blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
355a43bb339a225b8d2a4b10cec82a5c501dfa66
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1760/CH5/EX5.33/EX5_33.sce
|
2888a30af23aeaaa761ec801db047861f97cd0ec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 599
|
sce
|
EX5_33.sce
|
//EXAMPLE 5-33 PG NO=327
R1=15; //RESISTANCE
R2=8; //RESISTANCE
R3=12; //RESISTANCE
R4=10;
R5=5.14;;
R6=7.429;
R7=32.74;
V=60;
Ra=(R1*R2)/ (R1+R2+R3);
Rb=(R3*R2)/(R1+R2+R3);
Rc=(R1*R3)/(R1+R2+R3);
TR=R4+R5+((R6*R7)/(R6+R7)); //TOTAL RESISTANCE
I=V/TR
disp('i) Resistance (Ra) is = '+string (Ra) +' ohms ');
disp('i) Resistance (Rb) is = '+string (Rb) +' ohms ');
disp('i) Resistance (Rc) is = '+string (Rc) +' ohms ');
disp('i) Total Resistance (TR) is = '+string (TR) +' ohms ');
disp('i) Current (I) is = '+string (I) +' A ');
|
f6258a084cf5a32073c8ccfec6b88da39afa7a25
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1271/CH1/EX1.40/example1_40.sce
|
6316a1c6e2c4d1c2d199f8f8fef998976ee7f246
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 617
|
sce
|
example1_40.sce
|
clc
// Given That
D1 = 3e-3 // diameter of nth dark fringe when liquid is absent between the lens and the plate in m
D2 = 2.5e-3 // diameter of nth dark fringe when liquid is introduced between the lens and the plate in m
c = 3e8 // velocity of light in vacuum in m/sed
// Sample Problem 40 on page no. 1.54
printf("\n # PROBLEM 40 # \n")
mu = D1^2 / D2^2// calculation for refractive index
v = 3e8 / mu // calculation for velocity of light
printf("\n Standard formula used \n mu = D1^2 / D2^2. \n v = 3e8 / mu. \n")
printf("\n Refractive index of liquid = %f.\n velocity of light in the liquid = %e m/sec.",mu,v)
|
59b2c309339c015b6c8eb4b262cd6ebaf63223e3
|
9b68b3d73b63ebcbfe18cc9a4aa8e91c84833a84
|
/tests/libs/hdf5/test-h5-wrappers-new/C/H5D/testfiles/114/h5ex_d_fillval.tst
|
07860371d11f46c1208bb692fd9b84d682b772ac
|
[
"LicenseRef-scancode-unknown-license-reference",
"Apache-2.0",
"LicenseRef-scancode-llnl",
"LicenseRef-scancode-hdf4",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
openhpc/ohpc
|
17515db5082429eb9f250f12bf242b994beb715f
|
725a1f230434d0f08153ba1a5d0a7418574f8ae9
|
refs/heads/3.x
| 2023-08-19T02:15:14.682630
| 2023-08-18T19:33:51
| 2023-08-18T19:34:18
| 43,318,561
| 827
| 247
|
Apache-2.0
| 2023-09-14T01:22:18
| 2015-09-28T18:20:29
|
C
|
UTF-8
|
Scilab
| false
| false
| 612
|
tst
|
h5ex_d_fillval.tst
|
Dataset before being written to:
[ 99 99 99 99 99 99 99]
[ 99 99 99 99 99 99 99]
[ 99 99 99 99 99 99 99]
[ 99 99 99 99 99 99 99]
Dataset after being written to:
[ 0 -1 -2 -3 -4 -5 -6]
[ 0 0 0 0 0 0 0]
[ 0 1 2 3 4 5 6]
[ 0 2 4 6 8 10 12]
Dataset after extension:
[ 0 -1 -2 -3 -4 -5 -6 99 99 99]
[ 0 0 0 0 0 0 0 99 99 99]
[ 0 1 2 3 4 5 6 99 99 99]
[ 0 2 4 6 8 10 12 99 99 99]
[ 99 99 99 99 99 99 99 99 99 99]
[ 99 99 99 99 99 99 99 99 99 99]
|
248d5c15ce9d7e6df68c1f938ed36ba2538ee2c8
|
fe42802d7bd704d330c1618c1ed2b14b4678fb1e
|
/ImageProcessing/main.sce
|
cfac4755937ec05bbc6dd562461fcd466f978aec
|
[
"MIT"
] |
permissive
|
douglasCardinot/iniciacao
|
c0e7f4952b3532f67cbf185dc40b363e112e47a1
|
a711a845d8790ad7099224a5e414f3190a56bb88
|
refs/heads/master
| 2020-07-02T05:07:37.534416
| 2014-10-17T19:30:55
| 2014-10-17T19:30:55
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 334
|
sce
|
main.sce
|
clear;
path = "C:/xampp2/htdocs/iniciacao/ImageProcessing/";
exec(path+"lib.sci");
foto = "crescimento-tratado.jpg";
logicalImage = toLogicalImage(foto);
figure();
ShowImage(logicalImage, 'invertida');
alturas = getHeights(logicalImage);
cols = size(logicalImage, 'c');
pos = 1:1:cols;
plot(pos, alturas);
disp(stdev(alturas));
|
4befc74e5eac4715e795b8d6906c98f83453dbf3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2753/CH1/EX1.11/Ex1_11.sce
|
7cfa6d61fe6462ff5d3d71d3ef67dd5674f23936
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 223
|
sce
|
Ex1_11.sce
|
//Example 1.11:
clc;
clear;
close;
//given data :
p=0.15;// in ohm-m
mu_e=0.39;// mobility of electron in m^2/V-s
e=1.6*10^-19;// in C
Na=1/(e*mu_e*p);
format('e',9)
disp(Na,"The value of donor concentration,Na(m^-3) = ")
|
30dc2dfe16313d31e711a890518f79e5563b8e36
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.3.1/macros/metanet/edge_number.sci
|
b6bde19508e446c18af6556b7a5adf84a03e0089
|
[
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain",
"MIT"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 102
|
sci
|
edge_number.sci
|
function [ma]=edge_number(g)
[lhs,rhs]=argn(0)
if rhs<>1 then error(39), end
ma=prod(size(g('tail')))
|
08b16420090e35f901189670e640c39fc85aa1a3
|
262ac6443426f24d5d9b13945d080affb0bd6d9b
|
/opgaves/sudoku/run-me-first.sce
|
f20f5de67735417e3d6279bf2d644a49b93d3861
|
[] |
no_license
|
slegers/Scilab
|
9ebd1d486f28cf66e04b1552ad6e94ea4bc98a0b
|
1b5dc3434def66355dafeb97c01916736a936301
|
refs/heads/master
| 2021-01-12T01:42:01.493578
| 2017-01-09T10:54:09
| 2017-01-09T10:54:09
| 78,420,343
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,559
|
sce
|
run-me-first.sce
|
funcprot(0)
test_cases = list()
test_cases($+1) = struct('input', struct('input', [0,0,3,0,2,0,6,0,0;9,0,0,3,0,5,0,0,1;0,0,1,8,0,6,4,0,0;0,0,8,1,0,2,9,0,0;7,0,0,0,0,0,0,0,8;0,0,6,7,0,8,2,0,0;0,0,2,6,0,9,5,0,0;8,0,0,2,0,3,0,0,9;0,0,5,0,1,0,3,0,0]), 'output', struct('output', [4,8,3,9,2,1,6,5,7;9,6,7,3,4,5,8,2,1;2,5,1,8,7,6,4,9,3;5,4,8,1,3,2,9,7,6;7,2,9,5,6,4,1,3,8;1,3,6,7,9,8,2,4,5;3,7,2,6,8,9,5,1,4;8,1,4,2,5,3,7,6,9;6,9,5,4,1,7,3,8,2]))
function Result = test_case(index)
Result = test_cases(index)
endfunction
function Result = test_case_count()
Result = size(test_cases)
endfunction
function show(index)
tc = test_case(index)
disp('Inputs')
disp('input')
disp(tc.input.input)
disp('Outputs')
disp('output')
disp(tc.output.output)
endfunction
function Result = check(index)
tc = test_case(index)
[output] = solve(tc.input.input)
Result = %t
Result = Result & isequal(output, tc.output.output)
endfunction
function Result = failures()
n = test_case_count()
failures = []
for index = 1:n
if ~check(index) then
failures = [ failures, index ]
end
end
Result = failures
endfunction
function report()
[temp, n] = size(failures())
disp( strcat( [ "Number of test cases: ", string(test_case_count()) ] ) )
disp( strcat( [ "Number of failures: ", string(n) ] ) )
disp( strcat( [ "Number of successes: ", string(test_case_count() - n) ] ) )
if n == 0 then
disp("SUCCESS")
else
disp("FAIL")
end
endfunction
|
93466f0dd8fb416f5aec31a5d22859e9b73d401c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2138/CH11/EX11.11.a/ex_11_11_a.sce
|
b1a52e661f7dae5e9a454e6e9af41a202e1374d6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 555
|
sce
|
ex_11_11_a.sce
|
//Example 11.11.a // impedence
clc;
clear;
close;
r1=6;//in ohms
r2=3.95;//in ohms
R=r1+r2;//in ohms
L1=0.21;//IN HENRY
L2=0.14;//in henry
C1=30;// in micro farads
C2=60;//in micro farads
V=220;//IN VOLTS
F=50;// IN HERTS
Xc1=(1/(2*%pi*F*C1*10^-6));// capacitive reactance in ohms
Xc2=(1/(2*%pi*F*C2*10^-6));// capacitive reactance in ohms
Xc=Xc1+Xc2;//IN OHMS
Xl1=2*%pi*F*L1;// inductive reactance in ohms
Xl2=2*%pi*F*L2;// inductive reactance in ohms
Xl=Xl1+Xl2;//in ohms
Z=sqrt(R^2+(Xl-Xc)^2);// impedence in ohms
disp(round(Z),"impedence in ohms is")
|
156e777ca1bfeceb3ecd41e898a1b126983f34dc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1895/CH2/EX2.18/EXAMPLE2_18.SCE
|
3b040fcd29cff2b37e7d750aadd861cbd269a5ce
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 530
|
sce
|
EXAMPLE2_18.SCE
|
//ANALOG AND DIGITAL COMMUNICATION
//BY Dr.SANJAY SHARMA
//CHAPTER 2
//AMPLITUDE MODULATION
clear all;
clc;
printf("EXAMPLE 2.18(PAGENO 110)");
//given from the figure
P_maxpp = 2*50//maximum peak to peak power in watts
P_minpp = 2*15//minimum peak to peak power in watts
//calculations
m_a = (P_maxpp - P_minpp)/(P_maxpp + P_minpp)//modultaion index
M = m_a*100//percentage modulation index
//results
printf("\n\ni.Modulation index =%.4f",m_a);
printf("\n\nii.Percentage modulation index = %.2f percent",M)
|
b588011f4271ba0a1beee3a04d64f2afb237da09
|
63c8bbe209f7a437f8bcc25dc1b7b1e9a100defa
|
/test/0047.tst
|
930f255c1f7b151a598de3af7722e70e7d16a193
|
[] |
no_license
|
fmeci/nfql-testing
|
e9e7edb03a7222cd4c5f17b9b4d2a8dd58ea547c
|
6b7d465b32fa50468e3694f63c803e3630c5187d
|
refs/heads/master
| 2021-01-11T04:09:48.579127
| 2013-05-02T13:30:17
| 2013-05-02T13:30:17
| 71,239,280
| 0
| 0
| null | 2016-10-18T11:01:57
| 2016-10-18T11:01:55
|
Python
|
UTF-8
|
Scilab
| false
| false
| 327
|
tst
|
0047.tst
|
SplItTER X {}
FIltEr y { cC:EB:Ed:bF:AA:cD
> t OR c ( 24, +8, ) DC:ea:ae:5b:F8:cb
< adA::B:BD:cB:bcDA:d or noT 4e220 << Yhnk or -36e5 > Q oR BItOR () }
FILTeR y {NOT G Or not DOv or noT nUG }
WOk BrAnCh gA -> T
GrouPer ozcb {agGREGAte max(lvg) As Mj }
ungrouPER Dx { }
GRoupfILTeR q {}
merGER N { EXPorT CcN }
|
0b17399a708d41bcab4ebac5e4ca3e9e0b8e178f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/812/CH4/EX4.06/4_06.sce
|
8220dc73e7ab7dcc896679484be3249cc1e423dc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 439
|
sce
|
4_06.sce
|
//force exerted per unt//
pathname=get_absolute_file_path('4.06.sce')
filename=pathname+filesep()+'4.06-data.sci'
exec(filename)
//X-component of reaction force per unit width of the gate(in N/m):
Rxw=(d*(V2^2*D2-V1^2*D1))-(d*g/2*(D1^2-D2^2))
//Horizontal force exerted per unt width on the gate(in N/m):
Kxw=-Rxw
printf("\n\nRESULTS\n\n")
printf("\n\nHorizontal force exerted per unt width on the gate: %.3f kN/m\n\n",Kxw/1000)
|
890254f703b42a9f8cf0dbef6e907e8bd61921c2
|
32869948ce801ed2e69b5fb986fc310cab9a6d4a
|
/help/builder_help.sce
|
80996dcd6e8321f584fe65afa643d8a98537ddf5
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
ierturk/SciPowerLab
|
54ed5755cf4f3854176d7088f893317fe86cc0cf
|
da5d153272bae12564c1ded95241d6b40c8b4a90
|
refs/heads/master
| 2022-07-20T15:29:09.447509
| 2022-07-18T21:10:36
| 2022-07-18T21:10:36
| 94,237,627
| 1
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 199
|
sce
|
builder_help.sce
|
// ErturkMe - Copyright 2011 - 2022
// http://erturk.me
// ierturk@ieee.org
// See license.txt
tbx_builder_help_lang(["en_US"], ..
get_absolute_file_path("builder_help.sce"));
|
f6b85d218c6d0238959e77adfe57bedcbbdd1a0d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/371/CH5/EX5.8/5_8.sci
|
bb0f132811887dfdfec7fd8147d64782e7a535bb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 268
|
sci
|
5_8.sci
|
//Line commuted Converters//
//Example 5.8//
E2=415;//input voltage in volts//
Emax=sqrt(2)*E2;//maximum value of dc voltage//
A=%pi/6;//triggering angle in degrees//
Edc=Emax*cos(A)/%pi;//dc output voltage in volts//
printf('dc output voltage=Edc=%fvolts',Edc);
|
fa21144cc851a47dc7444cbdecc6e5bb8ac39c64
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2198/CH1/EX1.40.9/Ex1_40_9.sce
|
f822ad95b1edda60e48e3a57e0a673b0675a9ec7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 239
|
sce
|
Ex1_40_9.sce
|
//Ex 1.40.9
clc;clear;close;
format('v',9);
//Given :
ni=10^16;//per m^3
ND=10^22;//per m^3
n=ND;//per m^3//ND>>ni
disp(n,"Electron concentration(per m^3) : ");
p=ni^2/n;//per m^3
disp(p,"Electron concentration(per m^3) : ");
|
5c33bd788672b9fc43d70ec40758bdddf336219a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2417/CH4/EX4.9/Ex4_9.sce
|
37c8350b6e312d2ecf88872f274d72aa3efeeaa1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,377
|
sce
|
Ex4_9.sce
|
//scilab 5.4.1
clear;
clc;
printf("\t\t\tProblem Number 4.9\n\n\n");
// Chapter 4 : The Second Law Of Thermodynamics
// Problem 4.9 (page no. 158)
// Solution
//For reversible isothermal process,
//In problem 4.8,
q=843.7; //Heat //Unit:Btu //at 200 psia
t=381.86; //(unit:fahrenheit)
//converting temperatures to absolute temperatures;
T=t+460; //Unit:R"
deltaS=(q/T); //Change in entropy //Btu/lbm
printf("Change in entropy is %f Btu/lbm*R\n",deltaS); //1 LBm of saturated water
//In problem 4.9
t1=381.86; //(unit:fahrenheit) //Source temperature
t2=50; //(unit:fahrenheit) //Sink temperature
//converting temperatures to absolute temperatures;
T1=t1+460; //Source temperature //Unit:R
T2=t2+460; //Sink temperature //Unit:R
qin=q;//heat added to the cycle
n=(1-(T2/T1))*100; //Efficiency
printf("Efficiency is %f percentage\n",n);
wbyJ=qin*n*0.01;//work output
printf("Work output is %f Btu/lbm\n",wbyJ);
Qr=qin-wbyJ; //heat rejected
printf("Heat rejected is %f Btu/lbm\n\n",Qr);
printf("As an alternative solution and refering to figure 4.12,\n")
qin=T1*deltaS; //heat added //btu/lbm
Qr=T2*deltaS; //Heat rejected //btu/lbm
printf("Heat rejected is %f Btu/lbm\n",Qr);
wbyJ=qin-Qr; //Work output //Btu/lbm
printf("Work output is %f Btu/lbm\n",wbyJ);
n=(wbyJ/qin)*100; //Efficiency
printf("Efficiency is %f percentage\n",n);
|
e9ba22e57b42a2b43f9244a6f8e8063105351b6d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1847/CH3/EX3.31/Ch03Ex31.sce
|
5dd50b2fb776c6cbd018060bec3ae7cb1986ff3c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,610
|
sce
|
Ch03Ex31.sce
|
// Scilab Code Ex3.31:: Page-3.49 (2009)
clc; clear;
theta1 = 18; // Direction at which first spectral line appears, degrees
theta2 = 18+5/(60*60); // Direction at which second spectral line appears, degrees
d_theta = (theta2-theta1)*%pi/180; // Angular separation of two spectral lines, radians
d_lambda = 50e-010; // Linear separation of two spectral lines just seen as separate, cm
DP = d_theta/d_lambda; // Dispersive power of grating
n = 1; // Order of diffraction
// As dispersive power of grating d_theta/d_lambda = DP = n/((a_plus_b)*cosd(theta1)), solving for a_plus_b
a_plus_b = n/(DP*cosd(theta1)); // Grating element, cm
// But a_plus_b*sind(theta1)=n*lambda1, solving for lambda1
lambda1 = a_plus_b*sind(theta1)/n; // Wavelength of first spectral line, cm
lambda2 = lambda1+d_lambda/1e-002; // Wavelength of second spectral line, cm
// As resolving power of grating, lambda/d_lambda = n*N, solving for N
N = lambda1/(d_lambda*n); // No. of lines required per cm on grating
w = N*a_plus_b; // Minimum grating width required to resolve two wavelengths, cm
printf("\nThe wavelength of first spectral line = %4.0f angstrom", lambda1/1e-008);
printf("\nThe wavelength of second spectral line = %4.0f angstrom", lambda2/1e-008);
printf("\nThe minimum grating width required to resolve two wavelengths = %3.1f cm", w);
// Result
// The wavelength of first spectral line = 6702 angstrom
// The wavelength of second spectral line = 6752 angstrom
// The minimum grating width required to resolve two wavelengths = 2.9 cm
|
c8b9eacf32ba5939c96b76ad237f4e1f5f758ab8
|
002b6230874dea6e4d76defafc1ae293b5744918
|
/solvers/IncNavierStokesSolver/Tests/KovaFlow_m8.tst
|
8aa564555ac5be812fad4149f29904d3249216d3
|
[
"MIT"
] |
permissive
|
SCOREC/nektar
|
f3cf3c44106ac7a2dd678366bb53861e2db67a11
|
add6f04b55fad6ab29d08b5b27eefd9bfec60be3
|
refs/heads/master
| 2021-01-22T23:16:16.440068
| 2015-02-27T17:26:09
| 2015-02-27T17:26:09
| 30,382,914
| 6
| 7
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 884
|
tst
|
KovaFlow_m8.tst
|
<?xml version="1.0" encoding="utf-8"?>
<test>
<description>Kovasznay Flow P=8</description>
<executable>IncNavierStokesSolver</executable>
<parameters>KovaFlow_m8.xml</parameters>
<files>
<file description="Session File">KovaFlow_m8.xml</file>
<file description="Session File">KovaFlow_m8.rst</file>
</files>
<metrics>
<metric type="L2" id="1">
<value variable="u" tolerance="1e-12">4.70499e-05</value>
<value variable="v" tolerance="1e-12">0.000157969</value>
<value variable="p" tolerance="1e-12">0.00158632</value>
</metric>
<metric type="Linf" id="2">
<value variable="u" tolerance="1e-12">6.85934e-05</value>
<value variable="v" tolerance="1e-12">0.000191491</value>
<value variable="p" tolerance="1e-12">0.00500792</value>
</metric>
</metrics>
</test>
|
abb2bb303605d47e4854a8d2114e01e333d444be
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1658/CH22/EX22.9/Ex22_9.sce
|
56b18854bf7a88479fe15e65e24859bb10bcdc94
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 142
|
sce
|
Ex22_9.sce
|
clc;
//e.g 22.9
gm=2.5*10**-3;
rd=500*10**3;
RD=10*10**3;
rL=(RD*rd)/(rd+RD);
disp('10^3 ohm',rL*10**-3,"rL=");
AV=-gm*rL;
disp(AV);
|
69456bdeb93046fcd5b352e41da4416dcac88266
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1970/CH13/EX13.4/CH13Exa4.sce
|
6fe345a556a2e44753e34a68ad75a165611a750a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,736
|
sce
|
CH13Exa4.sce
|
// Scilab code Exa13.4 : : Page-600(2011)
clc; clear;
a_v = 14.0; // Volume binding energy constant, mega electron volts
a_s = 13.0; // Surface binding energy constant, mega electron volts
a_c = 0.583; // Coulomb constant, mega electron volts
a_a = 19.3; // Asymmetric constant, mega electron volts
a_p = 33.5; // Pairing energy constant, mega electron volts
Z = 92; // Atomic number
// For U-236
A = 235; // Mass number
E_exc_236 = a_v*(A+1-A)-a_s*((A+1)^(2/3)-A^(2/3))-a_c*(Z^2/(A+1)^(1/3)-Z^2/A^(1/3))-a_a*((A+1-2*Z)^2/(A+1)-(A-2*Z)^2/A)+a_p*(A+1)^(-3/4); // Excitation energy for uranium 236, mega electron volts
// For U-239
A = 238; // Mass number
E_exc_239 = a_v*(A+1-A)-a_s*((A+1)^(2/3)-A^(2/3))-a_c*(Z^2/(A+1)^(1/3)-Z^2/A^(1/3))-a_a*((A+1-2*Z)^2/(A+1)-(A-2*Z)^2/A)+a_p*((A+1)^(-3/4)-A^(-3/4)); // Excitation energy for uranium 239
// Now calculate the rate of spontaneous fissioning for U-235
N_0 = 6.02214e+23; // Avogadro's constant, per mole
M = 235; // Mass number
t_half = 3e+17*3.15e+7; // Half life, years
lambda = 0.693/t_half; // Decay constant, per year
N = N_0/M; // Mass of uranium 235, Kg
dN_dt = N*lambda*3600; // Rate of spontaneous fissioning of uranium 235, per hour
printf("\nThe excitation energy for uranium 236 = %3.1f MeV\nThe excitation energy for uranium 239 = %3.1f MeV\nThe rate of spontaneous fissioning of uranium 235 = %4.2f per hour", E_exc_236, E_exc_239, dN_dt);
// Result
// The excitation energy for uranium 236 = 6.8 MeV
// The excitation energy for uranium 239 = 5.9 MeV
// The rate of spontaneous fissioning of uranium 235 = 0.68 per hour
|
a0995c73b9a2abffa90ca9215b909c6945cc01c8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1271/CH2/EX2.24/example2_24.sce
|
2ba42b6f887b3fcac8f95beb79d7dc849dd28b86
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 739
|
sce
|
example2_24.sce
|
clc
// Given that
d = 4e-4 // separation between slits in meter
b = 2e-4 // slit-width in meter
fringe_width = 2.5e-3 // fringe width in meter
D = 1.6 // distance between screen and slits
// Sample Problem 24 on page no. 2.47
printf("\n # PROBLEM 24 # \n")
lambda = (fringe_width * d) / D // calculation for wavelength of light
r = (b + d) / b // calculation for ratio of n with m
m1 = 1
n1 = r * m1 // calculation for missing order
m2 = 2
n2 = r * m2 // calculation for missing order
m3 = 3
n3 = r * m3 // calculation for missing order
printf("\n Standard formula used \n lambda = (fringe_width * d) / D. \n r = (b + d) / b. \n n = r * m. \n")
printf("\n Wavelength of light = %e meter. \n Missing order = %d,%d,%d....",lambda,n1,n2,n3)
|
ff46111ae5ff76e3d8bfe2f44df613f763fcb985
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/blog/bow/bow.17_1.tst
|
74af19efceeb33dc2168d44f0afddd8c4e203aab
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,783
|
tst
|
bow.17_1.tst
|
17 199:0.3333333333333333 200:1.5 207:0.16666666666666666 279:1.0 325:1.0 356:0.5 1282:1.0
17 3:1.0 6:0.5 14:0.02857142857142857 25:0.6666666666666666 30:0.2 54:0.2 66:0.5 193:0.6666666666666666 199:0.5 214:1.0 286:1.0 320:1.0 356:0.5 369:2.0 410:1.0 420:1.0 486:1.0 926:1.0 1108:1.0
17 14:0.02857142857142857 30:0.2 56:0.3333333333333333 66:0.25 69:0.2 159:0.16666666666666666 171:0.5 181:0.5 197:1.0 199:0.16666666666666666 203:0.25 208:1.0 237:1.0 356:1.0 1174:1.0 1282:1.0
17 6:0.5 14:0.02857142857142857 19:0.047619047619047616 25:0.3333333333333333 30:0.2 66:0.25 69:0.2 181:0.5 193:0.3333333333333333 199:0.3333333333333333 203:0.5 317:1.0 356:0.5 887:1.0 1124:1.0 1622:1.0
17 4:0.09090909090909091 25:0.3333333333333333 30:0.2 66:0.25 171:0.5 183:0.14285714285714285 199:0.16666666666666666 203:0.25 207:0.16666666666666666 208:1.0 236:0.5 237:1.0 356:1.5 690:1.0 698:1.0 797:1.0 1174:1.0 1269:2.0 1282:2.0
17 6:0.5 14:0.05714285714285714 30:0.2 208:1.0 279:1.0 394:1.0 826:1.0 885:1.0 1282:1.0
17 30:0.2 199:0.16666666666666666 356:0.5 581:0.25 602:1.0 1282:1.0 1544:1.0 1818:1.0
17 14:0.02857142857142857 25:0.6666666666666666 170:1.0 208:1.0 237:1.0 356:0.5 394:1.0 1044:1.0 1282:1.0
17 14:0.02857142857142857 25:0.3333333333333333 30:0.2 74:0.5 199:0.16666666666666666 203:0.25 228:1.0 356:0.5 369:1.0 546:0.5 571:1.0 602:1.0 1582:1.0
17 4:0.09090909090909091 14:0.05714285714285714 25:0.6666666666666666 30:0.2 69:0.2 183:0.14285714285714285 193:0.3333333333333333 199:0.16666666666666666 203:0.25 207:0.16666666666666666 236:0.5 255:1.0 317:1.0 319:1.0 356:1.0 652:1.0 1145:1.0 1269:1.0 1282:1.0
