar_2.set_caption("$18"); dollar_2.redraw();
dollar_3.set_caption("$10"); dollar_3.redraw();
elseif (stick.y()<seq10[18]) then red10_28_18.set_color(0,0,0);
end;
if (stick.y()>seq10[19])
then red10_28_19.set_color(255,0,0);
dollar_2.set_caption("$19"); dollar_2.redraw();
dollar_3.set_caption("$9"); dollar_3.redraw();
elseif (stick.y()<seq10[19]) then red10_28_19.set_color(0,0,0);
end;
if (stick.y()>seq10[20])
then red10_28_20.set_color(255,0,0);
dollar_2.set_caption("$20"); dollar_2.redraw();
dollar_3.set_caption("$8"); dollar_3.redraw();
elseif (stick.y()<seq10[20]) then red10_28_20.set_color(0,0,0);
end;
if (stick.y()>seq10[21])
then red10_28_21.set_color(255,0,0);
dollar_2.set_caption("$21"); dollar_2.redraw();
dollar_3.set_caption("$7"); dollar_3.redraw();
elseif (stick.y()<seq10[21]) then red10_28_21.set_color(0,0,0);
end;
if (stick.y()>seq10[22])
then red10_28_22.set_color(255,0,0);
dollar_2.set_caption("$22"); dollar_2.redraw();
dollar_3.set_caption("$6"); dollar_3.redraw();
elseif (stick.y()<seq10[22]) then red10_28_22.set_color(0,0,0);
end;
if (stick.y()>seq10[23])
then red10_28_23.set_color(255,0,0);
dollar_2.set_caption("$23"); dollar_2.redraw();
dollar_3.set_caption("$5"); dollar_3.redraw();
elseif (stick.y()<seq10[23]) then red10_28_23.set_color(0,0,0);
end;
if (stick.y()>seq10[24])
then red10_28_24.set_color(255,0,0);
dollar_2.set_caption("$24"); dollar_2.redraw();
dollar_3.set_caption("$4"); dollar_3.redraw();
elseif (stick.y()<seq10[24]) then red10_28_24.set_color(0,0,0);
end;
if (stick.y()>seq10[25])
then red10_28_25.set_color(255,0,0);
dollar_2.set_caption("$25"); dollar_2.redraw();
dollar_3.set_caption("$3"); dollar_3.redraw();
elseif (stick.y()<seq10[25]) then red10_28_25.set_color(0,0,0);
end;
if (stick.y()>seq10[26])
then red10_28_26.set_color(255,0,0);
dollar_2.set_caption("$26"); dollar_2.redraw();
dollar_3.set_caption("$2"); dollar_3.redraw();
elseif (stick.y()<seq10[26]) then red10_28_26.set_color(0,0,0);
end;
if (stick.y()>seq10[27])
then red10_28_27.set_color(255,0,0);
dollar_2.set_caption("$27"); dollar_2.redraw();
dollar_3.set_caption("$1"); dollar_3.redraw();
elseif (stick.y()<seq10[27]) then red10_28_27.set_color(0,0,0);
end;
if (stick.y()>seq10[28])
then red10_28_28.set_color(255,0,0);
dollar_2.set_caption("$28"); dollar_2.redraw();
dollar_3.set_caption("$0"); dollar_3.redraw();
elseif (stick.y()<seq10[28]) then red10_28_28.set_color(0,0,0);
end;
dollar_28.set_caption("$28"); dollar_28.redraw();
cursor28.present();
end;
end;
sub box31 (int duration31)
begin
loop int end_time = clock.time() + duration31
until clock.time() >= end_time
begin
array <int> seq10[31] = {-213, -199, -185, -170, -156, -142, -128, -114, -99, -85, -71, -57, -43, -28, -14,
0, 14, 28, 43, 57, 71, 85, 99, 114, 128, 142, 156, 170, 185, 199, 213};
stick.poll();
cursor31.set_part_x( 1, stick.x() );
cursor31.set_part_y( 1, stick.y() );
if (stick.y()==-264) then zero.set_color(0,0,0); dollar_2.set_caption("_"); dollar_2.redraw();
dollar_3.set_caption("_"); dollar_3.redraw();
end;
if (stick.y()>-264)
then zero.set_color(0,255,0);
dollar_2.set_caption("$0"); dollar_2.redraw();
dollar_3.set_caption("$31"); dollar_3.redraw();
elseif (stick.y()<-264) then zero.set_color(0,0,0);
end;
if (stick.y()>seq10[1])
then red10_31_1.set_color(255,0,0);
dollar_2.set_caption("$1"); dollar_2.redraw();
dollar_3.set_caption("$30"); dollar_3.redraw();
elseif (stick.y()<seq10[1]) then red10_31_1.set_color(0,0,0);
end;
if (stick.y()>seq10[2])
then red10_31_2.set_color(255,0,0);
dollar_2.set_caption("$2"); dollar_2.redraw();
dollar_3.set_caption("$29"); dollar_3.redraw();
elseif (stick.y()<seq10[2]) then red10_31_2.set_color(0,0,0);
end;
if (stick.y()>seq10[3])
then red10_31_3.set_color(255,0,0);
dollar_2.set_caption("$3"); dollar_2.redraw();
dollar_3.set_caption("$28"); dollar_3.redraw();
elseif (stick.y()<seq10[3]) then red10_31_3.set_color(0,0,0);
end;
if (stick.y()>seq10[4])
then red10_31_4.set_color(255,0,0);
dollar_2.set_caption("$4"); dollar_2.redraw();
dollar_3.set_caption("$27"); dollar_3.redraw();
elseif (stick.y()<seq10[4]) then red10_31_4.set_color(0,0,0);
end;
if (stick.y()>seq10[5])
then red10_31_5.set_color(255,0,0);
dollar_2.set_caption("$5"); dollar_2.redraw();
dollar_3.set_caption("$26"); dollar_3.redraw();
elseif (stick.y()<seq10[5]) then red10_31_5.set_color(0,0,0);
end;
if (stick.y()>seq10[6])
then red10_31_6.set_color(255,0,0);
dollar_2.set_caption("$6"); dollar_2.redraw();
dollar_3.set_caption("$25"); dollar_3.redraw();
elseif (stick.y()<seq10[6]) then red10_31_6.set_color(0,0,0);
end;
if (stick.y()>seq10[7])
then red10_31_7.set_color(255,0,0);
dollar_2.set_caption("$7"); dollar_2.redraw();
dollar_3.set_caption("$24"); dollar_3.redraw();
elseif (stick.y()<seq10[7]) then red10_31_7.set_color(0,0,0);
end;
if (stick.y()>seq10[8])
then red10_31_8.set_color(255,0,0);
dollar_2.set_caption("$8"); dollar_2.redraw();
dollar_3.set_caption("$23"); dollar_3.redraw();
elseif (stick.y()<seq10[8]) then red10_31_8.set_color(0,0,0);
end;
if (stick.y()>seq10[9])
then red10_31_9.set_color(255,0,0);
dollar_2.set_caption("$9"); dollar_2.redraw();
dollar_3.set_caption("$22"); dollar_3.redraw();
elseif (stick.y()<seq10[9]) then red10_31_9.set_color(0,0,0);
end;
if (stick.y()>seq10[10])
then red10_31_10.set_color(255,0,0);
dollar_2.set_caption("$10"); dollar_2.redraw();
dollar_3.set_caption("$21"); dollar_3.redraw();
elseif (stick.y()<seq10[10]) then red10_31_10.set_color(0,0,0);
end;
if (stick.y()>seq10[11])
then red10_31_11.set_color(255,0,0);
dollar_2.set_caption("$11"); dollar_2.redraw();
dollar_3.set_caption("$20"); dollar_3.redraw();
elseif (stick.y()<seq10[11]) then red10_31_11.set_color(0,0,0);
end;
if (stick.y()>seq10[12])
then red10_31_12.set_color(255,0,0);
dollar_2.set_caption("$12"); dollar_2.redraw();
dollar_3.set_caption("$19"); dollar_3.redraw();
elseif (stick.y()<seq10[12]) then red10_31_12.set_color(0,0,0);
end;
if (stick.y()>seq10[13])
then red10_31_13.set_color(255,0,0);
dollar_2.set_caption("$13"); dollar_2.redraw();
dollar_3.set_caption("$18"); dollar_3.redraw();
elseif (stick.y()<seq10[13]) then red10_31_13.set_color(0,0,0);
end;
if (stick.y()>seq10[14])
then red10_31_14.set_color(255,0,0);
dollar_2.set_caption("$14"); dollar_2.redraw();
dollar_3.set_caption("$17"); dollar_3.redraw();
elseif (stick.y()<seq10[14]) then red10_31_14.set_color(0,0,0);
end;
if (stick.y()>seq10[15])
then red10_31_15.set_color(255,0,0);
dollar_2.set_caption("$15"); dollar_2.redraw();
dollar_3.set_caption("$16"); dollar_3.redraw();
elseif (stick.y()<seq10[15]) then red10_31_15.set_color(0,0,0);
end;
if (stick.y()>seq10[16])
then red10_31_16.set_color(255,0,0);
dollar_2.set_caption("$16"); dollar_2.redraw();
dollar_3.set_caption("$15"); dollar_3.redraw();
elseif (stick.y()<seq10[16]) then red10_31_16.set_color(0,0,0);
end;
if (stick.y()>seq10[17])
then red10_31_17.set_color(255,0,0);
dollar_2.set_caption("$17"); dollar_2.redraw();
dollar_3.set_caption("$14"); dollar_3.redraw();
elseif (stick.y()<seq10[17]) then red10_31_17.set_color(0,0,0);
end;
if (stick.y()>seq10[18])
then red10_31_18.set_color(255,0,0);
dollar_2.set_caption("$18"); dollar_2.redraw();
dollar_3.set_caption("$13"); dollar_3.redraw();
elseif (stick.y()<seq10[18]) then red10_31_18.set_color(0,0,0);
end;
if (stick.y()>seq10[19])
then red10_31_19.set_color(255,0,0);
dollar_2.set_caption("$19"); dollar_2.redraw();
dollar_3.set_caption("$12"); dollar_3.redraw();
elseif (stick.y()<seq10[19]) then red10_31_19.set_color(0,0,0);
end;
if (stick.y()>seq10[20])
then red10_31_20.set_color(255,0,0);
dollar_2.set_caption("$20"); dollar_2.redraw();
dollar_3.set_caption("$11"); dollar_3.redraw();
elseif (stick.y()<seq10[20]) then red10_31_20.set_color(0,0,0);
end;
if (stick.y()>seq10[21])
then red10_31_21.set_color(255,0,0);
dollar_2.set_caption("$21"); dollar_2.redraw();
dollar_3.set_caption("$10"); dollar_3.redraw();
elseif (stick.y()<seq10[21]) then red10_31_21.set_color(0,0,0);
end;
if (stick.y()>seq10[22])
then red10_31_22.set_color(255,0,0);
dollar_2.set_caption("$22"); dollar_2.redraw();
dollar_3.set_caption("$9"); dollar_3.redraw();
elseif (stick.y()<seq10[22]) then red10_31_22.set_color(0,0,0);
end;
if (stick.y()>seq10[23])
then red10_31_23.set_color(255,0,0);
dollar_2.set_caption("$23"); dollar_2.redraw();
dollar_3.set_caption("$8"); dollar_3.redraw();
elseif (stick.y()<seq10[20]) then red10_31_23.set_color(0,0,0);
end;
if (stick.y()>seq10[24])
then red10_31_24.set_color(255,0,0);
dollar_2.set_caption("$24"); dollar_2.redraw();
dollar_3.set_caption("$7"); dollar_3.redraw();
elseif (stick.y()<seq10[21]) then red10_31_24.set_color(0,0,0);
end;
if (stick.y()>seq10[25])
then red10_31_25.set_color(255,0,0);
dollar_2.set_caption("$25"); dollar_2.redraw();
dollar_3.set_caption("$6"); dollar_3.redraw();
elseif (stick.y()<seq10[25]) then red10_31_25.set_color(0,0,0);
end;
if (stick.y()>seq10[26])
then red10_31_26.set_color(255,0,0);
dollar_2.set_caption("$26"); dollar_2.redraw();
dollar_3.set_caption("$5"); dollar_3.redraw();
elseif (stick.y()<seq10[26]) then red10_31_26.set_color(0,0,0);
end;
if (stick.y()>seq10[27])
then red10_31_27.set_color(255,0,0);
dollar_2.set_caption("$27"); dollar_2.redraw();
dollar_3.set_caption("$4"); dollar_3.redraw();
elseif (stick.y()<seq10[27]) then red10_31_27.set_color(0,0,0);
end;
if (stick.y()>seq10[28])
then red10_31_28.set_color(255,0,0);
dollar_2.set_caption("$28"); dollar_2.redraw();
dollar_3.set_caption("$3"); dollar_3.redraw();
elseif (stick.y()<seq10[28]) then red10_31_28.set_color(0,0,0);
end;
if (stick.y()>seq10[29])
then red10_31_29.set_color(255,0,0);
dollar_2.set_caption("$29"); dollar_2.redraw();
dollar_3.set_caption("$2"); dollar_3.redraw();
elseif (stick.y()<seq10[29]) then red10_31_29.set_color(0,0,0);
end;
if (stick.y()>seq10[30])
then red10_31_30.set_color(255,0,0);
dollar_2.set_caption("$30"); dollar_2.redraw();
dollar_3.set_caption("$1"); dollar_3.redraw();
elseif (stick.y()<seq10[30]) then red10_31_30.set_color(0,0,0);
end;
if (stick.y()>seq10[31])
then red10_31_31.set_color(255,0,0);
dollar_2.set_caption("$31"); dollar_2.redraw();
dollar_3.set_caption("$0"); dollar_3.redraw();
elseif (stick.y()<seq10[31]) then red10_31_31.set_color(0,0,0);
end;
dollar_31.set_caption("$31"); dollar_31.redraw();
cursor31.present();
end;
end;
sub box34 (int duration34)
begin
loop int end_time = clock.time() + duration34
until clock.time() >= end_time
begin
array <int> seq10[34] = {-214, -201, -188, -175, -162, -149, -136, -123, -110, -97, -84, -71, -58, -45, -32, -19, -6 ,
6, 19, 32, 45, 58, 71, 84, 97, 110, 123, 136, 149, 162, 175, 188, 201, 214};
stick.poll();
cursor34.set_part_x( 1, stick.x() );
cursor34.set_part_y( 1, stick.y() );
if (stick.y()==-264) then zero.set_color(0,0,0); dollar_2.set_caption("_"); dollar_2.redraw();
dollar_3.set_caption("_"); dollar_3.redraw();
end;
if (stick.y()>-264)
then zero.set_color(0,255,0);
dollar_2.set_caption("$0"); dollar_2.redraw();
dollar_3.set_caption("$34"); dollar_3.redraw();
elseif (stick.y()<-264) then zero.set_color(0,0,0);
end;
if (stick.y()>seq10[1])
then red10_34_1.set_color(255,0,0);
dollar_2.set_caption("$1"); dollar_2.redraw();
dollar_3.set_caption("$33"); dollar_3.redraw();
elseif (stick.y()<seq10[1]) then red10_34_1.set_color(0,0,0);
end;
if (stick.y()>seq10[2])
then red10_34_2.set_color(255,0,0);
dollar_2.set_caption("$2"); dollar_2.redraw();
dollar_3.set_caption("$32"); dollar_3.redraw();
elseif (stick.y()<seq10[2]) then red10_34_2.set_color(0,0,0);
end;
if (stick.y()>seq10[3])
then red10_34_3.set_color(255,0,0);
dollar_2.set_caption("$3"); dollar_2.redraw();
dollar_3.set_caption("$31"); dollar_3.redraw();
elseif (stick.y()<seq10[3]) then red10_34_3.set_color(0,0,0);
end;
if (stick.y()>seq10[4])
then red10_34_4.set_color(255,0,0);
dollar_2.set_caption("$4"); dollar_2.redraw();
dollar_3.set_caption("$30"); dollar_3.redraw();
elseif (stick.y()<seq10[4]) then red10_34_4.set_color(0,0,0);
end;
if (stick.y()>seq10[5])
then red10_34_5.set_color(255,0,0);
dollar_2.set_caption("$5"); dollar_2.redraw();
dollar_3.set_caption("$29"); dollar_3.redraw();
elseif (stick.y()<seq10[5]) then red10_34_5.set_color(0,0,0);
end;
if (stick.y()>seq10[6])
then red10_34_6.set_color(255,0,0);
dollar_2.set_caption("$6"); dollar_2.redraw();
dollar_3.set_caption("$28"); dollar_3.redraw();
elseif (stick.y()<seq10[6]) then red10_34_6.set_color(0,0,0);
end;
if (stick.y()>seq10[7])
then red10_34_7.set_color(255,0,0);
dollar_2.set_caption("$7"); dollar_2.redraw();
dollar_3.set_caption("$27"); dollar_3.redraw();
elseif (stick.y()<seq10[7]) then red10_34_7.set_color(0,0,0);
end;
if (stick.y()>seq10[8])
then red10_34_8.set_color(255,0,0);
dollar_2.set_caption("$8"); dollar_2.redraw();
dollar_3.set_caption("$26"); dollar_3.redraw();
elseif (stick.y()<seq10[8]) then red10_34_8.set_color(0,0,0);
end;
if (stick.y()>seq10[9])
then red10_34_9.set_color(255,0,0);
dollar_2.set_caption("$9"); dollar_2.redraw();
dollar_3.set_caption("$25"); dollar_3.redraw();
elseif (stick.y()<seq10[9]) then red10_34_9.set_color(0,0,0);
end;
if (stick.y()>seq10[10])
then red10_34_10.set_color(255,0,0);
dollar_2.set_caption("$10"); dollar_2.redraw();
dollar_3.set_caption("$24"); dollar_3.redraw();
elseif (stick.y()<seq10[10]) then red10_34_10.set_color(0,0,0);
end;
if (stick.y()>seq10[11])
then red10_34_11.set_color(255,0,0);
dollar_2.set_caption("$11"); dollar_2.redraw();
dollar_3.set_caption("$23"); dollar_3.redraw();
elseif (stick.y()<seq10[11]) then red10_34_11.set_color(0,0,0);
end;
if (stick.y()>seq10[12])
then red10_34_12.set_color(255,0,0);
dollar_2.set_caption("$12"); dollar_2.redraw();
dollar_3.set_caption("$22"); dollar_3.redraw();
elseif (stick.y()<seq10[12]) then red10_34_12.set_color(0,0,0);
end;
if (stick.y()>seq10[13])
then red10_34_13.set_color(255,0,0);
dollar_2.set_caption("$13"); dollar_2.redraw();
dollar_3.set_caption("$21"); dollar_3.redraw();
elseif (stick.y()<seq10[13]) then red10_34_13.set_color(0,0,0);
end;
if (stick.y()>seq10[14])
then red10_34_14.set_color(255,0,0);
dollar_2.set_caption("$14"); dollar_2.redraw();
dollar_3.set_caption("$20"); dollar_3.redraw();
elseif (stick.y()<seq10[14]) then red10_34_14.set_color(0,0,0);
end;
if (stick.y()>seq10[15])
then red10_34_15.set_color(255,0,0);
dollar_2.set_caption("$15"); dollar_2.redraw();
dollar_3.set_caption("$19"); dollar_3.redraw();
elseif (stick.y()<seq10[15]) then red10_34_15.set_color(0,0,0);
end;
if (stick.y()>seq10[16])
then red10_34_16.set_color(255,0,0);
dollar_2.set_caption("$16"); dollar_2.redraw();
dollar_3.set_caption("$18"); dollar_3.redraw();
elseif (stick.y()<seq10[16]) then red10_34_16.set_color(0,0,0);
end;
if (stick.y()>seq10[17])
then red10_34_17.set_color(255,0,0);
dollar_2.set_caption("$17"); dollar_2.redraw();
dollar_3.set_caption("$17"); dollar_3.redraw();
