blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
aea17acb9d9e99ee45443ddd90c7a3a21bd3b47c
|
b29e9715ab76b6f89609c32edd36f81a0dcf6a39
|
/ketpicscifiles6/Sfbdparadata.sci
|
7a759f690e4e5912043ef79d7091bbadcccf8410
|
[] |
no_license
|
ketpic/ketcindy-scilab-support
|
e1646488aa840f86c198818ea518c24a66b71f81
|
3df21192d25809ce980cd036a5ef9f97b53aa918
|
refs/heads/master
| 2021-05-11T11:40:49.725978
| 2018-01-16T14:02:21
| 2018-01-16T14:02:21
| 117,643,554
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 894
|
sci
|
Sfbdparadata.sci
|
// 08.09.13
// 10.02.16 Eps => [Eps, Epsmag]
function Out5=Sfbdparadata(varargin)
global IMPLICITDATA CUSPDATA CUSPPT CUSPSPLITPT;
Nargs=length(varargin);
Fd=varargin(1);
FdL=Fullformfunc(Fd);
Np=[50,50];
if Nargs>=2
Np=varargin(2);
if type(Np)==1 & length(Np)==1
Np=[Np,Np];
end;
end;
Eps=[0.05,1]; //
if Nargs>=3
Eps=varargin(3);
end;
if length(Eps)==1 //
Eps=[Eps,1]; //
end; //
Eps2=0.2;
if Nargs>=4
Eps2=varargin(4);
end;
Ts=timer();
[Zval,Xval,Yval]=Evlptablepara(Mix(Fd,Np));
Out3=Implicitplot(Zval,Xval,Yval);
IMPLICITDATA=Out3;
Mixdisp(Mix('ImplicitData obtained ',timer()));
Out4=Cuspsplitpara(Out3,Fd,Eps(1)); //
CUSPDATA=Out4;
CUSPPT=CUSPSPLITPT;
Mixdisp(Mix('CuspData obtained ',timer()));
Out5=Borderparadata(Out4,Fd,Np,Eps,Eps2);
Mixdisp(Mix('BorderData obtained ',timer()));
endfunction;
|
ee1539dbd34e90f297b9a537b5905568e5c59f4c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/70/CH1/EX1.4.1/1_4_1.sci
|
6df19a5772d0150cf887324381ba3e2100eeff55
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 109
|
sci
|
1_4_1.sci
|
clear ;
close ;
clc ;
A=[2 3;4 0];
disp(A,'A=');
B=[1 2 0;5 -1 0];
disp(B,'B');
disp(A*B,'AB=')
//end
|
f3718e5a2b10685037e60fc3af1e1ba4fcb52a9b
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.2/macros/scicos/REGISTER_f.sci
|
3bbc623dd3f17f37017e0963da977a6f41ef1c45
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,084
|
sci
|
REGISTER_f.sci
|
function [x,y,typ]=REGISTER_f(job,arg1,arg2)
x=[];y=[];typ=[]
select job
case 'plot' then
standard_draw(arg1)
[graphics,model]=arg1(2:3); [orig,sz,orient,label]=graphics(1:4)
dly=model(8)
xstringb(orig(1),orig(2),['Shift';'Register';string(dly)],sz(1),sz(2),'fill')
case 'getinputs' then
[x,y,typ]=standard_inputs(arg1)
case 'getoutputs' then
[x,y,typ]=standard_outputs(arg1)
case 'getorigin' then
[x,y]=standard_origin(arg1)
case 'set' then
x=arg1;
graphics=arg1(2);label=graphics(4)
model=arg1(3);z0=model(7)
while %t do
[ok,label,z0]=getvalue('Set delay parameters',..
['Block label';'Register initial condition'],..
list('str',1,'vec',-1),[label;strcat(string(z0),';')])
if ~ok then break,end
if prod(size(z0))<2 then
x_message('Register length must be at least 2')
ok=%f
end
if ok then
graphics(4)=label;
model(7)=z0
x(2)=graphics;x(3)=model
break
end
end
case 'define' then
z0=zeros(10,1)
model=list('delay',1,1,1,0,[],z0,[],[],'d',%f,[%f %f])
x=standard_define([2.5 2.5],model)
end
|
1af7f8ef88eab6c037822fda74c638e2b45d0438
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/50/CH5/EX5.29/ex_5_29.sce
|
7e88c2c8cb7a2dc057ada4a04560bb0dd7b28da0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 322
|
sce
|
ex_5_29.sce
|
// example 5.29
// evaluate the given double integral using the simpsons rule;
// I= double integral f(x)=1/(x+y) in the range x=[1,2],y=[1,1.5];
h=.5;
k=.25;
deff('[w]=f(x,y)','w=1/(x+y)')
I=(.125/9)*[{f(1,1)+f(2,1)+f(1,1.5)+f(2,1.5)}+4*{f(1.5,1)+f(1,1.25)+f(1.5,1.5)+f(2,1.25)}+16*f(1.5,1.25)];
disp(I);
|
acb278946aef43c812bbff297cac0aa869827a17
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1382/CH2/EX2.52/EX_2_52.SCE
|
fd89ae498ca171bcd79d9037c5037b0899dbb009
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 447
|
sce
|
EX_2_52.SCE
|
// Example 2.52:Ai,Ri,Av
clc;
clear;
close;
Rs=0.5;//Internal resistance in killo ohms
Rl=5;//Load resistance in killo ohms
//H Paramters are
Hie=1;//in killo ohms
Hfe=50;
Hoe=25*10^-6;// in ampere per volt
Ai= (1+Hfe)/(1+Hoe*Rl*10^3);// Current gain
Ri= Hie+(Ai*Rl);// Input resistance in killo ohms
Av= Ai*(Rl/Ri);// Voltage Gain
disp(Ai,"Current gain is")
disp(Ri,"Input resistance in killo ohms is")
disp(Av,"Voltage gain is")
|
c25eb57a5f7f3cdcad500db82c6071d72d68bdf5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/746/DEPENDENCIES/11_04.sci
|
deccf6ea917c1643368b2e10e020b82522b8dc49
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 362
|
sci
|
11_04.sci
|
//Pressure at entry(in kPa):
p1=350;
//Temperature at entry(in K)
T1=333;
//Velocity at entry(in m/s):
V1=183;
//Mach no. at exit:
M2=1.3;
//Stagnation pressure at exit(in kPa):
p02=385;
//Stagnation temperature at exit(in K):
T02=350;
//Value of k:
k=1.4;
//Gas constant(in N-m/kg-K)
R=287;
//Specific heat at constant pressure(kJ/(kg-K):
cp=1;
|
8edeee1a839975e15042e1b2ee3170d382cb49e7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/680/CH2/EX2.03/2_03.sce
|
36faea80d8df34c99950772aaeedceea888d6a6d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 384
|
sce
|
2_03.sce
|
//Problem 2.03:
//initializing the variables:
mg = 100; // in lb
Pg = 35; // in psig
A = 3; // in in2
gc = 1; // in lb/lbf
Pa = 14.7; // in psi
//calculation:
F = mg/gc
Pli = F/A // in lbf/in2
Plf = Pli*144 // in lbf/ft2
P = Pg + Pa
printf("\n\nResult\n\n")
printf("\n pressure at the base is %.0f lbf/ft2\n",Plf)
printf("\n absolute pressure is %.1f psia\n",P)
|
1cea120a3b5ed222afa1bc5cde73d01dfdfbe579
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/JP04.prev.tst
|
6c306a0419dcdda00b61a20eee65f737bc02b172
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 36
|
tst
|
JP04.prev.tst
|
A109345 post 0 5;n;1;-;n;*;2;/;^ 0
|
08c4510579575ddf3f94926c6f62ca0a77164b33
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1073/CH5/EX5.13/5_13.sce
|
86a257f4cd342f1300a223cebeed8ffd2ce85899
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,029
|
sce
|
5_13.sce
|
clc;
clear;
//Example 5.13
mh_dot=1.25 //[kg/s]
Cpw=4.187*10^3 //Heat capacity of water in [J/kg.K]
lambda=315 //[kJ/kg]
Q=mh_dot*lambda //Rate of heat transfer from vapour [kJ/s]
Q=Q*10^3 //[W]
Ts=345 //Temperature of condensing vapour[K]
t1=290 //Inlet temperature of water [K]
t2=310 //Outlet temperature of water[K]
dT1=Ts-t1 //[K]
dT2=Ts-t2 //[K]
dTlm=(dT1-dT2)/log(dT1/dT2) //[K]
//Heat removed from vapour = Heat gained
mw_dot=Q/(Cpw*(t2-t1)) //[kg/s]
hi=2.5 //[kW/sq m.K]
hi=hi*1000 //[W/sq m.K]
Do=0.025 //[m]
Di=0.020 //[m]
hio=hi*(Di/Do) //Inside heat transfer cosfficient referred to outside dia in [W/sq m.K]
ho=0.8 //Outside heat tranbsfer coefficient in [kW/sq m.K]
ho=ho*1000 //[W/sq m.K]
Uo=1/(1/ho+1/hio) //[W/sq m.K]
//Ud is 80% of Uc
Ud=(80/100)*Uo //[W/sq m.K]
Ao=Q/(Ud*dTlm) //[sq m]
L=1 //[m]
A=%pi*Do*L //Outside area of pipe per m length of pipe
len=Ao/A //Total length of piping required.
rho=1000 //[kg/m^3]
V=mw_dot/rho //[m^3/s]
v=0.6 //[m/s]
a=V/v //Cross-sectional area for flow pass [sq m]
a1=(%pi*Di^2)/4 //[sq m]
//for single pass on tube side fluid(water)
n=round(a/a1) //No. of tubes per pass
l=len/n //Length of each tube in [m]
//For two passes on water side:
tn=2*n //Total no of tubes
l2=len/tn //Length of each tube in [m]
//For four passes on water side/tube side
tn2=4*n //Total no. of tubes
l3=len/tn2 //Length of each tube in [m]
printf("\nNo. of tubes=%d ,\nLength of tube=%f m",tn2,l3);
|
521f1cc52b46e8db3cfab4d68df1fe439115448b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3547/CH9/EX9.2/EX9_2.sce
|
089134582ddda648cfdc770d2ef529967aca52fc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 490
|
sce
|
EX9_2.sce
|
// Example 9.2
// Calculation of the total power at the fiber output.
// Page no 393
clc;
clear;
close;
//Given data
p=0; // Power per channel
fl=0.2; // Fiber loss
f=50; // Wavelength
// The total power at the fiber output.
pc=10^(0.1*p);
tp=pc*11;
tp1=10*log10(tp);
tfl=fl*f;
to=tp1-tfl;
//Displaying results in the command window
printf("\n The total power at the fiber output = %0.3f dBm ",to);
|
b7a8e941f74944c0e6fc2e00330d57e674be21a7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2438/CH2/EX2.3/Ex2_3.sce
|
6ac1a9f4378fc8d731561db6981adad710e95b5d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 918
|
sce
|
Ex2_3.sce
|
// Chapter 2 example 3
clc;
clear;
// Variable declaration
h = 6.63*10^-34; // plancks constant in J.s
m = 9.1*10^-31; // mass of electron in kg
a = 5*10^-10; // width of infinite potential well in m
e = 1.6*10^-19; // charge of electron in coulombs
n1 = 1; // energy level constant
n2 = 2; // energy level constant
n3 = 3; // energy level constant
// Calculations
E1 = ((n1^2)*(h^2))/(8*m*(a^2)*e); // first energy level in eV
E2 = ((n2^2)*(h^2))/(8*m*(a^2)*e); // second energy level in eV
E3 = ((n3^2)*(h^2))/(8*m*(a^2)*e); // third energy level in eV
// Result
mprintf('First Three Energy levels are \n E1 = %3.2f eV\n E2 = %3.2f eV\n E3 = %3.2f eV',E1,E2,E3);
mprintf('\n Above calculation shows that the energy of the bound electron cannot be continuous')
|
227ea60268431fe97b98b12c61c9569b7ccdcfca
|
0ee9afc824503b3cf49eb578750009dbd1f82ba9
|
/divide/Divide.tst
|
d7889de9f57d3a0dbbe53e18c32542a3ab3ac02b
|
[] |
no_license
|
nivdror1/ex4
|
70cbbb92dda5c027531ce7bf4dcc2b810f65bcd5
|
57a9a3bd4fa3d430268007d613d897ae07b0d147
|
refs/heads/master
| 2020-12-24T11:10:46.520554
| 2016-12-07T12:36:35
| 2016-12-07T12:36:35
| 73,181,857
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 473
|
tst
|
Divide.tst
|
load Divide.hack,
output-file Divide.out,
compare-to Divide.cmp,
output-list RAM[15]%D2.6.2;
set RAM[13] 10, // 10/2 = 5
set RAM[14] 2,
repeat 1000000 {
ticktock;
}
output;
set RAM[13] 1,
set RAM[14] 1,
repeat 1000000 {
ticktock;
}
output;
set RAM[13] 1000,
set RAM[14] 1000,
repeat 1000000 {
ticktock;
}
output;
set RAM[13] 555,
set RAM[14] 789,
repeat 1000000 {
ticktock;
}
output;
set RAM[13] 17555,
set RAM[14] 14,
repeat 1000000 {
ticktock;
}
output;
|
b8b15904e5b1ff841e0b16d99e6ddcd0714571a9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3547/CH9/EX9.8/EX9_8.sce
|
1d293b6a2adf16e4524995f6bf81c852d8e97023
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 644
|
sce
|
EX9_8.sce
|
// Example 9.8
// Calculation of the number of subcarriers required to transmit information.
// Page no 413
clc;
clear;
close;
//Given data
M=4;
np=2; // No of polarization
nc=24; // No of channels
bs=10*10^9; // Symbol rate per polarization
d=5000*10^3; // Transmission distance
b=22*10^-27;
ts= 49.3*10^-9;
// The total data rate
B=bs*log2(M);
T=d*b*%pi*bs;
//L=T/(b*2*%pi*N*bs);
N=(bs*ts)/2;
//Displaying results in the command window
printf("\n The number of subcarriers required to transmit information = %0.0f ",N);
// The answers vary due to round off error
|
4d08f099d2f21e5b815893a265eedf5831eb3965
|
eb7eeb04a23a477e06f3c0e3d099889caee468b4
|
/src/examples/scilab/paramstest1.sce
|
f4d0044739c6759c567853ee07a6e2a778e19fd4
|
[] |
no_license
|
mikeg64/iome
|
55699b7d7b3d5c1b006d9c82efe5136b8c909dfd
|
cc1c94433133e32776dcf16704ec4ec337b1b4a0
|
refs/heads/master
| 2020-03-30T15:57:33.056341
| 2016-04-13T09:24:27
| 2016-04-13T09:24:27
| 151,387,236
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,061
|
sce
|
paramstest1.sce
|
// Constants
g = 9.81;
u0 = 0;
v0 = 0;
b = 0;
h0 = 5030;
consts=struct('g',g,'u0',u0,'v0',v0,'b',b,'h0',h0);
//Domain definition
// Define the x domain
ni = 51;
//ni=41;
xmax = 100000;
dx = xmax/(ni-1);
x = [0:dx:xmax];
// Define the y domain
nj = 51;
//nj=41;
ymax = 100000;
dy = ymax/(nj-1);
y = [0:dy:ymax];
nt=10;
step=0;
tmax = 200;
steeringenabled=0;
finishsteering=0;
domain=struct('ni',ni,'xmax',xmax,'nj',nj,'ymax',ymax,'nt',nt,'tmax',tmax,'step',step,'steeringenabled',steeringenabled,'finishsteering',finishsteering);
sf=10;//source frequency
sa=5;//source amplitude
sx=20;//source x location
sy=30;//source y location
source=struct('sf',sf,'sa',sa,'sx',sx,'sy',sy);
metadata.directory='out';
metadata.author='MikeG';
metadata.sdate=date();
metadata.platform='felix';
metadata.desc='A simple test of SAAS';
metadata.name='intsaas1';
elist=list(2);
//elist(1)='192.168.1.104';
elist(1)='localhost';
elist(2)=8081;
elist(3)=0;
|
54f325af05b228e120e752c44763b616acc1a6f8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/644/CH1/EX1.1/p1.sce
|
b13997dc76274e03fb57e9b442a19e3ed548adc3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 726
|
sce
|
p1.sce
|
// Example 1.1 A conductor material has a free- electron density of 10^24 electrons per metre^3.When a voltage is applied, a constant drift velocity of 1.5x10^-2 metre/second is attained by the electrons. If the cross- sectional area of the material is 1 cm^2, calculate the magnitude of the current. Electronic charge is 1.6x10^-19.
// 1 metre = 100 centimetre
n = 10^24;// charge density (e/m^3)
Vd = 1.5*10^-2; //drift velocity attained by electrons(m/s)
A = 10^-4; // crossectional area of the material (m^2)
e = 1.6*10^-19; // charge of an electron (coulombs)
// let i be the magnitude of the current
// FORMULA : i = nAeVd
i = prod([n,A,e,Vd]) // calculation
disp(i,"magnitude of the current(in ampere)= ")
|
0d6143776ba17ea07ff1e8a9cb96acba14d0bb3d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/273/CH21/EX21.3/ex21_3.sce
|
c7a3df877d1047a28ed746f3dc8624748e68aea3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 338
|
sce
|
ex21_3.sce
|
clc;clear;
//Example 21.3
//calculation of relative permeability
//given values
X=3.7*10^-3;//susceptibility at 300k
T=300;//temp in K
T1=200;//temp in K
T2=500;//temp in K
//calculation
C=X*T;//curie constant
XT1=C/T1;
disp(XT1,'relative permeability at T1 is ');
XT2=C/T2;
disp(XT2,'relative permeability at T2 is')
|
3cead35887d68f56ae54829f8c7b358293f4134d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2534/CH11/EX11.1/Ex11_1.sce
|
c9031957dfd355640ab8895a2f8fe70a91a0609c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 663
|
sce
|
Ex11_1.sce
|
//Ex11_1
clc
VCC = 20//collector voltage
RL = 12//load resistance
disp("VCC = "+string(VCC)+"V")
disp("RL = "+string(RL)+"ohm")
Pi_dc = (VCC^2)/(2*RL)//input power
disp("Pi(dc) = (VCC^2)/(2*RL) = "+string(Pi_dc)+"W")
Po_ac = (VCC^2)/(8*RL)//output power
disp("Po_ac = (VCC^2)/(8*RL) = "+string(Po_ac)+"W")
eta = Po_ac/Pi_dc//efficiency
disp("eta = Po_ac/Pi_dc = "+string(eta*100)+"%")
// note : has modifed variables:
// using Po_ac instead of Po(ac)
// and Pi_dc instead of Pi(dc).