17 4:0.09090909090909091 25:0.6666666666666666 183:0.2857142857142857 199:0.16666666666666666 219:1.0 356:0.5 369:1.0 413:1.0 1282:1.0
17 6:0.5 13:0.5 14:0.08571428571428572 25:0.3333333333333333 30:0.2 45:0.5 132:1.0 159:0.16666666666666666 183:0.14285714285714285 203:0.25 208:2.0 249:0.14285714285714285 319:1.0 344:1.0 352:1.0 355:1.0 386:0.5 581:0.25 901:1.0
17 14:0.02857142857142857 25:0.3333333333333333 121:0.3333333333333333 199:0.3333333333333333 200:0.5 237:1.0 325:1.0 356:0.5 602:1.0 797:1.0 1289:1.0 1384:1.0
17 4:0.09090909090909091 6:0.5 14:0.02857142857142857 25:0.6666666666666666 42:0.3333333333333333 74:0.25 183:0.2857142857142857 199:0.3333333333333333 207:0.16666666666666666 208:1.0 237:1.0 356:0.5 394:1.0 837:1.0 968:1.0 1013:1.0 1093:1.0 1282:1.0 1437:1.0
17 4:0.09090909090909091 30:0.2 50:1.0 74:0.25 188:0.5 199:0.16666666666666666 237:1.0 356:0.5 415:1.0 1218:1.0 1327:1.0
17 4:0.18181818181818182 6:1.5 13:0.5 14:0.02857142857142857 25:0.3333333333333333 30:0.4 69:0.2 140:0.5 181:0.5 271:1.0 285:1.0 554:3.0 579:1.0 617:1.0 704:1.0 913:1.0 943:1.0
17 14:0.05714285714285714 172:0.25 203:0.25 448:1.0 1505:1.0
17 1108:1.0
17 4:0.09090909090909091 17:0.05 25:0.6666666666666666 30:0.2 49:0.16666666666666666 50:1.0 69:0.2 84:0.5 149:2.0 183:0.14285714285714285 249:0.14285714285714285 254:1.0 380:2.0 383:1.0 682:1.0 837:1.0 903:1.0 923:1.0 1089:1.0 1210:0.5 1252:1.0
17 13:0.5 17:0.025 25:0.3333333333333333 84:0.16666666666666666 146:1.0 188:0.5 249:0.14285714285714285 525:1.0 885:1.0
17 4:0.09090909090909091 6:0.5 14:0.02857142857142857 17:0.025 19:0.047619047619047616 25:0.3333333333333333 54:0.2 84:0.16666666666666666 146:1.0 187:1.0 214:2.0 275:1.0 404:1.0 1038:1.0
17 6:0.5 14:0.02857142857142857 17:0.025 30:0.2 74:0.25 84:0.16666666666666666 91:0.5 107:1.0 170:1.0 254:1.0 381:1.0
17 4:0.09090909090909091 14:0.02857142857142857 25:0.3333333333333333 44:1.0 49:0.3333333333333333 54:0.2 64:0.5 69:0.2 84:0.16666666666666666 107:1.0 146:1.0 189:0.5 214:1.0 279:1.0 290:0.5 386:0.5 572:1.0 746:1.0 1032:1.0 1505:1.0 1554:1.0
17 133:1.0 149:1.0 249:0.14285714285714285
17 4:0.09090909090909091 6:1.5 13:0.5 14:0.02857142857142857 17:0.025 20:1.0 21:1.0 43:0.5 69:0.2 84:0.16666666666666666 121:0.3333333333333333 137:1.0 214:1.0 445:1.0 554:1.0 581:0.25 1013:1.0 1445:1.0
17 13:0.5 20:1.0 21:1.0 42:0.3333333333333333 54:0.2 55:0.25 121:0.3333333333333333 349:0.3333333333333333 480:1.0 1177:1.0 1325:1.0 1445:1.0 1818:1.0
17 3:1.0 14:0.08571428571428572 25:0.3333333333333333 30:0.2 54:0.4 56:0.3333333333333333 69:0.6 84:0.16666666666666666 135:1.0 183:0.2857142857142857 202:0.14285714285714285 273:1.0 344:1.0 375:1.0 445:1.0 527:1.0 554:1.0 955:1.0
17 4:0.09090909090909091 6:0.5 10:0.5 14:0.11428571428571428 30:0.2 49:0.16666666666666666 54:0.6 59:1.0 60:1.0 64:0.5 273:1.0 349:0.3333333333333333 554:2.0 579:1.0 653:1.0 1108:1.0 1210:0.5
17 54:0.2 146:1.0 159:0.16666666666666666 249:0.14285714285714285 520:1.0
17 14:0.02857142857142857 19:0.047619047619047616 30:0.2 64:0.5 202:0.14285714285714285 554:1.0 1505:1.0
17 25:0.3333333333333333 74:0.25 84:0.16666666666666666 171:0.5 197:1.0 203:0.25 290:0.5 665:1.0 943:1.0
17 6:0.5 14:0.02857142857142857 17:0.025 25:0.3333333333333333 159:0.16666666666666666 249:0.14285714285714285 542:1.0 851:1.0 923:1.0 1032:1.0 1140:1.0 1252:1.0
17 13:0.5 25:0.3333333333333333 43:0.5 60:1.0 64:1.5 69:0.2 78:1.0 84:0.3333333333333333 99:0.5 149:1.0 159:0.16666666666666666 202:0.2857142857142857 208:1.0 285:1.0 305:1.0 355:1.0 375:1.0 1096:1.0
17 349:0.3333333333333333 940:1.0 955:1.0
17 6:0.5 13:0.5 14:0.05714285714285714 17:0.025 19:0.047619047619047616 25:0.3333333333333333 30:0.2 54:0.4 74:0.25 84:0.3333333333333333 149:1.0 170:1.0 249:0.14285714285714285 388:0.5 705:1.0 946:0.3333333333333333 1703:1.0
17 13:0.5 25:0.3333333333333333 69:0.4 146:1.0 303:1.0
17 6:1.0 17:0.025 25:0.3333333333333333 30:0.6 54:0.2 74:0.25 84:0.3333333333333333 183:0.14285714285714285 194:0.5 199:0.3333333333333333 214:1.0 368:2.0 386:0.5 982:1.0 994:1.0 1197:1.0 1405:1.0
17 25:0.3333333333333333 30:0.4 84:0.16666666666666666 138:1.0 199:0.16666666666666666 279:1.0 368:1.0 700:1.0 978:1.0
|
78b4525e062faec8d3474826d859b042c2bad522
|
44dccf35d0d05580e3fc20af3b7697b3c638d82d
|
/testcases/detectMinEigenFeatures/8.sce
|
0f30d6303bc15ed4a0ff8b3cb179ebf25f36faef
|
[] |
no_license
|
surirohit/Scilab-Image-Processing-Toolbox-Unclean
|
213caacd69badd81ec0f99a800f44a2cf8f79b5d
|
3a8057f8a8d05e7efd83704a0e732bdda23fa3a0
|
refs/heads/master
| 2020-04-09T07:31:20.042501
| 2016-06-28T09:33:57
| 2016-06-28T09:33:57
| 60,406,367
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 86
|
sce
|
8.sce
|
i = imread('test2.jpg');
corners = detectMinEigenFeatures(i,'ROI',2);
disp(corners);
|
26789d5ab4ef803549a5827ef9d4929b2f00d457
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/29/CH9/EX9.10.20/exa9_10_20.sce
|
2f15184c5d8ae4a0f6846648b276d63a0b127ba8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 411
|
sce
|
exa9_10_20.sce
|
//caption:check_for_contrallability_of_system
//example 9.10.20
//page 410
A=[0 1 0;0 0 1;0 -2 -3]
B=[0 1;0 0;1 1]
P=cont_mat(A,B);
disp(P,"Controllability Matrix=");
S=[P(1) P(4) P(7);P(2) P(5) P(8);P(3) P(6) P(9)];//collecting columns from P to form a square matrix (3*3)
d=det(S);
if d==0
printf("matrix is singular, so system is uncontrollable");
else
printf("system is controllable");
end;
|
7a17a0a3d23df1c1349c9536e6baee1797500d05
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1853/CH2/EX2.1/Ex2_1.sce
|
bb10be1ebaf039870d1d56043a287ae74f0023e0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 130
|
sce
|
Ex2_1.sce
|
//determine the fukux density
F=0.5e-3;//webers
A=4*10^-4;//meter^2
B=F/A;
disp('flux density is = '+string(B)+' Wb/m^2');
|
2bbc1ff19ec84d4ff5e735ddce79f1ee993ceb70
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/98/CH8/EX8.20/example8_20.sce
|
98ff36cfbd1f54a8dba60157811f089bae7afc33
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 637
|
sce
|
example8_20.sce
|
//Chapter 8
//Example 8_20
//Page 191
clear;clc;
l=275;
d=1.96;
us=8060;
sf=2;
ice_t=1.27;
w=0.865;
pr=2;
wcc=0.91;
wp=3.9;
t=us/sf;
vol=%pi*ice_t*(d+ice_t)*100;
wi=wcc*vol/1000;
ww=wp*(d+2*ice_t)*100/1000;
wt=sqrt((w+wi)^2+ww^2);
sag=wt*l^2/8/t;
printf("Working tension = %.0f kg \n\n", t);
printf("Volume of ice per metre length of the conductor = %.0f cm^3 \n\n", vol);
printf("Weight of ice per metre length of conductor is %.2f kg \n\n", wi);
printf("Wind force/m length of conductor is %.3f kg \n\n", ww);
printf("Total weight of conductor per metre length of conductor is %.3f kg \n\n", wt);
printf("Sag = %.2f m \n\n", sag);
|
8a5f39d32708c0e3a0bb069e9018a0aa33f58da5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2378/CH1/EX1.15/Exa_1_15.sce
|
f3251f1e04b684f9beb203aa0bd5609f15b3c118
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 325
|
sce
|
Exa_1_15.sce
|
// Exa_1_15
// Graphical representation of beats
A = 1;
w = 20;
delta = 1;
for i = 1: 1001 //making t and x matrix for various points
t(i) = 15 * (i-1)/1000;
x(i) = 2 * A * cos(delta*t(i)/2) * cos((w + delta/2)*t(i));
end
plot(t,x); //plotting
xlabel('t');
ylabel('x(t)');
title('Phenomenon of beats');
|
942f6c0a566c351b080ba943f7cb1e088929c9e0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/536/CH6/EX6.6/Example_6_6.sce
|
c4090afc2a7fa6291e3f1a12d8e41e35536d1249
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 481
|
sce
|
Example_6_6.sce
|
clc;
clear;
printf("\n Example 6.6\n");
G=15; //Mass flow rate of organic liquid
printf("\n Given:\n Mass flow rate of organic liquid = %d kg/s",G)
L_ow=2;//Length of the weir
printf("\n Length of the weir = %.1f m",L_ow);
rho_l=650;
printf("\n Density of liquid = %d kg/m^3",rho_l);
Q=G/rho_l;
//Use is made of the Francis formula (equation 6.43),
h_ow=(2/3)*(Q/L_ow)^(2/3);
printf("\n\n Calculations:\n Height of liquid flowing over the weir = %.2f mm",h_ow*1e3);
|
e4c951f83e2a955819809f6954a08ead9d5618a8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1163/CH5/EX5.6/example_5_6.sce
|
ef3b4a0f52a1b73facbf533fddd5da648ca3e737
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,272
|
sce
|
example_5_6.sce
|
clear;
clc;
disp("--------------Example 5.6---------------")
n=3; // number of bits per sample
N=3; // bit rate = 3 MHz
Fc=10; // carrier f requency = 10 MHz
L=2^n; // number of levels
S=N/n; // baud rate
two_df=S; // 2df = 1 MHz
B=L*S; // bandwidth
printf("\nThe number of levels is %d , the signal rate is %d Mbaud and the bandwidth is %d MHz.",L,S,B);// display result
// display the figure
clf();
xname("--------------Example 5.6----------------");
xarrows([0 1],[.2 .2],.5);
xset("font size",5);
xstring(1,.1,"Frequency");
xpoly([.1 .9],[.55 .55]);
xpoly([.1 .1],[.57 .53]);
xpoly([.9 .9],[.57 .53]);
xstring(.4,.6,"Bandwidth = 8 MHz");
x=linspace(.15,.85,8);
for i=1:8
xpoly([x(i) x(i)],[.18 .22]);
end
x=linspace(.1,.9,9);
for i=1:9
xpoly([x(i) x(i)],[.2 .3]);
end
for i=0:7
xarc(.17+(i/10),.31,.03,.03,0,90*64);
xarc(.1+(i/10),.31,.03,.03,90*64,91*64);
end
for i=0:7
xpoly([.11+(i/10) .19+(i/10)],[.31 .31]);
end
xset("thickness",2);
xpoly([.5 .5],[.2 .35])
xset("font size",3);
x=linspace(.15,.85,8);
for i=1:8
s=6.5+i-1;
xstring(x(i),.14,"f"+string(i));
xstring(x(i),.1,string(s));
xstring(x(i),.06,"MHz");
end
xstring(.5,.14,"fc");
xstring(.5,.1,"10");
xstring(.5,.06,"MHz");
|
77069de57c4e2985baa1384146925dd1d493b1ce
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2492/CH12/EX12.2/ex12_2.sce
|
8aa9c5c06a10a3e4e0f14a938578141fbfd7304d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 860
|
sce
|
ex12_2.sce
|
// Exa 12.2
format('v',6)
clc;
clear;
close;
// Given data
// (a) For 1024 number of bits
No_of_bits= 1024;// bits
Req_add_bits= log(No_of_bits)/log(2);
disp(Req_add_bits,"Address bits required for a memory that has 1024 number of bits");
// (b) For 256 number of bits
No_of_bits= 256;// bits
Req_add_bits= log(No_of_bits)/log(2);
disp(Req_add_bits,"Address bits required for a memory that has 256 number of bits");
// (c) For 4098 number of bits
No_of_bits= 4096;// bits
// 2^12= 4096, 2^13= 8192, where 4096<4098<8192 or 2^12<4098<2^13, hence
Req_add_bits= 13;
disp(Req_add_bits,"Address bits required for a memory that has 4098 number of bits");
// d) For 16384 number of bits
No_of_bits= 16384;// bits
Req_add_bits= log(No_of_bits)/log(2);
disp(Req_add_bits,"Address bits required for a memory that has 16384 number of bits");
|
671373aefb4c0cdb6cfc2bd2bc520ba68ecdc316
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2534/CH2/EX2.14/Ex2_14.sce
|
cc0ed34c3eb9bc1e8e8b486439ebaafac170834e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 176
|
sce
|
Ex2_14.sce
|
//Ex2_14
clc
I = 5
L = 5
WL = L*(I^2)/2
disp("I = "+string(I)+"A")//current flow
disp("L = "+string(L)+"H")//inductance
disp("WL= "+string(WL)+"joules")//energy stored
|
cad54f0e654447b61cb1876499ed6718923c7fae
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1271/CH3/EX3.14/example3_14.sce
|
13870de77e7f2bc604302226f402d9fa534b5afc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 741
|
sce
|
example3_14.sce
|
clc
// Given that
lambda = 5.89e-7 // wavelength of light in meter
mu_e1 = 1.5 // refractive index for extraordinary light in first case
mu_o1 = 1.55 // refractive index for ordinary light in first case
mu_e2 = 1.57 // refractive index for extraordinary light in second case
mu_o2 = 1.55 // refractive index for ordinary light in second case
// Sample Problem 14 on page no. 3.28
printf("\n # PROBLEM 14 # \n")
t1 = lambda / (4 * (mu_o1 - mu_e1))
t2 = lambda / (4 * (mu_e2 - mu_o2))
// calculation for thickness of plate of quartz
printf("\n Standard formula used \n t = lambda / (4 * (mu_o - mu_e)) ")
printf("\n Thickness of plate of quartz in first case = %e meter,\n And thickness of plate of quartz in second case = %e meter",t1,t2)
|
3f3b8f5fe9b7e41d3a2a2c41ed2773bc2881d43d
|
717ddeb7e700373742c617a95e25a2376565112c
|
/3434/CH9/EX9.1.iii/Ex9_1_iii.sce
|
6387a3e1dbdb8bb4e1ae650201e46f9e595dd136
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 754
|
sce
|
Ex9_1_iii.sce
|
clc
// given data
G=39.0 // temperature gradient in K/km.
h2=10.0 // depth in km
rhor=2700.0 // kg/m^3
cr=820.0 // in J/kg-K
h1=120/G // T1-T0=120 K is given
h21=h2-h1 // in km
E0byA=(rhor*(1000**3)*G*cr*h21**2)/2 // in J/km^2 Heat content per square km
thetao=G*h21/2.0 // in degree K
tau=rhor*cr*h21*(1000**3)/(QbyA*rhow*cw) // in seconds
tau=tau/(2*60*60*24*365) // in years
theta=thetao*exp(-t/tau) // in degree Kelvin
Heatinitial=E0byA/(60*60*365*24*tau)/1000000 // intial heat extraction rate in MW /km^2
Heat25=Heatinitial*exp(-t/tau) // heat extraction rate after 25 years in MW /km^2
printf( "Initial Heat extraction rate is %.2f MW/km^2",Heatinitial)
printf(" \n Final Heat extraction rate is %.2f MW/km^2",Heat25)
|
f538d1b3ec70bd4ae48adb69d2941fc1821e97ee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3637/CH4/EX4.14/Ex4_14.sce
|
7d55a7eb11f4d75595c79b27e412510ef208c43b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 142
|
sce
|
Ex4_14.sce
|
//problem 14 pagenumber 4.44
//given
n=7;format(6);
vmax=25.4;//volt
r=1/(2^n-1);
disp('Change in voltage = '+string(r*vmax)+' volt');
|
f9bb858b09ce617d43a08c30dfdb6bc22b791e06
|
717ddeb7e700373742c617a95e25a2376565112c
|
/2474/CH5/EX5.6/Ch05Ex06.sce
|
0543505ac3cce76ce2a450e1b7dc8c0ac4178880
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 759
|
sce
|
Ch05Ex06.sce
|
// Scilab code Ex5.6: Pg.209 (2008)
clc; clear;
// Part (1)
m = 1e-09; // Mass of microscopic particle, kg
L = 1e-06; // Length of box, m
h_cross = 1.055e-034; // Reduced plank's constant, J-s
e = 1.6e-19; // Charge on electron, C
E_bar = h_cross^2/(2*m*L^2); // Minimum Kinetic energy, J
E = E_bar/e ; // Minimum kinetic energy, eV
printf("\nThe minimum kinetic energy of particle = %4.2e J or %4.2e eV", E_bar, E);
// Part (2)
v = sqrt((2*E_bar)/m); // Corresponding speed, m/s
printf("\nThe speed corresponding to the obtained kinetic energy = %4.2e m/s",v);
// Result
// The minimum kinetic energy of particle = 5.57e-048 J or 3.48e-029 eV
// The speed corresponding to the obtained kinetic energy = 1.05e-019 m/s
|
32a66796beec97ed6aeaf56a7181029b5e321f7d
|
241c60928aaeb96dabe156df6f6d3c3c057da991
|
/Backend_Source_Code--PLSQL/Test_Cases/Test_PROC_delete_student_enrollments.tst
|
0fc4c1038401d028e60108726bf79f5ab2c4b618
|
[] |
no_license
|
dipikaspatil/Database_Systems
|
d606bb291136a46e22dd7b6c9f5643377ccc5ec8
|
373ade411850bf6edc33447c3cba41c5f2d80914
|
refs/heads/master
| 2020-04-13T06:25:31.127783
| 2018-12-24T20:03:03
| 2018-12-24T20:03:03
| 163,020,264
| 5
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 263
|
tst
|
Test_PROC_delete_student_enrollments.tst
|
PL/SQL Developer Test script 3.0
7
declare
begin
-- successful test case
--student_registration_system.DELETE_STUDENT_ENROLLMENT('b001', 'c0002');
-- prerequisite test case
student_registration_system.DELETE_STUDENT_ENROLLMENT('b001', 'c0001');
end;
0
0
|
8cbbaa2b93a76defb61338a6245dcf8fbe43fdf7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/617/CH4/EX4.8/Example4_8.sci
|
ad587580d777bedf6079380268c4ccd1b067ff82
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,140
|
sci
|
Example4_8.sci
|
clc();
clear;
// to compute the temperatures at different points
a=0.02; // thermal diffusivity in ft^2/hr
M=4; // the value of 4 is selected for M
x=9/12; // thickness of wall in ft
delx=1.5/12;
delr=delx^2/(a*M); // at time interval the heat transfeered will change the temperature of sink from tb2 to tb2o
printf("The time interval is to be of %.3f hr \n",delr);
t1o=370; t2o=435; t3o=480; t4o=485; t5o=440; t6o=360; t7o=250;
// tempetaures at different positions at wall in degF initially
// we know qo=Z*delx*dely*rho*Cp(tb2'-tb2)/delr So on solving equations we get tb2'=(tb1+tb3+ta2+tc2)/4
// using above formula, temperaures at different positions as shown below can be calculated in degF
ta=[370 430 470 473 431 352 250];
tb=[370 425 461 462 422 346 250];
tc=[370 420 452 452 413 341 250];
td=[370 415 444 442 404 336 250];
printf(" The temperatures at different positions 0.78 hr after, are as follows \n");
for i=1:7
printf(" The temperature at point %d is %d degF \n",i,td(i));
end
|
4db3a49293041fa80bf935148f2d595cd3324936
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2438/CH9/EX9.3/Ex9_3.sce
|
e251cee28166696758171c127e8c3cd8299b558b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 487
|
sce
|
Ex9_3.sce
|
//=============================================================================
// chapter 9 example 3
clc
clear
// Variable declaration
P = 400; // tensile force in newtons
d = 6*10^-3; // diameter of steel rod m
// Calculations
r =d/2;
E_stress = P/((%pi/4)*r*r); //e_stress in N/m^2
// Result
mprintf('Engineering stress = %3.2f MPa',E_stress/10^6);
//===========================================================================
|
8ed1403eb1dcb65d03e781712aad5a7bda4601b4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2699/CH14/EX14.22/Ex14_22.sce
|
a12f2571dbebe207d306cf454bbde2a0146acc3d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,062
|
sce
|
Ex14_22.sce
|
//example 14.22 PG-14.41
clc
clear
printf("\n a) Given=> \n\n")
printf(" ((A+B'').(A''+B))'' = (A+B'')''+(A''+B)'' ....Since (AB)''= A''+B''\n")
printf(" DeMorgan''s Therem\n\n")
printf(" = A''.B''''+A''''.B'' ....Since A''+B''=(AB)''\n")
printf(" DeMorgan''s Therem\n\n")
printf(" = A''.B + A.B'' .......Since (A'')''=A\n")
printf(" Therefore \n")
printf(" ((A+B'').(A''+B))'' = A''.B + A.B''")
printf("\n\n b) Given=> \n\n")
printf(" (((A.B)'')C)''D)'' = ((AB)'')C)''''+D'' ....Since (AB)''= A''+B''\n")
printf(" DeMorgan''s Therem\n\n")
printf(" = (AB)''.C + D'' ....Since (A'')''=A\n\n")
printf(" = (A''+B'')C + D'' ....Since (AB)''=A''+ B''\n")
printf(" DeMorgan''s Therem\n\n")
printf(" Therefore \n")
printf(" (((A.B)'')C)''D)'' = (A''+B'')C + D'' ")
|
a3e967e3ea9f240c6a87924b37d81d1981cf5bb2
|
d153e998690566a383b3cb700294956d3753b364
|
/Scilab/quickSort.sce
|
b052acbd9ec2ec206d253a3617d8fe8441ce125f
|
[] |
no_license
|
rayssalourrane/TPFINAL-CN
|
dc2c2211538fb36a7446c3ef0017a104b2375f87
|
ec7d83a359c4ed85a65cefad0d69472955b467ca
|
refs/heads/master
| 2020-06-18T09:25:39.181310
| 2019-07-11T18:45:14
| 2019-07-11T18:45:14
| 196,251,580
| 1
| 5
| null | 2019-07-11T13:29:08
| 2019-07-10T17:53:28
|
Java
|
UTF-8
|
Scilab
| false
| false
| 1,534
|
sce
|
quickSort.sce
|
function y = quickSort(n,x)
y = [];
if x == [] then
y = [];
elseif ((size(x,'r') > 1) | (length(n) > 1)) then
error ('quickSort(n,x): n deve ser escalar, e x deve ser matriz-linha')
else
select n
case 1 then
[lt,gt] = partition(x(1),x)
y = [quickSort(1,lt) x(1) quickSort(1,gt)]
else
if n > length (x)
y = quickSort(n-1,x)
else
ps = quickSort(1,x(1:n));
xs = x((n+1):$);
for i = 1:n
if i == 1 then
[lt,gt] = partition(ps(i),xs);
y = [quickSort(n,lt) ps(i)];
elseif i < n then
[lt,gt] = partition(ps(i),gt);
y = [y quickSort(n,lt) ps(i)];
else
[lt,gt] = partition(ps(i),gt);
y = [y quickSort(n,lt) ps(i) quickSort(n,gt)]
end
end
end
end
end
endfunction
function varargout = partition(x,xs)
lt=[]; gt=[];
for i = 1:length(xs)
if xs(i)<x
lt = [lt xs(i)];
elseif xs(i)>x
gt = [gt xs(i)];
end
end
varargout = list(lt,gt)
endfunction
function b = isOrd(x)
b = %T;
for i = 2 : length(x)
if x(i)<x(i-1) then
b = %F;
break
end
end
endfunction
|
869f90075f4d9e5e6cef125fe0222f64bf1a9109
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/884/CH4/EX4.12/Example4_12.sce
|
657c315e1a72598e9dc293631fb1d3eceb0e1eff
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 335
|
sce
|
Example4_12.sce
|
// Redox Titrations
clear;
clc;
printf("\t Example 4.12\n");
MKMnO4=0.1327;//molarity of KMnO4, M
VKMnO4=16.42;//volume of KMnO4, mL
nKMnO4=MKMnO4*VKMnO4/1000;
nFeSO4=5*nKMnO4;
VFeSO4=25;//volume of FeSO4, mL
MFeSO4=nFeSO4/VFeSO4*1000;
printf("\t the molarity of FeSO4 solution is : %4.4f M\n",MFeSO4);
//End
|
f339b96b4071d3ea256686c0ed39654791b9269b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1658/CH21/EX21.9/Ex21_9.sce
|
4a12b7bf5257eb44e50ccd71c601cea01d77a87b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 385
|
sce
|
Ex21_9.sce
|
clc;
VCC=10;
R1=30*10**3;
R2=20*10**3;
RE=1.5*10**3;
B1=150;
B2=100;
VBE=0.7;
Ai=B1*B2;
disp(Ai);
VR2=VCC*(R2/(R1+R2));
VB2=VR2-VBE;
VE2=VB2-VBE;
IE2=VE2/RE;
re2=25/(IE2*10**3);
disp('ohm',re2*1,"re2=");
Ib2=IE2/B2;
IE1=Ib2;
re1=25/(IE1*10**3);
disp('ohm',re1*1,"re1=");
Ri1=(R1*R2)/(R1+R2);
disp('Kohm',Ri1*10**-3,"Ri1=");
Av=RE/((re1/B2)+(re2+RE));
disp(Av);
|
85adfecd3268852d9cd8a0efeae2f9d24eaf538e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3446/CH3/EX3.9/Ex3_9.sce
|
b5a26f7626fc90ac50a6bb3f2633ecf3f856c618
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 381
|
sce
|
Ex3_9.sce
|
//Exa 3.9
// To calculate probability of exceeding signal beyond the receiver sensitivity.