elseif (stick.y()<seq10[17]) then red10_34_17.set_color(0,0,0);
end;
if (stick.y()>seq10[18])
then red10_34_18.set_color(255,0,0);
dollar_2.set_caption("$18"); dollar_2.redraw();
dollar_3.set_caption("$16"); dollar_3.redraw();
elseif (stick.y()<seq10[18]) then red10_34_18.set_color(0,0,0);
end;
if (stick.y()>seq10[19])
then red10_34_19.set_color(255,0,0);
dollar_2.set_caption("$19"); dollar_2.redraw();
dollar_3.set_caption("$15"); dollar_3.redraw();
elseif (stick.y()<seq10[19]) then red10_34_19.set_color(0,0,0);
end;
if (stick.y()>seq10[20])
then red10_34_20.set_color(255,0,0);
dollar_2.set_caption("$20"); dollar_2.redraw();
dollar_3.set_caption("$14"); dollar_3.redraw();
elseif (stick.y()<seq10[20]) then red10_34_20.set_color(0,0,0);
end;
if (stick.y()>seq10[21])
then red10_34_21.set_color(255,0,0);
dollar_2.set_caption("$21"); dollar_2.redraw();
dollar_3.set_caption("$13"); dollar_3.redraw();
elseif (stick.y()<seq10[21]) then red10_34_21.set_color(0,0,0);
end;
if (stick.y()>seq10[22])
then red10_34_22.set_color(255,0,0);
dollar_2.set_caption("$22"); dollar_2.redraw();
dollar_3.set_caption("$12"); dollar_3.redraw();
elseif (stick.y()<seq10[22]) then red10_34_22.set_color(0,0,0);
end;
if (stick.y()>seq10[23])
then red10_34_23.set_color(255,0,0);
dollar_2.set_caption("$23"); dollar_2.redraw();
dollar_3.set_caption("$11"); dollar_3.redraw();
elseif (stick.y()<seq10[20]) then red10_34_23.set_color(0,0,0);
end;
if (stick.y()>seq10[24])
then red10_34_24.set_color(255,0,0);
dollar_2.set_caption("$24"); dollar_2.redraw();
dollar_3.set_caption("$10"); dollar_3.redraw();
elseif (stick.y()<seq10[21]) then red10_34_24.set_color(0,0,0);
end;
if (stick.y()>seq10[25])
then red10_34_25.set_color(255,0,0);
dollar_2.set_caption("$25"); dollar_2.redraw();
dollar_3.set_caption("$9"); dollar_3.redraw();
elseif (stick.y()<seq10[25]) then red10_34_25.set_color(0,0,0);
end;
if (stick.y()>seq10[26])
then red10_34_26.set_color(255,0,0);
dollar_2.set_caption("$26"); dollar_2.redraw();
dollar_3.set_caption("$8"); dollar_3.redraw();
elseif (stick.y()<seq10[26]) then red10_34_26.set_color(0,0,0);
end;
if (stick.y()>seq10[27])
then red10_34_27.set_color(255,0,0);
dollar_2.set_caption("$27"); dollar_2.redraw();
dollar_3.set_caption("$7"); dollar_3.redraw();
elseif (stick.y()<seq10[27]) then red10_34_27.set_color(0,0,0);
end;
if (stick.y()>seq10[28])
then red10_34_28.set_color(255,0,0);
dollar_2.set_caption("$28"); dollar_2.redraw();
dollar_3.set_caption("$6"); dollar_3.redraw();
elseif (stick.y()<seq10[28]) then red10_34_28.set_color(0,0,0);
end;
if (stick.y()>seq10[29])
then red10_34_29.set_color(255,0,0);
dollar_2.set_caption("$29"); dollar_2.redraw();
dollar_3.set_caption("$5"); dollar_3.redraw();
elseif (stick.y()<seq10[29]) then red10_34_29.set_color(0,0,0);
end;
if (stick.y()>seq10[30])
then red10_34_30.set_color(255,0,0);
dollar_2.set_caption("$30"); dollar_2.redraw();
dollar_3.set_caption("$4"); dollar_3.redraw();
elseif (stick.y()<seq10[30]) then red10_34_30.set_color(0,0,0);
end;
if (stick.y()>seq10[31])
then red10_34_31.set_color(255,0,0);
dollar_2.set_caption("$31"); dollar_2.redraw();
dollar_3.set_caption("$3"); dollar_3.redraw();
elseif (stick.y()<seq10[31]) then red10_34_31.set_color(0,0,0);
end;
if (stick.y()>seq10[32])
then red10_34_32.set_color(255,0,0);
dollar_2.set_caption("$32"); dollar_2.redraw();
dollar_3.set_caption("$2"); dollar_3.redraw();
elseif (stick.y()<seq10[32]) then red10_34_32.set_color(0,0,0);
end;
if (stick.y()>seq10[33])
then red10_34_33.set_color(255,0,0);
dollar_2.set_caption("$33"); dollar_2.redraw();
dollar_3.set_caption("$1"); dollar_3.redraw();
elseif (stick.y()<seq10[33]) then red10_34_33.set_color(0,0,0);
end;
if (stick.y()>seq10[34])
then red10_34_34.set_color(255,0,0);
dollar_2.set_caption("$34"); dollar_2.redraw();
dollar_3.set_caption("$0"); dollar_3.redraw();
elseif (stick.y()<seq10[34]) then red10_34_34.set_color(0,0,0);
end;
dollar_34.set_caption("$34"); dollar_34.redraw();
cursor34.present();
end;
end;
sub box37 (int duration37)
begin
loop int end_time = clock.time() + duration37
until clock.time() >= end_time
begin
array <int> seq10[37] = {-214, -202, -190, -178, -166, -155, -143, -131, -119, -107, -95, -83,
-71, -59, -48, -36, -24, -12, 0, 12, 24, 36, 48, 59,
71, 83, 95, 107, 119, 131, 143, 155, 166, 178, 190, 202, 214};
stick.poll();
cursor37.set_part_x( 1, stick.x() );
cursor37.set_part_y( 1, stick.y() );
if (stick.y()==-264) then zero.set_color(0,0,0); dollar_2.set_caption("_"); dollar_2.redraw();
dollar_3.set_caption("_"); dollar_3.redraw();
end;
if (stick.y()>-264)
then zero.set_color(0,255,0);
dollar_2.set_caption("$0"); dollar_2.redraw();
dollar_3.set_caption("$10"); dollar_3.redraw();
elseif (stick.y()<-264) then zero.set_color(0,0,0);
end;
if (stick.y()>seq10[1])
then red10_37_1.set_color(255,0,0);
dollar_2.set_caption("$1"); dollar_2.redraw();
dollar_3.set_caption("$36"); dollar_3.redraw();
elseif (stick.y()<seq10[1]) then red10_37_1.set_color(0,0,0);
end;
if (stick.y()>seq10[2])
then red10_37_2.set_color(255,0,0);
dollar_2.set_caption("$2"); dollar_2.redraw();
dollar_3.set_caption("$35"); dollar_3.redraw();
elseif (stick.y()<seq10[2]) then red10_37_2.set_color(0,0,0);
end;
if (stick.y()>seq10[3])
then red10_37_3.set_color(255,0,0);
dollar_2.set_caption("$3"); dollar_2.redraw();
dollar_3.set_caption("$34"); dollar_3.redraw();
elseif (stick.y()<seq10[3]) then red10_37_3.set_color(0,0,0);
end;
if (stick.y()>seq10[4])
then red10_37_4.set_color(255,0,0);
dollar_2.set_caption("$4"); dollar_2.redraw();
dollar_3.set_caption("$33"); dollar_3.redraw();
elseif (stick.y()<seq10[4]) then red10_37_4.set_color(0,0,0);
end;
if (stick.y()>seq10[5])
then red10_37_5.set_color(255,0,0);
dollar_2.set_caption("$5"); dollar_2.redraw();
dollar_3.set_caption("$32"); dollar_3.redraw();
elseif (stick.y()<seq10[5]) then red10_37_5.set_color(0,0,0);
end;
if (stick.y()>seq10[6])
then red10_37_6.set_color(255,0,0);
dollar_2.set_caption("$6"); dollar_2.redraw();
dollar_3.set_caption("$31"); dollar_3.redraw();
elseif (stick.y()<seq10[6]) then red10_37_6.set_color(0,0,0);
end;
if (stick.y()>seq10[7])
then red10_37_7.set_color(255,0,0);
dollar_2.set_caption("$7"); dollar_2.redraw();
dollar_3.set_caption("$30"); dollar_3.redraw();
elseif (stick.y()<seq10[7]) then red10_37_7.set_color(0,0,0);
end;
if (stick.y()>seq10[8])
then red10_37_8.set_color(255,0,0);
dollar_2.set_caption("$8"); dollar_2.redraw();
dollar_3.set_caption("$29"); dollar_3.redraw();
elseif (stick.y()<seq10[8]) then red10_37_8.set_color(0,0,0);
end;
if (stick.y()>seq10[9])
then red10_37_9.set_color(255,0,0);
dollar_2.set_caption("$9"); dollar_2.redraw();
dollar_3.set_caption("$28"); dollar_3.redraw();
elseif (stick.y()<seq10[9]) then red10_37_9.set_color(0,0,0);
end;
if (stick.y()>seq10[10])
then red10_37_10.set_color(255,0,0);
dollar_2.set_caption("$10"); dollar_2.redraw();
dollar_3.set_caption("$27"); dollar_3.redraw();
elseif (stick.y()<seq10[10]) then red10_37_10.set_color(0,0,0);
end;
if (stick.y()>seq10[11])
then red10_37_11.set_color(255,0,0);
dollar_2.set_caption("$11"); dollar_2.redraw();
dollar_3.set_caption("$26"); dollar_3.redraw();
elseif (stick.y()<seq10[11]) then red10_37_11.set_color(0,0,0);
end;
if (stick.y()>seq10[12])
then red10_37_12.set_color(255,0,0);
dollar_2.set_caption("$12"); dollar_2.redraw();
dollar_3.set_caption("$25"); dollar_3.redraw();
elseif (stick.y()<seq10[12]) then red10_37_12.set_color(0,0,0);
end;
if (stick.y()>seq10[13])
then red10_37_13.set_color(255,0,0);
dollar_2.set_caption("$13"); dollar_2.redraw();
dollar_3.set_caption("24"); dollar_3.redraw();
elseif (stick.y()<seq10[13]) then red10_37_13.set_color(0,0,0);
end;
if (stick.y()>seq10[14])
then red10_37_14.set_color(255,0,0);
dollar_2.set_caption("$14"); dollar_2.redraw();
dollar_3.set_caption("$23"); dollar_3.redraw();
elseif (stick.y()<seq10[14]) then red10_37_14.set_color(0,0,0);
end;
if (stick.y()>seq10[15])
then red10_37_15.set_color(255,0,0);
dollar_2.set_caption("$15"); dollar_2.redraw();
dollar_3.set_caption("$22"); dollar_3.redraw();
elseif (stick.y()<seq10[15]) then red10_37_15.set_color(0,0,0);
end;
if (stick.y()>seq10[16])
then red10_37_16.set_color(255,0,0);
dollar_2.set_caption("$16"); dollar_2.redraw();
dollar_3.set_caption("$21"); dollar_3.redraw();
elseif (stick.y()<seq10[16]) then red10_37_16.set_color(0,0,0);
end;
if (stick.y()>seq10[17])
then red10_37_17.set_color(255,0,0);
dollar_2.set_caption("$17"); dollar_2.redraw();
dollar_3.set_caption("$20"); dollar_3.redraw();
elseif (stick.y()<seq10[17]) then red10_37_17.set_color(0,0,0);
end;
if (stick.y()>seq10[18])
then red10_37_18.set_color(255,0,0);
dollar_2.set_caption("$18"); dollar_2.redraw();
dollar_3.set_caption("$19"); dollar_3.redraw();
elseif (stick.y()<seq10[18]) then red10_37_18.set_color(0,0,0);
end;
if (stick.y()>seq10[19])
then red10_37_19.set_color(255,0,0);
dollar_2.set_caption("$19"); dollar_2.redraw();
dollar_3.set_caption("$18"); dollar_3.redraw();
elseif (stick.y()<seq10[19]) then red10_37_19.set_color(0,0,0);
end;
if (stick.y()>seq10[20])
then red10_37_20.set_color(255,0,0);
dollar_2.set_caption("$20"); dollar_2.redraw();
dollar_3.set_caption("$17"); dollar_3.redraw();
elseif (stick.y()<seq10[20]) then red10_37_20.set_color(0,0,0);
end;
if (stick.y()>seq10[21])
then red10_37_21.set_color(255,0,0);
dollar_2.set_caption("$21"); dollar_2.redraw();
dollar_3.set_caption("$16"); dollar_3.redraw();
elseif (stick.y()<seq10[21]) then red10_37_21.set_color(0,0,0);
end;
if (stick.y()>seq10[22])
then red10_37_22.set_color(255,0,0);
dollar_2.set_caption("$22"); dollar_2.redraw();
dollar_3.set_caption("$15"); dollar_3.redraw();
elseif (stick.y()<seq10[22]) then red10_37_22.set_color(0,0,0);
end;
if (stick.y()>seq10[23])
then red10_37_23.set_color(255,0,0);
dollar_2.set_caption("$23"); dollar_2.redraw();
dollar_3.set_caption("$14"); dollar_3.redraw();
elseif (stick.y()<seq10[20]) then red10_37_23.set_color(0,0,0);
end;
if (stick.y()>seq10[24])
then red10_37_24.set_color(255,0,0);
dollar_2.set_caption("$24"); dollar_2.redraw();
dollar_3.set_caption("$13"); dollar_3.redraw();
elseif (stick.y()<seq10[21]) then red10_37_24.set_color(0,0,0);
end;
if (stick.y()>seq10[25])
then red10_37_25.set_color(255,0,0);
dollar_2.set_caption("$25"); dollar_2.redraw();
dollar_3.set_caption("$12"); dollar_3.redraw();
elseif (stick.y()<seq10[25]) then red10_37_25.set_color(0,0,0);
end;
if (stick.y()>seq10[26])
then red10_37_26.set_color(255,0,0);
dollar_2.set_caption("$26"); dollar_2.redraw();
dollar_3.set_caption("$11"); dollar_3.redraw();
elseif (stick.y()<seq10[26]) then red10_37_26.set_color(0,0,0);
end;
if (stick.y()>seq10[27])
then red10_37_27.set_color(255,0,0);
dollar_2.set_caption("$27"); dollar_2.redraw();
dollar_3.set_caption("$10"); dollar_3.redraw();
elseif (stick.y()<seq10[27]) then red10_37_27.set_color(0,0,0);
end;
if (stick.y()>seq10[28])
then red10_37_28.set_color(255,0,0);
dollar_2.set_caption("$28"); dollar_2.redraw();
dollar_3.set_caption("$9"); dollar_3.redraw();
elseif (stick.y()<seq10[28]) then red10_37_28.set_color(0,0,0);
end;
if (stick.y()>seq10[29])
then red10_37_29.set_color(255,0,0);
dollar_2.set_caption("$29"); dollar_2.redraw();
dollar_3.set_caption("$8"); dollar_3.redraw();
elseif (stick.y()<seq10[29]) then red10_37_29.set_color(0,0,0);
end;
if (stick.y()>seq10[30])
then red10_37_30.set_color(255,0,0);
dollar_2.set_caption("$30"); dollar_2.redraw();
dollar_3.set_caption("$7"); dollar_3.redraw();
elseif (stick.y()<seq10[30]) then red10_37_30.set_color(0,0,0);
end;
if (stick.y()>seq10[31])
then red10_37_31.set_color(255,0,0);
dollar_2.set_caption("$31"); dollar_2.redraw();
dollar_3.set_caption("$6"); dollar_3.redraw();
elseif (stick.y()<seq10[31]) then red10_37_31.set_color(0,0,0);
end;
if (stick.y()>seq10[32])
then red10_37_32.set_color(255,0,0);
dollar_2.set_caption("$32"); dollar_2.redraw();
dollar_3.set_caption("$5"); dollar_3.redraw();
elseif (stick.y()<seq10[32]) then red10_37_32.set_color(0,0,0);
end;
if (stick.y()>seq10[33])
then red10_37_33.set_color(255,0,0);
dollar_2.set_caption("$33"); dollar_2.redraw();
dollar_3.set_caption("$4"); dollar_3.redraw();
elseif (stick.y()<seq10[33]) then red10_37_33.set_color(0,0,0);
end;
if (stick.y()>seq10[34])
then red10_37_34.set_color(255,0,0);
dollar_2.set_caption("$34"); dollar_2.redraw();
dollar_3.set_caption("$3"); dollar_3.redraw();
elseif (stick.y()<seq10[34]) then red10_37_34.set_color(0,0,0);
end;
if (stick.y()>seq10[35])
then red10_37_35.set_color(255,0,0);
dollar_2.set_caption("$35"); dollar_2.redraw();
dollar_3.set_caption("$2"); dollar_3.redraw();
elseif (stick.y()<seq10[35]) then red10_37_35.set_color(0,0,0);
end;
if (stick.y()>seq10[36])
then red10_37_36.set_color(255,0,0);
dollar_2.set_caption("$36"); dollar_2.redraw();
dollar_3.set_caption("$1"); dollar_3.redraw();
elseif (stick.y()<seq10[36]) then red10_37_36.set_color(0,0,0);
end;
if (stick.y()>seq10[37])
then red10_37_37.set_color(255,0,0);
dollar_2.set_caption("$37"); dollar_2.redraw();
dollar_3.set_caption("$0"); dollar_3.redraw();
elseif (stick.y()<seq10[37]) then red10_37_37.set_color(0,0,0);
end;
dollar_37.set_caption("$37"); dollar_37.redraw();
cursor37.present();
end;
end;
sub box40 (int duration40)
begin
loop int end_time = clock.time() + duration40
until clock.time() >= end_time
begin
array <int> seq10[40] = {-215, -204, -193, -182, -171, -160, -149, -138, -127, -116, -105, -94, -83,
-72, -61, -50, -39, -28, -17, -6, 6, 17, 28, 39, 50, 61,
72, 83, 94, 105, 116, 127, 138, 149, 160, 171, 182, 193, 204, 215};
stick.poll();
cursor40.set_part_x( 1, stick.x() );
cursor40.set_part_y( 1, stick.y() );
if (stick.y()==-264) then zero.set_color(0,0,0); dollar_2.set_caption("_"); dollar_2.redraw();
dollar_3.set_caption("_"); dollar_3.redraw();
end;
if (stick.y()>-264)
then zero.set_color(0,255,0);
dollar_2.set_caption("$0"); dollar_2.redraw();
dollar_3.set_caption("$40"); dollar_3.redraw();
elseif (stick.y()<-264) then zero.set_color(0,0,0);
end;
if (stick.y()>seq10[1])
then red10_40_1.set_color(255,0,0);
dollar_2.set_caption("$1"); dollar_2.redraw();
dollar_3.set_caption("$39"); dollar_3.redraw();
elseif (stick.y()<seq10[1]) then red10_40_1.set_color(0,0,0);
end;
if (stick.y()>seq10[2])
then red10_40_2.set_color(255,0,0);
dollar_2.set_caption("$2"); dollar_2.redraw();
dollar_3.set_caption("$38"); dollar_3.redraw();
elseif (stick.y()<seq10[2]) then red10_40_2.set_color(0,0,0);
end;
if (stick.y()>seq10[3])
then red10_40_3.set_color(255,0,0);
dollar_2.set_caption("$3"); dollar_2.redraw();
dollar_3.set_caption("$37"); dollar_3.redraw();
elseif (stick.y()<seq10[3]) then red10_40_3.set_color(0,0,0);
end;
if (stick.y()>seq10[4])
then red10_40_4.set_color(255,0,0);
dollar_2.set_caption("$4"); dollar_2.redraw();