// note: there is a misprinting in the above problem given in the textbook
// author want to ask for efficiency instead of frequency.
|
c0e0c5a0e1d66a56fbe6d030bb8c93186c0c692e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1049/CH4/EX4.10/ch4_10.sce
|
fd94c06e22e34853dd7e04758e24b3257b2d94d9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 523
|
sce
|
ch4_10.sce
|
clear;
clc;
clear
function [I_TAV]=theta(th)
n=360/th;
I=1; //supposition
I_av=I/n;
I_rms=I/sqrt(n);
FF=I_rms/I_av;
I_rms=35;
I_TAV=I_rms/FF;
endfunction
disp("when conduction angle=180");
th=180;
I_TAV=theta(th);
printf("avg on current rating=%.3f A",I_TAV);
disp("when conduction angle=90");
th=90;
I_TAV=theta(th);
printf("avg on current rating=%.1f A",I_TAV);
disp("when conduction angle=30");
th=30;
I_TAV=theta(th);
printf("avg on current rating=%.4f A",I_TAV);
|
2e71bb33ee91377ddd5919e856841ac87d24e8ee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3648/CH2/EX2.4/Ex2_4.sce
|
a324afe3b3e5d86ddb7efda2d02b0639c3b568c9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 257
|
sce
|
Ex2_4.sce
|
//Example 2_4
clc();
clear;
//To find the lever arms and torques for the forces
printf("For F1 it is Zero\n")
printf("For F2 it is a*F2 Counter clockwise\n")
printf("For F3 it is a*F3 Clock Wise\n")
printf("For F4 it is b*F4 Counter Clock wise")
|
b638f6482c3dd9ee00f5a1c7557d93737cb1a050
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3012/CH6/EX6.9/Ex6_9.sce
|
83cb935562387ee0bdb30d2c21952e765e6e9326
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 567
|
sce
|
Ex6_9.sce
|
// Given:-
P1 = 1.00 // initial pressure in bar
T1 = 300.00 // initial temperature in kelvin
T2 = 650.00 // final temperature in kelvin
// Part(a)
// From table A-22
pr2 = 21.86
pr1 = 1.3860
k = 1.39 // From table A-20
// Calculations
p2 = P1*(pr2/pr1)
p2a = P1*((T2/T1)**(k/(k-1)))
// Results
printf( ' P2 = %f bar.',p2)
printf( ' Part(b) IT software problem');
printf( ' P2a = %f bar',p2a);
|
1ede58fdb4d32614ce4c98c5fb5468ef168e02f7
|
fe48ae0c518509ac5c57688957075e939956f2b1
|
/S-wave hydrogen atom.sce
|
ae6a04df893c85c67dc97fe6e577f188e8f0f95f
|
[] |
no_license
|
dibakardhar/Scilab-Notes
|
d8161939a96b5d9f89106440059b6aaa717f5d79
|
6bc6a6caa5120a4c7a20f15430860e5b51e8014e
|
refs/heads/main
| 2023-07-09T18:48:56.525225
| 2021-08-15T16:32:36
| 2021-08-15T16:32:36
| 396,415,364
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 585
|
sce
|
S-wave hydrogen atom.sce
|
clc
e=3.795;
hcut_per_c=1973;
m=0.511*(10^6);
a=((hcut_per_c)^2)/(m*(e^2));
n=input("enter the energy state n :");
function zprim=f(r, z)
zprim(1)=z(2)
zprim(2)=-(-(1/(a*n)^2)+(2/(a*r)))*z(1)
endfunction
i=input("Enter the scale pan along r axis : ")
r0=0.00001;rmax=i*a;
r=r0:0.01*a:rmax;
z0=0;zprim0=2/((n*a)^(3/2));
y=ode([z0;zprim0],r0,r,f);
u=y(1,:);
R=u./r;
p=R.*R;
D=(r.^2).*p;
plot(r,R,"r");
plot(r,D,"b");
xlabel("r(CGS)");
ylabel("Wave function and probability");
xtitle("Plot of s-wave for Hydrogen atom");
legend("Wave funcion","Probability");
|
b7a67222e654f62e74dd34d360afa685d13c0ed7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2318/CH3/EX3.71.b/ex_3_71_b.sce
|
d641e6e587d32fdf00bba337efb3d8cb1bf7f43c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 295
|
sce
|
ex_3_71_b.sce
|
//Example 3.71.b:resistance and capacitance
clc;
clear;
close;
cl=10^-4;//micro-F
c2=0.004;//micro-F
c3=0.001;//micro-F
r3=10;//killo ohms
r4=5;//killo ohms
f=1;//kHz
rx=((c3+cl)/c2)*r4;//killo ohms
cx=(r3/r4)*c2;//micro-F
disp(rx,"resistance is ,(k-ohm)=")
disp(cx,"capacitance is,(micro-F)=")
|
a451504659080c0ddc207b0f72d5be8bdec723a1
|
9d0d8cfb131efa34cafc47d938fac6ddcee0750c
|
/miniproject/1prob/3_signal_noise.sce
|
d7ce25ab2d57d75acbb4ac0b1f085b3e1a9dda3a
|
[] |
no_license
|
kazipetasurya/ee340
|
52c688b028a28effa88dc4a9eb653735e4fc19bc
|
3885ad37122817c03d9a51d9f7df2c9c9f5f7251
|
refs/heads/master
| 2021-01-18T15:10:53.081056
| 2012-09-07T06:43:54
| 2012-09-07T06:43:54
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 288
|
sce
|
3_signal_noise.sce
|
exec("signal_noise.sci",-1)
function[]=plotsignalnoise(a,N,Variance)
nvec=linspace(0,N,N+1)
signnoise=signalnoise(a,N,Variance)
xset('window',67)
xtitle('Signal with gaussian noise', 'X-axis', 'Y-axis')
plot(nvec,signnoise)
endfunction
plotsignalnoise(0.01,1000,0.1)
|
cf18f19612bdaa8f728248458838696d5bdd8eb7
|
53498495f350c4519dabcc78e67546fa78b4f5e0
|
/mlewis_replication.sce
|
95551a4f1a637b9233a31d10e84487bca4469774
|
[] |
no_license
|
meli-lewis/thesis_presentation_code
|
ffb862e6b325780f30c9b2f9c80bf7919981a7f9
|
4f02cd83dcb0ab427d9a858edbf9f7e2c5e8a502
|
refs/heads/master
| 2016-09-08T02:33:06.615351
| 2013-03-28T18:44:34
| 2013-03-28T18:44:34
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 7,832
|
sce
|
mlewis_replication.sce
|
/*
This experiment is a replication from the article
"Errors Are Aversive: Defensive Motivation and the Error-Related
Negativity" by Greg Hajcak and Dan Foti (2008).
doi: 10.1111/j.1467-9280.2008.02053.x
I'm running it as part of the Reproducibility Project, which you
can learn more about at http://openscienceframework.org/.
*/
# ---------- begin header ---------- #
scenario = "mlewis_replication.sce";
scenario_type = trials;
active_buttons = 2; #specifies how many buttons can be used
button_codes = 1,2; #specifies button codes
default_background_color = 0,0,0; #black
default_text_color = 255,255,255; #white
default_font = "Palatino Linotype";
default_font_size = 36;
write_codes = true;
# ---------- end header ---------- #
begin;
ellipse_graphic {
ellipse_height = 150;
ellipse_width = 150;
height = 100;
width = 100;
color = 255, 255, 255;
} flash;
picture {
text {
caption = "+";
font_size = 48;
};
x=0; y=0; # centers text
} default; # sets fixation cross as default image
wavefile { filename = "startle3amplified.wav"; } startle; #name of stimulus is "startle"
bitmap { filename = "LC.jpg"; } bmLC; #name of stimulus is "LC" for "left(-facing center) congruent"
bitmap { filename = "LI.jpg"; } bmLI; #name of stimulus is "LI" for "left(-facing center) incongruent"
bitmap { filename = "RC.jpg"; } bmRC; #name of stimulus is "RC" for "right(-facing center) congruent"
bitmap { filename = "RI.jpg"; } bmRI; #name of stimulus is "RI" for "right(-facing center) incongruent"
picture {
bitmap bmLC;
x = 0; y = 0;
} LC;
picture {
bitmap bmLI;
x = 0; y = 0;
} LI;
picture {
bitmap bmRC;
x = 0; y = 0;
} RC;
picture {
bitmap bmRI;
x = 0; y = 0;
} RI;
trial {
trial_type = first_response;
trial_duration = 800;
picture {
bitmap bmLC;
x = 0; y = 0;
ellipse_graphic flash;
x = 920; y = -500;
};
time = 0;
duration = 200;
target_button = 1;
code = 10;
port_code = 10;
} trial_LC; # name is "trial_LC" and means center arrow left, congruent w/flankers
trial {
trial_type = first_response;
trial_duration = 800;
picture {
bitmap bmRC;
x = 0; y = 0;
ellipse_graphic flash;
x = 920; y = -500;
};
time = 0;
duration = 200;
target_button = 2;
code = 11;
port_code = 11;
} trial_RC; # name is "trial_RC" and means center arrow right, congruent w/flankers
trial {
trial_type = first_response;
trial_duration = forever;
picture {
bitmap bmLI;
x = 0; y = 0;
ellipse_graphic flash;
x = 920; y = -500;
};
time = 0;
duration = 800;
target_button = 1;
code = 20;
port_code = 20;
} trial_LI; # name is "trial_LI" and means center arrow left, incongruent w/flankers
trial {
trial_type = first_response;
trial_duration = 800;
picture {
bitmap bmRI;
x = 0; y = 0;
ellipse_graphic flash;
x = 920; y = -500;
};
time = 0;
duration = 200;
target_button = 2;
code = 21;
port_code = 21;
} trial_RI; # name is "trial_RI" and means center arrow right, incongruent w/flankers
trial {
trial_duration = 350;
stimulus_event {
sound {
wavefile startle;
};
deltat = 300;
duration = 50;
};
nothing {}; # delays code corresponding to auditory stimulus to be more accurate; may need to be readjusted
deltat = 20;
code = 150;
port_code = 150;
} trial_auditory_error; #name is "trial_auditory_error" and is a white noise to be played at 108 db following an error
trial {
trial_duration = 350;
stimulus_event {
sound {
wavefile startle;
};
deltat = 300;
duration = 50;
};
nothing {}; # delays code corresponding to auditory stimulus to be more accurate; may need to be readjusted
deltat = 20;
code = 151;
port_code = 151;
} trial_auditory_predictable; #name is "trial_auditory_predictable" and is a white noise to be played at 108 db
trial {
trial_duration = 350;
stimulus_event {
sound {
wavefile startle;
};
deltat = 300;
duration = 50;
};
nothing {}; # delays code corresponding to auditory stimulus to be more accurate; may need to be readjusted
deltat = 20;
code = 152;
port_code = 152;
} trial_auditory_unpredictable; #name is "trial_auditory_unpredictable" and is a white noise to be played at 108 db
trial {
trial_duration = 1; #this is set to a random integer in PCL below
picture {
text {
caption = "+";
font_size = 48;
};
x=0; y=0; # centers text
};
} trial_ISI; #name is "trial_ISI"
trial {
trial_duration = 1; #this is set to a random integer in PCL below
picture {
text {
caption = "+";
font_size = 48;
};
x=0; y=0; # centers text
};
code = 101;
port_code = 101;
} short_ISI; #name is "short_ISI"
trial {
trial_duration = 3000;
picture {
text {
caption = "Please try to be more accurate.";
};
x=0; y=0; # centers text
};
} trial_accurate;
trial {
trial_duration = 3000;
picture {
text {
caption = "Please try to respond faster.";
};
x=0; y=0; # centers text
};
} trial_faster;
trial {
trial_duration = 3000;
picture {
text {
caption = "You're doing a great job.";
};
x=0; y=0; # centers text
};
} trial_greatjob;
# -------------PCL -------------#
begin_pcl;
loop #block loop
int block_hits = 0;
int j = 0;
until j == 8 #number of blocks
begin
array <int> porkchops[30] = {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4};
porkchops.shuffle();
loop #trial loop
int i = 1;
int ISI_times = 0; # variable is an integer for duration of ISI without startle
int short_time = 0; # variable is an integer for duration of ISI following startle
bool current = true;
bool previous = true;
until i > 30
begin
ISI_times = random(500,1000);
trial_ISI.set_duration(ISI_times);
short_time = random(150,650);
short_ISI.set_duration(short_time);
if (porkchops[i] == 1) then
trial_LC.present();
elseif (porkchops[i] == 2) then
trial_RC.present();
elseif (porkchops[i] == 3) then
trial_LI.present();
elseif (porkchops[i] == 4) then
trial_RI.present();
end; #ends if/elseif regarding stimulus presentation
if (response_manager.hits() == 1) then
current = true;
else current = false;
end; /*ends if/else specifying state that determines probability of
playing white noise, where if current = true it remains at 4%
and if current = false probability goes to 50%*/
block_hits = block_hits + response_manager.hits();
#this is how I keep track of accuracy within a trial to guide the feedback at the end
if (previous && current) then
int auditory = random(0,24);
if auditory == 0 then
trial_auditory_unpredictable.present();
short_ISI.present(); # this ISI only ranges from 150-650ms because startle already took 350ms
else trial_ISI.present();
end; #if both the last and the trial before it are accurate, white noise probability is 4%
elseif (!previous && current) then
int auditory = random(0,1);
if auditory == 0 then
trial_auditory_predictable.present();
short_ISI.present(); # this ISI only ranges from 150-650ms because startle already took 350ms
else trial_ISI.present();
end; #if the current trial was correct but the last trial was not, white noise probability is 50%
else
int auditory = random(0,1);
if auditory == 0 then
trial_auditory_error.present();
short_ISI.present(); # this ISI only ranges from 150-650ms because startle already took 350ms
else trial_ISI.present();
end; #otherwise, the probability should be 50%
end;
previous = current;
i = i+1;
end; #ends trial loop
if block_hits < 22 then
trial_accurate.present();
trial_ISI.present();
elseif block_hits > 27 then
trial_faster.present();
trial_ISI.present();
else
trial_greatjob.present();
trial_ISI.present();
end;
j = j+1; # increments count of block
end; #ends block loop
|
1ecae3d9239be653219b811b4815dc0be6f4d0b9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1004/CH1/EX1.22/Ch01Ex22.sci
|
96b046e549cdb29887c2d9a6abf2226060e65f7a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 769
|
sci
|
Ch01Ex22.sci
|
// Scilab Code Ex1.22 Effective mass and speed of electron: Pg: 29 (2008)
c = 3e+08; // Speed of light, m/s
e = 1.6e-019; // Electron-volt equivalent of 1 joule, eV/joule
U = 2*1e+06*e; // Total energy of electron, J
// As E = (m - m0)*c^2, solving for m
m = U/c^2; // Effective mass of electron, kg
m0 = 0.511*1e+06*e/c^2; // Rest mass of the electron, kg
// As m = m0/sqrt(1 - (v/c)^2), Relativistic mass of electron, kg, solving for v, we have
v = sqrt(1 - (m0/m)^2)*c; // Velocity of moving electron, m/s
printf("\nThe effective mass of electron = %4.1e kg", m);
printf("\nThe relativistic speed of electron = %4.2fc m", v/c);
// Result
// The effective mass of electron = 3.6e-030 kg
// The relativistic speed of electron = 0.97c m
|
e0f15f25bf08cc4bca73a522038506f55d3423c7
|
de14a6897d4397228a52bacb8905b8807370ef4b
|
/gradient.sce
|
08f532864ee1bd8a28a6c165c36993c265ca93fd
|
[] |
no_license
|
JustineMarlow/MT94-RapportLaTeX
|
20b670965a47ce85beecc15865d14ec9cc4d305b
|
3dfaa665b5691621410f8eafdf76ecaf081b92d1
|
refs/heads/master
| 2021-09-06T17:54:58.174773
| 2018-02-09T09:57:52
| 2018-02-09T09:57:52
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 793
|
sce
|
gradient.sce
|
function out=formeQ(x,A,b)
out=.5*x'*A*x-b'*x;
endfunction
function out=gradient(x,A,b)
out=A*x-b;
endfunction
function trace(xk)
c=formeQ(xk)-formeQ(xc);
a=sqrt(2*c/d(1));
b=sqrt(2*c/d(2));
N=128;
t=linspace(0,2*%pi,N);
x=P*[a*cos(t);b*sin(t)]+xc(:,ones(1,N));
plot(x(1,:),x(2,:),'linewidth',2)
endfunction
A=[2 -1;-1 2];
b=[1 1]';
xc=A\b; // Point qui minimise le gradient (donc annule la fonction)
