blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cf1d5deb434b09b8499b0d2b7a4436782b8d7040
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3685/CH13/EX13.5/Ex13_5.sce
|
e057b528442c7923b7891b8c3abad2e944adbe48
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,214
|
sce
|
Ex13_5.sce
|
clc
P1 = 0.1 // Air pressure at turbine inlet in MPa
T1 = 30 // Air temperature at turbine inlet in degree Celsius
T3 = 900 // Maximum cycle temperature at turbine inlet in degree Celsius
rp = 6 // Pressure ratio
nt = 0.8 // Turbine efficiency
nc = 0.8// Compressor efficiency
g = 1.4 // Heat capacity ratio
cv = 0.718 // Constant volume heat capacity
cp = 1.005 // Constant pressure heat capacity
R = 0.287 // Gas constant
T2s = (T1+273)*(rp)^((g-1)/g)
T4s = (T3+273)/((rp)^((g-1)/g))
T21 = (T2s-T1-273)/nc // Temperature raise due to compression
T34 = nt*(T3+273-T4s) // Temperature drop due to expansion
Wt = cp*T34 // Turbine work
Wc = cp*T21 // Compressor work
T2 = T21+T1+273 // Temperature after compression
Q1 = cp*(T3+273-T2) // Heat added
n = (Wt-Wc)/Q1 // First law efficiency
T4 = T3+273-T34 // Temperature after expansion
T6 = 0.75*(T4-T2) + T2 // Regeneration temperature
Q1_ = cp*(T3+273-T6)// Heat added
n_ = (Wt-Wc)/Q1_ //cycle efficiency
I = (n_-n)/n // Fractional increase in cycle efficiency
printf("\n Example 13.5\n")
printf("\n The percentage increase in cycle efficiency \n due to regeneration is %f percent",I*100)
//The answers vary due to round off error
|
3270fb51d0fb941a3e53c6398718476bc3938f59
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2132/CH4/EX4.1/Example4_1.sce
|
53ca8df7e076fb84fae1f5d728ea9faee42f5ef9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,392
|
sce
|
Example4_1.sce
|
//Example 4.1
clc;
clear;
close;
format('v',9);
//Given data :
p=5;//kg/cm^2
disp("Gauge units : ");
disp(p/10^-4,"Pressure Intensity in kg/m^2 : ");
g=9.81;//gravity constant
disp(p*g/10^-4,"Pressure Intensity in N/m^2 : ");
disp(p*g/10^-4,"Pressure Intensity in Pa : ");
disp(p*g/10^3/10^-4,"Pressure Intensity in kPa : ");
disp(p*g/10^6/10^-4,"Pressure Intensity in MPa : ");
disp("In terms of head : ");
w=1000;//kg/m^3 for water
h=p*10^4/w;//meter of water
disp("Pressure is : "+string(h)+" meter of water.");
w=13.6*1000;//kg/m^3 for mercury
h=p*10^4/w;//meter of mercury
disp("Pressure is : "+string(h)+" meter of mercury.");
disp("Absolute units : ");
Patm=760;//mm of mercury
Patm=760*13.6/1000;//m of water
Patm=Patm*1000;//kg/m^2
Pabs=p+Patm;//kg/m^2
disp(Pabs,"Absolute pressure in kg/m^2 : ");
disp(Pabs*10^4,"Absolute pressure in kg/cm^2 : ");
disp(Pabs*10^4*g,"Absolute pressure in N/m^2 : ");
disp(Pabs*10^4*g,"Absolute pressure in Pa : ");
disp(Pabs*10^5/10^3,"Absolute pressure in kPa : ");
disp(Pabs*10^5/10^6,"Absolute pressure in MPa : ");
h1=p*10^4/w;//meter of water
h2=p*10^4/1000;//meter of water
h=h1+h2;////meter of water
disp(h,"Absolute pressure head in terms of water in meter : ");
w=13.6*1000;//kg/m^3 for mercury
h=p*10^4/w+760/1000;//meter of mercury
disp(h,"Absolute pressure head in terms of mercury in meter : ");
|
2c41fc711bc68575227909fb7c1352dc5ab29eaa
|
0919e454d74183a2ee1a4b05a37bcf9154e64d87
|
/01/Nand2DMux4Way.tst
|
4d7488b00641404a90ee101e671a8dd54133ceeb
|
[] |
no_license
|
youkidearitai/nand2tetris
|
311b2e8d2fdf9fccbda7c775b8d4cbb74254d07f
|
0e67824885724ec8fe7a8f2dcd74763a42fbb703
|
refs/heads/master
| 2021-11-28T06:17:33.980008
| 2021-11-08T15:55:44
| 2021-11-08T15:55:44
| 42,762,825
| 7
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 276
|
tst
|
Nand2DMux4Way.tst
|
load Nand2DMux4Way.hdl,
output-file Nand2DMux4Way.out,
compare-to Nand2DMux4Way.cmp,
output-list in sel%B1.2.1 a b c d;
set in 1, set sel %B00,
eval, output;
set in 1, set sel %B01,
eval, output;
set in 1, set sel %B10,
eval, output;
set in 1, set sel %B11,
eval, output;
|
819a5bf928d2badd79221c02743f83a33b129662
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/503/CH3/EX3.25/ch3_25.sci
|
1531c53ed3980a305a7d5e821522f694d6673afe
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 708
|
sci
|
ch3_25.sci
|
//find pu value of the equivalent ckt,steady state short ckt current and voltages
clc;
r=5; //MVA rating
V_Bp=6.35; //for primary
I_Bp=r*1000/V_Bp;
V_Bs=1.91; //for secondary
I_Bs=r*1000/V_Bs;
//from resp tests
V1=.0787;
I1=.5;
V2=.1417;
I2=.5;
V3=.1212;
I3=.5;
X12=V1/I1;
X13=V2/I2;
X23=V3/I3;
X1=I1*(X12+X13-X23);
X2=I2*(X23+X12-X13);
X3=I3*(X13+X23-X12);
disp(X1,'X1(pu)');
disp(X2,'X2(pu)');
disp(X3,'X3(pu)');
V1=1;
I_sc=V1/X13;
I_scp=I_sc*I_Bp; disp(I_scp,'sc current primary side(A)');
I_sct=I_sc*r*1000*1000/(400/sqrt(3)); disp(I_sct,'sc current tertiary side(A)');
V_A=I_sc*X3;
V_Aact=V_A*1.91*sqrt(3);
disp(V_Aact,'V_A(actual) line to line(kV)');
|
8eb9d330ea4794b5820193e0c8f8b4a45fcf238f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1332/CH13/EX13.7/13_7.sce
|
88c1182b61495fa204a1539ed5f0bc6cb4bff4a6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 504
|
sce
|
13_7.sce
|
//Example 13.7
//Richardson Extrapolation
//Page no. 431
clc;close;clear;
deff('y=f(x)','y=exp(2*x)')
e=10^-4;h=0.8;
D1=0;
for i=1:4
printf('\n')
for j=1:i
if j==1 then
D(i,j)=(f(h)-f(-h))/(2*h)
else
D(i,j)=D(i,j-1)+(D(i,j-1)-D(i-1,j-1))/(2^(2*(j-1))-1)
end
printf('%g\t\t',D(i,j))
end
h=h/2
end
printf('\n\n\t\t\t\t\t\t 2x\nHence, the derivative of the function y = f(x) = e at x=0 is D(3,3) = %g',D(i,j))
|
cc0f039e9ac4a03ede5b18221e29c7ad365c5517
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1709/CH10/EX10.8/10_8.sce
|
741dac671892de240d97385596d41b0529b5ab83
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 351
|
sce
|
10_8.sce
|
clc
//Initialization of variables
w1=206
w2=55
ma1=2
ma2=3
//calculations
w3= (ma1*w1 + ma2*w2)/(ma1+ma2)
disp("From psychrometric chart,")
Tdb3=82 //F
TWb3=74.55 //F
phi3=70 //percent
//results
printf("relative humidity = %d percent",phi3)
printf("\n Dry bulb temperature = %d F",Tdb3)
printf("\n Wet bulb temperature = %.2f F",TWb3)
|
ff21ac5fc2141b8eb342745e153d2d7be6074807
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/758/CH8/EX8.12/Ex_8_12.sce
|
6de948991dcc6c4511f847d41fa59f5917ea70cc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 994
|
sce
|
Ex_8_12.sce
|
//Example 8.12
clc;clear;close;
rp=0.9 //passband ripple
rs=0.2 //stopband ripple
wp=%pi/2; //passband frequency
ws=3*%pi/4; //stopband frequency
T=1;
fp=2/T*tan(wp/2);
fs=2/T*tan(ws/2);
s=poly(0,'s');
z=poly(0,'z');
hs=1;
//Calculating the order of filter
num=log((rs^-2 -1)/(rp^-2 -1));
den=2*log(fs/fp);
N=ceil(num/den);
//Calculation of cut-off frequency
fc=fp/(rp^-2 -1)^(0.5/N);
//Calculating filter response
if modulo(N,2)==1 then
hs=hs*fc/(s+fc);
end
for k=1:N/2
b=2*sin((2*k-1)*%pi/(2*N));
hs=hs*fc^2/(s^2+b*fc*s+fc^2);
end
hs=clean(hs);
sys=syslin('c',hs);
hz=ss2tf(cls2dls(tf2ss(sys),T)); //converting H(s) to H(z)
//Displaying filter response
[hzm,fr]=frmag(hz,256);
disp(hz,'Filter Transfer function: ');
plot(fr,hzm);
title('Lowpass Butterworth Filter Response');ylabel('Amplitude-->');xlabel('Normalised frequency f/fs-->');
|
fce835255be38d71bc9403d4b7ad97b7e4ce5c0e
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/RV1.prev.tst
|
b2c17cc4d85cf19e6f196d3c0ee606dc1edff035
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 23
|
tst
|
RV1.prev.tst
|
[1,2] + [3,2] = [4,4]
|
4ba1cb92b9a5dc412ee968261896eed841d98fc1
|
e04f3a1f9e98fd043a65910a1d4e52bdfff0d6e4
|
/New LSTMAttn Model/.data/form-split/SURPRISE-LANGUAGES/Tungusic/evn.tst
|
d5d36881b89dcd67be693549af1de26f8e5f5d3c
|
[] |
no_license
|
davidgu13/Lemma-vs-Form-Splits
|
c154f1c0c7b84ba5b325b17507012d41b9ad5cfe
|
3cce087f756420523f5a14234d02482452a7bfa5
|
refs/heads/master
| 2023-08-01T16:15:52.417307
| 2021-09-14T20:19:28
| 2021-09-14T20:19:28
| 395,023,433
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 37,658
|
tst
|
evn.tst
|
dagiː ADJ;PSS1S
ukunmiː N;ACC;DEF;SG
kərgə N;NOM;PL;PSS3S
beːγaltan ADJ
ə V;IPFV;FIN;IND;PL;2;ACT
hokori V;FIN;IND;SG;2;PST;PASS
amaːkaː N;NOM;SG;PSS1S
ʃamanitkaːn N;NOM;SG
haːrgi N;NOM;PL
ə V;FIN;IND;SG;3;FUT+IMMED;ACT
bega N;ACC;INDF;SG
gərbiːśiː ADJ;DAT
dantaki N;ACC;DEF;PL
aγata N;ABL;SG
amar N;INS;SG;PSSRS
kaʃuna V;FIN;IND;PL;3;PST;ACT
uśit V;FIN;IND;SG;3;PST;ACT
urə N;DAT;PL
doːldiː V;FIN;IND;SG;1;PST;ACT
əkspeditsiji N;NOM;PL
guːɲ V;IPFV;FIN;IND;PL;3;PRS;ACT
aːnŋət V;FIN;IND;PL;1+EXCL;PST;ACT
noː V;FIN;IMP;PL;2;ACT
guďeːj ADJ
śəwərnaj N;TERM;SG
inŋəktəśi ADJ
ďəp V;HAB+IPFV;FIN;IND;PL;3;PRS;ACT
lu N;ACC;DEF;PL
kaltaka N;NOM;SG;PSS3S
uďa N;PROL;SG;PSS3P
uŋtuwun N;SG;PSSRS+ACC
əmə V;FIN;IND;SG;1;FUT;ACT
ďəptilə N;NOM;SG;PSS3P
hoktə N;INS;SG
bargidaː N;ABL;SG
inoŋi N;NOM;PL
umun N;DAT;SG
əkśə V;FIN;IND;PL;3;PST;ACT
duː N;TERM;SG
hawal V;HAB+IPFV;FIN;IND;PL;1+EXCL;PRS;ACT
ɲuŋi ADJ;PSS3S
goro N;ACC;DEF;SG
ərdi ADJ;PSS3S
tuksa V;SEMEL;FIN;IND;PL;3;PST;ACT
ďəlakiːwəl N;NOM;SG
peːreːm ADJ
hukti V;FIN;IMP;PL;1+INCL;ACT
haː V;FIN;IND;SG;1;PST;ACT
hutə N;SG;PSSRS+ACC
t͡ʃok V;FIN;IND;SG;1;PST;ACT
hitəːn N;TERM;SG
muldiːka N;NOM;PL
ijo N;NOM;SG
inŋəni N;NOM;PL
hukti V;IPFV;FIN;IND;SG;3;PRS;ACT
putoran N;DAT;SG
bi V;IPFV;FIN;IND;SG;3;PRS;ACT
homoːtiː N;NOM;SG
haː V;FIN;IND;SG;1;PST;ACT
tuŋaɲama N;NOM;SG
ili V;FIN;IND;PL;1+EXCL;PST+RMT;ACT
otojo V;IPFV;FIN;IND;SG;3;PRS;ACT
ulgut͡ʃəː V;IPFV;FIN;IND;SG;1;PRS;ACT
duku V;FIN;IND;SG;1;FUT+IMMED;ACT
əki N;NOM;SG;PSS1S
hokto N;PROL;SG;PSS1S
hilba V;IPFV;FIN;IND;SG;2;ACT
doːldiː V;FIN;IND;SG;3;PST;ACT
ďuː N;TERM;SG;PSSRP
awa N;NOM;SG
əmkəŋoti N;NOM;SG
irəksə N;PL;PSSRS+ACC+ALN
umnə N;INS;SG
inməruk N;ABL;SG;PSSRS
doːldiː V;FIN;IND;PL;1+EXCL;PST;ACT
gurusmoːdə V;COM;FIN;IND;PL;ACT
tikəɲiː ADJ;PL
doːɲťa V;IPFV;FIN;IND;SG;3;PST+RMT;ACT
adili N;ACC;DEF;PL
bagdama ADJ;ACC;DEF;PL
hawal V;HAB+IPFV;FIN;IND;SG;1;PRS;ACT
ŋəli ADJ
kalan N;DAT;SG
ulgut͡ʃoːn V;FIN;IND;SG;1;FUT;ACT
nəkun N;NOM;SG;PSSRS
in V;IPFV;FIN;IND;PL;3;PST;ACT
papal N;NOM;SG
kahi V;FIN;IND;PST;ANTIP
tuksaː V;IPFV;FIN;IND;SG;3;PRS;ACT
adiːkuː ADJ;PL
ŋənə V;IPFV;FIN;IND;PL;1+EXCL;PST;ACT
bi V;FIN;IND;PSS3P;PST;ACT
taptigin N;NOM;SG
tuliː N;PROL;SG
bimɲin N;NOM;SG
swarśik N;DAT;SG
ŋinakin N;NOM;SG;PSS1S
baďaːlə ADJ
dukto N;COM;SG
ga V;FIN;IND;SG;3;PST;ACT
jənt͡ʃəmbu N;PROL;SG
uru N;ACC;INDF;SG
huju V;FIN;IND;SG;3;FUT;ACT
armije N;TERM;SG
arnold N;NOM;SG
birigadir N;NOM;SG
ti N;NOM;SG
toγo N;NOM;SG;PSSRS
bulta V;FIN;IND;PL;1+EXCL;PST+RMT;ACT
əniːn N;ABL;SG;PSSRS
bəjŋoː N;INS;PL
ila V;FIN;IND;PL;3;PST;ACT
moːtiː N;ACC;INDF;PL
əməgənə N;NOM;SG;PSS3S
tikt͡ʃaki N;ACC;DEF;SG
baldi V;IPFV;FIN;IND;PL;1+EXCL;PST;ACT
ilmakta N;ACC;DEF;SG
hərəki V;FIN;IND;SG;1;PST;ACT
əmə V;HAB;FIN;IND;PL;1+EXCL;PST;ACT
ŋoːlə V;DUR;FIN;IND;PL;3;PST;CAUS;ACT
kuŋaka N;NOM;PL;PSS1S
ďuwu V;FIN;IND;PL;1+EXCL;PST;ACT
uliː V;FIN;IND;SG;3;FUT;ACT
uku V;IPFV;FIN;IMP;SG;3;CAUS;ACT
kaŋki ADJ;PSS3P
tətigə N;ACC;INDF;SG
hoːŋə N;NOM;SG;PSS3P
ŋaːlə N;INS;PL;PSSRS
aja ADJ;ABL;SG
hulu ADJ;PL
oldo N;ALL;PL;PSSRP
ʃoːmnaː V;SEMEL;FIN;IND;SG;1;PST;ACT
lu N;ACC;INDF;SG
it͡ʃə V;FIN;IND;SG;3;PST+RMT;CAUS;ACT
təpkə V;FIN;IND;SG;3;PST;ACT
trafim N;NOM;SG
teːteː N;TERM;SG
buru V;HAB;FIN;IND;SG;1;PST;ACT
ulgur N;SG;PSSRS+ACC
tuksaːn V;FIN;IMP;SG;2;ACT
aďili N;ACC;INDF;PL
ti V;FIN;IND;PL;1+EXCL;PST;ACT
kartiʃka V;SEMEL;FIN;IND;PL;3;PST+RMT;ACT
ulgut͡ʃoːn V;IPFV;FIN;IND;SG;3;PRS;ACT
pəktirəːwun N;NOM;SG;PSSRP
in V;IPFV;FIN;IND;SG;3;PST;ACT
ekologit͡ʃeskaji ADJ;PL
ŋənə V;IPFV;FIN;IND;PL;3;PRS;ACT
hərə N;DAT;SG
bargidaː N;ACC;DEF;SG;PSS3S
in N;DAT;SG;PSSRS
tas V;SEMEL;FIN;IND;PL;1+EXCL;PST;ACT
t͡ʃanku N;DAT;PL
əŋəhiː V;FIN;IND;SG;3;ACT
ďiktə N;ACC;DEF;PL
hokto N;PROL;SG;PSS3P
ʃuru V;FIN;IND;SG;3;PST;ACT
o V;FIN;IND;SG;1;PRS;ACT
benzin N;ACC;DEF;PL
waśilij N;NOM;SG
mukətə N;PROL;SG;PSS3S
di V;FIN;IND;PL;1+EXCL;PST+RMT;ACT
musaːn V;FIN;IND;PL;1+EXCL;PST;ACT
obligatsə N;ACC;DEF;SG
it͡ʃənoː V;FIN;IMP;SG;2;ACT
umukta N;ACC;DEF;SG
oldo N;NOM;PL
lambaraː V;FIN;IND;PL;3;PST;ACT
adili N;ACC;DEF;PL
bu V;FIN;IND;SG;3;PST;ACT
nəptalə ADJ
tara N;ACC;DEF;SG
ďa N;NOM;PL;PSSRS
uːt͡ʃak N;SG;PSSRS+ACC
it͡ʃə V;DUR;FIN;IND;SG;1;PST;ACT
ut͡ʃaːmi N;TERM;SG
hawalmɲiː N;NOM;SG;PSS3P
ŋəliwśipt͡ʃu ADJ
təwu N;ACC;INDF;PL
gunə V;FIN;IND;SG;1;PST;ACT
pamiɲať N;NOM;SG
ŋoːlə V;FIN;IND;SG;1;PST;ACT
uldə N;ACC;INDF;SG
ogdiŋo ADJ
hanŋukta V;FIN;IND;SG;3;PST;ACT
ətəjə V;IPFV;FIN;IND;ACT
hawal V;IPFV;FIN;IND;SG;3;PST;ACT
t͡ʃuɲa N;ALL;SG
tuŋə N;ACC;DEF;SG
huru V;FIN;IND;SG;1;FUT;ACT
tunŋaďat͡ʃi ADJ;DAT
uːt͡ʃak N;NOM;SG
bi V;IPFV;FIN;IND;SG;1;PST+RMT;ACT
hawa N;TERM;SG;PSSRS
ɲəŋɲə ADJ
oː V;FIN;IND;SG;3;PST;ACT
śevərgidaː N;ALL;SG
heːn N;ACC;DEF;SG;PSS3S
teːteː N;ALL;SG
ɲama N;ACC;DEF;SG
duli N;NOM;SG
dili N;NOM;SG;PSS3S
butilka N;DAT;SG
əməgən N;NOM;SG
jəgor N;NOM;SG
samoloti N;INS;SG
nəːku N;NOM;SG
omolgiː N;NOM;SG
awadiwal ADJ
hulda N;ACC;INDF;PL
həgdi ADJ
buru V;FIN;IND;SG;1;FUT+IMMED;ACT
mari N;NOM;PL
bi V;FIN;IND;SG;3;PST;ACT
haŋiː V;DUR;FIN;IND;SG;3;PST;ACT
oː N;NOM;SG
ďupkun N;ALL;SG
o V;FIN;IND;SG;1;PST;ACT
həgdi N;ACC;DEF;SG;PSS3P
grus N;NOM;SG
ďəw V;IPFV;FIN;IND;SG;3;PRS;ACT
guluwun N;NOM;SG
kərgə N;NOM;PL
bəjŋoː N;ACC;DEF;PL
uːt͡ʃak N;DAT;SG
darimaː V;SEMEL;FIN;IND;SG;3;PST;ACT
prokop N;NOM;SG
moːkaːn N;ACC;DEF;SG
pəktəruː V;FIN;IND;SG;3;PST;ACT
moː N;DAT;SG
haŋaːri N;NOM;PL
urkə N;TERM;SG
itiki N;PL;PSSRS+ACC
goro N;IN+ABL;SG
ďaw N;DAT;SG
lapta N;ACC;DEF;SG
ətirkoːt͡ʃə N;NOM;PL
əďiːloː N;NOM;SG
ŋənə V;IPFV;FIN;IND;PL;3;PRS;ACT
luďi N;NOM;SG
oro N;ALL;PL
umukta N;ACC;DEF;SG
ďirikat͡ʃaːn N;NOM;SG
ŋənə V;HAB+IPFV;FIN;IND;PL;1+EXCL;PRS;ACT
hutə N;NOM;PL;PSS1PE
akini N;NOM;SG;PSS1S
oro N;DAT;PL;PSSRS
aminŋaha N;NOM;SG
t͡ʃajiŋ V;FIN;IND;PL;1+EXCL;PST;ACT
śiɲťabr N;DAT;SG
vərhnəimbaskə N;DAT;SG
talu N;ABL;PL
halga N;ACC;DEF;PL
amaskaː N;TERM;SG;PSSRS
də N;NOM;SG
in V;IPFV;FIN;IND;PL;1+EXCL;PST;ACT
ŋinakisi ADJ;PL
ŋolomo N;NOM;SG
homoːti N;ABL;POT;SG
t͡ʃiskowoj N;NOM;SG
ďawi N;NOM;SG;PSS3P
ďu N;ACC;INDF;SG;PSSRS
kərgəni N;NOM;SG;PSS3S
hulukun N;DAT;SG;PSS1S
ďoromo V;FIN;IND;SG;1;PST;ACT
hulda N;ACC;DEF;PL;PSS3P
dukuwu N;ACC;DEF;PL
imuːkśə N;ACC;DEF;SG
həktəwu N;DAT;PL
həgdiko ADJ;PL
waː V;FIN;IND;SG;1;FUT;ACT
noː V;FIN;IND;SG;3;PST+RMT;ACT
huru V;FIN;IMP;SG;2;ACT
atirkaːn N;SG;PSSRS+ACC
jivo ADJ
izbuʃka N;TERM;SG;PSSRS
bira N;TERM;SG
əɲiːn N;NOM;SG;PSS1S
hawal V;IPFV;FIN;IND;SG;1;PRS;ACT
ulumo V;HAB;FIN;IND;PL;1+EXCL;PST;ACT
həlakiː N;ACC;INDF;PL
akini N;NOM;SG;PSS1S
hoγorkiː N;NOM;SG
o V;IPFV;FIN;IND;PL;1+EXCL;PRS;ACT
soː ADJ
meːwan N;ABL;SG;PSS3S
bi N;ACC;DEF;SG
ďu N;TERM;SG
amar N;DAT;SG;PSS3S
iďoʃ N;NOM;SG
tozəfka N;SG;PSSRS+ACC
ďuktə N;ACC;DEF;SG
ďirika N;ABL;PL
taw V;IPFV;FIN;IND;SG;3;ACT
hukuləːmɲi N;NOM;PL
adilisi V;HAB;FIN;IND;SG;1;PST;ACT
ut͡ʃami N;NOM;SG
ŋəːlə V;FIN;IND;SG;3;PST;ACT
koŋimnə N;ACC;DEF;SG;PSS3P
biraja N;PROL;PL
t͡ʃenokoːn N;ACC;DEF;SG;PSS3S
ili V;DUR;FIN;IND;PL;1+EXCL;PST;ACT
ʃargaśin ADJ;EQTV
dulini N;NOM;SG;PSS3S
dəgilməːktə N;DAT;SG
buː V;FIN;IND;PL;3;PST;ACT
gorod N;NOM;SG
dəptiləː N;ACC;DEF;PL
ďuː N;TERM;SG;PSS3P
o V;FIN;IND;SG;3;PST;ACT
uj V;FIN;IND;SG;3;PST;ACT
ŋəːləkəhiː N;NOM;SG;PSS1S
uːt͡ʃaki N;DAT;PL;PSSRP
moːtiː N;ACC;DEF;SG
t͡ʃoknaː V;FIN;IMP;PL;1+INCL;ACT
dərə N;TERM;SG;PSS3P
ďə V;IPFV;FIN;IND;SG;3;PRS;ACT
urkə N;NOM;SG
bəjŋoː N;ACC;DEF;SG
braʃka N;ACC;DEF;SG
kaɲeʃna N;NOM;SG
ŋəli V;FIN;IND;SG;1;FUT;CAUS;ACT
hoːŋə N;NOM;SG;PSS3P
amakaː N;NOM;SG
gu V;FIN;IND;PL;3;PST;ACT
mu N;NOM;SG
əmə V;SEMEL;FIN;IND;PL;3;PST;ACT
aliksandr N;NOM;SG
in V;IPFV;FIN;IND;PL;3;PRS;ACT
warwara N;NOM;SG
hawal V;IPFV;FIN;IND;SG;3;PRS;ACT
tuk V;FIN;IND;SG;3;FUT+IMMED;ACT
baka V;FIN;IND;PL;1+EXCL;PST;ACT
ŋəlifśə ADJ
geː N;TERM;SG
śinťabr N;DAT;SG
tan V;STAT;FIN;IMP;SG;2;ACT
təγə V;DUR+STAT;FIN;IND;SG;1;PST;ACT
amiːni N;NOM;SG;PSS3S
əwədi ADJ
it͡ʃə V;IPFV;FIN;IND;SG;1;PRS;CAUS;ACT
t͡ʃikti N;NOM;SG
klasi N;NOM;PL
ilalda N;ACC;DEF;SG
ahi N;NOM;SG
noːku N;DAT;SG
moː N;ACC;INDF;PL
bəjə N;ACC;INDF;SG
hihə N;ACC;DEF;SG
bi V;IPFV;FIN;IND;SG;3;PRS;ACT
hiŋkəriː V;IPFV;FIN;IND;SG;3;PRS;ACT
hulaki N;NOM;PL
dap V;IPFV;FIN;IND;PL;3;PRS;ACT
əmə V;FIN;IND;PL;1+EXCL;PST;CAUS;ACT
ďəfkit N;ALL;SG;PSS1PE
hutə N;COM;PL;PSS2S
timatnə N;TERM;SG
kuklaka N;INS;PL
o V;FIN;IND;PL;3;PST;ACT
rimontəkaːn N;ACC;DEF;SG
ulumiː V;IPFV;FIN;IND;PL;3;PST;ACT
hirbaː N;ACC;DEF;SG
amtiːl N;TERM;SG;PSSRS
aŋani N;DAT;SG
turu N;DAT;SG
hiː N;ACC;DEF;SG;PSS3S
oː V;FIN;IND;PL;1+EXCL;PST;ACT
soloγuː N;NOM;SG
amki N;NOM;PL
huliŋ ADJ
hagdi ADJ;PL
ŋənə V;FIN;IND;SG;3;PST;ACT
ɲaŋta N;ACC;INDF;PL
dawa V;HAB;FIN;IND;PL;1+EXCL;PST;ACT
uldə N;NOM;PL;ALN
aj V;FIN;IND;SG;3;PST;ACT
pramhos N;DAT;SG
ŋənə V;DUR;HAB+IPFV;FIN;IND;PL;1+EXCL;PRS;ACT
halga N;NOM;PL;PSS3P
bi V;IPFV;FIN;IMP;PL;2;ACT
t͡ʃapumə ADJ;PL
ďiwə V;SEMEL;FIN;IND;SG;3;PST;ACT
əmkə N;ACC;DEF;SG;PSS1S
turu N;TERM;SG
ila N;PROL;SG
himuːrga V;FIN;IND;SG;3;PST;ACT
həhəni V;FIN;IND;SG;3;PST+RMT;ACT
aŋaɲiː N;NOM;SG;PSS2S
toγo N;ACC;INDF;SG
haːrgi N;NOM;SG
tuksa V;SEMEL;FIN;IND;SG;1;PST;ACT
kilometr N;NOM;SG
koto N;ACC;INDF;SG
irgi N;NOM;SG;PSS3S