clc;
clear all;
SSmean=-100; //signal strength(dBm)
Sr=-110; //receiver sensitivity(dBm)
sd=10; //standard deviation(dB)
//solution
P_Smin=(0.5-0.5*erf((Sr-SSmean)/(sqrt(2)*sd)));
printf('probability of exceeding signal beyond the receiver sensitivity is %.2f \n',P_Smin);
|
8fc098ce0d749755132d7be649469645367819ba
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3875/CH10/EX10.3/Ex10_3.sce
|
334e10b9dd751f74c3f3855ab99a1818a2aeb5cd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 519
|
sce
|
Ex10_3.sce
|
clc;
clear;
h=4.136*10^-15 //Plancks constant in eV
c=3*10^8 //velocity of light in m/s
R=1.097*10^7 //Rydberg constant m^-1
lambda1= 900 //wavelength in nm
T1_by_T2=1/3 //Ratio of temperature T1 to T2
n1=2 //energy level of atom
n2=3 //energy level of atom
//calculation
lambda2=(lambda1*T1_by_T2)//wavelength in nm
E=(h*c)/(lambda2*10^-9) //Energy of incident photon in eV
Ex=R*h*c*((1/n1^2)-(1/n2^2)) //Excitation energy in eV
W=E-Ex
mprintf("The work function of the metal is = %1.2f eV",W)
|
93842b818bdc5bad44d6ce7dadfb974da7f5e2f6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2534/CH2/EX2.6/Ex2_6.sce
|
b4a044db1264bf08b24b2b9e05e884b5bd78554e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 247
|
sce
|
Ex2_6.sce
|
//Ex2_6
clc
C = 12* 10^ -6
f = 1.0*10^3
Xc = 1/(2*%pi*f*C)
disp("C = "+string(C)+"F")//capacitance
disp("at... f = "+string(f)+"Hz")//frequency
disp("Xc = 1/(2*pi*f*C) = "+string(1/(2*%pi*f*C))+"ohm")//calculation for capacitive reactance
|
47a0c54794b47316087cd2f97779b4c76a7027f4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/716/CH2/EX2.4.c/Solved_Ex2_4c.sce
|
a114d7aa93c062be1161b5b84a3c4b930a162757
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 520
|
sce
|
Solved_Ex2_4c.sce
|
//find power of periodic signal x(t)=3cos(5*w0*t)
clc;
//To plot signal*************************//
t=-5:0.01:5;
w0=0.25*%pi;
x=3*cos(5*w0.*t);//given signal
plot(t,x);
//***************************************//
t=-50:0.01:50;
x=3*cos(5*w0.*t);
T=length(t);
//To calculate Energy
xsq=x.^2;//adds squares of all the 'x' values(integrates 'x^2' terms)
v=sum(xsq);//energy
//To calculate Power
xsq=x.^2;
P=1/T*v;//divide by 2T,to take the average rate of energy(gives power)
disp('watts',P,'Power=');
|
5556c1f6460656b0327e73c40a8dd15f699a8c7c
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/tweet/bow/bow.4_1.tst
|
5a04820b5aaa975b305a8e9f17f61056460a8541
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 41,504
|
tst
|
bow.4_1.tst
|
4 41:0.14285714285714285 45:0.3333333333333333 54:1.0 75:0.05 1049:1.0 1774:1.0 2905:1.0 3198:1.0 4760:1.0 4848:0.25 4967:1.0 5028:1.0 5218:1.0 5300:1.0 5378:1.0 5736:0.3333333333333333 5737:1.0 5871:1.0 6691:0.5 7107:1.0 7108:1.0
4 18:0.5 75:0.1 82:0.125 122:0.6 172:0.5 192:0.1 196:0.3333333333333333 252:0.6666666666666666 277:0.6666666666666666 289:1.0 441:1.0 568:0.16666666666666666 707:1.0 712:0.25 913:0.5 936:1.0 966:1.0 2054:1.0 2103:2.0 3811:1.0 4765:0.1111111111111111 4899:1.0 5022:1.0 5069:0.06666666666666667 5168:0.5 5193:1.0 5866:1.0 6089:1.0 6690:1.0 6691:0.5 6803:1.0 6820:1.0
4 18:0.25 24:0.5 36:0.1 45:0.3333333333333333 67:0.5 75:0.05 122:0.4 192:0.1 368:1.0 568:0.16666666666666666 913:0.5 936:1.0 1216:1.0 1280:1.0 2054:2.0 2623:1.0 3000:1.0 3640:1.0 4567:1.0 4759:0.010752688172043012 4778:0.5 5051:1.0 5069:0.06666666666666667 5377:1.0 5456:1.0
4 63:2.0 67:0.5 85:0.6666666666666666 98:0.5 104:0.5 122:0.2 172:0.5 176:0.5 305:0.3333333333333333 337:0.5 398:0.2 840:1.0 966:1.0 1216:1.0 2277:1.0 2365:1.0 2638:0.5 4144:1.0 4200:1.0 4748:0.043478260869565216 4778:0.5 4831:1.0 5009:1.0 5069:0.06666666666666667 5377:1.0 5570:1.0 5646:1.0 6273:1.0 7230:1.0 7459:1.0
4 15:0.5 18:0.25 67:0.5 75:0.05 122:0.4 124:0.3333333333333333 191:0.3333333333333333 192:0.1 289:1.0 653:1.0 691:1.0 767:1.0 818:1.0 910:1.0 1291:1.0 2069:1.0 2898:1.0 3678:1.0 4778:0.5 4817:0.2 4907:1.0 5033:1.0 5034:1.0 5387:1.0 5496:1.0 5774:1.0 5836:1.0 5979:1.0 5993:1.0
4 15:2.0 18:0.25 35:0.1 41:0.14285714285714285 47:0.5 63:2.0 75:0.15 98:0.5 104:0.5 113:1.0 122:0.6 176:0.5 261:0.3333333333333333 337:0.5 398:0.4 419:0.5 513:1.0 531:1.0 599:1.0 707:1.0 1143:1.0 1891:1.0 2277:1.0 2452:0.3333333333333333 2857:1.0 4144:1.0 4157:1.0 4200:1.0 4759:0.010752688172043012 4831:1.0 4880:1.0 5009:1.0 5029:1.0 5035:0.5 5202:1.0 5203:1.0 5239:1.0 5447:1.0 5686:1.0 5822:0.3333333333333333 6446:1.0 6639:1.0 6691:0.5 6923:1.0 6924:1.0 6991:1.0
4 18:0.25 41:0.2857142857142857 63:3.0 67:0.5 75:0.05 84:0.25 98:0.5 122:0.6 176:0.5 337:0.5 398:0.4 639:0.07692307692307693 709:1.0 732:1.0 774:1.0 1604:1.0 1893:1.0 2277:1.0 4144:1.0 4759:0.010752688172043012 4765:0.1111111111111111 4831:1.0 5009:1.0 5428:1.0 5571:1.0 5715:1.0 5722:1.0 6050:1.0 6359:1.0
4 15:0.5 24:1.0 27:0.14285714285714285 36:0.2 39:0.25 75:0.1 85:0.3333333333333333 93:0.5 122:0.4 191:0.3333333333333333 192:0.1 326:1.0 337:0.5 398:1.0 434:3.0 454:0.2 531:1.0 639:0.07692307692307693 653:1.0 691:1.0 707:1.0 767:1.0 1435:1.0 1453:1.0 1625:3.0 2069:1.0 2898:1.0 3703:1.0 4817:0.2 4856:1.0 4907:1.0 4948:1.0 5033:1.0 5034:1.0 5072:0.5 5306:1.0 5335:1.0 5725:1.0 5774:1.0 5993:1.0 6451:1.0 7253:1.0 7259:1.0
4 12:0.043478260869565216 18:0.25 39:0.25 53:2.0 63:2.0 67:1.0 75:0.1 82:0.125 98:0.5 104:0.5 122:0.4 139:1.0 144:1.0 176:0.5 192:0.2 213:1.0 226:0.25 230:1.0 277:0.6666666666666666 337:0.5 398:0.2 645:0.25 688:0.5 767:1.0 774:1.0 1620:1.0 2076:1.0 2277:1.0 2638:0.5 2952:1.0 3854:1.0 4144:1.0 4200:1.0 4748:0.043478260869565216 4817:0.2 4831:1.0 4899:1.0 5009:1.0 5453:0.5 5574:1.0 5934:1.0 6422:1.0 6691:0.5 6858:1.0 6923:1.0 6924:1.0
4 18:0.25 39:0.25 63:2.0 67:1.0 75:0.1 82:0.125 98:0.5 104:0.5 122:0.4 128:1.0 144:1.0 176:0.5 192:0.1 230:1.0 261:0.3333333333333333 277:0.3333333333333333 337:0.5 398:0.4 473:1.0 639:0.07692307692307693 733:1.0 767:1.0 1418:1.0 1620:1.0 1903:0.3333333333333333 2076:1.0 2277:1.0 2952:1.0 3000:1.0 4144:1.0 4200:1.0 4748:0.043478260869565216 4769:0.5 4831:1.0 4851:1.0 4853:1.0 4866:1.0 5009:1.0 5440:1.0 5499:1.0 5934:1.0 6422:1.0 6691:0.5 7218:1.0
4 15:1.0 18:0.25 24:0.5 36:0.1 41:0.14285714285714285 75:0.1 96:1.0 104:0.5 133:1.0 139:1.0 166:0.25 322:1.0 451:1.0 494:1.0 502:1.0 688:0.5 712:0.25 1179:1.0 1276:1.0 1689:1.0 2069:1.0 3678:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4760:1.0 4817:0.2 4915:1.0 4919:1.0 5032:1.0 5033:1.0 5047:1.0 5139:1.0 5140:1.0 5224:1.0 5265:1.0 5582:1.0 6130:1.0
4 15:0.5 27:0.14285714285714285 58:0.25 67:1.5 75:0.1 136:1.0 192:0.2 214:1.0 398:0.2 513:1.0 535:1.0 557:1.0 564:1.0 588:1.0 620:0.5 1171:1.0 1529:1.0 1903:0.3333333333333333 2452:0.3333333333333333 2857:1.0 2898:1.0 3000:1.0 4567:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4927:1.0 5011:1.0 5036:1.0 5126:1.0 5196:1.0 5202:1.0 5878:1.0 5881:1.0 6691:0.5 6781:1.0
4 18:0.25 28:1.0 53:1.0 54:1.0 67:1.0 75:0.1 97:1.0 98:0.5 122:0.2 133:1.0 363:0.5 441:1.0 451:1.0 454:0.2 477:1.0 501:1.0 531:1.0 688:0.5 782:1.0 799:1.0 1019:1.0 1276:1.0 3316:1.0 4759:0.010752688172043012 4765:0.1111111111111111 4814:0.5 4822:1.0 4903:1.0 4982:1.0 5107:1.0 5172:0.25 5244:1.0 5289:1.0 6556:1.0 6618:1.0 6625:1.0 6691:0.5
4 18:0.25 20:0.1 24:0.5 63:2.0 67:0.5 75:0.15 104:0.5 122:0.2 176:0.5 337:0.5 398:0.2 474:1.0 958:1.0 1015:1.0 1171:1.0 1708:1.0 2277:1.0 2623:1.0 2638:0.5 3987:1.0 4144:1.0 4200:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4831:1.0 4907:1.0 5009:1.0 5260:1.0 5435:1.0 5765:1.0 6389:1.0 6691:0.5 6909:1.0 6923:1.0 7330:1.0
4 3:1.0 12:0.10869565217391304 18:0.75 28:1.0 39:0.5 47:0.5 53:1.0 57:0.3333333333333333 63:2.0 67:0.5 69:0.5 75:0.1 104:0.5 122:0.2 176:0.5 216:1.0 235:0.3333333333333333 261:0.3333333333333333 289:1.0 305:0.3333333333333333 337:0.5 398:0.2 566:0.2 818:1.0 866:1.0 1042:1.0 1276:1.0 1422:1.0 1607:0.3333333333333333 2103:1.0 2277:1.0 2638:0.5 4144:2.0 4200:1.0 4748:0.08695652173913043 4759:0.010752688172043012 4778:0.5 4813:1.0 4831:1.0 4842:1.0 4847:1.0 4946:1.0 5009:1.0 5150:1.0 5278:1.0 5435:1.0 6923:1.0 7269:1.0 7270:1.0 7330:1.0
4 18:0.25 41:0.14285714285714285 53:1.0 67:1.0 73:1.0 75:0.15 84:0.25 85:0.3333333333333333 122:0.4 252:0.3333333333333333 368:1.0 398:0.2 409:0.3333333333333333 416:1.0 454:0.2 599:1.0 619:0.5 639:0.07692307692307693 671:1.0 803:0.5 910:1.0 2145:1.0 2277:2.0 2704:1.0 3605:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4764:1.0 4778:0.5 4785:1.0 4817:0.2 4845:1.0 4907:1.0 5009:1.0 5143:1.0 5428:1.0 5832:1.0 6013:1.0 6020:1.0 6467:1.0 7058:1.0
4 47:0.5 50:1.0 53:2.0 54:1.0 67:1.5 75:0.15 77:0.6666666666666666 122:0.6 191:0.3333333333333333 192:0.2 209:0.25 257:1.0 289:1.0 398:0.2 416:1.0 473:1.0 513:1.0 516:1.0 531:1.0 671:1.0 718:1.0 1689:1.0 1980:0.07692307692307693 3000:1.0 3074:1.0 4437:1.0 4799:1.0 4822:1.0 4855:1.0 4917:1.0 4919:1.0 4921:1.0 5004:1.0 5157:1.0 5244:1.0 5282:1.0 5690:1.0 5868:1.0
4 15:0.5 18:0.75 24:0.5 27:0.14285714285714285 41:0.2857142857142857 67:0.5 74:0.5 98:0.5 134:1.0 191:0.3333333333333333 192:0.1 230:1.0 235:0.3333333333333333 398:0.2 454:0.2 472:1.0 619:0.5 707:1.0 739:0.5 850:1.0 966:1.0 1740:1.0 1813:1.0 1988:1.0 2262:1.0 4082:1.0 4144:1.0 4765:0.1111111111111111 4831:1.0 4944:1.0 4948:1.0 5031:1.0 5032:1.0 5172:0.25 5276:1.0 5435:1.0 5484:1.0 5540:1.0 5601:1.0 5763:1.0 5796:1.0 7278:1.0
4 27:0.14285714285714285 67:1.0 122:0.2 126:1.0 191:0.6666666666666666 192:0.3 398:0.4 451:2.0 588:1.0 639:0.07692307692307693 767:1.0 1529:1.0 1988:1.0 2898:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4817:0.2 4819:1.0 4831:1.0 4934:1.0 4935:1.0 4982:1.0 5150:1.0 5395:0.5 5991:1.0 6419:1.0 6691:0.5
4 1:0.14285714285714285 15:0.5 18:0.25 41:0.14285714285714285 45:0.3333333333333333 53:1.0 75:0.3 96:1.0 104:0.5 122:0.4 139:1.0 172:0.5 191:0.6666666666666666 226:0.25 289:1.0 398:0.2 454:0.2 455:1.0 613:1.0 619:0.5 639:0.07692307692307693 1257:1.0 1295:1.0 1435:1.0 1604:1.0 1980:0.07692307692307693 2560:1.0 3678:1.0 4084:1.0 4759:0.021505376344086023 4765:0.1111111111111111 4817:0.2 4837:1.0 4868:1.0 4908:1.0 4945:1.0 5033:1.0 5034:1.0 5035:0.5 5139:1.0 5672:1.0 5796:1.0 6253:1.0 6389:1.0 6691:0.5 6899:1.0 6900:1.0 6905:1.0 7218:1.0 7324:1.0
4 3:1.0 15:1.0 18:0.25 58:0.5 67:2.0 85:0.3333333333333333 96:1.0 104:0.5 398:0.2 416:1.0 513:1.0 533:1.0 557:1.0 630:1.0 639:0.07692307692307693 688:0.5 1508:1.0 2452:0.3333333333333333 2857:1.0 4144:2.0 4842:1.0 4944:1.0 5202:1.0 6952:1.0
4 18:0.25 27:0.14285714285714285 41:0.2857142857142857 67:0.5 69:0.5 75:0.1 104:0.5 122:0.2 192:0.1 322:1.0 326:1.0 329:1.0 451:1.0 454:0.2 496:1.0 619:1.0 630:1.0 688:0.5 1149:0.5 1857:1.0 2560:1.0 3475:1.0 3678:1.0 4671:1.0 4814:0.5 4981:1.0 4982:1.0 6024:1.0 6112:1.0 6478:1.0 7427:1.0 7473:1.0
4 1:0.14285714285714285 24:0.5 41:0.2857142857142857 48:0.25 67:1.0 73:1.0 75:0.05 122:0.6 192:0.1 368:1.0 398:0.2 473:1.0 544:1.0 707:1.0 733:1.0 1418:1.0 1488:1.0 2332:1.0 2451:0.3333333333333333 3000:1.0 4082:1.0 4877:0.5 4883:1.0 4910:1.0 4985:0.3333333333333333 5094:1.0 5207:1.0 5352:0.5 5772:1.0 7473:1.0
4 15:1.0 18:0.25 41:0.14285714285714285 47:0.5 50:1.0 67:0.5 75:0.15 82:0.125 98:0.5 122:0.4 167:1.0 192:0.2 252:0.6666666666666666 261:0.3333333333333333 305:0.3333333333333333 454:0.2 619:0.5 910:1.0 911:1.0 1194:1.0 1435:1.0 1535:0.3333333333333333 2560:1.0 4144:1.0 4717:1.0 4759:0.010752688172043012 4765:0.1111111111111111 4814:0.5 4944:1.0 5395:0.5 5818:1.0 6655:1.0
4 3:1.0 24:0.5 39:0.25 41:0.14285714285714285 67:0.5 69:0.5 75:0.3 82:0.125 96:1.0 122:0.6 139:1.0 192:0.1 337:0.5 398:0.4 451:1.0 454:0.2 502:1.0 588:1.0 732:1.0 767:1.0 877:1.0 915:1.0 1178:1.0 1295:1.0 1857:1.0 4144:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4817:0.2 4944:1.0 4948:1.0 5008:1.0 5222:1.0 5275:1.0 5460:1.0 5796:1.0 5797:1.0 6802:1.0 6905:1.0 6923:1.0 6924:1.0
4 18:0.25 41:0.14285714285714285 67:1.0 75:0.05 79:0.3333333333333333 128:1.0 226:0.25 252:0.3333333333333333 337:1.0 354:1.0 454:0.2 501:1.0 639:0.07692307692307693 877:1.0 911:1.0 1149:0.5 1492:1.0 1903:0.3333333333333333 3953:1.0 5686:1.0 5708:1.0 7118:1.0
4 47:0.5 64:0.5 69:0.5 74:0.5 87:1.0 122:0.2 152:0.3333333333333333 192:0.1 398:0.2 451:1.0 477:1.0 692:1.0 1180:1.0 1492:1.0 4157:1.0 4814:0.5 4897:1.0 4944:1.0 5029:1.0 5030:1.0 5035:0.5 5202:1.0
4 18:0.25 27:0.14285714285714285 39:0.25 41:0.2857142857142857 42:1.0 53:1.0 54:1.0 75:0.1 84:0.25 85:0.3333333333333333 98:0.5 122:0.4 191:0.3333333333333333 192:0.1 216:1.0 398:0.2 454:0.2 619:0.5 772:0.25 1488:1.0 1857:1.0 2560:1.0 2620:1.0 3612:1.0 3682:1.0 4144:1.0 4834:1.0 5247:1.0 5796:1.0 7161:1.0
4 3:1.0 12:0.043478260869565216 24:1.0 27:0.14285714285714285 28:1.0 38:0.5 41:0.2857142857142857 47:0.5 64:0.5 67:2.0 75:0.2 85:0.3333333333333333 87:1.0 96:1.0 98:0.5 99:1.0 104:0.5 113:1.0 122:0.2 139:1.0 176:0.5 192:0.2 197:0.2 451:1.0 496:1.0 506:1.0 733:1.0 866:1.0 912:2.0 913:0.5 1178:1.0 1446:1.0 1529:1.0 1607:0.3333333333333333 2103:1.0 2836:0.25 2898:1.0 3491:1.0 3841:1.0 4012:2.0 5022:2.0 5057:1.0 5168:0.5 5337:1.0 5428:1.0 5584:1.0 5721:1.0 5781:1.0
4 4:1.0 24:0.5 35:0.1 38:0.5 39:0.25 41:0.14285714285714285 67:0.5 75:0.1 85:0.6666666666666666 98:0.5 122:0.6 192:0.1 226:0.5 454:0.2 772:0.25 803:0.5 864:1.0 1014:1.0 1903:0.3333333333333333 2534:1.0 4082:1.0 4759:0.021505376344086023 4765:0.1111111111111111 4831:1.0 4834:1.0 5355:1.0 5455:1.0 5771:1.0 5990:1.0 7134:1.0 7135:1.0 7136:1.0 7138:1.0 7297:1.0
4 18:0.25 20:0.1 24:1.5 35:0.1 47:0.5 52:0.5 67:0.5 75:0.1 85:0.3333333333333333 98:0.5 122:0.2 139:1.0 172:0.5 226:0.25 308:1.0 360:1.0 368:1.0 398:0.2 441:1.0 639:0.07692307692307693 774:1.0 1557:1.0 2309:1.0 2623:1.0 3322:2.0 4082:1.0 4996:1.0 5249:1.0 5418:1.0 5776:1.0 5881:1.0 6781:1.0 6909:1.0 6953:1.0 7111:1.0 7145:1.0 7146:1.0 7147:1.0
4 1:0.14285714285714285 3:1.0 12:0.043478260869565216 18:0.25 24:0.5 41:0.14285714285714285 52:0.5 67:1.0 72:1.0 75:0.05 82:0.125 122:0.4 128:1.0 172:0.5 192:0.1 268:2.0 331:0.3333333333333333 527:1.0 538:0.5 545:1.0 707:1.0 772:0.25 774:1.0 1027:1.0 1089:1.0 2103:1.0 2638:0.5 3926:1.0 4531:1.0 4759:0.010752688172043012 4907:1.0 5172:0.25 5821:1.0 6690:1.0 7107:1.0 7108:1.0 7266:1.0 7267:1.0
4 15:1.5 35:0.1 41:0.2857142857142857 47:0.5 58:0.25 67:1.0 74:0.5 93:0.5 98:1.0 104:0.5 113:1.0 122:0.6 192:0.2 341:1.0 387:1.0 398:0.4 409:0.3333333333333333 599:1.0 707:3.0 772:0.25 803:0.5 1047:1.0 1263:1.0 1276:1.0 1883:1.0 2336:1.0 2517:1.0 3682:1.0 4082:1.0 4144:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4768:0.5 4834:1.0 5048:1.0 5255:1.0 5418:1.0 5451:1.0 5484:1.0 5849:1.0 5892:1.0 6141:1.0 6446:1.0 6991:1.0
4 13:0.2 18:0.25 41:0.14285714285714285 45:0.3333333333333333 67:1.5 75:0.05 98:0.5 113:1.0 122:0.4 139:1.0 226:0.25 235:0.3333333333333333 354:1.0 368:1.0 496:1.0 535:1.0 557:1.0 813:1.0 3233:1.0 4765:0.1111111111111111 5145:1.0 5172:0.25 5199:1.0 5517:1.0 6201:1.0 6815:1.0
4 12:0.021739130434782608 13:0.2 18:0.25 41:0.5714285714285714 53:1.0 63:2.0 75:0.05 98:0.5 104:0.5 122:0.2 166:0.25 191:0.3333333333333333 252:0.3333333333333333 277:0.3333333333333333 303:1.0 368:1.0 451:1.0 535:1.0 538:0.5 767:1.0 998:1.0 1418:1.0 1453:1.0 2623:1.0 3926:1.0 4759:0.010752688172043012 4765:0.1111111111111111 4828:1.0 4901:1.0 4996:1.0 5172:0.25 5288:1.0 5568:1.0 5975:1.0
4 18:0.25 41:0.2857142857142857 42:1.0 54:1.0 75:0.1 98:0.5 122:0.2 139:1.0 235:0.3333333333333333 550:1.0 1581:1.0 1774:1.0 2560:1.0 4649:1.0 4759:0.010752688172043012 4778:0.5 4848:0.25 4907:1.0 4983:1.0 4996:1.0 5582:1.0 6250:1.0
4 15:1.0 18:0.25 41:0.14285714285714285 42:1.0 67:1.5 80:1.0 85:0.3333333333333333 104:0.5 139:2.0 192:0.1 398:0.2 438:1.0 451:1.0 454:0.2 550:1.0 557:1.0 767:1.0 866:1.0 911:1.0 912:1.0 1081:1.0 1171:1.0 1740:1.0 2262:1.0 2683:1.0 2890:1.0 4157:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4952:1.0 5000:1.0 5029:1.0 5030:1.0 5496:1.0 5582:1.0
4 41:0.14285714285714285 53:5.0 58:0.75 75:0.1 98:0.5 257:1.0 451:1.0 772:0.25 1171:3.0 1511:1.0 1618:1.0 3000:1.0 4082:1.0 4437:1.0 4649:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4778:0.5 4907:1.0 4924:1.0 5040:1.0 5074:1.0 5220:1.0 5321:1.0 5586:1.0 6460:1.0 6599:1.0 6988:2.0
4 24:1.0 41:0.14285714285714285 67:1.0 75:0.2 104:0.5 122:0.2 172:0.5 226:0.25 289:1.0 436:1.0 527:1.0 534:1.0 538:0.5 799:1.0 910:1.0 918:1.0 1988:1.0 2051:1.0 4759:0.03225806451612903 4765:0.2222222222222222 4834:1.0 4997:1.0 5323:1.0 5454:2.0 5818:1.0 5895:1.0 7089:1.0
4 15:1.0 18:0.25 47:0.5 53:1.0 67:3.0 75:0.1 79:0.3333333333333333 136:1.0 192:0.4 209:0.25 230:1.0 235:0.3333333333333333 243:1.0 257:1.0 277:0.3333333333333333 322:1.0 326:1.0 401:1.0 473:1.0 535:2.0 557:1.0 766:1.0 910:1.0 931:1.0 1291:1.0 1435:1.0 1511:1.0 1689:1.0 1854:1.0 1903:0.3333333333333333 2898:1.0 3000:1.0 3214:1.0 3780:1.0 4437:1.0 4748:0.043478260869565216 4759:0.021505376344086023 4760:1.0 4814:0.5 4817:0.2 4868:1.0 4884:0.5 4919:1.0 4921:1.0 5032:1.0 5139:1.0 5276:1.0 6649:1.0
4 12:0.021739130434782608 15:0.5 18:0.25 41:0.14285714285714285 42:1.0 47:1.0 67:1.0 75:0.1 98:0.5 134:1.0 198:0.2 226:0.25 230:1.0 368:1.0 398:0.2 451:1.0 477:1.0 718:1.0 803:1.0 840:2.0 911:1.0 1216:1.0 2204:1.0 2471:1.0 3490:0.5 4748:0.043478260869565216 4759:0.010752688172043012 4814:0.5 5293:1.0 5428:1.0 5671:1.0 5714:1.0 5768:2.0 5892:1.0 5904:1.0 6199:1.0 6791:2.0 6792:1.0
4 18:0.5 24:1.5 41:0.14285714285714285 67:0.5 75:0.2 104:0.5 124:0.3333333333333333 191:0.6666666666666666 277:0.3333333333333333 289:1.0 368:1.0 535:1.0 645:0.25 866:1.0 918:1.0 1263:1.0 1988:1.0 2103:1.0 3682:1.0 4084:1.0 4749:1.0 4757:1.0 4759:0.010752688172043012 4765:0.2222222222222222 4802:1.0 4822:1.0 4823:1.0 4824:1.0 4868:1.0 4905:1.0 4915:2.0 4997:1.0 5036:1.0 5125:1.0 5150:1.0 5155:1.0 5454:2.0 6201:1.0 6219:1.0 6801:1.0 6802:1.0 6803:1.0 7244:1.0
4 41:0.14285714285714285 45:0.3333333333333333 54:1.0 58:0.25 67:0.5 98:0.5 128:1.0 192:0.2 225:1.0 277:1.0 599:1.0 645:0.25 812:1.0 913:0.5 1774:1.0 1850:1.0 1891:1.0 4012:1.0 4748:0.08695652173913043 4759:0.021505376344086023 4848:0.25 4921:1.0 4997:1.0 5182:1.0 5822:0.3333333333333333 5834:1.0 6183:1.0 6376:1.0 6377:1.0 6384:1.0 6385:1.0
4 18:0.5 47:0.5 67:0.5 82:0.125 98:0.5 139:1.0 191:0.3333333333333333 235:0.3333333333333333 277:0.3333333333333333 398:0.2 450:1.0 645:0.25 733:1.0 765:1.0 779:1.0 782:1.0 812:1.0 898:1.0 1418:1.0 1486:1.0 2450:1.0 4748:0.08695652173913043 4759:0.021505376344086023 4765:0.1111111111111111 4927:1.0 4952:1.0 5026:0.5 5074:1.0 5075:1.0 5122:1.0 5249:1.0 5428:1.0 5439:1.0 5574:1.0 5587:1.0 6385:1.0 6462:1.0 6700:1.0
4 24:0.5 27:0.14285714285714285 38:0.5 47:0.5 67:0.5 74:0.5 75:0.3 104:0.5 122:0.2 191:0.6666666666666666 225:1.0 527:1.0 620:0.5 630:1.0 647:1.0 653:1.0 718:1.0 1143:1.0 1257:1.0 1917:1.0 4666:1.0 4765:0.1111111111111111 4778:0.5 4892:1.0 4938:1.0 4996:1.0 5026:0.5 5035:0.5 5182:1.0 5244:1.0 5279:1.0 5376:1.0 5439:1.0 5455:1.0 6044:1.0 6382:1.0 6781:1.0
4 12:0.021739130434782608 18:0.5 41:0.7142857142857143 47:0.5 53:1.0 75:0.15 85:1.3333333333333333 122:0.4 191:0.3333333333333333 277:0.6666666666666666 289:1.0 337:2.5 398:0.2 436:1.0 500:5.0 639:0.15384615384615385 645:0.25 913:1.0 936:2.0 966:1.0 1422:1.0 1671:1.0 2277:1.0 3435:1.0 3799:1.0 4748:0.08695652173913043 4759:0.021505376344086023 4765:0.1111111111111111 4855:1.0 4887:0.5 5023:1.0 5173:2.0 5308:1.0 5560:1.0 5622:1.0 5646:1.0 5718:0.25 6172:1.0 6385:1.0 6963:1.0
4 3:1.0 12:0.021739130434782608 27:0.14285714285714285 35:0.1 41:0.14285714285714285 47:0.5 53:2.0 67:1.5 74:1.0 75:0.1 82:0.125 94:2.0 98:0.5 122:0.4 139:2.0 191:0.3333333333333333 192:0.3 209:0.25 257:1.0 277:0.3333333333333333 326:1.0 329:1.0 368:1.0 398:0.2 472:1.0 477:1.0 521:1.0 535:1.0 645:0.25 732:1.0 767:1.0 898:1.0 931:1.0 1069:1.0 1255:0.5 4403:1.0 4765:0.1111111111111111 4822:1.0 4846:1.0 4890:1.0 4934:1.0 5139:1.0 5358:1.0 5402:1.0 5410:1.0 5428:1.0 5598:1.0 5934:1.0 6110:1.0 6141:1.0 6614:1.0 7266:1.0 7463:1.0
4 1:0.14285714285714285 15:1.0 41:0.2857142857142857 47:1.5 67:1.0 75:0.15 82:0.125 85:0.3333333333333333 98:0.5 122:0.6 191:0.3333333333333333 192:0.1 225:1.0 305:0.6666666666666666 441:1.0 455:1.0 472:2.0 500:1.0 615:1.0 630:1.0 636:1.0 767:1.0 1263:1.0 1276:1.0 1435:2.0 1495:1.0 1607:0.3333333333333333 1708:1.0 2560:1.0 2680:1.0 2979:1.0 3490:0.5 4765:0.1111111111111111 4868:1.0 5182:1.0 5375:1.0 5761:1.0 6241:1.0 7001:1.0
4 18:0.25 24:1.0 41:0.14285714285714285 54:1.0 67:0.5 75:0.05 98:0.5 122:0.2 363:0.5 451:1.0 560:2.0 898:1.0 1988:1.0 2241:2.0 2560:1.0 2890:1.0 4748:0.043478260869565216 4759:0.021505376344086023 4765:0.1111111111111111 4896:1.0 4934:1.0 5040:2.0 5435:2.0 5455:1.0 5744:1.0 6662:1.0 7268:1.0
4 12:0.043478260869565216 18:0.5 44:1.0 53:1.0 67:1.5 75:0.05 85:0.3333333333333333 87:1.0 98:0.5 122:0.2 124:0.3333333333333333 139:1.0 192:0.1 198:0.2 277:0.3333333333333333 368:1.0 398:0.4 451:2.0 472:2.0 615:1.0 782:1.0 803:0.5 1276:1.0 1453:1.0 1527:1.0 1856:1.0 1988:1.0 2204:1.0 2323:1.0 2471:1.0 2952:1.0 3211:1.0 4564:1.0 4748:0.043478260869565216 4759:0.021505376344086023 4765:0.1111111111111111 4934:1.0 4935:1.0 5139:1.0 5275:1.0 5365:1.0 5455:1.0 5547:1.0 5563:1.0 5768:1.0 5892:1.0 6419:1.0 6791:1.0 6792:1.0 7034:1.0 7082:1.0 7320:1.0
4 12:0.021739130434782608 35:0.1 41:0.14285714285714285 45:0.3333333333333333 67:0.5 75:0.2 82:0.125 84:0.5 87:1.0 98:0.5 128:1.0 177:0.25 191:0.3333333333333333 216:1.0 236:1.0 866:1.0 958:1.0 1094:1.0 1419:1.0 1441:1.0 2204:1.0 3682:1.0 4822:2.0 4847:1.0 5023:1.0 5266:1.0 5289:1.0 5295:1.0 5498:1.0 5748:1.0 5749:1.0 5750:1.0 6201:1.0 6781:1.0 6801:1.0 6805:1.0
4 12:0.06521739130434782 18:0.25 20:0.1 41:0.14285714285714285 53:1.0 63:2.0 75:0.05 104:0.5 122:0.6 139:1.0 192:0.2 277:0.3333333333333333 451:1.0 454:0.2 499:1.0 538:0.5 821:1.0 958:1.0 998:1.0 1418:1.0 1891:1.0 1980:0.07692307692307693 2952:1.0 3367:1.0 4759:0.010752688172043012 4765:0.2222222222222222 4837:1.0 4901:1.0 4945:1.0 4948:1.0 5023:1.0 5288:1.0 5721:1.0 5818:1.0 6003:1.0 6123:1.0 6826:1.0
4 12:0.021739130434782608 18:0.5 41:0.14285714285714285 47:0.5 67:1.0 96:1.0 108:0.3333333333333333 122:0.4 191:0.3333333333333333 192:0.1 222:1.0 277:0.3333333333333333 441:1.0 451:1.0 476:1.0 767:1.0 772:0.25 782:1.0 799:1.0 958:1.0 1009:1.0 1801:1.0 1980:0.07692307692307693 3797:1.0 4703:1.0 4759:0.021505376344086023 4765:0.2222222222222222 4837:1.0 4945:1.0 5264:0.1111111111111111 5818:1.0 5895:1.0 6711:1.0 7102:1.0 7283:1.0 7324:1.0 7373:1.0
4 15:0.5 18:0.25 24:0.5 41:0.14285714285714285 45:0.3333333333333333 67:0.5 74:0.5 84:0.25 93:0.5 122:0.6 139:1.0 191:0.3333333333333333 192:0.3 238:1.0 257:1.0 419:0.5 451:2.0 588:2.0 645:0.25 772:0.25 910:1.0 1149:0.5 1295:2.0 1529:1.0 2025:1.0 2365:1.0 2977:1.0 3214:1.0 4082:1.0 4144:1.0 4175:1.0 4814:0.5 5035:1.0 5166:1.0 5167:2.0 5202:1.0 5570:1.0 6218:1.0 6581:1.0 6933:1.0
4 15:1.0 24:0.5 41:0.14285714285714285 67:0.5 75:0.05 122:0.2 139:1.0 398:0.2 454:0.2 502:1.0 620:0.5 739:0.5 998:1.0 1385:2.0 1488:1.0 2953:1.0 3987:1.0 4144:1.0 4759:0.010752688172043012 4765:0.2222222222222222 4952:1.0 4983:1.0 5023:1.0 5026:0.5 5046:1.0 5271:1.0 5276:1.0 5482:1.0 5573:1.0 5765:1.0
4 3:1.0 15:0.5 18:0.25 20:0.1 24:1.0 39:0.25 41:0.14285714285714285 53:1.0 67:1.5 75:0.1 79:0.3333333333333333 82:0.125 84:0.25 85:0.3333333333333333 122:0.2 139:1.0 191:0.6666666666666666 192:0.1 214:1.0 230:1.0 322:1.0 331:0.6666666666666666 398:0.8 454:0.2 557:1.0 718:1.0 1160:0.5 1625:1.0 1689:1.0 1988:1.0 2262:1.0 2560:1.0 2890:1.0 2933:1.0 3024:1.0 3079:1.0 3214:1.0 3937:1.0 3943:1.0 4082:1.0 4324:1.0 4845:1.0 4851:1.0 4897:1.0 4906:1.0 4934:1.0 5031:1.0 5126:1.0 5402:1.0 5435:1.0 5847:1.0 5972:1.0 7034:1.0 7062:1.0 7268:1.0 7437:1.0