[D,P]=bdiag(A); // Matrice reelle (blocs de diagonalisation)
d=diag(D);
x=[1;0]; //point de depart arbitraire
rho=0.5; //rho fixe
clf;
set(gca(),"isoview","on");
trace(x);
for i=1:50
last=x;
x=last-rho*gradient(last,A,b);
plot([last(1) x(1)],[last(2) x(2)],"r");
trace(x);
end
title("Algorithme du gradient a pas fixe",'fontsize',3);
|
e974a951e9aa36e935d37941bac9e13c1f199c55
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3428/CH2/EX1.2.9/Ex1_2_9.sce
|
aafb94396312af874c90ce382d99755bfac8a76b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 451
|
sce
|
Ex1_2_9.sce
|
//Section-1,Example-3,Page no.-AC.173
clc;
C=750
C_1=75
H=52
H_1=5.2
O=121
O_1=12.1
S=0
Net_O2=((32/12)*C)+((16/2)*H)-O
W_air=Net_O2*(100/23)*10^-3
disp(W_air,'Weight of air required(kg)')
W_air40=W_air*(140/100)
disp(W_air40,'Weight of air required when 40% excess air is supplied(kg)')
GCV=(1/100)*((8080*C_1)+(34500*(H_1-(O_1/8)))+(2240*S))
disp(GCV,'Gross calorific value(kCal/kg)')
NCV=GCV-(0.09*H_1*587)
disp(NCV,'Net calorific value(kCal/kg)')
|
19211a2599d48aedc6616eb75879076f73219c49
|
01ecab2f6eeeff384acae2c4861aa9ad1b3f6861
|
/prog_assembly/libs/scilab_code/outhex2volt.sce
|
6b85e6da1d3c1633b11c6356c7badb0275ae808d
|
[] |
no_license
|
jhasler/rasp30
|
9a7c2431d56c879a18b50c2d43e487d413ceccb0
|
3612de44eaa10babd7298d2e0a7cddf4a4b761f6
|
refs/heads/master
| 2023-05-25T08:21:31.003675
| 2023-05-11T16:19:59
| 2023-05-11T16:19:59
| 62,917,238
| 3
| 3
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,589
|
sce
|
outhex2volt.sce
|
function [voltage_vector]=outhex2volt (chip_num, board_num, hex_vector)
select board_num
case 2 then
brdtype = '';
case 3 then
brdtype = '_30a';
case 4 then
brdtype = '_30n';
case 5
brdtype = '_30h';
else
messagebox('Please select the FPAA board that you are using.', "No Selected FPAA Board", "error");
abort
end
temp_size= size(hex_vector); No_of_mite=temp_size(1,2);
clear voltage_vector;voltage_vector=hex_vector;
exec("~/rasp30/prog_assembly/libs/scilab_code/characterization/char_miteADC.sce",-1);
// Converts Output hex values to voltages based on the Measure_Voltage block calibration file
if No_of_mite ~= 0 then
j=1;
i_start = 1;
i_end= No_of_mite;
for i=i_start:i_end
if mite_info_array(j,2) == 977 then voltage_vector(:,i)=polyval(p_mite_977_10uA,voltage_vector(:,i),S_mite_977_10uA); end
if mite_info_array(j,2) == 978 then voltage_vector(:,i)=polyval(p_mite_978_10uA,voltage_vector(:,i),S_mite_978_10uA); end
if mite_info_array(j,2) == 979 then voltage_vector(:,i)=polyval(p_mite_979_10uA,voltage_vector(:,i),S_mite_979_10uA); end
if mite_info_array(j,2) == 980 then voltage_vector(:,i)=polyval(p_mite_980_10uA,voltage_vector(:,i),S_mite_980_10uA); end
if mite_info_array(j,2) == 981 then voltage_vector(:,i)=polyval(p_mite_981_10uA,voltage_vector(:,i),S_mite_981_10uA); end
if mite_info_array(j,2) == 982 then voltage_vector(:,i)=polyval(p_mite_982_10uA,voltage_vector(:,i),S_mite_982_10uA); end
if mite_info_array(j,2) == 983 then voltage_vector(:,i)=polyval(p_mite_983_10uA,voltage_vector(:,i),S_mite_983_10uA); end
if mite_info_array(j,2) == 984 then voltage_vector(:,i)=polyval(p_mite_984_10uA,voltage_vector(:,i),S_mite_984_10uA); end
if mite_info_array(j,2) == 985 then voltage_vector(:,i)=polyval(p_mite_985_10uA,voltage_vector(:,i),S_mite_985_10uA); end
if mite_info_array(j,2) == 986 then voltage_vector(:,i)=polyval(p_mite_986_10uA,voltage_vector(:,i),S_mite_986_10uA); end
if mite_info_array(j,2) == 1009 then voltage_vector(:,i)=polyval(p_mite_1009_10uA,voltage_vector(:,i),S_mite_1009_10uA); end
if mite_info_array(j,2) == 1010 then voltage_vector(:,i)=polyval(p_mite_1010_10uA,voltage_vector(:,i),S_mite_1010_10uA); end
if mite_info_array(j,2) == 1011 then voltage_vector(:,i)=polyval(p_mite_1011_10uA,voltage_vector(:,i),S_mite_1011_10uA); end
if mite_info_array(j,2) == 1012 then voltage_vector(:,i)=polyval(p_mite_1012_10uA,voltage_vector(:,i),S_mite_1012_10uA); end
if mite_info_array(j,2) == 1013 then voltage_vector(:,i)=polyval(p_mite_1013_10uA,voltage_vector(:,i),S_mite_1013_10uA); end
if mite_info_array(j,2) == 1014 then voltage_vector(:,i)=polyval(p_mite_1014_10uA,voltage_vector(:,i),S_mite_1014_10uA); end
if mite_info_array(j,2) == 1015 then voltage_vector(:,i)=polyval(p_mite_1015_10uA,voltage_vector(:,i),S_mite_1015_10uA); end
if mite_info_array(j,2) == 1016 then voltage_vector(:,i)=polyval(p_mite_1016_10uA,voltage_vector(:,i),S_mite_1016_10uA); end
if mite_info_array(j,2) == 1017 then voltage_vector(:,i)=polyval(p_mite_1017_10uA,voltage_vector(:,i),S_mite_1017_10uA); end
if mite_info_array(j,2) == 1018 then voltage_vector(:,i)=polyval(p_mite_1018_10uA,voltage_vector(:,i),S_mite_1018_10uA); end
end
end
//disp(voltage_vector)
endfunction
|
4f372cc80ce66e397f9ff66e4d4f71fc64003fd7
|
fd6e45f66c41ad779a3d47c3bf8ebfa140d3d657
|
/P3 - Non-linear equations /Métodos/6- newton sistemas.sce
|
6e71b6478acd35676ad912f1e22b7bc4b869583e
|
[] |
no_license
|
jere1882/Numerical-Analysis-Assignments
|
7f474e2020d010f9f9c3dceff5e48c03b0d38652
|
1074f92ca93d0a402259f92a0f61f105f25e5230
|
refs/heads/master
| 2021-09-06T20:00:36.411386
| 2018-02-10T18:04:38
| 2018-02-10T18:04:38
| 121,039,769
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,206
|
sce
|
6- newton sistemas.sce
|
// Código resolución de sistemas no lineales
function [p,k,err] = NewtonSistemas(F,p,delta,max1)
//F es un vector de funciones (Un campo escalar)
//p es una aproximación inicial al cero (R^n)
Y=F(p)
for k=1:max1
J=derivative(F,p');
Q= p - (J \ Y)'; //para volvera fila ;
Z = F(Q);
err = norm(Q-p); //Como el error es entre vectores, hay varias maneras de calcular
//la norma -distancia- entre ellos. Usamos norm
p=Q;
Y=Z;
//condicion para que pare:
if (err<delta)|(abs(Y)<delta) then
break
end
end
endfunction
deff('Y=F(X)',['Y(1)= X(1)^2+X(1)*(X(2)^3)-9', ' Y(2)= 3*(X(1)^2)*X(2)-4-X(2)^3']); // BIEN ESCRITO. Fijarse si van los .^para el cucuadrado
[sol,it,err]= NewtonSistemas(F,[-2 , 2.5],10^(-12),50) // por defecto norma2 es norm
//RESULTADO CON LOS 4 PUNTOS: SE VA A LAS 4 DISTINTAS SOLUCIONES...
//Extension del método de newton-raphson
// Sea alpha en R^2 una raíz de F : R^2 -> R^2. Si X0=(x0,y0) es una aproximacion de alpha, etnonces:
// F(x0,y0) + JF (x0,y0) * (alpha-X0) = 0
//despejamos alpha = X0 - [JF(X0)]^-1 * F(X0) la iteración queda asi con alpha=xn y X0=xn-1
|
56f4efb3bdeae1c4c2bf801cddd2851647ce0a37
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set4/s_College_Physics(volume_2)_R._A._Serway_And_J._S._Faughn_2072.zip/College_Physics(volume_2)_R._A._Serway_And_J._S._Faughn_2072/CH27/EX27.8/EX27_8.sce
|
ff03696ea3d7754336eb1a0e47a8621a62ffc65a
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 221
|
sce
|
EX27_8.sce
|
errcatch(-1,"stop");mode(2);//Chapter 27
//Example 8
//given
h=6.63*10^-34 //in J.s
m_e=9.11*10^-31 // in Kg
v=1*10^7 //in m/s
lambda=h/(m_e*v)
disp(lambda,"de Broglie wavelength for an electron in meters is")
exit();
|
963e4579c4bc3a4376c614030c7e587de4c4efe6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3869/CH1/EX1.54/Ex1_54.sce
|
373e556a09e3661295d3febe262b8045ad722ecd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 362
|
sce
|
Ex1_54.sce
|
clear
//
//
//
//Variable declaration
R=70 //radius of curvature of lens(cm)
n=10
Dn=0.433 //diameter of 10th dark ring(cm)
//Calculation
lamda=Dn**2/(4*R*n) //wavelength of light(cm)
//Result
printf("\n wavelength of light is %0.3f *10**-5 cm",lamda*10**5)
printf("\n answer given in the book varies due to rounding off errors")
|
a8a679825295bd02bb71a20434526360daca934a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2420/CH3/EX3.3/3_3.sce
|
f60a797b0642834d6ff32a074559e0528b408f7b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 136
|
sce
|
3_3.sce
|
clc
clear
//Initialization of variables
per=20
Dp=100
//calculations
r=Dp/per +1
//results
printf("Compression ratio = %d ",r)
|
07020ffcb69ed05a51473bfc388c50c60916467d
|
1ffd0259451af009bc55a18827746ae10e9da8ef
|
/task1/norm1.sce
|
768dee83a4a86d32563e36d23fd27b2c5c2afc5d
|
[] |
no_license
|
oborovsky/vychmeth
|
fb7c0f2e77249ec4fea40d7a05dac2740f8e9082
|
ccef228095b99798e64946af41029c7b79b505ab
|
refs/heads/master
| 2020-05-31T00:09:44.080491
| 2016-05-05T19:10:18
| 2016-05-05T19:10:18
| 42,015,944
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 8,981
|
sce
|
norm1.sce
|
x=[-2,-1.55556,-1.11111,-0.666667,-0.222222,0.222222,0.666667,1.11111,1.55556,2];
xh=[-2,-1.99,-1.98,-1.97,-1.96,-1.95,-1.94,-1.93,-1.92,-1.91,-1.9,-1.89,-1.88,-1.87,-1.86,-1.85,-1.84,-1.83,-1.82,-1.81,-1.8,-1.79,-1.78,-1.77,-1.76,-1.75,-1.74,-1.73,-1.72,-1.71,-1.7,-1.69,-1.68,-1.67,-1.66,-1.65,-1.64,-1.63,-1.62,-1.61,-1.6,-1.59,-1.58,-1.57,-1.56,-1.55,-1.54,-1.53,-1.52,-1.51,-1.5,-1.49,-1.48,-1.47,-1.46,-1.45,-1.44,-1.43,-1.42,-1.41,-1.4,-1.39,-1.38,-1.37,-1.36,-1.35,-1.34,-1.33,-1.32,-1.31,-1.3,-1.29,-1.28,-1.27,-1.26,-1.25,-1.24,-1.23,-1.22,-1.21,-1.2,-1.19,-1.18,-1.17,-1.16,-1.15,-1.14,-1.13,-1.12,-1.11,-1.1,-1.09,-1.08,-1.07,-1.06,-1.05,-1.04,-1.03,-1.02,-1.01,-1,-0.99,-0.98,-0.97,-0.96,-0.95,-0.94,-0.93,-0.92,-0.91,-0.9,-0.89,-0.88,-0.87,-0.86,-0.85,-0.84,-0.83,-0.82,-0.81,-0.8,-0.79,-0.78,-0.77,-0.76,-0.75,-0.74,-0.73,-0.72,-0.71,-0.7,-0.69,-0.68,-0.67,-0.66,-0.65,-0.64,-0.63,-0.62,-0.61,-0.6,-0.59,-0.58,-0.57,-0.56,-0.55,-0.54,-0.53,-0.52,-0.51,-0.5,-0.49,-0.48,-0.47,-0.46,-0.45,-0.44,-0.43,-0.42,-0.41,-0.4,-0.39,-0.38,-0.37,-0.36,-0.35,-0.34,-0.33,-0.32,-0.31,-0.3,-0.29,-0.28,-0.27,-0.26,-0.25,-0.24,-0.23,-0.22,-0.21,-0.2,-0.19,-0.18,-0.17,-0.16,-0.15,-0.14,-0.13,-0.12,-0.11,-0.1,-0.09,-0.08,-0.07,-0.06,-0.05,-0.04,-0.03,-0.02,-0.01,1.64105e-15,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.19,0.2,0.21,0.22,0.23,0.24,0.25,0.26,0.27,0.28,0.29,0.3,0.31,0.32,0.33,0.34,0.35,0.36,0.37,0.38,0.39,0.4,0.41,0.42,0.43,0.44,0.45,0.46,0.47,0.48,0.49,0.5,0.51,0.52,0.53,0.54,0.55,0.56,0.57,0.58,0.59,0.6,0.61,0.62,0.63,0.64,0.65,0.66,0.67,0.68,0.69,0.7,0.71,0.72,0.73,0.74,0.75,0.76,0.77,0.78,0.79,0.8,0.81,0.82,0.83,0.84,0.85,0.86,0.87,0.88,0.89,0.9,0.91,0.92,0.93,0.94,0.95,0.96,0.97,0.98,0.99,1,1.01,1.02,1.03,1.04,1.05,1.06,1.07,1.08,1.09,1.1,1.11,1.12,1.13,1.14,1.15,1.16,1.17,1.18,1.19,1.2,1.21,1.22,1.23,1.24,1.25,1.26,1.27,1.28,1.29,1.3,1.31,1.32,1.33,1.34,1.35,1.36,1.37,1.38,1.39,1.4,1.41,1.42,1.43,1.44,1.45,1.46,1.47,1.48,1.49,1.5,1.51,1.52,1.53,1.54,1.55,1.56,1.57,1.58,1.59,1.6,1.61,1.62,1.63,1.64,1.65,1.66,1.67,1.68,1.69,1.7,1.71,1.72,1.73,1.74,1.75,1.76,1.77,1.78,1.79,1.8,1.81,1.82,1.83,1.84,1.85,1.86,1.87,1.88,1.89,1.9,1.91,1.92,1.93,1.94,1.95,1.96,1.97,1.98,1.99];
y=[-4,-2.41975,-1.23457,-0.444444,-0.0493827,0.0493827,0.444444,1.23457,2.41975,4];
yy=[-4,-3.9601,-3.9204,-3.8809,-3.8416,-3.8025,-3.7636,-3.7249,-3.6864,-3.6481,-3.61,-3.5721,-3.5344,-3.4969,-3.4596,-3.4225,-3.3856,-3.3489,-3.3124,-3.2761,-3.24,-3.2041,-3.1684,-3.1329,-3.0976,-3.0625,-3.0276,-2.9929,-2.9584,-2.9241,-2.89,-2.8561,-2.8224,-2.7889,-2.7556,-2.7225,-2.6896,-2.6569,-2.6244,-2.5921,-2.56,-2.5281,-2.4964,-2.4649,-2.4336,-2.4025,-2.3716,-2.3409,-2.3104,-2.2801,-2.25,-2.2201,-2.1904,-2.1609,-2.1316,-2.1025,-2.0736,-2.0449,-2.0164,-1.9881,-1.96,-1.9321,-1.9044,-1.8769,-1.8496,-1.8225,-1.7956,-1.7689,-1.7424,-1.7161,-1.69,-1.6641,-1.6384,-1.6129,-1.5876,-1.5625,-1.5376,-1.5129,-1.4884,-1.4641,-1.44,-1.4161,-1.3924,-1.3689,-1.3456,-1.3225,-1.2996,-1.2769,-1.2544,-1.2321,-1.21,-1.1881,-1.1664,-1.1449,-1.1236,-1.1025,-1.0816,-1.0609,-1.0404,-1.0201,-1,-0.9801,-0.9604,-0.9409,-0.9216,-0.9025,-0.8836,-0.8649,-0.8464,-0.8281,-0.81,-0.7921,-0.7744,-0.7569,-0.7396,-0.7225,-0.7056,-0.6889,-0.6724,-0.6561,-0.64,-0.6241,-0.6084,-0.5929,-0.5776,-0.5625,-0.5476,-0.5329,-0.5184,-0.5041,-0.49,-0.4761,-0.4624,-0.4489,-0.4356,-0.4225,-0.4096,-0.3969,-0.3844,-0.3721,-0.36,-0.3481,-0.3364,-0.3249,-0.3136,-0.3025,-0.2916,-0.2809,-0.2704,-0.2601,-0.25,-0.2401,-0.2304,-0.2209,-0.2116,-0.2025,-0.1936,-0.1849,-0.1764,-0.1681,-0.16,-0.1521,-0.1444,-0.1369,-0.1296,-0.1225,-0.1156,-0.1089,-0.1024,-0.0961,-0.09,-0.0841,-0.0784,-0.0729,-0.0676,-0.0625,-0.0576,-0.0529,-0.0484,-0.0441,-0.04,-0.0361,-0.0324,-0.0289,-0.0256,-0.0225,-0.0196,-0.0169,-0.0144,-0.0121,-0.01,-0.0081,-0.0064,-0.0049,-0.0036,-0.0025,-0.0016,-0.0009,-0.0004,-0.0001,2.69304e-30,0.0001,0.0004,0.0009,0.0016,0.0025,0.0036,0.0049,0.0064,0.0081,0.01,0.0121,0.0144,0.0169,0.0196,0.0225,0.0256,0.0289,0.0324,0.0361,0.04,0.0441,0.0484,0.0529,0.0576,0.0625,0.0676,0.0729,0.0784,0.0841,0.09,0.0961,0.1024,0.1089,0.1156,0.1225,0.1296,0.1369,0.1444,0.1521,0.16,0.1681,0.1764,0.1849,0.1936,0.2025,0.2116,0.2209,0.2304,0.2401,0.25,0.2601,0.2704,0.2809,0.2916,0.3025,0.3136,0.3249,0.3364,0.3481,0.36,0.3721,0.3844,0.3969,0.4096,0.4225,0.4356,0.4489,0.4624,0.4761,0.49,0.5041,0.5184,0.5329,0.5476,0.5625,0.5776,0.5929,0.6084,0.6241,0.64,0.6561,0.6724,0.6889,0.7056,0.7225,0.7396,0.7569,0.7744,0.7921,0.81,0.8281,0.8464,0.8649,0.8836,0.9025,0.9216,0.9409,0.9604,0.9801,1,1.0201,1.0404,1.0609,1.0816,1.1025,1.1236,1.1449,1.1664,1.1881,1.21,1.2321,1.2544,1.2769,1.2996,1.3225,1.3456,1.3689,1.3924,1.4161,1.44,1.4641,1.4884,1.5129,1.5376,1.5625,1.5876,1.6129,1.6384,1.6641,1.69,1.7161,1.7424,1.7689,1.7956,1.8225,1.8496,1.8769,1.9044,1.9321,1.96,1.9881,2.0164,2.0449,2.0736,2.1025,2.1316,2.1609,2.1904,2.2201,2.25,2.2801,2.3104,2.3409,2.3716,2.4025,2.4336,2.4649,2.4964,2.5281,2.56,2.5921,2.6244,2.6569,2.6896,2.7225,2.7556,2.7889,2.8224,2.8561,2.89,2.9241,2.9584,2.9929,3.0276,3.0625,3.0976,3.1329,3.1684,3.2041,3.24,3.2761,3.3124,3.3489,3.3856,3.4225,3.4596,3.4969,3.5344,3.5721,3.61,3.6481,3.6864,3.7249,3.7636,3.8025,3.8416,3.8809,3.9204,3.9601];