nurgoːwul N;ACC;DEF;SG
hawali V;DUR;IPFV;FIN;IND;SG;3;PRS;ACT
burdukariki ADJ;PL
əmə V;SEMEL;FIN;IND;SG;1;PST;ACT
dəruːmkisa V;IPFV;FIN;IND;SG;1;PRS;ACT
ili V;FIN;IND;SG;1;PST;ACT
nul V;FIN;IND;SG;3;PST;ACT
atirkaːn N;COM;SG
tukalan N;ACC;DEF;SG
saːtirə N;NOM;SG
əmə V;FIN;IND;SG;3;ACT
nikolajiʃ N;NOM;SG
lukiː N;ACC;DEF;PL;PSS3S
amargu ADJ;INS
kor N;ABL;SG
umukoːn N;ACC;DEF;SG;PSS3S
bultakit N;ALL;SG;PSSRS
ďukə ADJ
valenťinovit͡ʃ N;NOM;SG
geːw V;FIN;IND;SG;3;PST;ACT
gaksaː N;NOM;SG;ALN+PSS3P
oron N;NOM;SG;ALN+PSS3P
girani V;FIN;IND;SG;1;PST;ACT
dimeɲťjəf N;NOM;SG
trenin N;DAT;SG
kutu N;ACC;INDF;SG
əməːn V;FIN;IND;SG;3;PST;PASS
lurgi V;FIN;IND;SG;3;PST;ACT
heːlakiː N;COM;SG
wiťakaːn N;ACC;DEF;SG
nado V;FIN;IND;ACT
pəťorkə N;ACC;DEF;PL
koːŋaːktə N;ACC;DEF;SG;PSS3S
ami N;NOM;SG;PSS1S
tunŋaďar N;DAT;SG
amini N;NOM;SG;PSS1S
staːdə N;ACC;DEF;SG;PSS3P
noː V;DUR;FIN;IND;SG;3;PST+RMT;ACT
irəksə N;ACC;DEF;SG;PSS3S
bira N;NOM;SG
bi V;FIN;IND;SG;3;PST+RMT;ACT
anŋaniː N;NOM;SG;PSS2S
gəwariť N;NOM;SG
huto N;TERM;PL;PSSRS
mere N;INS;SG;PSSRS
ohotit V;IPFV;FIN;IND;PL;3;PRS;ACT
goro N;IN+ABL;SG
suglan N;NOM;SG
ďu N;DAT;SG;PSS3S
urə N;ACC;DEF;SG
halgan N;COM;SG;PSS3S
wirtoloti N;INS;SG
təwuː V;IPFV;FIN;IND;SG;3;PST;ACT
uγa V;HAB+IPFV;FIN;IND;PL;1+EXCL;PRS;ACT
ŋənə V;HAB+IPFV;FIN;IND;SG;1;PRS;ACT
kira N;DAT;SG
bi V;FIN;IND;PL;1+EXCL;PST;ACT
daurskij N;NOM;SG
adil N;NOM;SG
himiktə N;ACC;DEF;PL
kətə N;ACC;DEF;SG
ɲiruśan N;NOM;SG
jukələ N;ACC;DEF;SG
irgit͡ʃiː N;NOM;PL
ak V;FIN;IMP;PL;2;ACT
hawal V;IPFV;FIN;IND;SG;3;PST;ACT
pa N;NOM;SG
bi V;FIN;IND;SG;3;PST;ACT
tuγəniː N;DAT;SG
inmək N;ACC;DEF;SG;PSS3P
amari N;TERM;SG;ALN+PSSRP
ulguśoːn V;FIN;IND;SG;3;PST;ACT
hurkoːkoːśoːn N;NOM;SG
n N;NOM;SG
tan V;IPFV;FIN;IND;SG;3;PRS;ACT
hunaːďi N;NOM;SG;PSS1S
suru V;FIN;IND;PL;1+INCL;FUT+IMMED;ACT
ga V;FIN;IND;SG;3;PST+RMT;ACT
ahatka N;COM;PL
alba V;IPFV;FIN;IND;PL;1+EXCL;PRS;ACT
bagdakə N;DAT;PL
moːtiː N;ACC;DEF;SG
tamnaː V;DUR+SEMEL;HAB;FIN;IND;PL;1+EXCL;PST;ACT
ullə N;DAT;SG
ganna V;FIN;IND;PL;1+EXCL;PST;ACT
wirtolot N;TERM;SG
ʃapka V;HAB;FIN;IND;PL;3;PST;ACT
ďən N;IN+ABL;SG;PSS3P
uγiː N;INS;SG
buː V;HAB;FIN;IND;SG;1;PST;ACT
ďaw N;DAT;SG;PSS1PE
oːha N;ACC;DEF;PL
tuganiː N;DAT;SG
jakutska N;DAT;SG
ili V;DUR;HAB;FIN;IND;PL;1+EXCL;PST;ACT
sagdi V;SPRL;FIN;IND;PL;1+EXCL;ACT
ilaniː N;NOM;SG
aŋaďakoː N;TERM;PL
virtalot N;NOM;SG
ənəlŋə ADJ;PSS2S
ʃiγun N;NOM;SG
unta N;COM;PL
ga V;FIN;IND;PL;3;PST;ACT
pəktiru V;FIN;IND;PL;1+EXCL;PST;ACT
iśə V;FIN;IMP;PL;2;ACT
nanmakta N;NOM;PL
naːŋmakta N;DAT;SG
omoːn V;FIN;IND;PL;1+EXCL;PST;ACT
wəki N;INS;SG
kapkaśi V;HAB;FIN;IND;PL;1+EXCL;PST;ACT
ahiː N;NOM;SG;PSS2S
dəg V;IPFV;FIN;IND;SG;3;PRS;ACT
tuganiː N;ACC;DEF;SG
musu V;FIN;IND;SG;3;PST;ACT
həgdi ADJ;PL
śuːkə N;ACC;DEF;PL
ďapda N;NOM;SG
ŋoːnimi ADJ;PL
kəŋiloː N;NOM;PL
virtaloťi N;NOM;SG
ďəwu V;HAB;FIN;IND;PL;2;PST;ACT
buran N;NOM;SG
ŋənə V;IPFV;FIN;IMP;SG;1;ACT
əniːn N;NOM;SG;PSSRS
togo N;DAT;SG
tiksa N;INS;PL;PSSRP
dawi N;INS;PL
ďuːtaː V;IPFV;FIN;IMP;PL;1+INCL;ACT
kuŋakaː N;ACC;DEF;PL
klara N;NOM;SG
ďan N;ABL;SG
prezidənt N;NOM;SG
əruː ADJ
hərəkə N;NOM;CMPR;SG
gun V;FIN;IND;SG;1;FUT+IMMED;ACT
ŋənə V;IPFV;FIN;IND;SG;3;PST+RMT;ACT
suglan N;TERM;SG
moːtiːkuːn N;NOM;SG
toγo N;INS;SG
ja N;NOM;SG
bi V;FIN;IND;PL;1+EXCL;PST;ACT
buriː V;FIN;IMP;PL;2;ACT
ɲuŋun N;DAT;SG
bəjŋoː N;NOM;SG
bəjə N;DAT;SG
ŋaːlə N;ABL;PL;PSS1S
həraŋi N;ACC;DEF;PL
ətets N;NOM;SG
darkin N;PROL;SG
soliːlaː N;NOM;SG
śergejif N;NOM;SG
ŋinaki N;NOM;PL;PSS1S
ďapkun N;TERM;SG
əmə V;FIN;IND;SG;3;PST;ACT
ďaw N;SG;PSSRP+ACC
wibari N;NOM;PL
bi V;FIN;IND;SG;3;PST;ACT
amin N;SG;PSSRP+ACC
boroŋkon N;NOM;SG
a V;IPFV;FIN;IND;PL;3;PST+RMT;ACT
ŋənə V;IPFV;FIN;IMP;SG;2;ACT
moːlkə V;DUR;IPFV;FIN;IND;SG;1;PRS;PASS
əjəː V;SEMEL;FIN;IND;PL;3;PST;ACT
hawal V;IPFV;FIN;IND;SG;3;PST;ACT
nevəďili N;NOM;SG
ɲəkə V;FIN;IND;PL;1+EXCL;PST;ACT
ďawaptun N;NOM;SG
lihat͡ʃow N;COM;SG
tuːruːm V;IPFV;FIN;IND;SG;3;PST+RMT;ACT
aha N;NOM;PL;PSS3S
stado N;DAT;SG;PSS1PE
haŋuːkt͡ʃa V;IPFV;FIN;IND;SG;3;PRS;ACT
uďa N;TERM;SG;PSS3S
virtolot N;NOM;SG
hoktə N;SG;PSSRP+ACC
oro N;PROL;PL
puʃnomehowoj N;DAT;SG
mi N;NOM;SG
waː V;FIN;IND;SG;3;PST;ACT
ďu N;TERM;SG;PSSRS
haŋukta V;FIN;IND;SG;1;PST;ACT
logiː V;FIN;IND;SG;3;PST;ACT
əɲokə N;COM;SG
ďukt͡ʃa N;DAT;SG;PSSRP
ďuː N;DAT;SG;PSSRP
hilki V;HAB+IPFV;FIN;IND;PL;1+EXCL;PRS;ACT
kilomətər N;NOM;SG
doːldi V;IPFV;FIN;IND;SG;1;PRS;ACT
ozəro N;NOM;SG
guː V;FIN;IND;PL;3;PST;ACT
til V;FIN;IND;PL;3;PST;ACT
maŋiː N;NOM;PL
orokoː N;ACC;DEF;PL
ama V;FIN;IND;PL;1+EXCL;ACT
siŋilgən N;NOM;SG
aja ADJ;DAT;SG
iɲiːp V;HAB+IPFV;FIN;IND;PL;1+EXCL;PRS;ACT
huŋtu ADJ;PSSRS
pəktiruː V;FIN;IND;PL;3;PST;ACT
əmə V;HAB+IPFV;FIN;IND;PL;1+EXCL;PRS;ACT
ŋəni N;NOM;SG;PSS3S
girku V;FIN;IND;SG;3;PST;ACT
luporoː V;FIN;IND;SG;3;PST;ACT
ɲina N;NOM;SG
ďuː N;NOM;SG
kəməďisə ADJ
uśitnaːďi V;FIN;IND;PL;ACT
əmə V;FIN;IND;SG;3;FUT;ACT
ŋənə V;FIN;IND;PL;1+EXCL;PST;ACT
iɲ V;IPFV;FIN;IND;SG;1;PRS;ACT
goroloː N;ACC;DEF;SG
həgdi ADJ
selhosťehɲikum N;NOM;SG
hot͡ʃ N;NOM;SG
dəγi V;FIN;IND;SG;3;PST;ACT
bultana V;SEMEL;FIN;IND;PL;3;PST;ACT
gələːktənəː V;SEMEL;FIN;IND;SG;1;FUT;ACT
əɲiː N;ACC;DEF;SG
amar N;DAT;SG;PSS3S
ďagda N;DAT;SG
alaguːmniː N;INS;SG
saŋaːr N;ACC;DEF;SG
turumnəː V;FIN;IND;PL;1+EXCL;PST+RMT;ACT
giramda N;INS;PL
mundukan N;NOM;SG
bultahikta N;DAT;SG;PSS3S
inti V;FIN;IMP;SG;2;ACT
nidələ N;ACC;DEF;SG
moːtiːtkoːn N;NOM;SG
zimowjo N;ALL;SG
aśin V;FIN;IND;ACT
bəjə N;ACC;DEF;PL;ALN+PSS1S
oɲo N;NOM;SG
toγo V;FIN;IND;PL;1+EXCL;ACT
bəjə N;ACC;DEF;PL
əmə V;HAB;FIN;IND;PL;1+EXCL;PST;ACT
ajaː N;PROL;PL
ganat N;NOM;SG
tətiː N;PL;PSSRS+ACC
t͡ʃurgiː V;IPFV;FIN;IND;SG;3;PRS;ACT
haːki N;ACC;DEF;PL;PSS3P
bulta V;FIN;IND;SG;1;PST+RMT;ACT
sewer N;ALL;SG
kalakat͡ʃaːn N;NOM;SG
umukkoː ADJ;PL
bolʃə N;NOM;SG
abligatsə N;ACC;DEF;PL
əmə V;FIN;IND;PL;3;PST;ACT
həgdiŋo ADJ
wrak N;NOM;SG
ami N;COM;SG
irgiː V;FIN;IND;PL;3;FUT+IMMED;ACT
ər V;FIN;IND;PL;3;PST;ACT
soliː N;IN+ABL;SG
kolədʒ N;ACC;DEF;SG
gogo V;FIN;IND;PST;ACT
həgdiŋəmi ADJ
huru V;FIN;IND;SG;1;PST+RMT;ACT
sərkəw N;DAT;SG
ŋinaki N;NOM;PL;PSS3P
haː V;FIN;IND;PST;ACT
bələ V;FIN;IND;SG;3;PST+RMT;CAUS;ACT
hoːŋnaː V;FIN;IND;SG;3;FUT+IMMED;ACT
ila V;FIN;IND;SG;3;PST;ACT
dundə N;ALL;PL
əɲokə N;NOM;PL;PSS1PE
həwəkiː N;TERM;SG
ďəb V;FIN;IND;SG;3;FUT;ACT
armija N;DAT;SG
ər V;FIN;IND;SG;3;PST;ACT
oldoko N;ACC;INDF;PL
dəgilməːktə N;NOM;PL
amin N;NOM;SG
akin N;NOM;SG;PSS1S
nulgiː V;IPFV;FIN;IND;PL;3;PRS;ACT
ajaːwriː ADJ
bultaγit ADJ
sogdonno N;DAT;SG
kuwrik N;DAT;SG
hoːksələːn ADJ
ham V;FIN;IND;PL;3;PST;ACT
əniː N;NOM;SG
girkumat ADJ
oloki N;INS;SG
saďik N;DAT;SG
iltəni V;FIN;IND;SG;1;PST;ACT
hogdiŋo ADJ
ďurməːnďi ADJ
ɲama N;ACC;INDF;SG
amaːkaː N;ACC;DEF;SG
əpti V;SEMEL;FIN;IND;SG;3;PST;ACT
huru V;FIN;IND;SG;3;FUT+IMMED;ACT
tuksa V;FIN;IND;PL;3;PST;ACT
t͡ʃajti V;FIN;IND;PL;1+EXCL;PST;ACT
ɲiŋtə N;ACC;DEF;PL;ALN+PSS3P
məsto N;SG;PSSRS+ACC
girku V;IPFV;FIN;IND;ACT
ulguson V;IPFV;FIN;IND;SG;3;PST;ACT
əŋnəkoː N;ACC;DEF;PL
iŋini N;NOM;SG;PSS3S
ďujapt͡ʃu N;ACC;DEF;PL
janwar N;NOM;SG
omoː V;FIN;IND;PL;1+EXCL;PST;ACT
olgiː V;FIN;IND;SG;3;FUT+IMMED;ACT
duː N;TERM;SG;PSSRP
ahi N;COM;SG
irgi V;FIN;IND;PL;3;FUT+IMMED;ACT
huju ADJ;PL
kolhos N;DAT;SG
udigir N;NOM;SG
əbəːj N;NOM;SG
vətəran N;NOM;SG
nəkuː N;NOM;SG;PSS1S
mudaka N;NOM;PL;PSS3P
hoːgin V;FIN;IND;SG;3;PST;ACT
tigə V;FIN;IND;PL;2;ACT
ʃukʃilrə N;ACC;DEF;SG
staːdo N;ABL;SG
duləːməː V;FIN;IND;SG;3;PST;ACT
poruh N;ACC;DEF;SG
martə N;TERM;SG
toγo N;ALL;SG
ɲəkə V;IPFV;FIN;IND;SG;1;PRS;ACT
tirgaɲiː N;ACC;DEF;SG
aŋaɲiːśiː ADJ
kanskij N;NOM;SG
ŋinaki N;ACC;DEF;PL
ə V;FIN;IND;PSS1S;FUT+IMMED;ACT
biraja V;FIN;IND;SG;3;ACT
akir N;NOM;SG;PSS1S
moːla V;FIN;IND;SG;1;FUT;ACT
heː N;ACC;DEF;PL;PSS3P
ɲimok N;DAT;SG;PSSRP
tətiγəː N;ACC;INDF;PL;PSS3S
bəjətka N;NOM;PL
śədmoj N;DAT;SG
nəŋə V;IPFV;FIN;IND;SG;3;FUT+IMMED;ACT
eː N;NOM;SG
oː V;HAB;FIN;IND;SG;1;PST;ACT
kiləmetra N;NOM;SG
ga V;IPFV;FIN;IND;PL;3;PST+RMT;ACT
ugu N;DAT;SG
dəgi N;NOM;SG
əmə V;FIN;IMP;PL;1+INCL;ACT
əɲiː N;NOM;SG;PSS3P
oː V;FIN;IMP;PL;2;ACT
hujukuːn N;ABL;SG;PSSRS
səktələďək V;ACC;DEF;FIN;IND;PSS3P;ACT
bi V;FIN;IND;PL;3;PST;ACT
oldo N;ACC;INDF;SG
bi V;FIN;IND;SG;3;PST;ACT
umuːnup V;FIN;IMP+RMT;PL;2;ACT
ɲi N;NOM;SG
talu N;DAT;SG
oro N;ACC;DEF;PL;PSS1S
səktə N;ACC;DEF;PL
gə N;NOM;SG;ALN+PSS1S
girki N;NOM;SG;PSS3P
suru V;FIN;IND;PL;3;FUT+IMMED;ACT
bargidaː N;DAT;SG
tundrə N;TERM;SG
bi V;FIN;IND;PL;3;PST;ACT
ekspeditija N;DAT;PL
goro ADJ
kuŋaːkaː N;NOM;PL
naparniki N;PL;PSSRS+ACC
əmə V;FIN;IND;SG;3;PST;ACT
haktiraː V;FIN;IND;SG;3;PST;ACT
doː V;FIN;IND;ACT
kətə N;ACC;INDF;SG
gələːktə V;FIN;IND;SG;3;PST;ACT
lurgi V;FIN;IND;SG;3;PST;ACT
ilmakta N;ACC;DEF;PL
haŋkə N;PL;PSSRS+ACC
ďoro N;INS;SG;PSSRS
əɲiː N;DAT;SG
bira N;TERM;SG
jaŋ N;TERM;SG
dariski N;NOM;SG
amaːkaː N;NOM;SG
uji V;FIN;IMP;PL;1+INCL;ACT
til V;FIN;IND;PL;3;PST;ACT
ila V;DUR;HAB;FIN;IMP;PL;2;ACT
aťets N;NOM;SG
ʃo ADJ
ďawa V;FIN;IND;PL;1+EXCL;PST;ACT
hərəlgəːn N;ACC;DEF;SG
towuli N;COM;SG
bargidaː N;TERM;SG;PSS3S
aːnŋə N;DAT;SG;PSSRP
bi V;FIN;IND;PL;3;PST;ACT
ismiɲi N;NOM;SG
ŋənə V;FIN;IND;PL;1+EXCL;PST;ACT
təγə V;DUR;FIN;IND;ACT
amiːn N;DAT;SG;PSS1S
staːdo N;TERM;SG
istanoki N;NOM;PL
aŋa V;FIN;IND;SG;3;PST;PASS
ďu N;ACC;INDF;SG
ə V;FIN;IND;SG;2;FUT+IMMED;ACT
sarśikan N;ACC;DEF;SG
homoːtiː N;VOC;SG
girku V;FIN;IND;PL;3;PST+RMT;ACT
urə N;TERM;SG
hawal V;IPFV;FIN;IND;SG;3;PST;ACT
talu N;ABL;PL;PSS3P
oː V;FIN;IND;PST;ACT
doːldiː V;FIN;IND;SG;1;PST+RMT;ACT
dil N;IN+ABL;SG;PSS3S
koŋnomo ADJ
dulin N;NOM;SG
hunti ADJ;PL
amini N;NOM;SG;PSS3S
alba V;FIN;IND;PL;1+EXCL;PST;ACT
heːktakaː N;ACC;DEF;PL
irəksə N;INS;SG
haːrgi N;TERM;PL
tərgəksə N;ACC;DEF;PL;PSS3P
vasiljəvna N;NOM;SG
beːga N;NOM;SG
hokto N;ACC;DEF;SG
iruː V;IPFV;FIN;IND;SG;3;PST;ACT
ďaďa N;COM;SG;PSSRS
həgdi N;TERM;SG;PSS3P
ŋəkə V;FIN;IND;SG;1;PST;ACT
pensijə N;DAT;SG;PSSRS
tuγaɲiː N;DAT;SG
bu V;FIN;IND;SG;3;PST;ACT
oro N;DAT;PL
adil N;ACC;INDF;SG;PSSRP
bəjŋoː N;NOM;PL
əŋnəkəː N;NOM;PL
əriː V;FIN;IMP;SG;3;ACT
dur N;NOM;SG
rewolutśija N;NOM;SG
əntil N;NOM;SG;PSS3P
mudani N;NOM;SG;ALN+PSS1S
ďuganiː N;ACC;DEF;SG
ďu N;DAT;SG;PSSRP
ďəptəl N;NOM;SG
ďəw V;HAB+IPFV;FIN;IND;PL;2;PRS;ACT
kolan N;COM;SG
oha N;ACC;DEF;PL
isə V;FIN;IND;SG;2;FUT+IMMED;CAUS;ACT
hujukuː N;ABL;PL;PSSRP
uγu N;ALL;SG
ələːkəːn ADJ;PSS3S
kiŋgiloːn N;NOM;SG
rot N;DAT;SG
nulgiː V;SEMEL;FIN;IND;PL;3;PST;ACT
ətirkoːn N;DAT;SG;PSSRS
bər N;SG;PSSRS+ACC
oldoː N;ACC;DEF;PL
anŋaɲiː N;ACC;DEF;SG
dilasa N;NOM;SG
bagatiji ADJ;PL
fśu ADJ
huŋta ADJ
amtil N;COM;SG
muː N;ACC;DEF;SG
ďuː N;DAT;PL;PSS3P
don V;STAT;IPFV;FIN;IND;SG;1;PRS;ACT
dəginti ADJ
huɲiː N;NOM;PL;PSS3S
t͡ʃemo N;NOM;SG
huŋtuki ADJ
tərgəksə N;ACC;DEF;PL;PSS3P
ir N;NOM;CMPR;SG
ďawa V;IPFV;FIN;IND;SG;3;PRS;ACT
biːwun N;NOM;SG
əksə V;FIN;IND;PL;3;PST+RMT;ACT
siksiŋa N;ACC;DEF;PL
irgiʃi N;NOM;PL;PSS1PE
in V;IPFV;FIN;IND;PL;3;PRS;ACT
ďa N;DAT;PL;PSSRS
ila V;DUR;FIN;IND;SG;3;PST;ACT
əːs V;FIN;IND;SG;3;PST;ACT
hitəːn N;ACC;DEF;SG
it͡ʃə V;DUR+SEMEL;FIN;IND;SG;1;PST;ACT
bi V;FIN;IND;PL;1+INCL;FUT+IMMED;ACT
habəl N;NOM;SG
togo N;NOM;SG;PSS1PE
ɲimŋakaːnmə ADJ
talaka V;FIN;IND;SG;1;FUT;ACT
ribakil V;FIN;IND;SG;3;PST;ACT
uγut͡ʃak N;DAT;SG
ədi N;DAT;SG;PSSRS
o V;FIN;IND;PL;3;FUT;ACT
amin N;ACC;DEF;SG;PSS3S
adiːraː V;FIN;IND;ACT
palatka N;TERM;SG
tiksa N;ACC;DEF;SG
puruliwun N;SG;PSSRS+ACC
uːt͡ʃak N;ACC;INDF;SG;PSS3S
atirkaːn N;ACC;DEF;SG
kuːkti V;FIN;IND;SG;3;PST;ACT
ahami N;NOM;PL
wojna N;NOM;SG
iɲ V;IPFV;FIN;IND;PL;1+EXCL;PST;ACT
alagu V;FIN;IND;SG;1;FUT;ACT
o V;IPFV;FIN;IND;SG;3;PST+RMT;ACT
an N;IN+ABL;SG
tirganiː N;NOM;SG
haruːkka N;NOM;PL
armija N;ACC;DEF;SG
oron N;ACC;INDF;SG
haːrgi N;DAT;SG
ənə N;NOM;SG
iːkəːriː N;ACC;DEF;SG;PSS3S
əŋnəko N;DAT;PL
iɲ V;IPFV;FIN;IND;SG;3;PRS;ACT
hukti V;FIN;IND;SG;3;PST;ACT
papal V;FIN;IND;SG;3;PST;ACT
buktarani V;FIN;IND;SG;1;PST;ACT
namaː V;FIN;IND;PL;3;PST;ACT
hutə N;DAT;SG
ribzəvod N;DAT;SG
əmkə N;DAT;SG
oldo N;ACC;DEF;PL
huru V;FIN;IND;SG;3;FUT+IMMED;ACT
halga N;INS;PL;PSS1S
tətiγə N;ACC;DEF;PL
təgə V;FIN;IND;PL;3;PST;ACT
hərmə N;DAT;PL
ɲəkə V;FIN;IND;PL;1+EXCL;PST;ACT
idəhəti V;DUR+SEMEL;FIN;IND;PL;1+EXCL;PST+RMT;ACT
kəŋiloːn N;NOM;SG
ojogir N;NOM;SG
mukoːto N;NOM;SG;PSS3S
kurəː N;TERM;SG;PSS1S
haktiraː N;DAT;SG
ikoː V;FIN;IMP;PL;1+INCL;ACT
bəjə N;NOM;PL;ALN+PSS3P
ďu N;TERM;SG;PSSRP
girku V;IPFV;FIN;IND;SG;3;PRS;ACT
kəŋginə V;FIN;IND;SG;3;PST;ACT
howos N;ACC;DEF;SG;PSS3P
ɲaŋta N;NOM;PL
təγə V;FIN;IND;SG;3;PST;ACT
amar N;PROL;SG;PSS1PE
norma N;NOM;SG
ďiko V;IPFV;FIN;IND;PL;3;PRS;ACT
tsəntralka N;ABL;SG;PSSRS
gərbiː V;FIN;IND;PL;1+EXCL;PST;ACT
gogo V;IPFV;FIN;IND;SG;3;PRS;ACT
bi V;FIN;COND;SG;1;ACT
hələ N;ACC;DEF;PL
muːliː V;HAB;FIN;IND;SG;1;FUT;ACT
kərt͡ʃimə N;NOM;PL;ALN+PSS3P
gorokon N;ACC;DEF;SG
ami N;NOM;SG
zajafka N;ACC;INDF;SG
bi V;FIN;IND;PST+RMT;ACT
əɲi N;NOM;SG;PSS1S
gənnoː V;SEMEL;FIN;IND;PL;3;PST;ACT
tumɲina N;INS;SG;PSS3S
ga V;FIN;IND;SG;2;FUT;ACT
tukʃa V;FIN;COND;ACT
prəʃol N;NOM;SG
iɲəktə V;IPFV;FIN;IND;SG;3;PRS;ACT
ɲuŋun N;ACC;DEF;SG
ɲorma N;NOM;SG
majgu N;ACC;DEF;PL
olgiː V;FIN;IMP;SG;1;ACT
tutont͡ʃanə N;DAT;SG
hawa N;ACC;INDF;SG;PSSRS
agiː N;TERM;SG
obeda N;INS;SG
sergejew N;NOM;SG
abdun N;ACC;DEF;SG
dulapti N;ACC;DEF;PL;PSS3S
joːkə V;FIN;IND;PL;3;PST;ACT
opiti N;NOM;SG;PSS1S
iŋin N;NOM;SG
bulta V;FIN;IND;PST+RMT;ACT
ďərewɲə N;TERM;SG
it͡ʃə V;DUR;FIN;IND;SG;1;FUT+IMMED;ACT
girku V;IPFV;FIN;IND;SG;3;PST;ACT
ini V;FIN;IMP;PL;3;ACT
tuŋa N;ACC;DEF;SG
ɲamapt͡ʃu ADJ;ACC;INDF
irəkśə N;DAT;PL
t͡ʃipkaːn N;NOM;SG
ratsija N;INS;SG
molda V;SEMEL;FIN;IND;SG;3;PST;ACT
gələːktənaː V;IPFV;FIN;IMP;SG;2;ACT
t͡ʃiːwaː V;IPFV;FIN;IND;SG;3;FUT;ACT
ŋələfśi ADJ
iː V;FIN;IND;SG;3;PST;ACT
hamaːn N;NOM;SG
dulin N;DAT;SG;PSS3S
hilba V;DUR;FIN;IND;PSS1S;FUT;ACT
tehnikum N;DAT;SG
ɲəkə V;IPFV;FIN;IND;SG;1;PST;ACT
ije N;ABL;PL;PSS3S
arakukaːn N;NOM;SG
ŋələ V;FIN;IND;PL;3;PST;ACT
huru V;FIN;IND;PL;3;PST;ACT
irəkśə N;ACC;DEF;SG
bagdakəː N;ACC;DEF;PL
oro N;ACC;DEF;PL
ɲama V;FIN;IND;SG;3;FUT;ACT
bultahit ADJ
tolgokiː N;DAT;SG
meːwa V;FIN;IND;SG;3;PST;ACT
ilkəːɲ V;IPFV;FIN;IND;PL;PSS3P;ACT
aŋaɲiː N;NOM;SG
aː V;SEMEL;ACC;INDF;FIN;IND;PSS3P;ACT
ajalə ADJ
boroʃi N;ACC;DEF;PL
amiːn N;NOM;SG;PSS1S
əɲiːnmə ADJ
hama N;NOM;SG
tulə V;DUR;HAB;FIN;IND;PL;1+EXCL;PST;ACT
girku V;IPFV;FIN;IND;PL;1+EXCL;PST;ACT
heːktakaː N;ABL;PL
uldi V;HAB;FIN;IND;SG;1;PST;ACT
ŋəli V;DUR;HAB;FIN;IND;SG;1;PST;ACT
ďebŋənə N;ACC;DEF;PL
bəjo V;FIN;IND;PL;3;PST;ACT
nakanno N;NOM;SG
bi V;FIN;IND;PL;1+EXCL;PST;ACT
ɲaŋta N;ACC;INDF;PL
diliː N;NOM;SG
oro N;PL;PSSRP+ACC
śila V;DUR;IPFV;FIN;IND;PL;1+EXCL;PRS;ACT
ŋinakin N;ACC;DEF;SG;PSS1PE
hamɲiːka N;ACC;INDF;PL
jaŋi N;ALL;PL
huru V;FIN;IMP;PL;1+INCL;ACT
ə V;FIN;IND;PL;1+EXCL;PST+RMT;ACT
boloniː N;ACC;DEF;SG
śipkaː N;NOM;SG
hujukuːn ADJ
bi V;FIN;IND;PL;3;PST;ACT
diŋniːləːn V;FIN;IND;SG;3;PST;ACT
vobʃəm ADJ
o V;FIN;IMP;SG;1;ACT
aknil N;NOM;SG;PSSRS
hutakat͡ʃaːn N;ACC;INDF;SG
agdi V;IPFV;FIN;IND;SG;3;PRS;ACT
bira N;PROL;SG
ŋolə V;DUR;FIN;IND;PL;3;PST;ACT
pə N;NOM;SG
dundə N;ACC;DEF;SG
dunnə N;NOM;SG
ďaďa N;NOM;SG
aŋanisi ADJ
umaːn N;ACC;DEF;SG;PSS3S
əbəj N;NOM;SG
ahatawet N;TERM;SG
hukulo V;IPFV;FIN;IND;SG;3;PRS;ACT
aleksejewna N;NOM;SG
əɲin N;DAT;SG;PSSRS
aŋani N;NOM;SG;PSS2S
aːnŋə V;DUR;FIN;IND;PL;3;PST;ACT
terapefťə N;NOM;SG
ə V;FIN;IND;PL;1+EXCL;PST;ACT
ďə V;FIN;IND;SG;3;PST;ACT
aloʃa N;NOM;SG
samolot N;NOM;SG
ɲimoki N;TERM;PL;PSSRS
altaśi V;FIN;IND;SG;3;PST;ACT
tolgoki N;TERM;PL;PSSRP
təwə V;FIN;IMP;PL;2;ACT
beːgaśi ADJ
ili V;DUR;FIN;IND;SG;3;PST;ACT
ŋoːlə V;FIN;IND;SG;1;FUT+IMMED;CAUS;ACT
ďəpti N;NOM;PL
murdaː V;FIN;IND;PL;1+EXCL;PST;ACT
ini V;IPFV;FIN;IND;PL;2;FUT+IMMED;ACT
bi V;FIN;IND;PL;3;PST;ACT
haŋaːri N;ACC;DEF;PL;PSS3S
in N;DAT;SG
sudə N;ACC;DEF;SG
t͡ʃanku N;ACC;DEF;PL
ɲutə N;ACC;DEF;PL
umukən ADJ
baloki N;DAT;PL;PSS3P
dərumkiśə V;IPFV;FIN;IMP;SG;2;ACT
mənmaktə N;NOM;PL
prəmhos N;DAT;SG
ŋənə V;IPFV;FIN;IND;SG;3;PRS;ACT
ďu N;TERM;SG;PSSRP
kapka N;PL;PSSRS+ACC
ŋoːlə V;FIN;IND;SG;3;PST;CAUS;ACT
amiː N;NOM;SG;PSS3P
aː V;HAB+IPFV;FIN;IND;SG;2;PRS;ACT
ubdun N;ABL;SG;3
iŋiɲipt͡ʃu ADJ
tuŋi N;ACC;DEF;SG
itiγaː V;HAB+IPFV;FIN;IND;PL;1+EXCL;PRS;ACT
t͡ʃikti N;ACC;DEF;PL
doldi V;DUR;FIN;IND;SG;1;PST;ACT
t͡ʃokoksoːn N;ACC;DEF;SG
kəŋiloːn N;ACC;INDF;SG
ulukiː N;NOM;SG
ruʒjom N;NOM;SG
ďantakiː N;ACC;DEF;PL
ďəm V;FIN;IND;PL;1+EXCL;PST;ACT
ulgot͡ʃoː V;IPFV;FIN;IND;SG;1;PST+RMT;ACT
ďuːr N;ACC;DEF;SG
bokonə V;FIN;IND;SG;1;PST;ACT
uda N;ACC;DEF;PL;PSS3S
omo V;FIN;IND;PL;3;PST;ACT
samoloːt N;DAT;SG
birə N;TERM;PL
hujet V;FIN;IND;PL;1+EXCL;PST;ACT
orohəmə ADJ
japə V;FIN;IND;PL;1+EXCL;PST;ACT
ohoto N;ACC;DEF;SG
ďawi N;ACC;DEF;PL
kilometr N;PROL;SG
t͡ʃatti V;FIN;IND;PL;1+EXCL;PST;ACT
həgdiŋə V;IPFV;FIN;IND;PL;ACT
hukśilla N;INS;PL
moti N;ACC;DEF;PL
bi V;FIN;IND;SG;1;PST;ACT
oro N;NOM;PL;PSS1S
ɲəŋɲəɲiː N;INS;SG
amaka N;NOM;SG;PSS1S
buː V;FIN;IND;PL;3;PST+RMT;ACT
jest N;NOM;SG
amkin N;ACC;INDF;SG
hələ N;ACC;DEF;SG
oldo N;ACC;INDF;PL
ili V;DUR;IPFV;FIN;IND;SG;1;PRS;ACT
əmə V;IPFV;FIN;IND;PL;3;PRS;ACT
buː V;FIN;IND;PL;3;PST+RMT;ACT
pəɲśija N;NOM;SG
tijəpkoːn V;IPFV;FIN;IND;PSSRS;ACT
zaʃiʃati V;FIN;IND;SG;1;FUT+IMMED;ACT