4 39:0.25 53:1.0 67:0.5 75:0.15 85:0.3333333333333333 122:0.2 196:0.6666666666666666 337:0.5 398:0.4 454:0.2 473:1.0 639:0.07692307692307693 733:1.0 1418:1.0 2053:1.0 3000:1.0 3074:1.0 3742:1.0 4765:0.1111111111111111 4769:0.5 4778:0.5 4919:1.0 4932:1.0 4942:1.0 5026:0.5 5335:1.0 5568:1.0 5836:1.0 6127:1.0 6222:1.0 6223:1.0 6781:1.0 7203:1.0
4 12:0.021739130434782608 47:0.5 67:1.0 74:0.5 75:0.1 122:0.2 162:1.0 191:1.0 192:0.1 277:0.6666666666666666 289:1.0 331:0.3333333333333333 619:0.5 733:1.0 911:1.0 2038:1.0 2959:1.0 3000:1.0 4166:1.0 4759:0.010752688172043012 4765:0.2222222222222222 4775:1.0 4778:0.5 4915:2.0 4947:1.0 5026:0.5 5069:0.06666666666666667 5155:2.0 5172:0.25 5496:1.0 5937:1.0 6956:1.0 7405:1.0
4 15:0.5 35:0.2 41:0.14285714285714285 45:0.3333333333333333 53:1.0 67:2.0 75:0.15 98:0.5 122:0.2 128:1.0 209:0.5 252:0.3333333333333333 277:0.3333333333333333 306:1.0 322:1.0 326:2.0 454:0.2 473:1.0 502:1.0 535:1.0 557:1.0 620:0.5 733:1.0 766:1.0 910:1.0 931:2.0 1218:1.0 1418:1.0 1917:1.0 2262:1.0 4765:0.1111111111111111 4778:0.5 4790:0.14285714285714285 4853:1.0 4866:1.0 4890:1.0 5026:0.5 5069:0.06666666666666667 5139:1.0 5321:1.0 5322:1.0 5323:1.0 5778:1.0 6386:1.0 6898:1.0 7121:1.0
4 1:0.14285714285714285 18:0.5 41:0.14285714285714285 54:2.0 67:1.0 75:0.25 122:0.6 158:1.0 172:1.0 196:0.3333333333333333 257:1.0 275:1.0 308:1.0 399:1.0 599:1.0 622:1.0 630:1.0 708:1.0 767:1.0 857:1.0 936:1.0 1481:1.0 1529:1.0 1988:1.0 3000:1.0 3198:1.0 3682:1.0 4566:1.0 4765:0.1111111111111111 4784:0.5 4843:1.0 5040:1.0 5069:0.13333333333333333 5075:1.0 5334:1.0 5410:1.0 5435:1.0 5456:1.0 5467:1.0 6129:1.0 6130:1.0 6140:1.0 6300:1.0 6452:1.0 7276:1.0 7279:1.0
4 18:0.25 41:0.14285714285714285 52:0.5 54:2.0 67:2.5 75:0.3 98:1.0 122:0.2 191:0.3333333333333333 196:0.3333333333333333 243:1.0 261:0.3333333333333333 277:0.3333333333333333 289:1.0 308:2.0 398:0.2 501:1.0 506:1.0 513:1.0 707:1.0 713:1.0 1841:1.0 3000:1.0 3708:1.0 4144:1.0 4766:2.0 4768:0.5 4778:0.5 4785:1.0 4865:1.0 4927:1.0 4952:1.0 5069:0.13333333333333333 5074:1.0 5075:1.0 5094:1.0 5095:2.0 5096:1.0 5098:1.0 5249:1.0 5255:1.0 5268:1.0 5321:1.0 5686:1.0 5771:1.0 5778:1.0 6023:1.0 6177:1.0 7251:1.0
4 18:0.5 24:0.5 45:0.3333333333333333 58:0.5 67:1.0 75:0.15 78:1.0 87:1.0 94:1.0 104:0.5 191:0.3333333333333333 192:0.1 226:0.25 329:1.0 387:1.0 398:0.4 501:1.0 645:0.25 772:0.25 939:0.5 1772:1.0 2683:1.0 2900:1.0 3000:1.0 3502:1.0 3682:1.0 4759:0.010752688172043012 4765:0.2222222222222222 4775:1.0 4817:0.2 4853:1.0 4915:1.0 4940:1.0 5026:0.5 5040:1.0 5069:0.06666666666666667 5072:0.5 5425:1.0 5783:1.0 5822:0.3333333333333333 5847:1.0 6757:1.0 7400:1.0
4 15:0.5 24:1.0 45:0.6666666666666666 58:0.25 75:0.1 98:0.5 122:0.2 139:1.0 172:0.5 209:0.25 230:2.0 275:1.0 409:0.3333333333333333 499:1.0 564:1.0 645:0.25 910:1.0 2329:1.0 2477:1.0 2623:1.0 2627:1.0 3441:1.0 4765:0.1111111111111111 4817:0.2 4853:1.0 4907:1.0 4925:1.0 4927:1.0 4928:1.0 4929:1.0 4940:1.0 5026:0.5 5069:0.06666666666666667 5072:0.5 5856:1.0 5887:1.0 6227:1.0 6413:1.0 6416:1.0 6541:1.0
4 1:0.14285714285714285 18:0.25 27:0.14285714285714285 41:0.14285714285714285 45:0.3333333333333333 58:0.25 67:1.0 98:1.0 128:1.0 308:1.0 566:0.2 917:0.5 1027:1.0 1689:1.0 2273:1.0 3000:1.0 3682:1.0 4437:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4765:0.1111111111111111 4785:1.0 4817:0.2 4822:1.0 4865:1.0 4925:1.0 5026:0.5 5069:0.06666666666666667 5139:1.0 5140:1.0 5141:1.0 5143:1.0 5144:1.0 6151:1.0 6157:1.0 6508:1.0 7459:1.0
4 1:0.14285714285714285 3:1.0 15:0.5 18:0.25 24:1.0 41:0.2857142857142857 47:0.5 67:1.0 75:0.1 79:0.3333333333333333 85:0.3333333333333333 93:0.5 104:1.0 191:0.3333333333333333 214:1.0 277:0.3333333333333333 337:0.5 368:1.0 531:1.0 639:0.07692307692307693 936:1.0 2059:1.0 2283:1.0 3000:1.0 3340:1.0 4144:1.0 4437:1.0 4759:0.010752688172043012 4765:0.2222222222222222 4807:0.5 4808:1.0 4809:1.0 4810:1.0 4811:1.0 4822:1.0 4845:1.0 4897:1.0 4908:1.0 4909:1.0 4944:1.0 5026:0.5 5031:1.0 5743:1.0 6898:1.0
4 12:0.021739130434782608 15:0.5 18:0.75 24:1.0 67:1.5 75:0.05 84:0.25 98:0.5 122:1.0 192:0.1 261:0.3333333333333333 277:0.3333333333333333 331:0.3333333333333333 361:1.0 398:0.4 645:0.5 732:1.0 733:2.0 767:1.0 877:1.0 983:1.0 998:2.0 1054:1.0 1218:2.0 1242:1.0 2198:2.0 3203:1.0 4748:0.08695652173913043 4759:0.021505376344086023 4807:0.5 4875:1.0 5152:1.0 5435:2.0 5564:1.0 6142:1.0 6994:2.0 7077:1.0
4 1:0.14285714285714285 39:0.5 41:0.42857142857142855 47:1.0 53:1.0 67:1.0 73:1.0 87:3.0 98:0.5 104:0.5 118:2.0 122:0.2 124:0.3333333333333333 172:0.5 191:0.3333333333333333 261:0.3333333333333333 329:1.0 337:1.0 368:1.0 527:1.0 707:1.0 910:1.0 958:2.0 1203:1.0 1238:1.0 1255:0.5 1435:1.0 1511:1.0 1603:1.0 2755:1.0 3012:1.0 3564:1.0 4499:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4765:0.2222222222222222 4784:0.5 4790:0.14285714285714285 4800:1.0 4801:1.0 4807:0.5 4915:1.0 5026:0.5 5310:1.0 5856:1.0 6333:1.0
4 18:0.25 24:0.5 36:0.1 39:0.25 45:0.3333333333333333 54:1.0 67:2.0 75:0.05 78:1.0 82:0.125 139:1.0 191:0.6666666666666666 192:0.2 226:0.25 235:0.3333333333333333 255:1.0 257:1.0 270:1.0 277:0.6666666666666666 308:1.0 331:0.3333333333333333 473:2.0 500:1.0 535:2.0 538:0.5 599:1.0 630:1.0 708:1.0 767:1.0 772:0.25 898:1.0 936:1.0 1472:1.0 1543:1.0 1689:1.0 1969:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4765:0.2222222222222222 4769:0.5 4771:1.0 4846:1.0 5026:0.5 5238:1.0 5264:0.1111111111111111 5272:1.0 5276:1.0 5431:0.3333333333333333 5498:1.0 5499:1.0 6921:1.0
4 1:0.14285714285714285 12:0.08695652173913043 15:0.5 18:0.25 24:0.5 35:0.1 41:0.14285714285714285 53:1.0 63:2.0 67:0.5 75:0.15 98:0.5 122:0.6 136:3.0 277:1.0 388:1.0 398:0.4 409:0.3333333333333333 441:1.0 564:1.0 617:1.0 630:1.0 639:0.07692307692307693 739:0.5 772:0.25 812:1.0 913:0.5 936:2.0 966:1.0 1047:1.0 1255:0.5 1276:1.0 1549:1.0 1678:1.0 4175:1.0 4748:0.043478260869565216 4749:1.0 4759:0.021505376344086023 4765:0.1111111111111111 4778:0.5 4841:0.3333333333333333 4843:1.0 4890:1.0 4907:1.0 4915:1.0 4946:1.0 4952:1.0 5026:0.5 5075:1.0 5173:1.0 5393:1.0 5456:1.0 5586:1.0 5609:1.0 5622:1.0 5646:1.0 5718:0.25 6179:1.0 6197:1.0 6893:1.0 7042:1.0
4 1:0.14285714285714285 12:0.021739130434782608 18:0.5 39:0.25 41:0.14285714285714285 53:1.0 58:0.25 67:0.5 74:0.5 75:0.05 122:0.2 136:1.0 166:0.5 191:0.3333333333333333 192:0.1 226:0.25 235:0.3333333333333333 252:0.3333333333333333 398:0.4 431:0.5 630:1.0 688:0.5 894:0.3333333333333333 910:1.0 966:1.0 1255:0.5 1672:1.0 1689:1.0 1888:1.0 3048:1.0 4748:0.08695652173913043 4759:0.021505376344086023 4778:1.0 4841:0.3333333333333333 4951:1.0 5139:1.0 5140:1.0 5172:0.25 5196:1.0 5257:1.0 5323:2.0 5376:1.0 5410:1.0 6225:1.0 7179:1.0 7218:1.0
4 1:0.14285714285714285 24:0.5 27:0.14285714285714285 41:0.42857142857142855 47:1.5 52:0.5 53:1.0 67:0.5 75:0.05 122:0.2 141:1.5 191:0.3333333333333333 192:0.1 197:0.2 226:0.25 243:1.0 257:1.0 398:0.2 401:1.0 454:0.2 473:1.0 630:1.0 707:1.0 798:1.0 805:2.0 1143:1.0 1472:1.0 1511:1.0 1689:1.0 1746:0.5 3490:0.5 4748:0.08695652173913043 4759:0.021505376344086023 4919:1.0 4921:1.0 4925:1.0 4947:2.0 5264:0.1111111111111111 5831:1.0 5857:1.0 6091:1.0 6172:1.0 7209:1.0 7288:1.0
4 47:0.5 50:1.0 54:1.0 67:0.5 74:0.5 75:0.05 94:1.0 122:0.4 140:1.0 162:1.0 191:0.3333333333333333 192:0.1 257:1.0 277:0.3333333333333333 531:1.0 779:1.0 898:1.0 958:1.0 1261:1.0 1486:1.0 1701:1.0 1774:1.0 1980:0.07692307692307693 2450:1.0 2623:1.0 3012:1.0 4748:0.043478260869565216 4759:0.021505376344086023 4765:0.2222222222222222 4769:0.5 4771:1.0 4837:1.0 4847:1.0 4848:0.25 4917:1.0 4945:1.0 4946:1.0 4947:1.0 4948:1.0 5026:0.5 5320:0.5 5488:1.0 5502:1.0 6111:1.0 7359:1.0
4 3:1.0 18:0.25 39:0.25 47:1.5 67:1.0 75:0.1 98:0.5 122:0.2 139:1.0 191:0.6666666666666666 230:1.0 252:0.6666666666666666 305:0.3333333333333333 771:0.5 936:1.0 966:1.0 1973:1.0 3203:1.0 3490:0.5 3969:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4765:0.1111111111111111 4766:1.0 4855:1.0 4927:1.0 5026:0.5 5062:1.0 5063:1.0 5321:1.0 5456:1.0 5526:1.0 5871:1.0 5872:1.0 5921:1.0 5940:2.0 6045:1.0 7128:1.0 7220:1.0
4 20:0.1 35:0.1 45:0.3333333333333333 47:0.5 52:0.5 67:1.0 75:0.4 78:1.0 85:0.3333333333333333 98:0.5 122:0.2 127:1.0 128:1.0 191:0.3333333333333333 261:0.3333333333333333 289:2.0 308:1.0 451:1.0 473:1.0 767:1.0 840:1.0 1472:1.0 1572:1.0 1980:0.07692307692307693 2683:1.0 3000:3.0 3211:1.0 3223:1.0 3682:1.0 4749:1.0 4759:0.010752688172043012 4766:1.0 4778:0.5 4785:1.0 4802:1.0 4866:1.0 4908:1.0 4915:1.0 5012:1.0 5094:1.0 5095:1.0 5186:1.0 5196:1.0 5289:1.0 5290:1.0 5291:1.0 5293:1.0 5553:1.0 5712:1.0 6238:1.0 6808:1.0 6909:1.0
4 18:0.25 24:0.5 36:0.1 41:0.14285714285714285 67:0.5 74:0.5 75:0.25 87:1.0 98:0.5 122:0.4 141:0.5 191:0.3333333333333333 277:0.3333333333333333 289:2.0 398:0.4 431:0.5 501:1.0 639:0.07692307692307693 772:0.25 774:1.0 803:0.5 1322:1.0 1341:1.0 1604:1.0 1891:1.0 1917:1.0 3439:1.0 4748:0.043478260869565216 4759:0.021505376344086023 4765:0.1111111111111111 4778:0.5 4796:1.0 4908:1.0 4915:1.0 4920:1.0 4921:1.0 4922:1.0 4923:1.0 4983:1.0 5831:1.0 5847:1.0 5866:1.0 6044:1.0 6261:0.5
4 1:0.14285714285714285 15:0.5 18:0.25 39:0.25 67:1.0 75:0.2 87:1.0 98:1.5 113:1.0 191:0.3333333333333333 277:1.3333333333333333 398:0.6 409:0.3333333333333333 501:1.0 798:1.0 910:2.0 966:3.0 1218:2.0 1261:1.0 1319:1.0 1856:1.0 2629:0.5 3445:1.0 4403:1.0 4748:0.043478260869565216 4765:0.1111111111111111 4817:0.2 4855:1.0 5026:0.5 5072:0.5 5114:0.5 5428:1.0 5435:1.0 5718:0.25 6048:1.0 6384:1.0 7077:1.0
4 12:0.021739130434782608 15:0.5 18:0.5 24:1.0 36:0.1 39:0.25 41:0.14285714285714285 50:1.0 52:0.5 67:1.0 75:0.05 82:0.125 85:0.6666666666666666 94:1.0 136:1.0 191:0.6666666666666666 192:0.1 252:0.3333333333333333 289:1.0 329:1.0 337:1.0 388:1.0 398:1.4 434:1.0 451:1.0 454:0.2 501:2.0 527:1.0 533:1.0 568:0.16666666666666666 639:0.07692307692307693 707:1.0 910:1.0 958:2.0 966:1.0 1435:1.0 1453:1.0 1912:1.0 2054:1.0 2204:1.0 2274:1.0 2833:1.0 4343:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4785:1.0 4786:1.0 4834:1.0 4841:0.3333333333333333 4856:1.0 4865:1.0 5072:0.5 5718:0.25 5937:1.0 6757:1.0
4 12:0.021739130434782608 15:0.5 24:0.5 39:0.25 53:3.0 54:1.0 67:2.0 69:0.5 75:0.25 98:1.0 122:0.2 123:1.0 139:1.0 144:2.0 192:0.2 257:1.0 277:0.3333333333333333 326:1.0 329:1.0 337:1.0 368:1.0 398:0.4 409:0.3333333333333333 451:1.0 473:3.0 535:2.0 873:2.0 898:1.0 910:1.0 911:1.0 1261:1.0 1319:1.0 1689:1.0 1891:1.0 2517:1.0 4639:1.0 4765:0.1111111111111111 4778:0.5 4785:1.0 4817:0.2 4841:0.3333333333333333 4919:2.0 5026:0.5 5094:1.0 5095:1.0 5253:1.0 5268:1.0 5279:1.0 5428:1.0 5718:0.25 5721:1.0 5777:1.0 6172:1.0 6173:1.0 6460:1.0
4 12:0.043478260869565216 18:0.25 20:0.1 24:0.5 35:0.1 45:0.3333333333333333 58:0.25 67:1.5 75:0.15 85:0.3333333333333333 87:1.0 104:0.5 122:0.2 172:0.5 191:0.3333333333333333 192:0.1 257:1.0 270:1.0 289:1.0 306:1.0 409:0.3333333333333333 535:1.0 707:1.0 708:1.0 772:0.25 3000:1.0 3198:1.0 3841:1.0 4748:0.08695652173913043 4759:0.03225806451612903 4765:0.1111111111111111 4907:2.0 4920:1.0 4943:0.2 4944:1.0 4945:1.0 4997:1.0 5150:1.0 5272:1.0 5378:1.0 5454:2.0 5456:1.0 5921:1.0 6119:1.0 6452:1.0
4 20:0.1 41:0.14285714285714285 53:1.0 58:0.25 67:0.5 75:0.2 87:1.0 98:0.5 122:0.2 191:0.3333333333333333 192:0.1 261:0.6666666666666666 277:0.6666666666666666 322:1.0 329:1.0 331:0.3333333333333333 535:1.0 733:1.0 866:1.0 877:1.0 1276:1.0 1330:0.5 1418:1.0 1419:1.0 1472:1.0 2880:1.0 3000:1.0 3024:1.0 4765:0.1111111111111111 4766:1.0 4775:1.0 4790:0.14285714285714285 4853:1.0 4927:1.0 4952:1.0 5095:1.0 5110:1.0 5139:1.0 5186:1.0 5747:1.0 5748:1.0 5750:1.0 5763:1.0 7251:1.0 7393:1.0
4 18:0.25 20:0.1 39:0.25 41:0.14285714285714285 45:0.6666666666666666 58:0.25 67:1.0 75:0.15 85:0.3333333333333333 96:1.0 122:0.8 162:1.0 192:0.1 277:1.0 454:0.2 513:1.0 531:1.0 765:1.0 860:1.0 958:1.0 1207:1.0 1238:1.0 1291:1.0 1319:1.0 1772:1.0 1980:0.07692307692307693 2905:1.0 2953:1.0 3000:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4765:0.1111111111111111 4837:1.0 4905:1.0 4945:1.0 4947:1.0 4948:1.0 5209:1.0 6253:1.0 6426:1.0 7254:1.0
4 20:0.1 24:0.5 28:1.0 45:0.6666666666666666 53:1.0 54:1.0 58:0.25 74:0.5 75:0.05 79:0.3333333333333333 122:0.8 192:0.1 261:0.3333333333333333 275:1.0 277:0.3333333333333333 451:1.0 531:1.0 588:1.0 688:0.5 1529:1.0 1891:1.0 1980:0.07692307692307693 2800:1.0 3000:1.0 4157:1.0 4748:0.043478260869565216 4759:0.021505376344086023 4760:1.0 4834:1.0 4837:1.0 4927:1.0 4928:1.0 4929:1.0 4944:1.0 4997:1.0 5029:1.0 5030:1.0 5166:1.0 5202:1.0 5454:1.0 5831:1.0 6227:1.0
4 18:0.5 20:0.1 39:0.25 41:0.14285714285714285 45:0.3333333333333333 53:1.0 64:0.5 67:1.0 75:0.1 82:0.125 87:1.0 98:0.5 104:0.5 122:0.2 176:0.5 191:0.6666666666666666 192:0.1 261:0.3333333333333333 326:1.0 531:1.0 860:1.0 910:1.0 1341:1.0 1791:1.0 1891:1.0 2273:1.0 2933:1.0 3000:1.0 3198:1.0 3211:1.0 4748:0.043478260869565216 4778:0.5 4785:1.0 4822:1.0 4887:0.5 5022:1.0 5186:1.0 5836:1.0 5856:1.0 6131:1.0 6157:1.0 7262:1.0 7263:1.0
4 18:0.25 20:0.1 39:0.25 58:0.25 67:0.5 75:0.15 78:1.0 122:0.2 191:0.3333333333333333 261:0.3333333333333333 527:1.0 866:1.0 910:1.0 1171:1.0 2683:1.0 3000:2.0 3682:1.0 4748:0.043478260869565216 4759:0.021505376344086023 4771:1.0 4778:0.5 4822:1.0 4942:1.0 5000:1.0 5025:1.0 5051:1.0 5186:1.0 5259:1.0 5836:1.0 5856:1.0 6201:1.0 6216:1.0 6217:1.0 6218:1.0 6803:1.0
4 18:0.25 47:1.5 54:1.0 75:0.2 172:1.5 191:0.3333333333333333 261:0.3333333333333333 289:2.0 355:1.0 401:1.0 435:1.0 451:1.0 2610:1.0 4759:0.010752688172043012 4762:1.0 4763:2.0 4765:0.1111111111111111 4784:0.5 4785:1.0 4827:1.0 4855:1.0 4919:1.0 4921:1.0 5070:1.0 5189:1.0 5224:1.0 5937:1.0 6388:1.0
4 18:0.25 45:0.3333333333333333 47:0.5 67:1.5 69:0.5 75:0.1 87:1.0 98:0.5 122:0.4 192:0.3 226:0.25 252:0.6666666666666666 257:1.0 261:0.3333333333333333 289:1.0 312:1.0 337:0.5 448:1.0 454:0.2 473:2.0 692:1.0 894:0.3333333333333333 1168:1.0 1261:1.0 1418:1.0 1919:2.0 2059:1.0 2262:1.0 2898:1.0 3054:1.0 4057:1.0 4573:1.0 4752:1.0 4759:0.010752688172043012 4765:0.1111111111111111 4814:1.0 4817:0.2 4866:1.0 4947:1.0 5094:1.0 5240:1.0 5352:0.5 5623:1.0 5745:1.0 5831:1.0 5971:1.0 6250:1.0 6267:1.0
4 18:0.25 36:0.1 41:0.14285714285714285 47:0.5 53:1.0 54:1.0 67:0.5 74:0.5 75:0.25 122:0.4 191:0.6666666666666666 192:0.1 243:1.0 289:1.0 342:1.0 513:1.0 630:1.0 913:0.5 936:1.0 958:2.0 1655:1.0 1799:1.0 2860:1.0 2980:1.0 3811:1.0 4076:1.0 4343:1.0 4542:1.0 4748:0.043478260869565216 4759:0.010752688172043012 4765:0.1111111111111111 4778:0.5 4790:0.14285714285714285 4834:1.0 4840:1.0 5275:1.0 5804:1.0 5828:1.0 5973:1.0 6222:1.0 6225:1.0 6522:1.0
4 15:0.5 24:0.5 41:0.14285714285714285 53:2.0 67:0.5 74:0.5 75:0.1 85:0.3333333333333333 98:0.5 138:1.0 172:0.5 197:0.2 216:1.0 257:1.0 289:1.0 398:0.4 441:1.0 958:1.0 1083:1.0 1689:1.0 3000:1.0 3490:0.5 4759:0.010752688172043012 4768:0.5 4860:1.0 4861:1.0 4868:1.0 4908:1.0 5033:1.0 5141:1.0 5488:1.0 5672:1.0 6112:1.0 6256:1.0 6410:1.0 6583:1.0 6609:1.0
4 15:0.5 18:0.25 35:0.1 41:0.14285714285714285 53:1.0 67:1.0 122:0.2 139:1.0 192:0.1 197:0.2 216:1.0 235:0.3333333333333333 348:0.5 354:1.0 398:0.6 441:1.0 451:1.0 454:0.2 557:1.0 639:0.07692307692307693 651:1.0 1445:1.0 1549:1.0 2241:1.0 2262:1.0 2329:1.0 3214:1.0 4418:1.0 4768:0.5 4845:1.0 4851:1.0 4915:1.0 4934:1.0 4951:1.0 4971:1.0 5031:1.0 5032:1.0 5540:1.0 6313:1.0 6491:1.0
4 1:0.14285714285714285 15:0.5 41:0.2857142857142857 67:0.5 75:0.05 78:1.0 104:0.5 191:0.3333333333333333 305:0.3333333333333333 368:1.0 454:0.2 473:1.0 484:0.5 557:1.0 564:1.0 630:1.0 803:0.5 910:1.0 2139:1.0 2204:1.0 2262:1.0 2274:1.0 3211:1.0 4218:1.0 4748:0.043478260869565216 4757:1.0 4759:0.03225806451612903 4760:1.0 4762:1.0 4765:0.1111111111111111 4790:0.14285714285714285 4894:1.0 4928:1.0 4947:1.0 4985:0.3333333333333333 5069:0.06666666666666667 5694:1.0 5904:1.0 6316:1.0 7051:1.0
4 1:0.14285714285714285 24:0.5 41:0.14285714285714285 67:1.0 75:0.05 98:1.0 127:1.0 139:1.0 192:0.1 226:0.25 289:1.0 326:1.0 455:1.0 473:1.0 626:1.0 733:1.0 767:1.0 1330:0.5 1418:1.0 1487:1.0 1511:1.0 1997:1.0 3000:1.0 3682:1.0 4748:0.043478260869565216 4757:1.0 4759:0.03225806451612903 4765:0.2222222222222222 4833:1.0 4839:1.0 4883:1.0 4884:0.5 4985:0.3333333333333333 5069:0.06666666666666667 5540:1.0 6045:1.0 6225:1.0 6307:1.0 6815:1.0 7308:1.0
4 24:0.5 45:0.3333333333333333 53:1.0 64:0.5 67:1.5 74:0.5 75:0.15 85:0.3333333333333333 122:0.4 139:1.0 191:0.3333333333333333 230:1.0 252:1.0 289:1.0 445:1.0 477:1.0 626:1.0 645:0.25 812:1.0 840:1.0 913:0.5 936:1.0 966:2.0 1027:1.0 1216:1.0 1255:0.5 1393:1.0 1888:1.0 3513:1.0 3811:2.0 4542:1.0 4748:0.043478260869565216 4759:0.021505376344086023 4765:0.1111111111111111 4778:0.5 4843:1.0 4890:1.0 4915:1.0 5062:1.0 5067:1.0 5069:0.06666666666666667 5323:1.0 5377:1.0 5621:1.0 5646:1.0 5647:1.0 5736:0.3333333333333333 5914:1.0 5954:1.0 6141:1.0
4 18:0.25 20:0.1 24:1.0 39:0.25 41:0.2857142857142857 47:1.0 54:1.0 67:3.0 74:0.5 75:0.1 85:0.3333333333333333 87:1.0 98:0.5 122:0.2 243:1.0 252:0.6666666666666666 368:1.0 398:0.2 400:2.0 513:1.0 829:1.0 871:3.0 913:0.5 936:1.0 1178:1.0 2836:0.25 2837:1.0 3000:1.0 3778:1.0 4717:1.0 4748:0.043478260869565216 4757:1.0 4759:0.010752688172043012 4765:0.1111111111111111 4877:0.5 5069:0.06666666666666667 5323:1.0 5958:1.0 6129:1.0 6130:1.0 6131:1.0 6319:1.0 6467:1.0 6578:1.0 6963:1.0 7389:1.0
4 3:1.0 18:0.25 24:0.5 35:0.1 41:0.2857142857142857 54:1.0 67:1.5 75:0.1 93:0.5 104:0.5 122:0.2 277:0.3333333333333333 363:0.5 418:0.5 448:2.0 454:0.2 531:1.0 911:1.0 917:0.5 936:1.0 1194:1.0 1511:1.0 2059:1.0 2262:1.0 2623:1.0 2683:1.0 2836:0.25 3198:1.0 3502:1.0 3682:1.0 4748:0.08695652173913043 4757:1.0 4759:0.021505376344086023 4809:1.0 4810:1.0 4853:1.0 5028:1.0 5040:1.0 5069:0.06666666666666667 5259:1.0 5283:1.0 5425:1.0 5456:1.0 5528:1.0 5559:1.0 5958:1.0 6450:1.0 7286:1.0 7400:1.0
4 12:0.043478260869565216 18:0.75 24:0.5 35:0.1 38:0.5 41:0.14285714285714285 47:1.0 53:1.0 63:1.0 67:0.5 75:0.3 98:0.5 108:0.3333333333333333 122:0.2 137:1.0 139:1.0 235:0.3333333333333333 260:1.0 305:0.3333333333333333 308:1.0 337:0.5 435:1.0 495:1.0 527:1.0 647:1.0 718:1.0 733:1.0 772:0.5 936:1.0 1168:1.0 1689:1.0 2053:1.0 2509:1.0 2842:1.0 2994:1.0 3490:0.5 3579:1.0 4442:1.0 4717:1.0 4759:0.021505376344086023 4765:0.2222222222222222 4843:1.0 4915:1.0 5069:0.06666666666666667 5178:1.0 5279:1.0 5405:0.5 5682:1.0 5718:0.25 5810:1.0 5811:1.0 5812:1.0 6320:1.0 6459:1.0 6750:1.0
4 12:0.021739130434782608 18:0.25 24:0.5 39:0.25 41:0.2857142857142857 45:0.3333333333333333 67:2.5 75:0.1 257:1.0 277:0.3333333333333333 306:1.0 331:0.3333333333333333 368:1.0 398:0.2 645:0.25 767:1.0 779:1.0 998:1.0 1021:1.0 1026:1.0 1291:1.0 1319:1.0 2190:1.0 2623:1.0 4437:1.0 4748:0.08695652173913043 4759:0.03225806451612903 4771:1.0 4817:0.2 4852:1.0 4947:1.0 5051:1.0 5203:1.0 5259:1.0 5552:1.0 5653:1.0 6095:1.0 6428:1.0
4 41:0.14285714285714285 58:0.25 67:0.5 74:0.5 75:0.15 82:0.125 96:1.0 98:0.5 122:0.4 158:1.0 172:0.5 191:0.6666666666666666 398:0.2 495:1.0 502:1.0 531:1.0 617:1.0 712:0.25 798:1.0 1492:1.0 1625:1.0 1689:1.0 4082:2.0 4759:0.010752688172043012 4765:0.1111111111111111 4982:1.0 5035:0.5 5040:1.0 5062:1.0 5386:1.0 5392:1.0 5526:1.0 5571:1.0 6094:1.0 6616:1.0 6888:1.0 6984:1.0
4 13:0.2 24:0.5 47:0.5 67:0.5 69:0.5 75:0.1 85:0.3333333333333333 87:1.0 122:0.4 124:0.3333333333333333 177:0.25 191:0.3333333333333333 257:1.0 305:0.3333333333333333 566:0.2 639:0.07692307692307693 645:0.25 688:0.5 707:1.0 767:1.0 774:1.0 958:1.0 2367:1.0 2551:1.0 2952:1.0 3591:1.0 3654:1.0 4729:1.0 4748:0.043478260869565216 4759:0.03225806451612903 4765:0.2222222222222222 4785:1.0 4927:1.0 4934:1.0 5075:1.0 5094:1.0 5095:1.0 5215:1.0 6112:1.0 6968:1.0
4 3:1.0 24:0.5 41:0.14285714285714285 67:0.5 75:0.15 78:1.0 87:1.0 98:0.5 104:0.5 191:0.3333333333333333 235:0.6666666666666666 398:0.4 451:1.0 1419:1.0 3035:1.0 4012:1.0 4748:0.08695652173913043 4757:1.0 4759:0.021505376344086023 4853:1.0 5114:0.5 5141:1.0 5428:1.0 5747:1.0 5748:1.0 5750:1.0 6130:1.0 6818:1.0 7307:1.0 7374:1.0 7393:1.0
4 24:0.5 39:0.25 67:1.0 82:0.125 87:1.0 94:1.0 113:1.0 122:0.4 191:0.3333333333333333 192:0.1 226:0.25 230:1.0 270:1.0 277:0.3333333333333333 289:2.0 355:1.0 472:1.0 473:1.0 504:1.0 564:1.0 615:1.0 619:0.5 733:1.0 958:1.0 1319:1.0 1418:1.0 1917:1.0 1980:0.07692307692307693 2623:1.0 2898:1.0 4246:1.0 4748:0.043478260869565216 4757:1.0 4759:0.021505376344086023 4765:0.1111111111111111 4768:0.5 4831:1.0 4837:1.0 4942:1.0 4945:1.0 4999:1.0 5218:1.0 5430:1.0 6285:1.0 7220:1.0
|
09d264ec15dafe448f8c41cae014f1861a658aa3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/587/CH11/EX11.3/example11_3.sce
|
e7f9b2e50fc01b8f04e16f4dbf2fef5ff90bc75b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 851
|
sce
|
example11_3.sce
|
clear;
clc;
//Example11.3[The Condensation of Steam in a Condenser]
//Given:-
Th_in=30,Th_out=30,Tc_in=14,Tc_out=22;//Inlet and Outlet temperatures of hot and cold liquids [degree Celcius]
A=45;//[m^2]
U=2100;//[W/m^2.degree Celcius]
h_fg=2431;//Heat of vapourisation of water at Th_i[kJ/kg]
Cp=4184;//Specific heat of cold water [J/kg]
//Solution:-
del_T1=Th_in-Tc_out;//[degree Celcius]
del_T2=Th_out-Tc_in;//[degree Celcius]
del_T_lm=(del_T1-del_T2)/(log(del_T1/del_T2));//[degree Celcius]
disp("degree Celcius",del_T_lm,"The logrithmic Mean temperature difference is")
Q=U*A*del_T_lm;//[W]
disp("W",Q,"The heat transfer rate in the condenser is")
mw=Q/(Cp*(Tc_out-Tc_in));//[kg/s]
disp("kg/s",mw,"The mass flow rate of the cooling water is")
ms=(Q/(1000*h_fg));//[kg/s]
disp("kg/s",ms,"The rate of condensation of steam is")
|
7427d2902155e27f360936dbe446886e19fc311d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/866/CH16/EX16.18/16_18.sce
|
45c21043d0db8784bfbc9c4b579e3273a8e89e31
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 539
|
sce
|
16_18.sce
|
//CLC
x1= 7 //m
x2= 7 //m
x3= 4 //m
x4= 4 //m
x5= 4 //m
x6= 12 //m
x7= 4 //m
Fab= 12 //KN
Fbc1= 7 //KN
Fbc2= 7 //KN
Fcd= 22 //KN
Fe= 5 //KN
//CALCULATIONS
MfAB= -Fab*(x1+x2)/(x3+x4)
MfBC= -(Fbc1*x3*(x4+x5)^2/(x6)^2)-(Fbc2*x3^2*(x4+x5)/(x6)^2)
MfCD= -Fcd*x6/x6
MfDE= -Fe*x7
DFba= (3/(x1+x2))/((3/(x1+x2))+(4/(x3+x4+x5)))
DFbc= 1-DFba
DFcb= (4/(x3+x4+x5))/((3/(x6))+(4/(x3+x4+x5)))
DFcd= 1-DFcb
//RESULTS
printf("DFba = %.2f",DFba)
printf("DFbc = %.2f",DFbc)
printf("DFcb = %.2f",DFcb)
printf("DFcd = %.2f",DFcd)
|
be32ee2e5dd9374f46ecfe365580d3717dab387a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3630/CH15/EX15.12/Ex15_12.sce
|
b4b253771a9caf2480ceaa1137447381f9fd51e3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 116
|
sce
|
Ex15_12.sce
|
clc;
AoL=150000;
av=0.005;
AcL=AoL/(1+(av*AoL));
disp('',AcL,"AcL=");//The answers vary due to round off error
|
26c7fd44255dcd3f50f1127629468e09e4054f3c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/615/CH8/EX8.5/8_5.sce
|
a5a8b24d9c424c0d617ab982157b431ac5f08b90
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 248
|
sce
|
8_5.sce
|
//Fuels and Combustion//
//Example 8.5//
WBaSO4=0.0482;//weight of BaSO4 in grams//
W=0.5248;//weight of sample in grams//
PS=32*WBaSO4*100/(233*W);//percentage of sulphur in the sample//
printf('percentage of sulphur in the sample=PS=%f',PS);
|
2a55e95777782a8b560a615146865045d86b93e3
|
af86eb5dd11a276a153a618491fd2a0af057d237
|
/Communication Engineering - Scilab/Amplitude Modulation.sce
|
609dca6e2655e9b49125e2c30c83c73819ce2f81
|
[] |
no_license
|
gsiddhad/Mathematics
|
c2b2b78536e0769ea65791128b12aceea3c6f720
|
4bf16c674d84d1498b874c0f3b3d4b31785aae47
|
refs/heads/master
| 2023-03-06T02:52:46.933057
| 2021-02-20T11:17:58
| 2021-02-20T11:17:58
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 256
|
sce
|