yp=[-4,-3.99852,-3.99272,-3.98293,-3.96943,-3.95251,-3.93244,-3.90949,-3.88388,-3.85585,-3.82563,-3.79341,-3.75939,-3.72375,-3.68667,-3.64831,-3.60883,-3.56837,-3.52706,-3.48503,-3.44241,-3.39929,-3.3558,-3.31201,-3.26803,-3.22393,-3.1798,-3.13569,-3.09169,-3.04784,-3.0042,-2.96083,-2.91777,-2.87505,-2.83272,-2.7908,-2.74934,-2.70834,-2.66785,-2.62786,-2.5884,-2.54949,-2.51114,-2.47334,-2.43611,-2.39946,-2.36338,-2.32788,-2.29295,-2.25859,-2.2248,-2.19157,-2.1589,-2.12677,-2.09518,-2.06411,-2.03357,-2.00353,-1.97398,-1.94492,-1.91632,-1.88819,-1.86049,-1.83323,-1.80638,-1.77993,-1.75387,-1.72819,-1.70286,-1.67788,-1.65324,-1.62892,-1.6049,-1.58117,-1.55773,-1.53455,-1.51163,-1.48896,-1.46652,-1.4443,-1.42229,-1.40049,-1.37888,-1.35745,-1.3362,-1.31512,-1.29419,-1.27342,-1.25279,-1.2323,-1.21194,-1.19171,-1.17161,-1.15163,-1.13176,-1.112,-1.09235,-1.07281,-1.05337,-1.03404,-1.01481,-0.995675,-0.976647,-0.957719,-0.938893,-0.92017,-0.901551,-0.883037,-0.864631,-0.846333,-0.828147,-0.810076,-0.792122,-0.774289,-0.756579,-0.738997,-0.721547,-0.704232,-0.687056,-0.670024,-0.65314,-0.636409,-0.619835,-0.603423,-0.587177,-0.571103,-0.555205,-0.539487,-0.523955,-0.508613,-0.493466,-0.478519,-0.463776,-0.449242,-0.434921,-0.420817,-0.406935,-0.393278,-0.379851,-0.366657,-0.3537,-0.340984,-0.32851,-0.316283,-0.304305,-0.292579,-0.281107,-0.269892,-0.258934,-0.248236,-0.2378,-0.227625,-0.217714,-0.208067,-0.198684,-0.189565,-0.180709,-0.172118,-0.163788,-0.15572,-0.147913,-0.140363,-0.133071,-0.126032,-0.119245,-0.112708,-0.106415,-0.100366,-0.094555,-0.088979,-0.0836336,-0.0785143,-0.0736164,-0.0689349,-0.0644645,-0.0601997,-0.0561347,-0.0522636,-0.04858,-0.0450777,-0.0417498,-0.0385895,-0.0355898,-0.0327433,-0.0300426,-0.02748,-0.0250479,-0.0227381,-0.0205425,-0.0184531,-0.0164612,-0.0145586,-0.0127365,-0.0109863,-0.00929909,-0.00766612,-0.00607843,-0.00452702,-0.00300285,-0.00149688,2.06432e-16,0.00149688,0.00300285,0.00452702,0.00607843,0.00766612,0.00929909,0.0109863,0.0127365,0.0145586,0.0164612,0.0184531,0.0205425,0.0227381,0.0250479,0.02748,0.0300426,0.0327433,0.0355898,0.0385895,0.0417498,0.0450777,0.04858,0.0522636,0.0561347,0.0601997,0.0644645,0.0689349,0.0736164,0.0785143,0.0836336,0.088979,0.094555,0.100366,0.106415,0.112708,0.119245,0.126032,0.133071,0.140363,0.147913,0.15572,0.163788,0.172118,0.180709,0.189565,0.198684,0.208067,0.217714,0.227625,0.2378,0.248236,0.258934,0.269892,0.281107,0.292579,0.304305,0.316283,0.32851,0.340984,0.3537,0.366657,0.379851,0.393278,0.406935,0.420817,0.434921,0.449242,0.463776,0.478519,0.493466,0.508613,0.523955,0.539487,0.555205,0.571103,0.587177,0.603423,0.619835,0.636409,0.65314,0.670024,0.687056,0.704232,0.721547,0.738997,0.756579,0.774289,0.792122,0.810076,0.828147,0.846333,0.864631,0.883037,0.901551,0.92017,0.938893,0.957719,0.976647,0.995675,1.01481,1.03404,1.05337,1.07281,1.09235,1.112,1.13176,1.15163,1.17161,1.19171,1.21194,1.2323,1.25279,1.27342,1.29419,1.31512,1.3362,1.35745,1.37888,1.40049,1.42229,1.4443,1.46652,1.48896,1.51163,1.53455,1.55773,1.58117,1.6049,1.62892,1.65324,1.67788,1.70286,1.72819,1.75387,1.77993,1.80638,1.83323,1.86049,1.88819,1.91632,1.94492,1.97398,2.00353,2.03357,2.06411,2.09518,2.12677,2.1589,2.19157,2.2248,2.25859,2.29295,2.32788,2.36338,2.39946,2.43611,2.47334,2.51114,2.54949,2.5884,2.62786,2.66785,2.70834,2.74934,2.7908,2.83272,2.87505,2.91777,2.96083,3.0042,3.04784,3.09169,3.13569,3.1798,3.22393,3.26803,3.31201,3.3558,3.39929,3.44241,3.48503,3.52706,3.56837,3.60883,3.64831,3.68667,3.72375,3.75939,3.79341,3.82563,3.85585,3.88388,3.90949,3.93244,3.95251,3.96943,3.98293,3.99272,3.99852];
plot(xh,yy,'m--');
plot(xh,yp,'r');
plot(x,y,'*');
xgrid();
xtitle('norm delta=0.22707','X', 'Y');
|
956005969a8d19d2a68e44cf5f0b77093a13a7b6
|
d2b4190265ddc2ddd6f63bacfdafae9504390fd0
|
/NewtonRaphsonMethod.sce
|
a5ffd035372824ceecf7f0b7d6706aca4a5ccb39
|
[] |
no_license
|
santushtisharma10/AppliedMathematics_with_Scilab
|
8dd80f3a36298d844a42a37619e309b53022204d
|
28b4de4244768c0bb0eba1daea86d69021d89400
|
refs/heads/main
| 2023-05-29T04:40:42.507269
| 2021-06-04T13:25:58
| 2021-06-04T13:25:58
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 328
|
sce
|
NewtonRaphsonMethod.sce
|
clc;
deff('y=f(x)','y=x^3+x^2-3*x-3')
deff('y=df(x)','y=3*x^2+2*x-3')
x(1)=input('Enter Initial Guess:');
e= input("Answer correct upto : ");
for i = 1 : 100
x(i+1)=x(i)-f(x(i))/df(x(i));
err(i)=abs((x(i+1)-x(i))/x(i));
if err(i) < e
break;
end
end
printf('The solution is %f',x(i))
|
c5ed17b1194764a3e906da7a79344f5f48bbb0e4
|
d2b4190265ddc2ddd6f63bacfdafae9504390fd0
|
/TrapezoidalRule.sce
|
4bc583556b5c9d2c5d2d37e3d0ccb5cfe919e0f1
|
[] |
no_license
|
santushtisharma10/AppliedMathematics_with_Scilab
|
8dd80f3a36298d844a42a37619e309b53022204d
|
28b4de4244768c0bb0eba1daea86d69021d89400
|
refs/heads/main
| 2023-05-29T04:40:42.507269
| 2021-06-04T13:25:58
| 2021-06-04T13:25:58
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 219
|
sce
|
TrapezoidalRule.sce
|
clc;
clear;
close;
deff('y=f(x)','y=1/(1+x^2)')
x0=0;
xn=6;
n=6;
h=(xn-x0)/n;
s=0;
for i=1:n
s=s+f(x0+(i-1)*h)+f(x0+i*h);
end
integral=(h*s)/2;
printf('\nThe value of integral is=%g\n',integral)
|
0130c4735daa24698d7f71f695db50c3ec29200f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/196/CH6/EX6.7/example_6_7.sce
|
87a6ccfd2d5e05fc8324aea6d8267bfa013b51fa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 297
|
sce
|
example_6_7.sce
|
//Chapter 6
//Example 6-7
//ProbOnUnipolarTriangularWaveGenerator
//Page 159
clear;clc;
//Given
p = 2.8 ;
Vsatm = -13.8 ;
Ri = 28*10^3 ;
C = 0.05*10^-6;
Vut = - ((Vsatm+0.6)/p);
f = p / (2*Ri*C);
printf ( "\n\n Peak Voltage = %.4f V ", Vut )
printf ( "\n\n frequency = %.4f Hz ", f )
|
8c402c1af8bc31fd08dd37dd561f3217c72464ba
|
cb795495d7cb7e053c51236279bdfedf3e4b7a37
|
/Scilab/Iris & Pima India using ANN/iris.sce
|
e59e8dff9e23d29751396b7ae61f2aaf4eb387a1
|
[
"MIT"
] |
permissive
|
memr5/Machine-Learning-Portfolio
|
7b21443912deb8381518fcf0c12b4fd15ecbb9a6
|
31a9430aa957949c3f9e05e696f25f7200e21263
|
refs/heads/master
| 2021-07-17T15:48:05.964583
| 2020-04-23T12:35:58
| 2020-04-23T12:35:58
| 201,817,591
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,356
|
sce
|
iris.sce
|
data = csvRead('Iris.csv',[],[],'string')
dataNew = data(2:151,2:6)
c1 = dataNew(1:150,5) == 'Iris-setosa'
c2 = dataNew(1:150,5) == 'Iris-versicolor'
c3 = dataNew(1:150,5) == 'Iris-virginica'
temp = csvRead('Iris.csv')
temp = temp(2:151,2:5)
temp(1:150,5) = c1
temp(1:150,6) = c2
temp(1:150,7) = c3
data = temp
X = data(:,1:4)'
y = data(:,5:7)'
[X, y] = ann_pat_shuffle(X, y)
split = size(X)(2)*0.7
X_train = X(:,1:split)
y_train = y(:,1:split)
X_test = X(:,split+1:size(X)(2))
y_test = y(:,split+1:size(X)(2))
N = [4 16 3] // [4 16 3] - 97.77 lp=0.1 epochs-20
W = ann_FF_init(N)
lp = [0.3,0.000001]
T = 100
t = 1
train_losses = []
test_losses = []
train_accuracies = []
test_accuracies = []
while t<=T
W_updated = ann_FF_Std_online(X_train, y_train, N, W, lp, 1)
//W_updated = ann_FF_Std_batch(X_train, y_train, N, W, lp, 1)
W = W_updated
y_train_predicted = ann_FF_run(X_train, N, W)
y_test_predicted = ann_FF_run(X_test, N, W)
disp(t,"Epoch: ")
train_loss = ann_sum_of_sqr(y_train_predicted, y_train)/split
disp(train_loss,'Training Loss: ')
test_loss = ann_sum_of_sqr(y_test_predicted, y_test)/(size(X)(2) - split)
disp(test_loss,'Testset Loss: ')
train_accuracy = 1 - ann_sum_of_sqr(y_train_predicted>=0.5,y_train)/split
test_accuracy = 1 - ann_sum_of_sqr(y_test_predicted>=0.5,y_test)/(size(X)(2) - split)
disp(train_accuracy,'Training Accuracy: ')
disp(test_accuracy,'Test Accuracy: ')
disp("")
train_losses = [train_losses train_loss]
test_losses = [test_losses test_loss]
train_accuracies = [train_accuracies train_accuracy]
test_accuracies = [test_accuracies test_accuracy]
if t>=2 then
clf(1)
figure(1)
plot((1:t)',[train_losses;test_losses]')
//plot(1:t,test_losses,c='b')
xlabel('Epochs')
ylabel('Loss')
title('Train & Test Losses')
hl=legend(['train loss';'test loss']');
clf(2)
figure(2)
plot((1:t)',[train_accuracies;test_accuracies]')
//plot(1:t,test_accuracies,c='b')
xlabel('Epochs')
ylabel('Accuracy')
title('Train & Test Accuracy')
ha=legend(['train accuracy';'test accuracy']');
end
if test_accuracy >= 0.98
break
end
t = t+1
end
|
29499e2b37d3287805b6f794fcbb4439aac5c873
|
bbc11c0776778eadc6701c4eedfe19ae8dfa1584
|
/scilab/Bissecao.sci
|
766c1fc19e06c9a277d0da221c085a1d947c1e23
|
[] |
no_license
|
ceconelli/Metodos-Computacionais
|
842eeebf11cc74acc66fa08d7ca67f9c45f3b268
|
07f4326c4821facaf5989f89d5d959f8000e062c
|
refs/heads/master
| 2020-06-03T03:23:51.762483
| 2017-06-12T16:12:12
| 2017-06-12T16:12:12
| 94,114,311
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 799
|
sci
|
Bissecao.sci
|
function[y]= f(x)
y = x^2-3*x-10;
endfunction
function[Raiz,Iter,CondErro]=Bissecao(a,b,Toler,IterMax)
Fa = f(a);
Fb = f(b);
if(Fa*Fb>0) then
disp("Função nao muda de sinal nos extremos do intervalo dado");
return;
end
DeltaX = abs(b-a)/2;
Iter = 0;
while 1
x = (a+b)/2;
Fx = f(x);
disp(Iter,a,Fa,b,Fb,x,Fx,DeltaX);
if((DeltaX<=Toler & abs(Fx)<=Toler) | Iter>=IterMax) then
break;
end
if(Fa*Fx>0) then
a = x;
Fa = Fx;
else
b = x;
end
DeltaX = DeltaX/2;
Iter = Iter+1;
end
Raiz = x;
if(DeltaX<=Toler & abs(Fx)<=Toler) then
CondErro = 0;
else
CondErro = 1;
end
endfunction
|
cbac00988b72df697a7aef21a8a62364ef01c726
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/287/CH18/EX18.6/Exa18_6.sci
|
4e92d1f41325af8ff53895d6f8b008c4b220d103
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 575
|
sci
|
Exa18_6.sci
|
//Determine ABS/BH switch calling rate and CCS for a switch
RL = 12000;
n = 80000;
BL = 64000;
HL = 4000;
CRr = 2;
CRb = 3;
CRh = 10;
HTr = 140;
HTb = 160;
HTh = 200;
RLp = RL/n;
BLp = BL/n;
HLp = HL/n;
CCSrl = CRr * (HTr/100);
CCSbl = CRb * (HTb/100);
CCShl = CRh * (HTh/100);
SCR = (CRr*RLp) + (CRb*BLp) + (CRh*HLp) ;
Sccs = (CCSrl*RLp) + (CCSbl*BLp) + (CCShl*HLp) ;
Aht = (Sccs/SCR)*100;
ABSc = SCR*n;
ABSu = (Sccs*n)/36;
Dcc = 1.5*ABSc;
De = 1.5*ABSu;
disp(Dcc, 'Design call capacity based on HD')
disp(De, 'Design erlangs based on HD')
|
d15c0cc075695e860db8d6001858660c5ca97896
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/858/CH5/EX5.5/example_5.sce
|
d676a28bbb3a296d5523205cc210a36050f5a3c3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 636
|
sce
|
example_5.sce
|
clc
clear
printf("example 5.5 page number 173\n\n")
//to find the rate of heat loss through pipeline
//resistance by pipeline
d1=0.15 //in m
d2=0.16 //in m
l=1 //in m
A1=3.14*d1*l;
A2=3.14*d2*l
Am1=(A2-A1)/log (A2/A1);
x1=(d2-d1)/2;
k1=50 //in W/mK
R1=x1/(k1*Am1);
//resistance by insulation
d2=0.16 //in m
d3=0.26 //in m
l=1 //in m
A2=3.14*d2*l;
A3=3.14*d3*l
Am2=(A3-A2)/log (A3/A2);
x2=(d3-d2)/2;
k2=0.08 //in W/mK
R2=x2/(k2*Am2);
R=R1+R2;
printf("total resistance = %f K/W",R)
T1=120; //in K
T2=40; //in K
delta_T=T1-T2;
Q=delta_T/R;
printf("\n\nheat loss = %f W/m",Q)
|
6beb43e9d4fd643015ef7db2a49b55d69ae9e3f2
|
cbfcabc3884e1424db1927c0d09fb25f8b31af2e
|
/Lab2/CS16B019HalfAdder.tst
|
cb2d0bf32bb759e55186a5178a0e9456f596866d
|
[] |
no_license
|
pranav-jha/CSD
|
fbe6ae54fc1657d0ad2d62f1584b2fdd3b0af10b
|
ec25000c4354cd33c9861f127794edfad309b4e8
|
refs/heads/master
| 2020-07-06T22:54:03.563304
| 2019-11-23T09:00:33
| 2019-11-23T09:00:33
| 203,163,897
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 308
|
tst
|
CS16B019HalfAdder.tst
|
load CS16B019HalfAdder.hdl,
output-file CS16B019HalfAdder.out,
compare-to CS16B019HalfAdder.cmp,
output-list a%B3.1.3 b%B3.1.3 sum%B3.1.3 carry%B3.1.3;
set a 0,
set b 0,
eval,
output;
set a 0,
set b 1,
eval,
output;
set a 1,
set b 0,
eval,
output;
set a 1,
set b 1,
eval,
output;
|
ebc1bcdf8a91e13129103e21b87697a58129408f
|
f2068f2734a1b9080ea2db4455a5fc3581ab0a1c
|
/plus_tau_cont-Omega.sci
|
76bbbf5de7d4d00bc2e43585eee69056fbca9dc7
|
[] |
no_license
|
NnataKha/Conflict-models-with-attractive-interaction
|
5a9bc20603f05cfefa5283db453bc377ff68ff15
|
afc53eff31d1d16134b76fde0b51698abc4a9c67
|
refs/heads/master
| 2020-03-16T18:48:14.182188
| 2018-05-10T11:17:25
| 2018-05-10T11:17:25
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,249
|
sci
|
plus_tau_cont-Omega.sci
|
clear;
// function that determines p_i
function y=fun1(x)
y=sin(5*x*%pi)+1;
endfunction
// function that determines r_i
function y=fun2(x)
//y=cos(2*x*%pi)+1;
y=(-0.2+x)^2;
endfunction
cp=intg(0,1,fun1);
cr=intg(0,1,fun2);
function y=fun11(x)
y=fun1(x)/cp;
endfunction
function y=fun21(x)
y=fun2(x)/cr;
endfunction
d=0.01;//the length of the intervals of partitioning at the graphic drawn with dash line
m=1+1/d;
x=0;
for i=1:m
p(i)=fun11(x);
r(i)=fun21(x);
T(i)=x;
x=x+d;
end
p0=p;
r0=r;
po1=0.0/d;
po2=0.3/d;
ro1=0.4/d;
ro2=0.6/d;
po3=0.7/d;
po4=0.8/d;
ro3=0.9/d;
ro4=1/d;
N=1000;// number of steps (graphic drawn with dash line)
for k=1:N
// Theta = sum(sqrt(p.*r)*d);
Theta1=0;
Theta2=0;
for i=1:m
if (0<=i)&(i<po1) then
tau(i)=0
end
if (po1<=i)&(i<po2) then
tau(i)=p(i);
Theta1=Theta1*d+p(i)*d;
end
if (po2<=i)&(i<ro1) then
tau(i)=0
end
if (ro1<=i)&(i<ro2) then
tau(i)=r(i);
Theta2=Theta2*d+r(i)*d;
end
if (ro2<=i)&(i<po3) then
tau(i)=0
end
if (po3<=i)&(i<po4) then
tau(i)=p(i);
Theta1=Theta1*d+p(i)*d;
end
if (po4<i)&(i<ro3) then
tau(i)=0
end
if (ro3<=i)&(i<ro4) then
tau(i)=r(i);
Theta2=Theta2*d+r(i)*d;
end
if ro4<=i then
tau(i)=0;
end
end
Theta=Theta1*Theta2;
W = sum(tau.*d);
z = 1+W+Theta;
p = (p.*(1+Theta)+tau)./z;
r = (r.*(1+Theta)+tau)./z;
end
if 1==1 then
mu0(1)=p0(1)*d;
nu0(1)=r0(1)*d;
mu(1)=p(1)*d;
nu(1)=r(1)*d;
mtau(1)=tau(1)*d;
for i=2:m
mtau(i)=mtau(i-1)+tau(i)*d;
mu0(i)=mu0(i-1)+p0(i)*d;
nu0(i)=nu0(i-1)+r0(i)*d;
mu(i)=mu(i-1)+p(i)*d;
nu(i)=nu(i-1)+r(i)*d;
end
plot(T,mu0,'b--');
plot(T,mu,'b.-');
plot(T,nu0,'black--');
plot(T,nu,'black');
plot(T,mtau,'r');
end
if 2==1 then
plot(T,p,'b.-');
plot(T,p0,'b--');
plot(T,r0,'black--');
plot(T,r,'black');
//plot(T,tau1,'*');
// legend('p(x)','r(x)','limit');
end
|
2cd4c7f1769a6bcecb2c2297e0f85db41dfc2c1e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/779/CH7/EX7.2/7_2.sce
|
720d2e198c20b85b58a0a6a1855871f42e1c9aeb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 364
|
sce
|
7_2.sce
|
// Part (a)
T1 = 273;
T2 = 373;
m = 1 ;
cv = 4.187;
Ss = m*cv*log(T2/T1); // S = S2-S1
Q = m*cv*(T2-T1);
Sr = -(Q/T2);
S = Ss+Sr;
disp("kJ/K",S,"The entropy change of the universe is")
// Part (b)
T3 = 323;