dollar_3.set_caption("$36"); dollar_3.redraw();
elseif (stick.y()<seq10[4]) then red10_40_4.set_color(0,0,0);
end;
if (stick.y()>seq10[5])
then red10_40_5.set_color(255,0,0);
dollar_2.set_caption("$5"); dollar_2.redraw();
dollar_3.set_caption("$35"); dollar_3.redraw();
elseif (stick.y()<seq10[5]) then red10_40_5.set_color(0,0,0);
end;
if (stick.y()>seq10[6])
then red10_40_6.set_color(255,0,0);
dollar_2.set_caption("$6"); dollar_2.redraw();
dollar_3.set_caption("$34"); dollar_3.redraw();
elseif (stick.y()<seq10[6]) then red10_40_6.set_color(0,0,0);
end;
if (stick.y()>seq10[7])
then red10_40_7.set_color(255,0,0);
dollar_2.set_caption("$7"); dollar_2.redraw();
dollar_3.set_caption("$33"); dollar_3.redraw();
elseif (stick.y()<seq10[7]) then red10_40_7.set_color(0,0,0);
end;
if (stick.y()>seq10[8])
then red10_40_8.set_color(255,0,0);
dollar_2.set_caption("$8"); dollar_2.redraw();
dollar_3.set_caption("$32"); dollar_3.redraw();
elseif (stick.y()<seq10[8]) then red10_40_8.set_color(0,0,0);
end;
if (stick.y()>seq10[9])
then red10_40_9.set_color(255,0,0);
dollar_2.set_caption("$9"); dollar_2.redraw();
dollar_3.set_caption("$31"); dollar_3.redraw();
elseif (stick.y()<seq10[9]) then red10_40_9.set_color(0,0,0);
end;
if (stick.y()>seq10[10])
then red10_40_10.set_color(255,0,0);
dollar_2.set_caption("$10"); dollar_2.redraw();
dollar_3.set_caption("$30"); dollar_3.redraw();
elseif (stick.y()<seq10[10]) then red10_40_10.set_color(0,0,0);
end;
if (stick.y()>seq10[11])
then red10_40_11.set_color(255,0,0);
dollar_2.set_caption("$11"); dollar_2.redraw();
dollar_3.set_caption("$29"); dollar_3.redraw();
elseif (stick.y()<seq10[11]) then red10_40_11.set_color(0,0,0);
end;
if (stick.y()>seq10[12])
then red10_40_12.set_color(255,0,0);
dollar_2.set_caption("$12"); dollar_2.redraw();
dollar_3.set_caption("$28"); dollar_3.redraw();
elseif (stick.y()<seq10[12]) then red10_40_12.set_color(0,0,0);
end;
if (stick.y()>seq10[13])
then red10_40_13.set_color(255,0,0);
dollar_2.set_caption("$13"); dollar_2.redraw();
dollar_3.set_caption("$27"); dollar_3.redraw();
elseif (stick.y()<seq10[13]) then red10_40_13.set_color(0,0,0);
end;
if (stick.y()>seq10[14])
then red10_40_14.set_color(255,0,0);
dollar_2.set_caption("$14"); dollar_2.redraw();
dollar_3.set_caption("$26"); dollar_3.redraw();
elseif (stick.y()<seq10[14]) then red10_40_14.set_color(0,0,0);
end;
if (stick.y()>seq10[15])
then red10_40_15.set_color(255,0,0);
dollar_2.set_caption("$15"); dollar_2.redraw();
dollar_3.set_caption("$25"); dollar_3.redraw();
elseif (stick.y()<seq10[15]) then red10_40_15.set_color(0,0,0);
end;
if (stick.y()>seq10[16])
then red10_40_16.set_color(255,0,0);
dollar_2.set_caption("$16"); dollar_2.redraw();
dollar_3.set_caption("$24"); dollar_3.redraw();
elseif (stick.y()<seq10[16]) then red10_40_16.set_color(0,0,0);
end;
if (stick.y()>seq10[17])
then red10_40_17.set_color(255,0,0);
dollar_2.set_caption("$17"); dollar_2.redraw();
dollar_3.set_caption("$23"); dollar_3.redraw();
elseif (stick.y()<seq10[17]) then red10_40_17.set_color(0,0,0);
end;
if (stick.y()>seq10[18])
then red10_40_18.set_color(255,0,0);
dollar_2.set_caption("$18"); dollar_2.redraw();
dollar_3.set_caption("$22"); dollar_3.redraw();
elseif (stick.y()<seq10[18]) then red10_40_18.set_color(0,0,0);
end;
if (stick.y()>seq10[19])
then red10_40_19.set_color(255,0,0);
dollar_2.set_caption("$19"); dollar_2.redraw();
dollar_3.set_caption("$21"); dollar_3.redraw();
elseif (stick.y()<seq10[19]) then red10_40_19.set_color(0,0,0);
end;
if (stick.y()>seq10[20])
then red10_40_20.set_color(255,0,0);
dollar_2.set_caption("$20"); dollar_2.redraw();
dollar_3.set_caption("$20"); dollar_3.redraw();
elseif (stick.y()<seq10[20]) then red10_40_20.set_color(0,0,0);
end;
if (stick.y()>seq10[21])
then red10_40_21.set_color(255,0,0);
dollar_2.set_caption("$21"); dollar_2.redraw();
dollar_3.set_caption("$19"); dollar_3.redraw();
elseif (stick.y()<seq10[21]) then red10_40_21.set_color(0,0,0);
end;
if (stick.y()>seq10[22])
then red10_40_22.set_color(255,0,0);
dollar_2.set_caption("$22"); dollar_2.redraw();
dollar_3.set_caption("$18"); dollar_3.redraw();
elseif (stick.y()<seq10[22]) then red10_40_22.set_color(0,0,0);
end;
if (stick.y()>seq10[23])
then red10_40_23.set_color(255,0,0);
dollar_2.set_caption("$23"); dollar_2.redraw();
dollar_3.set_caption("$17"); dollar_3.redraw();
elseif (stick.y()<seq10[23]) then red10_40_23.set_color(0,0,0);
end;
if (stick.y()>seq10[24])
then red10_40_24.set_color(255,0,0);
dollar_2.set_caption("$24"); dollar_2.redraw();
dollar_3.set_caption("$16"); dollar_3.redraw();
elseif (stick.y()<seq10[24]) then red10_40_24.set_color(0,0,0);
end;
if (stick.y()>seq10[25])
then red10_40_25.set_color(255,0,0);
dollar_2.set_caption("$25"); dollar_2.redraw();
dollar_3.set_caption("$15"); dollar_3.redraw();
elseif (stick.y()<seq10[25]) then red10_40_25.set_color(0,0,0);
end;
if (stick.y()>seq10[26])
then red10_40_26.set_color(255,0,0);
dollar_2.set_caption("$26"); dollar_2.redraw();
dollar_3.set_caption("$14"); dollar_3.redraw();
elseif (stick.y()<seq10[26]) then red10_40_26.set_color(0,0,0);
end;
if (stick.y()>seq10[27])
then red10_40_27.set_color(255,0,0);
dollar_2.set_caption("$27"); dollar_2.redraw();
dollar_3.set_caption("$13"); dollar_3.redraw();
elseif (stick.y()<seq10[27]) then red10_40_27.set_color(0,0,0);
end;
if (stick.y()>seq10[28])
then red10_40_28.set_color(255,0,0);
dollar_2.set_caption("$28"); dollar_2.redraw();
dollar_3.set_caption("$12"); dollar_3.redraw();
elseif (stick.y()<seq10[28]) then red10_40_28.set_color(0,0,0);
end;
if (stick.y()>seq10[29])
then red10_40_29.set_color(255,0,0);
dollar_2.set_caption("$29"); dollar_2.redraw();
dollar_3.set_caption("$11"); dollar_3.redraw();
elseif (stick.y()<seq10[29]) then red10_40_29.set_color(0,0,0);
end;
if (stick.y()>seq10[30])
then red10_40_30.set_color(255,0,0);
dollar_2.set_caption("$30"); dollar_2.redraw();
dollar_3.set_caption("$10"); dollar_3.redraw();
elseif (stick.y()<seq10[30]) then red10_40_30.set_color(0,0,0);
end;
if (stick.y()>seq10[31])
then red10_40_31.set_color(255,0,0);
dollar_2.set_caption("$31"); dollar_2.redraw();
dollar_3.set_caption("$9"); dollar_3.redraw();
elseif (stick.y()<seq10[31]) then red10_40_31.set_color(0,0,0);
end;
if (stick.y()>seq10[32])
then red10_40_32.set_color(255,0,0);
dollar_2.set_caption("$32"); dollar_2.redraw();
dollar_3.set_caption("$8"); dollar_3.redraw();
elseif (stick.y()<seq10[32]) then red10_40_32.set_color(0,0,0);
end;
if (stick.y()>seq10[33])
then red10_40_33.set_color(255,0,0);
dollar_2.set_caption("$33"); dollar_2.redraw();
dollar_3.set_caption("$7"); dollar_3.redraw();
elseif (stick.y()<seq10[33]) then red10_40_33.set_color(0,0,0);
end;
if (stick.y()>seq10[34])
then red10_40_34.set_color(255,0,0);
dollar_2.set_caption("$34"); dollar_2.redraw();
dollar_3.set_caption("$6"); dollar_3.redraw();
elseif (stick.y()<seq10[34]) then red10_40_34.set_color(0,0,0);
end;
if (stick.y()>seq10[35])
then red10_40_35.set_color(255,0,0);
dollar_2.set_caption("$35"); dollar_2.redraw();
dollar_3.set_caption("$5"); dollar_3.redraw();
elseif (stick.y()<seq10[35]) then red10_40_35.set_color(0,0,0);
end;
if (stick.y()>seq10[36])
then red10_40_36.set_color(255,0,0);
dollar_2.set_caption("$36"); dollar_2.redraw();
dollar_3.set_caption("$4"); dollar_3.redraw();
elseif (stick.y()<seq10[36]) then red10_40_36.set_color(0,0,0);
end;
if (stick.y()>seq10[37])
then red10_40_37.set_color(255,0,0);
dollar_2.set_caption("$37"); dollar_2.redraw();
dollar_3.set_caption("$3"); dollar_3.redraw();
elseif (stick.y()<seq10[37]) then red10_40_37.set_color(0,0,0);
end;
if (stick.y()>seq10[38])
then red10_40_38.set_color(255,0,0);
dollar_2.set_caption("$38"); dollar_2.redraw();
dollar_3.set_caption("$2"); dollar_3.redraw();
elseif (stick.y()<seq10[38]) then red10_40_38.set_color(0,0,0);
end;
if (stick.y()>seq10[39])
then red10_40_39.set_color(255,0,0);
dollar_2.set_caption("$39"); dollar_2.redraw();
dollar_3.set_caption("$1"); dollar_3.redraw();
elseif (stick.y()<seq10[39]) then red10_40_39.set_color(0,0,0);
end;
if (stick.y()>seq10[40])
then red10_40_40.set_color(255,0,0);
dollar_2.set_caption("$40"); dollar_2.redraw();
dollar_3.set_caption("$0"); dollar_3.redraw();
elseif (stick.y()<seq10[40]) then red10_40_40.set_color(0,0,0);
end;
dollar_40.set_caption("$40"); dollar_40.redraw();
cursor40.present();
end;
end;
sub dm2person (int duration)
begin
loop int end_time = clock.time() + duration
until clock.time() >= end_time
begin
double b = random();
if (b> 0.0) && (b<=0.149) then selling.set_caption("$0");selling.redraw(); Sentperson.present(); box10(8000); end;
if (b>0.149) && (b<=0.190) then selling.set_caption("$1");selling.redraw(); Sentperson.present(); box13(8000); end;
if (b>0.190) && (b<=0.352) then selling.set_caption("$2");selling.redraw(); Sentperson.present(); box16(8000); end;
if (b>0.352) && (b<=0.447) then selling.set_caption("$3");selling.redraw(); Sentperson.present(); box19(8000); end;
if (b>0.447) && (b<=0.555) then selling.set_caption("$4");selling.redraw(); Sentperson.present(); box22(8000); end;
if (b>0.555) && (b<=0.636) then selling.set_caption("$5");selling.redraw(); Sentperson.present(); box25(8000); end;
if (b>0.636) && (b<=0.690) then selling.set_caption("$6");selling.redraw(); Sentperson.present(); box28(8000); end;
if (b>0.690) && (b<=0.731) then selling.set_caption("$7");selling.redraw(); Sentperson.present(); box31(8000); end;
if (b>0.731) && (b<=0.799) then selling.set_caption("$8");selling.redraw(); Sentperson.present(); box34(8000); end;
if (b>0.799) && (b<=0.840) then selling.set_caption("$9");selling.redraw(); Sentperson.present(); box37(8000); end;
if (b>0.840) && (b<=0.999) then selling.set_caption("$10");selling.redraw(); Sentperson.present(); box40(8000); end;
end;
end;
sub dm2comp (int durations)
begin int b = random(0,10);
loop int end_time = clock.time() + durations
until clock.time() >= end_time
begin
if (b==0) then selling.set_caption("$0"); selling.redraw(); Sentcomp.present(); box10(8000); end;
if (b==1) then selling.set_caption("$1"); selling.redraw(); Sentcomp.present(); box13(8000); end;
if (b==2) then selling.set_caption("$2"); selling.redraw(); Sentcomp.present(); box16(8000); end;
if (b==3) then selling.set_caption("$3"); selling.redraw(); Sentcomp.present(); box19(8000); end;
if (b==4) then selling.set_caption("$4"); selling.redraw(); Sentcomp.present(); box22(8000); end;
if (b==5) then selling.set_caption("$5"); selling.redraw(); Sentcomp.present(); box25(8000); end;
if (b==6) then selling.set_caption("$6"); selling.redraw(); Sentcomp.present(); box28(8000); end;
if (b==7) then selling.set_caption("$7"); selling.redraw(); Sentcomp.present(); box31(8000); end;
if (b==8) then selling.set_caption("$8"); selling.redraw(); Sentcomp.present(); box34(8000); end;
if (b==9) then selling.set_caption("$9"); selling.redraw(); Sentcomp.present(); box37(8000); end;
if (b==10) then selling.set_caption("$10"); selling.redraw(); Sentcomp.present(); box40(8000); end;
end;
end;
# Sequence for delivery of stimuli
array <int> sequence[12] = {4,3,4,4,2,2,1,3,3,1,1,2};
loop int i=1
until i>12
begin
if sequence[i]==1
then p1vsperson.present(); box10(8000); waiting.present(); decision.present();
fixing.present()
elseif sequence[i]==2
then p1vscomputer.present(); box10(8000); waiting.present(); decision.present();
fixing.present()
elseif sequence[i]==3
then p2vsperson.present(); waiting.present(); dm2person(11000); fixing.present()
elseif sequence[i]==4
then p2vscomputer.present(); waiting.present(); dm2comp(11000); fixing.present()
end;
i=i+1
end;
|
70c7ed5821268fd50d7e39701c3896c56c4d5b9d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1952/CH12/EX12.10/Ex10.sce
|
81f90f63ccfd545f21fb2a7ff34c52e42b677438
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 843
|
sce
|
Ex10.sce
|
// Additional solved examples , Example 10 , pg 335
n1=1.5//core refractive index
n2=1.45//cladding refractive index
n0=1//refractive index of air
NA=sqrt(n1^2-n2^2)//numerical aperture
alpha_m =asin(NA/n0)//angle of acceptance (in radian)
a=100*10^-6/2 //radius of core
phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)
L=a/tan(phi_m) //(in m)
printf("Minimum number of reflections per metre=zero\n") //since rays travelling with alpha=0 suffer no internal reflection
//for rays travelling with alpha=alpha_m ,1 internal reflection takes place for a transversed distance of 2*L
N=1/(2*L) //Maximum number of reflections per metre
disp("Maximum number of reflections per metre(in m^-1)=")
printf("N=%.0f",N)
//Answer varies as L is restricted to 1.86*10^-4 (m) instead of 1.888*10^-4 (m)
|
a1cb2b581325035c7dc4c794df674898ea7cd618
|
4545588c8427debaf17f9dc71b0ace32f4fb5d67
|
/avr32/services/dsp/dsplib/utils/scripts/twiddle_factors_generator/tf_gen.sce
|
1835c5651912dfcadf206f9971d6080c39fe09d5
|
[] |
no_license
|
eewiki/asf
|
02e06cec0465b28dd689dea801e6be6cbcd47eca
|
8d0f55bd089f2e68d2b53aa76adbb02c07cdb166
|
refs/heads/master
| 2021-01-16T18:20:22.690176
| 2015-03-09T05:42:50
| 2015-03-09T05:42:50
| 18,419,213
| 34
| 30
| null | 2014-12-25T05:13:20
| 2014-04-03T21:42:46
|
C
|
UTF-8
|
Scilab
| false
| false
| 3,867
|
sce
|
tf_gen.sce
|
// Twiddle factor table generation for the AVR32 DSP Lib
// Copyright (C) 2006-2008, Atmel Corporation All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. The name of ATMEL may not be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY ATMEL ``AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY AND
// SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
// INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Parameter N_TWIDDLE_FACTORS
// Used for a N_TWIDDLE_FACTORS-Point FFT maximum
N_TWIDDLE_FACTORS = 4096;
// Parameter BITS
// The number of bits of the twiddle factors coefficients
BITS = 32;
PI = 3.14159265358979323846;
QA = 1;
QB = (BITS-QA);
resolution = int(abs(log10(1/(2^QB)))+2);
printf("/*\n");
printf(" * Twiddle factors for a %d-point FFT\n", N_TWIDDLE_FACTORS);
printf(" * Minimized twiddle factors table: %d*(%d/4 + 1)*2 = %d bytes\n", BITS/8, N_TWIDDLE_FACTORS, (N_TWIDDLE_FACTORS/4+1)*2*BITS/8);
printf(" * Full twiddle factors table: %d*(%d/4)*6 + %d*2 = %d bytes\n", BITS/8, N_TWIDDLE_FACTORS, BITS/8, (N_TWIDDLE_FACTORS/4)*6*BITS/8 + BITS/8*2);
printf(" */\n");
printf("#if DSP%d_N_TWIDDLE_FACTORS == %d\n\n", BITS, N_TWIDDLE_FACTORS);
printf(" A_ALIGNED TWIDDLE_FACTORS_PREFIX_TAB dsp%d_t dsp%d_twiddle_factors[DSP%d_N_TWIDDLE_FACTORS/2+2] = {\n", BITS, BITS, BITS);
printf(" /*Re(w) Im(w) */\n");
for i=0:4:N_TWIDDLE_FACTORS,
k = i/(N_TWIDDLE_FACTORS*4);
w = exp(-2*PI*%i*k);
str_format = sprintf(" DSP%d_Q_CONVERT(%%.%df), DSP%d_Q_CONVERT(%%.%df)", BITS, resolution, BITS, resolution);
printf(str_format, w, -w*%i);
if i < N_TWIDDLE_FACTORS then
printf(",\n");
else
printf("\n");
end