kislokan N;DAT;SG
in V;IPFV;FIN;IND;PL;1+EXCL;PST;ACT
amaːkaː N;ABL;SG;PSSRS
anŋaɲiː N;TERM;PL
uďa N;PROL;SG;PSS3S
hamaːn N;DAT;SG;ALN+PSS3P
bolnisa N;NOM;SG
oː V;FIN;IND;SG;3;PST;ACT
asin N;DAT;SG
umuko ADJ
ilan N;INS;SG
haŋiː V;SEMEL;FIN;IND;PL;1+EXCL;PST;ACT
śimja N;ABL;SG
zaatehnik N;NOM;SG
at͡ʃi N;NOM;PL
grus N;ACC;DEF;SG
kuŋakan N;DAT;SG;PSSRS
dinŋiːləː V;FIN;IND;SG;3;FUT;ACT
a V;IPFV;FIN;IND;PL;1+EXCL;PST+RMT;ACT
pramhoz N;NOM;SG
ulgut͡ʃəːni V;FIN;IND;SG;1;PST;ACT
waː V;FIN;IND;SG;1;PST;ACT
nulgiː V;SEMEL;FIN;IND;PL;1+EXCL;PST;ACT
hənŋə N;NOM;SG
uldə N;ACC;DEF;PL
kapkan N;DAT;SG;PSS3S
uďa N;ACC;DEF;PL;PSS1S
o V;FIN;IMP;SG;3;ACT
marʃruti N;NOM;SG;PSS3S
ɲikə V;IPFV;FIN;IND;SG;3;PRS;ACT
əː N;NOM;SG
turəːni N;NOM;SG;PSS3S
ənin N;COM;SG;PSS1S
tərgəksəkəː N;NOM;PL;PSSRP
uləː V;FIN;IND;SG;3;PST;ACT
saʃka N;NOM;SG
naː V;FIN;IND;SG;3;PST;PASS
kuptu V;FIN;IND;SG;3;PST;ACT
ďuː N;NOM;PL
kuŋakan N;ACC;DEF;SG
ɲimŋakaːn N;NOM;SG
produkta N;ACC;INDF;PL
buː V;HAB;FIN;IND;PL;1+EXCL;PST;ACT
bəjə V;FIN;POT;ACT
hoː N;ACC;DEF;SG;ALN+PSS3P
vəťərantruda N;DAT;SG
ahiːla V;FIN;IND;SG;3;PST;ACT
ɲimnoʃkato ADJ
ga V;FIN;IND;PL;2;FUT+IMMED;ACT
amin N;ACC;DEF;SG;PSS2S
ətəji V;DUR;IPFV;FIN;IND;SG;2;PRS;ACT
baka V;FIN;IND;PL;1+EXCL;PST;ACT
awgusta N;ALL;SG
umuktaγat͡ʃini ADJ;EQTV;PSS3S
tirəː V;FIN;IND;SG;3;PST;ACT
nulgiː V;FIN;IND;PL;1+EXCL;PST;ACT
ɲəkə V;FIN;IND;SG;1;FUT+IMMED;ACT
uksədikəːn ADJ;EQTV
guluwun N;ALL;SG;PSS3S
buː N;NOM;SG
amaː N;NOM;SG
ut͡ʃami N;TERM;SG
ďuː N;NOM;SG;PSSRS
əkniːl N;NOM;SG;PSS1S
hukti V;FIN;IND;SG;3;PST;ACT
etitə ADJ
ollo N;ACC;INDF;PL
dundə N;TERM;PL;PSS3S
ribat͡ʃiťtə ADJ
kujkiː ADJ
kujiː V;IPFV;FIN;POT;PL;3;ACT
hokto N;DAT;SG
ŋinaγiː V;FIN;IND;PL;1+EXCL;PST;ACT
koto N;DAT;PL;PSS2P
ďiwo V;FIN;IND;PL;3;PST;ACT
sok V;FIN;IND;PL;3;PST;ACT
ili N;DAT;SG
buː V;FIN;IND;SG;1;FUT+IMMED;ACT
əməːn V;FIN;IND;SG;3;FUT+IMMED;PASS
ənŋə V;FIN;IMP;SG;2;ACT
bəjatsə N;NOM;SG
moː N;TERM;SG
həgdiŋoko ADJ;PL
dulin N;DAT;SG;PSS3S
buɲiː N;PL;PSSRP+ACC
dəγi V;FIN;IND;SG;1;PST;ACT
ʒe N;NOM;SG
amini N;NOM;SG;PSS3S
dəgi N;NOM;PL
ijəko N;NOM;PL
bira N;NOM;SG;ALN+PSSRS
siŋilgən N;INS;SG
iɲ V;IPFV;FIN;IND;SG;1;PRS;ACT
ďəpi V;FIN;IND;PL;1+EXCL;PST+RMT;ACT
tawu V;HAB;FIN;IND;PL;1+EXCL;PST;ACT
ďaw N;NOM;SG
atirkaːn N;COM+TERM;SG
huru V;FIN;IND;SG;3;PST;ACT
irəkʃə N;ACC;DEF;SG;PSS3S
ugu V;FIN;IND;SG;3;PST+RMT;ACT
gun V;FIN;IND;ACT
ɲikə V;FIN;IND;SG;1;PST;ACT
huďi V;FIN;IND;PL;1+INCL;FUT;ACT
irgi V;DUR;IPFV;FIN;IND;PL;3;PST+RMT;ACT
soːkaːn V;IPFV;FIN;IND;PL;3;PST;ACT
nəkə V;IPFV;FIN;IND;SG;1;PRS;ACT
kolan N;NOM;SG
iśə V;DUR;FIN;IND;ACT
luk V;FIN;IND;PL;3;PST;ACT
igďamakaːn ADJ
aha N;COM;PL
asi N;NOM;PL
təro V;FIN;IND;SG;1;PST;ACT
baka V;FIN;IND;SG;1;PST;ACT
awu V;FIN;IND;SG;1;PST+RMT;ACT
pastuhi V;IPFV;FIN;IND;SG;1;PST;ACT
əmə V;FIN;IND;SG;3;PST;ACT
həgdiloːn ADJ
ośin N;NOM;SG
ŋənə V;FIN;IMP;SG;1;ACT
ďuγuː N;PROL;SG;PSS3S
turoː N;NOM;SG
haː V;FIN;IND;SG;2;PST;ACT
irkutskaj N;DAT;SG
tawu V;HAB;FIN;IND;PL;3;PST;ACT
əďiː N;IN+ABL;SG
hulu ADJ
əməːn V;FIN;IND;SG;3;FUT+IMMED;ACT
wertoloːti N;INS;SG
kantora N;NOM;SG
ŋinakin N;NOM;SG;PSS1PE
bi V;FIN;IND;PL;1+EXCL;PST;ACT
ini V;SEMEL;FIN;IND;SG;1;PST;ACT
hoːm V;FIN;IND;SG;3;PST;ACT
ili V;DUR;IPFV;FIN;IND;PL;1+EXCL;PRS;ACT
aŋaɲiː V;FIN;IND;SG;3;ACT
majgu N;NOM;SG
dinŋiːləːn V;IPFV;FIN;IND;SG;3;PRS;ACT
amut N;NOM;SG
girkumət ADJ
kazak N;NOM;SG
hawal V;FIN;IND;FUT;ACT
mukurə V;FIN;IND;PL;3;PST;ACT
ijə N;ACC;DEF;PL;PSS3S
hawal V;IPFV;FIN;IND;SG;1;PST;ACT
ərdikoːn ADJ
da N;DAT;PL;PSSRS
amin N;NOM;SG;PSS3P
oroni N;NOM;SG;PSS3S
hukuləː V;IPFV;FIN;IND;SG;3;PRS;ACT
toγo N;NOM;SG;PSS3S
ulukiː N;ACC;DEF;SG
hujət V;FIN;IND;PL;1+EXCL;PST;ACT
bəju N;ACC;INDF;PL
aha V;IPFV;FIN;IND;PL;3;PRS;ACT
ɲiďəla N;DAT;SG
dəktəndə N;NOM;PL;PSS1S
moː N;ACC;DEF;PL
həgdihə V;FIN;IND;SG;1;PST;ACT
plemaniki N;NOM;SG;PSS1S
ŋinaki N;INS;PL
tolgokiː N;INS;PL
pəktirəː V;FIN;IND;PL;3;PST;RECP;ACT
tiha V;IPFV;FIN;IND;SG;3;PRS;ACT
təwlaː V;SEMEL;IPFV;FIN;IND;PL;1+EXCL;PST;ACT
aminŋəhə N;NOM;SG
ŋəli N;VOC;SG
ə V;FIN;IND;PL;3;PST;ACT
əjəː V;SEMEL;FIN;IMP;SG;2;ACT
najabra N;NOM;SG
suːko N;NOM;PL;PSS1PE
amin N;NOM;SG;PSS1PE
aja ADJ;NOM;CMPR;SG
halgaliʃu N;NOM;SG
ďu N;DAT;SG
huru V;FIN;IND;PL;1+EXCL;PST;ACT
pəktiroː V;ACC;DEF;FIN;IND;PL;1+EXCL;ACT
maluːgida N;ALL;SG
bulta N;NOM;SG;PSS3S
ďaďa N;NOM;SG;PSS1S
umukoːn ADJ
jakut N;NOM;SG
haktira V;FIN;IND;SG;3;PST;ACT
bagdama ADJ
ila V;DUR;IPFV;FIN;IMP;PL;2;ACT
ďawa V;FIN;COND;SG;1;ACT
bi V;FIN;IND;PL;1+INCL;PST;ACT
ərupt͡ʃu ADJ;ACC;INDF
hamaːn N;ACC;DEF;SG
ďugani N;DAT;SG
pəktiron V;FIN;IND;SG;2;FUT;ACT
biraja N;ACC;DEF;PL
bi V;IPFV;FIN;IND;PL;1+EXCL;PST;ACT
mikt͡ʃan V;FIN;IND;SG;3;PST;ACT
varənjə N;ACC;DEF;SG
abet N;NOM;SG
tugəɲiː N;NOM;SG
dəγi V;FIN;IND;SG;3;PST;ACT
hokto N;ACC;DEF;SG;PSS1S
suːləmə ADJ;PSS3P
ilkəːɲ V;IPFV;FIN;IND;PL;ACT
əvənkiju N;NOM;SG
turaːmi N;ACC;DEF;SG
baka V;FIN;IND;SG;1;FUT;ACT
paśolok N;TERM;SG
əɲiːŋəhə N;NOM;SG;1
doːldiː V;DUR;FIN;IND;SG;3;PST;ACT
uśitnaː V;SEMEL;FIN;IND;SG;1;PST;ACT
ďukt͡ʃa N;TERM;SG;PSS3S
uŋku V;DUR;FIN;IND;SG;3;FUT+IMMED;ACT
kalhos N;NOM;SG
hiγi V;FIN;IND;SG;1;PST;ACT
kuŋakaːr N;NOM;SG
ďə V;IPFV;FIN;IND;SG;1;PRS;ACT
t͡ʃenokoːn N;NOM;SG
nikalajəvit͡ʃ N;NOM;SG
koːtuj N;NOM;SG
miri V;FIN;IND;SG;3;PST;ACT
bəjətkon N;NOM;SG
gus N;NOM;SG
iɲ V;IPFV;FIN;IND;SG;3;PST;ACT
amtil N;NOM;SG;PSS1S
saːtira N;ACC;DEF;SG
irgiśi N;NOM;SG
tirə V;FIN;IND;PL;3;FUT+IMMED;ACT
ilə N;DAT;PL
inə V;HAB;FIN;IND;PL;1+EXCL;PST;ACT
nulgi V;SEMEL;FIN;IND;PL;3;ACT
ďumi N;DAT;PL
hərgiː N;NOM;SG;PSS3S
powar V;IPFV;FIN;IND;SG;1;PST+RMT;ACT
golo N;ACC;DEF;SG
hukuləː V;IPFV;FIN;IND;SG;3;PRS;ACT
ɲəmuləmɲi N;NOM;PL
abdun N;ABL;SG;PSSRS
pəktirəːwuni N;NOM;SG;PSS3S
ir N;ABL;SG
ihə N;TERM;PL
tuksaː V;IPFV;FIN;IND;PL;1+EXCL;PST+RMT;ACT
oː V;FIN;IND;SG;3;PST;ACT
pol N;ACC;DEF;SG
əmukin ADJ
hutə N;NOM;SG;PSS1S
hawal V;IPFV;FIN;IND;SG;3;PST+RMT;ACT
hurunən N;ACC;DEF;SG
əmə V;FIN;IND;SG;3;FUT+IMMED;ACT
goro N;ACC;DEF;SG
hargi N;ALL;PL
amkin N;NOM;SG
hulakiːkuːn N;NOM;SG
təďoː N;NOM;SG
ahiː N;ACC;DEF;SG;PSS3S
noː V;HAB;FIN;IND;PL;1+EXCL;PST;ACT
guluwun N;TERM;SG;PSSRP
ďadaŋi N;DAT;PL
hutə N;DAT;PL;PSSRS
hogdiŋo ADJ;PL
luk V;FIN;IND;PL;1+EXCL;PST;ACT
nulgiːmdə N;NOM;SG;PSS3P
inmərukkoːn N;SG;PSSRS+ACC
kiki V;SEMEL;FIN;IND;SG;3;PST;ACT
dili N;NOM;SG;PSS1S
iɲ V;IPFV;FIN;IND;PL;3;PST+RMT;ACT
olromi V;IPFV;FIN;IND;PL;3;PRS;ACT
guluwun N;TERM;SG
huru V;HAB;FIN;IND;PL;1+EXCL;PST;ACT
ďawa V;IPFV;FIN;IND;PL;1+INCL;PRS;ACT
tajmen N;ABL;SG
art͡ʃa V;FIN;IND;SG;3;PST;ACT
ərjokloː N;NOM;SG
swaďba V;FIN;IND;PL;1+INCL;FUT+IMMED;ACT
daːr V;FIN;IND;PL;1+EXCL;PST;ACT
ə V;FIN;IND;PL;1+EXCL;PST;ACT
ďapka N;ALL;SG;PSS3S
təpkə V;FIN;IND;SG;3;PST+RMT;ACT
hutəkoː N;NOM;PL;PSS1PE
duwukiː N;ACC;DEF;SG;PSS3S
əɲiː N;NOM;SG;PSS1S
bi V;FIN;IND;SG;1;PST;ACT
amin N;COM;SG;PSS3S
liʒi N;NOM;SG
dolboltonə N;TERM;SG
huru V;FIN;IND;SG;3;PST;ACT
pəktəroni V;HAB;FIN;IND;SG;2;PST;ACT
gala N;NOM;SG
gə N;DAT;SG
bi V;FIN;IND;SG;1;PST;ACT
itiγaː V;FIN;IND;PL;1+EXCL;PST;ACT
akini N;NOM;SG;PSS3S
əldun N;NOM;SG
uŋku V;FIN;IND;SG;3;PRS;ACT
dəγi V;FIN;IND;PL;3;PST;ACT
bolʃoj N;NOM;SG
doːldiː V;FIN;IND;PL;1+EXCL;PST;ACT
ənəli V;FIN;IND;ACT
aki N;NOM;SG;PSS1S
amaːkaːtkan N;ABL;SG
əŋəhiː N;ACC;INDF;SG;PSS2S
həkuːhiː N;INS;SG
ila V;FIN;IND;SG;3;PST+RMT;ACT
o V;IPFV;FIN;IND;PL;3;FUT+IMMED;ACT
oron N;ACC;DEF;SG;PSS3P
prədukt N;ACC;DEF;PL
alba V;HAB;FIN;IND;SG;1;PST;ACT
tatar N;ACC;DEF;SG;PSS3S
moːtiːtkoːn N;ACC;DEF;SG
śirəktə N;PL;PSSRS+ACC
o V;FIN;IND;SG;1;PST;ACT
amkin N;DAT;SG
tolgoki N;NOM;PL
bə N;NOM;SG
bi V;FIN;IND;SG;1;PST;ACT
warak N;NOM;SG
hulakiː N;ACC;DEF;SG
uďa N;ACC;DEF;PL;PSS3P
ganalt͡ʃi N;NOM;SG
biraja N;ACC;DEF;SG
təti V;IPFV;FIN;IND;SG;3;PST+RMT;ACT
goγo V;FIN;IND;PL;3;PST;ACT
ďawut͡ʃa V;IPFV;FIN;IND;SG;3;PST+RMT;ACT
poːta N;PL;PSSRP+ACC
kuŋakan N;COM;SG
oː V;FIN;IND;SG;3;FUT+IMMED;ACT
baka V;FIN;IND;SG;1;PST;ACT
uďa N;ACC;DEF;PL
ə V;FIN;IMP;PL;2;ACT
ɲiďela N;NOM;SG
spit͡ʃka N;ACC;DEF;SG
jigorəwiʃ N;NOM;SG
ogdokoː N;ACC;INDF;PL;PSSRP
əməːn V;FIN;IND;PL;1+EXCL;PST;PASS
ollomoː V;SEMEL;FIN;IND;PL;1+EXCL;PST+RMT;ACT
ŋənə V;FIN;IND;SG;1;PST;ACT
ďoni V;HAB;FIN;IND;SG;1;PST;ACT
vərtalot N;NOM;SG
hamɲiː N;ACC;INDF;PL
tuksa V;SEMEL;FIN;IND;PL;1+EXCL;PST;ACT
ilanma ADJ
muː N;DAT;SG
ədi N;COM;SG;PSSRS
ŋənə V;FIN;IND;PST;PASS
ďawut͡ʃa V;IPFV;FIN;IND;PL;3;PST+RMT;ACT
ədin N;NOM;SG
ďəw N;NOM;SG
uldiː V;IPFV;FIN;IND;SG;3;ACT
bargidaː N;PROL;SG;PSS3S
kormeː N;ABL;SG;PSS3S
soliːloː N;NOM;SG
oː V;FIN;IND;SG;3;PST;ACT
du N;NOM;SG;PSS3P
duku V;FIN;IND;PL;3;PST+RMT;ACT
haŋkə N;NOM;PL;PSSRP
o V;FIN;IND;SG;3;PST;ACT
ikoː V;IPFV;FIN;IND;SG;3;PST;ACT
oro N;ACC;DEF;PL
jaŋgu V;FIN;IND;PL;3;PST;ACT
ollomo V;SEMEL;FIN;IND;PL;1+EXCL;PST;ACT
oron N;NOM;SG;PSSRS
ətə V;FIN;IND;PL;1+EXCL;FUT+IMMED;ACT
muːkoːn N;INS;SG
waː V;FIN;IND;SG;3;PST;ACT
naptara V;FIN;IND;PL;3;PST;ACT
tukti V;FIN;IND;SG;3;PST;ACT
nimɲaːkaːn N;ACC;DEF;SG
bi V;FIN;IND;SG;3;PST;ACT
əmə V;FIN;IND;PL;1+EXCL;PST;ACT
maluː N;DAT;SG
hoγorkiː N;PROL;SG
baji ADJ;PL
jewgenija N;NOM;SG
uγut͡ʃak N;NOM;SG;PSSRP
əwiːwun N;NOM;SG
gorot N;TERM;SG
o V;FIN;IND;PL;1+EXCL;PST+RMT;ACT
dulinma ADJ;PSS3S
ďəptilə N;ACC;DEF;PL
hukti V;SEMEL;FIN;IND;SG;1;PST;ACT
gu V;FIN;IND;SG;3;PST;ACT
ďələki N;ACC;DEF;PL
lawaːdaːp V;IPFV;FIN;IND;SG;3;PRS;ACT
abat͡ʃiː N;ACC;DEF;SG
talu N;ACC;DEF;SG
ďaldaː V;FIN;IND;SG;1;PST;ACT
in V;IPFV;FIN;COND;PL;3;ACT
tələ V;FIN;IND;SG;1;FUT;ACT
ahiː N;NOM;SG
nidim N;DAT;SG
vnis N;ALL;SG
gənnəː V;FIN;IND;SG;3;PST;ACT
ďəgdəː N;NOM;SG
krasnojarska N;TERM;SG
əwədit ADJ
ə V;FIN;IND;SG;3;PST;ACT
oːha N;NOM;PL;ALN+PSS3P
iɲ V;IPFV;FIN;IMP;PL;2;ACT
bi V;FIN;COND;SG;2;ACT
komojəmi N;ACC;DEF;SG
tirga V;FIN;IND;SG;3;PST;ACT
śiruː N;NOM;SG;PSS1S
təγə V;DUR;FIN;IMP;PL;2;ACT
holiːləː N;NOM;SG
ə N;NOM;SG
waːnaː V;SEMEL;FIN;IND;SG;2;PST;ACT
ɲikə V;FIN;IND;SG;2;PST;ACT
ə V;FIN;IND;PL;3;PST;ACT
gun V;FIN;IND;SG;3;PST;ACT
pesoki N;INS;SG
ulgut͡ʃoː V;DUR;FIN;IND;PL;1+EXCL;PST;RECP;ACT
hawal V;IPFV;FIN;IND;SG;3;PST;ACT
makarit͡ʃ N;NOM;SG
ə V;FIN;IND;SG;3;FUT+IMMED;ACT
ollomiːmniː V;FIN;IND;PL;ACT
kujumbə N;DAT;SG
hiśi V;SEMEL;FIN;IND;SG;3;PST;ACT
uwaʒaśi V;FIN;IND;PL;3;PST+RMT;ACT
ir N;ALL;SG
metər N;NOM;SG
gənnə V;FIN;IND;SG;1;PST;ACT
it͡ʃə V;DUR;IPFV;FIN;IND;SG;1;PRS;ACT
uliː V;IPFV;FIN;IND;PL;1+EXCL;PST+RMT;ACT
ďu N;NOM;PL;PSS1S
|
e4e7d4ab246c259ec15f2f8e045ea172a5e7b10e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2438/CH1/EX1.12/Ex1_12.sce
|
3b83cb01c5f1d9b06aac192e6f4e917b7f995bd4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 574
|
sce
|
Ex1_12.sce
|
//======================================================================
// chapter 1 example 12
clc;
clear;
//input data
d = 2.5; //spacing in angstroms
theta = 9; //glancing angle in degrees
n1 = 1;
n2 = 2;
//calculation
lamda = (2*sin(theta*(%pi/180))*d);
theta = asin((2*lamda)/(2*d));
//result
mprintf('wavelength =%3.4fÅ\n',lamda);
mprintf('glancing angle =%3.1f°\n',theta*(180/%pi));
//=======================================================================
|
45b5c4c54362baf02c4e58b7b03a5b7e84788a00
|
08449a79cdbe7cb52972c46fcb1b4e6b7d0f8c8f
|
/mash-97/codeforces/1380/B/input.tst
|
9b58c409bdfbe5de859a2dc0c1c90690ea962790
|
[] |
no_license
|
mash-97/neomash
|
d6831fc842ad79442a229f011b659a2297c08c3b
|
c9158893e77928efaf6f9e913a4eb83f62842e1e
|
refs/heads/master
| 2023-04-22T02:26:09.507318
| 2021-05-20T11:45:17
| 2021-05-20T11:45:17
| 358,043,308
| 2
| 1
| null | 2021-04-15T23:33:41
| 2021-04-14T21:11:18
|
C++
|
UTF-8
|
Scilab
| false
| false
| 13
|
tst
|
input.tst
|
3
RRR
RSP
S
|
0819764537d4970a9cbd976c01f2821a4af75556
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1752/CH3/EX3.13/exa3_13.sce
|
c18bb09536cd5821bb1023206c22e3bff6c98161
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 683
|
sce
|
exa3_13.sce
|
//Exa 3.13
clc;
clear;
close;
//given data
k=32;// in W/m^2 degree C
h=14.8;// in W/m^2 degree C
t_o=480;// in degree C
t_i=55;// in degree C
t_a=20;// in degree C
d=2.5*10^-2;// in m
rho=%pi*d;// in m
Ac=%pi*d^2/4;// in m^2
m=sqrt(h*rho/(k*Ac));
disp("In this case, the shaft heat from the pump towards motor");
disp("The temperature distribution considering the shaft as a fin insulated at the tip is given by")
disp("Q/Q_o= (t-t_a)/(t_o-t_a) = cosh(m(L-x))/cosh(m*L)")
// From (t-t_a)/(t_o-t_a) = cosh(m(L-x))/cosh(m*L)
L=acosh((t_o-t_a)/(t_i-t_a))/m; // at x=L,t=t_i
disp("Length of shaft specified between the motor and the pump is : "+string(L)+" meter");
|
e237cd675a50fbc605b86e268216847ba9e1fced
|
3b9a879e67cbab4a5a4a5081e2e9c38b3e27a8cc
|
/Área 2/Aula 9 - Regras de Quadratura/somas_de_riemann.sce
|
de75692e8bec153cf7dce4250ed0bc864454bd2c
|
[
"MIT"
] |
permissive
|
JPedroSilveira/numerical-calculus-with-scilab
|
32e04e9b1234a0a82275f86aa2d6416198fa6c81
|
190bc816dfaa73ec2efe289c34baf21191944a53
|
refs/heads/master
| 2023-05-10T22:39:02.550321
| 2021-05-11T17:17:09
| 2021-05-11T17:17:09
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 609
|
sce
|
somas_de_riemann.sce
|
function S = somas_de_riemann_a_esquerda(f,a,b,n)
h = (b - a)/n
S = 0
for i = 1:n
xi = a + (i - 1) * h
S = S + f(xi)*h
end
endfunction
function S = somas_de_riemann_a_direita(f,a,b,n)
h = (b - a)/n
S = 0
for i = 1:n
xi = a + (i * h)
S = S + f(xi)*h
end
endfunction
function S = somas_de_riemann_ponto_medio(f,a,b,n)
h = (b - a)/n
S = 0
for i = 1:n
xi = a + (i - 1)*h
xi2 = a + (i * h)
e = (xi + xi2)/2
S = S + f(e)*h
end
endfunction
function y = f(x)
y = cos(x)
endfunction
|
9d9ff9d973b5104881a043b985fad869fd692bb5
|
4bbc2bd7e905b75d38d36d8eefdf3e34ba805727
|
/ee_scicoslab/scicos_flex/dspic/macros/misc/init_par.sci
|
635c42a1c9c3baf5c65a6b4ca03563443738cd2e
|
[] |
no_license
|
mannychang/erika2_Scicos-FLEX
|
397be88001bdef59c0515652a365dbd645d60240
|
12bb5aa162fa6b6fd6601e0dacc972d7b5f508ba
|
refs/heads/master
| 2021-02-08T17:01:20.857172
| 2012-07-10T12:18:28
| 2012-07-10T12:18:28
| 244,174,890
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 264
|
sci
|
init_par.sci
|
function [xi,wn,s]=init_par(os,ts)
// Calculates the damping factor xi, the natural frequency wn
// and the pol paar s for a 2. order system with %OS os and
// setting time ts
xi=os2xi(os);
wn=ts2wn(ts,xi);
th=acos(xi);
s=-xi*wn+%i*wn*sqrt(1-xi*xi);
endfunction
|
f1291e4583214200c00da40b8de3489cee93811a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1898/CH2/EX2.3/Ex2_3.sce
|
5b17994c39bb384253b19be9ff418cbfa3aeed23
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 674
|
sce
|
Ex2_3.sce
|
clear all; clc;
disp("Scilab Code Ex 2.3 : ")
//Given:
ab= 250; //mm
bbdash_x = 3; //mm
bbdash_y = 2; //mm
ac = 300; //mm
//calculations:
//Part(a)
abdash = sqrt((ab - bbdash_y)^2 + (bbdash_x)^2); //Pythagoras theorem
avg_normal_strain = (abdash-ab)/ab;
//Part(b)
gamma_xy = atan(bbdash_x/(ab - bbdash_y)); //shear strain formula
//Display:
printf("\n\nThe average normal strain along AB is =%10.5f mm/mm",avg_normal_strain);
printf("\nThe average shear strain = %10.5f rad",gamma_xy);
//--------------------------------------------------------------------END-----------------------------------------------
|
e17b112e91550b1f56163302963e9f68402f5307
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set7/s_Electronics_Engineering_P._Raja_2150.zip/Electronics_Engineering_P._Raja_2150/CH1/EX1.16/ex1_16.sce
|
b0174a071941fb59e3a56b47d88e2875ca38406a
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 192
|
sce
|
ex1_16.sce
|
errcatch(-1,"stop");mode(2);// Exa 1.16
;
;
// Given data
R1= 2;// in kΩ
R2= 2;// in kΩ
V=19;// in V
V_o = (V*R1)/(R1+R2);// in V
disp(V_o,"The output voltage in V is");
exit();
|
d75b4b36859764494e467c69ccdcc2ae54b6ca8f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/995/CH13/EX13.7/Ex13_7.sce
|
1260729f118cf26edbe5765b3190f02eeb7204b7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 120
|
sce
|
Ex13_7.sce
|
//Ex:13.7
clc;
clear;
close;
r=12;//in ohms
i=0.5;//in amps
P_r=i*i*r;//in W
printf("Power radiated = %d W",P_r);
|
fac9a8924fcb033a7e370d0a16aaaa1a5dbbe1e1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/683/CH20/EX20.1/FBELT_1.sce
|
ed14a011fbeba1d675b058f4ecc06217a5075b09
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 799
|
sce
|
FBELT_1.sce
|
// sum 20-1
clc;
clear;
b=0.2;
P=50*10^3;
v=20;
m=1.95;
d=0.3;
D=0.9;
C=5.8;
u=0.4;
//Let density be rho
rho=1000;
E=40;
//Let T1-T2 = T
T=P/v;
//Let the centrifugal tension be Tc
Tc=m*v^2;
alpha=asind((D+d)/(2*C));
theta=180+(2*alpha);
theta=theta*%pi/180;
x = exp(u*theta);
T2=(((1-x)*Tc)-T)/(1-x);
//T1=T+T2;
T1=T+T2;
t=m/(b*rho)*10^3;
//Let maximum stress be sigmax
b=200;
d=300;
sigmax=(T1/(b*t)+((E*t)/d));
sigmin=(T2/(b*t));
// printing data in scilab o/p window
printf("T1 is %0.1f N ",T1);
printf("\n T2 is %0.1f N ",T2);
printf("\n t is %0.2f mm ",t)
printf("\n theta is %0.2f rad ",theta)
printf("\n sigmax is %0.2f N/mm^2 ",sigmax);
printf("\n sigmin is %0.3f N/mm^2 ",sigmin);
//The answer for T1 is miscalculated in the book.