Sw = m*cv*(log(T3/T1)+log(T2/T3));
Sr1 = -m*cv*(T3-T1)/T3;
Sr2 = -m*cv*(T2-T3)/T2;
Su = Sw+Sr1+Sr2;
disp("kJ/K",Su,"The entropy change of the universe is")
|
a234f53a5a50bf7204054dcb2ca2e64580bbbc45
|
b4be5ed282b4c531c0d140038804106b52e5e9be
|
/rbs-master/test.sce
|
3f4f595528eb8f740476f97f7c6a3d31e56bd9c3
|
[] |
no_license
|
solothinker/compare
|
9df946e9d40f0565d1eb3bcb18cb4891435d8fed
|
d0b4b633f47aaa2578d39f723c6becd1d3aa2359
|
refs/heads/master
| 2021-06-24T21:42:05.654744
| 2017-09-08T05:57:35
| 2017-09-08T05:57:35
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,859
|
sce
|
test.sce
|
//filter result
//here in test case we are comparing the outputs of idfilt and filt function defined
//here for a given input ,if the output of these filters will be same for given same
//input the orresponding result of rbs function will also be same as rest all part of
//rbs function just adjusts the outputs from the filter with their corresponding sign
//and levels.
//test case input signals names u1 to u5,their corresponding bands band11,band21,band31..band51 and no.of channels nu1,nu2..nu5.
loadmatfile('testfile2.mat')
function[u]=filt(data,band1,nu) //data:-input signal to filter,band:-band,nu:-no.of channels of input signal
[lhs,rhs]=argn(0)
band=band1/2 //dividing the band by 2 as we are taking data from matlab and here band is defined in between [0 0.5].while in matlab it is defined in bw [0 1]
if ~and(band==[0 0.5]) then
if(band(1)==0) then
[hz]=iir(8,'lp','butt',[band(2) band(1)],[0 0]); //8th order butterwoth filter
num=hz(2);
den=hz(3);
for i=1:1:nu
y(:,i)=filter(num,den,data(:,i));
end
elseif(band(2)==0.5) then
[hz]=iir(8,'hp','butt',[band(1) band(2)],[0 0]); //8th order butterwoth filter
num=hz(2);
den=hz(3);
for i=1:1:nu
y(:,i)=filter(num,den,data(:,i));
end
else
[hz]=iir(8,'bp','butt',band,[0 0]); //8th order butterwoth filter
num=hz(2);
den=hz(3);
for i=1:1:nu
y(:,i)=filter(num,den,data(:,i));
end
end
u=y
else
u=data;
end
endfunction
//testu1=filt(u1,band11,nu1);
//testu2=filt(u2,band21,nu2);
//testu3=filt(u3,band31,nu3);
//testu4=filt(u4,band41,nu4);
//testu5=filt(u5,band51,nu5);
|
22a2e4cbbd4602e4dca3fff00722af5584dce2cc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1646/CH2/EX2.9/Ch02Ex9.sce
|
de151207275f8fc885f9c727e690dd1e0d1bf687
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 411
|
sce
|
Ch02Ex9.sce
|
//Scilab Code Ex2.9 :Page:82 (2011)
clc;clear;
n = 1;
m0 = 9.1e-031;....// Mass of the electron, kg
a = 1e-10;....// Width of the box, m
h = 6.63e-034;....// Planck's constant, J-s
E = n^2*h^2/(8*m0*a^2);
printf("\n The energy of the electron moving in 1D infinetly high potential box = %5.2e J", E);
// Result
// The energy of the electron moving in 1D infinetly high potential box = 6.04e-18 J
|
66ec9da102c622a696b38b60e0394ae061992d04
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/199/CH9/EX9.5/Example_9_5.sce
|
e0bd21583fc68444540b91d7ac4e298a474c9ccf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 263
|
sce
|
Example_9_5.sce
|
// Chapter9
// Page.No-402, Figure.No-9.16(a)
// Example_9_5
// Value of capacitor
// Given
clear;clc;
Ra=10*10^3; // Resistance in ohm
tp=10*10^-3; // Output pulse width
C=tp/(1.1*Ra);
printf("\n Capacitance C is = %.9f farad \n",C) // Approximately 1uF
|
07bb46e9f14885a8b1efc5d2cdfb423ab1753ee9
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set9/s_Engineering_Physics_K._V._Kumar_3537.zip/Engineering_Physics_K._V._Kumar_3537/CH7/EX7.3/Ex7_3.sce
|
6a48dba6420162991510777ea2e9953f89fd67d3
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 318
|
sce
|
Ex7_3.sce
|
errcatch(-1,"stop");mode(2);//Example 7_3
;
;
//To compare the acceptance angle
NA=0.3
thetaa=asin(NA)*180/%pi //units in degrees
theta1=asin(NA/sin(45*%pi/180))*180/%pi //units in degrees
printf("for meridional rays theta=%.2f degrees",thetaa)
printf("\n for skew rays theta=%.2f degrees",theta1)
exit();
|
24f8af2d5337500a4c9dccf003ef0a98cbcbbe2e
|
68f6f3335d41b95146619ddf406414da5c1bc975
|
/metodos-numericos/practicas/scilab/conversiones.sci
|
e1603a623b509b7b480e9e443a656aea7a893e35
|
[] |
no_license
|
nachocattoni/Ita
|
be52ab7f80cb0dd7d0a0ef470c72a7f997f2e75b
|
f7e102a2917ebe59358dbd9d5f7af81703c16fde
|
refs/heads/master
| 2021-05-02T08:09:23.784800
| 2018-02-08T02:50:30
| 2018-02-08T02:50:30
| 120,845,736
| 0
| 0
| null | 2018-02-09T02:29:22
| 2018-02-09T02:29:21
| null |
UTF-8
|
Scilab
| false
| false
| 748
|
sci
|
conversiones.sci
|
clear
clc
//// Retorna la representación binaria de un número en Scilab, como
//// dos listas (parte entera y decimal) de tamaño fijo.
function [E, D] = my_dec2bin (x)
ent = floor(x);
dec = x - ent;
step = 30;
while(step >= 1)
E(step) = modulo(ent, 2);
ent = floor(ent / 2);
step = step - 1;
end
step = 30;
while(step >= 1)
dec = dec * 2;
D(step) = floor(dec);
dec = dec - floor(dec);
step = step - 1;
end
E = E'
D = D'
endfunction
//// Inversa de my_dec2bin
function x = my_bin2dec(E, D)
x = 0;
for i = 1:30
x = x + E(i) * 2^(30 - i)
end
for i = 1:30
x = x + D(i) * 2^(i - 31)
end
endfunction
|
a2eec570ab6b5fadf48ba718ed3f1caa24e9b571
|
717ddeb7e700373742c617a95e25a2376565112c
|
/25/CH3/EX3.2/3_2.sce
|
309db50b4b722b8447d87fe0ab9f780c53abee0f
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 530
|
sce
|
3_2.sce
|
// example:-3.2,page no.-87.
// program to find out load impedence.
Zo=100; // characteristic impedence.
tao=0.560+0.215*%i; // reflection coefficient.
z=(1+tao)/(1-tao); // normalized impedence(normalized w.r.t Zo)
Zl=z*Zo;
// result
disp(Zl,'load impedence = ')
// by smith chart.
smith_chart(tao)
// when analyse with the help of smith chart.see the angle from x=0 axis i.e Tao_real axis.if it is above this axis take angle anticlockwise and if it is below this axis.take angle clockwise from Tao_real axis below.
|
b8580d4f66e515afb0662e258d7a19a607b10e75
|
527c41bcbfe7e4743e0e8897b058eaaf206558c7
|
/Positive_Negative_test/Netezza-Base-DateFunctions/FLIntToDate-NZ-01.tst
|
ac2687f6f7625273f0d2e7dc027bda7a052689dd
|
[] |
no_license
|
kamleshm/intern_fuzzy
|
c2dd079bf08bede6bca79af898036d7a538ab4e2
|
aaef3c9dc9edf3759ef0b981597746d411d05d34
|
refs/heads/master
| 2021-01-23T06:25:46.162332
| 2017-07-12T07:12:25
| 2017-07-12T07:12:25
| 93,021,923
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,327
|
tst
|
FLIntToDate-NZ-01.tst
|
-- The intellectual and technical concepts contained herein are proprietary to Fuzzy Logix, LLC.
-- and may be covered by U.S. and Foreign Patents, patents in process, and are protected by trade
-- secret or copyright law. Dissemination of this information or reproduction of this material is
-- strictly forbidden unless prior written permission is obtained from Fuzzy Logix, LLC.
-- Functional Test Specifications:
--
-- Test Category: Date Functions
--
-- Test Unit Number: FLIntToDate-TD-01
--
-- Name(s): FLIntToDate
--
-- Description: Scalar function which converts an integer to date. The integer could be positive or negative and represents the difference in days from Jan1, 1990. The scalar function return the date Jan 1, 1990 for the integer value zero.
--
-- Applications:
--
-- Signature: FLIntToDate(pNumOfDays INTEGER)
--
-- Parameters: See Documentation
--
-- Return value: Date
--
-- Last Updated: 05-11-2017
--
-- Author: <Zhi.Wang@fuzzyl.com, Joydeep.Das@fuzzyl.com>, Sam Sharma
--
-- BEGIN: TEST SCRIPT
-- .run file=../PulsarLogOn.sql
-- .set width 2500
-- set session dateform = ANSIDATE ;
-- BEGIN: POSITIVE TEST(s)
---- Positive Test 1: Manual Example
--- Same Output, Good
SELECT FLIntToDate(-726467) AS FLIntToDate1,
FLIntToDate(-726468) AS FLIntToDate2,
FLIntToDate(0) AS FLIntToDate3,
FLIntToDate(5678) AS FLIntToDate4,
FLIntToDate(2925591) AS FLIntToDate5,
FLIntToDate(2925592) AS FLIntToDate6;
---- Positive Test 2: And more for additional coverage
SELECT FLIntToDate(-72646) AS FLIntToDate1,
FLIntToDate(-42646) AS FLIntToDate2,
FLIntToDate(992559) AS FLIntToDate3;
---- Positive Test 3: Additional coverage, multiples of 10x
SELECT FLIntToDate(10000 );
SELECT FLIntToDate(100000 );
SELECT FLIntToDate(1000000 );
SELECT FLIntToDate(10000000);
-- END: POSITIVE TEST(s)
-- BEGIN: NEGATIVE TEST(s)
---- Negative Test 1: Invalid Data Type
--- Return expected error msg, Good
SELECT FLIntToDate(NULL) AS FLIntToDate1;
SELECT FLIntToDate(1.2) AS FLIntToDate1;
-- SELECT FLIntToDate('2010: type') AS FLIntToDate1;
-- SELECT FLIntToDate(CAST ('01/01/0001' AS DATE)) AS FLIntToDate1;
-- SELECT FLIntToDate(CAST ('0001-01-01 00:00:00.000000' AS TIMESTAMP)) AS FLIntToDate1;
-- END: NEGATIVE TEST(s)
-- END: TEST SCRIPT
|
51eb91a3f8b4a19162285c09374ee3948631fecb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/551/CH9/EX9.1/1.sce
|
3845860c4824892a958f98cd2487e5dec3d1166a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 653
|
sce
|
1.sce
|
clc
V=0.35; //m^3
m_CO=0.4; //kg
m_air=1; //kg
m_O2=0.233; //kg
m_N2=0.767; //kg
T=293; //K
R0=8.314; //kJ/kg K
M_O2=32; //Molecular mass of O2
M_N2=28; //Molecular mass of N2
M_CO=28; //Molecular mass of CO
disp("Partial Pressures=")
p_O2=m_O2*R0*10^3*T/M_O2/V/10^5; //bar
disp("partial pressure for p_O2")
disp(p_O2)
disp("bar")
p_N2=m_N2*R0*10^3*T/M_N2/V/10^5; //bar
disp("partial pressure for p_N2")
disp(p_N2)
disp("bar")
p_CO=m_CO*R0*10^3*T/M_CO/V/10^5; //bar
disp("partial pressure for p_CO")
disp(p_CO)
disp("bar")
disp("(ii) Total pressure in the vessel")
p=p_O2+p_N2+p_CO;
disp("p=")
disp(p)
disp("bar")
|
dc609b4bc0b084c02f96d5a53c98204e4853404d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1538/CH21/EX21.2/Ex21_2.sce
|
dcc477e11208bd934efcdce7a06357dc49c89c09
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 305
|
sce
|
Ex21_2.sce
|
//example-21.2
//page no-621
//given
//relative permeability of superalloy
mur=200000
mu0=4*(%pi)*10^-7 //henry/m
//intensity of magnetisation
M=6000 //A/m
//magnetic field is given by
H=M/(mur-1) //A/m
//strength of magnet
B=mu0*mur*H //tesla
printf ("the strength of magnet is %f T",B)
|
1bdd4c898a347baaebb85b21274430a490d6967e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/29/CH3/EX3.2.10/exa3_2_10.sce
|
77880b5ede6f1f35c2bb39d53dfed1f0d4d638d1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 476
|
sce
|
exa3_2_10.sce
|
//Caption:transfer_function
// example 3.2.10
//page 43
// we have defined parallel and series function which we are going to use here
//exec parallel.sce;
//exec series.sce;
syms G1 G2 G3 G4 G5 H1 H2 H3;
a=parallel(G3,G4);
//shift off the take off point before block 'a' to after block 'a'
b=1/a;
d=1;
c=G2/(1+G2*d);
e=parallel(H1,b);
f=series(c,a);
g=series(H2,e);
h=f/(1+f*g);
h=simple(h);
i=series(h,G1);
y=i/(1+i*H3);
y=simple(y);
disp(y,"C(s)/R(s)=")
|
e74b811c7bb2362f893c72826ef46b48a955c589
|
f6acfd90aed3ee53e05f871020be5ec7176750ac
|
/LQG CALCULO.sce
|
4160a3416ebe3314d37bf0763e030b65618703e5
|
[] |
no_license
|
jorchmch/SCA-BIPEDO
|
5ed27890c2f6ea2c8b897454fc5b4227d62e46d4
|
3689a8beecfc3107f86acc2e479e461670f80ae2
|
refs/heads/master
| 2022-12-02T10:49:20.103072
| 2020-08-16T02:13:44
| 2020-08-16T02:13:44
| 287,832,442
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 6,269
|
sce
|
LQG CALCULO.sce
|
//Cargamos el archivo guardado de "linearizing"
load("PLANTABIPEDO.sod","X","U","sys")
////Ponemos las matrices obtenidas de Scilab///
A=sys.A
B=sys.B
C=sys.C
D=sys.D
C=C(1:2,:);
D=zeros(2,2);
/////Controllability and Observability/////
///Matrices Scilab///
//controlabilidad
Cc = cont_mat(A,B)
rankCc=rank(Cc)
//observabilidad
O = obsv_mat(A, C)
rankO=rank(O)
///Matrices Analiticas///
//controlabilidad
//Cc1 = cont_mat(A1,B1)
//rankCc=rank(Cc1)
//observabilidad
//O1 = obsv_mat(A1,C1)
//rankO=rank(O1)
/////Plotear valores singulares//////
///Valores matrices Scilab///
G = syslin('c', A, B, C, D);
tr = trzeros(G)
w = logspace(-3,3);
sv = svplot(G,w);
//ploteo valores singulares ambos modelos//
//primer ploteo para las matrices de Scilab
scf(1);
plot2d("ln", w, [20*log(sv')/log(10)])
xgrid(12)
xtitle("Valores Singulares de la Planta","Frequency (rad/s)", "Amplitude (dB)");
////Obtencion de las funciones de transferencia////
//MatricesScilab//
[h]=ss2tf(sys)
//MatricesAnaliticas//
//[h1]=ss2tf(G1)
////Obtencion de polos y ceros/////
//Matrices Scilab//
scf(2)
plzr(h);
xtitle("Polos y zeros de la Planta")
//Matrices analiticas
//scf(5)
//plzr(h1);
//xtitle("Polos y zeros matrices analiticas")
// Escalonamiento a la planta //
su = diag( [0.9614, 0.2753] )
sx = diag( [3.157, 11.47, 3.157, 11.47] )
sy = diag( [3.157 3.157] )
ap_ = sx*A*inv(sx)
bp_ = sx*B*inv(su)
cp_ = sy*C*inv(sx)
dp_ = sy*D*inv(su)
Gs_= syslin("c",ap_, bp_, cp_, dp_)
// Valores singulares de la planta escalonada //
sv1 = svplot(Gs_,w);
scf(3)
plot2d("ln", w, [20*log(sv1')/log(10)])
xgrid(12)
xtitle("Valores Singulares de Planta Escalonada","Frequency (rad/s)", "Amplitude (dB)");
// Planta aumentada con integradores antes del proyecto de controlador
[ns,nc] = size(bp_); //ns = número de entradas;
//nc = número de controles;
a_1 = [ap_ bp_ ;
0*ones(nc,ns) 0*ones(nc,nc) ];
b_1 = [0*ones(ns,nc); eye(nc,nc)];
c_1 = [cp_ 0*ones(nc,nc)];
d_1 = 0*ones(nc,nc)
Gs_1= syslin("c",a_1, b_1, c_1, d_1)
// Valores singulares de la planta escalonada con el integrador //
sv2 = svplot(Gs_1,w);
scf(5)
plot2d("ln", w, [20*log(sv2')/log(10)])
xgrid(12)
xtitle("Valores Singulares de Planta Escalonada con Integradores","Frequency (rad/s)", "Amplitude (dB)");
// LQR controller calculation
// Recuperar Target Loop resolviendo un problema de LQR barato
q = c_1'*c_1; //Matriz de ponderación del estado
rho = 1e-9; //Parámetro de recuperación de control barato
r = rho*eye(nc,nc) //Matriz de ponderación de control
//how we calculate B
B=b_1*inv(r)*b_1';
A=a_1;
//Solv the ricatti equation
X=riccati(A,B,q,'c','eigen');
//matriz de ganacia
G_1=inv(r)*b_1'*X;
////// PREGUNTA 7 //////
//calculate observer Kalman Filter
ll = inv(cp_*inv(-ap_)*bp_ + dp_);
lh = -inv(ap_)*bp_*ll;
l = [lh //ll, lh - Para la conformación de
ll]; //bucles de baja y alta frecuencia.