end;
printf(" };\n\n");
printf(" // If we need to speed up the code\n");
printf("# if !(DSP_OPTIMIZATION & DSP_OPTI_SIZE)\n");
printf(" A_ALIGNED TWIDDLE_FACTORS_PREFIX_TAB dsp%d_t dsp%d_twiddle_factors2[DSP%d_N_TWIDDLE_FACTORS] = {\n", BITS, BITS, BITS);
printf(" /*Re(w2) Im(w2) Re(w3) Im(w3) */\n");
for i=0:4:N_TWIDDLE_FACTORS-4,
k = i/(N_TWIDDLE_FACTORS*4);
w2 = exp(-2*PI*%i*k*2);
w3 = exp(-2*PI*%i*k*3);
str_format = sprintf(" DSP%d_Q_CONVERT(%%.%df), DSP%d_Q_CONVERT(%%.%df),", BITS, resolution, BITS, resolution);
printf(str_format, w2, -w2*%i);
printf("\n");
str_format = sprintf(" DSP%d_Q_CONVERT(%%.%df), DSP%d_Q_CONVERT(%%.%df)", BITS, resolution, BITS, resolution);
printf(str_format, w3, -w3*%i);
if i < N_TWIDDLE_FACTORS-4 then
printf(",\n");
else
printf("\n");
end
end;
printf(" };\n");
printf("# endif\n\n");
printf("#endif\n");
|
3fa5843d57de46b58c526e5a1d983eaa704b3b42
|
897ce6a3fd5b682122c396af7e24fa53014c7cb3
|
/src_script/scilab/_import/rtsx_10/common/display.sci
|
76a3af190b74af134a0fe03c45ef147fc7a9ca37
|
[] |
no_license
|
stub22/glue-ai-v1_friendularity
|
e66f5ab357eba45de2def6f7900f414e358a4125
|
74949dc3e9b0d08b39857735aad901915e61322d
|
refs/heads/master
| 2022-12-19T18:57:01.336831
| 2017-08-04T12:55:12
| 2017-08-04T12:55:12
| 284,544,364
| 0
| 0
| null | 2020-10-14T00:08:14
| 2020-08-02T21:24:34
|
Java
|
UTF-8
|
Scilab
| false
| false
| 612
|
sci
|
display.sci
|
// display.sci display data
// www.controlsystemslab.com Sep 2012
function display(a)
if isquaternion(a) then
s = q2str(a); // convert to string first
ns = size(s,1);
if ns==1 then
printf("\nQuaternion data\n");
printf(s);
else
printf("\n");
printf("======= A quaternion array of %d elements =======\n", ns)
for i = 1:ns
printf("%d -- %s\n",i,s(i));
end
end
else
printf("So far only quaternion display is implemented");
end
endfunction
|
003702f24a6c04f49df8cd1f522d38e03d65dfc3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/569/CH6/EX6.14/6_14.sci
|
e03fff9b7506d640c462a8d150d9172b5bc8cb8c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 368
|
sci
|
6_14.sci
|
// calculating minimum, maximum time constants and value of frequencies
clc;
MXtc= 10^10*1000*10^-12;
disp(MXtc,'Maximum time constant (s)');
MNtc= 10^8*10*10^-12;
disp(MNtc,'Minimum time constant (s)');
AR=0.95;
fmin=(AR)/[2*%pi*MXtc*(1-AR^2)^0.5];
disp(fmin,'minimum frequency (Hz)')
fmax=(AR)/[2*%pi*MNtc*(1-AR^2)^0.5];
disp(fmax,'Maximum frequency (Hz)')
|
0cdb1ce617399f309e1c898de554895dcbd2b590
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1529/CH5/EX5.5/5_05.sce
|
9d7cdda8c31ae526ef1d895ecb2381973c4e25d7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 562
|
sce
|
5_05.sce
|
//Chapter 5, Problem 5, Figure 5.8
clc;
V=24;
I=3;
R1=2;
T=50;
R=V/I; //Calculating total resistance
R2=R-R1; //Calculating the value of unknown resistance
printf("Value of unknown resistance = %f ohm\n\n\n",R2);
V1=I*R1; //Calculating the voltage across 2 ohm resistor
printf("Potential difference across 2 ohm resistor = %f V\n\n\n",V1);
E=(V*I)*T;
printf("Energy used = %f Wh",E);
|
286b0bc160e3a33cc5847046bb354d12b0547b9e
|
5ed8234edfa9f877fe2bc6ed926e81ec4d99a182
|
/Module/Simulation/Trajectory/GSE-001_functions.sce
|
e3008eb87a72c4b235974c5799743f5a0e31b7a6
|
[] |
no_license
|
NCKU-AA-IISlab/DOCKing_System
|
23cb95adc773aeb2b7480f81817a6339bddec881
|
832d1ef0b1824e76010fe50cf253bcfa93f71c49
|
refs/heads/master
| 2021-05-29T19:17:27.929049
| 2015-09-30T11:57:31
| 2015-09-30T11:57:31
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,349
|
sce
|
GSE-001_functions.sce
|
//==========================================================
// GSE-001_functions.sce, v1.3 (BIRDY_TS: Trajectory solver)
//==========================================================
// date : 24-Jan-2015
// Ref: GSE-001
// CL=1
// by Boris SEGRET from v1.2
// + Audrey PORQUET before v1.2
//
// Contains the functions for GSE-001, including the call to the Numerical integrations:
// (call to FreeMotion_Engine.sce)
// DVLambert(..)
// arrivals_Mars(..)
// EOD2ICRS(..)
// ICRS2BCFSun(..)
// ICRS2BCFMars(..)
// ICRS2ECFTerre(..)
//
// Function declarations for the Numerical integration engine
//
exec('FreeMotion_Engine.sce');
//===============================================================================================
function [datesdepJD, DeltaVLambert, minr_MC, minr_TC] = ...
DVLambert(dZcjd, vdep_eme, posCubeSat_eme, vitCubeSat, deltaV)
//_bs_ dimensions de datesdepJD ? on dirait que c'est une matrice (1xc) (!!!)
[l,c]=size(vdep_eme);
// new approach: vdep_eme is a single vector (c=1, but we keep the loop)
for i=1:c
[X_eclip, V_eclip, datebis, r_SC, r_TC, r_MC, r_ST, r_SM] = ...
integrale(dZcjd, position_Z_eme, vdep_eme(:,i));
datesJD = CL_dat_convert("cjd", "jd", datebis');
datesdepJD(:,i) = datesJD(1,1);
minr_MC(:,i) = min(r_MC);
minr_TC(:,i) = min(r_TC);
DeltaVLambert(:,i) = vdep(:,i) - (vitCubeSat+deltaV);
DeltaVLambert_norm(:,i) = CL_norm(DeltaVLambert(:,i));
end
endfunction
//===============================================================================================
function [vdep] = ...
arrivals_Mars(datecjdTTd, posCubeSat, datecjdTTa)
//_bs_ To be documented
// I: datecjdTTd: date of DeltaV to be applied (decimal date)
// posCubeSat: position of Birdy at that time (3x1)
// datecjdTTa: array of the arrival dates in decimal days (1xN)
// O: vdep: 3xN vectors of the required DeltaV for each arrival date in Ecliptic J2000
dt = (datecjdTTa - datecjdTTd)*86400; // array of the transit durations in seconds
[pos_mars_eod, vel_mars_eod] = CL_eph_planet("Mars", datecjdTTa, model="full");
[pos_mars_eme, vel_mars_eme] = CL_fr_convert("EOD","EME2000", datecjdTTa, pos_mars_eod, vel_mars_eod);
pos_mars_eclip = Meme2eclip*pos_mars_eme;
vel_mars_eclip = Meme2eclip*vel_mars_eme;
[vdep, varr] = CL_man_lambert(posCubeSat, pos_mars_eclip, dt, mu=muSun);
endfunction
//===============================================================================================
//_bs_ (comments pendant debug 8/01/2015)
// EOD2ICRS
// ICRS2BCFSun
// ICRS2BCFMars
// ICRS2ECFTerre
//_bs_
//frame change from EOD to ICRS
function [ricrs,vicrs,jeod2icrs,Meod2icrs]=EOD2ICRS(reod,veod,tcjdtt,ttref)
[ricrs,vicrs,jeod2icrs]=CL_fr_convert("EOD","ICRS",tcjdtt,reod,veod,tt_tref=ttref);
Meod2icrs=jeod2icrs(1:3,1:3);
endfunction
//frame change from ICRS to equatorial Sun (BCF Sun)
function [rbcfSun,vbcfSun,jicrs2bcfSun,Micrs2bcfSun]=ICRS2BCFSun(ricrs,vicrs,tcjdtt,ttref)
[rbcfSun,vbcfSun,jicrs2bcfSun]=CL_fr_bodyConvert("Sun","ICRS","BCF",tcjdtt,ricrs,vicrs,tt_tref=ttref);
Micrs2bcfSun=jicrs2bcfSun(1:3,1:3);
endfunction
//frame change from ICRS to equatorial Mars (BCF Mars)
function [rbcfMars,vbcfMars,jicrs2bcfMars,Micrs2bcfMars]=ICRS2BCFMars(ricrs,vicrs,posMarsicrs,velMarsicrs,tcjdtt,ttref)
ricrs_mars=ricrs-posMarsicrs;//position of the cubesat according to Mars ( MC MarsCubesat = SC-SM SunCubesat-SunMars )
vicrs_mars=vicrs-velMarsicrs;//velocity of the CubeSat according to Mars
[rbcfMars,vbcfMars,jicrs2bcfMars]=CL_fr_bodyConvert("Mars","ICRS","BCF",tcjdtt,ricrs_mars,vicrs_mars,tt_tref=ttref);
Micrs2bcfMars=jicrs2bcfMars(1:3,1:3);
endfunction
//frame change from ICRS to equatorial Earth (BCF Earth)
function [recfTerre,vecfTerre,jicrs2ecfTerre,Micrs2ecfTerre]=ICRS2ECFTerre(ricrs,vicrs,posTerreicrs,velTerreicrs,tcjdtt,ttref)
ricrs_Terre=ricrs-posTerreicrs;//position of the cubesat according to the Earth ( EC EarthCubesat = SC-SE SunCubesat-SunEarth )
vicrs_Terre=vicrs-velTerreicrs;//velocity of the CubeSat according to the Earth
[recfTerre,vecfTerre,jicrs2ecfTerre]=CL_fr_convert("ICRS","ECF",tcjdtt,ricrs_Terre,vicrs_Terre,tt_tref=ttref);
Micrs2ecfTerre=jicrs2ecfTerre(1:3,1:3);
endfunction
//===============================================================================================
|
6ab7d697fa8e30798422a1d8b1b440cbbb531c21
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/503/CH5/EX5.2/ch5_2.sci
|
45b0164d30f0f5042dcfbde7fde52d8c4ea39c12
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 541
|
sci
|
ch5_2.sci
|
// to find the frequency and phase and line voltages
clc;
n=375; //speed in rpm
p=16; //no of poles
f=n*p/120;
disp(f,'freq(Hz)');
S=144; //no of slots
c=10; //no of conductors/slot
t=S*c/2; //no of turns
ph=3;
N_ph=t/ph; //no of turns/ph
g=180*p/S; //slots angle
m=S/(p*ph); //slots/pole/phase
K_b=sind(m*g/2)/(m*sind(g/2)); //breadth factor
phi=0.04; //flux per pole
E_p=4.44*K_b*f*N_ph*phi;
disp(E_p,'phase voltage(V)');
E_l=sqrt(3)*E_p;
disp(E_l,'line voltage(V)');
|
c335f09995e65f40246efe393d5c70acc92a5491
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2384/CH9/EX9.7/ex9_7.sce
|
116f5f5ded4408d8241d68e3e76409f1b0529578
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 379
|
sce
|
ex9_7.sce
|
// Exa 9.7
clc;
clear;
close;
format('v',6)
// Given data
Rating = 150000;// in VA
phi= acosd(0.8);// in °
Pcu = 1600;// in W
Pi = 1400;// in W
n = 1/4;
// Total loss of 25% load
totalloss = Pi + (n^2)*Pcu;// in W
// efficiency of transformer of 25% load
Eta = n*Rating*cosd(phi)/(n*Rating*cosd(phi)+Pi+n^2*Pcu)*100;// in %
disp(Eta,"The efficiency in % is");
|
e5cc1e9a2ac5a9cdb5e087d3ec83d22e4bb8658a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/530/CH3/EX3.6/example_3_6.sce
|
1c235469ebbec7f0b961aae02a96cdcdd11c4737
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 946
|
sce
|
example_3_6.sce
|
clear;
clc;
// A Textbook on HEAT TRANSFER by S P SUKHATME
// Chapter 3
// Thermal Radiation
// Example 3.6
// Page 132
printf("Example 3.6, Page 132 \n\n")
// This is a theoretical problem with no numerical data
printf("This is a theoretical problem with no numerical data \n");
// Considering an elementary ring dA2 of width dr at an arbitary radius r, we have
// r = h*tanB1
// dA2 = 2*%pi*r*dr
// dA2 = 2*%pi*(h^2)*tan(B1)*sec^2(B1)*dB1
// B2 = B1, since surfaces ate parallel, and
// L = h/cos(B1)
// Substituting in eqn 3.6.7
// F12 = sin^2(a)
printf("Considering an elementary ring dA2 of width dr at an arbitary radius r, we have \n");
printf("r = h*tanB1 \n");
printf("dA2 = 2*pi*r*dr \n");
printf("dA2 = 2*pi*(h^2)*tan(B1)*sec^2(B1)*dB1 \n");
printf("B2 = B1, since surfaces ate parallel, and \n");
printf("L = h/cos(B1) \n");
printf("Substituting in eqn 3.6.7 \n");
printf("F12 = sin^2(a) \n");
|
e71c2a2355e22b9f6c2beee783a7531b8bf24df2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1133/CH2/EX2.5/Example2_5.sce
|
298f84ca9bac4ff9ffe76ca6943545256bd6086f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 638
|
sce
|
Example2_5.sce
|
//Example 2.5
clc
disp("It is necessary to analyze each network to determine the critical frequency of the amplifier")
disp("(a) Input RC Network")
disp(" fc = 1 / 2*pi*R_in*C1")
format(6)
rin=(100*100)/(100+100)
disp(rin,"where R_in(in M-ohm) = RG || R_in(gate) = RG || |VGS/IGSS| =")
format(5)
fc1=1/(2*%pi*50*10^6*0.001*10^-6)
disp(fc1,"Therefore, fc(in Hz) =")
disp("(b) Output RC Network")
format(6)
fc2=1/(2*%pi*(24.2*10^3)*(1*10^-6))
disp(fc2," fc(in Hz) = 1 / 2*pi*(RD+RL)*C2 =")
disp("We have calculated two critical frequencies")
disp("(a) fc(input) = 3.18 Hz")
disp("(b) fc(output) = 6.577 Hz")
|
48896dc1668134647418dac60631bc1b36d2bca3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3850/CH24/EX24.6/Ex24_6.sce
|
4d023bedd21b034271cf849a92f5f894cf706a70
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 269
|
sce
|
Ex24_6.sce
|
//To calculate the relative humidity
//Example 24.6
clear;
clc;
Pvap=12;//vapour pressure of air at 20 degree celsius
SVP=17.5;//saturation vapour pressure at 20 degree celsius
RH=Pvap/SVP;//relative humidity
printf("Relative Humidity=%.2f",RH);
|
f51c0f6045e6fa89d080fa2e9027f8020f00648f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/69/CH2/EX2.1/2_1.sce
|
00acc8a482da006d7d3852931b54071918f757bc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 310
|
sce
|
2_1.sce
|
clear; clc; close;
E = 10; //volts
R = 500; //ohms
Id = E/R;
Vd = E;
Vdq = 0.78; //volts
Idq = 18.5*10^(-3);//Amperes
Vr = Idq*R;
diary('C:\Users\DELL\Desktop\intern\chapter_2\2_1.txt');
disp(Vdq,'Voltage at Q-point is :');
disp(Idq,'Current at Q-point is :');
disp(Vr,'Vr = ');
|
c5218fba1b86858ec059fa1087f5fba07d32c14f
|
c3a0e2a7a3a32ad4374793a62e548d1d3bedf245
|
/saReGAMaPa_Tunes.sce
|
b13c358a45521185558a08dd353b2679e0bf2174
|
[] |
no_license
|
prachi416/Scilab
|
824ab1ae62b44b84f151b15b2d4994c4b1928a53
|
e2bc92cd723d1fe1e7f69fed3e1e4dfa58daaeee
|
refs/heads/master
| 2023-01-01T23:08:54.420417
| 2020-10-26T15:17:30
| 2020-10-26T15:17:30
| 294,625,279
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 166
|
sce
|
saReGAMaPa_Tunes.sce
|
clc
clear all
freq=[240,254,302,320,358.5,380,451,470]
fs=8000
no=8
n=1:4000
temp=[]
for i =1:no
y=sin(2*%pi*(freq(i)/fs)*n)
temp=[temp y]
end
sound(temp,fs)
|
f80da3ce42c9e0ff7d7f5ba96442a78ccfb0d29f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2090/CH9/EX9.9/Chapter9_example9.sce
|
6cf1cd47b386640914cf2f428007a025f6199d9b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,263
|
sce
|
Chapter9_example9.sce
|
clc
clear
//Input data
bp=8;//The brake power of the petrol engine in kW
nb=30;//The brake thermal efficiency in percent
CV=44000;//The calorific value of the fuel in kJ/kg
p1=1.013;//The suction condition of engine pressure in bar
T1=300;//The temperature at suction condition in K
Aj=2.5*10^-6;//The area of jet in m^2
Z=0.008;//The nozzle lip in m
g=9.81;//The gravitational force constant in m/s^2
A=15;//The air fuel ratio
Cda=0.9;//The coefficient of air flow
Cdf=0.7;//The coefficient of fuel flow
df=750;//The density of fuel in kg/m^3
pi=3.141;//The mathematical constant of pi
va=0.8;//The specific volume of air in m^3/kg
//Calculations
va1=va*T1/273;//Specific volume of air at atmospheric pressure and 300K in m^3/kg
da=1/va;//The density of air at inlet condition in kg/m^3
mf=bp/[(nb/100)*CV];//Mass flow rate of fuel in kg/s
Cf=mf/(Cdf*df*Aj);//Velocity of fuel in m/s
P=[(Cf^2*df)/2]+(df*g*Z);//The pressure drop in N/m^2
Ca=(2*P/da)^(1/2);//Velocity of air at the throat in m/s
ma=mf*A;//The mass flow rate of air in kg/s
A2=[ma/(Cda*da*Ca)]*10^4;//The area of the venturi in cm^2
d2=(A2*4/pi)^(1/2);//The diameter of venturi in cm
//Output
printf('The venturi throat diameter of the carburator = %3.2f cm ',d2)
|
bdb8a60047779b6b48378c1c49c5823bc60a1fb9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/545/CH3/EX3.9/ch_3_eg_9.sce
|
f60188e75d351a6d6ef9f2b5c596cbde4f44ea67
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,111
|
sce
|
ch_3_eg_9.sce
|
clc
disp("the soln of eg 3.9-->Chemical Reaction Equilibrium-2 Simultaneous Reactions")
//let x1 and x2 be the reaction co-ordinate for 1st and 2nd reactions
x1new=.9, x2new=.6,r1=1,r2=1 //assumed values
Kp=1 //since P=1 atm
K1=.574, K2=2.21 //given
Kye1=K1, Kye2=K2 //at eqm.