Amplitude Modulation.sce
|
Am=5;
Ac=10;
m=Am/Ac;
fc=50;
fm=10;
t=0:0.001:.5;
Sm=Am*cos(2*%pi*fm*t);
subplot(2,2,1);
plot(t,Sm);
Sc=Ac*cos(2*%pi*fc*t);
subplot(2,2,2);
plot(t,Sc);
Sam=(1+(m*cos(2*%pi*fm*t)));
Sam1=Ac*Sam;
Sam2=cos(2*%pi*fc*t).*Sam1;
subplot(2,2,3);
plot(t,Sam2);
|
bd3758c01d9f42a29ea7fa7e7bf69179af5eb419
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/656/CH1/EX1.2/example1_2.sce
|
d3e7a7aa30290d9c811d4898f48ac89289bbcbf6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 295
|
sce
|
example1_2.sce
|
// let q be the function of t q=f(t)
deff('q=f(t)','q=5*t*sin(4*%pi*t)');
//i is the current at t=0.5seconds in Amperes
derivative(f,0.5);
i=ans;
disp("i=")
disp(i)
units='Amperes A'
i=[string(i) units];
disp(i)
// in amperes A
// the current i is 31.415 Amperes
|
88c2d974bc325d22ca31a8a2a9bafbd9280896f1
|
a1f93c5ed7f19ec2dc6e698a305960c7eaacb3fd
|
/Practica2/Ejercicio1.sci
|
864d985c99885a175370ba36f8ff911c3e4b56f0
|
[] |
no_license
|
hectoregm/numerico
|
813c74b87c976c2af4fe83adf59561a80141ea2f
|
ca0e16875746ad9d9c17da7ce0635669fc2410ed
|
refs/heads/master
| 2021-01-21T07:53:31.701526
| 2014-12-02T04:42:40
| 2014-12-02T04:42:40
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,037
|
sci
|
Ejercicio1.sci
|
function x = STI(A,b)
// Autores: Jorge Zavaleta
// Funcion que resuelve el sistema triangular inferior (STI) de ecuaciones
// lineales Ax = b (sustitucion hacia adelante)
//*****************************************************************************
// -> Entrada
// A (Matriz Real) - Matriz triangular inferior de tamaño n x n con entradas
// reales.
//
// b (Vector Real) - Vector de tamaño n con entradas reales.
//
// -> Salida
// x (Vector Real) - Vector de tamaño n con entradas reales que representan la
// solucion al sistema de ecuaciones.
//*****************************************************************************
n = size(A,'r');
x = zeros(n,1);
for i = 1:n //(*)
x(i) = (b(i) - A(i,1:i-1)*x(1:i-1))/A(i,i);
end
endfunction
function x = STS(A,b)
// Autores: Jorge Zavaleta
// Funcion que resuelve el sistema triangular superior (STS) de ecuaciones
// lineales Ax = b (sustitucion hacia atras)
//*****************************************************************************
// -> Entrada
// A (Matriz Real) - Matriz triangular superior de tamaño n x n con entradas
// reales.
//
// b (Vector Real) - Vector de tamaño n con entradas reales.
//
// -> Salida
// x (Vector Real) - Vector de tamaño n con entradas reales que representan la
// solucion al sistema de ecuaciones.
//*****************************************************************************
n = size(A,'r');
x = zeros(n,1);
for i = n:-1:1 //(*)
x(i) = (b(i) - A(i,i+1:n)*x(i+1:n))/A(i,i);
end
endfunction
function [L,U,signo] = faclupp(A)
// Autores: Jorge Zavaleta, Hector E. Gomez Morales
// Funcion que realiza la factorizacion LU de la matriz A (A = L*U) usando pivoteo parcial
//*****************************************************************************
//->Entrada
// A (Matriz Real) - Matriz de tamaño n x n con entradas reales.
//
//->Salida
// L (Matriz Real) - Matriz triangular inferior de tamaño n x n.
//
// U (Matriz Real) - Matriz triangular superior de tamaño n x n.
//
// signo (Real) - Indica el signo de la determinante de la matriz
//*****************************************************************************
n=size(A,'r');
signo = 1;
for i=1:n-1
[val,r] = max(abs(A(i:n,i)));
r = r + i - 1;
// Realizamos pivoteo si es necesario, llevamos cuenta del signo
if r ~= i
signo = signo * -1
A([i r],1:n) = A([r i],1:n);
end
for k=i+1:n
A(k,i)=A(k,i)/A(i,i);
A(k,i+1:n)=A(k,i+1:n)-A(k,i)*A(i,i+1:n);
end
end
// Se extrae L y U de A.
L = eye(n,n) + tril(A,-1);
U = triu(A);
endfunction
function x = lur(A,b)
// Autores: Jorge Zavaleta, Hector E. Gomez Morales
// Funcion que resuelve un sistema de ecuaciones usando factorizacion LU
// el sistema de ecuaciones lineales Ax = b mediante factorizacion LU, STI y STS
//*****************************************************************************
//->Entrada
// A (Matriz Real) - Matriz de tamaño n x n con entradas reales.
//
// b (Vector Real) - Vector de tamaño n con entradas reales.
//
// -> Salida
// x (Vector Real) - Vector de tamaño n con entradas reales que representan la
// solucion al sistema de ecuaciones.
//*****************************************************************************
n=size(A,'r');
for i=1:n-1
[val,r] = max(abs(A(i:n,i)));
r = r + i - 1;
// Realizamos pivoteo si es necesario
if r ~= i
A([i r],1:n) = A([r i],1:n);
b([i r]) = b([r i]);
end
for k=i+1:n
A(k,i)=A(k,i)/A(i,i);
A(k,i+1:n)=A(k,i+1:n)-A(k,i)*A(i,i+1:n);
end
end
// Se extrae L y U de A.
L = eye(n,n) + tril(A,-1);
U = triu(A);
// Resolvemos los sistemas usando STI y STS
y = STI(L,b)
x = STS(U,y)
endfunction
function d = mdet(A)
// Autores: Jorge Zavaleta, Hector E. Gomez Morales
// Funcion que realiza el calculo del determinante usando factorizacion LU
// y la propiedad de que el determinante de matrices escalonada es el producto
// de su diagonal y ademas que det(AB) = det(A)det(B)
//*****************************************************************************
//->Entrada
// A (Matriz Real) - Matriz de tamaño m x n con entradas reales.
//
//->Salida
// d (Real) - Valor del determinante de A cuando se puede calcular o %nan
// en el caso contrario.
//*****************************************************************************
nr = size(A,'r');
if nr ~= size(A,'c'); //Matriz no cuadrada
disp('La matriz no es cuadrada');
d = %nan;
else
select nr
case 1 //Escalar
d = A;
else //Matriz nxn
[L,U,signo] = faclupp(A)
dl = prod(diag(L))
du = prod(diag(U))
d = dl*du
end
end
endfunction
A = [2,4,-2;4,9,-3;-2,-1,7;]
B = [4;8;-6]
C = [2,4,-2;4,-1,-3;-2,9,7;]
disp("Matriz A:")
disp(A)
disp("Vector b:")
disp(B)
disp("Solucion sistema Ax = b:")
disp(lur(A,B))
disp("Determinante de A:")
disp(mdet(A))
disp("Matriz C:")
disp(mdet(C))
|
f1498e4a7abf1a3408d139cb2f52dee1d93390e4
|
1232196a72221f6cc0ee0a9a47111ef1188dafe9
|
/xcos_blocks/nfet_gldn.sci
|
514217559c57c57245896996f5cc7ab51dbe5472
|
[] |
no_license
|
sumagin/rasp30
|
06dc2ee1587a4eaf3cf5fb992375b8589617f882
|
a11dcffaed22dbac1f93c2f4798a48c7b0b1f795
|
refs/heads/master
| 2021-01-24T23:51:54.459864
| 2016-07-08T22:03:43
| 2016-07-08T22:03:43
| 16,685,217
| 2
| 3
| null | 2015-07-23T15:28:49
| 2014-02-10T05:17:38
|
C
|
UTF-8
|
Scilab
| false
| false
| 1,561
|
sci
|
nfet_gldn.sci
|
function [x,y,typ]=nfet_gldn(job,arg1,arg2)
// Copyright INRIA
x=[];y=[];typ=[];
select job
case 'plot' then
standard_draw(arg1)
case 'getinputs' then //** GET INPUTS
[x,y,typ]=standard_inputs(arg1)
case 'getoutputs' then
[x,y,typ]=standard_outputs(arg1)
case 'getorigin' then
[x,y]=standard_origin(arg1)
case 'set' then
x=arg1;
graphics=arg1.graphics;
exprs=graphics.exprs
model=arg1.model;
while %t do
[ok,gain,over,exprs]=getvalue('Set NFET block parameters',['Gain';'Do On Overflow(0=Nothing 1=Saturate 2=Error)'],list('mat',[-1, -1],'vec',1),exprs)
if ~ok then break,end
if ok then
graphics.exprs=exprs
x.graphics=graphics;x.model=model
break
end
end
case 'define' then
over=0
gain=2
model=scicos_model()
model.sim=list('ota_func',5)
model.in=[-1;-1]
model.in2=[-2;-3]
model.intyp=[1 1]
model.out=-1
model.out2=0
model.outtyp=-1
model.evtin=[]
model.evtout=[]
model.state=[]
model.dstate=[]
model.rpar=[]
model.ipar=[]
model.blocktype='c'
model.firing=[]
model.dep_ut=[%t %f]
exprs=[sci2exp(gain);sci2exp(over)];
gr_i= ['text=[''Src'';'' Gate''];';'xstringb(orig(1),orig(2),text,sz(1),sz(2),''fill'');']
x=standard_define([6 3],model,exprs,gr_i)
end
endfunction
|
0a959cf655958cf45739e2613581acc523b9adc2
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/blog/bow/bow.15_12.tst
|
5802874fe21d892a44f6dbf239f0236484bc3e29
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,305
|
tst
|
bow.15_12.tst
|
15 5:0.06451612903225806 12:1.0 14:1.0 25:2.0 38:1.0 40:0.16666666666666666 75:1.0 105:1.0 177:0.6666666666666666 186:1.0 198:1.0 398:1.0
15 8:0.25 9:1.0 12:1.0 31:0.0625 33:1.0 61:1.0 70:1.0 340:1.0 392:0.5 478:1.0 847:1.0 1012:1.0
15 1:0.5 12:3.0 13:2.0 18:0.3333333333333333 28:0.15384615384615385 31:0.0625 38:4.0 49:1.0 61:1.0 70:1.0 91:0.14285714285714285 118:1.0 119:0.2 123:4.0 155:0.5 167:0.14285714285714285 177:0.6666666666666666 251:1.0 323:1.0 326:1.0 378:1.0 464:1.0 478:1.0 544:1.0 790:0.25 988:1.0 1012:1.0
15 12:1.0 326:1.0
15 1:0.5 9:1.0 56:0.06666666666666667 91:0.14285714285714285 119:0.2 147:1.0 825:1.0 1097:1.0
15 18:0.16666666666666666 29:1.0 51:1.0 71:2.0 158:1.0 289:0.3333333333333333 392:0.5 596:1.0 897:1.0
15 17:1.0 18:0.16666666666666666 250:1.0 289:0.6666666666666666 411:1.0 819:1.0
15 6:1.0 28:0.07692307692307693 31:0.0625 38:2.0 69:0.5 70:1.0 71:1.0 124:0.3333333333333333 136:1.0 147:1.0 238:1.0 275:1.0 347:1.0 807:1.0 1139:0.3333333333333333 1428:1.0
15 4:1.0 38:1.0 82:1.0 155:0.5
15 12:1.0 21:0.25 38:1.0 82:1.0 581:1.0 1190:1.0
15 21:0.25 1190:1.0
15 28:0.07692307692307693 49:0.3333333333333333 134:1.0 143:1.0 190:1.0
15 3:1.0 12:1.0 18:0.16666666666666666 21:0.5 22:1.0 26:1.0 28:0.07692307692307693 31:0.125 32:0.3333333333333333 47:0.09090909090909091 49:1.0 61:2.0 85:1.0 155:0.5 411:1.0 665:1.0 1012:1.0 1208:1.0
15 4:1.0 26:1.0 56:0.06666666666666667 155:0.5
15 1:0.5 21:0.25 26:1.0 28:0.07692307692307693 31:0.0625 49:0.3333333333333333 56:0.06666666666666667 596:1.0
15 5:0.016129032258064516 188:0.5
15 5:0.08064516129032258 8:0.25 9:2.0 12:2.0 21:0.25 25:1.0 28:0.23076923076923078 38:1.0 40:0.25 49:0.3333333333333333 89:0.5 100:1.0 116:0.6666666666666666 123:1.0 152:1.0 168:0.14285714285714285 177:0.3333333333333333 228:1.0 251:1.0 287:1.0 354:1.0 378:2.0 389:1.0 414:1.0 464:2.0 544:1.0 1001:1.0 1012:2.0 1332:1.0
15 5:0.03225806451612903 18:0.16666666666666666 28:0.07692307692307693 47:0.09090909090909091 84:0.25 98:0.125 113:1.0 114:0.5 135:1.0 389:1.0 1134:1.0
15 5:0.03225806451612903 14:1.0 28:0.07692307692307693 38:1.0 47:0.09090909090909091 89:0.5 135:1.0 177:0.3333333333333333 179:1.0 339:1.0 466:1.0 1134:1.0
15 3:1.0 5:0.04838709677419355 12:1.0 13:1.0 18:0.16666666666666666 25:1.0 31:0.0625 32:0.3333333333333333 38:2.0 91:0.14285714285714285 114:0.5 118:1.0 119:0.2 165:1.0 305:1.0 569:1.0 790:0.25 1139:0.3333333333333333 1300:1.0
15 1:0.5 8:0.25 111:1.0 116:0.3333333333333333 565:1.0 790:0.25 1209:1.0
15 18:0.16666666666666666 21:0.25 47:0.09090909090909091 49:0.6666666666666666 70:1.0 135:1.0 274:1.0 339:1.0 1012:1.0 1088:1.0
15 18:0.16666666666666666 25:1.0 28:0.07692307692307693 38:1.0 47:0.09090909090909091 49:0.3333333333333333 68:1.0 70:1.0 177:0.3333333333333333 304:0.5 389:1.0
15 3:1.0 5:0.016129032258064516 24:1.0 38:1.0 56:0.06666666666666667 130:0.5 354:1.0
15 18:0.16666666666666666 31:0.0625 38:1.0 75:1.0 155:0.5 790:0.25 948:1.0
15 12:1.0 28:0.07692307692307693 47:0.09090909090909091 49:0.3333333333333333 70:1.0 378:1.0
15 18:0.16666666666666666 31:0.0625 990:1.0
15 5:0.016129032258064516 11:1.0 21:0.25 28:0.15384615384615385 31:0.125 38:1.0 40:0.08333333333333333 41:1.0 246:1.0 611:1.0 776:1.0 784:1.0 814:1.0 893:1.0 923:1.0 1058:1.0
15 1107:1.0
15 18:0.16666666666666666 38:1.0 56:0.13333333333333333 69:0.25 1259:1.0 1425:1.0 1428:1.0
15 3:1.0 9:2.0 12:1.0 21:0.25 28:0.07692307692307693 35:0.058823529411764705 51:1.0 56:0.13333333333333333 69:0.5 72:1.0 84:0.25 91:0.14285714285714285 134:1.0 177:0.3333333333333333 195:1.0 238:1.0 553:1.0 776:1.0 1113:1.0 1239:1.0
15 5:0.016129032258064516 28:0.07692307692307693 31:0.0625 70:1.0 246:1.0 464:1.0 560:1.0 1120:1.0
15 382:1.0
15 9:2.0 12:1.0 31:0.0625 72:1.0 91:0.14285714285714285 294:1.0 616:1.0 655:1.0 1097:1.0
15 5:0.016129032258064516 18:0.16666666666666666 28:0.07692307692307693 61:1.0 84:0.5 271:1.0 896:1.0
15 9:1.0 35:0.11764705882352941 38:1.0 40:0.08333333333333333 113:1.0 114:0.5 233:1.0 258:1.0 471:1.0 493:1.0 560:1.0 1235:1.0
15 18:0.16666666666666666 61:1.0 130:0.5 246:1.0 779:1.0 1277:1.0
15 28:0.15384615384615385 38:3.0 61:1.0 119:0.2 233:1.0 765:1.0 779:1.0 780:1.0 923:1.0
15 17:1.0 41:2.0 186:1.0 190:1.0 198:1.0 294:1.0 705:1.0 881:1.0 991:1.0
15 3:1.0 6:1.0 18:0.3333333333333333 110:1.0 294:1.0 790:0.25 1168:1.0
|
70963cdce641c52fb9d7f8399ae9917eef94f6ea
|
a159f59d19e2b03b234e9c2977ba4a932180e648
|
/Software/GreenScilabV0.9/env/2accumulatedBiomassRepartition.sci
|
4da5001e63ed64800641386ad4fc402f503daa76
|
[] |
no_license
|
OpenAgricultureFoundation/openag_sim
|
e052bbcc31b1d7f9b84add066327b479785f8723
|
425e678b55e24b5848d17181d25770175b8c2c3f
|
refs/heads/master
| 2021-07-01T06:25:08.753260
| 2017-09-20T21:44:18
| 2017-09-20T21:44:18
| 80,540,145
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,439
|
sci
|
2accumulatedBiomassRepartition.sci
|
blade petiole pith female fruit male fruit ring
0.16689 0.22034 0.30344 0.42313 0.59149 0.82491
0.05259 0.06944 0.09563 0.13335 0.18641 0.25997
0.56880 0.59110 0.60526 0.61777 0.63116 0.64732
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00850 0.01713 0.02701 0.03969 0.05732
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1.57596 2.15011 2.90136 3.86558 5.07563 6.55486
0.49666 0.67761 0.91436 1.21823 1.59958 2.06576
0.69640 0.73459 0.78590 0.85335 0.93949 1.04577
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.12139 0.17846 0.26198 0.38098 0.54524 0.76429
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
10.23368 12.33438 14.56165 16.85107 19.13498 21.35216
3.22513 3.88717 4.58909 5.31060 6.03037 6.72911
1.31007 1.46100 1.62102 1.78550 1.94959 2.10889
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1.35447 1.69149 2.04880 2.41609 2.78249 3.13819
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
25.40760 27.19378 28.80572 30.24523 31.51983 32.64040
8.00718 8.57009 9.07810 9.53175 9.93344 10.28659
2.40025 2.52858 2.64439 2.74781 2.83939 2.91989
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3.78879 4.07534 4.33394 4.56488 4.76936 4.94913
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
148e6b2dac1e195c33c1d313903cca9ca098d7c2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/181/CH7/EX7.43/example7_43.sce
|
86e64bdbef5468ff3f6bb02adbda8fe10bbeba6f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 404
|
sce
|
example7_43.sce
|
// Find the value of Rs
// Basic Electronics
// By Debashis De
// First Edition, 2010
// Dorling Kindersley Pvt. Ltd. India
// Example 7-43 in page 344
clear; clc; close;
// Given data
Idss=10*10^-3; // Drain-source current in mA
Vp=-5; // Pinch off voltage in V
// Calculation
Vgs = 5*(sqrt(6.4/10)-1);
Rs=-Vgs/(6.4*10^-3);
printf("Rs = %0.0f ohms",Rs);
// Result
// Rs = 156 ohms
|
7589d7abec036efc43a66c4da3a9ac2694ffe8ee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/167/CH5/EX5.2/ex2.sce
|
9dc69c0a515350dbf8bfaa7d17346ab951eb91c9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 503
|
sce
|
ex2.sce
|
//example 2
//discharge of water from a tank
clear
clc
h0=4 //height of cylindrical water tank in ft
h2=2 //final water level in tank in ft
g=32.2 //acc. due to gravity in ft/s^2
Dt=3*12 //diameter of tank in inches
Djet=0.5 //diameter of water jet in inches
t=(h0^0.5-h2^0.5)*(Dt)^2/((Djet)^2*(g/2)^0.5) //time taken for water level to fall to half of its initial value in seconds
printf("\n Hence, the time taken for water level to fall to half of its initial value is = %.1f min. \n",t/60);
|
7970b5eacefdb2edd12055cb2528bbaefb18db7c
|
4ebea1be375a38f07d1b8536e25cd91584882389
|
/src/test/example013.tst
|
e6f532151d16f6877a36734702adbf7dd69f8dad
|
[
"MIT"
] |
permissive
|
robertsmeets/rjhg-pl
|
f5c2d850ba7a5e3daa0d4147357d37a275c7100a
|
87721b77f92d5180c34123265fac70dcf54c77a9
|
refs/heads/master
| 2021-05-22T06:46:14.395448
| 2021-02-21T05:54:35
| 2021-02-21T05:54:35
| 32,521,807
| 1
| 1
|
MIT
| 2020-05-17T16:48:51
| 2015-03-19T13:07:49
|
C
|
UTF-8
|
Scilab
| false
| false
| 26
|
tst
|
example013.tst
|
add some strings together
|
c7b66f8102c2bffa48d437b2607c8e1350f0c36b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/275/CH5/EX5.5.15/Ch5_5_15.sce
|
0983b8deb18fa318f2c89418e4656cc41ad8ad97
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 460
|
sce
|
Ch5_5_15.sce
|
clc
disp("Example 5.15")
printf("\n")
disp("For CE amplifier shown in fig 5.5 find R1,R2,Re & Rc")
printf("Given\n")
Vcc=24
//load resistance
RL=120*10^3
//since Rc<<RL
Rc=RL/10
//select Ve & Vce
Ve=5
Vce=3
Vrc=Vcc-Vce-Ve //from circuit
Ic=Vrc/Rc
//find Re
Re=Ve/Ic
R2=10*Re
//Vbe for si transistor
Vbe=0.7
Vb=Vbe+Ve
I2=Vb/R2
R1=(Vcc-Vb)/I2
printf("The resistance values are\nR1=%f ohm\nR2=%f ohm\nRe=%f ohm\nRc=%f ohm\n",R1,R2,Re,Rc)
|
2f4ce1af95db264493a95ce60e4a185cff527b98
|
6afc7fb4c7404da6523ba7b016531b1fc4ea53d6
|
/Scilab/Scilab/Задача №2/prog2.sci
|
d1bb2c4d3b0a01797e94419e7e4a40f31c78f9c1
|
[] |
no_license
|
GarageInc/old-university-projects
|
8867bb29e0229f56c4996a6e7241648d8db7ec19
|
fb50c5273b58898ecde0a351e694929a8fa1ad81
|
refs/heads/master
| 2021-06-04T21:09:51.305920
| 2016-09-26T15:51:19
| 2016-09-26T15:51:19
| 50,765,728
| 5
| 6
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 61
|
sci
|
prog2.sci
|
function [r] = prog2(A)
r = min(A) - max(A);
endfunction
|
667ed2c23c77068fd0e81dcd51f214c022d23c68
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1847/CH2/EX2.34/Ch02Ex34.sce
|
866613108d57e19e439aa39ff18bbd797451e5f9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 718
|
sce
|
Ch02Ex34.sce
|
// Scilab Code Ex2.34:: Page-2.26 (2009)
clc; clear;
t = 3.1e-05; // Thickness of the soap film, cm
mu = 1.33; // Refractive index of the soap film
r = 0; // Angle of refraction of the light ray on the soap film, degrees
// For bright fringe in reflected pattern,
// 2*mu*t*cosd(r) = (2*n+1)*lambda/2
lambda = zeros(3);
for n = 1:1:3
lambda(n) = 4*mu*t*cosd(r)/(2*(n-1)+1); // Wavelengths for n = 1, 2 and 3
if lambda(n) > 4000e-008 & lambda(n) < 7500e-008 then
lambda_reflected = lambda(n);
end
end
printf("\nThe wavelength reflected strongly from the soap film = %5.3e cm", lambda_reflected);
// Result
// The wavelength reflected strongly from the soap film = 5.497e-05 cm
|
a5ef579584f2a3b06b074be6f4e242c0b17ed531
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.4/Unix-Windows/scilab-2.4/macros/percent/%hm_size.sci
|
e5e4a7b9739e6a1a5d5a41fa3d6f84e7d52d282e
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 617
|
sci
|
%hm_size.sci
|
function varargout=%hm_size(M,job)
// Copyright INRIA
// returns dimensions of an hyper matrix
[lhs,rhs]=argn(0)
dims=M('dims')
if rhs==2 then
if job=='*' then
x1=prod(M('dims'))
elseif type(job)==1 then
if size(job,'*') >1 then error('Second argument is incorrect'),end
if job<=0|job>size('dims') then error('Second argument is incorrect'),end
x1=M('dims')(job)
else
error('Second argument is incorrect')
end
return
end
if lhs==1 then
varargout(1)=M('dims')'
else
if lhs>size(M('dims'),'*') then error('Too many LHS args'),end
for k=1:lhs
varargout(k)=dims(k)
end
end
|
df2a6a50bf3a033c8c508d14e7a5ad6ccfd1127b
|
993c10f7706af779d36ea4b5254792a34da554c1
|
/ann/practice/ann_mlp_multiclasses/run.sci
|
bc5a10d46e1db9a6414949c03a65c9d92be7190a
|
[] |
no_license
|
francislz/college_codes
|
e1c113a29fcb704a243e5a942bf2c629157d315a
|
41bbefbe13135eb2654815aeb546a44462847b87
|
refs/heads/master
| 2022-01-29T11:15:15.597217
| 2018-11-01T22:40:13
| 2018-11-01T22:40:13
| 155,784,263
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,466
|
sci
|
run.sci
|
clc; warning off;
exec('../Classificacao_gaussiana/geragauss.sce',-1);
exec('../Plota_Dados_E_Reta/plotdata.sce',-1);
function bits = de2bi(Yd)
str = dec2bin(Yd);
bits = []
sz = size(str)
for i=1:sz(2),
if Yd(i) ~= 0
bits(1,i) = 0;
bits(2,i) = strtod(part(str(i),1));
bits(3,i) = strtod(part(str(i),2));
else
bits(1,i) = 1;
bits(2,i) = strtod(part(str(i),1));
bits(3,i) = strtod(part(str(i),2));
end
end
endfunction
function [Treino, Teste] = run()
nc = 3;
npc = [120 150 140];
mc = [1.2 3.3 6.5; 4.1 1.7 4.5];
varc = [1.89 1.15 1.51; 1.21 2.14 1.32];
[X Yd] = geragauss(nc, npc, mc, varc);
[X Yd] = mixvalues(X, Yd);
N = size(X);
N = N(2);
TR = N * 0.8;
TE = N * 0.2;
ind = grand(1, "prm", (1:TR));
X_TR = [];
Yd_TR = [];
for i = 1:TR,
aux = X(:,ind(i));
X_TR = [X_TR aux];
aux = Yd(ind(i));
Yd_TR = [Yd_TR aux];
end
X_TE = [];
Yd_TE = [];
for i = 1:N,
naoEsta = 1;
for j = 1:TR,
if i == ind(j),
naoEsta = 0;
end
end
if naoEsta == 1,
aux = X(:,i);
X_TE = [X_TE aux];
aux = Yd(i);
Yd_TE = [Yd_TE aux];
end
end
Yd_BIN = de2bi(Yd_TR);
disp('Configurando parametros...');
// numero de neuronios por camada, incluindo a entrada
N_ = [2, 9 , 3];
// parametros de treinamento: taxa de aprendizado
lp = [0.05 , 0];
// numero maximo de epocas para treinar
T = 400;
disp('Inicializando a rede...');
W = ann_FF_init(N_);
disp('Treinando a rede...');
W_out = ann_FF_Std_online(X_TR,Yd_BIN,N_,W,lp,T);
//VetorSEQ Sem momentum
disp('Calculando SEQ..');
VetorSEQ = [];
VetorTESTE = [];
W_error = W;
for i = 1:T
W_error = ann_FF_Std_online(X_TR,Yd_BIN,N_,W_error,lp,1);
y = ann_FF_run(X_TR,N_,W_error);
VetorTESTE = [VetorTESTE, ann_sum_of_sqr(ann_FF_run(X_TE,N_,W_error), de2bi(Yd_TE))];
VetorSEQ = [VetorSEQ, ann_sum_of_sqr(y, Yd_BIN)];
end
aux = round(ann_FF_run(X_TR,N_,W_out)) == Yd_BIN;
Treino = length(aux(aux == %t));
aux = round(ann_FF_run(X_TE,N_,W_out)) == de2bi(Yd_TE);
Teste = length(aux(aux == %t));
endfunction
Teste = [];
Treino = [];
for i = 1:10,
[teste, treino] = run();
Teste = [Teste teste];
Treino = [Treino treino];
end
// scf(1);
// title("Erros Quadraticos");
// plot(VetorSEQ,'-b');
// plot(VetorTESTE,'-r');
// xlabel('Epoca');
// ylabel('VetorSEQ');
// // Grafico de dados e da reta em duas dimensões para a função 1
// scf(2);
// title("Dados Originais");
// plotadc2d(X, Yd);
// // Grafico de dados e da reta em duas dimensões para a função 1
// scf(3);
// title("Dados Reclassificados");
// plotadc2d(X_TR, ann_FF_run(X_TR,N_,W_out));
// plotadc2d(X_TE, ann_FF_run(X_TE,N_,W_out));
// // Grafico de dados e da reta em duas dimensões para a função 1
// scf(2);
// title("Dados Treinamento");
// plotadc2d(X_TR, Yd_TR);
// // Grafico de dados e da reta em duas dimensões para a função 1
// scf(3);
// title("Dados Teste");
// plotadc2d(X_TE, Yd_TE);
// // for i = 1:nc,
// // plotareta(Wout(i,:), bout(i,:), [0 5]);
// // end
|
f3cae178d51391c5946394f39c5485dca8c2391e
|
20e1ce60c516a737e583089b58739647749845ac
|
/lib/page_rank_matrice.sce
|
1985fbacd6a330d516e510c6b528466efacfbd85
|
[] |
no_license
|
idhd/projet-math
|
83320adbb68bba0ae6e6dfcfaaa48146146af3e7
|
a982b65947a2ed15d6b4340779c5645da2a03ed4
|
refs/heads/master
| 2020-06-04T22:03:10.736659
| 2011-06-03T22:38:03
| 2011-06-03T22:41:04
| 1,808,626
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 196
|
sce
|
page_rank_matrice.sce
|
function A = page_rank_matrice(M, alpha)
[Q, d] = matrice_ponderations(M);
taille = length(d);
P = Q + ones(d')*d./taille;
A = alpha.*P + (1/taille).*(1-alpha).*ones(M)
endfunction
|
de364664185948707483e96b9dd43cdfdbeca223
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/260/CH13/EX13.12/13_12.sce
|
4659f5353e3e9c6e5871d7a3104e7055977a76cc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 606
|
sce
|
13_12.sce
|
//Eg-13.12
//pg-552
clear
clc
y(1) = 1;
h = 1;
printf('For h = 1\n')
printf(' x y\n')
for(i = 1:3)
x(i) = i; //since h = 1
y(i+1) = y(i)/(1+2*h);
printf(' %f %f\n',x(i),y(i+1))
end
h = 0.5;
printf('\nFor h = 0.5\n')
printf(' x y\n')
n = (3.0-0.5)/0.5+1;
for(i = 1:n)
x(i) = 0.5 + (i-1)*h; //since h = 0.5
y(i+1) = y(i)/(1+2*h);
printf(' %f %f\n',x(i),y(i+1))
end
printf('Observe that the implicit method is stable for h = 1, whereas the explicit method is not.')