Gs_2= syslin("c",a_1, l, c_1, d_1)
// Valores singulares del filtro de bucle Abierto //
sv3 = svplot(Gs_2,w);
scf(6)
plot2d("ln", w, [20*log(sv3')/log(10)])
xgrid(12)
xtitle("Valores Singulares de Filtro Abierto","Frequency (rad/s)", "Amplitude (dB)");
// Filtro de Kalman
pnint=eye(nc,nc) //Proceso de matriz de intensidad de ruido
mu=0.01; //Medicion de la intensidad de ruido
mnint=mu*eye(nc,nc) //Matriz de intensidad de ruido de medicion
Ch=l*l'; //Forma de Ch para "riccati" segun Scilab
Ah=a_1'; //Forma de Ah para "riccati" segun Scilab
Bh=c_1'*inv(mnint)*c_1;
Xh=riccati(Ah,Bh,Ch,'c','eigen');
//ganacia H
H_1=(inv(mnint)*c_1*Xh)';
Gs_3= syslin("c",a_1, H_1, c_1, d_1)
// Valores singulares del observador Filtro Kalman
sv4 = svplot(Gs_3,w);
scf(7)
plot2d("ln", w, [20*log(sv4')/log(10)])
xgrid(12)
xtitle("Valores Singulares de Filtro de Kalman","Frequency (rad/s)", "Amplitude (dB)");
//ACTIVAR ESTA PARTE PARA LOS POLOS Y CEROS DEL FILTRO DE KALMAN GANACIA H
[h2]=ss2tf(Gs_3)
scf(8)
plzr(h2);
xtitle("Polos y Zeros del Filtro Kalman, Ganancia H")
/////// PREGUNTA 8 ////////
// COMPENSADOR K(S) DE LA FORMA DEL PORF. RODRIGUEZ //
ak = [ a_1-b_1*G_1-H_1*c_1 0*ones(ns+nc,nc)
G_1 0*ones(nc,nc) ];
bk = [ H_1
0*ones(nc,nc) ];
ck = [0*ones(nc, ns+nc) eye(nc,nc) ];
dk = [0*eye(nc,nc)];
Gs_4= syslin("c",ak, bk, ck, dk)
// Valores singulares del compensador "K(s)" //
sv4 = svplot(Gs_4,w);
scf(9)
plot2d("ln", w, [20*log(sv4')/log(10)])
xgrid(12)
xtitle("Valores Singulares del compensador Ks","Frequency (rad/s)", "Amplitude (dB)");
/////// PREGUNTA 9 ///////
//SENSIBILIDAD "S" Y SENSIBILIDAD COMPLEMENTARIA "T"
//Analisis en bucle abierto
al = [ ap_ bp_*ck
0*ones(ns+nc+nc,ns) ak ];
bl = [ 0*ones(ns,nc)
bk ];
cl = [ cp_ 0*ones(nc,ns+nc+nc) ];
dl = [0*eye(nc,nc)];
Gs_5= syslin("c",al, bl, cl, dl)
// Valores Singulares de bucle abierto//
sv5 = svplot(Gs_5,w);
scf(10)
plot2d("ln", w, [20*log(sv5')/log(10)])
xgrid(12)
xtitle("Valores Singulares del bucle abierto","Frequency (rad/s)", "Amplitude (dB)");
// Valores singulares de sensibilidad S //
Gs_6= syslin("c",al-bl*cl, bl, -cl, eye(nc,nc))
sv6 = svplot(Gs_6,w);
scf(11)
plot2d("ln", w, [20*log(sv6')/log(10)])
xgrid(12)
xtitle("Ploteo de la Sensibilidad","Frequency (rad/s)", "Amplitude (dB)");
// Valores singulares de sensibilidad complementaria T //
Gs_7= syslin('c',al-bl*cl, bl, cl, dl)
sv7 = svplot(Gs_7,w);
scf(12)
plot2d("ln", w, [20*log(sv7')/log(10)])
xgrid(12)
xtitle("Ploteo de la Sensibilidad Complementaria","Frequency (rad/s)", "Amplitude (dB)");
// Valorers Singulares de S y T juntos //
scf(13)
plot2d("ln", w, [20*log(sv6')/log(10)])
plot2d("ln", w, [20*log(sv7')/log(10)])
xgrid(12)
xtitle("Sensibilidad y Sensibilidad Complementaria","Frequency (rad/s)", "Amplitude (dB)");
|
ed846239eb913fe2a8013880aa072aafb0cd2df0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/848/CH5/EX5.2/Example5_2.sce
|
a9f5a17c6a30bd432ed82c923522dcd47fb10881
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 831
|
sce
|
Example5_2.sce
|
//clear//
//Caption:Program to Calcualte Optical Power Emitted from the Light source and Optical power coupled to step-index fiber
//Example5.2
//page194
clear;
close;
clc;
rs = 35e-06;//the source radius in meter
a = 25e-06; //the core radii of step-index fiber meter
NA = 0.20; //the numerical aperture value
Bo = 150e04;// radiance in W/square meter.sr
Ps = ((%pi^2)*(rs^2))*Bo;//power emitted by the source
if (rs <=a) then
PLED_step = Ps*(NA^2);
elseif (rs>a) then
PLED_step = (((a/rs)^2)*Ps)*(NA^2);
end
disp(Ps,'Optical power emitted by LED light source Ps =')
disp(PLED_step,'Optical Power coupled into step index fiber in Watts PLED_step =');
//RESULT
//Optical power emitted by LED light source Ps = 0.0181354
//Optical Power coupled into step index fiber in Watts PLED_step = 0.0003701
|
1a1ca2c54c23b574669c153bb2233fe68bfe1717
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/635/CH8/EX8.16/Ch08Ex16.sci
|
892e3a6d03d6d0f1003e646d47e32ec8f291f1ea
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 983
|
sci
|
Ch08Ex16.sci
|
// Scilab code Ex8.16: Diffraction of thermal neutrons from planes of Ni crystal Page 294 (2010)
k = 1.38e-023; // Boltzmann constant, J/mol/K
h = 6.626e-034; // Planck's constant, Js
theta = 28.5; // Bragg's angle, degree
a = 3.52e-010; // Lattice parameter of fcc structure of nickel, m
m_n = 1.67e-027; // Rest mass of neutron, kg
// For fcc lattice, the interplanar spacing is given by
d = a/sqrt(3); // Interplanar spacing of Ni, m
// Bragg's equation for first order diffraction (n = 1) is
lambda = 2*d*sind(theta); // Bragg's law, m
// From kinetic interpretaion of temperature, we have
// (1/2)*m*v^2 = (3/2)*k*T -- (a)
// Further from de-Broglie relation
// lambda = h/(m*v) -- (b)
// From (a) and (b), solving for T, we have
T = h^2/(3*m_n*k*lambda^2); // Effective temperature of the neutrons, K
printf("\nThe effective temperature of neutrons = %d K", T);
// Result
// The effective temperature of neutrons = 168 K
|
68ea97e0310e668c0182ba6c4afcfd3ac85095dc
|
7ec2a751397723c9d4ab6f60ab9f15fbd3c86e8a
|
/BP/Test/bp360_35.tst
|
6d042a8d846830019e057e50e73d33aca3865f50
|
[] |
no_license
|
Knud-Aage/NeuralNetwork
|
0989298668a96b2a9f94c361ea77ff9c2e707d74
|
c45a7ec2772a9013b7276beba26dda4bd0cfa1f8
|
refs/heads/master
| 2021-01-11T13:34:07.519409
| 2017-05-02T13:01:45
| 2017-05-02T13:01:45
| 81,563,820
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 520
|
tst
|
bp360_35.tst
|
# eta= 0.300, alfa= 0.900, epoch=750, hidden=35
310 1.4400 13.3333 2917 1250 26
424 1.2600 15.2000 2888 1625 20
403 1.2000 13.9333 2838 2166 15
517 1.1800 14.2667 2844 1710 19
490 1.2400 14.0667 2839 1710 19
641 1.3000 14.9333 2837 1911 17
668 1.1400 15.3333 2837 1911 17
705 1.2000 13.2667 2837 1625 20
525 1.1800 14.9333 2840 1805 18
348 1.2200 14.9333 2837 1911 17
Epoch: (503 129.012) 1%: ( 1.236 0.080) 15%: ( 14.420 0.716)
Time: (2851 54.59) Performance: (1762 234.70)
|
8215c905fd3640deb04087da7d694ec6ccf8c4fb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/615/CH8/EX8.1/8_1.sce
|
46d8bf661743e48ca916b5965459342dda70dfd3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 421
|
sce
|
8_1.sce
|
//Fuels and Combustion//
//Example 8.1//
w=1500;//quantity of water in grams//
W=125;//Water equivalent of calorimeter in grams//
x=1.050;//quantity of fuel carried out in combustion in grams//
t1=25;//initial temperature of water in degree C//
t2=27.8;//final temperature of water in degree C//
Q=(w+W)*(t2-t1)/x;//calorific value of the fuel in cal per grams//
printf('Calorific value of the fuel=Q=%fcal/g',Q);
|
c3a984cb599eda5441efd530eec20d260f8f5c21
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1823/CH7/EX7.4/SolEx7_4.sce
|
eb1eb8302b58c8531453df5d43642f7fd64890b4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 306
|
sce
|
SolEx7_4.sce
|
//Example 7.4 page no 209
clear
clc
R1=200*10^3
R2=800*10^3
Zin=(R1*R2/(R1+R2))/1000
printf("\n The value of Zin=%0.3f Kohm",Zin)
Rg=160*10^3
r1=5*10^3
vgs=Rg/(Rg+r1)
printf("\n The value of vgs=%0.3f vi",vgs)
Av=-1.88
Rl=2*10^3
Ai=(Av*(Rg+r1))/Rl
printf("\n The value of ai=%0.3f vi",Ai)
|
70d4d38f0b678759fe1128157a86e94690c97ed1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2195/CH8/EX8.6.7/ex_8_6_7.sce
|
43f4c9d5e3ed51641210217b533630815f0d6a78
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 316
|
sce
|
ex_8_6_7.sce
|
//Example 8.6.7: resistance and capacitance
clc;
clear;
close;
//given data :
format('v',8)
C2=106*10^-12;// in farad
C4=0.6*10^-6;// in farad
R4=1000/%pi;// in ohm
R3=250;// in ohm
R1=(C4/C2)*R3*10^-6;
disp(R1*10^6,"resistance,R1(ohm) = ")
C1=(R4/R3)*C2*10^6;
disp(round(C1*10^6),"capacitance,C1(micro-farad) = ")
|
ae54319d9b0f3295b74428fee1439f94a0773ccf
|
abde5210bd538a9873f628945f25c08a6711abd0
|
/appTests/v0.1_single_valid_file.tst
|
09303d982edc9ce3c8a5d15acb20ae5c21df4daa
|
[] |
no_license
|
step-batch-7/jsTools-mildshower
|
4ff0f8357dac1fbb1603f933d4a9b658aa9bf61f
|
20444d5ca9540782b793270f9c5e2f138696b6d7
|
refs/heads/master
| 2023-01-12T06:32:14.662150
| 2020-01-09T06:10:28
| 2020-01-09T06:10:28
| 229,381,464
| 0
| 1
| null | 2022-12-30T19:21:29
| 2019-12-21T05:32:22
|
JavaScript
|
UTF-8
|
Scilab
| false
| false
| 58
|
tst
|
v0.1_single_valid_file.tst
|
printf "a\nA\n8\n 8" > foo; node sort foo; rm foo
8
8
A
a
|
6035438f326c3aab1ab611c61164f18256d2aa74
|
b948892b36eefdb35c47c821c51f69bb60989633
|
/DegrauUnitario.sce
|
22085eee5e6bdbda8846798c5e196d2c9e67e06a
|
[] |
no_license
|
lucas-medeiros/Digital-Signal-Processing
|
c5479eab20119e72ccb6adfe1c1d45fddf6dae7c
|
ba329ce5e5f6ca9ba7d46faba8661e9344627f9d
|
refs/heads/master
| 2020-07-15T04:51:18.868263
| 2019-08-31T02:20:15
| 2019-08-31T02:20:15
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 296
|
sce
|
DegrauUnitario.sce
|
N = input('Insira o tamanho do vetor: ');
pos = input ('Insira a posição de inicio do degrau: ');
a = input('Insira a amplitude do degrau: ');
vet = zeros([0:1:N]); //vetor de 0 até N preenchido com zeros
for j = pos:1:N+1
vet(j) = a;
end
disp(vet)
|
9749f868b1e16e7faa582de4d296d436775a8aa0
|
b7a19323e17ceac9d22a1559fbb3e7d61795fd21
|
/Systemy Inteligentne 2/Projekt 1/Materiały_do_raportu/projekt_1.tst
|
c7b231da0b2b5615467962339511eabb01959d6c
|
[] |
no_license
|
kameshi/STUDIA
|
61f53f5722b108a70c862ce6b889a3e890bd8a7f
|
11dfad719ed6d409c1e40033e65727f20a0f0a52
|
refs/heads/master
| 2021-05-11T15:36:57.854563
| 2018-01-16T00:21:56
| 2018-01-16T00:21:56
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,739
|
tst
|
projekt_1.tst
|
we we wy wy wy
x1 x2 Klasa1 Klasa2 Klasa3
-9,697 9,175 1 0 0
-8,636 8,045 1 0 0
-7,991 7,259 1 0 0
-7,221 6,718 1 0 0
-6,076 5,613 1 0 0
-4,932 4,483 1 0 0
-3,912 3,034 1 0 0
-2,996 2,518 1 0 0
-2,143 1,462 1 0 0
-1,269 0,626 1 0 0
-1,748 -0,381 1 0 0
-3,371 -0,061 1 0 0
-4,62 0,872 1 0 0
-6,888 3,746 1 0 0
-8,262 3,992 1 0 0
-9,406 3,157 1 0 0
-9,385 1,265 1 0 0
-6,742 0,258 1 0 0
-7,866 0,332 1 0 0
-8,22 -2,027 1 0 0
-7,367 -1,732 1 0 0
-6,659 -1,167 1 0 0
-5,39 -0,626 1 0 0
-4,287 -2,739 1 0 0
-3,329 -1,977 1 0 0
-6,867 -2,297 1 0 0
-9,177 -0,798 1 0 0
-7,471 5,195 1 0 0
-8,532 6,767 1 0 0
-9,531 4,778 1 0 0
6,722 6,178 0 1 0
7,679 7,259 0 1 0
8,741 7,971 0 1 0
9,261 8,634 0 1 0
5,681 5,416 0 1 0
4,87 4,385 0 1 0
3,684 2,985 0 1 0
2,04 1,977 0 1 0
0,479 0,504 0 1 0
1,062 -0,135 0 1 0
1,582 -0,798 0 1 0
2,393 -1,486 0 1 0
2,997 -2,1 0 1 0
3,538 -2,69 0 1 0
4,35 -1,584 0 1 0
5,681 -0,282 0 1 0
5,14 0,577 0 1 0
6,098 1,388 0 1 0
7,658 1,363 0 1 0
8,99 1,191 0 1 0
8,574 2,862 0 1 0
8,262 4,041 0 1 0
6,16 3,279 0 1 0
4,433 2,027 0 1 0
3,33 1,167 0 1 0
2,373 0,43 0 1 0
5,827 -3,034 0 1 0
6,597 -3,009 0 1 0
6,431 -1,216 0 1 0
8,283 -1,56 0 1 0
-4,953 -4,851 0 0 1
-3,683 -3,722 0 0 1
-1,228 -3,623 0 0 1
0,541 -3,623 0 0 1
2,477 -3,623 0 0 1
3,933 -4,016 0 0 1
5,057 -5,073 0 0 1
6,035 -5,932 0 0 1
6,743 -6,866 0 0 1
7,742 -7,775 0 0 1
8,449 -8,634 0 0 1
0,562 -5,785 0 0 1
-1,748 -5,711 0 0 1
-0,603 -6,596 0 0 1
-2,83 -6,62 0 0 1
-4,162 -5,613 0 0 1
-5,119 -6,522 0 0 1
-4,162 -7,554 0 0 1
-6,68 -7,48 0 0 1
-7,7 -7,431 0 0 1
-0,041 -9,199 0 0 1
1,499 -9,101 0 0 1
2,435 -9,003 0 0 1
4,745 -7,578 0 0 1
-7,929 -8,806 0 0 1
-5,848 -8,978 0 0 1
-4,016 -8,929 0 0 1
-1,935 -7,701 0 0 1
-6,201 -6,055 0 0 1
1,166 -7,652 0 0 1
|
2451d6cd93f4964919585b4dcac237606a8dd9f1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1958/CH13/EX13.2/Chapter13_example2.sce
|
24c0792b12a1c0e8364f51e7ef8694bdedce7731
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 290
|
sce
|
Chapter13_example2.sce
|
clc
clear
//Input data
c=50//Capacitor in micro F
Vm=220//Maximum voltage in V
f=50//Frequency in Hz
//Calculations
Xc=(1/(2*3.14*c*10^-6*f))//Reactance in ohms
I=(Vm/Xc)//Maximum current in A
Irms=I/sqrt(2)//rms current in A
//Output
printf('rms current is %3.2f A',Irms)
|
72b5eb05c90b5e072910aa3addd64d58fcf17887
|