while r1>1e-6 & r2>1e-6, x1=x1new,x2=x2new,
m_CH4=1-x1,m_H2O=5-x1-x2,m_CO=x1-x2,m_H2=3*x1+x2,m_CO2=x2 //moles of reactants and products at eqm.
total=m_CO2+m_H2+m_CO+m_H2O+m_CH4
Ky1=m_CO*m_H2^3/(m_CH4*m_H2O*total^2)
Ky2=m_CO2*m_H2/(m_CO*m_H2O)
f1=Ky1-.574 //1st function in x1 and x2
f2=Ky2-2.21 //2nd function in x1 and x2
d3=((3*x1+x2)^2*(12*x1-8*x2))/((1-x1)*(5-x1-x2)*(6+2*x1)^2)
d4=(3*x1+x2)^3*(x1-x2)*(8*x1^2+6*x1*x2-24*x1+2*x2-16)
d5=((1-x1)^2)*((5-x1-x2)^2)*((6+2*x1)^3)
df1_dx1=d3-(d4/d5) //df1/dx1- partial derivative of f1 wrt to x1
d6=3*(x1-x2)*((3*x1+x2)^2)-(3*x1+x2)^3
d7=(1-x1)*(5-x1-x2)*((6+x1*2)^2)
d8=((x1-x2)*(3*x1+x2)^3)/((1-x1)*((5-x1-x2)^2)*(6+2*x1)^2)
df1_dx2=(d6/d7)+d8 //df1/dx2- partial derivative of f1 wrt to x2
d9=(x1-x2)*(5-x1-x2)
df2_dx1=3*x2/d9-(x2*(3*x1+x2)*(5-2*x1))/(d9^2) //df1/dx2- partial derivative of f1 wrt to x2
d10=(3*x1+2*x2)/d9
d11=x2*(3*x1+x2)*(2*x2-5)/(d9^2)
df2_dx2=d10-d11 //df1/dx2- partial derivative of f1 wrt to x2
dm=df1_dx1*df2_dx2-df1_dx2*df2_dx1
delta_x1=(f2*df1_dx2-f1*df2_dx2)/dm
delta_x2=(f1*df2_dx1-f2*df1_dx1)/dm
x1new=x1+delta_x1 //updating the values of x1 & x2
x2new=x2+delta_x2
r1=abs(x1-x1new), r2=abs(x2new-x2)
end
disp(x2,x1,"the value of X1 and X2 respectively is");
m_CH4=1-x1,m_H2O=5-x1-x2,m_CO=x1-x2,m_H2=3*x1+x2,m_CO2=x2 //moles of reactants and products at eqm.
total=m_CO2+m_H2+m_CO+m_H2O+m_CH4
disp(m_CO2,m_H2,m_CO,m_H2O,m_CH4,"the moles at eqm of CH4,H2O,CO,H2,CO2 are")
disp(total,"total number of moles at eqm. is")
|
578d04da05186b2eec4a109b1626942084f0d1fc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2873/CH4/EX4.12/Ex4_12.sce
|
a6abe5acf59c83f6594dc0e1d36a6697e799a9d8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,406
|
sce
|
Ex4_12.sce
|
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Engineering Thermodynamics by Onkar Singh Chapter 4 Example 12")
W=840;//work done by reservoir in KJ
disp("let us assume that heat engine rejects Q2 and Q3 heat to reservior at 300 K and 200 K respectively.let us assume that there are two heat engines operating between 400 K and 300 K temperature reservoirs and between 400 K and 200 K temperature reservoirs.let each heat engine receive Q1_a and Q1_b from reservoir at 400 K as shown below")
disp("thus,Q1_a+Q1_b=Q1=5*10^3 KJ...............eq1")
disp("Also,Q1_a/Q2=400/300,or Q1_a=4*Q2/3...............eq2")
disp("Q1_b/Q3=400/200 or Q1_b=2*Q3...............eq3")
disp("substituting Q1_a and Q1_b in eq 1")
disp("4*Q2/3+2*Q3=5000...............eq4")
disp("also from total work output,Q1_a+Q1_b-Q2-Q3=W")
disp("5000-Q2-Q3=840")
disp("so Q2+Q3=5000-840=4160")
disp("Q3=4160-Q2")
disp("sunstituting Q3 in eq 4")
disp("4*Q2/3+2*(4160-Q2)=5000")
disp("so Q2=(5000-2*4160)/((4/3)-2) in KJ")
Q2=(5000-2*4160)/((4/3)-2)
disp("and Q3=4160-Q2 in KJ")
Q3=4160-Q2
disp("here negative sign with Q3 shows that the assumed direction of heat is not correct and actually Q3 heat will flow from reservoir to engine.actual sign of heat transfers and magnitudes are as under:")
disp("Q2=4980 KJ,from heat engine")
disp("Q3=820 KJ,to heat engine")
|
f51fee93b4a458a699f155a1b24b0dec3d52dd3f
|
6b7b3be3c11fc662ae3f0b3e8880218ce3888a07
|
/math/SciLab/%ZQuat_r_s.sci
|
2cd9fb06d632892bcb948e69437ef47da74d25d9
|
[] |
no_license
|
johnzet/Flight
|
27cfa7dc8039f6c7b91385d9e204ad4a54248960
|
2893750df8aaa38311ffc125b1f7dcc9f5019eab
|
refs/heads/main
| 2023-02-25T19:51:03.725205
| 2021-01-31T01:12:09
| 2021-01-31T01:12:09
| 334,544,210
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 180
|
sci
|
%ZQuat_r_s.sci
|
function [q2] = %ZQuat_r_s(q1,a)
N1 = size(q1);
sa = size(a);
if (sa(1) > 1 | (N1 > 1 & sa(2) > 1))
error("Invalid arguments sizes");
end
q2 = q1 * (1 ./ a);
endfunction
|
45e52a4ecc2ab90476cc641eaa41f7e35913cb6c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3472/CH10/EX10.21/Example10_21.sce
|
61ad2aa03aa63bce7a8a2bcfc358a35bac89394b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,509
|
sce
|
Example10_21.sce
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES
// EXAMPLE : 3.21 :
// Page number 153
clear ; clc ; close ; // Clear the work space and console
// Given data
V_r = 132.0*10**3 // Line voltage at receiving end(V)
P_L = 45.0*10**6 // Load delivered(VA)
PF_r = 0.8 // Lagging power factor
A = 0.99*exp(%i*0.3*%pi/180) // Constant
B = 70.0*exp(%i*69.0*%pi/180) // Constant(ohms)
C = A // Constant
D = 4.0*10**-4*exp(%i*90.0*%pi/180) // Constant
// Calculations
E_r = V_r/3**0.5 // Receiving end phasemag voltage(V)
I_r = P_L/(3**0.5*V_r)*exp(%i*-acos(PF_r)) // Line current(A)
E_s = A*E_r+B*I_r // Sending end voltage(V)
E_s_llkV = 3**0.5*E_s/1000.0 // Sending end line voltage(kV)
I_s = C*I_r+D*E_r // Sending end current(A)
angle_Er_Es = phasemag(E_s) // Angle between E_r and E_s(°)
angle_Er_Is = phasemag(I_s) // Angle between E_r and I_s(°)
angle_Es_Is = angle_Er_Es-angle_Er_Is // Angle between E_s and I_s(°)
PF_s = cosd(angle_Es_Is) // Sending end power factor
P_s = 3*abs(E_s*I_s)*PF_s // Sending end power(W)
P_skW = P_s/1000.0 // Sending end power(kW)
P_r = P_L*PF_r // Receiving end power(W)
n = P_r/P_s*100 // Transmission efficiency(%)
// Results
disp("PART II - EXAMPLE : 3.21 : SOLUTION :-")
printf("\nCase(i) : Sending end voltage, E_s = %.1f∠%.f° kV (line-to-line)", abs(E_s_llkV),phasemag(E_s_llkV))
printf("\nCase(ii) : Sending end current, I_s = %.1f∠%.1f° A", abs(I_s),phasemag(I_s))
printf("\nCase(iii): Sending end power, P_s = %.f kW", P_skW)
printf("\nCase(iv) : Efficiency of transmission = %.2f percent \n", n)
printf("\nNOTE: Changes in obtained answer from that textbook is due to more precision")
|
e315c28d972744e8b7e39aaeb1ab3eb385c3a301
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1415/CH1/EX1.2.3/ex3.sce
|
81c171e8e19823c3f259d709e748a2879ce285b1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 773
|
sce
|
ex3.sce
|
//Example 3 Page no 60
clc
clear
//creating function
function q=f(p)
q=77.8*p^(-0.11)
endfunction
disp('a)')
//plotting demand function
disp('the demand curve is as in the graph')
p=([200 400 500 800 1200 1600 2000 2200])
y=f(p)
plot(2400,50,p,y,'blue')//plotting graph
disp('b)')
//the demand at tuition costs of $1000 and $1500
disp('the demand at tuition costs of $1000 and $1500')
q=f(1000)//funcition calling
mprintf("\t%f thousand students\n",q)
q=f(1500)//funcition calling
mprintf("\t%f thousand students\n",q)
//the change in demand is therefore given as
disp('the change in demand is therefore given as')
change=(f(1500)-f(1000))//funcition calling
mprintf("\t%f thousand students\n",change)
xtitle('Technology formula','p','q');
|
457c061eb8fee9665763bd80c260f2aa7b01e6f3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2252/CH17/EX17.7/Ex17_7.sce
|
eaac3e66eef29999410e250b72e609139180e4d4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 468
|
sce
|
Ex17_7.sce
|
//calculating terminal voltage
P=10D+3//load supplied
Vl=220//voltage at load terminals
Il=P/Vl
R=.1//resistance of feeders
Vd=Il*R//voltage drop on feeders
V=Vd+Vl
mprintf("Terminal voltage across the armature terminals=%f V\n",V)
//Calculating shunt field current
Rsh=100//shunt resistance
Ish=V/Rsh
mprintf("Shunt field current=%f A\n",Ish)
//Calculating generated emf
Ra=.05//resistance of armature
Eg=V+Il*Ra
mprintf("Generated emf Eg=%f V",Eg)
|
aa46ae1ceba62385609a77287e99486645b907e5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1268/CH8/EX8.2/8_2.sce
|
607dcee41f27d977a05722834e415c6732e3ba39
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 367
|
sce
|
8_2.sce
|
clc;
disp("Example 8.2")
U=1.5 // in m/s
d=0.025 // in m
density= 1000 // in kg/m^3
mew=0.001 // in kg/ms
Re=d*density*U/mew
f=0.079/(Re^0.25)
l=25 // length of the pipe in m
delP=2*f*density*U*U*l/d
h1=delP/(density*9.81)
disp(h1,"Head loss is ")
h2=15
h=h1+h2
flow=%pi*d*d*U*density/4
power=flow*h*9.81
disp(power,"Theoretical Power required is ")
|
08e4b5873aef4a056da9a919c5f2653056d80ad8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/243/CH12/EX12.8/12_08.sce
|
cc5daf5a79553eb8de27fe0324bb7e30aa0c51ba
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 214
|
sce
|
12_08.sce
|
//Example No. 12_08
//Two Point Gauss -Legedre formula
//Pg No. 397
clear ;close ;clc ;
deff('F = f(x)','F = exp(x)');
x1 = -1/sqrt(3)
x2 = 1/sqrt(3)
I = f(x1) + f(x2)
disp(I,'I = ',x2,'x2 = ',x1,'x1 = ')
|
d6fce36b3c8507548daac237f1cfcab6b12217a3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3753/CH3/EX3.1/Ex3_1.sce
|
d9c0b21a9b4ea2e71f0b8cc0d2182af37b9981d7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 465
|
sce
|
Ex3_1.sce
|
//Example number 3.1, Page number 3.32
// importing modules
clc;clear;close
// Variable declaration
V=2265 // m^3
A=92.9 // Coefficient
x=2 // The absorption become 2*A of open window
// Calculation
T=(0.16*V)/A // Sabine's formula
T2=(0.16*V)/(x*A) // in s
// Result
printf("Reverbration time = %0.1f s",T)
printf("\nFinal Reverbration time = %0.2f s",T2)
printf("\nThus the reverbration time is reduced to one-half of its initial value")
|
8870163d36028da84ebd3eefc627af8b781c20ba
|
c13eed281cf8afcd0d9c179cf3e5aa1d18f3209d
|
/nequest theorem.sce
|
41f45c903c223cf7fb8733a01f98aecdbfc12559
|
[] |
no_license
|
diagovi/nequeat-theorem
|
38b6f3bec5e6585296839c4d4cff0f5e877c4599
|
3c57359fe09bd525b1d249272d150e4455308341
|
refs/heads/main
| 2023-01-06T03:48:00.742402
| 2020-10-31T06:24:46
| 2020-10-31T06:24:46
| 307,386,556
| 0
| 1
| null | 2020-10-31T06:24:47
| 2020-10-26T13:45:31
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 3,125
|
sce
|
nequest theorem.sce
|
// To verify the sampling theorm
//clear variables if any
clear
//close any graph window
close
//clear console
clc
// to get the freq. and amplitude of signals
n1 = input('Enter the number of signals = ');
//amplitude
for j = 1:n1
a(j) = input("Enter amplitude of the "+string(j)+" signal = ");
end;
//frequency
for j = 1:n1
f(j) = input("Enter frequency of the "+string(j)+" signal = ");
end;
t = 0:0.001:1; // time index
// calculating x(t) = a1coswt + a2coswt +........
// w = 2XpiXf
xt = 0;
for j = 1:n1
xt = xt + a(j)*cos(2*%pi*f(j)*t);
end;
//control many aspects of displaying Scilab graphics
figure
//selecting 1 in 4 row 1 column
subplot(411)
// plotting the x(t)
plot(t,xt)
//lables for plot
xlabel("time in sec");
ylabel("Amplitude");
title("Signal that has to be sampled");
//setting the axis to origin
aa1 = gca(); // get the current axes
aa1.x_location = 'origin'; //set x axis to origin--0
aa1.y_location = "origin"; //set y axis to origin--0
//Nyquist theorem applicable
//sampling frequency: > maxF or 2(maxF)
fs = input('Enter sampling frequency greater than twice the maximum frequency of inputs = ');
//time period
T = 1/fs;
//no of divisions
n = 0:fs;
nT = n*T;
//finding and plotting the x(n)
xn = 0;
for j = 1:n1
xn = xn + a(j)*cos(2*%pi*f(j)*nT);
end;
subplot(412)
plot2d3(n,xn)
//lables for plot
xlabel("sampling number");
ylabel("Amplitude");
title("sampled signal in discrete form");
//setting the axis to origin
aa2 = gca(); // get the current axes
aa2.x_location = 'origin'; //set x axis to origin--0
aa2.y_location = "origin"; //set y axis to origin--0
//Nyquist theorem applicable
//sampling frequency: = 2(maxF)
fs = input('Enter sampling frequency equal to twice the maximum frequency of inputs = ');
//time period
T = 1/fs;
//no of divisions
n = 0:fs;
nT = n*T;
//finding and plotting the x(n)
xn = 0;
for j = 1:n1
xn = xn + a(j)*cos(2*%pi*f(j)*nT);
end;
subplot(413)
plot2d3(n,xn)
//lables for plot
xlabel("sampling number");
ylabel("Amplitude");
title("sampled signal in discrete form");
//setting the axis to origin
aa3 = gca(); // get the current axes
aa3.x_location = 'origin'; //set x axis to origin--0
aa3.y_location = "origin"; //set y axis to origin--0
////Nyquist theorem not applicable
//sampling frequency: < 2(maxF)
fs = input('Enter sampling frequency less than twice the maximum frequency of inputs = ');
//time period
T = 1/fs;
//no of divisions
n = 0:fs;
nT = n*T;
//finding and plotting the x(n)
xn = 0;
for j = 1:n1
xn = xn + a(j)*cos(2*%pi*f(j)*nT);
end;
subplot(414)
plot2d3(n,xn)
//lables for plot
xlabel("sampling number");
ylabel("Amplitude");
title("sampled signal in discrete form");
//setting the axis to origin
aa4 = gca(); // get the current axes
aa4.x_location = 'origin'; //set x axis to origin--0
aa4.y_location = "origin"; //set y axis to origin--0
mprintf("a signal can be exactly reproduced if it is sampled at the rate fs which is greater than twice the maximum frequency of inputs")
|
59b40b91aaf8549940cb948dbef1171ac02b9fc1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2168/CH23/EX23.9/Chapter23_example9.sce
|
ef8ef0bd2d13b8a81b64aa5f0feb2038d0f7ef06
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,314
|
sce
|
Chapter23_example9.sce
|
clc
clear
//Input data
d=27//Diameter in cm
l=45//Stroke in cm
db=1.62//Effective diameter of the brake in m
t=(38*60+30)//Test duration in sec
CV=4650//Calorific value in kcal/m^3 at N.T.P
n=8080//Total no. of revolutions
en=3230//Total number of explosions
p=5.75//Mean effective pressure in kg/cm^2
V=7.7//Gas used in m^3
T=15+273//Atmospheric temperature in K
pg=135//pressure of gas in mm of water above atmospheric pressure
hb=750//Height of barometer in mm of Hg
L=92//Net load on brake in kg
w=183//Weigh of jacket cooling water in kg
Tc=47//Cooling water temperature rise in degree C
//Calculations
ihp=(p*(l/100)*(3.14/4)*d^2*en)/(4500*(t/60))//I.H.P in h.p
bhp=(L*3.14*db*n)/(4500*(t/60))//B.H.P in h.p
pa=(hb+(pg/13))//Pressure of gas supplied in mm of Hg
Vg=(V*(273/T)*(pa/760))//Volume of gas used at N.T.P in m^3
q=(Vg*CV)/(t/60)//Heat supplied per minute in kcal
qbhp=(bhp*4500)/427//Heat equivalent of B.H.P in kcal/min
qc=(w/(t/60))*Tc//Heat lost to jacket cooling water in kcal/min
qra=(q-(qbhp+qc))//Heat lost to exhaust, etc in kcal/min
//Output
printf('Heat supplied is %3.1f kcal/min \n Heat equivalent of B.H.P is %3.0f kcal/min \n Heat lost to jacket cooling water is %3.1f kcal/min \n Heat lost to exhaust radiation etc. is %3.1f kcal/min',q,qbhp,qc,qra)
|
76a5f838965300172fced5a29c32e06908abfd05
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/409/CH27/EX27.3/Example27_3.sce
|
b639cb0be38a90dd94c2ae7ab46f27d1a7cd41bf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 587
|
sce
|
Example27_3.sce
|
clear ;
clc;
// Example 27.3
printf('Example 27.3\n\n');
//page no. 845
// Solution
// Given
p_plant = 20 ;// Power generated by plant-[MW]
h = 25 ;// Height of water level - [m]
V = 100 ;// Flow rate of water -[cubic metre/s]
d_water = 1000 ;// Density of water - [ 1000 kg / cubic metre]
g = 9.807 ;// Acceleration due to gravity-[m/square second]
M_flow = V*d_water ;// Mass flow rate of water -[kg/s]
del_PE = M_flow*g*h ;// Potential energy change of water per second -[W]
eff = (p_plant*10^6) /(del_PE) ;// Efficiency of plant
printf(' Efficiency of plant is %.2f .\n',eff) ;
|
9134c8546e37b29fe0a44faa9f5f3ce2c1e18764
|
e806e966b06a53388fb300d89534354b222c2cad
|
/macros/rotationVectorToMatrix.sci
|
abe97f9a4c6b1711572fc9583215e11494345b5c
|
[] |
no_license
|
gursimarsingh/FOSSEE_Image_Processing_Toolbox
|
76c9d524193ade302c48efe11936fe640f4de200
|
a6df67e8bcd5159cde27556f4f6a315f8dc2215f
|
refs/heads/master
| 2021-01-22T02:08:45.870957
| 2017-01-15T21:26:17
| 2017-01-15T21:26:17
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 508
|
sci
|
rotationVectorToMatrix.sci
|
function [ matrix ] = rotationVectorToMatrix(vector)
// Returns rotation matrix.