|
8024092183c2f2b17b9bd836a8d2a131c6efa1bd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2774/CH5/EX5.5/Ex5_5.sce
|
189ba2a3a42ca40b9cbd0fa5251a2281b5867898
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 594
|
sce
|
Ex5_5.sce
|
clc
// initialization of variables
TL1=-5+273 // lower temperature in kelvin for first situation
TH=20+273 // higher temperature in kelvin
TL2=-25+273 //lower temperature in kelvin for second situation
//solution
COP1=TL1/(TH-TL1) // carnot refrigerator COP for first situation
// Let Heat be 100 kJ
QL=100 // assumption
W1=QL/COP1 // work done for situation 1
// for situation 2
COP2=TL2/(TH-TL2) // COP carnot for second situation
W2=QL/COP2 // work done
Per=(W2-W1)*100/W1 // percentage increase in work done
printf(" The perccentage increase in work is %.1f%%",Per)
|
6183afe037db19afc6cdbc47dbe68c29473870cd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1226/CH20/EX20.14/EX20_14.sce
|
f6fa526ca2ca385f85bfa847d76bbcdcffa2dcd6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 688
|
sce
|
EX20_14.sce
|
clc;funcprot(0);//EXAMPLE 20.14
// Initialisation of Variables
v=14;..........//Volume of air delivered in m^3
p1=1;........//Suction pressure in bar
p2=7;........//Delivery pressure in bar
N=310;........//Compressor rpm
n=1.35;........//Compression index
k=0.05;........//Clearance ratio
rld=1.5;.........//Ratio of cylinder length and diameter
//Calculations
etav=(1+k)-(k*((p2/p1)^(1/n)));..........//Volumetric efficiency
Vs=v/(etav*N);.............//Swept volume in m^3
D=((Vs)/((%pi/4)*rld))^(1/3);......//Compressor diameter in m
L=rld*D;......................//Compressor stroke in m
disp(D*100,"Compressor diameter in cm:")
disp(L*100,"Compressor stroke in cm:")
|
a392bf7dbcb8af5cc5e7ef3dc6dd75ac1e4eb8d1
|
59b742e36fbe9d77cb51ec949c6625f665133d2b
|
/Resultados/results_LocGlo_9/results/9/l20-4/result2s0.tst
|
6a269f61b2414ccdfcc2404b254136113b63165f
|
[] |
no_license
|
Tiburtzio/TFG
|
3132fd045de3a0e911e2c9e23e9c46e1075a3274
|
864ce4dd00b7f8fe90eafa65b11d799c5907177e
|
refs/heads/master
| 2023-01-03T12:44:56.269655
| 2020-10-24T18:37:02
| 2020-10-24T18:37:02
| 275,638,403
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,958
|
tst
|
result2s0.tst
|
@relation unknow
@attribute a1 real[13.0,334177.0]
@attribute a2 real[0.0,256382.0]
@attribute a3 real[3.0,5323.0]
@attribute a4 real[1.0,893.0]
@attribute a5 real[0.0,675.0]
@attribute a6 real[-457916.0,575241.0]
@attribute a7 real[-297172.0,238321.0]
@attribute a8 real[-205895.0,179851.0]
@attribute a9 real[0.0,89958.0]
@attribute a10 real[57.0,495561.0]
@attribute a11{g,h}
@inputs a1,a2,a3,a4,a5,a6,a7,a8,a9,a10
@outputs a11
@data
g g
g g
g g
g g
g h
g g
g g
g g
g g
g h
g g
g h
g g
g g
g g
g g
g g
g g
g g
g g
g g
g h
g g
g g
g g
g g
g g
g g
g h
g g
g g
g g
g g
g g
g h
g g
g g
g g
g h
g g
g h
g g
g g
g g
g g
g g
g g
g g
g g
g h
g g
g h
g g
g g
g h
g h
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g h
g g
g g
g g
g h
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g h
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g h
g g
g g
g g
g g
g g
g g
g g
g g
g g
g h
g g
g g
g g
g g
g h
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g h
g g
g g
g h
g g
g h
g g
g g
g g
g h
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g h
g h
g g
g g
g h
g g
g g
g h
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g h
g g
g g
g h
g g
g g
g h
g g
g g
g g
g g
g g
g g
g g
g h
g g
g g
g g
g h
g g
g h
g h
g g
g g
g g
g g
g g
g g
g g
g g
g h
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
h h
h h
h h
h g
h h
h h
h g
h g
h h
h g
h g
h g
h g
h g
h h
h h
h h
h g
h h
h h
h g
h g
h h
h h
h h
h h
h h
h h
h g
h g
h g
h h
h h
h g
h g
h h
h h
h h
h g
h h
h h
h h
h h
h g
h h
h g
h h
h g
h h
h h
h h
h h
h h
h h
h h
h h
h g
h h
h g
h g
h h
h g
h g
h h
h g
h g
h h
h h
h g
h g
h h
h h
h g
h g
h g
h h
h h
h h
h g
h g
h h
h g
h g
h h
h g
h g
h h
h h
h g
h h
h h
h h
h h
h g
h g
h g
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h g
h h
h h
h h
h g
h h
h h
h h
h g
h h
h g
h h
h h
h h
h h
h h
h h
h h
h h
h g
h h
h g
h g
h h
h h
h h
|
16fd1606a701e84656f9184ea07321148c405d35
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/964/CH31/EX31.3/31_3.sce
|
efcc59fe4ca9bbb49851d299e0614fb690aad031
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 833
|
sce
|
31_3.sce
|
//clc()
wf = 01.5;
for i = 1:41
for j = 1:41
T(i,j) = 0;
if j == 1 then
T(i,j) = 0;//C
else
if j == 41 then
T(i,j) = 100;//C
end
end
if i == 1 then
T(i,j) = 75;//C
else
if i == 41 then
T(i,j) = 50;//C
end
end
end
end
e = 100;
while e>1
for i=1:41
for j = 1:41
if i>1 & j>1 & i<41 & j<41 then
Tn(i,j) = (T(i + 1,j) + T(i-1,j) + T(i,j+1) + T(i,j-1))/4;
Tn(i,j) = wf * Tn(i,j) + (1-wf)*T(i,j);
if i==2 & j==2 then
e = abs((Tn(i,j) - T(i,j)) * 100/ (Tn(i,j)));
end
T(i,j) = Tn(i,j);
end
end
end
end
disp(T,"for error < 1, the temperatures are")
|
693acf3241b71a7610aa8bcae3f21114f0bd6987
|
b29e9715ab76b6f89609c32edd36f81a0dcf6a39
|
/ketpic2escifiles6/MakeveLfaceL.sci
|
a16a5a4dba3aa82fc52d04c9347bd7a2c4a3643c
|
[] |
no_license
|
ketpic/ketcindy-scilab-support
|
e1646488aa840f86c198818ea518c24a66b71f81
|
3df21192d25809ce980cd036a5ef9f97b53aa918
|
refs/heads/master
| 2021-05-11T11:40:49.725978
| 2018-01-16T14:02:21
| 2018-01-16T14:02:21
| 117,643,554
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,425
|
sci
|
MakeveLfaceL.sci
|
// 08.08.22
// 09.10.25
// 09.10.26
// 09.10.27
// 09.10.29
function Out=MakeveLfaceL(VfL)
// Out format
// VeL Edge, Face num(as numlist), VeL num
// FL Face (Vertexs)
Eps=10^(-4);
Tmp=VfL($);
Tmp1=Tmp(1);
if type(Tmp1)==1
FvL=list(VfL);
else
FvL=VfL;
end;
EL=list(); FL=list();
for Nn=1:length(FvL)
Tmp=FvL(Nn);
VL=Tmp(1);
if length(VL)>0
FnL=Tmp(2);
FaceL=list();
for I=1:length(FnL)
Tmp1=FnL(I);
PtL=list();
for J=1:length(Tmp1)
Tmp2=Tmp1(J);
PtL(J)=VL(Tmp2);
end;
FaceL(I)=PtL;
end;
else
FaceL=list(Tmp(2));
end;
for I=1:length(FaceL)
Face=FaceL(I);
Face($+1)=Face(1);
FL($+1)=Face;
for J=1:length(Face)-1
Edge=list(Face(J),Face(J+1));
Flg=0;
for K=1:length(EL)
Tmp=EL(K);
Tmp1=Tmp(1);
Tmp2=norm(Edge(1)-Tmp1(1))+norm(Edge(2)-Tmp1(2));
Tmp3=norm(Edge(1)-Tmp1(2))+norm(Edge(2)-Tmp1(1));
if Tmp2<Eps | Tmp3<Eps
Tmp=EL(K);
Tmp1=Tmp(1);
Tmp2=[Tmp(2),length(FL)];
EL(K)=list(Tmp1,Tmp2,K);
Flg=1;
break;
end;
end;
if Flg==0
Ntmp=length(EL);
EL(Ntmp+1)=list(Edge,[length(FL)],Ntmp+1);
end;
end;
end;
end;
Out=list(EL,FL);
endfunction
|
05e6dbf292eafe7f308da5b78e355404ab413136
|
6bbc9f4f7e12ef440acd3fe25a51b4f048cde42d
|
/Image Restoration/MinFilter.sce
|
036a50767625fe6991019b4765da9898f58f51cb
|
[] |
no_license
|
krisbimantara/Image-Processing-SCILAB
|
9dee568676b4f2943c54074d8c88c84cb33b3bb2
|
bf8e8905efcdd6e3e0096f7a87cce8212fe0f14c
|
refs/heads/main
| 2023-03-27T04:55:37.463238
| 2021-03-29T13:30:26
| 2021-03-29T13:30:26
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 920
|
sce
|
MinFilter.sce
|
clc;clear;
a=imread('gtw.jpg');
d=double(a);
me=d(:,:,1);
hi=d(:,:,2);
bi=d(:,:,3);
bme=me;
bhi=hi;
bbi=bi;
m=(1/9)*(ones(3,3));
[r1,c1]=size(a);
for i=2:r1-1
for j=2:c1-1
a1me=[me(i-1,j-1) me(i-1,j) me(i-1,j+1) me(i,j-1) me(i,j) me(i,j+1) me(i+1,j-1) me(i+1,j) me(i+1,j+1)];
a1hi=[hi(i-1,j-1) hi(i-1,j) hi(i-1,j+1) hi(i,j-1) hi(i,j) hi(i,j+1) hi(i+1,j-1) hi(i+1,j) hi(i+1,j+1)];
a1bi=[bi(i-1,j-1) bi(i-1,j) bi(i-1,j+1) bi(i,j-1) bi(i,j) bi(i,j+1) bi(i+1,j-1) bi(i+1,j) bi(i+1,j+1)];
a2me=gsort(a1me);
a2hi=gsort(a1hi);
a2bi=gsort(a1bi);
medme=a2me(1);
medhi=a2hi(1);
medbi=a2bi(1);
bme(i,j)=medme;
bhi(i,j)=medhi;
bbi(i,j)=medbi;
end
end
imgrgb=cat(3,bme,bhi,bbi);
figure();
subplot(121);imshow(a); title('Original Image','fontsize',8);
subplot(122);imshow(uint8(imgrgb)); title('Min Filtered Image','fontsize',8);
|
f31fecdf6d155b74a65e1ca5cd329cd940848da7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3769/CH15/EX15.1/Ex15_1.sce
|
777543da1c97e994cb276390abda443a83071efe
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 264
|
sce
|
Ex15_1.sce
|
clear
//Given
e=8.854*10**-12 //C**2/N/m**2
A=10**-4 //m**2
E=3*10**6 //V/ms
//Calculation
Id=e*A*E
//Result
printf("\n Displacement current is %0.1f *10**-9 A",Id*10**9)
|
8e47f4b4591de45caf12a77d6afe7d73dbaeba70
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1367/CH20/EX20.3/20_3.sce
|
b6fba60d5a72f81964d2b1b8646bf4bcb82c8f98
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 209
|
sce
|
20_3.sce
|
//Find how much loss will occur in 300 hours
//Ex:20.3
clc;
clear;
close;
x1=0.1;//in mm
t1=25;//in hours
t2=300;//in hours
x2=x1*sqrt(t2/t1);//in mm
disp(x2,"Oxidation loss in 300 hours (in mm) = ");
|
a7c8a7ae1095ecf67273e270a8f82447f7344bb5
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.5/Unix-Windows/scilab-2.5/tests/examples/is_connex.man.tst
|
8f387513e156346496be91e812ec11a867f7efdf
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 132
|
tst
|
is_connex.man.tst
|
clear;lines(0);
g=make_graph('foo',1,3,[1,2,3,1],[2,3,1,3]);
is_connex(g)
g=make_graph('foo',1,4,[1,2,3,1],[2,3,1,3]);
is_connex(g)
|
1b0128c840d6f591b2744f28d2e6aee7a569e5c4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3014/CH1/EX1.5/Ex1_5.sce
|
f96337272177c2bb603caa63588d74e479d1a61d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 375
|
sce
|
Ex1_5.sce
|
clc
//Given that
c = 3e8 // speed of light in m/s
v = c/20 // Speed of proton in m/s
m = 1.67e-27 // Mass of proton in Kg
h = 6.625e-34 // Plank constant
printf("Example 1.5")
lambda = h/(m*v) // calculation of de Broglie wavelength
printf("\n de Broglie wavelength of proton is %e m.\n\n\n",lambda)
// Answer in book is 6.645e-14m which is a calculation mistake
|
749fb6b8ef617588793e5dd47e00664129c906ba
|
5887829f5a0a005033807cf7dc4fb7231eb280ec
|
/Listing/chapter 3/Listing3216.sce
|
233a5229b81191f875e0225729f06bd77fad5548
|
[] |
no_license
|
joaolrneto/learning_scilab
|
78ecc0019f167b57bc35647c4ac785ece01e443e
|
9624c9a6736860a8a836b0f801256b6224756585
|
refs/heads/main
| 2023-03-17T22:17:51.853368
| 2021-03-15T20:58:34
| 2021-03-15T20:58:34
| 344,478,059
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 16
|
sce
|
Listing3216.sce
|
write(%io(2),a)
|
d9c18f2d719f3e31bee5b450b785c8952f233265
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3792/CH3/EX3.4/Ex3_4.sce
|
522d11a72b2a08d14d98f50e8607743f1cdecb97
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 372
|
sce
|
Ex3_4.sce
|
// SAMPLE PROBLEM 3/4
clc;clear;funcprot(0);
// Given data
m=10;// The mass in kg
v=2;// The speed in m/s
R=8;// N
// Calculation
k=R/v^2;// N.s^2/m^2
// SigmaF_x=ma_x;
v_0=v;// m/s
v=v_0/2;// m/s
t=((1/v)-(1/2));// The time in s
t_0=0;// s
t_1=2.5;// s
x=integrate('10/(5+(2*t))','t',t_0,t_1);
printf("\nThe corresponding travel distance,x=%1.2f m",x);
|
dffd7a12003febb57a7c9b50235166e035955c6c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3542/CH3/EX3.1/Ex3_1.sce
|
8c7484e21366e99bae5cb773139640569fe93355
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,498
|
sce
|
Ex3_1.sce
|
// Example 3.1
// To compute the number of channels available per cell for a)four-cell reuse system a)seven-cell reuse system a)12-cell reuse system
// Page No.61
clc;
clear;
// Given data
B=33*10^6; // Total bandwidth allocated to particular FDD system in Hz
Bc=25*10^3; // Bandwidth per channel in Hz
Nc=2; // Number of simplex channels
Bc=Bc*Nc; // Channel bandwidth in Hz
Ntotal=B/Bc; // Total number of channels
//a) To compute the number of channels available per cell for four-cell reuse system
N=4; // frequency reuse factor
chpercell=Ntotal/N; // number of channels available per cell for four-cell reuse system
// Displaying the result in command window
printf('\n The number of channels available per cell for 4-cell reuse system = %0.0f channels',chpercell);
printf('\n One control channel and 160 voice channels would be assigned to each cell.');
// b) To compute the number of channels available per cell for seven-cell reuse system
N=7; // frequency reuse factor
chpercell=ceil(Ntotal/N); // number of channels available per cell for seven-cell reuse system
// Answer is varrying due to round-off error
// Displaying the result in command window
printf('\n \n The number of channels available per cell for 7-cell reuse system = %0.0f channels',chpercell);
printf('\n Each cell would have one control channel, four cells would have 90 voice channels and three cells would have 91 voice channels.');
// c) To compute the number of channels available per cell for 12-cell reuse system
N=12; // frequency reuse factor
chpercell=Ntotal/N; // number of channels available per cell for seven-cell reuse system
// Displaying the result in command window
printf('\n \n The number of channels available per cell for 12-cell reuse system = %0.0f channels',chpercell);
printf('\n Each cell would have one control channel, eight cells would have 53 voice channels and four cells would have 54 voice channels.');
|
680c42ce1bb639d3e73c82c00a91ab0c5127de70
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1067/CH23/EX23.08/23_08.sce
|
a32e29757e937e5544be2e209b78175837ce6a52
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,041
|
sce
|
23_08.sce
|
clear;
clc;
X1=6.6*%i;
X2=6.3*%i;
X0=12.6*%i;
r=37.5e6;
v=33e3;
e=1;
zb=v^2/r;
x1=X1/zb;
x2=X2/zb;
x0=X0/zb;
x1g=.18*%i;
x2g=.12*%i;
x0g=.1*%i;
x1=x1+x1g;
x2=x2+x2g;
x0=x0+x0g;
ia=3*e/(x1+x2+x0);
ia1=ia/3;
a=1*%e^(%i*(120*%pi/180));
b=a^2;
ibase=r/(sqrt(3)*v);
ian=ia*ibase;
printf("fault current=%djAmp",imag(ian));
va=e-(ia1*x1g);
vb=-ia1*x2g;
vc=-ia1*x0g;
va0=(va+vb+vc);
va1=(va+(b*vb)+(a*vc));
va2=(va+(a*vb)+(b*vc));
v=v/sqrt(3);
va0=va0*v;
va1=va1*v;
va2=va2*v;
va0r=real(va0);
va0i=imag(va0);
va0m=sqrt((va0r^2)+(va0i^2));
va0a=atand(va0i/va0r);
va1r=real(va1);
va1i=imag(va1);
va1m=sqrt((va1r^2)+(va1i^2));
va1a=atand(va1i/va1r)-120;
va2r=real(va2);
va2i=imag(va2);
va2m=sqrt((va2r^2)+(va2i^2));
va2a=atand(va2i/va2r)+120;
mprintf("\nthe voltage levels are \n va=%f+j%f V \tor\t %d/_%d kV",va0r/1e3,va0i/1e3,va0m/1e3,va0a);
mprintf("\n vb=%f+j(%f) kV \tor\t %d/_%d kV",va1r/1e3,va1i/1e3,va1m/1e3,va1a);
mprintf("\n vc=%f+j(%f) kV \tor\t %d/_%d kV",va2r/1e3,va2i/1e3,va2m/1e3,va2a);
|
99c406e8a8b7df1aac36ab4e5bb24a0e6a0d1e49
|
6554786f513faca90858152863d81782f0db8a4d
|
/eshtests/plugin.tst
|
466a03f27301980f014a3705db11d407517b81af
|
[] |
no_license
|
linpows/shell
|
08dd3990d083adaad22205bbc1e45440ce4b7bfc
|
bce2a1e20c10a953e1fd0d176582a13b82e6f071
|
refs/heads/master
| 2022-09-18T03:30:18.411555
| 2020-02-28T03:15:35
| 2020-02-28T03:15:35
| 267,888,362
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 92
|
tst
|
plugin.tst
|
= Plugins Tests
1 student-plugins/robleshs+jamespur/zodiac/robleshs+jamespur_zodiac_test.py
|
aef42afe76d32542fd9e4ecaf86c20a20cc9ca4a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/581/CH10/EX10.12/Example10_12.sce
|
4fe726d6d218785aa5bbace6623628f607edf6a8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 880
|
sce
|
Example10_12.sce
|
clear ;
clc;
printf("\t Example 10.12\n");
T1=291; //temp.of sky,K
T2=308; //temp of air,K
e1=0.9; //emissivity 0f black paint
h=8; //heat transfer coefficient,W/(m^2*K)
P=600 ; //heat flux,W/m^2
//heat loss from the roof to the inside of the barn will lower the roof temp., since we dont have enough information to evaluate the loss, we can make an upper bound on roof temp. by assuming that no heat is transferred to the interior.
x=poly([0],'x');
x=roots(8*(e1*5.67*10^-8*(x^4-T1^4)+(x-T2)-e1*P));
//for white acrylic paint, by using table, e=0.9 and absorptivity is 0.26,Troof
T=poly([0],'T');
T=roots(8*(e1*5.67*10^-8*(T^4-T1^4)+(T-T2)-0.26*P));
Tn=T(2)+0.6
printf("\t temp. of the root is :%.1f C or 312 K ,the white painted roof is only a few degrees warmer than the air.\n",Tn);
//end
|
04b6111283e5e70e9789cc8884b4ea4bb4138340
|
63715188c270d575c234fbb7c1f0c0c858660f9d
|
/exxx.tst
|
26642d4d156483603f743b8f2a8320ff79f199ee
|
[] |
no_license
|
tloebach/Heroku
|
366144576fd28dba68b6c705cc78cc3d51c649ae
|
8e5942cd6e2f16c5844eda57363840ee9911ab29
|
refs/heads/master
| 2020-12-24T13:44:50.237296
| 2020-10-16T18:27:29
| 2020-10-16T18:27:29
| 2,535,973
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 40
|
tst
|
exxx.tst
|
SDFSFD
FDSAFDSFDS
DSF
DS
FDSAFDSFDSSDF
|
cbfe201689e322c593a0d54ca20454b29f75ded2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/839/CH10/EX10.4/Example_10_4.sce
|
aa28fe88d9273e3924776e6fa702f81146cf2a7e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 418
|
sce
|
Example_10_4.sce
|
//clear//
clear;
clc;
//Example 10.4
//Given
k = 0.075; //[Btu/ft-h-F]
rho = 56.2; //[lb/ft^3]
Cp = 0.40; //[Btu/lb-F]
s = 0.5/12; //[ft.]