|
ff076521e2438a82d1bd3f42276038795f8cffcf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1760/CH2/EX2.88/EX2_88.sce
|
a59a7c73759fe0582aeb9baf8bb93db4600ce195
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 272
|
sce
|
EX2_88.sce
|
//EXAMPLE 2-88 PG NO-130
L=10^-3; //INDUCTANCE
C=20*10^-6; //CAPACITOR
Rc=4; //CAPACITOR RESISTANCE
RL=6; //LOAD RESISTANCE
Wo=(1/(L*C)^0.5)*(((RL*RL)-(L/C))/((Rc*Rc)-(L/C)))^0.5;
disp(' Wo is = '+string(Wo)+' rad/sec');
|
0e66cec4c5416765f567a1520d1dd399e9829fe9
|
bb30bb4c59326f7819c15fe66feca6ad5151c89b
|
/TP4/main.sci
|
9fd30655a574a525b12c45157a597e29ff26de84
|
[
"MIT"
] |
permissive
|
AmineKheldouni/Modeling-the-Hazard
|
1f0f15e8faa3a8b6a2f39cfe1f102410b51c0ee7
|
68d9f6da23450db5488c1af473471b376945395e
|
refs/heads/master
| 2020-04-14T22:29:35.105793
| 2019-01-04T23:32:38
| 2019-01-04T23:32:38
| 164,164,692
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,316
|
sci
|
main.sci
|
funcprot(0);
K = 1;
lambda = 1;
mu = 3;
rho = lambda/mu;
// rho < 1 => Traffic non bouché, rho > 1 : Saturation de la file d'attente.
function [res, t]=evol_markov(i)
res = 0;
if (i==0) then
t = grand(1,1,'exp',1/(lambda));
else
t = grand(1,1,'exp',1/(lambda+mu));
end
if (rand() <= lambda/(lambda+mu) | i==0) then
res = i + 1
else
res = i - 1
end
endfunction
function [X,T]=simul_markov(N, xini)
T = [0];
X = [xini];
xetat = xini;
for i=1:N do
[res,t] = evol_markov(xetat);
xetat = res;
T = [T, t];
X = [X, xetat];
end
//plot2d2(cumsum(T),X);
endfunction
function [X,T]=simul_markov_ergo(xini, Tf)
T = [0];
t=0;
X = [xini];
xetat = xini;
while t<Tf
[res,t_int] = evol_markov(xetat);
xetat = res;
T = [T, t_int];
X = [X, xetat];
t=t+t_int
end
//plot2d2(cumsum(T),X);
endfunction
//Num() = 70;
//[X,T]=simul_markov(N,0);
// Vérification de l'espérance de X_t et sa variance :
// Espérance :
function [m]=int_ergodique(Tf)
[X,T]=simul_markov_ergo(0,Tf);
m=T(1:$-1)*X(1:$-1)';
m=m/Tf;
endfunction
Tf = 10000;
E = int_ergodique(Tf);
E - (rho/(1-rho))
Varxt = variance(X);
Varxt - (rho/(1-rho).^2)
// Question 3
|
d7120ae4c8a4233ca93f1a81662e8f0375c44054
|
717ddeb7e700373742c617a95e25a2376565112c
|
/275/CH3/EX3.3.72/Ch3_3_72.sce
|
9b7b82e9844950482d6cf4c09836fdaedfbebdc3
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 634
|
sce
|
Ch3_3_72.sce
|
clc
disp("Example 3.72")
printf("\n")
disp("Draw a DC load line for Voltage divider circuit")
printf("Given\n")
//given
Vcc=15
Rc=2.7*10^3
Re=2.2*10^3
R1=22*10^3
R2=12*10^3
Vbe=0.7
//base voltage
Vb=(Vcc*R2)/(R1+R2)
//emitter voltage
Ve=Vb-Vbe
//emitter current
Ie=Ve/Re
//collector current
Icq=Ie
//collector to emitter voltage
Vceq=Vcc-(Icq*(Rc+Re))
//collector voltage
Vc=Vce+Ve
//to draw DC load line
Ic1=Vcc/(Rc+Re)
Vce=[Vcc Vceq 0]
Ic=[0 Icq Ic1]
printf("Q(%f volt,%f ampere)\n",Vceq,Icq)
plot2d(Vce, Ic)
xlabel("Vce in volt")
ylabel("Ic in ampere")
xtitle("DC load line for base bias circuit")
|
7f0b6c18cf339fc45b32cce5f801f7e3df9589c6
|
f3f881644657ef90a25b7fde9be7d1a8f04d29bf
|
/04/04/Part B/Fib.tst
|
8f675e027562a072d627c291036a368b7e3ca38f
|
[] |
no_license
|
ThompsonNJ/CSC242-Computer-Organization
|
9da71fa5d024935637b2dbd1c732c1952e3eadd7
|
46eec94a0381db128af0d2340a588907568583ed
|
refs/heads/master
| 2020-08-10T08:04:24.779446
| 2019-10-10T23:36:54
| 2019-10-10T23:36:54
| 214,301,258
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,556
|
tst
|
Fib.tst
|
load Fib.asm,
output-file Fib.out,
compare-to Fib.cmp,
output-list RAM[0]%D2.6.2 RAM[1]%D2.6.2;
set RAM[0] 1;
repeat 30 {
ticktock;
}
set RAM[0] 1, // Restore arguments in case program used them as loop counter
output;
set PC 0,
set RAM[0] 2;
repeat 60 {
ticktock;
}
set RAM[0] 2, // Restore arguments in case program used them as loop counter
output;
set PC 0,
set RAM[0] 3;
repeat 90 {
ticktock;
}
set RAM[0] 3, // Restore arguments in case program used them as loop counter
output;
set PC 0,
set RAM[0] 4;
repeat 120 {
ticktock;
}
set RAM[0] 4, // Restore arguments in case program used them as loop counter
output;
set PC 0,
set RAM[0] 5;
repeat 150 {
ticktock;
}
set RAM[0] 5, // Restore arguments in case program used them as loop counter
output;
set PC 0,
set RAM[0] 6;
repeat 180 {
ticktock;
}
set RAM[0] 6, // Restore arguments in case program used them as loop counter
output;
set PC 0,
set RAM[0] 7;
repeat 210 {
ticktock;
}
set RAM[0] 7, // Restore arguments in case program used them as loop counter
output;
set PC 0,
set RAM[0] 8;
repeat 240 {
ticktock;
}
set RAM[0] 8, // Restore arguments in case program used them as loop counter
output;
set PC 0,
set RAM[0] 9;
repeat 270 {
ticktock;
}
set RAM[0] 9, // Restore arguments in case program used them as loop counter
output;
set PC 0,
set RAM[0] 10;
repeat 300 {
ticktock;
}
set RAM[0] 10, // Restore arguments in case program used them as loop counter
output;
|
fee92f05ac539a9ac7a9c7e8a4b7fd6c5c892237
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1733/CH1/EX1.22/1_22.sce
|
47d1ef452ba94d16b87bc3ee516916a77c43ff52
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 324
|
sce
|
1_22.sce
|
//1.22
clc;
Ip=16;
V=90;
// C/L=(Ip/V)^2; (i)
// Assume that circuit is reverse biased for one-fourth period of resonant circuit. thus
//%pi/2*(L*C)^0.5=40*10^-6; (ii)
// on solving (i) and (ii)
C=4.527*10^-6;
L=C/(Ip/V)^2*10^6;
C=4.527*10^-6*10^6;
printf("C=%.3f uF",C)
printf("\nL=%.2f uH",L)
|
27a42bdb4a25dfe46065076cad1a812d4722e7ac
|
268a9da1d2dd8fa0f68e8f013ea104c40b995fb4
|
/scilab/crash_non_linear_env.sce
|
a63f91991f3374a0b7d2f1b2571797aafb17f64d
|
[] |
no_license
|
DipikaPawar12/Octapad
|
3887659b5084ae13e922784ab707537928956b38
|
ca485e553c9703b8d8c273eb4764df8481e5448a
|
refs/heads/master
| 2022-12-08T00:03:45.336396
| 2020-08-15T12:55:49
| 2020-08-15T12:55:49
| 287,887,411
| 1
| 0
| null | 2020-08-16T06:28:24
| 2020-08-16T06:28:23
| null |
UTF-8
|
Scilab
| false
| false
| 906
|
sce
|
crash_non_linear_env.sce
|
clear;
clf;
function y= pulse(t)
N = length(t);
a = 1;
cnt = 0;
y = zeros(1:N);
for i = 1 : N
if cnt < 0.001
y(i) = a;
cnt = cnt + 0.00001;
else
a = -a;
cnt = 0;
end
end
endfunction
dt = 0.0001;
t=0.0660+dt:dt:2;
//0.98 to 0;
a=0.02200693;
b=1.270352;
c=4.227273;
y=a+b*exp(-c*t);
t1=0:dt:0.0660;
c1=-421.609;
a1=285.93;
m1=-3.55301;
b1=-0.0253805;
y1=c1*t1^3+a1*t1^2+m1*t1+b1;
t2=[t1 t];
zyy=[y1 y];
t5 = 0 : dt : 2;
t6=0:dt:0.046;
rt=zeros(1:length(t6));
f = 444;
x = 0.25*cos(2*%pi*f*t5);
w = rand(x,"normal");
r = x + w;
rtf=[rt r];
t3 = 0 : dt : 2;
yy = pulse(t3)+x+r;
z = zyy.*yy;
dsz = z(1:4:length(z));
zf = dsz(1:1/4:length(dsz));
//plot(t3,z);
//sound(z);
plot(t3,zf);
sound(zf);
xlabel("tX(10^-4)seconds","fontsize",4);
ylabel("amplitude","fontsize",4);
title("Crash Sound","fontsize",4);
|
595f7bc549455a01c9ac5426d5097287ca1d7649
|
364fc2bac23ae5482a18e5e9392ff63e68642dae
|
/TP4/exo1.sce
|
3cd2bc05c0ceb35927d702726a68792c91e202fe
|
[] |
no_license
|
Raphael-De-Wang/2M310TP
|
259e55e9dc931b0a0102ed7a5dbbb31e82b88295
|
af21ffee07fadeb5b27c5f30d0deb1926972ccee
|
refs/heads/master
| 2021-01-11T14:14:21.447623
| 2017-03-29T20:27:35
| 2017-03-29T20:27:35
| 81,227,258
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 986
|
sce
|
exo1.sce
|
clear;
exec libTP4.sce
// Q1 : libTP4.sce - EulerExplicite(a,b,x0,T,p)
// Q2 : libTP4.sce - plotSchemaEuler(a,b,x0,T,p,fun)
function rst = a(t)
// rst = sin(t);
rst = 1;
endfunction
function rst = b(t)
rst = t * 0;
endfunction
T = 40;
p = 700;
x0= 1;
// XApprox = EulerExplicite(a,b,x0,T,p);
// plotSchemaEuler(a,b,x0,T,p,EulerExplicite);
// Q3 :
function X = solExacte(a,b,x0,T,p)
hp = T/p;
t = linspace(0,T,p+1);
X = x0*exp(a(t)*t)
endfunction
// Q4
// plotSchemaEuler(a,b,x0,T,p,solExacte);
// Q5 : libTP4.sce - graphSchemaEulerComp(a,b,x0,T,p,f1,f2)
// Q6 : libTP4.sce - EulerImplicite(a,b,x0,T,p)
// XApprox = EulerImplicite(a,b,x0,T,p)
// plotSchemaEuler(a,b,x0,T,p,EulerImplicite)
// graphSchemaEulerComp(a,b,x0,T,p,EulerExplicite,EulerImplicite)
// Q7
// graphSchemaEulerComp(a,b,x0,T,p,solExacte,EulerImplicite)
// graphSchemaEulerComp(a,b,x0,T,p,solExacte,EulerExplicite)
graphCmp(a,b,x0,T,p,solExacte,EulerExplicite,EulerImplicite)
|
8da71ff11454698fd00937110226549f14b59f2f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1529/CH9/EX9.15/9_15.sce
|
a560b266998be2b5ddc993f26feee8c0029b2ddd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 264
|
sce
|
9_15.sce
|
//Chapter 9, Problem 15
clc;
L=0.60; //inductance
I=1.5; //current in coil
phi=90*10^-6; //flux
N=(L*I)/phi; //calculating no of turns
printf("No of turns = %d turns",N);
|
b6975aa205bdaa9d6a79dafa50340b57c4e23947
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3281/CH10/EX10.7/ex10_7.sce
|
6476f7b2484dc11d5ffc39203cdc0ba2ac77feca
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 476
|
sce
|
ex10_7.sce
|
//Page Number: 558
//Example 10.7
clc;
//Given
Er=6;
h=4D-3; //m
//(i) W for Z0=50W
Z0=50; //W
W=(120*%pi*h)/(sqrt(Er)*Z0);
disp('mm',W*1000,'Required Width:');
//(ii)Stripline capacitance
E0=8.854D-12;
C=(E0*Er*W)/h;
disp('pF/m',C*10^12,'Stripline capacitance:');
//(iii)Stripline inductance
Mu0=4*%pi*10D-7;
L=(Mu0*h)/W;
disp('muH/m',L*10^5,'Stripline inductance:');
//(iv)Phase velocity
c=3D+8;
vp=c/sqrt(Er);
disp('m/s',vp,'Phase velocity');
|
d09ff5ad011d8620c8b1f45092b76595223b95f8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3850/CH33/EX33.1/Ex33_1.sce
|
527ebc7fce140b6952b33c24045bedcbbc349118
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 880
|
sce
|
Ex33_1.sce
|
//To Calculate the Heat Developed in each of the three resistor
//Example 33.1
clear;
clc;
R1=6;//Resistance of the first resistor
R2=3;//Resistance of the second resistor
Req=R1*R2/(R1+R2);//Equivalent resistance of R1 and R2
R3=1;//Resistance of the third resistor
R=Req+R3;//Equivalent resistance of the circuit
V=9;//Voltage across the battery
i=V/R;//Current through the Circuit
t=60;//Time in seconds
H3=i^2*R3*t;//Heat developed in third resistor
i1=i*R/(R1+R2);//Current through the 6 ohm resistor
H1=i1^2*R1*t;//Heat developed in first resistor
i2=i-i1;//current through the 3 ohm resistor
H2=i2^2*R2*t;//heat developed in Second Resistor
printf("Heat developed in the first resistor=%d J",H1);
printf("\nHeat developed in the second resistor=%d J",H2);
printf("\nHeat developed in the third resistor=%d J",H3);
|
3d555caa9391e3b97f041129b8a506c49621bb3d
|
df924acfdd5b043da9336a2276726dbfb655735a
|
/test_suite/gnrcerr.tst
|
2cb681f27ebe8eab5eddebaa719b58d81bb6cf76
|
[] |
no_license
|
noxdafox/clips
|
b8fb280223b5aae615e427bf1f31c03cb932b09d
|
a2c548b69394f0e2cf7c6d583810b6a29a662ae1
|
refs/heads/master
| 2023-09-01T18:52:07.614807
| 2021-12-14T20:10:21
| 2021-12-14T20:10:21
| 95,596,886
| 11
| 10
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 317
|
tst
|
gnrcerr.tst
|
(unwatch all)
(clear)
(dribble-on "Actual//gnrcerr.out")
(batch "gnrcerr.bat")
(dribble-off)
(clear)
(open "Results//gnrcerr.rsl" gnrcerr "w")
(load "compline.clp")
(printout gnrcerr "gnrcerr.bat differences are as follows:" crlf)
(compare-files "Expected//gnrcerr.out" "Actual//gnrcerr.out" gnrcerr)
(close gnrcerr)
|
dfa9af8d39aa89834a74a420cf95dc75847a50e8
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfi_o_vrt_col_d/~BivLCM-SR-bfi_o_vrt_col_d-PLin-VLin.tst
|
92080c41879183bf33dab98ddf335c6a4cfe59a9
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205
| 2019-03-04T17:03:26
| 2019-03-04T17:03:26
| 143,070,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 11,909
|
tst
|
~BivLCM-SR-bfi_o_vrt_col_d-PLin-VLin.tst
|
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.246693D+00
2 0.220699D-03 0.213155D-02
3 -0.140317D-01 -0.128065D-02 0.394080D+00
4 -0.157141D-02 -0.881513D-04 -0.246718D-02 0.339422D-02
5 0.114831D-02 -0.558142D-04 -0.535145D-03 -0.888387D-04 0.412977D-02
6 0.429685D-03 0.617910D-04 -0.835837D-04 0.585327D-04 -0.997629D-04
7 0.408973D-03 0.261057D-03 0.650622D-03 0.162810D-03 -0.368980D-03
8 0.444086D-03 0.816811D-04 -0.148360D-02 0.132163D-03 0.793641D-05
9 -0.448048D+00 0.925970D-02 -0.470029D-02 0.359559D-02 -0.169891D-02
10 -0.222379D+00 0.117238D-02 0.138560D+00 -0.107511D-01 0.161938D+00
11 -0.897244D-01 0.237431D-01 -0.208296D+00 0.327310D-01 0.484448D-01
12 -0.322746D+00 0.467640D-02 -0.120179D+01 0.588445D-01 -0.154940D-01
13 0.150080D-01 0.409525D-02 0.965114D-01 0.432809D-03 -0.719784D-02
14 0.168389D+00 -0.115750D-01 -0.486366D+00 0.197569D-01 -0.160879D-01
15 -0.812025D+00 -0.479826D-01 -0.463137D+00 -0.598008D-02 -0.125355D+00
16 0.236498D-02 -0.939190D-02 0.628991D-02 -0.135835D-02 0.206232D-03
17 -0.550817D-02 0.117779D-03 0.126384D-03 0.345559D-03 -0.264893D-03
18 -0.602228D+00 -0.508894D-01 0.636647D+00 -0.506200D-01 0.461201D-01
19 -0.119168D+00 -0.132177D-02 0.106879D+00 -0.278182D-02 0.603351D-02
20 0.305619D+00 -0.863867D-02 -0.315413D+01 -0.280061D-01 0.365967D-01
21 0.137799D+00 -0.110351D-02 -0.871500D-01 0.431468D-02 -0.122613D-02
22 0.150098D-02 0.418618D-03 -0.899919D-03 0.450495D-03 -0.448916D-03
23 0.163608D-01 0.183222D-02 -0.388825D-01 -0.130564D-01 0.563781D-03
24 0.898203D-03 0.310141D-03 0.381961D-02 -0.935412D-03 -0.760948D-04
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.598475D-03
7 0.818947D-03 0.469592D-02
8 0.164825D-04 -0.175206D-03 0.168960D-02
9 0.304821D-02 -0.248712D-01 0.657112D-03 0.238518D+02
10 -0.101768D-02 -0.465867D-02 0.364354D-02 -0.152368D+01 0.143389D+02
11 0.537961D-02 0.439768D-02 0.161287D-01 0.422502D+01 0.213184D+01
12 -0.723815D-02 0.808412D-01 0.133435D-01 -0.261413D+00 0.302812D+01
13 0.507543D-01 0.144407D+00 -0.466932D-02 -0.696624D+00 0.776917D-01
14 0.892617D-02 -0.118443D-01 0.142091D+00 0.979293D-01 -0.912505D-01
15 -0.740437D-02 0.407653D-01 -0.252980D-02 0.384777D+01 -0.521681D+01
16 -0.782372D-03 -0.953924D-03 -0.228985D-03 0.452903D+00 -0.546477D-01
17 -0.340215D-04 -0.249137D-03 -0.148018D-03 -0.988540D-01 -0.186051D-01
18 -0.513705D-01 -0.119308D+00 -0.613292D-01 -0.129512D+01 0.326234D+01
19 -0.132151D-01 -0.384749D-02 0.354609D-03 0.283816D-01 0.138706D+00
20 0.374979D-02 0.106497D+00 -0.946661D-01 -0.408062D+01 0.147239D+01
21 0.116580D-01 -0.708445D-04 -0.279660D-02 0.626242D-01 0.209348D+00
22 0.953992D-04 0.583636D-04 0.442903D-03 0.125327D-01 -0.299296D-01
23 0.475849D-03 0.136755D-02 -0.750714D-03 0.849568D-03 0.684980D-01
24 -0.100658D-03 -0.885461D-03 -0.110315D-03 0.300144D-01 -0.197546D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.256803D+02
12 0.339105D+01 0.125427D+03
13 -0.258527D+01 0.282314D+01 0.123956D+02
14 -0.215208D+00 -0.726681D+00 -0.329986D+00 0.560252D+02
15 -0.467132D+01 -0.192299D+01 0.100184D+01 -0.106451D+01 0.168001D+03
16 -0.112218D-01 0.202141D+00 0.146325D-02 -0.100090D+00 0.185798D+01
17 -0.124891D-01 0.409959D-01 -0.672499D-02 0.129602D-01 -0.819927D+00
18 -0.161577D+01 -0.456971D+00 -0.448984D+01 -0.101690D+02 0.220303D+02
19 -0.122695D+00 -0.139047D+01 -0.100839D+01 0.460922D+00 0.110591D+01
20 -0.842448D+00 -0.157212D+02 0.239890D+01 -0.156751D+02 0.175646D+02
21 0.180552D+00 0.118845D+01 0.843409D+00 -0.865670D+00 -0.686056D+00
22 -0.124223D-01 -0.141708D-01 -0.826176D-03 0.561405D-01 -0.926706D-01
23 -0.483630D-01 -0.335089D+00 0.605536D-01 0.180298D+00 0.668239D+00
24 0.194614D-01 -0.131307D+00 -0.283019D-01 -0.902088D-01 -0.716108D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.254373D+00
17 -0.151451D-01 0.899728D-02
18 0.387232D+00 -0.113892D+00 0.173152D+03
19 -0.101693D-01 -0.601445D-02 0.250224D+01 0.347782D+01
20 0.749815D+00 -0.953593D-01 -0.466292D-01 0.207593D+01 0.517372D+03
21 0.341796D-01 -0.385051D-02 0.226264D+01 -0.328428D+01 -0.202601D+01
22 -0.415960D-02 0.561575D-03 -0.796446D+00 -0.418304D-02 0.350174D-01
23 0.259151D-01 -0.623347D-02 -0.548309D+00 -0.308952D-01 0.453614D+01
24 -0.624906D-02 0.382145D-03 0.114495D+00 -0.581224D-02 -0.256940D+01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.406013D+01
22 -0.355801D-01 0.735866D-02
23 -0.320955D-01 -0.274432D-02 0.608515D+00
24 -0.479173D-02 -0.192038D-02 -0.293406D-01 0.260560D-01
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 0.010 1.000
3 -0.045 -0.044 1.000
4 -0.054 -0.033 -0.067 1.000
5 0.036 -0.019 -0.013 -0.024 1.000
6 0.035 0.055 -0.005 0.041 -0.063
7 0.012 0.083 0.015 0.041 -0.084
8 0.022 0.043 -0.057 0.055 0.003
9 -0.185 0.041 -0.002 0.013 -0.005
10 -0.118 0.007 0.058 -0.049 0.665
11 -0.036 0.101 -0.065 0.111 0.149
12 -0.058 0.009 -0.171 0.090 -0.022
13 0.009 0.025 0.044 0.002 -0.032
14 0.045 -0.033 -0.104 0.045 -0.033
15 -0.126 -0.080 -0.057 -0.008 -0.150
16 0.009 -0.403 0.020 -0.046 0.006
17 -0.117 0.027 0.002 0.063 -0.043
18 -0.092 -0.084 0.077 -0.066 0.055
19 -0.129 -0.015 0.091 -0.026 0.050
20 0.027 -0.008 -0.221 -0.021 0.025
21 0.138 -0.012 -0.069 0.037 -0.009
22 0.035 0.106 -0.017 0.090 -0.081
23 0.042 0.051 -0.079 -0.287 0.011
24 0.011 0.042 0.038 -0.099 -0.007
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.489 1.000
8 0.016 -0.062 1.000
9 0.026 -0.074 0.003 1.000
10 -0.011 -0.018 0.023 -0.082 1.000
11 0.043 0.013 0.077 0.171 0.111
12 -0.026 0.105 0.029 -0.005 0.071
13 0.589 0.599 -0.032 -0.041 0.006
14 0.049 -0.023 0.462 0.003 -0.003
15 -0.023 0.046 -0.005 0.061 -0.106
16 -0.063 -0.028 -0.011 0.184 -0.029
17 -0.015 -0.038 -0.038 -0.213 -0.052
18 -0.160 -0.132 -0.113 -0.020 0.065
19 -0.290 -0.030 0.005 0.003 0.020
20 0.007 0.068 -0.101 -0.037 0.017
21 0.236 -0.001 -0.034 0.006 0.027
22 0.045 0.010 0.126 0.030 -0.092
23 0.025 0.026 -0.023 0.000 0.023
24 -0.025 -0.080 -0.017 0.038 -0.032
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 0.060 1.000
13 -0.145 0.072 1.000
14 -0.006 -0.009 -0.013 1.000
15 -0.071 -0.013 0.022 -0.011 1.000
16 -0.004 0.036 0.001 -0.027 0.284
17 -0.026 0.039 -0.020 0.018 -0.667
18 -0.024 -0.003 -0.097 -0.103 0.129
19 -0.013 -0.067 -0.154 0.033 0.046
20 -0.007 -0.062 0.030 -0.092 0.060
21 0.018 0.053 0.119 -0.057 -0.026
22 -0.029 -0.015 -0.003 0.087 -0.083
23 -0.012 -0.038 0.022 0.031 0.066
24 0.024 -0.073 -0.050 -0.075 -0.034
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.317 1.000
18 0.058 -0.091 1.000
19 -0.011 -0.034 0.102 1.000
20 0.065 -0.044 0.000 0.049 1.000
21 0.034 -0.020 0.085 -0.874 -0.044
22 -0.096 0.069 -0.706 -0.026 0.018
23 0.066 -0.084 -0.053 -0.021 0.256
24 -0.077 0.025 0.054 -0.019 -0.700
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.206 1.000
23 -0.020 -0.041 1.000
24 -0.015 -0.139 -0.233 1.000
|
166edd95bc8426e0a63cba3aeedfd54c714abb43
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1445/CH8/EX8.22/Ex8_22.sce
|
5adaef4462853a0e96048faebc66333b2ed87e5c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,109
|
sce
|
Ex8_22.sce
|
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 22
clc;
disp("CHAPTER 8");
disp("EXAMPLE 22");
//VARIABLE INITIALIZATION
N1=600; //in rpm
v=230; //in Volts
I_l1=50; //line current in Amperes
r_a=0.4; //armature resistance in Ohms
r_f=104.5; //field resistance in Ohms
drop=2; //brush drop in Volts
//SOLUTION
//solution (i)
I_l2=5;
I_a1=I_l1-(v/r_f);
E_b1=v-(I_a1*r_a)-drop;
I_a2=I_l2-(v/r_f);
E_b2=v-(I_a2*r_a)-drop;
N2=(E_b2/E_b1)*N1;
N2=round(N2);
disp(sprintf("(i) The speed at no load is %d rpm",N2));
//solution (ii)
I_l2=50;
N2=500;
E_b2=(N2/N1)*E_b1;
dif=v-drop; //difference