//
// Calling Sequence
// matrix = rotationVectorToMatrix(vector);
//
// Parameters
// matrix: rotation matrix
// vector: 3-D rotation vector
//
// Description
// Converts rotation vector to rotation matrix.
//
// Examples
// vector = pi/4 * [1, 2, 3];
// matrix = rotationVectorToMatrix(vector);
//
// Authors
// Tanmay Chaudhari
a=opencv_rotationVectorToMatrix(vector);
matrix(:,:,1)=a(1);
endfunction
|
48bc5a050a8823c3502e6e2359a60f84cd2b981c
|
f23cac45e0a1e3e9444fd3bb8e11d56a5be97cf8
|
/holding.sci
|
c3bdee38a75c02a1ab9e6e56c2a90186cb884f5e
|
[] |
no_license
|
paulaperdigaoram/YOGURT
|
4cd805bfb9a06630fba0d990ad7edbbf3786903b
|
fc95ba5408e085c91bca2a04084fc36b2ea39f95
|
refs/heads/master
| 2020-03-22T07:56:53.718648
| 2018-08-23T17:31:35
| 2018-08-23T17:31:35
| 139,734,779
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,071
|
sci
|
holding.sci
|
function o = holding(i)
//Datos de entrada
Mini = i(5)
T = i(7) // ºC
//Parámetros
D1211m = 0.05; //s
Zm = 10; //ºC
//Resolución del modelo
xini = Mini;
tfin = 300; dt = 0.01; // s
t=0:dt:tfin;
x = ode(xini,0,t,odeholding);
M = x;
Mfin = x($)
//Graficación
scf(3); clf(3);
plot2d('nl',t,M,2)
xgrid; xtitle('HOLDING','t, s','M')
xset('font',2,2); // modificación grosor de las líneas
xset('wpos',[300,0]); //fija la posición de la ventana en pantalla
f=gcf();
f.children.children(1).children.thickness = 2;
a = get('current_axes');
a.y_label.font_size = 2; //Aumento del tamaño de fuente
a.x_label.font_size = 2;
a.title.font_size = 4;
a.y_label.font_style = 8;
a.x_label.font_style = 8;
a.title.font_style = 4;
//Salidas de la función
o(1) = i(1)
o(2) = i(2)
o(3) = i(3)
o(4) = i(4)
o(5) = Mfin
o(6) = i(6)
o(7) = i(7)
endfunction
|
f13b8f527942a8e0ac86aa91121511f643654f92
|
3cbee2296fd6b54f80587eead83813d4c878e06a
|
/sci2blif/rasp_design_added_blocks/Hyst_diff.sce
|
2ff4e0a67557ba23314fe7bf4d9a03e192e68a87
|
[] |
no_license
|
nikhil-soraba/rasp30
|
872afa4ad0820b8ca3ea4f232c4168193acbd854
|
936c6438de595f9ac30d5619a887419c5bae2b0f
|
refs/heads/master
| 2021-01-12T15:19:09.899590
| 2016-10-31T03:23:48
| 2016-10-31T03:23:48
| 71,756,442
| 0
| 0
| null | 2016-10-24T05:58:57
| 2016-10-24T05:58:56
| null |
UTF-8
|
Scilab
| false
| false
| 82
|
sce
|
Hyst_diff.sce
|
style.displayedLabel="Hyst_diff"
pal5=xcosPalAddBlock(pal5,"Hyst_diff",[],style);
|
d17307ab3b29e406ed2226dc4e74fceebc1c5d2a
|
bd1c6c9cddf020f43e361b17ddf9ecd803d20f82
|
/BN/code/testes_1/resultado.tst
|
30fdd065a9544b1933098f4c33db3e8c2261c711
|
[] |
no_license
|
drohobytskyy/C
|
04f66acb410f4a044d2d4c4a2c358e0ae19271ee
|
073ac49322cfca0aa42fa7f7019666dcf5227bef
|
refs/heads/master
| 2021-01-22T03:23:39.283301
| 2017-02-06T19:42:16
| 2017-02-06T19:42:16
| 81,118,496
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 115
|
tst
|
resultado.tst
|
V_01 no
V_02 ok
V_03 no
V_04 ok
V_05 no
V_06 no
V_07 no
D_01 no
D_02 no
e_01 ok
l_01 ok
E1_01 no
E2_01 ok
E3_01 no
|
4cde9f1b151ce6478d1bcaac464ae9d751be80ba
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2273/CH9/EX9.12/ex9_12.sce
|
2433135171721cd14d42754d2f675a557160ecbb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 196
|
sce
|
ex9_12.sce
|
//Calculate the charging current
clear;
clc;
//soltion
//given
C3=(0.4*10^-6)*5;//farad
Vph=11*10^3/sqrt(3);
f=50;//Hz
Cn=2*C3;
Ic=2*%pi*f*Vph*Cn;
printf("Charging current= %.2f A",Ic)
|
302cad9126ab435428d70e9dbf2605ac5149ae68
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2195/CH2/EX2.3.2.e/ex_2_3_2_e.sce
|
2bfa38e646c29e23c634535b4be0ddc95daec291
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 229
|
sce
|
ex_2_3_2_e.sce
|
//Example 2.3.2.e: % error
clc;
clear;
close;
//given data :
Ae=80;// in V
Am=79;// in V
e=Ae-Am;
f=100;//full scale deflection
error1=(e/Ae)*100;
A=(1-abs(e/Ae));
accuracy=A*100;
P_error=(e/f)*100;
disp(P_error,"% error(%) = ")
|
9bd0201b991fb5f9c956f7bc0f8294394bb79126
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.4/Unix-Windows/scilab-2.4/macros/util/menubar.sci
|
9d175b0c24e8023b4c910c2b4a79ecee91808913
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 212
|
sci
|
menubar.sci
|
function menubar(win,menus)
// Copyright INRIA
names=menus(1)
for k=size(names,'*'):-1:1
delmenu(win,names(k))
end
for k=1:size(names,'*')
addmenu(win,names(k),menus(k+1),list(0,names(k)))
end
datas=[]
|
1f3da2492720d9e3cdd56e5f2d827f8c72f105f8
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/lpc/lpc3.sce
|
dea239eb4466dfb6c30d0139b32e7cd19654bda4
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 307
|
sce
|
lpc3.sce
|
//i/p arg p has a length greater than the length of i/p arg x
x=[1 2 3 4 6 7 89 0];
p=9;
[a,g] = lpc(x,p);
disp(a);
disp(g);
//output
//!--error 53
//lpc: Wrong value for argument #2 (p): Must be less than the length of the signal vector
//at line 106 of function lpc called by :
//[a,g] = lpc(x,p);
|
70c3e12f484adefe6deef14d53cc8c6ff92911ec
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/620/CH8/EX8.2/example8_2.sce
|
710e5d7dc23a7d8fccc88ed0beacbe7e7f69a147
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 291
|
sce
|
example8_2.sce
|
a=3;
p1=0.84;
p2=0.96;
i=50*10^(-3);
disp("Part a");
c1=a*p1;
t1=c1/i;
disp("the length of time (in h) for which the cell can deliver current is"); disp(t1);
disp("Part b");
c2=a*p2;
t2=c2/i;
disp("the length of time (in h) for which the cell can deliver current is"); disp(t2);
|
e715bbd2aa550c6ea50103f65c995748a27589e6
|
4e7aac39f36916a964f4664f3198d7c87e762253
|
/scilab/est_est.sce
|
f6adefe30eed116526d1d8f831bc5dd90db1165b
|
[] |
no_license
|
kirillin/manipulator_dynamics
|
349c01fd5aef8b42734edc497a7d48ee49aced9c
|
a773091ea5a62493b77885a0e2df6491282faa4c
|
refs/heads/master
| 2021-10-22T13:15:09.489858
| 2019-03-10T23:00:56
| 2019-03-10T23:00:56
| 108,987,774
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 411
|
sce
|
est_est.sce
|
std_dev = stdev(Chi, 'c', mean(Chi,'c'));
disp([mean(Chi,'c'), std_dev]);
t = Symbol('t')
q_1 = Function('q_1')(t)
theta_1 = Function('theta_1')(q_1)
#q_1 = Symbol('q_1')
dq_1 = diff(q_1, t)
L = sin(theta_1)**2 * dq_1
dL_Ddq = diff(L, dq_1).doit()
dLdq_Dt = diff(dL_Ddq, t).doit()
dL_Dq = diff(L, q_1).doit()
opL = dLdq_Dt - dL_Dq
diff(theta_1, q_1)
Subs(Derivative(theta_1(_xi_2), _xi_2), (_xi_2), (q_1(t)))
|
2da3c9d5e3d22fc2a398d5d7b622be6b2bf4f72e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/273/CH24/EX24.5/ex24_5.sce
|
6907c4e8b995a98c71f7e34fe0672cc655c7892f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 436
|
sce
|
ex24_5.sce
|
clc;clear;
//Example 24.5
//calculation of numerical aperture and maximum acceptance angle
//given values
n=1.480;//core refractive index
u=1.47;//index of glass
l=850*10^-9;//wavelength of light
V=2.405;//V-number
//calculation
r=V*l/sqrt(n^2-u^2)/%pi/2;//in m
disp(r*10^6,'core radius in micrometre is');
N=sqrt(n^2-u^2);
disp(N,'numerical aperture is');
alpha=asin(N)*180/%pi;
disp(alpha,'max acceptance angle is');
|
b9e5084d293936f4e84fdbe1b56275e8f3f037e6
|
d153e998690566a383b3cb700294956d3753b364
|
/Scilab/piEuller.sce
|
333f649bfceffdf37bb9a7c361a7b43a9f0143de
|
[] |
no_license
|
rayssalourrane/TPFINAL-CN
|
dc2c2211538fb36a7446c3ef0017a104b2375f87
|
ec7d83a359c4ed85a65cefad0d69472955b467ca
|
refs/heads/master
| 2020-06-18T09:25:39.181310
| 2019-07-11T18:45:14
| 2019-07-11T18:45:14
| 196,251,580
| 1
| 5
| null | 2019-07-11T13:29:08
| 2019-07-10T17:53:28
|
Java
|
UTF-8
|
Scilab
| false
| false
| 253
|
sce
|
piEuller.sce
|
tic();
t=100;
soma = 0.0;
for i=1:1:t
soma =0.0;
for j=1:1:10000
soma = soma + 1.0/(j * j);
end
end
t = toc();
disp(t);
disp(soma,"Pi : ");
disp((3.1415^2)/6, "Pi Correto: ");
|
fc5a872d5c2ed21cdba0ef2660da251ff490fa1f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2213/CH4/EX4.23/ex_4_23.sce
|
5e4929b8186b048db73a4a8dae09829ddc9870b7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 409
|
sce
|
ex_4_23.sce
|
//Example 4.23//average illumination
clc;
clear;
close;
format('v',5)
dp=1.2;//depreciation factor
uf=0.6;//utiliazation factor
l=15;// in meters
b=6;// in meters
n=20;// no. of lamps
lw=250;// mscp in watts
a=l*b;//arean in m^2
tl=n*lw*4*%pi;///total lumens
lwp=((tl*uf)/dp);//lumens reaching on the working plane
e=lwp/a;//illumination on working plane in lux
disp(e,"illumination on working plane in lux")
|
99cb286d200296a7796348c6bfd5268aa9c5da0b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3014/CH3/EX3.2/Ex3_2.sce
|
94ec1ffef9471de1be99673135c888f5802ad7ef
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 538
|
sce
|
Ex3_2.sce
|
clc
//given that
lambda = 0.3 // Wavelength in angstrom
d = 0.5 // crystal spacing in angstrom
n = 2 // order
m = 3 // order
printf("Example 3.2")
theta_n = asin(n*lambda/(2*d))*180/%pi // Calculation of angle for order n
theta_m = asin(m*lambda/(2*d))*180/%pi // Calculation of angle for order m
printf("\nAngle for %dnd order maxima is %f degree. ",n,theta_n)
printf("\nAngle for %drd order maxima is %f degree. \n\n\n",m,theta_m)
// Answers in book are 40.97 degree and 72.29 degree which are due to wrong calculation
|
f28d7767c3ebf259dc8a2c99b6f1e630604fe948
|
3592fbcb99d08024f46089ba28a6123aeb81ff3c
|
/src/control/controlHumanWalker.sci
|
098bdeb66cdffd3e4c56b06702568f50beb8c923
|
[] |
no_license
|
clairedune/sciGaitanLib
|
a29ab61206b726c6f0ac36785ea556adc9ef03b9
|
7498b0d707a24c170fc390f7413359ad1bfefe9f
|
refs/heads/master
| 2020-12-11T01:51:13.640472
| 2015-01-28T13:52:26
| 2015-01-28T13:52:26
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 10,679
|
sci
|
controlHumanWalker.sci
|
//----------------------------------------------//
// ApplyConstraintWalker
//----------------------------------------------//
function [qnew] = applyConstraintsWalker(q,d,dt,tol, yDes_06)
// starting from a set of articular position q
// find a new position qnew that garanty that the walker touch
// the ground.
d1=d(1); d2=d(2); d3=d(3); d4=d(4); d5=d(5); d6=d(6); dh=d(7);dw=d(8);
q1=q(1); q2=q(2); q3=q(3); q4=q(4); q5=q(5); q6=q(6);
// position courante de l'effecteur
[M_01, M_12, M_23, M_34, M_45, M_56, A_0, B_0, C_0, P_0] = computeMGDsagitalMan(d,q);
M_06=M_01*M_12*M_23*M_34*M_45*M_56;
posEffecteur = pFromHomogeneousMatrix(M_06);
pos_06 = [posEffecteur(1);posEffecteur(6)];
// posDes_06 = [dh; yDes_06; %pi/2];
posDes_06 = [dh; %pi/2];
// descente du gradient pour trouver q tel que P=Pdes
errPos_06 = pos_06-posDes_06;
qprec = q';
lambda = 0.6;
errVect = [errPos_06];
i=0;
while (norm(errPos_06)>tol)
//disp(i)
// disp(errPos_06)
//disp(norm(errPos_06));
J1 = computeJ06SagMan(d,qprec);
J1=[J1(1,:);J1(3,:)];
dotq = -lambda*pinv(J1)*errPos_06;
qnew= qprec+dt*dotq;
[M_01, M_12, M_23, M_34, M_45, M_56, A_0, B_0, C_0, P_0] = computeMGDsagitalMan(d,qnew);
M_06=M_01*M_12*M_23*M_34*M_45*M_56;
posEffecteur = pFromHomogeneousMatrix(M_06);
pos_06 = [posEffecteur(1);posEffecteur(6)];
//update
qprec=qnew;
errPos_06 = pos_06-posDes_06;
errVect= [errVect errPos_06];
i=i+1;
end
endfunction
//----------------------------------------------//
// ApplyConstraintWalker
//----------------------------------------------//
function [qnew] = applyConsAndLimits(q,d,qlimit,dt,tol)
//// starting from a set of articular position q
// // find a new position qnew that garanty that the walker touch
// // the ground.
d1=d(1); d2=d(2); d3=d(3); d4=d(4); d5=d(5); d6=d(6); dh=d(7);dw=d(8);
q1=q(1); q2=q(2); q3=q(3); q4=q(4); q5=q(5); q6=q(6);
// position courante de l'effecteur
[M_01, M_12, M_23, M_34, M_45, M_56, A_0, B_0, C_0, P_0] = computeMGDsagitalMan(d,q);
M_06=M_01*M_12*M_23*M_34*M_45*M_56;
posEffecteur = pFromHomogeneousMatrix(M_06);
//pos_06 = [posEffecteur(1:2);posEffecteur(6)];
// posDes_06 = pos_06;
pos_06 = [posEffecteur(1);posEffecteur(6)];
// posDes_06 = [dh; yDes_06; %pi/2];
posDes_06 = [dh; %pi/2];
// descente du gradient pour trouver q tel que P=Pdes
er1 = pos_06-posDes_06;
qprec = q';
lambda =1;
lambda2 = 1;
errVect = [er1];
i=0;
marge = 10*%pi/180;
while (norm(er1)>tol)
// ------ Tache 1 hauteur de la main ------ //
J1 = computeJ06SagMan(d,qprec);
J1=[J1(1,:);J1(3,:)];
dotq1 = -lambda*pinv(J1)*er1;
//disp(dotq1)
//projecteur
Proj1 = (eye(6,6)-pinv(J1)*J1);
// ----- Tache 1 eloignement des butees ----//
// matrice d'activation de la tache primaire
A=zeros(6,6);
B=zeros(6,6);
for k=1:6
if (qprec(k)<(qlimit(1,k)+marge) )// FIXME Attention angle a remettre entre -pi et pi
A(k,k)=1;
elseif (qprec(k)>(qlimit(2,k)-marge))
B(k,k)=1;
end
end
// Jacobien
J2 = A+B;
// Erreur
er2 = A*((qprec-qlimit(1,:)')/marge)+B*((qprec-qlimit(2,:)')/marge);
// Loi de commande robuste
//dotq2 = -lambda2*Proj1*pinv(J2)*er2
//loi de commande exacte
dotq2 = -lambda2*pinv(J2*Proj1)*(er2-J2*pinv(J1)*er1);
//disp(dotq2)
// -------- Synthese tache 1 et 2 ----------//
qnew= qprec+dt*(dotq2+dotq1);
[M_01, M_12, M_23, M_34, M_45, M_56, A_0, B_0, C_0, P_0] = computeMGDsagitalMan(d,qnew);
M_06=M_01*M_12*M_23*M_34*M_45*M_56;
posEffecteur = pFromHomogeneousMatrix(M_06);
// pos_06 = [posEffecteur(1:2);posEffecteur(6)];
pos_06 = [posEffecteur(1);posEffecteur(6)];
//-----------update-----------//
qprec=qnew;
er1 = pos_06-posDes_06;
errVect= [errVect er1];
i=i+1;
//// le robot est un robot plan sur xy
//sommets=[zeros(4,1) P_0 A_0 C_0 A_0 P_0(:,$) B_0];
// y = sommets (1,:);
// x = sommets (2,:);
// plot(x,y,'y-.');
// show_pixmap()
// pause
end
endfunction
//----------------------------------------------//
// ApplyConstraintWalker
//----------------------------------------------//
function [qnew] = applyLimitsandConst(q,d,qlimit,dt,tol)
//// starting from a set of articular position q
// // find a new position qnew that garanty that the walker touch
// // the ground.