b29e9715ab76b6f89609c32edd36f81a0dcf6a39
|
/ketpicscifiles6/Clipindomain.sci
|
bf9572c59b725df9e98b2886e895b32c1ab318b4
|
[] |
no_license
|
ketpic/ketcindy-scilab-support
|
e1646488aa840f86c198818ea518c24a66b71f81
|
3df21192d25809ce980cd036a5ef9f97b53aa918
|
refs/heads/master
| 2021-05-11T11:40:49.725978
| 2018-01-16T14:02:21
| 2018-01-16T14:02:21
| 117,643,554
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,224
|
sci
|
Clipindomain.sci
|
// 08.09.10
// 08.09.16
// 09.12.31 (gsort)
function OutL=Clipindomain(ObjL,FigL)
EEps=10^(-4);
Eps=0.01;
Eps2=0.2;
Bdy=Kyoukai(FigL);
if Mixlength(Bdy)>=2
Fbdy=Joincrvs(FigL)
else
Fbdy=Mixop(1,FigL);
end;
if Mixtype(ObjL)==1
ObjL=Mix(ObjL)
end;
if Mixtype(FigL)==1
FigL=Mix(FigL)
end;
OutL=[];
for Nobj=1:Mixlength(ObjL);
Obj=Mixop(Nobj,ObjL);
ParL=[1,Numptcrv(Obj)];
Tmp=IntersectcrvsPp(Obj,Fbdy,Eps,Eps2);
for J=1:Mixlength(Tmp)
Tmp1=Mixop(J,Tmp);
ParL=[ParL,Mixop(2,Tmp1)];
end;
ParL=gsort(ParL);
ParL=ParL(length(ParL):-1:1);
Tmp=[1];
for I=1:length(ParL)
Tmp1=Tmp(length(Tmp));
Tmp2=ParL(I);
if Tmp2-Tmp1>EEps
Tmp=[Tmp,Tmp2];
end;
end;
ParL=Tmp;
Tmp1=ParL(length(ParL));
Tmp2=Numptcrv(Obj);
if abs(Tmp1-Tmp2)<Eps
ParL=[ParL(1:length(ParL)-1),Tmp2];
end;
Fig=[];
for N=1:length(ParL)-1
Tmp=(ParL(N)+ParL(N+1))*0.5;
Tmp=PointonCurve(Tmp,Obj);
Tmp=Naigai(Tmp,Bdy);
Tmp1=modulo(sum(Tmp),2);
if Tmp1==0 continue; end;
Fig=Mixadd(Fig,Partcrv(ParL(N),ParL(N+1),Obj));
end;
OutL=Mixjoin(OutL,Fig);
end;
endfunction;
|
fc4c9378e0cf9460d3b4893abd25415f20d3d9ea
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3557/CH19/EX19.1/Ex19_1.sce
|
7c570ffc242a85717456832b58ffacc174ffc981
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 435
|
sce
|
Ex19_1.sce
|
//Example 19.1//
t=0;//time
y=100;//nm//thickness of oxide coating
c4=1;//given
c5=y^2-c4*t;//substituting value in the equation
mprintf("c5 = %e nm^2",c5)
//For
t1=1;//h //hour //time
y1=200;//nm //thickness of oxide coating
c4=y1^2-c5 //substituting values in the equation
mprintf("\nc4 = %e nm^2/h",c4)
//Then
t2=24;//h//hour //time
y2=c4*t2+c5
mprintf("\ny2 = %e nm^2",y2)
mprintf("\nor y=854nm (=0.854 mew m) ")
|
f1216784b2b03873f126d56f05c2d379d8956931
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1460/CH14/EX14.2/14_2.sce
|
6aa1dde5dbc73e17af8088365447ff93df51d718
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 196
|
sce
|
14_2.sce
|
clc
//initialization of variables
x1=1 //in
x2=4 //in
T1=85 //F
T2=30 //F
//calculations
QbyA=12*(T1-T2)/(x1/0.3 + x2/0.026)
//results
printf("Rate of heat flow = %.1f B/r-ft^2-F",QbyA)
|
61ef8cc5111949d7fd450afed44e97f0aa99f79a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/896/CH10/EX10.5/5.sce
|
d3daf09d1485768f5f637f913f59f52a82542900
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 515
|
sce
|
5.sce
|
clc
//Example 10.5
//Calculate the pump head
N=1750//rev/min
//1 min 60 sec
omega=2*(%pi)*N/60//radians/sec
Q=100//gal/min
//1 gallon = 231 in^3
//1 ft =12 in
//1 min = 60 sec
d_inlet = 2.067//ft
A_inlet=(%pi)/4*(d_inlet^2)//ft^2
V1=(Q/A_inlet)*231/60/12//ft/s
d_outlet = 1.61//ft
A_outlet=(%pi)/4*(d_outlet^2)//ft^2
V2=(Q/A_outlet)*231/60/12//ft/s
g=32.2//ft/s^2
d_inner=0.086//ft
d_outer=0.336//ft
h=(omega)^2/g*((d_outer^2)-(d_inner)^2)+(V2^2-V1^2)/2/g//ft
printf("The pump head is %f ft",h);
|
22c61dd5088d6c037556b5f75e4731ef68c8d598
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2048/CH3/EX3.2/conv2.sce
|
f3945a6d3923667034e63c02bb7bb41634504cde
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 90
|
sce
|
conv2.sce
|
// Convolution of two sequences
// 3.2
h = [1 2 3];
u = [4 5 6];
y = convol(u,h)
|
81f9f54ccbaf2535875c53f61963ab9195ac455c
|
26608c96c2f0c36fe5494fa8af7c83b84716bb18
|
/grilo_cg.sce
|
1005ca08afad875995d4ae323cdf363499a747e1
|
[] |
no_license
|
igoride/PDI
|
8faecb5afcbc20da5e6134e007af849ad96b679a
|
88e7ad77d168415124913d62c2e5c7e56faca31b
|
refs/heads/main
| 2023-06-03T08:39:45.636709
| 2021-06-21T16:15:09
| 2021-06-21T16:15:09
| 378,991,350
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,047
|
sce
|
grilo_cg.sce
|
//Igor Yoshimitsu Ide
//Cíntia Bras Mesquita
//Tiago Pinheiro Camargo
a = imread('C:\desafio.JPG');
im = a;
count = 0;
for r=1:274 // 1:274
for g=1:368 // 1:368
for b = 0:0//1 - ciano-> vermelho //2 - verde -> roxo // 3 -> amarelo azul escuro
if a(r, g)>=0 && a(r, g)<125
im(r, g, 1) = 20;
end
if a(r, g)>=125 && a(r, g)<130
im(r, g, 3) = 10;
end
if a(r, g)>=130 && a(r, g)<147
im(r, g, 3) = 10;
end
if a(r, g)>=147 && a(r, g)<155//amarelo
im(r, g, 3) = 50;
end
if a(r, g)>=155 && a(r, g)<160// amarelo
im(r, g, 3) = 80;
end
if a(r, g)>=160 && a(r, g)<170 //amarelado
im(r, g, 3) = 80;
end
if a(r, g)>=170 && a(r, g)<255
im(r, g, 3) = 200;
end
end
end
end
imshow(im);
imwrite(im, 'desafio_feito.jpg');
|
b1e525a90e041e05dcf5719304c7191629128ea9
|
15b814fbf5ba965e98871286249c9f382d1eee4c
|
/adaptive/simulation05/mean_transfer2.sce
|
a01073d8204551c517321dec5c9e64b5c7d2703e
|
[] |
no_license
|
oscarkremer/disciplines
|
b5338f3a97c7a20e4b39618d7da0d4396dc35f07
|
b8d1ca9da37f81c99ee08dbee795d2d936597666
|
refs/heads/master
| 2020-07-22T14:57:42.643799
| 2019-12-07T15:51:40
| 2019-12-07T15:51:40
| 207,239,678
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 732
|
sce
|
mean_transfer2.sce
|
clear
close
t = (0:0.05:10);
t = t'
ifinal=size(t);ifinal=ifinal(1);
F = sin(4*t);
m = 40;
b = 10;
k = 100;
s = poly(0, 's');
g = syslin('c', 1/(m*s^2 +b*s+ k))
y = csim(F', t', g)';
filtro = 1/(s+1)^3;
hf = syslin('c', filtro);
u_fil = csim(F', t', hf);
y_fil = csim(y', t', hf);
dy_fil = csim(y', t', s*hf);
d2y_fil = csim(y', t', s*s*hf);
P = 10000000*eye(3, 3);
theta_plot = zeros(3, ifinal);
p = zeros(ifinal);
p(1) = norm(P, 'fro')
theta = [0;0;0];
for i=2:ifinal
fi = [u_fil(i) -y_fil(i) -dy_fil(i)]';
K =P*fi/(1+fi'*P*fi);
P = (eye(3,3) - K*fi')*P;
p(i) = norm(P, 'fro')
theta = theta + K*(d2y_fil(i) - fi'*theta);
theta_plot(:,i) = theta
end
figure(1)
plot(t,theta_plot')
figure(2)
plot(t,p)
|
3dc8a643cf3614c7429d4e30a91f2335d16cc846
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/680/CH12/EX12.11/12_11.sce
|
1a703096491d23e399be5a922cbb341c7ae7a400
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,294
|
sce
|
12_11.sce
|
//Problem 12.11:
//initializing the variables:
//Antoine Eq Coeff for ethanol
Ae = 8.1122;
Be = 1592.864;
Ce = 226.184;
//Antoine Eq Coeff for toulene
At = 6.95805;
Bt = 1346.773;
Ct = 219.693;
p = 760; // mm of Hg
R = 1.987;
//calculation:
//The saturation temperatures:
Tsat_e = (Be/(Ae - log10(p))) - Ce
Tsat_t = (Bt/(At - log10(p))) - Ct
//
xe = 0.5
xt = 0.5
T = xe*Tsat_e + xt*Tsat_t
//
pde = 10^(Ae - (Be/(T + Ce)))
pdt = 10^(At - (Bt/(T + Ct)))
//
a = 0.5292
bet = 713.57
bte = 1147.86
//
tou_et = bet/(R*(T+273))
tou_te = bte/(R*(T + 273))
Get = %e^(-1*a*tou_et)
Gte = %e^(-1*a*tou_te)
r_e = %e^(0.5^2*(tou_te*(Gte/(xe + xt*Gte))^2 + Get*tou_et/(xt + xe*Get)^2))
r_t = %e^(0.5^2*(tou_et*(Get/(xt + xe*Get))^2 + Gte*tou_te/(xe + xt*Gte)^2))
//
pde = p/(r_e*xe + r_t*xt*pdt/pde)
//
Tn = Be/(Ae - log10(pde)) - Ce
//
ye = xe*r_e*pde/p
printf("\n\nResult\n\n")
printf("\n mole fraction at T = %.2f degC, xe = %.3f and ye = %0.3f \n Return to step 2 and use a different value for xe. Continue this until an entire T-x, y diagram is formed. \n A T-x, y diagram for ethanol and toluene, employing the NRTL method can be found in Fig. 12.11\n To generate an x–y diagram, simply plot the xe as the ordinate and ye as the abscissa.",T, xe, ye)
|
8ad0dfc16d745425064c01f6433882af0f57f73c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/788/CH3/EX3.10.b/3_10_soln.sce
|
83c746a844ee40515a3a4d07ae265b0b304bd884
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,267
|
sce
|
3_10_soln.sce
|
clc;
pathname=get_absolute_file_path('3_10_soln.sce')
filename=pathname+filesep()+'3_10_data.sci'
exec(filename)
// Solution:
// Acceleration due to gravity,
g=32.2; //ft/s^2
// Energy Equation between Station 1 and Station 2 is given by,
// (Z1+P1+K1+Hp-Hm-Hl)=(Z2+P2+K2)
// since, There is no Hydraulic motor between Station 1 and 2,
// Therefore Motor Head,
Hm=0; //ft
// also, cross section of oil tank is very large, as a result oil is at rest,
v1=0; //ft/s
// Kinetic Energy Head at inlet,
K1=(v1^2)/(2*g); //ft
// Height of Station 1 from Datum,
Z1=0; //ft
// Height of Station 2 from Datum,
Z2=20; //ft
// Pressure Head at inlet,
P1=p1/SG; //ft
// Pump Head,
Hp=ceil((3950*HHP)/(Q*SG)); //ft
// Pump flow,
Q_1=Q/449; //ft^3/s
// Area of pipe,
A=((%pi)*((D/12)^2))/4; //ft^2
// Therefore, velocity in pipe,
v2=Q_1/A; //ft/s
// Kinetic Energy head at Station 2,
K2=(v2^2)/(2*g); //ft
// Therefore, Pressure Head at outlet,
P2=Z1+P1+K1+Hp-Hm-Hl-Z2-K2; //ft
// specific weight of oil,
gamma1=SG*62.4; //lb/ft^3
// Pressure available at inlet of hydraulic motor at station 2,
p2=P2*gamma1; // lb/ft^2
p2=floor(p2/144); //psi
// Results:
printf("\n Results: ")
printf("\n The Pressure available at inlet of hydraulic motor at Station 2 is %.0f psig.",p2)
|
4ee96d6c5f96367486f7eb6597a51f01d331f4da
|
c61d570c37971fa455028a89d2163f455f91c291
|
/interpolador_newton.sci
|
c64a98ce0e7a21424e6af11eab958c61969033e1
|
[] |
no_license
|
OgliariNatan/-ScientificComputing
|
a0af891f900f3f146a9751fd169f96052bd4ba83
|
070ea9d70430ef0c9e7944f491426b73af7c12b0
|
refs/heads/master
| 2020-04-04T23:13:12.585946
| 2017-07-03T21:46:18
| 2017-07-03T21:46:18
| 81,988,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,307
|
sci
|
interpolador_newton.sci
|
//
// Autor: Jonas Vieira de Souza
//
// TODO: Função para ajuste de curvas por regressão linear
// Exemplo de chamada:
// $$ exec( caminho + 'regressao_linear.sci', -1 );
// $$ x [1 2 5 7 9 21];
// $$ y [4 5 6 7 9 20];
// $$ [ vi ] = interpolador_newton( x, y );
//
// Retornos:
// $$ vi $$ variavel independente do interpolado
//
// Argumentos:
// $$ _x $$ vetor de valores da Variavel Dependente
// $$ _y $$ vetor de valores da Variavel Independente
// $$ _pa $$ ponto de avalição do Polinônio Interpolador
//
clc
function v_indep = interpolador_newton( _x, _y, _pa )
[ mx, nx ] = size(_x);
[ my, ny ] = size(_y);
if nx ~= ny then
disp("Dados incompatíveis - Tamanho dos dados desiguais");
error("x e y devem ter a mesma dimensão");
end
b = _y;
//Encontrando os termos do polinomio de Newtom
// f(n-1) = b1+b2(x-x1)+...+bn(x-x1)(x-x2)...(x-xn)
for i = 2:nx
for j = nx:-1:i
b(j) = (b(j)-b(j-1))/(_x(j)-_x(j-(i-1))); //
end
end
disp(b,"Termos de b -->");
//Avaliando o ponto no polinomio interpolador
v_indep = 0;
for i = nx:-1:1
jota = 1;
for j = 1:i-1
jota = jota*(_pa-_x(j));
end
v_indep = v_indep + jota*b(i);
end
endfunction
|
a28c5e254f926b84f8bd26a8154494fa7e9c38bc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1997/CH11/EX11.26/example26.sce
|
4da4e3db7520507642bd0f4f0eec872a45ebc4b4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 429
|
sce
|
example26.sce
|
//Chapter-11 example 26
//=============================================================================
clc;
clear;
//input data
mprintf('(PRF1) = 2(PRF2)\n');
mprintf(' Vb3 = 4Vb5\n');
mprintf(' (3Vo/2F1)(PRF1)) = 4(5Vo/2F2)(2PRF2)\n');
mprintf(' 3/2F1 = 20/F2\n');
mprintf(' Ratio of operating frequencies is F2/F1 = 40/3\n');
//=================end of the program===========================================
|
b0c6bb9a3a4c4d9f195160881fcfd3754b1cb401
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3269/CH8/EX8.10/Ex8_10.sce
|
c3f207b6c27233ba5d61c25e5cdf2bddda7ddb48
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,194
|
sce
|
Ex8_10.sce
|
// Example 8.10
clear all;
clc;
// Using the data from Example 8.3 to 8.8
P = 2000; // Pressure in psi
v = 15.6; // Coolant velocity in ft/sec
D_e = 0.0427; // Equivalent diameter in ft
d = 0.42; // Diameter of the fuel rod in inches
b = 0.024; // Thickness of Zircaloy-4 clad in inches
a = (d/2)+b; // Radius of fuel rods in inches
T_b = 600; // Bulk temeperature in F
// 1.