I_a2=I_l2-(v/r_f);
r_se=((dif-E_b2)/I_a2)-r_a;
disp(sprintf("(ii) The additional resistance is %f Ω",r_se));
//solution (iii)
phi1=1; //it is an assumption
I_a3=30;
N2=750;
E_b3=v-(I_a3*r_a)-drop;
phi2=(E_b3/E_b1)*(N1/N2)*phi1;
red=((1-phi2)*100*phi1)/phi1;
disp(sprintf("(iii) The percentage reduction of flux per pole is %f %%",red));
//END
|
3ab259aae5143d67d8b2e0299bbfb34f99b543e9
|
ea3927de4aa75aae204a9e58b320db80528f79b0
|
/00/DMux4Way.tst
|
60bad925f774af4d71579a9e7c2b0b573353bd87
|
[] |
no_license
|
sciolizer/nand2tetris
|
d829bb3eb62dd1002a5ace9c8afdadefb296de61
|
4003002eb6ff8ea24b60898e234a98debca6454d
|
refs/heads/master
| 2016-08-04T21:55:34.782264
| 2014-10-31T15:04:19
| 2014-10-31T15:04:19
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 625
|
tst
|
DMux4Way.tst
|
// This file is part of the materials accompanying the book
// "The Elements of Computing Systems" by Nisan and Schocken,
// MIT Press. Book site: www.nand2tetris.org
// File name: projects/00/Mux8Way16.tst
load DMux4Way.hdl,
output-file DMux4Way.out,
compare-to DMux4Way.cmp,
output-list in%B3.1.3 sel%D3.1.3 a%B3.1.3 b%B3.1.3 c%B3.1.3 d%B3.1.3;
set in 0,
set sel 0,
eval,
output;
set sel 1,
eval,
output;
set sel 2,
eval,
output;
set sel 3,
eval,
output;
set in 1,
set sel 0,
eval,
output;
set sel 1,
eval,
output;
set sel 2,
eval,
output;
set sel 3,
eval,
output;
|
ac0485fc9da124cba3bea0cee5dada46cae9a8a7
|
1988df91caa448a35bbf274a6d2698fe434571b1
|
/tst/meta/mattach.tst
|
978423717a1abc608336f9a755fe8a30fd697889
|
[] |
no_license
|
namin/GETFOL
|
bd60e9a2d9f0905c50ff5c0cff4b6bf57a2049e2
|
bf42caf61799578eb82e9f17b3342bc2ee638a22
|
refs/heads/master
| 2021-10-25T08:08:20.142137
| 2021-10-22T16:16:40
| 2021-10-22T16:16:40
| 204,234,318
| 4
| 1
| null | 2019-08-25T02:05:54
| 2019-08-25T02:05:54
| null |
UTF-8
|
Scilab
| false
| false
| 1,362
|
tst
|
mattach.tst
|
COMMENT | ************************************************************* |
COMMENT | * AUTHOR: Alessandro Cimatti Date: july 1990 |
COMMENT | * |
COMMENT | * SUBJECT: Use of MATTACH |
COMMENT | * |
COMMENT | * NOTES: |
COMMENT | * The syntax has been uniformed to the ATTACH's one. |
COMMENT | * |
COMMENT | * TECHNICAL NOTES: |
COMMENT | * Now it is possible to specify the representation for the |
COMMENT | * attachment being constructed. |
COMMENT | * |
COMMENT | * GETFOL VERSION: july 1990, vers. 3 |
COMMENT | * |
COMMENT | ************************************************************* |
namecontext META;
nameproof P1;
declare indconst sc [SENTCONST];
declare indconst ic [INDCONST];
declare indconst vl [FACT];
declare indconst f1 [FACT];
DECREP SENTCONST INDCONST FACT;
represent { SENTCONST } as SENTCONST;
represent { INDCONST } as INDCONST;
represent { FACT } as FACT;
makecontext C;
switchcontext C;
declare indconst c;
declare sentconst A;
nameproof P1;
assume c=c;
makeproof P2;
switchproof P2;
assume A imp A;
label fact ax = 1;
switchcontext META;
MATTACH sc TO C::SENTCONST:A;
MATTACH ic DAR C:P2:INDCONST:c;
MATTACH vl DAR [SENTCONST] C:P1:FACT:1;
MATTACH f1 TO C:P2:FACT:1;
MATTACH f1 DAR C:P2:FACT:ax;
|
e89cc9909fbd4c4457709bdd7bbfa3e9e6b002c8
|
43ee35e120afa343a967b8a7034a973f0a481a4d
|
/60002190045_SS_EXP_1.sce
|
51d8ae0c19604b483edab2cfc17216335a9b3873
|
[] |
no_license
|
hrushilp/60002190045_SSPRACS
|
8c43d955139c09e5e3d0a3d0d041fb053c94cb88
|
07887fd3a92d3d599b993fb5585b63d569836d67
|
refs/heads/main
| 2023-01-20T06:23:31.575304
| 2020-11-25T18:52:42
| 2020-11-25T18:52:42
| 316,027,450
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 527
|
sce
|
60002190045_SS_EXP_1.sce
|
clc;
clear all;
close;
//PRACTICAL1-Q.1
figure;
t2=0:0.1:10
x2=exp(t2);
plot(t2,x2);
xlabel("TIME");
ylabel("EXPONENTIAL");
figure;
t3=-10:0.01:6;
r=t3.*(t3>=0);
plot(t3,r);
xlabel("TIME");
ylabel("RAMP");
figure;
t4=0:4;
x4=ones(1,5);
plot(t4,x4);
xlabel("TIME");
ylabel("FUNCTION")
figure;
t5=0:0.1:10;
x5=sin(t5);
plot(t5,x5);
xlabel("TIME");
ylabel("FUNCTION")
figure;
N=10;
t1=-10:10;
x1=[zeros(1,N),ones(1,1),zeros(1,N)];
plot(t1,x1);
xlabel("TIME");
ylabel("DeLTA FUNCTION")
|
6f90bea6c3d0ce475c286ea2ee8924cde996d00e
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.3.1/macros/metanet/chain_struct.sci
|
4c17038936037aa207e3167c332eb6db309b411a
|
[
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain",
"MIT"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,134
|
sci
|
chain_struct.sci
|
function [fe,che,fn,chn]=chain_struct(lp,la,ls)
[lhs,rhs]=argn(0)
if rhs<>3 then error(39), end
// lp
s=size(lp)
if s(1)<>1 then
error('First argument must be a row vector')
end
// la
s=size(la)
if s(1)<>1 then
error('Second argument must be a row vector')
end
// ls
s=size(ls)
if s(1)<>1 then
error('Third argument must be a row vector')
end
// from lp,ls,la to chained structure of edges and nodes
n=size(lp,2);lpm=lp(1:(n-1));
m=size(la,2);la1=[la 0];ls1=[ls 0];
mp1=m+1;lp1=lp;lpM=mp1*ones(lpm);
ii=find((lp(2:n)-lp(1:(n-1)))==0);
fe=la1(lpm);la2=la1;fe(ii)=zeros(ii);fe1=fe;fe1(ii)=mp1*ones(ii);
fn=ls1(lpm);ls2=ls1;fn(ii)=zeros(ii);fn1=fn;fn1(ii)=mp1*ones(ii);
la2(lp1)=zeros(lp1);ls2(lp1)=zeros(lp1);
che=zeros(1,mp1);chn=zeros(1,mp1);
lp2=min(lpm+1,lpM);
u=la2(lp2);un=ls2(lp2);
la2(lp2)=zeros(lp2);ls2(lp2)=zeros(lp2);
che(fe1)=u;chn(fe1)=un;
//loop
uumem=u;
i=2;
while i<>m
lpm2=min(lpm+i,lpM);
uu=la2(lpm2);uun=ls2(lpm2);
la2(lpm2)=zeros(lpm2);ls2(lpm2)=zeros(lpm2);
ii=find(uu<>0);if ii==[] then i=m;else
che(uumem(ii))=uu(ii);chn(uumem(ii))=uun(ii);
uumem=uu;i=i+1;end;
end
che=che(1:m);chn=chn(1:m);
|
c025983c6649d3169440648de520b41d5db0f493
|
4483ff664b4d01c53114a7fc535625c197c8f989
|
/green routing/11221331type.sce
|
ac422b7238114faeae4cfc463b3f7739c21460f7
|
[] |
no_license
|
winash1618/myproject
|
be9b77d4a405edce7e625a999803016b50ab99d0
|
2132e76e6a996bee19f356a2b68af827fa6c621b
|
refs/heads/master
| 2022-12-06T06:09:06.487979
| 2020-08-20T02:00:54
| 2020-08-20T02:00:54
| 288,880,158
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,802
|
sce
|
11221331type.sce
|
//here we try to use new solution method use depot instead of customers like 1112231324441151555234333 here 12345 are depots
clc
clear
x=5
z=25
pop=10
iter=10000
a=zeros(pop,z)
cap=[288 95 115 133 107 22 34 28 186 190 33 56 100 90 82 143 68 166 44 73 72 60 68 8 20
]
tim=[0 12 6.2 5.6 27 17 20 29 44 18 16 23 24 34 11 9 11 11 13 17 14 30 25 28 27;
12 0 5.2 9.9 39 29 32 40 52 29 27 34 36 46 23 20 23 15 18 24 21 37 32 36 34;
6.2 5.2 0 5.7 35 25 28 36 48 19 22 30 32 41 18 16 19 11 14 21 18 34 28 32 31;
5.6 9.9 5.7 0 29 19 22 30 42 19 17 26 26 36 13 10 13 5.5 8.8 15 12 28 23 26 25;
27 39 35 29 0 6.5 4.5 7.5 41 15 12 10 9.7 6.8 17 18 18 27 29 22 29 34 31 32 21;
17 29 25 19 6.5 0 2.9 13 35 9.6 3.7 7.6 6.9 12 7 8.3 8.5 17 79 18 19 25 21 23 14;
20 32 28 22 4.5 2.9 0 11 34 13 6.6 6.2 5.5 10 10 11 11 20 21 18 22 23 20 22 12;
29 40 36 30 7.5 13 11 0 44 23 19 16 16 10 21 22 23 31 32 28 33 38 35 36 22;
44 52 48 42 41 35 34 44 0 54 6.6 6.2 5.5 10 10 11 11 20 21 18 21 23 20 22 12;
18 29 19 19 15 9.6 13 23 54 0 5.6 17 17 22 9.6 9.5 13 22 23 22 24 40 34 38 23;
16 27 22 17 12 3.7 6.6 19 6.6 5.6 0 11 11 19 5.6 6.8 7 16 17 16 18 34 28 32 18;
23 34 30 26 10 7.6 6.2 16 6.2 17 11 0 0.7 5.8 15 16 12 23 22 12 15 18 15 16 6.8;
24 36 32 26 9.7 6.9 5.5 16 5.5 17 11 0.7 0 5.1 14 15 12 23 22 13 15 18 14 16 6.9;
34 46 41 36 6.8 12 10 10 10 22 19 5.8 5.1 0 24 25 17 28 27 18 20 23 21 21 9.8;
11 23 18 13 17 7 10 21 10 9.6 5.6 15 14 24 0 5.2 2.1 11 12 12 13 29 24 27 18;
9 20 16 10 18 8.3 11 22 11 9.5 6.8 16 15 25 5.2 0 5.7 13 14 18 15 31 25 29 21;
11 23 19 13 18 8.5 11 23 11 13 7 12 12 17 2.1 5.7 0 11 13 9.4 11 23 18 21 15;
11 15 11 5.5 27 17 20 31 20 22 16 23 23 28 11 13 11 0 7.4 11 8 24 19 22 21;
13 18 14 8.8 29 79 21 32 21 23 17 22 22 27 12 14 13 7.4 0 9.8 6.8 23 18 21 20;
17 24 21 15 22 18 18 28 18 22 16 12 13 18 12 18 9.4 11 9.8 0 3.4 15 9.7 13 11;
14 21 18 12 29 19 22 33 21 24 18 15 15 20 13 15 11 8 6.8 3.4 0 17 11 15 14;
30 37 34 28 34 25 23 38 23 40 34 18 18 23 29 31 23 24 23 15 17 0 8 2.3 14;
25 32 28 23 31 21 20 35 20 34 28 15 14 21 24 25 18 19 18 9.7 11 8 0 6.1 11;
28 36 32 26 32 23 22 36 22 38 32 16 16 21 27 29 21 22 21 13 15 2.3 6.1 0 12;
27 34 31 25 21 14 12 22 12 23 18 6.8 6.9 9.8 18 21 15 21 20 11 14 14 11 12 0;
]
dib=[5 12 6.8 7.4 23 15 18 30 48 12 14 23 22 29 15 9.3 15 13 16 22 19 35 30 33 30;
13 20 14 16 15 8.1 11 23 50 5.1 5.5 16 15 22 5.6 5.3 11 18 19 23 20 36 31 34 22;
23 34 29 24 8.6 4.9 4.1 15 4.1 14 8.5 3.1 2.4 7.4 12 13 13 22 23 15 18 20 17 19 9.3;
16 27 23 14 23 13 14 24 14 17 11 7.4 8.1 13 6.3 9.8 4.2 14 13 5.5 6.9 19 14 18 11;
25 33 29 23 30 20 19 31 19 35 29 13 13 18 21 26 18 19 18 10 12 4.7 3.3 2.9 9.1;
]
for i=1:pop
for j=1:z
rand1=rand(1,1)
a(i,j)=round(x*rand1)
if a(i,j)==0
a(i,j)=1
end
end
end
disp(a)
|
de8ddfb1d3bbafe4f276d574fc9b2764294d82e0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/551/CH14/EX14.4/4.sce
|
ae0563c4dcb9261fa62b707c4e1f761c2fa02e50
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 204
|
sce
|
4.sce
|
clc
T1=293; //K
T2=265; //K
T0=273; //K
L=335; //Latent heat of ice in kJ/kg
cpw=4.18;
COP=T2/(T1-T2);
Rn=cpw*(T1-T0)+L;
m_ice=COP*3600/Rn;
disp("ice formed per kWh =")
disp(m_ice)
disp("kg")
|
5ddf9af940ff1a24876ebfbcafbd5866f87e8595
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/569/CH2/EX2.26/2_26.sci
|
3c98e9151a0db1256d2a2db2861f383e0e58c4b9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 236
|
sci
|
2_26.sci
|
//calculating the loading error
clc;
Zl=1000;
Zo=200*200/400;
Eo=100*200/400;
El=Eo/(1+Zo/Zl);
disp(El,'Reading of the multimeter (V)=')
PE=((El-Eo)/Eo)*100;
disp(PE,'Percentage loading error=')
Ac=100+PE;
disp(Ac,'Accuracy=')
|
068d1562a2ec857a21b0d52fe8d4683ccd7409a6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3755/CH2/EX2.1/Ex2_1.sce
|
4fc3b5080f8a1e52d67219e07f764fd8434db97c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 397
|
sce
|
Ex2_1.sce
|
clear
//
//
//
//Variable declaration
M=28; //atomic weight of Si
N=6.023*10^23; //avagadro number
a=5.3*10^-10; //lattice constant(m)
n=4;
//Calculations
V=a^3; //volume(m^3)
m=M/(N*10^3); //mass(kg)
rho=n*m/V; //volume density(kg/m^3)
//Result
printf("\n volume density is %e kg/m^3",rho)
printf("\n answer in the book is wrong")
|
9539d72da4667806c5217fd12f6cdd2308fe2c2f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1286/CH8/EX8.19/8_19.sce
|
278105659a13b96778f05ae2d1987348735e9111
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 198
|
sce
|
8_19.sce
|
clc
//initialisation of variables
c1=1000
T=373//k
L=539300//cal
r=604// cal/kg/deg
//CALCULATIONS
c2=c1-(r)-(L/T)
//results
printf(' \n specific heat of saturated steam= % 1f cal/kg',c2)
|
4f1de85f7b6588f8b3f626a90d9cc64b7a3a78af
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2969/CH4/EX4.17/Ex4_17.sce
|
50fbdbf463d03162278b9370e8c2dbdbea7c6906
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,246
|
sce
|
Ex4_17.sce
|
clc
clear
p1=10; //pressure in bar
//At 10 bar and 300 deg celsius, from steam tables of superheated steam
hsup=3051.2 //kJ/kg
Tsup=300+273; //temp. of steam in K
//At 10 bar and 300 deg celsius, from steam tables of dry saturated steam
Ts=179.9+273 //temp. of steam in K
vg=0.194; //m^3/kg
//By vg/Ts = vsup/Tsup
vsup=vg*Tsup/Ts;
u1=hsup-p1*10^5*vsup/10^3;
p2=1.4; //new pressure in bar
x2=0.8; //dryness fraction
//At 1.4 bar, from steam tables
hf2=458.4; //kJ/kg
hfg2=2231.9; //kJ/kg
vg2=1.236; //m^3/kg
h2=hf2+x2*hfg2; //enthalpy of wet steam (after expansion)
u2=h2-p2*10^5*x2*vg2/10^3; //internal energy of this steam
Du=u2-u1; //change in internal energy per kg
printf(' (i) The Internal energy of superheated steam at 10 bar is: %4.1f kJ/kg. \n',u1);
printf(' (ii) The Change in internal energy per kg is: %2.1f kJ. \n',Du);
printf(' (Negative sign indicates DECREASE in internal energy.)' );
|
c1f595a40a3f41e96d778ac1e0a4430540c4fb30
|
6e257f133dd8984b578f3c9fd3f269eabc0750be
|
/ScilabFromTheoryToPractice/Programming/testargn.sce
|
2b00bc0561cae4918997a8baf9d4beecebfe4b4a
|
[] |
no_license
|
markusmorawitz77/Scilab
|
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
|
7c98963a7d80915f66a3231a2235010e879049aa
|
refs/heads/master
| 2021-01-19T23:53:52.068010
| 2017-04-22T12:39:21
| 2017-04-22T12:39:21
| 89,051,705
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 281
|
sce
|
testargn.sce
|
function [varargout]=foo(varargin)
[lhs,rhs]=argn() // number of input/output arguments
printf('there are %d input arguments\n',rhs)
printf('there are %d output arguments\n',lhs)
for i=1:lhs
varargout(i)=i
end
endfunction
foo(1,2,3)
[a,b,c]=foo(1,2)
|
05f07c9d6eb5a5754c0f6da677d7c6510f113a76
|
a2845a06ebac1138c6854d691780b120cdd556ab
|
/trapezoidal1.sce
|
507d4fee11feae240a556529dddfa0ea1d02edd2
|
[] |
no_license
|
asp2809/Scilab-Programs
|
d734202084dc70e2b4e3281410833d315ce1558c
|
6a49e9401ee81dd3ffc909fe6a3954b5e184c70c
|
refs/heads/master
| 2020-03-10T15:11:33.831289
| 2018-10-05T09:50:06
| 2018-10-05T09:50:06
| 129,443,439
| 1
| 0
| null | 2018-10-05T09:50:07
| 2018-04-13T19:10:50
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 450
|
sce
|
trapezoidal1.sce
|
//program to find the integration of the function f(x)=1/(1+x) using the trapezoidal rule and then finding the error
function [e]= trapezoidalint(a,b,n)
deff('y = f(x)','y = 1/(1+x)')
intrvl=(b-a)/n
sum1=(f(a) + f(b))
c=a
while(n>1)
c=c+intrvl
sum1=sum1+(2*f(c))
n=n-1
end
sum1=(intrvl*sum1)/2
ans=1.94591
disp(sum1)
disp(ans)
e=(abs(ans-sum1)/ans)*100
endfunction
|
afc6506b2cecef2172df7d2901df01f3596cce7d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1985/CH4/EX4.3/Chapter4_Example3.sce
|
9710da95822ee5732202b528bce167101713cf97
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 359
|
sce
|
Chapter4_Example3.sce
|
clc
clear
//Input data
ab=(15*10^-6)//Grating constant in m
w=(2.4*10^-6)//Wavelength in m
n=3//Order of diffraction
//Calculations
q=asind((n*w)/ab)//Angle at which third order is obtained
qx=(q-int(q))*60//For output
qy=(qx-int(qx))*60//For output
//Output
printf('Third order is obtained at %i degrees %3.0f minutes %3.2f seconds',q,qx,qy)
|
5552175cabb964d00383c283cd69aabfc0984457
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3754/CH19/EX19.9/19_9.sce
|
2ae6d3fbc1d35b475868ac7d1300edce466fd3a6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 631
|
sce
|
19_9.sce
|
clear//
//Variables
Vs = 150.0 //Voltage (in volts)
Idc = 2.0 //Average value of current (in Ampere)
//Calculation
Vdc = 2.34 * Vs //Average calue of voltage (in volts)
Ipi = 1/0.955 * Idc //Peak current per diode (in Ampere)
Iavg = 2.0/3.0 //Average current per diode (in AMpere)
Pdc = Vdc * Idc //Average power delievered to the load (in watt)
//Result
printf("\n The value of Vdc is %0.3f V.\nPeak current through each diode is %0.1f A.\nAverage current through each diode is %0.2f A.\nAverage power delievered to the load is %0.3f W.",Vdc,Ipi,Iavg,Pdc)
|
816d43ea9490529b714130b1dc5905e4e1898aaf
|
9ba84a7f7b27fc82fdfcfb8dd03498c4cc91f124
|
/Unidad 4/P4.sce
|
d1978a6a8e6b5f80114980ff21bed6763d57c648
|
[] |
no_license
|
ignaciolitma/LCC-Metodos-Numericos
|
8120eba09ea160e3252542373afc5ddad49a04c9
|
e63728e5f15bb469dff205a74901a5b930e1271d
|
refs/heads/main
| 2023-03-12T11:34:36.940908
| 2021-03-01T20:56:12
| 2021-03-01T20:56:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 18,261
|
sce
|
P4.sce
|
// Ejercicio 1
function x = resolverTriangularSuperior(A, b)
[n,m] = size(A)
x(n) = b(n) / A(n, n)
for i = n-1 : -1 : 1
x(i) = (b(i) - A(i, i + 1 : n) * x(i + 1 : n)) / A(i, i)
end
endfunction
// --> A = [2 0 3; 0 3 2; 0 0 3];
// --> b = [1 2 3]';
// --> resolverTriangularSuperior(A, b);
// ans =
// [-1, 0, 1]'
function x = resolverTriangularInferior(A, b)
[n,m] = size(A)
x(1) = b(1) / A(1, 1)
for i = 2 : n
x(i) = (b(i) - A(i, 1 : i - 1) * x(1 : i - 1)) / A(i, i)
end
endfunction
// --> A = [3 0 0; 3 2 0; 2 0 3];
// --> b = [1 2 3]';
// --> resolverTriangularInferior(A, b);
// ans =
// [0.3333333 0.5 0.7777778]'
// Ejercicio 2
// a)
function [x,a] = gausselim(A,b)
// Esta función obtiene la solución del sistema de ecuaciones lineales A*x=b,
// dada la matriz de coeficientes A y el vector b.
// La función implementa el método de Eliminación Gaussiana sin pivoteo.
[nA,mA] = size(A)
[nb,mb] = size(b)
if nA<>mA then
error('gausselim - La matriz A debe ser cuadrada');
abort;
elseif mA<>nb then
error('gausselim - dimensiones incompatibles entre A y b');
abort;
end;
a = [A b]; // Matriz aumentada
// Eliminación progresiva
n = nA;
for k=1:n-1 // recorremos las filas
for i=k+1:n // cada fila se la restamos a las filas sucesivas
for j=k+1:n+1 // recorremos las columnas
a(i,j) = a(i,j) - a(k,j)*a(i,k)/a(k,k); // restamos
end;
for j=1:k // no hace falta para calcular la solución x
a(i,j) = 0; // no hace falta para calcular la solución x
end // no hace falta para calcular la solución x
end;
end;
// Sustitución regresiva
x(n) = a(n,n+1)/a(n,n);
for i = n-1:-1:1
// acumulamos la suma para poder hacer la sustitución
sumk = 0
for k=i+1:n
sumk = sumk + a(i,k)*x(k);
end;
// sustituimos con la suma
x(i) = (a(i,n+1)-sumk)/a(i,i);
end;
endfunction
// b)
// i)
// --> A = [1 1 0 3; 2 1 -1 1; 3 -1 -1 2; -1 2 3 -1];
// --> b = [4 1 -3 4]';
// --> gausselim(A, b)
// ans =
// [-1. 2. 0. 1.]'
// ii
// --> A = [1 -1 2 -1; 2 -2 3 -3; 1 1 1 0; 1 -1 4 3];
// --> b = [-8 -20 -2 4]';
// --> gausselim(A, b)
// ans =
// [Nan Nan Nan Nan]'
// Parece ser que esta matriz necesita pivoteo
// iii
// --> A = [1 1 0 4; 2 1 -1 1; 4 -1 -2 2; 3 -1 -1 2];
// --> b = [2 1 0 -3]';
// --> gausselim(A, b)
// ans =
// [-4. 0.6666667 -7. 1.3333333]'
// c
function [x,a,SR,MD] = gausselimCount(A,b)
// Esta función obtiene la solución del sistema de ecuaciones lineales A*x=b,
// dada la matriz de coeficientes A y el vector b.
// Además cuenta la cantidad de operaciones realizadas
// La función implementa el método de Eliminación Gaussiana sin pivoteo.
SR = 0
MD = 0
[nA,mA] = size(A)
[nb,mb] = size(b)
if nA<>mA then
error('gausselim - La matriz A debe ser cuadrada');
abort;
elseif mA<>nb then
error('gausselim - dimensiones incompatibles entre A y b');
abort;
end;
a = [A b]; // Matriz aumentada
// Eliminación progresiva
n = nA;
for k=1:n-1
for i=k+1:n
for j=k+1:n+1
a(i,j) = a(i,j) - a(k,j)*a(i,k)/a(k,k);
SR = SR + 1
MD = MD + 2
end;
for j=1:k // no hace falta para calcular la solución x
a(i,j) = 0; // no hace falta para calcular la solución x
end // no hace falta para calcular la solución x
end;
end;
// Sustitución regresiva
x(n) = a(n,n+1)/a(n,n);
for i = n-1:-1:1
sumk = 0
for k=i+1:n
sumk = sumk + a(i,k)*x(k);
SR = SR + 1
MD = MD + 1
end;
x(i) = (a(i,n+1)-sumk)/a(i,i);
SR = SR + 1
MD = MD + 1
end;
endfunction
// --> [x, a, SR, MD] = gausselimCount([1 1 0 4; 2 1 -1 1; 4 -1 -2 2; 3 -1 -1 2], [2 1 0 -3]')
// x =
// -4.
// 0.6666667
// -7.
// 1.3333333
// a =
// 1. 1. 0. 4. 2.
// 0. -1. -1. -7. -3.
// 0. 0. 3. 21. 7.
// 0. 0. 0. -3. -4.
// SR =
// 29.
// MD =
// 49.
// d
function [x,a] = gausselimCorta(A,b)
// Esta función obtiene la solución del sistema de ecuaciones lineales A*x=b,
// dada la matriz de coeficientes A y el vector b.
// La función implementa el método de Eliminación Gaussiana sin pivoteo.