Ts = 250; //[F]
Ta = 70; //[F]
Tb_bar = 210; //[F]
//(a)
Temp_diff_ratio = (Ts-Tb_bar)/(Ts-Ta);
alpha = k/(rho*Cp);
// From Fig.10.6
N_Fo =0.52;
tT = N_Fo*s^2/alpha //[h]
//(b)
//Substituting in Eq.(10.23)
QTbyA = s*rho*Cp*(Tb_bar-Ta) //[Btu/ft^2]
|
13133bba521d6dda98a9ff970a633f602453a90d
|
25b5cbd88b9b1c4dd4c6918be2a988027dee667e
|
/doc/scripts/controller/rootlocus.sce
|
319129e09108b9917b764f0d055520c7ae127fb3
|
[] |
no_license
|
nkigen/nxtLEGO
|
d592720aabdd4da83f3463719135e4e6072aa6dd
|
7ce91955744756bfeb32b4b619b80cc26e83afef
|
refs/heads/master
| 2020-05-20T03:22:49.327962
| 2015-03-01T17:35:27
| 2015-03-01T17:35:27
| 17,963,092
| 0
| 0
| null | 2014-07-17T18:41:48
| 2014-03-21T00:17:33
|
C
|
UTF-8
|
Scilab
| false
| false
| 833
|
sce
|
rootlocus.sce
|
global G;
global Kc;
global C;
global LpAlpha;
global Tc;
global Kd;
global Kp;
global Ki;
Kd = 2;
Ki = 20;
Kp = 10
Tc = 0.001;
LpAlpha = 0.001;
s = poly(0, 's');
w_n = 28.400017;
xi_n = 0.2825585;
function[xi_min] = getMinimumXI(desiredOvershoot)
xi_min = sqrt(log(desiredOvershoot)^2/(%pi^2 + log(desiredOvershoot)^2));
endfunction
function[omega_min] = getMinimumOmega(alpha, desiredSettleTime, xi_min)
N = 1/sqrt(1-xi_min^2);
omega_min = (log(alpha/100) - log(N))/(-1*xi_min*desiredSettleTime);
endfunction
// Plant
G = 1/(s^2/w_n^2 + 2*(xi_n/w_n)*s +1);
//G = 1/(s*(s+4)*(s+6));
Kc = 60;
z0 = -10;
z1 = -30;
//z2 = -25;
p0 = -270;
//p1 = -50;
C =((s-z0)*(s-z1))/((s)*(s-p0));
xi_t = getMinimumXI(0.2);
w_t = getMinimumOmega(5,0.3,xi_n);
clf();
evans(C*G);
sgrid(xi_t,w_t);
//kc_lim = kpure(syslin('c',C*G));
|
d3f471589de56bb1679e476558535df5fe2b57df
|
6c85fd9ca0a7cbce511032b49b5ccec5c7fa1a88
|
/Synchroniczny.sci
|
cb3c39856afb65b57d16d059cfba21db203532d1
|
[] |
no_license
|
PawelMazur/Hopfield-Network-Synchronous
|
f79293692e92130bb4adbebf3f82752445a6024b
|
b45fea926e50c45019cf7ba55bf40897cc112d57
|
refs/heads/master
| 2021-04-30T12:49:30.889211
| 2018-02-12T18:12:21
| 2018-02-12T18:12:21
| 121,282,866
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 24,883
|
sci
|
Synchroniczny.sci
|
clc;
clear;
lines(0);
function [M] = unipolarna(W, ac)
RozmiarKolumn = size(W, 'c');
if RozmiarKolumn == 3 then
//dla macierzy SynchUni
X=[ 0 0 0;
0 0 1;
0 1 0;
0 1 1;
1 0 0;
1 0 1;
1 1 0;
1 1 1];
end
//dla macierzy Vjeden Vcztery i VL
if RozmiarKolumn == 6 then
X=[0 0 0 0 0 0;
0 0 0 0 0 1;
0 0 0 0 1 0;
0 0 0 0 1 1;
0 0 0 1 0 0;
0 0 0 1 0 1;
0 0 0 1 1 0;
0 0 0 1 1 1;
0 0 1 0 0 0;
0 0 1 0 0 1;
0 0 1 0 1 0;
0 0 1 0 1 1;
0 0 1 1 0 0;
0 0 1 1 0 1;
0 0 1 1 1 0;
0 0 1 1 1 1;
0 1 0 0 0 0;
0 1 0 0 0 1;
0 1 0 0 1 0;
0 1 0 0 1 1;
0 1 0 1 0 0;
0 1 0 1 0 1;
0 1 0 1 1 0;
0 1 0 1 1 1;
0 1 1 0 0 0;
0 1 1 0 0 1;
0 1 1 0 1 0;
0 1 1 0 1 1;
0 1 1 1 0 0;
0 1 1 1 0 1;
0 1 1 1 1 0;
0 1 1 1 1 1;
1 0 0 0 0 0;
1 0 0 0 0 1;
1 0 0 0 1 0;
1 0 0 0 1 1;
1 0 0 1 0 0;
1 0 0 1 0 1;
1 0 0 1 1 0;
1 0 0 1 1 1;
1 0 1 0 0 0;
1 0 1 0 0 1;
1 0 1 0 1 0;
1 0 1 0 1 1;
1 0 1 1 0 0;
1 0 1 1 0 1;
1 0 1 1 1 0;
1 0 1 1 1 1;
1 1 0 0 0 0;
1 1 0 0 0 1;
1 1 0 0 1 0;
1 1 0 0 1 1;
1 1 0 1 0 0;
1 1 0 1 0 1;
1 1 0 1 1 0;
1 1 0 1 1 1;
1 1 1 0 0 0;
1 1 1 0 0 1;
1 1 1 0 1 0;
1 1 1 0 1 1;
1 1 1 1 0 0;
1 1 1 1 0 1;
1 1 1 1 1 0;
1 1 1 1 1 1];
end
//dla Cj
if RozmiarKolumn == 9 then
X=[0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 1;
0 0 0 0 0 0 0 1 0;
0 0 0 0 0 0 0 1 1;
0 0 0 0 0 0 1 0 0;
0 0 0 0 0 0 1 0 1;
0 0 0 0 0 0 1 1 0;
0 0 0 0 0 0 1 1 1;
0 0 0 0 0 1 0 0 0;
0 0 0 0 0 1 0 0 1;
0 0 0 0 0 1 0 1 0;
0 0 0 0 0 1 0 1 1;
0 0 0 0 0 1 1 0 0;
0 0 0 0 0 1 1 0 1;
0 0 0 0 0 1 1 1 0;
0 0 0 0 0 1 1 1 1;
0 0 0 0 1 0 0 0 0;
0 0 0 0 1 0 0 0 1;
0 0 0 0 1 0 0 1 0;
0 0 0 0 1 0 0 1 1;
0 0 0 0 1 0 1 0 0;
0 0 0 0 1 0 1 0 1;
0 0 0 0 1 0 1 1 0;
0 0 0 0 1 0 1 1 1;
0 0 0 0 1 1 0 0 0;
0 0 0 0 1 1 0 0 1;
0 0 0 0 1 1 0 1 0;
0 0 0 0 1 1 0 1 1;
0 0 0 0 1 1 1 0 0;
0 0 0 0 1 1 1 0 1;
0 0 0 0 1 1 1 1 0;
0 0 0 0 1 1 1 1 1;
0 0 0 1 0 0 0 0 0;
0 0 0 1 0 0 0 0 1;
0 0 0 1 0 0 0 1 0;
0 0 0 1 0 0 0 1 1;
0 0 0 1 0 0 1 0 0;
0 0 0 1 0 0 1 0 1;
0 0 0 1 0 0 1 1 0;
0 0 0 1 0 0 1 1 1;
0 0 0 1 0 1 0 0 0;
0 0 0 1 0 1 0 0 1;
0 0 0 1 0 1 0 1 0;
0 0 0 1 0 1 0 1 1;
0 0 0 1 0 1 1 0 0;
0 0 0 1 0 1 1 0 1;
0 0 0 1 0 1 1 1 0;
0 0 0 1 0 1 1 1 1;
0 0 0 1 1 0 0 0 0;
0 0 0 1 1 0 0 0 1;
0 0 0 1 1 0 0 1 0;
0 0 0 1 1 0 0 1 1;
0 0 0 1 1 0 1 0 0;
0 0 0 1 1 0 1 0 1;
0 0 0 1 1 0 1 1 0;
0 0 0 1 1 0 1 1 1;
0 0 0 1 1 1 0 0 0;
0 0 0 1 1 1 0 0 1;
0 0 0 1 1 1 0 1 0;
0 0 0 1 1 1 0 1 1;
0 0 0 1 1 1 1 0 0;
0 0 0 1 1 1 1 0 1;
0 0 0 1 1 1 1 1 0;
0 0 0 1 1 1 1 1 1;
0 0 1 0 0 0 0 0 0;
0 0 1 0 0 0 0 0 1;
0 0 1 0 0 0 0 1 0;
0 0 1 0 0 0 0 1 1;
0 0 1 0 0 0 1 0 0;
0 0 1 0 0 0 1 0 1;
0 0 1 0 0 0 1 1 0;
0 0 1 0 0 0 1 1 1;
0 0 1 0 0 1 0 0 0;
0 0 1 0 0 1 0 0 1;
0 0 1 0 0 1 0 1 0;
0 0 1 0 0 1 0 1 1;
0 0 1 0 0 1 1 0 0;
0 0 1 0 0 1 1 0 1;
0 0 1 0 0 1 1 1 0;
0 0 1 0 0 1 1 1 1;
0 0 1 0 1 0 0 0 0;
0 0 1 0 1 0 0 0 1;
0 0 1 0 1 0 0 1 0;
0 0 1 0 1 0 0 1 1;
0 0 1 0 1 0 1 0 0;
0 0 1 0 1 0 1 0 1;
0 0 1 0 1 0 1 1 0;
0 0 1 0 1 0 1 1 1;
0 0 1 0 1 1 0 0 0;
0 0 1 0 1 1 0 0 1;
0 0 1 0 1 1 0 1 0;
0 0 1 0 1 1 0 1 1;
0 0 1 0 1 1 1 0 0;
0 0 1 0 1 1 1 0 1;
0 0 1 0 1 1 1 1 0;
0 0 1 0 1 1 1 1 1;
0 0 1 1 0 0 0 0 0;
0 0 1 1 0 0 0 0 1;
0 0 1 1 0 0 0 1 0;
0 0 1 1 0 0 0 1 1;
0 0 1 1 0 0 1 0 0;
0 0 1 1 0 0 1 0 1;
0 0 1 1 0 0 1 1 0;
0 0 1 1 0 0 1 1 1;
0 0 1 1 0 1 0 0 0;
0 0 1 1 0 1 0 0 1;
0 0 1 1 0 1 0 1 0;
0 0 1 1 0 1 0 1 1;
0 0 1 1 0 1 1 0 0;
0 0 1 1 0 1 1 0 1;
0 0 1 1 0 1 1 1 0;
0 0 1 1 0 1 1 1 1;
0 0 1 1 1 0 0 0 0;
0 0 1 1 1 0 0 0 1;
0 0 1 1 1 0 0 1 0;
0 0 1 1 1 0 0 1 1;
0 0 1 1 1 0 1 0 0;
0 0 1 1 1 0 1 0 1;
0 0 1 1 1 0 1 1 0;
0 0 1 1 1 0 1 1 1;
0 0 1 1 1 1 0 0 0;
0 0 1 1 1 1 0 0 1;
0 0 1 1 1 1 0 1 0;
0 0 1 1 1 1 0 1 1;
0 0 1 1 1 1 1 0 0;
0 0 1 1 1 1 1 0 1;
0 0 1 1 1 1 1 1 0;
0 0 1 1 1 1 1 1 1;
0 1 0 0 0 0 0 0 0;
0 1 0 0 0 0 0 0 1;
0 1 0 0 0 0 0 1 0;
0 1 0 0 0 0 0 1 1;
0 1 0 0 0 0 1 0 0;
0 1 0 0 0 0 1 0 1;
0 1 0 0 0 0 1 1 0;
0 1 0 0 0 0 1 1 1;
0 1 0 0 0 1 0 0 0;
0 1 0 0 0 1 0 0 1;
0 1 0 0 0 1 0 1 0;
0 1 0 0 0 1 0 1 1;
0 1 0 0 0 1 1 0 0;
0 1 0 0 0 1 1 0 1;
0 1 0 0 0 1 1 1 0;
0 1 0 0 0 1 1 1 1;
0 1 0 0 1 0 0 0 0;
0 1 0 0 1 0 0 0 1;
0 1 0 0 1 0 0 1 0;
0 1 0 0 1 0 0 1 1;
0 1 0 0 1 0 1 0 0;
0 1 0 0 1 0 1 0 1;
0 1 0 0 1 0 1 1 0;
0 1 0 0 1 0 1 1 1;
0 1 0 0 1 1 0 0 0;
0 1 0 0 1 1 0 0 1;
0 1 0 0 1 1 0 1 0;
0 1 0 0 1 1 0 1 1;
0 1 0 0 1 1 1 0 0;
0 1 0 0 1 1 1 0 1;
0 1 0 0 1 1 1 1 0;
0 1 0 0 1 1 1 1 1;
0 1 0 1 0 0 0 0 0;
0 1 0 1 0 0 0 0 1;
0 1 0 1 0 0 0 1 0;
0 1 0 1 0 0 0 1 1;
0 1 0 1 0 0 1 0 0;
0 1 0 1 0 0 1 0 1;
0 1 0 1 0 0 1 1 0;
0 1 0 1 0 0 1 1 1;
0 1 0 1 0 1 0 0 0;
0 1 0 1 0 1 0 0 1;
0 1 0 1 0 1 0 1 0;
0 1 0 1 0 1 0 1 1;
0 1 0 1 0 1 1 0 0;
0 1 0 1 0 1 1 0 1;
0 1 0 1 0 1 1 1 0;
0 1 0 1 0 1 1 1 1;
0 1 0 1 1 0 0 0 0;
0 1 0 1 1 0 0 0 1;
0 1 0 1 1 0 0 1 0;
0 1 0 1 1 0 0 1 1;
0 1 0 1 1 0 1 0 0;
0 1 0 1 1 0 1 0 1;
0 1 0 1 1 0 1 1 0;
0 1 0 1 1 0 1 1 1;
0 1 0 1 1 1 0 0 0;
0 1 0 1 1 1 0 0 1;
0 1 0 1 1 1 0 1 0;
0 1 0 1 1 1 0 1 1;
0 1 0 1 1 1 1 0 0;
0 1 0 1 1 1 1 0 1;
0 1 0 1 1 1 1 1 0;
0 1 0 1 1 1 1 1 1;
0 1 1 0 0 0 0 0 0;
0 1 1 0 0 0 0 0 1;
0 1 1 0 0 0 0 1 0;
0 1 1 0 0 0 0 1 1;
0 1 1 0 0 0 1 0 0;
0 1 1 0 0 0 1 0 1;
0 1 1 0 0 0 1 1 0;
0 1 1 0 0 0 1 1 1;
0 1 1 0 0 1 0 0 0;
0 1 1 0 0 1 0 0 1;
0 1 1 0 0 1 0 1 0;
0 1 1 0 0 1 0 1 1;
0 1 1 0 0 1 1 0 0;
0 1 1 0 0 1 1 0 1;
0 1 1 0 0 1 1 1 0;
0 1 1 0 0 1 1 1 1;
0 1 1 0 1 0 0 0 0;
0 1 1 0 1 0 0 0 1;
0 1 1 0 1 0 0 1 0;
0 1 1 0 1 0 0 1 1;
0 1 1 0 1 0 1 0 0;
0 1 1 0 1 0 1 0 1;
0 1 1 0 1 0 1 1 0;
0 1 1 0 1 0 1 1 1;
0 1 1 0 1 1 0 0 0;
0 1 1 0 1 1 0 0 1;
0 1 1 0 1 1 0 1 0;
0 1 1 0 1 1 0 1 1;
0 1 1 0 1 1 1 0 0;
0 1 1 0 1 1 1 0 1;
0 1 1 0 1 1 1 1 0;
0 1 1 0 1 1 1 1 1;
0 1 1 1 0 0 0 0 0;
0 1 1 1 0 0 0 0 1;
0 1 1 1 0 0 0 1 0;
0 1 1 1 0 0 0 1 1;
0 1 1 1 0 0 1 0 0;
0 1 1 1 0 0 1 0 1;
0 1 1 1 0 0 1 1 0;
0 1 1 1 0 0 1 1 1;
0 1 1 1 0 1 0 0 0;
0 1 1 1 0 1 0 0 1;
0 1 1 1 0 1 0 1 0;
0 1 1 1 0 1 0 1 1;
0 1 1 1 0 1 1 0 0;
0 1 1 1 0 1 1 0 1;
0 1 1 1 0 1 1 1 0;
0 1 1 1 0 1 1 1 1;
0 1 1 1 1 0 0 0 0;
0 1 1 1 1 0 0 0 1;
0 1 1 1 1 0 0 1 0;
0 1 1 1 1 0 0 1 1;
0 1 1 1 1 0 1 0 0;
0 1 1 1 1 0 1 0 1;
0 1 1 1 1 0 1 1 0;
0 1 1 1 1 0 1 1 1;
0 1 1 1 1 1 0 0 0;
0 1 1 1 1 1 0 0 1;
0 1 1 1 1 1 0 1 0;
0 1 1 1 1 1 0 1 1;
0 1 1 1 1 1 1 0 0;
0 1 1 1 1 1 1 0 1;
0 1 1 1 1 1 1 1 0;
0 1 1 1 1 1 1 1 1;
1 0 0 0 0 0 0 0 0;
1 0 0 0 0 0 0 0 1;
1 0 0 0 0 0 0 1 0;
1 0 0 0 0 0 0 1 1;
1 0 0 0 0 0 1 0 0;
1 0 0 0 0 0 1 0 1;
1 0 0 0 0 0 1 1 0;
1 0 0 0 0 0 1 1 1;
1 0 0 0 0 1 0 0 0;
1 0 0 0 0 1 0 0 1;
1 0 0 0 0 1 0 1 0;
1 0 0 0 0 1 0 1 1;
1 0 0 0 0 1 1 0 0;
1 0 0 0 0 1 1 0 1;
1 0 0 0 0 1 1 1 0;
1 0 0 0 0 1 1 1 1;
1 0 0 0 1 0 0 0 0;
1 0 0 0 1 0 0 0 1;
1 0 0 0 1 0 0 1 0;
1 0 0 0 1 0 0 1 1;
1 0 0 0 1 0 1 0 0;
1 0 0 0 1 0 1 0 1;
1 0 0 0 1 0 1 1 0;
1 0 0 0 1 0 1 1 1;
1 0 0 0 1 1 0 0 0;
1 0 0 0 1 1 0 0 1;
1 0 0 0 1 1 0 1 0;
1 0 0 0 1 1 0 1 1;
1 0 0 0 1 1 1 0 0;
1 0 0 0 1 1 1 0 1;
1 0 0 0 1 1 1 1 0;
1 0 0 0 1 1 1 1 1;
1 0 0 1 0 0 0 0 0;
1 0 0 1 0 0 0 0 1;
1 0 0 1 0 0 0 1 0;
1 0 0 1 0 0 0 1 1;
1 0 0 1 0 0 1 0 0;
1 0 0 1 0 0 1 0 1;
1 0 0 1 0 0 1 1 0;
1 0 0 1 0 0 1 1 1;
1 0 0 1 0 1 0 0 0;
1 0 0 1 0 1 0 0 1;
1 0 0 1 0 1 0 1 0;
1 0 0 1 0 1 0 1 1;
1 0 0 1 0 1 1 0 0;
1 0 0 1 0 1 1 0 1;
1 0 0 1 0 1 1 1 0;
1 0 0 1 0 1 1 1 1;
1 0 0 1 1 0 0 0 0;
1 0 0 1 1 0 0 0 1;
1 0 0 1 1 0 0 1 0;
1 0 0 1 1 0 0 1 1;
1 0 0 1 1 0 1 0 0;
1 0 0 1 1 0 1 0 1;
1 0 0 1 1 0 1 1 0;
1 0 0 1 1 0 1 1 1;
1 0 0 1 1 1 0 0 0;
1 0 0 1 1 1 0 0 1;
1 0 0 1 1 1 0 1 0;
1 0 0 1 1 1 0 1 1;
1 0 0 1 1 1 1 0 0;
1 0 0 1 1 1 1 0 1;
1 0 0 1 1 1 1 1 0;
1 0 0 1 1 1 1 1 1;
1 0 1 0 0 0 0 0 0;
1 0 1 0 0 0 0 0 1;
1 0 1 0 0 0 0 1 0;
1 0 1 0 0 0 0 1 1;
1 0 1 0 0 0 1 0 0;
1 0 1 0 0 0 1 0 1;
1 0 1 0 0 0 1 1 0;
1 0 1 0 0 0 1 1 1;
1 0 1 0 0 1 0 0 0;
1 0 1 0 0 1 0 0 1;
1 0 1 0 0 1 0 1 0;
1 0 1 0 0 1 0 1 1;
1 0 1 0 0 1 1 0 0;
1 0 1 0 0 1 1 0 1;
1 0 1 0 0 1 1 1 0;
1 0 1 0 0 1 1 1 1;
1 0 1 0 1 0 0 0 0;
1 0 1 0 1 0 0 0 1;
1 0 1 0 1 0 0 1 0;
1 0 1 0 1 0 0 1 1;
1 0 1 0 1 0 1 0 0;
1 0 1 0 1 0 1 0 1;
1 0 1 0 1 0 1 1 0;
1 0 1 0 1 0 1 1 1;
1 0 1 0 1 1 0 0 0;
1 0 1 0 1 1 0 0 1;
1 0 1 0 1 1 0 1 0;
1 0 1 0 1 1 0 1 1;
1 0 1 0 1 1 1 0 0;
1 0 1 0 1 1 1 0 1;
1 0 1 0 1 1 1 1 0;
1 0 1 0 1 1 1 1 1;
1 0 1 1 0 0 0 0 0;
1 0 1 1 0 0 0 0 1;
1 0 1 1 0 0 0 1 0;
1 0 1 1 0 0 0 1 1;
1 0 1 1 0 0 1 0 0;
1 0 1 1 0 0 1 0 1;
1 0 1 1 0 0 1 1 0;
1 0 1 1 0 0 1 1 1;
1 0 1 1 0 1 0 0 0;
1 0 1 1 0 1 0 0 1;
1 0 1 1 0 1 0 1 0;
1 0 1 1 0 1 0 1 1;
1 0 1 1 0 1 1 0 0;
1 0 1 1 0 1 1 0 1;
1 0 1 1 0 1 1 1 0;
1 0 1 1 0 1 1 1 1;
1 0 1 1 1 0 0 0 0;
1 0 1 1 1 0 0 0 1;
1 0 1 1 1 0 0 1 0;
1 0 1 1 1 0 0 1 1;
1 0 1 1 1 0 1 0 0;
1 0 1 1 1 0 1 0 1;
1 0 1 1 1 0 1 1 0;
1 0 1 1 1 0 1 1 1;
1 0 1 1 1 1 0 0 0;
1 0 1 1 1 1 0 0 1;
1 0 1 1 1 1 0 1 0;
1 0 1 1 1 1 0 1 1;
1 0 1 1 1 1 1 0 0;
1 0 1 1 1 1 1 0 1;
1 0 1 1 1 1 1 1 0;
1 0 1 1 1 1 1 1 1;
1 1 0 0 0 0 0 0 0;
1 1 0 0 0 0 0 0 1;
1 1 0 0 0 0 0 1 0;
1 1 0 0 0 0 0 1 1;
1 1 0 0 0 0 1 0 0;
1 1 0 0 0 0 1 0 1;
1 1 0 0 0 0 1 1 0;
1 1 0 0 0 0 1 1 1;
1 1 0 0 0 1 0 0 0;
1 1 0 0 0 1 0 0 1;
1 1 0 0 0 1 0 1 0;
1 1 0 0 0 1 0 1 1;
1 1 0 0 0 1 1 0 0;
1 1 0 0 0 1 1 0 1;
1 1 0 0 0 1 1 1 0;
1 1 0 0 0 1 1 1 1;
1 1 0 0 1 0 0 0 0;
1 1 0 0 1 0 0 0 1;
1 1 0 0 1 0 0 1 0;
1 1 0 0 1 0 0 1 1;
1 1 0 0 1 0 1 0 0;
1 1 0 0 1 0 1 0 1;
1 1 0 0 1 0 1 1 0;
1 1 0 0 1 0 1 1 1;
1 1 0 0 1 1 0 0 0;
1 1 0 0 1 1 0 0 1;
1 1 0 0 1 1 0 1 0;
1 1 0 0 1 1 0 1 1;
1 1 0 0 1 1 1 0 0;
1 1 0 0 1 1 1 0 1;
1 1 0 0 1 1 1 1 0;
1 1 0 0 1 1 1 1 1;
1 1 0 1 0 0 0 0 0;
1 1 0 1 0 0 0 0 1;
1 1 0 1 0 0 0 1 0;
1 1 0 1 0 0 0 1 1;
1 1 0 1 0 0 1 0 0;
1 1 0 1 0 0 1 0 1;
1 1 0 1 0 0 1 1 0;
1 1 0 1 0 0 1 1 1;
1 1 0 1 0 1 0 0 0;
1 1 0 1 0 1 0 0 1;
1 1 0 1 0 1 0 1 0;
1 1 0 1 0 1 0 1 1;
1 1 0 1 0 1 1 0 0;
1 1 0 1 0 1 1 0 1;
1 1 0 1 0 1 1 1 0;
1 1 0 1 0 1 1 1 1;
1 1 0 1 1 0 0 0 0;
1 1 0 1 1 0 0 0 1;
1 1 0 1 1 0 0 1 0;
1 1 0 1 1 0 0 1 1;
1 1 0 1 1 0 1 0 0;
1 1 0 1 1 0 1 0 1;
1 1 0 1 1 0 1 1 0;
1 1 0 1 1 0 1 1 1;
1 1 0 1 1 1 0 0 0;
1 1 0 1 1 1 0 0 1;
1 1 0 1 1 1 0 1 0;
1 1 0 1 1 1 0 1 1;
1 1 0 1 1 1 1 0 0;
1 1 0 1 1 1 1 0 1;
1 1 0 1 1 1 1 1 0;
1 1 0 1 1 1 1 1 1;
1 1 1 0 0 0 0 0 0;
1 1 1 0 0 0 0 0 1;
1 1 1 0 0 0 0 1 0;
1 1 1 0 0 0 0 1 1;
1 1 1 0 0 0 1 0 0;
1 1 1 0 0 0 1 0 1;
1 1 1 0 0 0 1 1 0;
1 1 1 0 0 0 1 1 1;
1 1 1 0 0 1 0 0 0;
1 1 1 0 0 1 0 0 1;
1 1 1 0 0 1 0 1 0;
1 1 1 0 0 1 0 1 1;
1 1 1 0 0 1 1 0 0;
1 1 1 0 0 1 1 0 1;
1 1 1 0 0 1 1 1 0;
1 1 1 0 0 1 1 1 1;
1 1 1 0 1 0 0 0 0;
1 1 1 0 1 0 0 0 1;
1 1 1 0 1 0 0 1 0;
1 1 1 0 1 0 0 1 1;
1 1 1 0 1 0 1 0 0;
1 1 1 0 1 0 1 0 1;
1 1 1 0 1 0 1 1 0;
1 1 1 0 1 0 1 1 1;
1 1 1 0 1 1 0 0 0;
1 1 1 0 1 1 0 0 1;
1 1 1 0 1 1 0 1 0;
1 1 1 0 1 1 0 1 1;
1 1 1 0 1 1 1 0 0;
1 1 1 0 1 1 1 0 1;
1 1 1 0 1 1 1 1 0;
1 1 1 0 1 1 1 1 1;
1 1 1 1 0 0 0 0 0;
1 1 1 1 0 0 0 0 1;
1 1 1 1 0 0 0 1 0;
1 1 1 1 0 0 0 1 1;
1 1 1 1 0 0 1 0 0;
1 1 1 1 0 0 1 0 1;
1 1 1 1 0 0 1 1 0;
1 1 1 1 0 0 1 1 1;
1 1 1 1 0 1 0 0 0;
1 1 1 1 0 1 0 0 1;
1 1 1 1 0 1 0 1 0;
1 1 1 1 0 1 0 1 1;
1 1 1 1 0 1 1 0 0;
1 1 1 1 0 1 1 0 1;
1 1 1 1 0 1 1 1 0;
1 1 1 1 0 1 1 1 1;
1 1 1 1 1 0 0 0 0;
1 1 1 1 1 0 0 0 1;
1 1 1 1 1 0 0 1 0;
1 1 1 1 1 0 0 1 1;
1 1 1 1 1 0 1 0 0;
1 1 1 1 1 0 1 0 1;
1 1 1 1 1 0 1 1 0;
1 1 1 1 1 0 1 1 1;
1 1 1 1 1 1 0 0 0;
1 1 1 1 1 1 0 0 1;
1 1 1 1 1 1 0 1 0;
1 1 1 1 1 1 0 1 1;
1 1 1 1 1 1 1 0 0;
1 1 1 1 1 1 1 0 1;
1 1 1 1 1 1 1 1 0;
1 1 1 1 1 1 1 1 1];
end
M = [];
Y=0; // zmienna pomocnicza przechowująca odkryte punkty stałe sieci
Rozmiar = size(W,'r');
printf('Rozmiar wejscia: %d\n',Rozmiar);
N=2^Rozmiar; // liczba wszystkiech możliwych wektorów na wejściu
printf('Liczba wektorow wejsciowych: %d\n',N);
printf('Tryb działania sieci: synchroniczny.\n');
printf('BADANIE ZBIEŻNOŚCI\n\n');
for j=1:N
printf('BADANIE WEKTORA NR %d @@@@@@@@@@@@@@@@@@@@@',j);
disp(X(j,:));
//inicjacja wartosci:
Uk=zeros(Rozmiar,1);
Vk=ones(Rozmiar,1);
V=X(j,:)';//=[0 1 1]';
k=1;
//badanie zbieżności:
Vk_1=V;
printf('\nWektor V(0):');
disp(Vk_1');
//petla
warunek_stop=%f; // warunek stopu nie jest spełniony
while ~warunek_stop,
printf('KROK\t%d\n',k);
printf('Potencjał wejsciowy U(%d)',k);
Uk=W*Vk_1;
disp(Uk');
printf('Potencjał wyjsciowy V(%d)',k);
Vk= unipolar(Uk);
//M = [M ; Vk' ];
disp(Vk');
k=k+1;
if Vk_1 == Vk then
warunek_stop=%t;
printf('Zbieżny do:');
disp(Vk');
//M = [M ; Vk' ];
if size(Y,'c')==1 then
Y=Vk';
else
if isInMatrix(Y,Vk')==%f then
Y=[Y; Vk'];
end
end
else
Vk_1=Vk;
end
if k==16 then
printf('BRAK ZBIEZNOSCI!!!!!\n');
break;
end
end
end
M = Y;
endfunction
function [M] = bipolarna(W, ac)
RozmiarKolumn = size(W, 'c');
if RozmiarKolumn == 3 then
X=[ -1 -1 -1;
-1 -1 1;
-1 1 -1;
-1 1 1;
1 -1 -1;
1 -1 1;
1 1 -1;
1 1 1];
end
if RozmiarKolumn == 6 then
X=[-1 -1 -1 -1 -1 -1;
-1 -1 -1 -1 -1 1;
-1 -1 -1 -1 1 -1;
-1 -1 -1 -1 1 1;
-1 -1 -1 1 -1 -1;
-1 -1 -1 1 -1 1;
-1 -1 -1 1 1 -1;
-1 -1 -1 1 1 1;
-1 -1 1 -1 -1 -1;
-1 -1 1 -1 -1 1;
-1 -1 1 -1 1 -1;
-1 -1 1 -1 1 1;
-1 -1 1 1 -1 -1;
-1 -1 1 1 -1 1;
-1 -1 1 1 1 -1;
-1 -1 1 1 1 1;
-1 1 -1 -1 -1 -1;
-1 1 -1 -1 -1 1;
-1 1 -1 -1 1 -1;
-1 1 -1 -1 1 1;
-1 1 -1 1 -1 -1;
-1 1 -1 1 -1 1;
-1 1 -1 1 1 -1;
-1 1 -1 1 1 1;
-1 1 1 -1 -1 -1;
-1 1 1 -1 -1 1;
-1 1 1 -1 1 -1;
-1 1 1 -1 1 1;
-1 1 1 1 -1 -1;
-1 1 1 1 -1 1;
-1 1 1 1 1 -1;
-1 1 1 1 1 1;
1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 1;
1 -1 -1 -1 1 -1;
1 -1 -1 -1 1 1;
1 -1 -1 1 -1 -1;
1 -1 -1 1 -1 1;
1 -1 -1 1 1 -1;
1 -1 -1 1 1 1;
1 -1 1 -1 -1 -1;
1 -1 1 -1 -1 1;
1 -1 1 -1 1 -1;
1 -1 1 -1 1 1;
1 -1 1 1 -1 -1;
1 -1 1 1 -1 1;
1 -1 1 1 1 -1;
1 -1 1 1 1 1;
1 1 -1 -1 -1 -1;
1 1 -1 -1 -1 1;
1 1 -1 -1 1 -1;
1 1 -1 -1 1 1;
1 1 -1 1 -1 -1;
1 1 -1 1 -1 1;
1 1 -1 1 1 -1;
1 1 -1 1 1 1;
1 1 1 -1 -1 -1;
1 1 1 -1 -1 1;
1 1 1 -1 1 -1;
1 1 1 -1 1 1;
1 1 1 1 -1 -1;
1 1 1 1 -1 1;
1 1 1 1 1 -1;
1 1 1 1 1 1];
end
M = [];
Y=0; // zmienna pomocnicza przechowująca odkryte punkty stałe sieci
Rozmiar = size(W,'r');
printf('Rozmiar wejscia: %d\n',Rozmiar);
N=2^Rozmiar; // liczba wszystkiech możliwych wektorów na wejściu
printf('Liczba wektorow wejsciowych: %d\n',N);
printf('Tryb działania sieci: synchroniczny.\n');
printf('BADANIE ZBIEŻNOŚCI\n\n');
for j=1:N
printf('BADANIE WEKTORA NR %d @@@@@@@@@@@@@@@@@@@@@',j);
disp(X(j,:));
//inicjacja wartosci:
Uk=zeros(Rozmiar,1);
Vk=ones(Rozmiar,1);
V=X(j,:)';//=[0 1 1]';
k=1;
//badanie zbieżności:
Vk_1=V;
printf('\nWektor V(0):');
disp(Vk_1');
//petla
warunek_stop=%f; // warunek stopu nie jest spełniony
while ~warunek_stop,
printf('KROK\t%d\n',k);
printf('Potencjał wejsciowy U(%d)',k);
Uk=W*Vk_1;
disp(Uk');
printf('Potencjał wyjsciowy V(%d)',k);
Vk= bipolar(Uk);
disp(Vk');
k=k+1;
if Vk_1 == Vk then
warunek_stop=%t;
printf('Zbieżny do:');
disp(Vk');
//M = [M ; Vk'];
printf('Macierz M : ');
disp(M);
if size(Y,'c')==1 then
Y=Vk';
else
if isInMatrix(Y,Vk')==%f then
Y=[Y; Vk'];
end
end
else
Vk_1=Vk;
end
if k==16 then
printf('BRAK ZBIEZNOSCI!!!!!\n');
break;
end
end
end
M = Y;
endfunction
function [wy]=unipolar(a)
[row col]=size(a);
if row*col<>1 then
wy=zeros(row,col);
for i = 1:row
for j = 1:col
wy(i,j) = unipolar(a(i,j));
end;
end
else
if a > 0 then
wy=1;
else
wy=0;
end
end
endfunction
function wy_log=isInMatrix(Y,X) // funkcja pomocnicza, sprawdza czy wektor X znajduje się już w macierzy Y
if size(Y,'c') <> size(X,'c') | size(X,'r') <> 1 then
printf('Niepoprawne dane wejściowe: wymiar kolumn dla obu macierzy nie jest zgodny lub macierz druga nie jest wektorem wierszowym.');
end
wy_log=%f;
for i=1:size(Y,'r')
if Y(i,:) == X then
wy_log=%t
end
end
endfunction
function [wy]=bipolar(a)
[row col]=size(a);
if row*col<>1 then
wy=zeros(row,col);
for i = 1:row
for j = 1:col
wy(i,j) = bipolar(a(i,j));
end;
end
else
if a > 0 then
wy=1;
else
wy=-1;
end
end
endfunction
function [Z] = RegulaHebba(X)
RozmiarK = size(X, 'c');
RozmiarW = size(X, 'r');
W = zeros(RozmiarK, RozmiarK);
row = size(W,'r');
col = size(W, 'c');
for i = 1: row
for j = 1: col
for k = 1: RozmiarW
if i <> j then
W(i,j) = W(i,j) + (X(k,i) * X(k,j));
else
W(i,j) = 0;
end
end
end
end
Z = W/RozmiarK;
endfunction
function printC(Z)
RozmiarK = size(Z , 'c');
for i = 1 : RozmiarK
if Z(1,i) == 1 then
printf('#');
else
printf("*");
end
if modulo(i,3) == 0 then
printf('\n');
end
end
endfunction