qnew=q;
d1=d(1); d2=d(2); d3=d(3); d4=d(4); d5=d(5); d6=d(6); dh=d(7);dw=d(8);
q1=q(1); q2=q(2); q3=q(3); q4=q(4); q5=q(5); q6=q(6);
// position courante de l'effecteur
[M_01, M_12, M_23, M_34, M_45, M_56, A_0, B_0, C_0, P_0] = computeMGDsagitalMan(d,q);
M_06=M_01*M_12*M_23*M_34*M_45*M_56;
posEffecteur = pFromHomogeneousMatrix(M_06);
//pos_06 = [posEffecteur(1:2);posEffecteur(6)];
// posDes_06 = pos_06;
pos_06 = [posEffecteur(1);posEffecteur(6)];
// posDes_06 = [dh; yDes_06; %pi/2];
posDes_06 = [dh; %pi/2];
// descente du gradient pour trouver q tel que P=Pdes
er2 = pos_06-posDes_06;
qprec = q';
lambda =0.5;
lambda2 = 0.6;
er1=er2;
errVect = [er2];
i=0;
qdot1Vect=[];
qdot1et2Vect=[];
marge = 10*%pi/180;
while (norm(er2)>tol )
//disp('-----')
//disp(i)
// ----- Tache 1 eloignement des butees ----//
// matrice d'activation de la tache primaire
A=zeros(6,6);
B=zeros(6,6);
for k=1:6
if (qprec(k)<(qlimit(1,k)+marge) )// FIXME Attention angle a remettre entre -pi et pi
A(k,k)=1;
elseif (qprec(k)>(qlimit(2,k)-marge))
B(k,k)=1;
end
end
// Jacobien
J1 = A+B;
// Erreur
er1 = A*((qprec-qlimit(1,:)')/marge)+B*((qprec-qlimit(2,:)')/marge);
dotq1 = -lambda*pinv(J1)*er1;
//projecteur
Proj1 = (eye(6,6)-pinv(J1)*J1);
// ------ Tache 2 hauteur de la main ------ //
J2 = computeJ06SagMan(d,qprec);
J2=[J2(1,:);J2(3,:)];
//dotq2 = -lambda2*Proj1*pinv(J2)* er2;
edotref1=-lambda*er1;
edotref2=-lambda2*er2;
dotq2 = pinv(J2*Proj1)*(edotref2-J2*pinv(J1)*edotref1);
//disp(dotq2)
// -------- Synthese tache 1 et 2 ----------//
qnew= qprec+dt*(dotq2+dotq1);
[M_01, M_12, M_23, M_34, M_45, M_56, A_0, B_0, C_0, P_0] = computeMGDsagitalMan(d,qnew);
M_06=M_01*M_12*M_23*M_34*M_45*M_56;
posEffecteur = pFromHomogeneousMatrix(M_06);
// pos_06 = [posEffecteur(1:2);posEffecteur(6)];
pos_06 = [posEffecteur(1);posEffecteur(6)];
//-----------update-----------//
qprec=qnew;
er2 = pos_06-posDes_06;
errVect= [errVect er2];
i=i+1;
qdot1Vect=[qdot1Vect dotq1];
qdot1et2Vect=[qdot1et2Vect (dotq1+dotq2)];
// le robot est un robot plan sur xy
//sommets=[zeros(4,1) P_0 A_0 C_0 A_0 P_0(:,$) B_0];
// y = sommets (1,:);
// x = sommets (2,:);
// plot(x,y,'y-.');
// show_pixmap()
end
////trac de la figure
//xset("window",4);
//xset("pixmap",1);
//clear_pixmap()//et buffer
//h1=scf(4);
//h1.figure_name = "Error q1";
//plot(qdot1Vect')
// show_pixmap()
//
////trac de la figure
//xset("window",5);
//xset("pixmap",1);
//clear_pixmap()//et buffer
//h1=scf(5);
//h1.figure_name = "Error q1";
//plot(qdot1et2Vect')
// show_pixmap()
//pause
endfunction
//----------------------------------------------//
// ApplyActiveSet
//----------------------------------------------//
function [qnew] = applyActivSet(q,d,qlimit,dt,tol)
//// starting from a set of articular position q
// // find a new position qnew that garanty that the walker touch
// // the ground.
qnew=q;
d1=d(1); d2=d(2); d3=d(3); d4=d(4); d5=d(5); d6=d(6); dh=d(7);dw=d(8);
q1=q(1); q2=q(2); q3=q(3); q4=q(4); q5=q(5); q6=q(6);
// position courante de l'effecteur
[M_01, M_12, M_23, M_34, M_45, M_56, A_0, B_0, C_0, P_0] = computeMGDsagitalMan(d,q);
M_06=M_01*M_12*M_23*M_34*M_45*M_56;
posEffecteur = pFromHomogeneousMatrix(M_06);
//pos_06 = [posEffecteur(1:2);posEffecteur(6)];
// posDes_06 = pos_06;
pos_06 = [posEffecteur(1);posEffecteur(6)];
// posDes_06 = [dh; yDes_06; %pi/2];
posDes_06 = [dh; %pi/2];
// descente du gradient pour trouver q tel que P=Pdes
er2 = pos_06-posDes_06;
qprec = q';
lambda =0.5;
lambda2 = 0.6;
er1=er2;
errVect = [er2];
i=0;
qdot1Vect=[];
qdot1et2Vect=[];
marge = 10*%pi/180;
DT = 10*dt;
while (norm(er2)>tol )
edotref1=-lambda*er1;
edotref2=-lambda2*er2;
J2 = computeJ06SagMan(d,qprec);
J2=[J2(1,:);J2(3,:)];
dotq = pinv(J2)* edotref2;
dotqmin = (qlimit(1,:)'-qprec)/DT;
dotqmax = (qlimit(2,:)'-qprec)/DT;
[value,index]=min([(dotq-dotqmin) ;(dotqmax-dotq)])
A=zeros(6,6);
B=zeros(6,6);
//tant que la contrainte la plus violee est sous la marge
nbdof = 0;
while (value <0 & nbdof<=length(q))
// remplir la matrice d'activation
if(index<=6)
A(index,index)=1;
else
B(index-6,index-6)=1;
end
// Jacobien
J1 = A+B;
// Erreur
dotq1 = A*(dotqmin)+B*(dotqmax);
//projecteur
Proj1 = (eye(6,6)-pinv(J1)*J1);
// ------ Tache 2 hauteur de la main ------ //
dotq2 = pinv(J2*Proj1)*(edotref2-J2*dotq1);
// -------- Synthese tache 1 et 2 ----------//
[value,index]=min([(dotq1+dotq2-dotqmin) ;(dotqmax-dotq2-dotq1)]);
nbdof=nbdof+1;
// pause
end
qnew = qprec+dt*(dotq2+dotq1);
[M_01, M_12, M_23, M_34, M_45, M_56, A_0, B_0, C_0, P_0] = computeMGDsagitalMan(d,qnew);
M_06 = M_01*M_12*M_23*M_34*M_45*M_56;
posEffecteur = pFromHomogeneousMatrix(M_06);
pos_06 = [posEffecteur(1);posEffecteur(6)];
//-----------update-----------//
qprec=qnew;
er2 = pos_06-posDes_06;
errVect= [errVect er2];
i=i+1;
qdot1Vect=[qdot1Vect dotq1];
qdot1et2Vect=[qdot1et2Vect (dotq1+dotq2)];
// le robot est un robot plan sur xy
//sommets=[zeros(4,1) P_0 A_0 C_0 A_0 P_0(:,$) B_0];
// y = sommets (1,:);
// x = sommets (2,:);
// plot(x,y,'y-.');
// show_pixmap()
end
////trac de la figure
//xset("window",4);
//xset("pixmap",1);
//clear_pixmap()//et buffer
//h1=scf(4);
//h1.figure_name = "Error q1";
//plot(qdot1Vect')
// show_pixmap()
//
////trac de la figure
//xset("window",5);
//xset("pixmap",1);
//clear_pixmap()//et buffer
//h1=scf(5);
//h1.figure_name = "Error q1";
//plot(qdot1et2Vect')
// show_pixmap()
//pause
endfunction
|
871d9a1254e64b4a7d3e8cadaf8a0fa23800a805
|
68bc9ed8216a93c9b0bc0a6dbde62a7bb8328383
|
/param/testcase2.tst
|
618dc4959d6f011f84bde33f45735e82b4417ddd
|
[] |
no_license
|
michaelhuang14/AutonomousAgentsGreenhouse
|
5e305e522c95dfaaebd7e4f148de87572d4185ce
|
83e4aad142c9ca72ba4ababf58c25bed53428f0c
|
refs/heads/main
| 2022-12-20T01:59:27.773408
| 2020-10-08T03:02:55
| 2020-10-08T03:02:55
| 300,742,055
| 1
| 0
| null | 2020-10-08T02:41:49
| 2020-10-02T21:40:36
|
Python
|
UTF-8
|
Scilab
| false
| false
| 602
|
tst
|
testcase2.tst
|
# Simple trace file
BASELINE = baseline2.bsl
WHENEVER smoist[0] < 450 or smoist[1] < 450
WAIT wpump FOR 86400 # Make sure the water pump was turned on in the next scheduled sessions
# Don't let the pump overwater things
WHENEVER wpump
ENSURE smoist[0] < 600 and smoist[1] < 600 FOR 3600
WHENEVER smoist[0] > 650 or smoist[1] > 650
SET soil = (smoist[0] + smoist[1])/2
WAIT fan FOR 86400 # Make sure fan is turned on in the next scheduled behavior sessions
WAIT (smoist[0] + smoist[1])/2 < soil FOR 86400 # after turning on the fan, make sure the avg soil moisture goes down over the day
|
6565bb97eb8d52b0dab1c70771cb451f1ad370a1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/608/CH44/EX44.12/44_12.sce
|
c6920783e3248101d2d27764fd684177d8a5ef3b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,015
|
sce
|
44_12.sce
|
//Problem 44.12: A cable has the following primary constants: resistance R = 80 ohm/loop km, conductance, G = 2 μS/km, and capacitance C = 5 nF/km. Determine, for minimum distortion at a frequency of 1.5 kHz (a) the value of inductance per loop kilometre required, (b) the propagation coefficient, (c) the velocity of propagation of signal, and (d) the wavelength on the line
//initializing the variables:
R = 80; // in ohm/loop km
C = 5E-9; // in F/km
G = 2E-6; // in S/km
f = 1500; // in Hz
//calculation:
w = 2*%pi*f
//the condition for minimum distortion is given by LG = CR, from which, inductance
L = C*R/G
//attenuation coefficient,
a = (R*G)^0.5
//phase shift coefficient,
b = w*(L*C)^0.5
//propagation coefficient,
r = a + %i*b
//velocity of propagation,
u = 1/(L*C)^0.5
//wavelength
Y = u/f
printf("\n\n Result \n\n")
printf("\n inductance is %.2f H",L)
printf("\n propagation coefficient is %.4f +(%.4f)i",a,b)
printf("\n wavelength Y is %.2f km",Y)
printf("\n speed of transmission %.2E km/sec",u)
|
e848d1bf7c0bf1c80b150c452bcb4a6d65f9577d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1958/CH7/EX7.2/Chapter7_example2.sce
|
dbf7f519ed5b870d9723f5a58f8de87446a01e5d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 559
|
sce
|
Chapter7_example2.sce
|
clc
clear
//Input data
f=15//Focal length of achromatic doublet made up of crown and flint glasses in cm
fl=[0.01506,0.02427]//Dispersive power of crown and flint glasses respectively
//Calculations
//Solving two equations
//(1/f)=(1/f1)+(1/f2)
//(f1/f2)=(-0.01506/0.02427)
fx=(fl(1)/fl(2))//Ratio of focal lengths
f2=(-(1/fx)+1)/(1/f)//Focal length of converging lens in cm
f1=(-fx*f2)//Focal length of diverging lens in cm
//Output
printf('Focal length of converging lens is %3.4f cm \n Focal length of diverging lens is %3.1f cm',f2,f1)
|
67c738c60ab2ff00ab3d7ca18f01db048ec297f1
|
bacd6919260d728f4316702bbe1edf811810bede
|
/legacy/38/console/view_out.sce
|
6bfd478dffa2c2089a3a856d80a3063174b46977
|
[] |
no_license
|
vopl/sp
|
332d8c2ff536fc5d8772ff2f3fbeca9b50c47641
|
a4313f4d7af47cc3132d7546947d4d668c7e487e
|
refs/heads/master
| 2020-04-16T02:09:36.036424
| 2016-10-05T18:08:30
| 2016-10-05T18:08:30
| 65,293,458
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 239
|
sce
|
view_out.sce
|
stacksize('max');
h = 9;
w = -1;
out = read("out", w, h);
clf;
t = out(:,1);
rr = out(:,2);
ri = out(:,3);
ir = out(:,4);
ii = out(:,5);
plot(t,rr,'b');
plot(t,ri,'b');
//plot(t,ir,'r');
//plot(t,ii,'m');
abort;
|
64832a151d489d7629ed28eef2e7840eec1f1bb2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/615/CH8/EX8.18/8_18.sce
|
a6edc8737113e3cbf7a6186fec20eefbd024a278
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,390
|
sce
|
8_18.sce
|
//Fuels and Combustion//
//Example 8.18//
C=624;//weight of carbon in 1kg of coal sample in grams//
O=69;//weight of oxygen in 1kg of coal sample in grams//
S=8;//weight of Sulphur in 1kg of coal sample in grams//
N=12;//weight of nytrogen in 1kg of coal sample in grams//
H=41;//weight of hydrogen in 1kg of coal sample in grams//
CO2=129;//weight of CO2 in 1kg of coal sample in grams//
CO=2;//weight of CO in 1kg of coal sample in grams//
MO=C*32/12+H*16/2+S*32/32-O;//minimum weight of oxygen needed in grams//
MA=MO*0.1/23;//minimum weight of air needed in kilograms//
printf('minimum amount of air needed=MA=%fkg',MA);
WC=CO2*(12/44)+CO*(12/28);//weight of C in fuel gas/kg//
printf('\nWeight of C in fuel gas/kg=WC=%fg',WC);
WF=C/WC;//Weight of fuel gas/kg of coal in g//
printf('\nweight of fuel gas/kg of coal=WF=%fg',WF);
O2=2*16/28;//O2 needed to convert CO to CO2 in Kg//
RWO2=(61-O2)/1000;//remaining weight of O2/kg of fuel gas in Kg//
printf('\nRemaining weight of O2/kg of fuel gas=RWO2=%fkg',RWO2);
WO2=WF*RWO2;//weight of O2 obtained by burning 1kg coal in kg//
printf('\nWeight of O2 obtained by burning coal=WO2=%fkg',WO2);
AR=WO2*100/23;//air required in kilograms//
printf('\nAir required=AR=%fkg',AR);
WAS=MA+AR;//weight of air actually supplied/kg coal burnt in kg//
printf('\nWeight of air actually supplied/kg coal burnt=WAS=%fkg',WAS);
|
08bc0c288485672d9b353160ee39fda55b446d77
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2438/CH3/EX3.12/Ex3_12.sce
|
354cc9657320856e12145d6bf2327fcf57277561
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 588
|
sce
|
Ex3_12.sce
|
//=======================================================================
// chpter 3 example 12
clc;
clear;
//input data
u = 0.126; //permiability in N/A^2
u0 = 4*%pi*10^-7;
//calculation
ur = u/u0
sighe = ur-1; //magnetic susceptability
//result
mprintf('relative permiability =%3.5e\n',sighe);
mprintf(' Note:Calculation mistake in textbook in calculating sighe by taking ur as 10^5 instead of 100318.4')
//======================================================================
|
39a71dfd6c8312637501b3607144e5c5721ae61b
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/RT4.prev.tst
|
44b699f69461e4c06df5a3644ad41e7f88dcde98
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 40
|
tst
|
RT4.prev.tst
|
[1/2,2/3,-1/5] - = [[-1/2],[-2/3,1/5]]
|
36430c50bf837fb2bf54df183b65f15d67fc867e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1415/CH1/EX1.2.4/ex4.sce
|
b14bc934535253257a087a52a5af9e9cbfcc0fb9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 980
|
sce
|
ex4.sce
|
//Example 4 Page 62
clc
clear
function q1=f(p1)
q1=77.8*(p1^(-0.11))
endfunction
function q2=g(p2)
q2=30.4+0.006*p2
endfunction
disp('a)')
p1=([200 400 800 1200 1600 2000 2200])
q1=f(p1)
plot(2400,50,p1,q1,'blue')
p2=([200 400 800 1200 1600 2000 2200])
q2=g(p2)
plot(2400,50,p2,q2,'red')
disp('the lines cross at $1000 at Equilibrium point')
disp(f(1000),'Demand:')
disp(g(1000),'Supply:')
disp('so 36400 students')
disp('b)')
disp('If tuition is, say, $1,800, then the supply will be larger thandemand and there will be a surplus of available openings at private schools. Similarly, iftuition is less—say $400—then the supply will be less than the demand, and there willbe a shortage of available openings.')
disp('c)')
//tuition fee set at &1200
disp(f(1200),'Demand in thousand seats')
disp(g(1200),'Supply in thousand seats')
disp(g(1200)-f(1200),'Surplus is given in thousand seats as:')
xtitle('Demand and Supply','p','q');
|
32723de722fa36996ab531dfe1dacb4e63172fcc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3860/CH9/EX9.11/Ex9_11.sce
|
999421a1c019202981b909c9f7481c2e63e1772b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 818
|
sce
|
Ex9_11.sce
|
//Example 9.11: Reduction of state table
clc // Clears the console
disp("Given State Table")
disp("q | x=0 x=1 | z")
disp('--------------------------------')
disp("A | B E | 0")
disp("B | D A | 1")
disp("C | G A | 0")
disp("D | F G | 1")
disp("E | B C | 0")
disp("F | D G | 1")
disp("G | D E | 1")
disp('The SP partition is also ouput consistent. The smallest equivalent system is given below')
disp(" q | x=0 x=1 | z")
disp('------------------------------------')
disp(" A | B A | 0")
disp(" B | D A | 1")
disp(" D | D B | 1")
//displays the reduced state table.