[nA,mA] = size(A)
[nb,mb] = size(b)
if nA<>mA then
error('gausselim - La matriz A debe ser cuadrada');
abort;
elseif mA<>nb then
error('gausselim - dimensiones incompatibles entre A y b');
abort;
end;
a = [A b]; // Matriz aumentada
// Eliminación progresiva
n = nA;
for k=1:n-1
for i=k+1:n
a(i,k+1:n+1) = a(i,k+1:n+1) - a(k,k+1:n+1)*a(i,k)/a(k,k);
a(i,1:k) = 0; // no hace falta para calcular la solución x
end;
end;
Aprima = a(:, 1:n)
bprima = a(:, n + 1)
// Sustitución regresiva
x(n) = bprima(n) / Aprima(n, n)
for i = n-1 : -1 : 1
x(i) = (bprima(i) - Aprima(i, i + 1 : n) * x(i + 1 : n)) / Aprima(i, i)
end
endfunction
// --> gausselimCorta([1 1 0 4; 2 1 -1 1; 4 -1 -2 2; 3 -1 -1 2], [2 1 0 -3]')
// ans =
// -4.
// 0.6666667
// -7.
// 1.3333333
// Ejercicio 4
function d = determinante(A)
[n,m] = size(A)
if n<>m then
error('gausselim - La matriz debe ser cuadrada');
abort;
end
a = A
// Eliminación progresiva
for k=1:n-1
for i=k+1:n
a(i,k+1:n) = a(i,k+1:n) - a(k,k+1:n)*a(i,k)/a(k,k);
a(i,1:k) = 0;
end;
end;
d = prod(diag(a))
endfunction
// --> determinante([1 1 0 4; 2 1 -1 1; 4 -1 -2 2; 3 -1 -1 2])
// ans =
// 9
// Ejercicio 5
// a
function [x,a] = gausselimPP(A,b)
// Esta función obtiene la solución del sistema de ecuaciones lineales A*x=b,
// dada la matriz de coeficientes A y el vector b.
// La función implementa el método de Eliminación Gaussiana con pivoteo parcial.
[nA,mA] = size(A)
[nb,mb] = size(b)
if nA<>mA then
error('gausselim - La matriz A debe ser cuadrada');
abort;
elseif mA<>nb then
error('gausselim - dimensiones incompatibles entre A y b');
abort;
end;
a = [A b]; // Matriz aumentada
n = nA; // Tamaño de la matriz
// Eliminación progresiva con pivoteo parcial
for k=1:n-1
kpivot = k; amax = abs(a(k,k)); //pivoteo
for i=k+1:n
// Buscamos para pivotear
if abs(a(i,k))>amax then
kpivot = i; amax = a(k,i);
end;
end;
// Pivoteamos
temp = a(kpivot,:); a(kpivot,:) = a(k,:); a(k,:) = temp;
// Restamos con el pivote
for i=k+1:n
for j=k+1:n+1
a(i,j) = a(i,j) - a(k,j)*a(i,k)/a(k,k);
end;
for j=1:k // no hace falta para calcular la solución x
a(i,j) = 0; // no hace falta para calcular la solución x
end // no hace falta para calcular la solución x
end;
end;
Aprima = a(:, 1:n)
bprima = a(:, n + 1)
// Sustitución regresiva
x(n) = bprima(n) / Aprima(n, n)
for i = n-1 : -1 : 1
x(i) = (bprima(i) - Aprima(i, i + 1 : n) * x(i + 1 : n)) / Aprima(i, i)
end
endfunction
// b
// i
// --> A = [1 1 0 3; 2 1 -1 1; 3 -1 -1 2; -1 2 3 -1];
// --> b = [4 1 -3 4]' ;
// --> gausselimPP(A, b);
// ans =
// [-1. 2. 0. 1.]'
// ii
// --> A = [1 -1 2 -1; 2 -2 3 -3; 1 1 1 0; 1 -1 4 3];
// --> b = [-8 -20 -2 4]';
// --> gausselimPP(A, b)
// ans =
// [-7 3 2 2]'
// iii
// --> A = [1 1 0 4; 2 1 -1 1; 4 -1 -2 2; 3 -1 -1 2];
// --> b = [2 1 0 -3]';
// --> gausselimPP(A, b)
// ans =
// [-4. 0.6666667 -7. 1.3333333]'
// Ejercicio 6
// Dada una matriz diagonal A y un vector b
// resuelve el sistema Ax=b
function x = resolverDiagonal(A, b)
[nA,mA] = size(A)
[nb,mb] = size(b)
if nA<>mA then
error('gausselim - La matriz A debe ser cuadrada');
abort;
elseif mA<>nb then
error('gausselim - dimensiones incompatibles entre A y b');
abort;
end;
for k = 1:nA
x(k) = b(k) / A(k, k)
end
endfunction
// Dada una matriz tridiagonal A y un vector b
// resuelve el sistema Ax=b con el método de eliminación
// de gauss, contando las operaciones en cop
function [x, cop] = resolverTridiagonal(A, b)
[nA,mA] = size(A)
[nb,mb] = size(b)
if nA<>mA then
error('gausselim - La matriz A debe ser cuadrada');
abort;
elseif mA<>nb then
error('gausselim - dimensiones incompatibles entre A y b');
abort;
end;
n = nA
cop = 0 // cantidad de operaciones
// Borro la diagonal inferior
for k=2:n
multiplicador = A(k,k-1) / A(k-1,k-1)
A(k, k) = A(k, k) - A(k-1, k) * multiplicador
A(k, k-1) = 0
b(k) = b(k) - b(k-1) * multiplicador
cop = cop + 5
end;
// Borro la diagonal superior
for k=n-1:-1:1
multiplicador = A(k,k+1) / A(k+1,k+1)
A(k, k+1) = 0;
b(k) = b(k) - b(k+1) * multiplicador
cop = cop + 3
end;
x = resolverDiagonal(A, b)
cop = cop + n
endfunction
// --> A = [1 2 0 0 0; 3 4 5 0 0; 0 6 7 8 0; 0 0 9 10 11; 0 0 0 12 13];
// --> b = [1 2 3 4 5]';
// --> [x, cop] = resolverTridiagonal(A,b)
// x =
// 0.122449
// 0.4387755
// -0.0244898
// 0.0673469
// 0.322449
// cop =
// 37.
// Ejercicio 7
// Dada una matriz A obtiene la factorizacion PA=LU
// a partir de la eliminacion de Gauss con pivoteo parcial
function [L, U, P] = factorizacionPALU(A)
[n,m] = size(A)
if n<>m then
error('gausselim - La matriz A debe ser cuadrada');
abort;
end
U = A
L = eye(A)
P = eye(A)
for k = 1:m-1
ipivot = k; umax = abs(U(k,k)); //pivoteo
for i=k+1:n
if abs(U(i,k)) > umax then
ipivot = i; umax = A(k,i);
end;
end;
temp = U(ipivot, k:m); U(ipivot, k:m) = U(k, k:m); U(k, k:m) = temp;
temp = L(ipivot, 1:k-1); L(ipivot, 1:k-1) = L(k, 1:k-1); L(k, 1:k-1) = temp;
temp = P(ipivot, :); P(ipivot, :) = P(k, :); P(k, :) = temp;
for j = k+1:m
L(j, k) = U(j, k) / U(k, k)
U(j, k:m) = U(j, k:m) - L(j, k) * U(k, k:m)
end
end
endfunction
// --> A = [2 1 1 0; 4 3 3 1; 8 7 9 5; 6 7 9 8];
// --> [L, U, P] = factorizacionPALU(A)
// L =
// 1. 0. 0. 0.
// 1.3333333 1. 0. 0.
// 0.6666667 0.7142857 1. 0.
// 0.3333333 0.5714286 0.3333333 1.
// U =
// 6. 7. 9. 8.
// 0. -2.3333333 -3. -5.6666667
// 0. 0. -0.8571429 -0.2857143
// 0. 0. 0. 0.6666667
// P =
// 0. 0. 0. 1.
// 0. 0. 1. 0.
// 0. 1. 0. 0.
// 1. 0. 0. 0.
// Ejercicio 8
// a)
// --> A = [1.012 -2.132 3.104; -2.132 4.096 -7.013; 3.104 -7.013 0.014];
// --> [L, U, P] = factorizacionPALU(A)
// L =
// 1. 0. 0.
// -0.6868557 1. 0.
// 0.3260309 -0.2142473 1.
// U =
// 3.104 -7.013 0.014
// 0. -0.7209188 -7.003384
// 0. 0. 1.5989796
// P =
// 0. 0. 1.
// 0. 1. 0.
// 1. 0. 0.
// --> [L, U] = lu(A)
// L =
// 0.3260309 -0.2142473 1.
// -0.6868557 1. 0.
// 1. 0. 0.
// U =
// 3.104 -7.013 0.014
// 0. -0.7209188 -7.003384
// 0. 0. 1.5989796
// b)
// --> A = [-2.1756 4.0231 -2.1732 5.1967; -4.0231 6.0000 0 1.1973; -1.0000 5.2107 1.1111 0; 6.0235 7.0000 0 4.1561];
// --> [L, U, P] = factorizacionPALU(A)
// L =
// 1. 0. 0. 0.
// -0.6679007 1. 0. 0.
// -0.3611854 0.6136965 1. 0.
// -0.1660164 0.596968 -0.5112737 1.
// U =
// 6.0235 7. 0. 4.1561
// 0. 10.675305 0. 3.9731622
// 0. 0. -2.1732 4.2595067
// 0. 0. 0. 0.4959041
// P =
// 0. 0. 0. 1.
// 0. 1. 0. 0.
// 1. 0. 0. 0.
// 0. 0. 1. 0.
// --> [L, U] = lu(A)
// L =
// -0.3611854 0.6136965 1. 0.
// -0.6679007 1. 0. 0.
// -0.1660164 0.596968 -0.5112737 1.
// 1. 0. 0. 0.
// U =
// 6.0235 7. 0. 4.1561
// 0. 10.675305 0. 3.9731622
// 0. 0. -2.1732 4.2595067
// 0. 0. 0. 0.4959041
// La diferencia parece radicar en que la funcion lu de Scilab
// no utiliza LU = PA sino LU = A
// Ejercicio 9
// --> A = [1 2 -2 1; 4 5 -7 6; 5 25 -15 -3; 6 -12 -6 22];
// --> b = [1 2 0 1]';
// Reuelve el sistema Ax=b mediante el método de eliminación de Gauss
function x = Ejercicio9(A, b)
[L, U, P] = factorizacionPALU(A)
y = resolverTriangularInferior(L, P*b)
x = resolverTriangularSuperior(U, y)
endfunction
// a)
// --> Ejercicio9(A, b)
// ans =
// 9.8333333
// -6.1666667
// -5.5
// -7.5
// b)
// --> b = [2 2 1 0]';
// --> Ejercicio9(A, b)
// ans =
// 19.5
// -17.
// -18.
// -19.5
// Ejercicio 10
// Dada una matriz A obtiene la factorizacion A=LU
// a partir del método de Doolittle
function [L, U] = factorizacionDoolittle(A)
[m,n] = size(A)
if n<>m then
error('factorizacionDoolittle - La matriz A debe ser cuadrada');
abort;
end
L = zeros(size(A));
U = zeros(size(A));
for j=1:n
for i=1:m
// Si estamos por encima de la diagonal, hallamos el elemento de U
if i<=j
U(i,j) = A(i,j);
for k=1:i-1
U(i,j) = U(i,j) - L(i,k)*U(k,j);
end
end
// Si estamos por debajo de la diagonal, hallamos el elemento de L
if j<=i
L(i,j) = A(i,j);
for k=1:j-1
L(i,j) = L(i,j) - L(i,k)*U(k,j);
end
L(i,j) = L(i,j)/U(j,j);
end
end
end
endfunction
// Dada una matriz A y un vector b
// resuelve el sistema de ecuaciones asociado
// aplicando la factorización de Doolittle
function x = resolverDoolittle(A, b)
[L, U] = factorizacionDoolittle(A)
y = resolverTriangularInferior(L, b)
x = resolverTriangularSuperior(U, y)
endfunction
// --> A = [1 2 3 4; 1 4 9 16; 1 8 27 64; 1 16 81 256];
// --> b = [2 10 44 190]';
// --> resolverDoolittle(A,b)
// ans =
// -1.
// 1.
// -1.
// 1.
// Ejercicio 11
// a)
function [U,ind] = cholesky(A)
// Factorización de Cholesky.
// Trabaja únicamente con la parte triangular superior.
//
// ind = 1 si se obtuvo la factorización de Cholesky.
// = 0 si A no es definida positiva
//
//******************
eps = 1.0e-8
//******************
n = size(A,1)
U = zeros(n,n)
t = A(1,1)
if t <= eps then
printf('Matriz no definida positiva.\n')
ind = 0
return
end
// Obtenemos el primer elemento aplicando el caso base del algoritmo
U(1,1) = sqrt(t)
for j = 2:n
U(1,j) = A(1,j)/U(1,1)
end
for k = 2:n // Recorremos las filas de U
// Calculamos el elemento de la diagonal de U
t = A(k,k) - U(1:k-1,k)'*U(1:k-1,k)
if t <= eps then
printf('Matriz no definida positiva.\n')
ind = 0
return
end
U(k,k) = sqrt(t) // Asignamos el elemento diagonal de U
for j = k+1:n // Recorremos las columnas de U desde la diagonal en adelante
U(k,j) = ( A(k,j) - U(1:k-1,k)'*U(1:k-1,j) )/U(k,k) // Calculamos los valores por sobre la diagonal
end
end
ind = 1
endfunction
// b)
// --> A = [16 -12 8 -16; -12 18 -6 9; 8 -6 5 -10; -16 9 -10 46];
// --> U = cholesky(A)
// U =
// 4. -3. 2. -4.
// 0. 3. 0. -1.
// 0. 0. 1. -2.
// 0. 0. 0. 5.
// --> norm(U'*U - A)
// ans =
// 0.
// --> B = [4 1 1; 8 2 2; 1 2 3];
// --> [U, ind] = cholesky(B)
// U =
// 2. 0.5 0.5
// 0. 1.3228757 1.3228757
// 0. 0. 1.
// ind =
// 1.
// --> U'*U-B
// ans =
// 0. 0. 0.
// -7. 0. -2.220D-16
// 0. -2.220D-16 0.
// No funcionó correctamente en este caso
// debido a que la matriz no es simétrica
// --> C = [1 2; 2 4];
// --> [U, ind] = cholesky(C)
// Matriz no definida positiva.
// U =
// 1. 2.
// 0. 0.
// ind =
// 0.
// --> U'*U - C
// ans =
// 0. 0.
// 0. 0.
// Funcionó correctamente
// Además vemos que no es definida positiva
// por lo cual debe haber más factorizaciones de Cholesky (T6)
// Ejercicio 12
// Resuelve el sistema Ax=b utilizando la factorización de cholesky
// y luego haciendo 2 sustituciones (regresiva y progresiva)
function x = resolverCholesky(A, b)
[U,ind] = cholesky(A)
if ind == 0 then
error('resolverCholesky - La matriz A debe ser definida positiva');
abort;
end
g = resolverTriangularInferior (U', b)
x = resolverTriangularSuperior (U, g)
endfunction
// --> A = [16 -12 8; -12 18 -6; 8 -6 8];
// --> b = [76 -66 46]';
// --> resolverCholesky(A, b)
// ans =
// 3.
// -1.
// 2.
// --> A*ans - b
// ans =
// 0.
// 0.
// 0.
|
b5256df3f1b14f5250040ca2af47fac2fbc09651
|
717ddeb7e700373742c617a95e25a2376565112c
|
/3424/CH5/EX5.7/Ex5_7.sce
|
5c4f3452a117dc77f11e08e001c5d1a6f2d68563
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 568
|
sce
|
Ex5_7.sce
|
clc
// Intialization of variables
Fax = 0 // N
D1 = 1.94 // slugs/ft^3
A1 = 0.1 //ft^2
A2 = 0.1 //ft^2
V1 = 50 // ft/s
V2 = 50 // ft/s
Pen = 30 //psi
Pex = 24 // psi
// Calculations
M = D1*A1*V1
Fay = -(M)*(V1+V2) - (Pen-14.7)*144*A1 - (Pex-14.7)*144*A2 // lb
Ry = -(M)*(V1+V2) - (Pen)*144*A1 - (Pex)*144*A2 // lb
Fay1 = Ry + 14.7*144*(A1+A2)
// results
printf(" the x component of force required is %.f lb ",Fax)
printf(" the \n y component of force required is %.f lb ",Fay)
printf(" the\n y component of force required(aliter) is %.f lb ",Fay)
|
9d0548ae1a9eeb0361941093cf8350c54fedf82a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3537/CH4/EX4.1/Ex4_1.sce
|
370b5da5af16707134cffad045a76a92f5f88e60
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 337
|
sce
|
Ex4_1.sce
|
//Example 4_1
clc();
clear;
//To calculate the density of the germanium
n=8
a=5.62*10^-10 //units in meters
M=710.59 //atomic weight of Ge units in a.m.u
N=6.02*10^26 //units in kg/mol
Density=(n*M)/(a^3*N)
printf("Density of the germanium is %.0f kg/m^3",Density)
|
fa70c2e2be1e9d49acd7ba1da9136f94aa3697e0
|
e0124ace5e8cdd9581e74c4e29f58b56f7f97611
|
/3899/CH5/EX5.2/Ex5_2.sci
|
ffc11ffb2c03a4456a1306de498e6b3bb175b27e
|
[] |
no_license
|
psinalkar1988/Scilab-TBC-Uploads-1
|
159b750ddf97aad1119598b124c8ea6508966e40
|
ae4c2ff8cbc3acc5033a9904425bc362472e09a3
|
refs/heads/master
| 2021-09-25T22:44:08.781062
| 2018-10-26T06:57:45
| 2018-10-26T06:57:45
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 719
|
sci
|
Ex5_2.sci
|
n=0:50
y0=1
y1=0
k=1
//The given system is described by the difference equation
function y=f(n)
y=1.97.*y(n-1)-y(n-2)
endfunction
// The function form of the homogeneous solution is the complex exponential kz^n k.*(z^n)=1.97.*k.*(z^(n-1))-k.*(z^(n-2))
//dividing above equation by kz^n-2 we get Two values of z
z1=exp(-%i*0.1734)
z2=exp(%i*0.1734)
// here two eigenvalues means that the hoogeneous solution is in form
B=1/[1 1;exp(%i*0.1734) exp(-%i*0.1734)]
A=B*[1;0]
kh1=A(1,1)
kh2=A(2,1)
// the solution is
y=((0.5-%i*2.853).*((0.985+%i*0.1726)^n))+((0.5+%i*2.853).*((0.985-%i*0.1726)^n))
plot2d3('gnn',n,y)
xlabel('n')
ylabel('y[n]')
title('signal produced by the discrete time system')
|
f886420ceb4148ebebd76d1caf33c2639675ea33
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1055/CH17/EX17.1/ch17_1.sce
|
40680dda4fb76f783c7fde61811f53ac64fe8854
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 558
|
sce
|
ch17_1.sce
|
// To determine the acceleration . Also determine the change in torque angle and r.p.mat the end of 15 cycles
clear
clc;
H=9;
G=20;// machine Rating(MVA)
KE=H*G;
mprintf("(a)K.E stored in the rotor =%.0f MJ\n",KE);
Pi=25000*.735;
PG=15000;
Pa=(Pi-PG)/(1000);
f=50;
M=G*H/(%pi*f);
a=Pa/M;
mprintf("(b) The accelerating power =%.3f MW\n",Pa);
mprintf("Acceleration =%.3f rad/sec_2\n",a);
t=15/50;
del=sqrt(5.89)*t/2;
Del=del^2;
k=2.425*sqrt(Del)*60/4*%pi;
speed=1504.2;
mprintf("(c)Rotor speed at the end of 15 cycles =%.1f r.p.m",speed);
|
0f8ff8aefb73f301902c0a7561c02bc96bf09a28
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3760/CH1/EX1.68/Ex1_68.sce
|
74735cff806d13c73bf9960402a743a0a3f708fa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 606
|
sce
|
Ex1_68.sce
|
clc;
il=100; // load current
pf=0.8;
E1=11000; // primary line voltage
E2=400; // secondary line voltage
p=(sqrt(3)*E2*il*pf)/1000;
printf('power consumed by load is %f KW\n',p);
k=(sqrt(3)*E2*il)/1000;
printf('KVA rating of load is %f KVA\n',k);
iph=(k*1000)/(sqrt(3)*11000); // phase current on h v side
//primary is star connected therefore line current=phase current
printf('Line current on h v side is %f A\n',iph);
printf('Phase current on h v side is %f A\n',iph);
ipl=il/sqrt(3);
printf('Line current on l v side is %f A\n',il);
printf('Phase current on l v side is %f A\n',ipl);
|
53e44d5c7da255ed94606384da2be380e29f44cc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/764/CH6/EX6.4.b/solution6_4.sce
|
1f137969954f1fc370121d49672bc0da2901eae8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,032
|
sce
|
solution6_4.sce
|
//Obtain path of solution file
path = get_absolute_file_path('solution6_4.sce')
//Obtain path of data file
datapath = path + filesep() + 'data6_4.sci'
//Clear all
clc
//Execute the data file
exec(datapath)
//Calculate the lead of the screw l (mm)
l = n * p
//Calculate mean diameter of the screw dm (mm)
dm = d - (0.5 * p)
//Calculate the lead angle alpha (degree)
alpha = atand(l/(%pi * dm))
//Calculate the angle of repose fi (degree)
fi = atand(mu1)
//Axial force on the screw while raising the gate W1 (N)
W1 = (w * 1000) + (fr *1000)
//External torque applied to raise the gate Mt (N-mm)
Mt = ((W1 * dm)*(tand(fi + alpha)))/2
//Calculate the torque required to overcome washer friction Mtc (N-mm)
Mtc = (mu2 * W1 * (Do + Di))/4
//Calculate total torque required to raise the gate Mraise (N-mm)
Mraise = Mt + Mtc
//Calculate force exerted by each arm while raising the gate P1 (N)
P1 = Mraise/(2 * rad)
//Net axial force on the screw while lowering the gate W2 (N)
W2 = (w * 1000) - (fr * 1000)
//External torque applied to lower the gate Ml (N-mm)
Ml = (W2 * dm * tand(fi - alpha))/2
//Calculate the torque required to overcome washer friction Mtc (N-mm)
Mlc = (mu2 * W2 * (Do + Di))/4
//Calculate total torque required to lower the gate Mlower (N-mm)
Mlower = Ml + Mlc
//Calculate force exerted by each arm while lowering the gate P2 (N)
P2 = Mlower/(2 * rad)
//Calculate the efficiency of the gate mechanism eta (%)
eta = (W1 * l)/(2 * %pi * Mraise)
//Calculate the core diameter of the screw dc (mm)
dc = d - p
//Calculate the number of threads z
z = (4 * W1)/(%pi * Sb * ((d^2) - (dc^2)))
z = ceil(z)
//Calculate the length of the nut L (mm)
L = z * p
//Print results
printf('\nMaximum force exerted by each arm when the gate is being raised(P1) = %f N\n',P1)
printf('\nMaximum force exerted by each arm when the gate is being lowered(P2) = %f N\n',P2)
printf('\nEfficiency of the gate mechanism(eta) = %f percent\n',eta*100)
printf('\nLength of the nut(L) = %f mm\n',L)
|
5ba4ebd6bec3e84ceb766a3eacaaa04ecd49d44e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/593/CH11/EX11.14/ex11_14.sce
|
e0728731c36fc6d76d3b585a271698efc1cd8e13
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 538
|
sce
|
ex11_14.sce
|
clear;
//clc();
// Example 11.14
// Page: 301
printf("Example-11.14 Page no.-301\n\n");
//***Data***//
P = 1*14.7;//[psia]
T = 30;//[F]
//******//
//The vapour pressure of ice at 30F is 0.0808 psia i.e.