function printMacierz(Z)
RozmiarK = size(Z, 'c');
RozmiarW = size(Z, 'r');
for i = 1 : RozmiarW
for j = 1: RozmiarK
if Z(i,j) == 1 then
printf('#');
else
printf("*");
end
end
printf("\n");
end
endfunction
function [W] = pseudoinwersja(X)
w = det(X);
if w <> 0 then
[W] = X' * (X * X')^(-1) * X;
end
endfunction
function czyLiniowoNiezalezne(X)
w = det(X);
printf("Czy Liniowo Niezalezna : %d \n ",w);
endfunction
function [Z] = czyRozpoznane(P,V)
// printf('Macierz wektorow Rozpoznanych : \n ' );
// disp(P);
// printf('Macierz V : \n ' );
// disp(V);
Z = [];
//L = liczba wektorow do rozpoznania;
L = size(V, 'r');
for i = 1: L
if isInMatrix(P, V(i,:)) then
//printf("jest \n");
//disp(V(i,:));
Z = [Z; V(i,:)];
else
//printf("nie ma \n");
end
end
endfunction
function [Z] = synchronicznaSH(W, pattern, V, ac)
r = size (W, 'c');
if W == -1 then
printf('Regula Hebba\n');
//V1 = RegulaHebba(pattern);
//printf("Pseudoinwersja\n")
//czyLiniowoNiezalezne(pattern);
[V1] = pseudoinwersja(pattern);
disp(V1);
if ac == 1 then
P = unipolarna(V1);
printf('Macierz wektorów zbieżnych: \n');
disp(P);
printf('Macierz V : \n' );
disp(V);
Z = czyRozpoznane(P, V);
printf("Wypisania Macierzy Z \n");
disp(Z);
printf("Wektor poczatkowy \n")
//printC(pattern);//dla macierzy C4
printMacierz(pattern);
printf("Wektor koncowy \n");
//porownane(P, V);
//printC(Z);//dla macierzy C4
printMacierz(Z);
end
if ac == -1 then
P = bipolarna(V1);
printf('Macierz wektorów zbieżnych: \n');
disp(P);
printf('Macierz V : \n' );
disp(V);
Z = czyRozpoznane(P, V);
printf("Wypisania Macierzy Z \n");
disp(Z);
printC(Z);
end
else
if pattern == -1 then
printf('Regula Heba \n');
disp(W);
if ac == 1 then
//P = unipolarna(W);
P = unipolarna(W);
printf('Macierz wektorów zbieżnych: \n');
disp(P);
printf('Macierz V : \n' );
disp(V);
Z = czyRozpoznane(P, V);
//printf("Wypisania Macierzy Z \n");
//disp(Z);
//printC(Z);
//printMacierz(Z);
end
if ac == -1 then
P = bipolarna(W);
printf('Macierz wektorów zbieżnych: \n');
disp(P);
printf('Macierz V : \n' );
disp(V);
Z = czyRozpoznane(P, V);
//printf("Wypisania Macierzy Z \n");
//disp(Z);
//printC(Z);
//printMacierz(Z);
end
end
end
endfunction
Wv = [-1 1 1;
-1 1 -1;
1 1 -1];
Wx = [0 1 1;
0 1 0;
1 1 0];
C1 = [0 1 0 1 1 0 0 1 0];
Cx1 = [0 1 1];
Cx2 = [0 1 0];
Cx3 = [1 1 0];
Ca = [1 1 1];
Cb = [0 1 0];
Cc = [1 1 1];
Cx4 = [0 0 1 0];
Cx5 = [0 1 1 0];
Cx6 = [0 0 1 0];
Cx7 = [0 0 1 0];
Cx = [Cx1;Cx2;Cx3];
Cxx = [Cx4;Cx5;Cx6];
Cabc = [Ca; Cb; Cc];
C2 = [-1 1 -1 1 1 -1];
Cv1 = [-1 1 1];
Cv2 = [-1 1 -1];
Cv3 = [ 1 1 -1];
Cv = [Cv1;Cv2;Cv3];
WSynchUni = [ 0 -1 -3;
-1 0 2;
-3 2 0];
WSynchBip = [0 1 2;
1 0 -1;
2 -1 0];
C4 = [1 0 1 0 1 0 1 0 1];
Vjeden = [1 0 0 1 0 0;
0 0 1 1 0 0;
0 1 0 1 0 0;
0 0 0 1 0 0;
0 0 0 1 0 1;
0 0 0 1 1 0];
Vjeden1 = [0 0 0 1 0 0;
0 0 1 1 0 0;
0 1 0 1 0 0;
1 0 0 1 0 0;
0 0 0 1 0 0;
0 0 0 1 0 0];
Vcztery = [0 0 0 1 0 0;
0 0 1 1 0 0;
0 1 0 1 0 0;
1 1 1 1 0 0;
0 0 0 1 1 0;
1 1 0 1 0 1];
Vcztery1 = [0 0 0 1 0 0;
0 0 1 1 0 0;
0 1 0 1 0 0;
1 1 1 1 0 0;
0 0 0 1 0 0;
0 0 0 1 0 0];
VL = [1 1 0 0 0 0;
0 1 0 0 0 0;
0 1 1 1 0 0;
0 1 0 1 1 0;
0 1 0 0 1 0;
0 1 1 1 0 1];
VL1 = [0 1 0 0 0 0;
0 1 0 0 0 0;
0 1 0 0 0 0;
0 1 0 0 0 0;
0 1 0 0 0 0;
0 1 1 1 0 0];
printf('PROGRAM NAPISANY NA ĆWICZENIA - ZAAWANSOWANE METODY SZTUCZNEJ INTELIGENCJI\n autorzy: Paweł Mazur, Piotr Mazur\n\n');
//Z = synchronicznaSH(Wx, -1, Cx, -1);
//dla Podpunktu b
//regula Hebba unipolarna
//Z = synchronicznaSH(-1, C4, C4, 1);
//dla pesudoinwersji unipolarna
Z = synchronicznaSH(-1, Vjeden, Vjeden1, 1);
//Z = asynchronicznaSH(-1, Vcztery, Vcztery1, 1);
//Z = asynchronicznaSH(-1, VL, VL1, 1);
//regula Hebba bipolarna
//Z = synchronicznaSH(-1, C2, C2, -1);
//dla pesudoinwersji bipolarna
//Z = synchronicznaSH(-1, Cv, Cv, -1);
//Z = synchronicznaSH2(-1, Vx1, Vx1, 1);
//dla Podpunktu a
//z wagami bipolarna
//Z = synchronicznaSH(WSynchUni, -1, Cx, 1);
//z wagami unipolarna
//Z = synchronicznaSH(WSynchUni, -1, Cv, 1);
|
d62b4c53012d075740b54d1152dbae465b8426fd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1757/CH5/EX5.8/EX5_8.sce
|
bd09fc49f153ae5f422e45f37893c8d8b2dd8fea
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 727
|
sce
|
EX5_8.sce
|
//Example5.8 //determine the feedback transfer function of an op-amp for the following condition
clc;
clear;
close;
// a) When open loop gain of 10^5 and the closed loop gain of 100
A = 10^5 ; // open loop gain
Af = 100 ; //closed loop gain
// Feedback transfer function is
beta =(1/Af)-(1/A);
disp('Feedback transfer function is = '+string(beta)+'');
beta = 1/beta ;
disp('OR 1/Beta is = '+string(beta)+'');
// For an open loop gain of -10^5 and closed loop gain of -100
A = -10^5 ; // open loop gain
Af = -100 ; //closed loop gain
// Feedback transfer function is
beta =(1/Af)-(1/A);
disp('Feedback transfer function is = '+string(beta)+'');
beta = 1/beta ;
disp('OR 1/Beta is = '+string(beta)+'');
|
97fa23bfb2a406b1bbb47091fe8e8dee30825dd5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2609/CH8/EX8.1/ex_8_1.sce
|
e76d6ccc26ac6ff451cf59def912b68829122536
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 496
|
sce
|
ex_8_1.sce
|
////Ex 8.1
clc;
clear;
close;
format('v',9);
VCC=6;//V
VEE=6;//V
RT=4;//kohm
CT=330;//pF
C=240;//pF
fo=0.3/(RT*1000*CT*10^-12)/1000;//kHz
disp(fo,"Free running frequency(kHz)");
Vplus=(VCC-(-VEE))/2;//V
deltafL=8*fo/Vplus;//kHz
disp(deltafL,"Lock Range(+ve & -ve in kHz)");
//For LM 565
R=3.6;//kohm
deltafC=sqrt(deltafL*1000/(2*%pi*R*1000*C*10^-12))/1000;//kHz
disp(deltafC,"Capture Range(+ve & -ve in kHz)");
deltafP=2*deltafC/2;//kHz
disp(deltafP,"Pull-in Range(kHz)");
|
da714f94262d3da9fbccf984da7987ece3db9572
|
5f48beee3dc825617c83ba20a7c82c544061af65
|
/tests/s/04.tst
|
6fe077dc6a92caf38350d26aba437f812e915d29
|
[] |
no_license
|
grenkin/compiler
|
bed06cd6dac49c1ca89d2723174210cd3dc8efea
|
30634ec46fba10333cf284399f577be7fb8e5b61
|
refs/heads/master
| 2020-06-20T12:44:17.903582
| 2016-11-27T03:08:20
| 2016-11-27T03:08:20
| 74,863,612
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 39
|
tst
|
04.tst
|
int x;
int main(void)
{
return 0;
}
|
3c14a952ab208983bfc5f3c02efa52a2a5e06401
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2873/CH9/EX9.15/Ex9_15.sce
|
1bd29e9e54a31341fa76f3f8837525dc8cdb6ebf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,831
|
sce
|
Ex9_15.sce
|
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Engineering Thermodynamics by Onkar Singh Chapter 9 Example 15")
r=10;//pressure ratio
Cp=1.0032;//specific heat of air in KJ/kg K
y=1.4;//expansion constant
T3=1400;//inlet temperature of gas turbine in K
T1=(17+273);//ambient temperature in K
P1=1*10^5;//ambient pressure in Pa
Pc=15;//condensor pressure in KPa
Pg=6*1000;//pressure of steam in generator in KPa
T5=420;//temperature of exhaust from gas turbine in K
disp("In gas turbine cycle,T2/T1=(P2/P1)^((y-1)/y)")
disp("so T2=T1*(P2/P1)^((y-1)/y)in K")
T2=T1*(r)^((y-1)/y)
disp("T4/T3=(P4/P3)^((y-1)/y)")
disp("so T4=T3*(P4/P3)^((y-1)/y) in K")
T4=T3*(1/r)^((y-1)/y)
disp("compressor work per kg,Wc=Cp*(T2-T1) in KJ/kg")
Wc=Cp*(T2-T1)
disp("turbine work per kg,Wt=Cp*(T3-T4) in KJ/kg ")
Wt=Cp*(T3-T4)
disp("heat added in combustion chamber per kg,q_add=Cp*(T3-T2) in KJ/kg ")
q_add=Cp*(T3-T2)
disp("net gas turbine output,W_net_GT=Wt-Wc in KJ/kg air")
W_net_GT=Wt-Wc
disp("heat recovered in HRSG for steam generation per kg of air")
disp("q_HRGC=Cp*(T4-T5)in KJ/kg")
q_HRGC=Cp*(T4-T5)
disp("at inlet to steam in turbine,")
disp("from steam table,ha=3177.2 KJ/kg,sa=6.5408 KJ/kg K")
ha=3177.2;
sa=6.5408;
disp("for expansion in steam turbine,sa=sb")
sb=sa;
disp("let dryness fraction at state b be x")
disp("also from steam table,at 15KPa, sf=0.7549 KJ/kg K,sfg=7.2536 KJ/kg K,hf=225.94 KJ/kg,hfg=2373.1 KJ/kg")
sf=0.7549;
sfg=7.2536;
hf=225.94;
hfg=2373.1;
disp("sb=sf+x*sfg")
disp("so x=(sb-sf)/sfg ")
x=(sb-sf)/sfg
disp("so hb=hf+x*hfg in KJ/kg K")
hb=hf+x*hfg
disp("at exit of condenser,hc=hf ,vc=0.001014 m^3/kg from steam table")
hc=hf;
vc=0.001014;
disp("at exit of feed pump,hd=hd-hc")
disp("hd=vc*(Pg-Pc)*100 in KJ/kg")
hd=vc*(Pg-Pc)*100
disp("heat added per kg of steam =ha-hd in KJ/kg")
ha-hd
disp("mass of steam generated per kg of air=q_HRGC/(ha-hd)in kg steam per kg air")
q_HRGC/(ha-hd)
disp("net steam turbine cycle output,W_net_ST=(ha-hb)-(hd-hc)in KJ/kg")
W_net_ST=(ha-hb)-(hd-hc)
disp("steam cycle output per kg of air(W_net_ST)=W_net_ST*0.119 in KJ/kg air")
W_net_ST=W_net_ST*0.119
disp("total combined cycle output=(W_net_GT+W_net_ST) in KJ/kg air ")
(W_net_GT+W_net_ST)
disp("combined cycle efficiency,n_cc=(W_net_GT+W_net_ST)/q_add")
n_cc=(W_net_GT+W_net_ST)/q_add
disp("in percentage")
n_cc=n_cc*100
disp("In absence of steam cycle,gas turbine cycle efficiency,n_GT=W_net_GT/q_add")
n_GT=W_net_GT/q_add
disp("in percentage")
n_GT=n_GT*100
disp("thus ,efficiency is seen to increase in combined cycle upto 57.77% as compared to gas turbine offering 48.21% efficiency.")
disp("overall efficiency=57.77%")
disp("steam per kg of air=0.119 kg steam per/kg air")
|
183aa8113784f5f3ae109204ed63b25c45cff349
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/45/CH3/EX3.8/example_3_8.sce
|
2dd2a34e2060666bca807c24a5ca241d4f0709cd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 527
|
sce
|
example_3_8.sce
|
//example 3.8
// this program needs kmap.sci and noof.sci
clc;
disp(' C''D'' C''D CD CD''');//displaying the given kmap
disp('A''B'' 0 0 0 0');
disp('A''B 0 0 1 0');
disp('AB x x x x');
disp('AB'' 0 0 x x');
k=[0 0 0 0;0 0 1 0;0 0 1 0;0 0 0 0];
disp('In a Karnaugh map if don''t care condition exits, we may consider them as ones if that gives a larger group size.');
disp('The minimal expression from the given kmap is ');
kmap(k); //calling the kamp function
|
3a87d579366fa57c9334a75601a989fc4a85d7bb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3556/CH14/EX14.6/Ex14_6.sce
|
21b25a350960f76f5f14d232db00ebe7bcaad5b2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 329
|
sce
|
Ex14_6.sce
|
clc
// Fundamental of Electric Circuit
// Charles K. Alexander and Matthew N.O Sadiku
// Mc Graw Hill of New York
// 5th Edition
// Part 2 : AC Circuits
// Chapter 14 : Frequency Response
// Example 14 - 6
clear; clc; close;
//
s=poly(0,'s')
h=syslin('c',10000*s/(s + 1)*(s + 5)*(s + 20))
clf();bode(h,0.01,100);
|
58b092404f7000ac5397c223e3a72f06bc0daf68
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1760/CH2/EX2.108/EX2_108.sce
|
78494ca341b012bb4db06b573a87cf3f739a00a1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 138
|
sce
|
EX2_108.sce
|
//EXAMPLE 2-108 PG NO-146
I1=(100/1.414)^2;
I2=(10/1.414)^2;
R.M.S=(I1+I2)^0.5;
disp('R.M.S VALUE is = '+string(R.M.S)+' A');
|
a2990b6b5e3c9eea804e4681f7c5b51bcf13130e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/839/CH23/EX23.1/Example_23_1.sce
|
943b829601c4da821a57481c1f82d8844599dc0f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,062
|
sce
|
Example_23_1.sce
|
//clear//
clear;
clc;
//Example 23.1
//Given
T = 320; //[F]
P = 1 ; //[atm]
//(1)=CO2, (2)=H2O, (3)=O2, (4)=N2
y_in = [0.14,0.07,0.03,0.76]';
Tw = 80; //[F]
//Solution
//(a)
//Basis
F = 100; //[mol], of gas
Ts = 120; //[F]
Cps = [9.72,8.11,7.14,6.98]';
n_in = F*y_in; //[mol]
nCp = n_in.*Cps; //
sum_nCp = sum(nCp);
sum_n_in = sum(n_in); //[mol]
Tavg = (Ts+T)/2; //[F]
lambda_s = 1025.8*18; //[Btu/lb mol], at Ts, from Appendix 7
//Making a heat balance for z moles of water evaporated
z = sum_nCp*(T-Ts)/(lambda_s+18*(Ts-Tw));
//Total moles of water in exit gas
n_out(2) = z+n_in(2); //[mole]
//Partial pressure of the water in the exit gas
PH2O = n_out(2)/107.76*760; //[mm Hg]
//But at 120 F, PH2Oprime = 87.5 mm Hg (Appendix 7). Saturation
//temperature Ts must be greater than 120 F. Trying
Ts = 126; // [F]
Tavg = (Ts+T)/2; //[F]
lambda_s = 1022.3*18; //[Btu/lb mol], at Ts, from Appendix 7
//Making a heat balance for z moles of water evaporated
z = sum_nCp*(T-Ts)/(lambda_s+18*(Ts-Tw));
//Total moles of water in exit gas
n_out(2) = z+n_in(2); //[mole]
//Partial pressure of the water in the exit gas
PH2O = n_out(2)/107.76*760; //[mm Hg]
//This is close enough to the value of PH2Oprime
disp('F',Ts,'Adiabatic saturation temperature');
//(b)
//for Tin = Ts, by heat balance
z = sum_nCp*(T-Ts)/(lambda_s);
n_out(2) = z + n_in(2); //[mole]
//Partial pressure of the water in the exit gas
PH2O = n_out(2)/107.85*760; //[mm Hg]
//This is higher than the vapor pressure of water at 126 F,
//103.2 mm Hg, and Ts>126 F. Trying
Ts = 127; //[F]
Tavg = (Ts+T)/2; //[F]
lambda_s = 1021.7*18; //[Btu/lb mol], at Ts, from Appendix 7
//Making a heat balance for z moles of water evaporated
z = sum_nCp*(T-Ts)/(lambda_s);
//Total moles of water in exit gas
n_out(2) = z+n_in(2); //[mole]
//Partial pressure of the water in the exit gas
PH2O = n_out(2)/107.76*760; //[mm Hg]
//Thus 127 is too high and 126 is too low. Hence,
Ts = (126+127)/2; //[F]
disp('F',Ts,'Adiabatic saturation temperature');
|
9edb9cd9949e1970c6ee2fab368cbafbcc74b014
|
66106821c3fd692db68c20ab2934f0ce400c0890
|
/test/interpreter/lsl01.tst
|
8b4b79566a46e555252faf8473abb574f21dc67c
|
[] |
no_license
|
aurelf/avrora
|
491023f63005b5b61e0a0d088b2f07e152f3a154
|
c270f2598c4a340981ac4a53e7bd6813e6384546
|
refs/heads/master
| 2021-01-19T05:39:01.927906
| 2008-01-27T22:03:56
| 2008-01-27T22:03:56
| 4,779,104
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 270
|
tst
|
lsl01.tst
|
; @Harness: simulator
; @Format: atmel
; @Arch: avr
; @Purpose: "Test the LSL (logical shift left instruction"
; @Result: "flags.h = 0, flags.s = 1, flags.v = 1, flags.n = 0, flags.z = 1, flags.c = 1, r16 = 0"
start:
ldi r16, 0b10000000
lsl r16
end:
break
|
7c3de883097ac6833d24f34724059d89cecbd86e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1271/CH20/EX20.6/example20_6.sce
|
707361d81b73f0922bf0f688f34c8d1536adf6ab
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 360
|
sce
|
example20_6.sce
|
clc
// Given that
V = 9.8e3 // voltage in V
i = 2e-3 // current in amp
c = 3e8 // speed of light in m/sec
// Sample Problem 6 on page no. 20.8
printf("\n # PROBLEM 6 # \n")
printf("Standard formula used \n ")
printf("h*c/lambda = eV \n")
lambda = 12400 / V
f = c / lambda
printf("\n Highest frequency is %e Hz.\n Minimum wavelength is %f Angstrom.",f,lambda)
|
445e28bd028b77bcd819c89f761a7dc0f177a394
|
bacd6919260d728f4316702bbe1edf811810bede
|
/legacy/33/console/b.sce
|
2fc1f7f54fe4f330c65a2cef7e434e210a20c35a
|
[] |
no_license
|
vopl/sp
|
332d8c2ff536fc5d8772ff2f3fbeca9b50c47641
|
a4313f4d7af47cc3132d7546947d4d668c7e487e
|
refs/heads/master
| 2020-04-16T02:09:36.036424
| 2016-10-05T18:08:30
| 2016-10-05T18:08:30
| 65,293,458
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 653
|
sce
|
b.sce
|
stacksize('max');
w = 60*24*30*6;
time = read("P:\finance\spectrumSeparator\nhel.Composite\20.1.win.8\console\outTime",-1,w);
orig = read("P:\finance\spectrumSeparator\nhel.Composite\20.1.win.8\console\outOrig",-1,w);
extrap = read("P:\finance\spectrumSeparator\nhel.Composite\20.1.win.8\console\outExtrap",-1,w);
clf
pos = 50;
timeMult = 1/60/60/24;
mn = min(orig(pos,:));
mx = max(orig(pos,:));
bx=[time(pos,1),time(pos,w/2),time(pos,w/2),time(pos,w)];
by=[mn,mn,mx,mx];
plot(bx*timeMult, by,'r');
plot(time(pos,:)*timeMult, orig(pos,:),'k');
plot(time(pos,:)*timeMult, extrap(pos,:)-extrap(pos,w/2)+orig(pos,w/2),'b');
|
9683dde767f4c38b40bbe6def84f535711035b03
|
717ddeb7e700373742c617a95e25a2376565112c
|
/2474/CH5/EX5.3/Ch05Ex03.sce
|
534c27703cd71670633d350e1ae26dd8715600c9
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 849
|
sce
|
Ch05Ex03.sce
|
// Scilab code Ex5.3: Pg.196-197 (2008)
clc; clear;
E_k = 150; // Kinetic energy of a cosmic ray proton, GeV
h = 6.63e-034; // Plank's constant, J-s
m = 1.67e-027; // Mass of proton, kg
c = 3e+08; // Velocity of light, m/s
E_0 = 0.938; // Rest energy of the proton, GeV
lamda_c = h/(m*c); // Compton wavelength of proton, m
r = E_k/E_0; // Ratio of kinetic energy to rest energy of proton
// Since this value on the curve corresponds to about 6e-03 on the axis, therefore
r_w = 6e-03; // Ratio of de broglie wavelength of proton to its compton wavelength
lamda = r_w*lamda_c; // de Broglie wavelength of the proton, m
printf("\nThe de-Broglie wavelength of cosmic ray proton = %3.1e m = %3.1e fm",lamda, lamda*1e+15);
// Result
// The de-Broglie wavelength of cosmic ray proton = 7.9e-018 m = 7.9e-003 fm
|
67c0c9b5a7846de19487470271a69a8420b0a65e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1976/CH2/EX2.9/Ex2_9.sce
|
294955d87ddf5fe2aedc95fd906241482d51742b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 535
|
sce
|
Ex2_9.sce
|
//To determine the most economic power factor
//Page 91
clc;
clear;
P=200*(10^3); //Maximum Demand
pf=0.707; //Power Factor Lagging
a=100; //Tariff per kVA per year
b=200; //Power factor improvement cost Per kVA.
r=20; //Interest Depriciation, maintenance and cost of losses amount to 20% of capital cost per year
// Economic PF = sqrt(1-((b1/a)^2))
b1=r*b/100;// b' term accrding to the equation above
pfeco=sqrt(1-((b1/a)^2)); //Economic Power Factor
printf('The Economic Power Factor is %g \n',pfeco)
|
a765771d1826dd9ca8e284bdf5853078c19569d9
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set14/s_Material_Science_In_Engineering_Dr._K._M._Gupta_1367.zip/Material_Science_In_Engineering_Dr._K._M._Gupta_1367/CH15/EX15.16/15_16.sce
|
74367744048b7314765f1734bdb9454675c7b0f8
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 240
|
sce
|
15_16.sce
|
errcatch(-1,"stop");mode(2);//Find Band gap energy
//Ex:15.16
;
;
c=2.99*10^8;//speed of light in m/s
h=6.62*10^-24;//planck's constant
w=1.771*10^-6;//wavelength in J
eg=h*c/w;//in J
disp(eg,"Band gap energy (in J) = ");
exit();
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.