|
1dff6b8a5aa05e0b8403318866514b774e6b036f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1106/CH10/EX10.2/ex10_2.sce
|
568a9e90ad48662b9af564aaf58ac92c58ab1edf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 489
|
sce
|
ex10_2.sce
|
// Example 10.2, Page No-430
clear
clc
//Part A
R1=15*10^3
R3=15*10^3
R2=2.2*10^3
C1=0.001*10^-6
Vcc=12
Vc=Vcc*(R3/(R2+R3))
printf('\nVc= %.3f V', Vc)
fo1=2*(Vcc-Vc)/(C1*R1*Vcc)
fo1n=fo1/1000
printf('\nFo= %.2f kHz', fo1n)
//Part B
Vc1=7
fo2=2*(Vcc-Vc1)/(C1*R1*Vcc)
fo2n=fo2/1000
printf('\nFo= %.3f kHz', fo2n)
Vc2=8
fo3=2*(Vcc-Vc2)/(C1*R1*Vcc)
fo3n=fo3/1000
printf('\nFo= %.3f kHz', fo3n)
fch=fo2n-fo3n
printf('\nChange in output frequency= %.3f kHz', fch)
|
0ee84a39fd5a419f361712e7e73a2dce1209df8e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/260/CH7/EX7.1/7_1.sce
|
a85d8dee2ac5e6d787af9a393840c0264ab68bca
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 74
|
sce
|
7_1.sce
|
//Eg-7.1
//pg-325
clear
clc
printf('This is a theory question \n')
|
ae7bfb7c6f6fb3b85e85704a60a688c5350557c8
|
f708de8b70d2f3c38b5eb963efe5d71de1a0de49
|
/src/goahead/test/stress/badUrl.tst
|
57341b4e6328e5185b3339fa7a919935dff53241
|
[] |
no_license
|
baobao-skl/SmartSDK
|
7225208110f223f950477f577947dbbe2577f439
|
7c81b63a66f3c0cf98ff3c2f1330a3a5e226dbe6
|
refs/heads/master
| 2020-05-28T01:47:07.809576
| 2014-08-12T14:20:21
| 2014-08-12T14:20:21
| 19,645,700
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 253
|
tst
|
badUrl.tst
|
/*
badUrl.tst - Stress test malformed URLs
*/
const HTTP = App.config.uris.http || "127.0.0.1:8080"
let http: Http = new Http
http.get(HTTP + "/index\x01.html")
assert(http.status == 404)
assert(http.response.contains("Not Found"))
http.close()
|
8aa712c6832aa9fe3c5d3b64b7370e5ddbfa27f4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3872/CH3/EX3.7/Ex3_7.sce
|
a64cf057edbca9f193c1cbebf3705b8333e973be
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,391
|
sce
|
Ex3_7.sce
|
//Book - Power system: Analysisi & Design 5th Edition
//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J.Overbye
//Chapter-3 ;Example 3.7
//Scilab Version - 6.0.0; OS - Windows
clc;
clear;
Sr=400 //rated power of transformer in MVA
VT1p=13.8 // rated voltage of transformer primary side in kV
VT1s=199.2 // rated voltage of transformer secondary side in kV
Xeq=0.10 // leakage reactance of transformer in Ohms
Sa=1000 //High voltage side absorbs power in MVA
pf=0.90 // lagging power factor
VANH=199.2
Sb=1200 //base power in MVA
VbHLL=345 //Hihg volgage side lini to line base voltag in kV
IbH=1200/(345*sqrt(3)) //high voltage side base current in Amperes
VAN=1.0 //per unit load voltage
Theta=acos(0.9)
IA=((1000/(345*(sqrt(3))))/2.008)*(exp(%i*(-Theta))) //Per unit load current
Van=VAN+(%i*Xeq)*IA // voltage at low voltage bus
VbXLN1=13.8
Van1L=Van*VbXLN1 //low voltage wye winding in kV
Ean=(exp(%i*(-30)*(%pi/180)))*VAN //source voltage in per unit
Ia=(exp(%i*(-30)*(%pi/180)))*IA //source current in per unit
Van2=Ean+(%i*Xeq)*Ia
VbXLN2=13.8/(sqrt(3))
Van2L=Van2*VbXLN2 //low voltage delta winding in kV
printf('The magnitude of voltage at low voltage bus(star) in per unit is %.4f and its angle is %.4f degrees\n',abs(Van),atand(imag(Van),real(Van)));
printf('The magnitude of low voltage star winding in kV is %.4f kV and its angle is %.4f degrees\n',abs(Van1L),atand(imag(Van1L),real(Van1L)));
printf('The magnitude of voltage at low voltage bus(delta) in per unit is %.4f and its angle is %.4f degrees\n',abs(Van2),atand(imag(Van2),real(Van2)));
printf('The magnitude of low voltage delta winding in kV is %.4f kV and its angle is %.4f degrees\n',abs(Van2L),atand(imag(Van2L),real(Van2L)));
|
0d019f067bbb9e94b2de310add6cc1de031140ed
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1967/CH8/EX8.9/8_9.sce
|
45eec154d2524e86c4514938206de959944f1ba1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 317
|
sce
|
8_9.sce
|
clc
//initialisation of variables
clear
Cp= 8.21*0.0413 //lit-atm
R= 0.0821 //lit-atm deg^-1 mole^-1
p= 100 //atm
T= 20 //C
a= 1.39
b= 3.92*10^-2 //lit-atm^2 mole
//CALCULATIONS
u= (1/Cp)*((2*a/(R*(273+T)))-b-(3*a*b*p/(R^2*(273+T)^2)))
//RESULTS
printf ('Joule-thomson coefficient = %.3f deg atm^-1',u)
|
61b754222efbaa91f1a6d69201941b8d84f7cc88
|
63c8bbe209f7a437f8bcc25dc1b7b1e9a100defa
|
/test/0030.tst
|
e7fdd23c43f4885f870fbbc00f42b12a4691121b
|
[] |
no_license
|
fmeci/nfql-testing
|
e9e7edb03a7222cd4c5f17b9b4d2a8dd58ea547c
|
6b7d465b32fa50468e3694f63c803e3630c5187d
|
refs/heads/master
| 2021-01-11T04:09:48.579127
| 2013-05-02T13:30:17
| 2013-05-02T13:30:17
| 71,239,280
| 0
| 0
| null | 2016-10-18T11:01:57
| 2016-10-18T11:01:55
|
Python
|
UTF-8
|
Scilab
| false
| false
| 399
|
tst
|
0030.tst
|
SplITtEr hLnhn {}
FILtER fjz { bItOR (, ) }
FIlTER Ofd {noT Ts NOT p }
D -> W -> pI -> rg -> m
groUPEr G {MODULe E{ f <= k DelTa 5 qj <= V } mOdUlE iA{ } mOdulE B{ G = Zzfv zKx >= dMVWS DeLta 37M } moDuLE zxQ{ G < y DeltA 27m } mODule x{ k = vCGb rdelta 487 W >= Cd deLta 4 } MOdULe lNH{ } AggReGaTE mX.mz ,SUm(ug.h) aS t }
uNGrOuPeR TV { }
groupFIlTeR B {}
MeRgeR iE { exPorT M }
|
c2bee4c0e116966f75790b6a6a7df60448d996f8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2744/CH3/EX3.6/Ex3_6.sce
|
7aa5da7f64617a92c7866dd8b1df6e2567bb3795
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 789
|
sce
|
Ex3_6.sce
|
clear;
clc;
l = 12;//feet
d1_A = 1;//inch
d2_A = 2;//inches
l1_A = 4;//inches
l2_A = 8;//inches
d1_B = 1;//inch
d2_B = 2;//inches
l1_B = 8;//inches
l2_B = 4;//inches
p_A = 15/2;// tons/in^2
p_B = sqrt((2/3)*p_A^2);// tons/in^2
r1 = (9*%pi/8)/(3*%pi/4);//ratio of energies if both bars are allowed to reach the proof stress
V_A = 0.25*%pi*d1_A^2*l1_A+ 0.25*%pi*d2_A^2*l2_A;// in^3
V_B = 0.25*%pi*d1_B^2*l1_B+ 0.25*%pi*d2_B^2*l2_B;// in^3
r2 = ((3/16)*p_B^2)/((1/12)*p_B^2);//ratio of enrgies
printf('Maximum instantaneous stress produced is p_B = %.2f tons/in^2',p_B);
printf('\n Ratio of energies stored if both bars are allowed to reach the proof stress is r1 = %.2f ',r1);
printf('\n Ratio of energies stored at the same stress per unit volume, is r2 = %.2f ',r2);
|
d361beb6454b1b079ac4d5ce59f41fa205071581
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2318/CH3/EX3.68.a/ex_3_68_a.sce
|
e7f30a0faf435aa0fdc8524a5b07d2f4ac4adc51
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 393
|
sce
|
ex_3_68_a.sce
|
//Example 3.68.a:resistance and inductance
clc;
clear;
close;
cab=0.01;//micro-F
rbc=2.5;//k-ohms
cbc=1;//micro-F
rda=7.5*10^3;//ohm
cda=0.02;//micro-F
w=50*10^3;//Hz
zab=(-1/(((%i*w*cab*10^-6*1))));//ohms
zbc=rbc*10^3;//ohms
zda=rda+(1/(((%i*w*cda*10^-6))));//ohms
zcd=(zbc*zda)/zab;//
r=-real(zcd);//ohms
l=-imag(zcd)/w;//H
disp(round(r),"resistance is,(ohm)=")
disp(l,"inductance is,(H)=")
|
6c86b56db43d70bb3129da11e1c721471435053f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1910/CH5/EX5.7/Chapter57.sce
|
5ed6527844fd62036223af8947c63b36f30ebc86
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,442
|
sce
|
Chapter57.sce
|
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Introduction to heat transfer by S.K.Som, Chapter 5, Example 7")
//A wall is exposed to nitrogen at one atmospheric pressure and temprature,Tinf=4°C.
Tinf=4;
//The wall is H=2.0m high and B=2.5m wide and is maintained at temprature,Ts=56°C
Ts=56;
H=2;
B=2.5;
A=H*B;//area is(A)
//The average nusselt number NuHbar over the height of the plate is given by NuHbar=0.13*(Gr*Pr)^(1/3)
//The properties of nitrogen at mean film temprature(Tf) is (56+4)/2=30°C are given as density(rho=1.142kg/m^3) ,conductivity(k=0.026W/(m*K)),
//kinematic viscosity(nu=15.630*10^-6 m^2/s) ,Prandtl number(Pr=0.713)
rho=1.142;
k=0.026;
nu=15.630*10^-6;
Pr=0.713;
Tf=30;
//We first have to detrmine the value of Grashoff number,Gr.In consideration of nitrogen as an ideal gas,we can write
//Beta(The volumetric coefficient of expansion)=1/T
disp("Beta(The volumetric coefficient of expansion in K^-1 is")
Beta=1/(273+Tf)
//Now Gr=(g*Beta*(Ts-Tinf)*H^3)/nu^2
g=9.81;//acceleration due to gravity
disp("Grashoff number is")
Gr=(g*Beta*(Ts-Tinf)*H^3)/nu^2
disp("The average nusselt number is")
NuHbar=0.13*(Gr*Pr)^(1/3)
//hbar is the heat flux
disp("Heat flux hbar in W/(m^2*°C)")
hbar=NuHbar*k/H
//Q is the heat loss from the plate
disp("The heat loss from the plate in W is")
Q=hbar*A*(Ts-Tinf)
|
69cf15cbd38819def6919c228cf105edba34df89
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/575/DEPENDENCIES/661.sci
|
17d879e87baf02e51768531bc7ecd79a1909b708
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 111
|
sci
|
661.sci
|
V1=200 //CC Acetone
x=0.1 //Wt acetone
V2=400 //CC chloroform
DA=0.792 //g/cc
DC=1.489 //g/cc
DW=1 //g/cc
|
0ef4b1e51829ab7d29d975292c6b9f1dd3f06e8b
|
78ff3e16a288175ff606f38ee5ee877d4844773e
|
/4_chapter/4_02_solution.sce
|
63db299edebcd1353885db28326025b46934b89d
|
[] |
no_license
|
rngalvan/fluid-mech-cengel
|
16c12ed8f71f25c812700be4322328c5663b71cf
|
ee45f924e73cbb8b5716fac43504dac15ffd1f64
|
refs/heads/master
| 2021-05-27T20:52:22.586023
| 2013-04-17T04:25:37
| 2013-04-17T04:25:37
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 740
|
sce
|
4_02_solution.sce
|
//Soultion 4-02
WD=get_absolute_file_path('4_02_solution.sce');
datafile=WD+filesep()+'4_02_example.sci';
clc;
exec(datafile)
//unit conversion
Vdot = Vdot / 10**3; //[L/s] to [m^3/s]
D_inlet = D_inlet / 100; //[cm] to [m]
D_outlet = D_outlet / 100; //[cm] to [m]
deltax = deltax / 100; //[cm] to [m]
//solution
u_inlet = 4 * Vdot / (%pi * D_inlet**2); //average inlet velocity
u_outlet = 4 * Vdot / (%pi * D_outlet**2); //average outlet velocity
a_x = (u_outlet**2 - u_inlet**2) / (2 * deltax);
//results
printf("\nInlet velocity at the nozzle is %1.3f m/s", u_inlet);
printf("\nOutlet velocity at the nozzle is %1.2f m/s", u_outlet)
printf("\nThe acceleration of a fluid particle moving down the centerline of nozzle is %1.1f m/s^2",a_x);
|
d7c442c820905e586b6065cdc95937ef1be8af38
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/611/CH3/EX3.3/Chap3_Ex3_R1.sce
|
7221c5ca803dceba42fda7e63b788fa8a4f9ba90
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 963
|
sce
|
Chap3_Ex3_R1.sce
|
// Y.V.C.Rao ,1997.Chemical Engineering Thermodynamics.Universities Press,Hyderabad,India.
//Chapter-3,Example 3,Page 49
//Title:Volume ratio
//================================================================================================================
clear
clc
//INPUT
T=100;//temperature inside the vessel in degree celsius
V=0.00317;//specific volume of water at the critical point in m^3/kg
vf=0.0010437;//molar volume of saturated liquid in m^3/kg
vg=1.673;//molar volume of saturated vapour in m^3/kg
//CALCULATION
X=(V-vf)/(vg-vf);//calculation of the quality of wet steam using Eq.(3.3) (no unit)
ratio=(X*vg)/((1-X)*vf);//calculation of volume ratio of saturated vapour to the saturated liquid (no unit)
//OUTPUT
mprintf('\n The volume ratio of saturated vapour to the saturated liquid= %0.2f \n',ratio);
//===============================================END OF PROGRAM===================================================
|
961b431456e3cebbe09eb66a80b668914162c666
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3745/CH1/EX1.51/Ex1_51.sce
|
c1de12ac1652714283aca0da57e25adaa0b02167
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 672
|
sce
|
Ex1_51.sce
|
// Ex 51 Page 396
clc;clear;close;
// Given
ZA=0.15+0.5*%i;//ohm
ZB=0.1+0.6*%i;//ohm
EA=207;//V
EB=205;//V
ZL=2+1.5*%i;//ohm
IA=(EA*ZB+(EA-EB)*ZL)/(ZA*ZB+ZL*(ZA+ZB));//A
IB=(EB*ZA-(EA-EB)*ZL)/(ZA*ZB+ZL*(ZA+ZB));//A
V2=(IA+IB)*ZL;//V
fi_A=atand(imag(V2)/real(V2))-(atand(imag(IA)/real(IA)))
pf_A=cosd(fi_A);//lag
printf("pf transformer A = %.2f lag",pf_A)
fi_B=atand(imag(V2)/real(V2))-(atand(imag(IB)/real(IB)))
pf_B=cosd(fi_B);//lag
printf("\n pf transformer B = %.2f lag",pf_B)
PA=abs(V2*IA*pf_A);//W
printf("\n power output transformer A = %.f W",PA)
PB=abs(V2*IB*pf_B);//W
printf("\n power output transformer B = %.f W",PB)
//Power output ans are wrong in the book.
|
5e78bdecf92474a2076b8c76115bf5b6fbbbc63e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1439/CH22/EX23.1/22_1.sce
|
9f7910879030a539a9162c17af1ed61dc1c0ec16
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 379
|
sce
|
22_1.sce
|
clc
//initialisation of variables
d= 0.856 //g/cc
N= 6*10^23 //molecules
M= 39.1 //g mole^-1
n= 2
n1= 4
n2= 12
//CALCULATIONS
a= (n*M/(N*d))^(1/3)
d= a*10^8/sqrt(n1)
d1= a*10^8/sqrt(n)
d2= a*10^8/sqrt(n2)
//RESULTS
printf ('distance between planes = %.2f A',d)
printf ('\n distance between planes = %.2f A',d1)
printf ('\n distance between planes = %.2f A',d2)
|
8866a8694f5157ed1d446f20e569df1314991b67
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1664/CH8/EX8.11/Ex8_11.sce
|
a05737ceb9129ca068687b9fb1d8afd810bf6cef
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 587
|
sce
|
Ex8_11.sce
|
//Example No.8.11.
//Page No.235.
clc;clear;
n = 8.49*10^(28);//Concentration of electrons in copper -[m^-3].
e = 1.6*10^(-19);//Value of electron.
Tr = 2.44*10^(-14);//Relaxation time of electron -[s]
m = 9.1*10^(-31);//mass of electron.
k = 1.38*10^(-23);//Boltzman's constant.
T = 293;//Temperature -[K].
d = ((n*e^(2)*Tr)/(m));
printf("\n1)The electrical conductivity is %3.3e per ohm meter",d);
K = ((n*(%pi)^(2)*k^(2)*T*Tr)/(3*m));
printf("\n 2)The thermal conductivity is %.2f W m^-1.K^-1",K);
L = K/(d*T);
printf("\n3)The Lorentz number is %3.3e W ohm K^-2",L);
|
01c2837cc304dbc89383b15fe4acc79f7aa99467
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1868/CH7/EX7.5/Ch07Ex5.sce
|
52f7af88c211eb8ffc1567bc80de9200875958b5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 540
|
sce
|
Ch07Ex5.sce
|
// Scilab code Ex7.5: Pg 241 (2005)
clc; clear;
epsilon_c = 5.5e+10; // Characteristic field strength, V/m
epsilon = 1.0e+09; // Electric field, V/m
f = 1.0e+30; // Collision frequency, s(-1)cm(-2)
lamda = f*exp(-epsilon_c/epsilon); // Electron emission rate, electrons/sec
e = 1.60e-19; // Electrc charge, C
I = lamda*e; // Tunelling current, A
printf("\nTunelling current in parallel plate capacitor = %4.2f pA", I/1e-12);
printf("\n");
// Result
// Tunelling current in parallel plate capacitor = 0.21 pA
|
5ddcd8251d869bf74064ca1da71d81268879afe7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2135/CH6/EX6.34/Exa_6_34.sce
|
a765be5fb8db897eeca26df860322b83ae8414e2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 535
|
sce
|
Exa_6_34.sce
|
//Exa 6.34
clc;
clear;
close;
format('v',7);
//Given Data :
p1=80;//bar
Tsup3=350;//degree C
pb=712.5/760*1.01325;//bar
mdot=2;//Kg/s
//mdot=1;//Kg
h3=2964;//KJ/Kg(Molliers diagram)
h4=2184;//KJ/Kg(Molliers diagram)
WT=h3-h4;//KJ/Kg
WTdot=mdot*WT;//KW
disp(WTdot,"Total turbine work in KW : ");
wp=(p1-pb)/10;//KJ/Kg
hf1=411.35;//KJ/Kg(from steam table)
h1=hf1;//KJ/Kg
h2=h1+wp;//KJ/Kg
qi=h3-h2;//KJ/Kg
EtaR=(WT-wp)/qi*100;//%
disp(EtaR,"Rankine efficiency in % : ");
//Steam table is used to get some data.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.