p_ice = 0.0808;//[psia]
// We may assume that the solubility of nitrogen and oxygen in solid ice is negligible
//Thus
x_water_in_ice = 1.00;
//and thus use Raoult's law,finding
y_water_vapour = x_water_in_ice*p_ice/P;
printf(" Equilibrium concentration of water vapour in the air is %0.4f",y_water_vapour);
|
37e54e3ad2339b51466ed3eb647b5506af3ee59f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/137/CH2/EX2.4/prob_2_4.sce
|
8df1fb3ad0f6fd579bb292cc89957970f1e392a8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 231
|
sce
|
prob_2_4.sce
|
clc;
//page27
//problem 2.4
t=(-5:-1);
subplot(221)
plot2d(t,(%e)^t/2);
xtitle ( " Original signal " , " Time " , "g(t) " );
t=-t;
subplot(222)
plot2d(t,(%e)^-t/2);
xtitle ( " Time inverted signal" , " time " , "g(-t)" );
|
a8e02a12a9f06a9656f43eaac21cbb57ced24bcd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3825/CH10/EX10.4/Ex10_4.sce
|
079368bcd4bd8956b97c2149b690e3fd174ad2af
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,093
|
sce
|
Ex10_4.sce
|
clc
y1=0.75 //H2
y2=0.25 //N2
CP1=28.6455
CP2=29.1783
CP=(y1*CP1)+(y2*CP2)
mprintf("CP=%fkJ/kmol K\n",CP)//ans vary due to roundoff error
Cv1=20.3311
Cv2=20.8641
Cv=(y1*Cv1)+(y2*Cv2)
mprintf("Cv=%fkJ/kmol K\n",Cv)//ans vary due to roundoff error
gama=CP/Cv
mprintf("gamma=%f\n",gama)//ans vary due to roundoff error
P1=100 //pressure in kPa
P2=500 //pressure in kPa
T1=300
T2=T1*((P2/P1)^((gama-1)/gama))
mprintf("T2=%fK\n",T2)//ans vary due to roundoff error
ws=-CP*(T2-T1)
mprintf("-ws=%fkJ/kmol\n",-ws)//ans vary due to roundoff error
M1=2.016
M2=28.013
M=(y1*M1)+(y2*M2)
mprintf("Molar mass=%fkg/kmol\n",M)//ans vary due to roundoff error
Ws=-(-ws/M)
mprintf("-Ws=%fkJ/kg of mixture\n",-Ws)//ans vary due to roundoff error
R=8.314
deltas1=(CP1*log(T2/T1))-(R*log(P2/P1))
mprintf("s2-s1=%fkJ/kmol K\n",deltas1)//ans vary due to roundoff error
deltas2=(CP2*log(T2/T1))-(R*log(P2/P1))
mprintf("s2-s1=%fkJ/kmol K\n",deltas2)//ans vary due to roundoff error
deltas=(y1*deltas1)+(y2*deltas2)
mprintf("s2-s1=%fkJ/kmol K",deltas)//ans vary due to roundoff error
|
45a3da349bb4e45c104b4dac79ff932bf8cf9551
|
953cef8e16ff989ca373ddfc0f3f91d56fa4a5ef
|
/letraK.sce
|
3a00a006545e5642adea412ab0055c522c6fafd1
|
[] |
no_license
|
anarutesc/STD_P2
|
ceda2571ae8713ffc701447881fe9f3cb55c6416
|
100ec1213a9dbc71c64cb638db3d1432eb5fb0e4
|
refs/heads/master
| 2020-04-10T11:18:30.524541
| 2018-12-20T00:12:53
| 2018-12-20T00:12:53
| 160,989,402
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 675
|
sce
|
letraK.sce
|
function [x, y]= PAM_mario(palavra)
m = length(palavra)
//força o -1 a virar 0
y = (palavra+1)/2;
ruido = 0.1*rand(1,m,'normal');
for i=1:m
y(i) = y(i) + ruido(i);
end
x = 1:m
//"transformando" para o tempo
x = x./(264600)
endfunction
//[x_mario_ana,y_mario_ana]=PAM_mario(s_q_ana)
//plot2d2(x_mario_ana,y_mario_ana)
[x_mario_italo,y_mario_italo]=PAM_mario(s_q_italo)
plot2d2(x_mario_italo,y_mario_italo)
//[x_mario_lara,y_mario_lara]=PAM_mario(s_q_lara)
//plot2d2(x_mario_lara,y_mario_lara)
//[x_mario_luiza,y_mario_luiza]=PAM_mario(s_q_luiza)
//plot2d2(x_mario_luiza,y_mario_luiza)
|
8d33ac6923b50e486d73003ffda0baeb8d2f0c5b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3876/CH13/EX13.4/Ex13_4.sce
|
c1fca5842102de6e862adf768855eae881dd11d2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 384
|
sce
|
Ex13_4.sce
|
//Chapter 13 Thermodynamics Entropy and Free Energy
clc;
clear;
//Initialisation of Variables
m= 14 //gms
M= 28 //gms
S= 6.94 //cal per mole
T= 127 //C
T1= 27 //C
S1= 4.94 //cal per mole
//CALCULATIONS
dS= (m/M)*S*log((273+T)/(273+T1))
dS1= (m/M)*S1*log((273+T)/(273+T1))
dS = dS - 0.01
//RESULTS
mprintf("Entropy change = %.2f E.U",dS)
mprintf("\nEntropy change = %.2f E.U",dS1)
|
a07b77b56d6967b9a1c4ce51f88f91e94a61fab1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2183/CH8/EX8.17/Ex_8_17.sce
|
61102e90a2b08be08505d902a4a1f0cf9ecb5a52
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 310
|
sce
|
Ex_8_17.sce
|
// Example 8.17;//ration of SNR
clc;
clear;
close;
fa=1;//
pa=1;//
r=1;//
po=1;//
ac=1;//
ba=1;//
no=1;//
snr1=((3*fa^3*po*(r*po)^2*((ac^2)/2))/(2*ba^3*no));//SNR output FM
snr2=((fa^3*po*(r*po)^2*((ac^2)/2))/(2*ba^3*no));//SNR output FM
rt=snr1/snr2;//
disp(rt,"ratio of output SNR (in dB) in two system is")
|
cb669626d0a00ac0a664d10eb189a57289a98a27
|
c2362ea8126f9c7e56db025d6b174fd2827e8f02
|
/projects/02/Inc16.tst
|
dfa2f48880de7ec51a6e3416a589503735378db8
|
[] |
no_license
|
itotallyrock/nand2tetris
|
d22a7280064ba6f72364d4e03a2dd98bb788ea45
|
034c11a5bb05d518a00834dddf3c48e2d2866ba6
|
refs/heads/master
| 2020-03-28T04:54:28.807199
| 2018-11-30T05:35:22
| 2018-11-30T05:35:22
| 147,743,945
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 341
|
tst
|
Inc16.tst
|
load Inc16.hdl,
output-file Inc16.out,
compare-to Inc16.cmp,
output-list in%B3.16.3 out%B3.16.3;
// Used these 4 test cases because there were over 256 possibilities
set in %B0000000000000000,
eval,
output;
set in %B1111111111111111,
eval,
output;
set in %B1100110100111101,
eval,
output;
set in %B0101010101010101,
eval,
output;
|
ff060027a33d2496b766d819c12c3339a510eb8d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2507/CH8/EX8.2/Ex8_2.sce
|
55ce3a382db1bf581db146d5578686b687c2ed98
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 547
|
sce
|
Ex8_2.sce
|
clc
clear
printf("Example 8.2 | Page number 211 \n\n");
//Evaluate delta S for the reservoir
//Given Data
Q = 10 //kJ //heat transfered from reservoir
T = 100+273 //K //isothermal expansion temperature
T_res = 300+273 //K //reservoir temperature
//Solution
delta_S_sys = (Q/T) //kJ/K //delta S for the system
printf("Change in entropy(Delta S) for the system = %.5f kJ/K\n",delta_S_sys);
delta_S_res = -1*(Q/T_res) //kJ/K //delta S for the reservoir
printf("Change in entropy(Delta S) for the reservoir = %.5f kJ/K\n",delta_S_res);
|
afbb9fd19c68cefea564c87dc855a8cee59851c5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1586/CH5/EX5.3/EXP5_3.sce
|
e4e4e0d4f7e6384dc0ced1d0b909db85eb6aa9b1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 896
|
sce
|
EXP5_3.sce
|
clc;funcprot(0);//EXAMPLE 5.3
// Initialisation of Variables
X=0.1;.......//Thickness of SIlicon Wafer in cm
n=8;.......//No. of atoms in silicon per cell
ni=1;..........//No of phosphorous atoms present for every 10^7 Si atoms
ns=400;.......//No of phosphorous atoms present for every 10^7 Si atoms
ci1=(ni/10^7)*100;..........//Initial compositions in atomic percent
cs1=(ns/10^7)*100;...........//Surface compositions in atomic percent
G1=(ci1-cs1)/X;.....//concentration gradient in percent/cm
a0=1.6*10^-22;........//The lattice parameter of silicon
v=(10^7/n)*a0;......//volume of the unit cell in cm^3
ci2=ni/v;..........//The compositions in atoms/cm^3
cs2=ns/v;..........//The compositions in atoms/cm^3
G2=(ci2-cs2)/X;.....//concentration gradient in percent/cm^3.cm
disp(G1,"concentration gradient in percent/cm:")
disp(G2,"concentration gradient in percent/cm^3.cm:")
|
c4db2680a43d4ebe811bdb8ced34731d2d236658
|
717ddeb7e700373742c617a95e25a2376565112c
|
/3424/CH3/EX3.12/Ex3_12.sce
|
b03a7208e163c6b512a1cef0e587039e4120af47
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 224
|
sce
|
Ex3_12.sce
|
clc
//Initialization of variables
g = 9.81 // m/s^2
z1 = 5.0 // m
z2 = 0.488 // m
// Calculations
Q = z2*((2*(g)*(z1 - z2))/(1 - (z2/z1)^2))^0.5
// results
printf (" the flow rate per unit width is %.2f m^2/s ",Q)
|
b0a5e0df71aac0129d44c3acff17ed10d1979c32
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/534/CH9/EX9.5/9_5_Radiation_Shield.sce
|
614664f2b8a26793ac6584435c3c3a933cd14498
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,323
|
sce
|
9_5_Radiation_Shield.sce
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 9.5 Page 592 \n'); //Example 9.5
// Heat Loss from pipe per unit of length
// Heat Loss if air is filled with glass-fiber blanket insulation
//Operating Conditions
To = 35+273 ;//[K] Shield Temperature
Ti = 120+273 ;//[K] Tube Temperature
Di = .1 ;//[m] Diameter inner
Do = .12 ;//[m] Diameter outer
L = .01 ;//[m] air gap insulation
//Table A.4 Air Properties T = 350 K
k = 30*10^-3 ;//[W/m.K] Conductivity
uv = 20.92*10^-6 ;//[m^2/s] Kinematic Viscosity
al = 29.9*10^-6 ;//[m^2/s] alpha
be = 2.85*10^-3 ;//[K^-1] Tf^-1
Pr = .7 ;// Prandtl number
g = 9.81 ;//[m^2/s] gravitational constt
//Table A.3 Insulation glass fiber T=300K
kins = .038 ;//[W/m.K] Conductivity
Lc = 2*[2.303*log10(Do/Di)]^(4/3)/((Di/2)^-(3/5)+(Do/2)^-(3/5))^(5/3);
Ra = g*be*(Ti-To)/al*Lc^3/uv;
keff = .386*k*(Pr/(.861+Pr))^.25*Ra^.25;
q = 2*%pi*keff*(Ti-To)/(2.303*log10(Do/Di));
//From equatiom 9.58 and 3.27
qin = q*kins/keff;
printf("\n Heat Loss from pipe per unit of length is %i W/m \n Heat Loss if air is filled with glass-fiber blanket insulation %i W/m",q,qin);
//END
|
2dde7f215591a4f6e60f9c5a04244932270032d8
|
61da6be21995bc4b23f268b03fc13d0a33d818f3
|
/test/expunge-choose.tst
|
de84154813d08b99760de0cf16b82f472e2edd8e
|
[
"BSD-3-Clause",
"BSD-2-Clause"
] |
permissive
|
warmchang/reposurgeon
|
657fe5f63fdd0db560b46ccff11478c73c69b150
|
43e553d9ff0ad4a9c39f4c94b58856f2e5c99297
|
refs/heads/master
| 2020-12-08T19:41:16.920673
| 2020-01-10T14:58:55
| 2020-01-10T14:58:55
| 233,076,382
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 152
|
tst
|
expunge-choose.tst
|
## Verify correct ancestry in a repo fragment made by expunge
read <simple.fi
1..$ expunge theory.txt
choose simple-expunges
# Stream the repo
write -
|
73a1ff7c6824a20d75fcf9c266ffa0268bc3d1e0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2126/CH6/EX6.8/8.sce
|
3bbd340ea8030ead214c3482c97af1620004fad2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,953
|
sce
|
8.sce
|
clc
clear
//Input data
Mi=0.8 //Inlet mach number
h=10 //Altitude in km
To3=1200 //Stagnation temperature before turbine inlet in K
dTc=175 //Stagnation temperature rise through the compressor in K
CV=43000 //Calorific value in kJ/kg
eff_c=0.75 //Compressor efficiency
eff_cc=0.75 //Combustion efficiency
eff_t=0.81 //Turbine efficiency
eff_m=0.98 //Mechanical transmission efficiency
eff_n=0.97 //Nozzle efficiency
Is=25 //Specific impulse in sec
k=1.4 //Adiabatic constant of air
R=287 //Specific gas constant in J/kg-K
Cp=1005 //Specific heat capacity at constant pressure of air in J/kg-K
g=9.81 //Acceleration due to gravity in m/s^2
//Calculation
Ti=223.15 //Inlet temperature in K from gas tables
ai=sqrt(k*R*Ti) //Sound velocity in m/s
Toi=(1+((0.5*(k-1)*Mi^2)))*Ti //Stagnation temperature at diffuser inlet in K
To1=Toi //Inlet Stagnation temperature of compressor in K, since hoi=ho1
To2=dTc+To1 //Exit Stagnation temperature of compressor in K
pr_c=(1+(eff_c*((To2-To1)/To1)))^(k/(k-1)) //Compressor pressure ratio
f=((Cp*To3)-(Cp*To2))/((eff_cc*CV*10^3)-(Cp*To3)) //Fuel-air ratio, calculation mistake in textbook
dTt=dTc/(eff_m*(1+f)) //Temperature difference across turbine
pr_t=1/((1-(dTt/(To3*eff_t)))^(k/(k-1))) //Turbine pressure ratio
To4=To3-dTc //Exit Stagnation temperature of turbine in K
u=ai*Mi //Flight velocity in m/s
sig=1/(((Is*g)/u)+1) //Jet speed ratio
Ce=u/sig //Exit velocity in m/s
Cj=Ce //Jet velocity in m/s, Since Cj is due to exit velociy
Te=To4-(Ce^2/(2*Cp)) //Exit temperature in K
Tes=To4-((To4-Te)*eff_n) //Exit temperature in K, (At isentropic process)
pr_n=(To4/Te)^(k/(k-1)) //Nozzle pressure ratio
ae=sqrt(k*R*Te) //Exit Sound velocity in m/s
Me=Ce/ae //Exit mach number
printf('(A)Fuel-air ratio is %3.5f \n (B)Compressor, turbine, nozzle pressure ratio are %3.3f, %3.3f, %3.2f respectively\n (C)Mach number at exhaust jet is %3.3f',f,pr_c,pr_t,pr_n,Me)
|
ef0046ea9a6396dcc14f02d83e72ee288be90d00
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3014/CH3/EX3.7/Ex3_7.sce
|
a2e097f826cedf22cef972ab13b15868740f0da7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 897
|
sce
|
Ex3_7.sce
|
clc
// given that
theta1_deg = 5 // Absolut degree part of angle for first angle
theta1_min = 23//remainder minute part of angle for first angle
theta2_deg = 7 // Absolut degree part of angle for second angle
theta2_min = 37//remainder minute part of angle for second angle
theta3_deg = 9 // Absolut degree part of angle for third angle
theta3_min = 25//remainder minute part of angle for third angle
printf("Example 3.7 \n")
val1 = sin((theta1_deg+ theta1_min/60)*%pi/180)// Sin value for first angle
val2 = sin((theta2_deg+ theta2_min/60)*%pi/180) //Sin value for second angle
val3 = sin((theta3_deg+ theta3_min/60)*%pi/180)//Sin value for third angle
ratio_21 = val2/val1
ratio_31 = val3/val1
printf("\n Interatomic layer separation ratios in crystal are as\n 1 : %f : %f",ratio_21,ratio_31)
printf("\n Above relation shows that crystal is simple cubic crystal structure.")
|
4bccc2f0fddd216a3ca7b0d64b348115e24a88d7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/135/CH8/EX8.6/EX6.sce
|
2adf534639ad6434acd6e08b3363052e1e8d4fc7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 437
|
sce
|
EX6.sce
|
// Example 8.6: gm, Ri, Ro, AV
clc, clear
VGSQ=8; // in volts
VT=3; // in volts
k=0.3e-3;
// From Fig. 8.18
RF=10e6; // in ohms
RD=2.2e3; // in ohms
gm=2*k*(VGSQ-VT); // in Siemens
Ri=RF/(1+gm*RD); // in ohms
Ro=RF*RD/(RF+RD); // in ohms
AV=-gm*Ro;
gm=gm*1e3; // in mili-Siemens
Ri=Ri*1e-6; // in mega-ohms
Ro=Ro*1e-3; // in kilo-ohms
disp(gm,"gm (mS) =");
disp(AV,"AV =");
disp(Ri,"Ri (MΩ) =");
disp(Ro,"Ro (kΩ) =");
|
dbf1f35a2427c40364d1c3ba9b6b7c541c9715dc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/842/CH11/EX11.1/Example11_1.sce
|
6e97a14ac30fd266981521c16054b60e463e5502
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 248
|
sce
|
Example11_1.sce
|
//clear//
//Example11.1:Root locus Analysis of Linear Feedback Systems
//Continuous Time Systems
//Refer figure 11.12(a) in Openhiem &Willksy page 840
s = %s;
H = syslin('c',[1/(s+1)]);
G = syslin('c',[1/(s+2)]);
F = G*H;
clf;
evans(F,3)
|
f0629d48f4062b86e43dda261107e01dd287cc6d
|
9f9364e082d4bc2f7ee5cbd7a489642615821873
|
/src/testCases/test1-9.tst
|
287ee0770078c4f9ab27072ef37715fd3b2bb65d
|
[] |
no_license
|
abrageddon/DLX-Opt
|
4602617f83ddf8cb0fea83fecd2faa362849dfcd
|
20038078f11a7ae67e7ab336e551e23966551290
|
refs/heads/master
| 2021-01-01T05:49:33.218016
| 2013-03-14T06:08:45
| 2013-03-14T06:08:45
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 462
|
tst
|
test1-9.tst
|
main
var a111, b222, c333, d444, e555, f666;
{
let a111 <- 666;
let b222 <- 555;
let c333 <- 444;
let d444 <- 333;
let e555 <- 222;
let f666 <- 111;
if a111 > b222 then
let a111 <- call inputnum()
fi;
if b222 > a111 then
let b222 <- call inputnum()
fi;
if a111 + b222 > 0 then
call outputnum(a111);
call outputnewline()
fi;
if a111 * b222 >= c333 / 22 then
call outputnum(f666);
call outputnewline()
fi
}.
|
54df594b4a830c48b49a506cfc90093e1fdf3e2c
|
fbd17575bab2ee4dc49cc7d13b5b94d24ab9482c
|
/TP4/rendre/cholesky.sci
|
432cc99bb14af440e13937b6af77b732be07167d
|
[] |
no_license
|
1saac-W/MT09-Analyse-Num-rique
|
05b509981dfa00e3b7b550716b1487cbbf0a3fed
|
0853f8053254f5dd23179073187ada3d936aff84
|
refs/heads/master
| 2020-09-27T04:34:36.549125
| 2020-01-05T16:02:18
| 2020-01-05T16:02:18
| 226,431,201
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 742
|
sci
|
cholesky.sci
|
function [C] = cholesky(A)
[n,m] = size(A);
if(n~=m)
disp('size[A]=',size(A));
error('A n est pas matrice carrée');
end
if(A(1,1)<0)
disp('A(1,1)=',A(1,1));
error('A(1,1) n est pas positif');
end
C = zeros(n,m);
for j = 1:n
if(j == 1)then
c2 = A(1,1);
else
c2 = A(j,j) - C(j,1:j-1)* C(j,1:j-1)';
end
if(c2 <= 0)
error('B(j,j)^2 n est pas positif');
end
C(j,j) = sqrt(c2);
for i = j+1:n
if(j == 1)then
c3 = A(i,1);
else
c3 = A(i,j)-C(i,1:j-1)*C(j,1:j-1)';
end
C(i,j) = 1/C(j,j)*c3;
end
end
endfunction
|
2e1cf5a50d9838c07616ade48b4d36bd6f55b14f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3137/CH7/EX7.8/Ex7_8.sce
|
15c5c571164103a5ba6a6cdc1d6b9cd47f279e7c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 319
|
sce
|
Ex7_8.sce
|
//Initilization of variables
l=800*300 //lb
//Calculations
//Summing forces in horizontal and vertical direction
theta=atand(40/150) //degrees
H=l/tand(theta) //lb
T_max=sqrt(l^2+H^2) //lb
//Result
clc
printf('The maximun tension is %flb and H=%flb',T_max,H)
//Decimal accuracy causes discrepancy in answers
|
150c767ba79265f16207cf5718597d44f08e75a5
|
717ddeb7e700373742c617a95e25a2376565112c
|
/3044/CH2/EX2.12/Ex2_12.sce
|
eda80f1d8f9f35b21cb75a29afe7f5abbccf37b5
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 848
|
sce
|
Ex2_12.sce
|
//Variable declaration
l = [221, 234, 245, 253, 265, 266, 271, 272, 274, 276,276, 276, 278, 284, 289, 290, 290, 292, 292, 296,297, 298, 300, 303, 304, 305, 305, 308, 308, 309,310, 311, 312, 314, 315, 315, 323, 330, 333, 336,337, 338, 343, 346, 355, 364, 366, 373, 390, 391] //list of all height entries
//Calculation
np = length(l)*0.25 // np-losition in list l[],for first quartile p=1/4
Q1 = l(13) // as np=12.5,so we round up to 13th
np = length(l)*0.5 //for second quartile p=1/2
np = int(np)
Q2 = (l(np) + l(np))*0.5 // Average of 25th and 26th
np = length(l)*0.75 //for third quartile p=3/4
Q3 = l(38) // round up to 38th
rng = max(l)-min(l) //range of height
int_rng = Q3-Q1 //interquartile range of height
//Results
printf ( "range : %d nm",rng)
printf ( "interquartile range : %d nm",int_rng)
|
c9b8e2202c51f6f8f3ad86994ab82e49b713cbc5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/67/CH4/EX4.1/example41.sce
|
114edcfa93070c1e133b1bb6c4a87c29d9c62179
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 116
|
sce
|
example41.sce
|
//Example 4.1
//Find the DTFT of (a^n)u[n],for |a|<1
clc;
syms w a n;
x=a^n;
X=symsum(x*exp(-%i*w*n),n,0,%inf);
|
a68900358bfe6d98f0e6729f849f9a56e47ae78b
|
086abc1844ed5ad877c4686d9c03c5525231d376
|
/vfgen/example_scilab/pendulum_demo.sce
|
0e24580aa09132ed35ffebc1192e575775382963
|
[] |
no_license
|
WarrenWeckesser/WarrenWeckesser.github.io
|
dbdea0b7ab1db8566a05dcd1dadb37a1b34d3432
|
80eb8ec9242ebe041c908d06f42f14267765d341
|
refs/heads/master
| 2023-08-14T22:40:01.333112
| 2023-07-22T19:32:04
| 2023-07-22T19:32:04
| 19,352,821
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,466
|
sce
|
pendulum_demo.sce
|
//
// pendulum_demo.sce
//
// Scilab demonstration script that uses the vector field
// defined in pendulum.sci
//
// This file was generated by the program VFGEN, version: 2.5.0-dev
// Generated on 14-May-2014 at 21:04
//
// Load the vector field definition and the jacobian.
exec('pendulum.sci');
Pi = %pi;
// Create data for an x_mdialog.
tstr = 'Enter initial conditions, parameters, stop time, and number of samples:';
field_names = ['theta';'v';'g';'b';'L';'m';'Stop Time';'Num Samples'];
default_field_values = ['-0.01+Pi';'0.0';'9.81';'0.0';'1.0';'1.0';'10.0';'201'];
t0 = 0.0;
field_values = x_mdialog(tstr,field_names, default_field_values);
while (field_values ~= [])
// Pull the data from the x_mdialog values.
real_values = evstr(field_values);
x0 = real_values(1:2);
params = real_values(3:6);
tfinal = real_values(7);
nsamples = real_values(8);
tsamples = linspace(t0,tfinal,nsamples);
// Call the ODE solver.
sol = ode(x0,t0,tsamples,list(pendulum_vf,params),list(pendulum_jac,params));
// Plot the solution.
n = size(sol,2);
clf;
subplot(2,1,1);
plot(tsamples(1:n),sol(1,:));
ax = gca();
ax.x_label.text = 't';
ax.y_label.text = 'theta';
subplot(2,1,2);
plot(tsamples(1:n),sol(2,:));
ax = gca();
ax.x_label.text = 't';
ax.y_label.text = 'v';
// Get another set of data from the user.
field_values = x_mdialog(tstr,field_names, field_values);
end;
|
a68a38f1226bac3a2a9a76c9daec346dbb8be594
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/162/CH1/EX1.4/example14.sce
|
0ec75bb5d9c9d39952f057946ca4067543f8ad2f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 383
|
sce
|
example14.sce
|
//Example 1.4
//Time Shifting And Scaling
clc;
n=-2:8;
x=[0,0,0,1,2,3,4,4,0,0,0];
n1=n+3;
subplot(2,2,1);
plot2d3(n1,x);
xtitle('x[n-3]');
subplot(2,2,2);
plot2d3(ceil(n/3),x);
xtitle('x[3n]');
subplot(2,2,3);
n2=-8:2;
plot2d3(n2,x($:-1:1));
xtitle('x[-n]');
subplot(2,2,4)
n3=n2+3;
plot2d3(n3,x($:-1:1));
xtitle('x[-n+3]');
figure
plot2d3(n,x);
xtitle('x[n]');
|
4be8c53273c93fad2a839cf1a6ff97268ec811b9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1409/CH8/EX8.10/8_10.sce
|
36055ca553f142a7f2d6ab5dbc54bd0a3969f56e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 267
|
sce
|
8_10.sce
|
clc;
//page no 8-50
//Example 8.10
R=60;//in ohms
fr=2*10^6;//in Hz
C=50*10^(-12);//in farads
//we know that fr=1/(2*%pi*sqrt(L*C));
L=1/((2*%pi*fr)^2*C);
L1=L*10^(6);
disp(+'micro H',L1,'L=');
Q=(2*%pi*fr*L1*10^(-6))/R;
disp(Q,'Q of tuned circuit is ');
|
21fc9e1bb171b563563337b5d85eddc1e36e0764
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/564/DEPENDENCIES/12_2data.sci
|
b735096a8a1c7d79928b8f4745fd34462c13e5d5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 302
|
sci
|
12_2data.sci
|
AD=25;//distence between point A and D,given in mm
DC=20;//distence between point D and centroid,given in mm
DG=25;//distence between point G and D,given in mm
CF=25;//distence between point F and centroid,given in mm
Load=5000;//load,given(5kN in N)
CL=75;//distence between the centroid and load
|
c3fe8736a619412c00d7eefb12f1b6c0a5df3558
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/filtord/filtord9.sce
|
ddad1d242a743f8cb06d1a7c501326be961dcef4
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 239
|
sce
|
filtord9.sce
|
a=[1 2 3 45 6];
b=[2 3 4 56 7];
y=filtord(b,a,1);
disp(y);
//output
//!--error 10000
//too many input arguments
//at line 6 of function narginchk called by :
//at line 3 of function filtord called by :
//y=filtord(b,a,1);
|
23256183a7687a1cc903b74ee540e5e8e163d995
|
33fb8ad2c9908d12230e378cb1f793922b817e68
|
/Projet - Calcul d’un put américain et frontière d’exercice/main.sci
|
4f2446c7d4065dd3746e4285cc57da9bdd6308df
|
[
"MIT"
] |
permissive
|
AmineKheldouni/Finance-Stochastic-Calculus
|
eca352c4f7ce0c1f71c8ce09c05b1380190e467f
|
c88b01728daa5e1a6a4aa49992e797e6b93633fe
|
refs/heads/master
| 2020-04-14T22:29:26.264109
| 2019-01-04T23:27:10
| 2019-01-04T23:27:10
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 41
|
sci
|
main.sci
|
stacksize(10000000);
T = 1;
delta = 0;
|
f860247aa3784e4729cf861550142a9b3a2ec469
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2414/CH10/EX10.5/Ex10_5.sce
|
5bd4484194f6ed5c365b7adbeeb5aaf45b161a18
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 258
|
sce
|
Ex10_5.sce
|
clc;
close();
clear();
//page no 352
//prob no. 10.5
B=20; //kHz
C=160; //kb/s
M=2^(C/B/2);
mprintf('(a) Number of encoding levels ,M= %i\n',M);
SN=2^(C/B)-1;
SNdb=10*log10(SN) //S/N in db
mprintf(' (b) S/N= %i S/N(db)=%.2f dB',SN,SNdb);
|
0dc46949bb2707022c6874c9a4de582d4e887e2f
|
e2ae697563b1b764d79ea1933b555ab0d5e3849c
|
/macros/GainPopupMenu.sci
|
784e947389bbbc2fed6837a56db71f85251b41f5
|
[] |
no_license
|
gq-liu/IPDesignLab
|
c49b760740f47ec636232a6947aecb3c0626518a
|
b2f9a9eecad6616c99a2ec20fcceb14fb3ed0c3f
|
refs/heads/master
| 2022-01-18T13:30:55.972779
| 2019-05-06T17:23:12
| 2019-05-06T17:23:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,562
|
sci
|
GainPopupMenu.sci
|
function GainPopupMenu();
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
// Authors
// Holger Nahrstaedt - 2010
// Ishan Pendharkar - 2001-2007
global kevans k marked_handle g;
global handles;
select get(handles.MaxGain,'value')
case 1 then,
kevans=10;
case 2 then,
kevans=50;
case 3 then,
kevans=100;
case 4 then,
kevans=500;
case 5 then,
kevans=1000;
case 6 then,
kevans=5000;
case 7 then,
kevans=10000;
case 8 then,
kevans=50000;
case 9 then,
kevans=100000;
case 10 then,
[ok,kevans]=rlsettings();
end;
if isfield(handles,'GainSlider') then
if get(handles.GainSlider,'value')> kevans then,
set(handles.GainSlider,'value',kevans);
set(handles.ScaleValue,'string','Gain= '+string(kevans));
end;
set(handles.GainSlider,'max',kevans)
end;
whichplot(g);
marked_handle=[];
//return;
handles = resume(handles);
endfunction
|
a408e136f1c76601d1c11e95a3d77131296c8710
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2192/CH4/EX4.14/4_14.sce
|
fed2e03733faeac85ae308a98418bc1e8c0ff6a8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 741
|
sce
|
4_14.sce
|
clc,clear
printf('Example 4.14\n\n')
P=15*1000 //power supplied
V=220 //supply voltage
k=0.6;e=0.9; //radiating efficiency and emissivity
rho = 1.016*10^-6 //specific resistance
l_by_d2 = %pi*V^2/(4*rho*P) //ratio of l and d^2 (i)
T1=1000+273; T2=600+273; //temperatures of wire and charge
H=5.72*k*e*(T1^4-T2^4)/100^4 //heat dissipated from surface
//since heat dissipated = electrical power input;
dl2=( P/(H*%pi) )^2//product of d and l (ii)
//multiplying expression(i) and expression (ii)
l=(l_by_d2*dl2)^(1/3) //length of wire
printf('Length of wire = %.2f m\n',l)
d= sqrt(dl2)/l //diameter of wire
printf('Diameter of wire = %.2f mm',1000*d)
|
aae50a095fd6284fcb8a61172305122e4a57c4db
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1835/CH4/EX4.16/Ex4_16.sce
|
92656221a2e12edab69cf846f96b69f21f6022f6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 531
|
sce
|
Ex4_16.sce
|
//Chapter-4, Illustration 16, Page 148
//Title: Gears and Gear Drivers
//=============================================================================
clc
clear
//Input data
Ta=12// no of teeth on gear A
Tb=60// no of teeth on gear B
N=1000// speed of propeller shaft in rpm
Nc=210// speed of gear C in rpm
//Calculations
Nb=(Ta*N)/Tb// speed of gear B in rpm
x=(Nb-Nc)
Nd=Nb+x// speed of road wheel driven by D
//Output
printf('speed of road wheel driven by D= %d rpm',Nd)
|
8a3cf6071e184704a7412159c38e1b8bf4fa0252
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/rc2ac/rc2ac5.sce
|
d4c16dc826356b7f9233941050e8719fa6e75404
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 232
|
sce
|
rc2ac5.sce
|
//check o/p for i/p vector containing terms that are greater than one
k = [1 2 3 4 5 6 7];
r0 = 0.1;
a = rc2ac(k,r0)
disp(a);
//output
//// Inf
// - Inf
// Inf
// Nan
// Nan
// Nan
// Nan
// Nan
|
64eebb1e6d220ee9224b1346612ca6f9482a83e4
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set14/s_Materials_Science_R._S._Khurmi_And_R._S._Sedha_2153.zip/Materials_Science_R._S._Khurmi_And_R._S._Sedha_2153/CH7/EX7.5.b/ex_7_5_b.sce
|
126271f6d8cff48a3432185648a72c59d135d34b
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 450
|
sce
|
ex_7_5_b.sce
|
errcatch(-1,"stop");mode(2);// Example 7.5.b: ultimate tensile stress
;
;
format('v',6)
yl=34;//yeild load in kN
ul=61;//ultimate load in kN
fl=78;//final length in mm
glf=60;//gauge length of fratture in mm
fd=7;//final diamtere in mm
d=12;//specimen diamtere in mm
sl=62.5;//specimen length in mm
A=(%pi*(d)^2)/4;// in meter square
uts=((ul*10^3)/(A));//ultimate tensile strangth in N/mm^2
disp(uts,"ultimate tensile strangth in N/mm^2")
exit();
|
f9847d29f7e598da55f686d61cd5a15b0eb2f832
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2582/CH6/EX6.9/Ex6_9.sce
|
d354b009e9587fc5723af005de892b6a210d07d1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 154
|
sce
|
Ex6_9.sce
|
//Ex 6.9
clc;clear;close;
n=8;//no. of bits
f=1*10^6;//Hz(Clock frequency)
TC=1/f*(n+1);//seconds
disp(TC*10^6,"Conversion time in micro seconds");
|
a51a56b0ff07b05b995adaee2a296710df79ed9f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2234/CH2/EX2.12/ex2_12.sce
|
4d907bbacb799fc63c2d3dbbfd37a181272fbcd1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 77
|
sce
|
ex2_12.sce
|
clc;
disp("H field at the center is nearly the same."); //displaying result
|
1df464e60cf5e59294557df1e81b36f6f8841f58
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3537/CH1/EX1.44/Ex1_44.sce
|
67ae0ffdb730ad1307d4518266223b4f4e9ad614
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 275
|
sce
|
Ex1_44.sce
|
//Example 1_44
clc();
clear;
//To find the refractive index of the transparent sheet
lemda=5460*10^-8 //units in cm
t=6.3*10^-4 //units in cm
n=6
u=(n*lemda)/t+1
printf("The refractive index of the transparent sheet is %.2f",u)
|
9a4013c1b58b2b1ae7009e80514ebc497d9c733e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3755/CH6/EX6.14/Ex6_14.sce
|
1d04cf6cab325246d0999992e9b01f7a3aaf8381
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 552
|
sce
|
Ex6_14.sce
|
clear
//
//
//
//Variable declaration
h=6.62*10^-34; //planck's constant(J-sec)
m=9.1*10^-31; //mass of electron(kg)
mp=1836*m; //mass of photon(kg)
c=3*10^8; //velocity of light(m/sec)
e=1.6*10^-19; //charge of electron(c)
//Calculations
E=m*c^2; //energy(J)
v=sqrt(2*E/mp); //velocity(m/sec)
lamda=h*10^10/(mp*v); //de-broglie wavelength of proton(angstrom)
//Result
printf("\n de-broglie wavelength of proton is %0.4f angstrom",lamda)
printf("\n answer in the book is wrong")
|
4a6929cc00708bbc699d622f6ad3a7bedc4649d2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/476/CH7/EX7.11/Example_7_11.sce
|
c19e84ef9acefc664bb3a16775638240f09b47f7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,436
|
sce
|
Example_7_11.sce
|
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 7
//Properties of Solutions
//Example 11
clear;
clc;
//Given:
xb = [0 0.2 0.4 0.6 0.8 1.0];
pa_bar = [0.457 0.355 0.243 0.134 0.049 0];
pb_bar = [0 0.046 0.108 0.187 0.288 0.386];
//To confirm mixture conforms to Raoult's Law and to determine Henry's law constant
clf
xa = 1-xb;
plot(xa,pa_bar);
plot(xa,pb_bar);
xtitle(" ","Mole fraction of A","Partial Pressure");
//For Raoult's Law plotting
x = linspace(0,1,6);
y1 = linspace(0,0.457,6);
y2 = linspace(0.386,0,6);
plot2d(x,y1,style=3);
plot2d(x,y2,style=3);
//For Henry's law plotting
x = [0 0.2 0.4 0.6 0.8 1.0];
//Form the partial presures plot of component A and B
yh1(1) = 0; yh1(2) = 0.049; //For component A
for i = 3:6
yh1(i) = yh1(i-1)+(x(i)-x(i-1))*((yh1(2)-yh1(1))/(x(2)-x(1)));
end
yh_2(6) = 0; yh_2(5) = 0.046; //For component B
i = 4;
while (i~=0)
yh_2(i) = yh_2(i+1) + (x(i)-x(i+1))*((yh_2(6)-yh_2(5))/(x(6)-x(5)));
i = i-1;
end
plot2d(x,yh1,style=6);
plot2d(x,yh_2,style=6);
legend("Partial pressure "," ","Raoults law"," ","Henrys Law");
//(a)
mprintf('From the graph it can be inferred that, in the region where Raoults law is obeyed by A, the Henrys law is obeyed by B, and vice versa');
//(b)
//Slope of Henry's law
mprintf('\n For component A, Ka = %f bar',yh1(6));
mprintf('\n For component B, Kb = %f bar',yh_2(1));
//end
|
64df98faf2739505ee2915b770548acbe8199f0a
|
4a1effb7ec08302914dbd9c5e560c61936c1bb99
|
/Project 2/Experiments/GFS-GCCL-C/results/GFS-GCCL-C.vowel-10-1tra/result6s0.tst
|
c0e554642a33cc44be617de0f0a9325670c3a0ba
|
[] |
no_license
|
nickgreenquist/Intro_To_Intelligent_Systems
|
964cad20de7099b8e5808ddee199e3e3343cf7d5
|
7ad43577b3cbbc0b620740205a14c406d96a2517
|
refs/heads/master
| 2021-01-20T13:23:23.931062
| 2017-05-04T20:08:05
| 2017-05-04T20:08:05
| 90,484,366
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 974
|
tst
|
result6s0.tst
|
@relation vowel
@attribute TT integer[0,1]
@attribute SpeakerNumber integer[0,14]
@attribute Sex integer[0,1]
@attribute F0 real[-5.211,-0.941]
@attribute F1 real[-1.274,5.074]
@attribute F2 real[-2.487,1.431]
@attribute F3 real[-1.409,2.377]
@attribute F4 real[-2.127,1.831]
@attribute F5 real[-0.836,2.327]
@attribute F6 real[-1.537,1.403]
@attribute F7 real[-1.293,2.039]
@attribute F8 real[-1.613,1.309]
@attribute F9 real[-1.68,1.396]
@attribute Class{0,1,2,3,4,5,6,7,8,9,10}
@inputs TT,SpeakerNumber,Sex,F0,F1,F2,F3,F4,F5,F6,F7,F8,F9
@outputs Class
@data
0 0
5 6
4 3
8 0
10 6
3 3
5 10
2 1
2 1
3 3
1 1
10 10
7 7
10 10
2 1
5 3
8 6
3 3
8 6
6 3
4 3
6 6
0 0
10 1
0 0
1 1
9 9
4 4
3 2
6 7
7 7
6 7
7 7
0 0
6 6
10 10
10 1
6 6
0 0
3 3
4 4
0 0
8 7
7 7
9 9
1 1
0 9
1 1
1 9
4 4
8 7
3 2
3 3
3 3
5 3
8 8
10 6
7 7
6 6
9 9
3 3
2 1
10 8
0 1
8 7
1 1
7 7
5 3
4 3
6 6
8 7
9 0
2 2
4 6
2 1
9 0
1 1
0 0
1 2
4 4
5 3
5 6
9 9
1 8
7 7
5 10
10 6
6 6
9 9
2 0
5 10
2 0
4 6
9 8
2 10
7 7
8 8
7 7
9 7
|
5d77531006815c72126b8d82e29fa9ca0db22161
|
ed81f401dcd2ce0399cec3a99b6e5851e62e74ca
|
/data/github.com/holgern/sciflt/7df5b8ed173f46093aaa0ffd4ccf5c65d7ff64c3/macros/fcmeans.sci
|
febb4814d8150c1c7c4c83b67a53da92489efd51
|
[
"MIT"
] |
permissive
|
smola/language-dataset
|
9e2a35340d48b497cd9820fa2673bb5d482a13f7
|
4d1827d1018b922e03a48a5de5cb921a6762dda3
|
refs/heads/master
| 2023-03-10T12:42:04.396308
| 2022-07-15T18:05:05
| 2022-07-15T18:05:05
| 143,737,125
| 18
| 3
|
MIT
| 2023-03-06T05:01:14
| 2018-08-06T14:05:52
|
Python
|
UTF-8
|
Scilab
| false
| false
| 4,504
|
sci
|
fcmeans.sci
|
function [centers,U,ofun,ofunk,em]=fcmeans(Xin,c,m,maxiter,epsilon,verbose)
//Data clustering using fuzzy c-means.
//Calling Sequence
//[centers,U,ofun,ofunk,em]=fcmeans(Xin,c,m [,maxiter [,epsilon [,verbose]]])
//Parameters
// Xin:matrix of reals.The pairs of inputs points.
// c:integer, number of clusters.
// m:scalar, fizzifier constant.
// maxiter:integer, maximum number of iterations. The defaul value is 100
// epsilon:scalar, minimum change value between two consecutive iterations. The default value is 0.001
// verbose:boolean, display information.The default value is %f.
//Description
// <literal>fcmeans </literal> find the <literal>c</literal> number of clusters in the
// data set <literal>Xin</literal> using fuzzy c-means algorithm. The centers for
// each cluster are returned in <literal>centers</literal>. <literal>U</literal> contains
// the grade of membership of each <literal>Xin</literal> point in each cluster.
// <literal>ofun</literal> is the last objetive function. <literal>ofunk</literal> is the
// objetive function in each iteration. <literal>em</literal> is the exit mode, if
// <literal>em</literal> is <literal>%t</literal> then the maximum number of iteration
// <literal>maxiter</literal> was reached, if <literal>em</literal> is <literal>%f</literal>
// then the minimum change between iteration <literal>epsilon</literal> was
// reached.
//Examples
// // Take 50 random pairs of points
//Xin=rand(100,2);
// // Find 7 clusters
// [centers,U,ofun,ofunk]=fcmeans(Xin,7,2);
// // Display information
// scf();clf();
// subplot(2,2,1);
// plot2d(Xin(:,1),Xin(:,2),-1,rect=[0 0 1 1]);
// xtitle("Input pair of points","x","y");
// subplot(2,2,3);
// plot2d(centers(:,1),centers(:,2),-2,rect=[0 0 1 1]);
// xtitle("Cluster centers","x","y");
// subplot(2,2,2);
// plot(ofunk);
// xtitle("Objetive function in each iteration","k","ofun");
//See also
//subclust
//inwichclust
// Authors
// Jaime Urzua Grez
// Holger Nahrstaedt
// ----------------------------------------------------------------------
// Fuzzy C-Means
// ----------------------------------------------------------------------
// This file is part of sciFLT ( Scilab Fuzzy Logic Toolbox )
// Copyright (C) @YEARS@ Jaime Urzua Grez
// mailto:jaime_urzua@yahoo.com
//
// 2011 Holger Nahrstaedt
// ----------------------------------------------------------------------
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
// ----------------------------------------------------------------------
// Check and get RHS
rhs=argn(2);
if (rhs<3) then
error("fcmeans need at least 3 parameters.");
end
if (rhs<4) then
maxiter=100; // Default number of iterations
end
if (rhs<5) then
epsilon=0.001; // Default maximum difference between two consecutive steps
end
if (rhs<6) then
verbose=%f; // No verbose mode
end
n=size(Xin,1); // Number of pairs of inputs
nd=size(Xin,2); // Dimension of pairs of inputs
if (m<=1) then
error("The m parameter must be great than 1.");
end
if (c<2)|(c>=n) then
error("The number ob clusters must be 1<c<(number_pair_of_points-1)");
end
// Initialize and normalize initial U
U=rand(n,c);
U=U ./ ( sum(U,"c").*.ones(1,c) );
// Initialize some internal values
niter=0; // Number of iterations
lofun=%inf; // Las objetive function
ofun=0; // Objetive function
goon=%t;
ofunk=[];
// Make the real work
while (niter<=maxiter)&(goon)
// Compute the centers
Um=(U').^m;
centers=(Um*Xin) ./ ( sum(Um,"c").*.ones(1,nd) );
// Calculate the square distance and the objetive function
sd=[];
for k=1:c,
// sd=[sd sum((Xin-centers(k,:).*.ones(n,1)).^2,"c")];
sd=[sd sum((Xin-repvec(n,centers(k,:))).^2,"c")];
end
ofun=sum((Um').*sd);
if (verbose & (niter>0) ) then
write(%io(2),"Iteration = "+string(niter)+" ofun="+string(ofun));
end
if (abs(lofun-ofun)>epsilon) then
ofunk=[ofunk;ofun];
lofun=ofun
sd=sd.^(1/(m-1));
// Update the membership
for j=1:c,
s1=0;
for k=1:c,
s1=s1+sd(:,j)./sd(:,k);
end
U(:,j)=(1 ./ s1);
end
niter=niter+1;
else
goon=%f;
end
end
// End mode
if (niter>maxiter) then
em=%t;
else
em=%f;
end
endfunction
|
0b286db9f7ab61bab9a1e58ee99ebf111548eadb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2870/CH6/EX6.7/Ex6_7.sce
|
7716dd5168430f93f95b57d2046f33113c4e941f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 186
|
sce
|
Ex6_7.sce
|
clc;clear;
//Example 6.7
//given data
TL=-5+273;//in C
TH=21+273;//in C
QH=37.5;
//calculations
COPHP=1/(1-TL/TH);
Wnet=QH/COPHP;
disp(Wnet,'minimum power required in kW')
|
660195f8402ddc4429a07471c365af582605e6a6
|
491f29501fa7d484a5860f64aef3fa89fb18ca3d
|
/.sandbox/robotics/HuMAns_pa10/Visu/Load.sci
|
a14d782265d149e07a1730447e5f0e428f5a7dce
|
[
"Apache-2.0"
] |
permissive
|
siconos/siconos-tutorials
|
e7e6ffbaaea49add49eddd317c46760393e3ef9a
|
0472c74e27090c76361d0b59283625ea88f80f4b
|
refs/heads/master
| 2023-06-10T16:43:13.060120
| 2023-06-01T07:21:25
| 2023-06-01T07:21:25
| 152,255,663
| 7
| 2
|
Apache-2.0
| 2021-04-08T12:00:39
| 2018-10-09T13:26:39
|
Jupyter Notebook
|
UTF-8
|
Scilab
| false
| false
| 1,897
|
sci
|
Load.sci
|
// Copyright (C) INRIA 1999-2005
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 as published
// by the Free Software Foundation.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
// Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program; if not, write to the Free Software Foundation, Inc.,
// 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
// Author(s): Pierre-Brice Wieber
// Affiliation(s): INRIA, team BIPOP
// Email(s): Pierre-Brice.Wieber@inria.fr
//
// Description:
//
// Modifications:
// $Log: Load.sci,v $
// Revision 1.6 2005/07/28 01:44:08 wieber
// Fixed some tabulations, aka, Florence should stop using nedit.
//
// Revision 1.5 2005/07/26 13:08:22 billet
// Modification of VRML Visualization files structure for more simplicity
//
// Revision 1.4 2005/07/25 16:15:58 billet
// Adding of VRML Visualization in LagrangianModel repertory in order to have a less complex tree structure
//
// Revision 1.3 2005/03/23 21:11:17 rpissard
// prefix libraries with lib and SCIDIR use for Makefiles
//
// Revision 1.2 2005/03/12 15:31:41 rpissard
// Unix Makefile tuning
//
// Revision 3.0.0.1 2005/02/08 13:05:34 rpissard
// version start HuMAnS
//
//
exec('KickStart.sci');
[LIBPATH, LIBEXT] = LibTools();
exec('SomeDefinitions.sci');
idlib=link(LIBPATH+'/libLagrangianModel'+LIBEXT);
addinter(idlib, 'LagrangianGateway',...
["Contact",...
"ContactHessian",...
"ContactJacobian",...
"Inertia",...
"NLEffects",...
"JacobianNLEffects",...
"JacobianVelocityNLEffects",...
"Tags"]);
exec('Visu.sci');
|
1dcf801383f290413efd737041dd010ef678574e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2705/CH9/EX9.5/Ex9_5.sce
|
e916c7e40220ef0eff8eee0bb08d76738110e58d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 974
|
sce
|
Ex9_5.sce
|
clear;
clc;
disp('Example 9.5');
// aim : To determine
// the rate of energy transfer between furnace and the sphere and its direction
// Given values
l = 1.25;// internal side of cubical furnace, [m]
ti = 800+273;// internal surface temperature of the furnace,[K]
r = .2;// sphere radious, [m]
epsilon = .6;// emissivity of sphere
ts = 300+273;// surface temperature of sphere, [K]
sigma = 5.67*10^-8;// [W/m^2/K^4]
// Solution
Af = 6*l^2;// internal surface area of furnace, [m^2]
As =4 *%pi*r^2;// surface area of sphere, [m^2]
// considering internal furnace to be black
Qf = sigma*Af*ti^4*10^-3;// [kW]
// radiation emitted by sphere is
Qs = epsilon*sigma*As*ts^4*10^-3; // [kW]
// Hence transfer of energy is
Q = Qf-Qs;// [kW]
mprintf('\n The transfer of energy will be from furnace to sphere and transfer rate is = %f kW\n',Q);
// There is some calculation mistake in the book so answer is not matching
// End
|
1dcddeffb191da553345c4c2680eb39aa9536224
|
19328eebc5c7a68ae206f422c775bfd41f2eb6e6
|
/SimuladorDeVirus/modelagem/runSingleNodeModule.sce
|
7874c7806d285e7e41c7cd314fda91879a0ef621
|
[] |
no_license
|
felipesfaria/ufrj.dcc.br.AD.2014.2.simulacao
|
cac967fc8e14db646ad5a4e5d3cef7c164d93583
|
c77899263522ed2d1453bf11c7b838240168f94d
|
refs/heads/master
| 2021-01-15T13:11:10.798718
| 2015-01-13T00:05:04
| 2015-01-13T00:05:04
| 25,879,139
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 511
|
sce
|
runSingleNodeModule.sce
|
function RET= runSingleNodeModule(R4)
Pi = [0,0,0,0];
O=1;P=2;R=3;F=4;
r1=2;r2=0.8;r3=3;r4=R4;lmbd=1/(12*30*24);cv=10;cs=9;
Q = { 0, r2, 0, 0;
0, 0, r4, lmbd;
r3, 0, 0, 0;
r1, 0, 0, 0};
M = {1,1,1,1;
r2,0,-r3,-r1;
r2,-r4-lmbd,0,0;
0,r4,-r3,0;
0,lmbd,0,-r1};
//A={M(1:3,1:4);M(5:5,1:4)}
A=M(1:4,1:4);
b={1;0;0;0};
x = Gauss(A,b)
Pi=x'
Cv=(1-Pi(O))*cv
Cs=(Pi(O)+Pi(P))*cs*r4
Ct=Cv+Cs
printf('%f;%f;%f;%f;%f\n',r4,Pi(O),Cv,Cs,Ct);
RET={r4;Pi(O);Cv;Cs;Ct}
endfunction
|
948d3c5f1b3243232a67b54c028597722420cc65
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1949/CH5/EX5.6/Ex5_6.sce
|
9b030c9d21f4bf93c14d1f2a336a035b1667b6c3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 679
|
sce
|
Ex5_6.sce
|
//Chapter-5,Example 5_6,Page 5-25
clc()
//Given Values:
mn=1.67*10^-27 //mass of neutron
h=6.6*10^-34 //Planck's constant
lam=3*10^-10 //wavelength of neutron
d=3.036*10^-10 //lattice spacing
//Calculations:
//we know, lam=h/sqrt(2*m*E) //de Broglie wavelength
E1=h^2/(2*mn*lam^2) //Energy of neutron in joules
E=E1/(1.6*10^-19) //Energy of neutron in electron-Volts
printf('Energy of neutron is =%.5f eV \n \n',E)
//using bragg's law for first order lam=2d sin(theta)
theta=asin(lam/(2*d))*180/%pi //glancing angle in degrees
printf(' Glancing angle at which first orde reflection occurs is =%.0f degrees \n',theta)
|
103b80019f20900f8e0b089c258a43ced9b56ff5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1205/CH19/EX19.3/S_19_3.sce
|
4a0cfee32996089276ae36abcb52c100b7e2d03b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 673
|
sce
|
S_19_3.sce
|
clc;
m=10;//kg, mass of disk
r=200;//mm, radius of disk
r=r/1000;//m, conversion into meter
Tn=1.13;//s, Period of torsional vibration for disk
T=1.93;//s, Period of torsional vibration for gear
theta=90;//degrees
theta=theta*%pi/180;//rad
//From theory we get
I=1/2*m*r^2;//kg,
K=(2*%pi/Tn)^2*r;//N.m/rad , torsional spring constant
printf("torsional spring constant = %.2f N.m/rad \n",K);
//For gear
Igear=(T/2/%pi)^2*K;//kg.m^2, moment of inertia of gear
printf("moment of inertia of gear = %.3f kg.m^2\n",Igear);
//Wm=Theta*Wn=theta*2*%pi/T
Wm=theta*2*%pi/T;//rad/s MAximum angular velocity
printf("Maximum angular velocity = %.2f rad/s \n",Wm);
|
e99445f1ec1a63a39ef592e52964d71feecac539
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfi_c_hrz_ind/~BivLCM-SR-bfi_c_hrz_ind-PLin-VLin.tst
|
4e242d8614aa5e9d045e54a52c92770acdf58cd6
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205
| 2019-03-04T17:03:26
| 2019-03-04T17:03:26
| 143,070,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 11,974
|
tst
|
~BivLCM-SR-bfi_c_hrz_ind-PLin-VLin.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.303401D+00
2 -0.247993D-02 0.232315D-02
3 0.340604D-01 -0.685035D-03 0.213163D+00
4 -0.130137D-03 0.821904D-04 -0.174102D-02 0.182530D-02
5 -0.550776D-03 0.133076D-03 0.118883D-02 0.431554D-04 0.345639D-02
6 0.407618D-03 -0.788687D-04 0.399060D-03 -0.991487D-04 -0.323277D-03
7 0.565044D-03 0.460162D-04 0.110999D-03 0.115608D-03 0.691443D-03
8 -0.405103D-03 0.123556D-03 -0.373069D-03 -0.153680D-04 0.808340D-04
9 -0.312135D+00 0.871458D-02 -0.782795D-01 -0.138469D-01 0.365374D-01
10 -0.159170D+00 -0.743475D-02 0.945541D-01 -0.720885D-02 0.111161D+00
11 -0.150916D-01 -0.449102D-02 0.366519D-01 0.816983D-02 0.407277D-01
12 0.309817D+00 0.152856D-01 -0.410695D+00 0.455652D-01 -0.192799D-01
13 -0.254838D-01 -0.129019D-03 0.874900D-01 -0.758872D-02 0.272646D-02
14 -0.187140D+00 0.237234D-01 -0.459302D+00 0.362370D-02 0.154618D-01
15 -0.230190D+01 -0.253264D-01 -0.472893D+00 0.155612D-01 -0.118580D+00
16 -0.626858D-01 -0.264366D-02 0.170622D-02 -0.426516D-03 -0.878664D-03
17 0.984018D-02 -0.538205D-03 0.255795D-02 0.740191D-04 -0.367325D-03
18 -0.861715D-01 0.154356D-01 -0.181478D-01 -0.126820D-01 -0.228255D-01
19 0.263177D-02 0.462749D-02 0.255441D-01 -0.963622D-03 0.448316D-02
20 0.153318D+00 -0.203372D-01 -0.497674D+00 -0.225761D-01 -0.118430D-01
21 0.243690D-01 -0.695945D-02 -0.140297D-01 0.390953D-02 -0.626761D-02
22 -0.149193D-02 -0.471717D-04 0.108122D-02 0.319289D-03 -0.698137D-04
23 0.162088D-01 0.132355D-03 0.145657D-02 -0.476181D-02 -0.363003D-03
24 -0.519034D-03 0.302249D-03 -0.154409D-02 0.124626D-03 0.703638D-04
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.919271D-03
7 0.509448D-03 0.248753D-02
8 0.500240D-04 0.223001D-03 0.237134D-02
9 0.101411D-01 -0.174562D-01 0.514973D-02 0.451935D+02
10 0.123242D-02 0.238520D-01 0.121560D-01 0.449744D+01 0.184801D+02
11 0.197239D-01 0.520424D-01 0.165216D-02 0.270916D+01 -0.188317D+01
12 -0.643725D-01 -0.687643D-02 0.562203D-01 -0.221679D+01 0.126919D+01
13 0.525642D-01 0.807760D-01 0.172337D-01 0.179647D+01 0.132721D+01
14 -0.250154D-02 0.266932D-01 0.176204D+00 0.129235D+01 0.346716D+01
15 -0.165669D-01 -0.615116D-01 -0.404714D-01 -0.915028D+01 -0.120854D+02
16 -0.273164D-03 -0.127542D-02 0.299219D-03 0.830265D+00 -0.140196D+00
17 0.138506D-05 0.939403D-04 -0.721396D-04 -0.163549D+00 -0.527152D-02
18 -0.433919D-01 -0.512046D-01 -0.221434D-01 -0.163713D+01 -0.559053D+00
19 -0.823600D-02 0.824046D-02 -0.106662D-01 -0.163366D+01 -0.617223D+00
20 0.263851D-02 -0.101426D-01 -0.118692D+00 -0.192849D+01 -0.155353D+01
21 0.925505D-02 -0.720501D-02 0.942590D-02 0.188186D+01 0.452801D+00
22 -0.885653D-04 -0.442422D-03 -0.934072D-04 -0.429194D-02 -0.223692D-01
23 -0.603244D-03 -0.886918D-03 0.862255D-03 -0.226944D+00 0.142308D-01
24 0.562268D-05 -0.165600D-03 -0.375589D-03 0.349344D-01 -0.502152D-02
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.278842D+02
12 -0.200025D+01 0.125916D+03
13 -0.933144D+00 -0.768438D-01 0.110912D+02
14 -0.783777D+00 0.953788D+01 0.819402D+00 0.442142D+02
15 0.679090D+00 0.981243D+01 -0.125605D+01 -0.238871D+01 0.243570D+03
16 -0.158930D+00 0.187194D+00 -0.161004D-01 0.412438D-01 0.172552D+01
17 0.112572D-01 0.291726D-01 -0.810618D-02 -0.321791D-01 -0.103591D+01
18 -0.248469D+01 0.688975D+01 -0.477486D+01 -0.322117D+01 0.200639D+02
19 0.671277D+00 0.621586D+00 -0.940015D+00 -0.147441D+01 -0.141183D+00
20 0.119984D+01 -0.245831D+02 -0.332896D+01 -0.167547D+02 0.333359D+01
21 -0.239428D+00 -0.682059D+00 0.898222D+00 0.128798D+01 -0.100333D+01
22 -0.428155D-01 0.336431D-01 -0.721415D-03 -0.810789D-02 -0.246233D-01
23 -0.466483D-01 0.444405D+00 -0.434297D-01 0.130919D+00 -0.450552D+00
24 -0.926477D-02 -0.246692D-01 0.280066D-02 -0.546840D-01 0.555859D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.475753D+00
17 -0.231875D-01 0.139935D-01
18 -0.472227D+00 -0.641895D-01 0.955696D+02
19 -0.388902D-01 0.178028D-01 0.195850D+01 0.314615D+01
20 -0.354941D+00 0.587348D-01 -0.297252D+01 0.805177D+00 0.133999D+03
21 0.174030D+00 -0.186240D-01 -0.100638D+01 -0.295978D+01 -0.933749D+00
22 0.481236D-03 0.157608D-02 -0.394783D+00 -0.116115D-01 0.130625D-01
23 -0.617817D-02 0.493967D-02 -0.171630D+00 0.577171D-01 0.158434D+01
24 0.400447D-02 -0.859340D-03 0.257354D-01 -0.868711D-02 -0.615275D+00
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.348881D+01
22 -0.902024D-02 0.487393D-02
23 -0.515198D-02 -0.242284D-02 0.238883D+00
24 0.311077D-02 0.483380D-03 -0.199390D-01 0.740460D-02
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.093 1.000
3 0.134 -0.031 1.000
4 -0.006 0.040 -0.088 1.000
5 -0.017 0.047 0.044 0.017 1.000
6 0.024 -0.054 0.029 -0.077 -0.181
7 0.021 0.019 0.005 0.054 0.236
8 -0.015 0.053 -0.017 -0.007 0.028
9 -0.084 0.027 -0.025 -0.048 0.092
10 -0.067 -0.036 0.048 -0.039 0.440
11 -0.005 -0.018 0.015 0.036 0.131
12 0.050 0.028 -0.079 0.095 -0.029
13 -0.014 -0.001 0.057 -0.053 0.014
14 -0.051 0.074 -0.150 0.013 0.040
15 -0.268 -0.034 -0.066 0.023 -0.129
16 -0.165 -0.080 0.005 -0.014 -0.022
17 0.151 -0.094 0.047 0.015 -0.053
18 -0.016 0.033 -0.004 -0.030 -0.040
19 0.003 0.054 0.031 -0.013 0.043
20 0.024 -0.036 -0.093 -0.046 -0.017
21 0.024 -0.077 -0.016 0.049 -0.057
22 -0.039 -0.014 0.034 0.107 -0.017
23 0.060 0.006 0.006 -0.228 -0.013
24 -0.011 0.073 -0.039 0.034 0.014
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.337 1.000
8 0.034 0.092 1.000
9 0.050 -0.052 0.016 1.000
10 0.009 0.111 0.058 0.156 1.000
11 0.123 0.198 0.006 0.076 -0.083
12 -0.189 -0.012 0.103 -0.029 0.026
13 0.521 0.486 0.106 0.080 0.093
14 -0.012 0.080 0.544 0.029 0.121
15 -0.035 -0.079 -0.053 -0.087 -0.180
16 -0.013 -0.037 0.009 0.179 -0.047
17 0.000 0.016 -0.013 -0.206 -0.010
18 -0.146 -0.105 -0.047 -0.025 -0.013
19 -0.153 0.093 -0.123 -0.137 -0.081
20 0.008 -0.018 -0.211 -0.025 -0.031
21 0.163 -0.077 0.104 0.150 0.056
22 -0.042 -0.127 -0.027 -0.009 -0.075
23 -0.041 -0.036 0.036 -0.069 0.007
24 0.002 -0.039 -0.090 0.060 -0.014
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 -0.034 1.000
13 -0.053 -0.002 1.000
14 -0.022 0.128 0.037 1.000
15 0.008 0.056 -0.024 -0.023 1.000
16 -0.044 0.024 -0.007 0.009 0.160
17 0.018 0.022 -0.021 -0.041 -0.561
18 -0.048 0.063 -0.147 -0.050 0.132
19 0.072 0.031 -0.159 -0.125 -0.005
20 0.020 -0.189 -0.086 -0.218 0.018
21 -0.024 -0.033 0.144 0.104 -0.034
22 -0.116 0.043 -0.003 -0.017 -0.023
23 -0.018 0.081 -0.027 0.040 -0.059
24 -0.020 -0.026 0.010 -0.096 0.041
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.284 1.000
18 -0.070 -0.056 1.000
19 -0.032 0.085 0.113 1.000
20 -0.044 0.043 -0.026 0.039 1.000
21 0.135 -0.084 -0.055 -0.893 -0.043
22 0.010 0.191 -0.578 -0.094 0.016
23 -0.018 0.085 -0.036 0.067 0.280
24 0.067 -0.084 0.031 -0.057 -0.618
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.069 1.000
23 -0.006 -0.071 1.000
24 0.019 0.080 -0.474 1.000
|
e2a64ff8ee1d77dc39bd4ade86b5949a12e9ffe8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3526/CH16/EX16.9/EX16_9.sce
|
fe9c18f2942e55f4fd73d3c2e5c55633f131d48f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 592
|
sce
|
EX16_9.sce
|
clc;funcprot(0);//EXAMPLE 16.7
//page 500
//INITIALISATION OF VAREIABLES
sig1=980;...............//Initial Stress of POlyisoprene in psi
sig2=1000;.............//Fnal Stress of POlyisoprene in psi
sig3=1500;.............// Stress of POlyisoprene after one year in psi
t1=6;................//time in weeks
t2=52;.............//time in weeks
//CALCULATIONS
Rt=-t1/(log(sig1/sig2));.....//Relaxation time in weeks
sig=sig3/(%e^(-t2/Rt));........//Initial Stress to be placed in psi
disp(round(Rt),"Relaxation time in weeks:")
disp(round (sig),"Initial Stress to be placed in psi:")
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.