// Using Bernath correlation
// Calculation
T_wc = 102.6*log(P)-((97.2*P)/(P+15))-(0.45*v)+32;
// Result
printf(" \n Cladding temeperature = %d F\n",T_wc);
// 2.
D_i = (2*%pi*a)/(%pi*12); // Heated perimeter is (2*%pi*a)/12 in feet
// Calculation
h_c = 10890*((D_e)/(D_e+D_i))+((48*v)/D_e^0.6);
// Result
printf(" \n Heat transfer coefficient = %d Btu/hr-ft^2-F\n",h_c);
// 3.
// Calculation
q_c = h_c*(T_wc-T_b);
// Result
printf(" \n Critical heat flux = %.2E Btu/hr-ft^2\n",q_c);
// In the textbook, the unit of critical heat flux is wrong.
|
4b9eb525baae2889492ad568c1706da627fd0684
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/tweet/bow/bow.9_8.tst
|
69b3da1b5ed7b19bb767003df0436f686e8a256f
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 43,580
|
tst
|
bow.9_8.tst
|
9 7:0.125 24:1.0 25:0.16666666666666666 31:0.2857142857142857 40:1.0 49:0.25 51:2.0 75:1.0 76:2.0 155:1.0 167:0.125 179:0.3333333333333333 243:0.1111111111111111 245:0.3333333333333333 293:1.0 328:1.0 329:1.0 335:1.0 398:0.09090909090909091 426:1.0 447:0.3333333333333333 460:0.5 506:0.14285714285714285 533:0.5 674:2.0 720:1.0 776:1.0 872:1.0 967:1.0 1371:0.3333333333333333 1548:1.0 1714:1.0 1840:1.0 1848:1.0 1882:1.0 2343:1.0 2458:0.06666666666666667 2568:1.0 2835:1.0 2866:0.5 3158:1.0 3246:1.0 3934:1.0 4445:2.0 4476:1.0 4493:0.1 4517:1.0 4527:2.0 4530:1.0 4584:1.0 4731:1.0 4787:1.0 4853:1.0 4881:1.0 4921:1.0 4983:1.0 5379:0.5 5701:1.0 5763:1.0 6749:1.0 7450:1.0 7582:1.0
9 6:1.0 18:0.3333333333333333 24:0.5 25:0.16666666666666666 31:0.14285714285714285 40:1.0 49:0.25 51:2.0 68:0.0625 73:1.0 79:1.0 88:0.5 90:0.3333333333333333 106:0.1 119:1.0 123:0.028985507246376812 138:2.0 142:0.25 159:0.3333333333333333 167:0.25 199:1.0 243:0.1111111111111111 245:0.3333333333333333 259:3.0 287:0.5 351:0.5 443:0.5 447:0.3333333333333333 597:0.5 692:1.0 709:0.5 714:0.5 731:1.0 819:1.0 962:0.25 964:1.0 1061:1.0 1082:1.0 1167:1.0 1331:1.0 1381:0.2857142857142857 1398:1.0 1470:1.0 1588:1.0 1963:1.0 2131:1.0 2337:1.0 2589:1.0 2894:1.0 2907:1.0 4437:1.0 4549:1.0 4679:1.0 4681:0.5 4789:1.0 5384:1.0 5463:0.5 6025:1.0 6073:1.0 6108:1.0 6109:1.0 7200:1.0 7229:1.0 7406:1.0
9 7:0.125 18:0.3333333333333333 20:0.1111111111111111 23:1.5 24:0.5 25:0.08333333333333333 32:0.3333333333333333 38:0.5 43:1.0 44:1.0 47:1.0 49:0.25 51:3.0 73:1.0 76:1.0 88:0.16666666666666666 90:0.3333333333333333 123:0.014492753623188406 167:0.875 220:0.6666666666666666 293:1.0 332:0.2 398:0.09090909090909091 447:0.3333333333333333 472:0.2 510:1.0 709:1.0 720:1.0 722:0.5 996:1.0 1061:1.0 1167:1.0 1315:1.0 1371:0.3333333333333333 1381:0.2857142857142857 1882:1.0 2458:0.06666666666666667 3488:1.0 3698:1.0 3872:1.0 4445:2.0 4457:1.0 4458:1.0 4460:1.0 4472:1.0 4496:1.0 4745:1.0 4920:1.0 5037:1.0 5519:1.0 6215:1.0 6550:1.0 7202:1.0 7450:1.0
9 7:0.125 15:0.5 24:0.5 25:0.4166666666666667 49:0.25 77:0.5 88:0.16666666666666666 90:0.3333333333333333 103:1.0 106:0.1 123:0.014492753623188406 167:0.125 259:1.0 292:0.5 371:1.0 443:0.25 521:1.0 619:1.0 645:0.5 681:1.0 909:0.5 996:1.0 1082:1.0 1298:0.3333333333333333 1903:1.0 2589:1.0 3341:1.0 3548:1.0 3905:1.0 4460:1.0 4461:1.0 4488:1.0 4491:1.0 4666:1.0 4692:1.0 4802:1.0 4874:1.0 5494:1.0 5834:1.0
9 14:0.3333333333333333 23:0.5 24:0.5 25:0.25 34:0.125 40:1.0 49:1.0 51:1.0 68:0.0625 88:0.16666666666666666 133:0.125 144:1.0 250:1.0 259:1.0 274:1.0 282:1.0 308:1.0 388:1.0 457:0.5 472:0.2 473:1.0 492:0.3 608:1.0 656:1.0 688:0.3333333333333333 771:0.3333333333333333 824:1.0 861:1.0 980:1.0 1061:1.0 1150:0.125 1381:0.14285714285714285 1903:1.0 2134:1.0 2323:1.0 2343:1.0 2907:1.0 4445:1.0 4489:0.5 4545:1.0 4590:1.0 4970:1.0 5348:1.0 6563:1.0 6814:0.5 6856:1.0 7129:1.0
9 7:0.375 20:0.2222222222222222 24:0.5 25:0.08333333333333333 31:0.14285714285714285 49:0.25 73:2.0 90:0.3333333333333333 123:0.014492753623188406 138:1.0 167:0.125 225:1.0 306:0.3333333333333333 320:1.0 492:0.1 720:1.0 809:0.5 909:0.5 937:1.0 1014:1.0 1150:0.125 1200:1.0 1348:0.0625 1381:0.14285714285714285 1411:0.3333333333333333 1903:1.0 3780:1.0 4357:1.0 4445:1.0 4474:1.0 4527:2.0 4530:1.0 4887:1.0 4990:1.0 5158:1.0 5600:1.0 6162:1.0 7216:1.0 7254:1.0
9 23:0.5 25:0.3333333333333333 32:0.3333333333333333 40:1.0 49:0.25 51:2.0 103:1.0 123:0.014492753623188406 138:1.0 171:0.3333333333333333 225:1.0 241:1.0 259:1.0 297:0.3333333333333333 335:1.0 444:2.0 447:0.3333333333333333 459:0.058823529411764705 486:1.0 492:0.1 533:0.5 597:0.5 697:1.0 720:1.0 882:1.0 1249:1.0 1381:0.2857142857142857 1470:1.0 1573:1.0 1903:1.0 2144:1.0 3163:0.06666666666666667 4437:1.0 4462:1.0 4476:1.0 4513:1.0 4522:0.5 4530:1.0 4581:1.0 5057:1.0 5058:1.0 5383:1.0 6899:1.0 7374:1.0
9 7:0.125 25:0.08333333333333333 48:1.0 49:0.75 68:0.125 80:1.0 90:0.6666666666666666 103:0.5 123:0.028985507246376812 130:2.0 135:2.0 163:0.25 167:0.125 245:0.3333333333333333 259:1.0 351:0.5 396:2.0 486:1.0 492:0.1 506:0.42857142857142855 686:1.0 720:1.0 978:1.0 1249:1.0 1303:1.0 1306:1.0 1348:0.0625 1381:0.14285714285714285 1411:0.3333333333333333 2387:1.0 2458:0.06666666666666667 3270:1.0 3754:1.0 4209:1.0 4357:1.0 4445:1.0 4493:0.1 4508:1.0 4576:1.0 4598:1.0 4622:1.0 5247:1.0 5426:1.0 5601:1.0 6093:0.5 6120:1.0 7383:1.0
9 7:0.125 25:0.25 40:1.0 46:1.0 51:1.0 68:0.0625 103:0.5 108:1.0 123:0.028985507246376812 138:1.0 167:0.125 179:0.6666666666666666 211:1.0 212:2.0 245:0.3333333333333333 274:1.0 335:1.0 372:1.0 398:0.09090909090909091 434:0.3333333333333333 449:1.0 473:1.0 492:0.2 506:0.14285714285714285 597:0.5 709:0.5 720:1.0 731:1.0 1029:0.25 1150:0.125 1167:1.0 1348:0.0625 1381:0.2857142857142857 1470:1.0 1525:2.0 1754:1.0 1855:0.5 2139:1.0 2907:1.0 4445:1.0 4474:1.0 4476:1.0 4527:1.0 4613:1.0 4762:1.0 4799:1.0 4972:1.0 5379:0.5
9 7:0.375 14:0.3333333333333333 24:0.5 25:0.25 31:0.14285714285714285 40:0.5 49:0.5 51:1.0 68:0.0625 88:0.16666666666666666 103:1.0 123:0.014492753623188406 126:1.0 137:0.14285714285714285 142:0.25 159:0.3333333333333333 167:0.25 175:1.0 179:0.3333333333333333 225:1.0 310:0.3333333333333333 351:0.5 396:1.0 506:0.14285714285714285 579:0.5 720:1.0 861:1.0 996:1.0 1082:1.0 1150:0.125 1326:1.0 1381:0.14285714285714285 1487:1.0 1903:1.0 2216:1.0 2259:1.0 2473:1.0 3819:1.0 4437:1.0 4545:1.0 4715:1.0 4724:1.0 4970:1.0 5432:1.0 5963:1.0 6332:1.0 6386:1.0 6889:1.0 6950:1.0 7576:1.0
9 7:0.125 14:0.3333333333333333 23:0.5 25:0.3333333333333333 31:0.14285714285714285 40:0.5 49:0.5 51:1.0 68:0.0625 80:1.0 90:0.3333333333333333 103:0.5 126:1.0 137:0.14285714285714285 159:0.3333333333333333 163:0.25 175:2.0 179:0.3333333333333333 245:0.3333333333333333 426:1.0 492:0.1 506:0.14285714285714285 579:0.5 720:1.0 914:1.0 996:1.0 1079:1.0 1082:1.0 3267:0.5 3819:1.0 4437:1.0 4457:1.0 4458:1.0 4486:1.0 4493:0.1 4522:0.5 4711:1.0 4883:1.0 4893:1.0 5029:1.0 5086:1.0 5432:1.0 5716:1.0 6889:1.0 7376:1.0
9 24:1.0 25:0.3333333333333333 34:0.125 40:0.5 46:1.0 68:0.0625 88:0.16666666666666666 90:0.3333333333333333 123:0.014492753623188406 124:1.0 156:0.5 167:0.125 225:1.0 259:2.0 274:1.0 310:0.3333333333333333 318:1.0 345:1.0 459:0.058823529411764705 552:1.0 720:1.0 1082:1.0 1371:0.3333333333333333 2080:1.0 2535:0.5 3114:0.5 3905:1.0 4445:1.0 5057:1.0 5067:1.0 5110:1.0 5123:0.3333333333333333 5438:1.0
9 7:0.125 25:0.16666666666666666 49:0.25 68:0.0625 79:1.0 90:0.6666666666666666 138:1.0 159:0.3333333333333333 292:0.5 447:0.3333333333333333 645:0.5 714:0.5 1167:1.0 4437:1.0 4563:1.0 4581:1.0 4592:1.0 6889:1.0
9 13:0.25 23:0.5 32:0.3333333333333333 40:0.5 49:0.5 51:1.0 88:0.16666666666666666 167:0.125 388:1.0 426:1.0 443:0.25 771:0.3333333333333333 937:1.0 1061:1.0 1150:0.125 1167:1.0 1381:0.14285714285714285 2131:1.0 2286:1.0 2471:1.0 4443:1.0 4445:1.0 4493:0.1 4551:0.5 5262:1.0 7172:1.0
9 6:1.0 7:0.25 14:0.3333333333333333 25:0.25 40:0.5 49:0.5 68:0.0625 88:0.16666666666666666 90:0.6666666666666666 107:1.0 123:0.014492753623188406 128:1.0 138:1.0 159:0.3333333333333333 167:0.375 169:1.0 195:1.0 224:0.5 225:1.0 234:0.09090909090909091 259:1.0 320:1.0 372:1.0 374:1.0 447:0.3333333333333333 771:0.3333333333333333 1061:1.0 1150:0.125 1398:1.0 1849:1.0 2077:1.0 2191:1.0 4437:1.0 4525:0.5 4546:1.0 4563:1.0 4734:1.0 5247:1.0 5268:1.0 6144:1.0 6594:1.0 6827:1.0 6889:1.0
9 7:0.25 24:0.5 25:0.08333333333333333 68:0.0625 90:0.3333333333333333 135:1.0 163:0.25 212:1.0 220:0.3333333333333333 225:1.0 259:1.0 306:0.3333333333333333 351:0.5 506:0.14285714285714285 714:0.5 720:1.0 909:0.5 958:1.0 1061:1.0 1348:0.0625 1381:0.2857142857142857 1411:0.3333333333333333 2238:1.0 2458:0.06666666666666667 3487:1.0 4437:1.0 4578:1.0 4598:1.0 5301:1.0 5961:1.0 6360:1.0 6829:1.0 7254:1.0
9 7:0.125 13:0.25 24:0.5 25:0.16666666666666666 68:0.0625 88:0.16666666666666666 90:0.3333333333333333 124:1.0 133:0.125 159:0.3333333333333333 167:0.25 179:0.3333333333333333 225:1.0 245:0.3333333333333333 351:0.5 396:1.0 430:1.0 447:0.3333333333333333 697:1.0 720:1.0 857:0.5 1097:1.0 1249:1.0 1348:0.0625 1381:0.14285714285714285 1411:0.3333333333333333 1898:0.5 1903:2.0 2109:1.0 2473:1.0 4445:1.0 4525:0.5 4598:1.0 4606:1.0 4618:1.0 4686:1.0 4744:1.0 5058:1.0 5268:1.0 5269:1.0 5578:1.0 5797:1.0 5920:1.0
9 7:0.125 25:0.16666666666666666 31:0.14285714285714285 38:0.5 40:0.5 49:0.25 90:0.3333333333333333 123:0.028985507246376812 163:0.25 167:0.125 186:1.0 259:1.0 372:1.0 398:0.09090909090909091 430:1.0 443:0.25 457:0.5 459:0.058823529411764705 506:0.14285714285714285 521:1.0 607:1.0 674:1.0 681:1.0 720:1.0 1022:2.0 1216:0.5 1217:1.0 1381:0.14285714285714285 1840:1.0 1898:0.5 1903:1.0 2065:1.0 3599:1.0 3905:1.0 4437:1.0 4489:1.0 4493:0.1 4513:1.0 4530:1.0 4574:1.0 4576:1.0 4581:1.0 4686:1.0 4711:1.0 5861:1.0 5981:1.0 6889:1.0
9 7:0.25 20:0.2222222222222222 25:0.25 40:0.5 49:0.5 51:1.0 103:1.0 123:0.014492753623188406 137:0.14285714285714285 157:1.0 159:0.6666666666666666 167:0.125 220:0.6666666666666666 243:0.4444444444444444 506:0.5714285714285714 530:1.0 720:1.0 980:2.0 1061:1.0 1082:1.0 1381:0.2857142857142857 1511:1.0 1573:1.0 2276:1.0 2458:0.06666666666666667 3163:0.06666666666666667 3488:1.0 4357:2.0 4445:1.0 4476:1.0 4590:1.0 4729:1.0 4931:1.0 5148:1.0 5987:1.0 6544:1.0 6807:2.0 6829:1.0 7507:1.0
9 7:0.25 25:0.08333333333333333 48:1.0 49:1.0 50:1.0 68:0.0625 90:0.3333333333333333 103:0.5 123:0.043478260869565216 124:1.0 128:1.0 159:0.3333333333333333 167:0.25 179:0.3333333333333333 259:2.0 308:1.0 328:1.0 335:1.0 393:1.0 396:2.0 506:0.14285714285714285 552:1.0 720:1.0 771:0.3333333333333333 909:0.5 932:1.0 1022:1.0 1281:1.0 1381:0.2857142857142857 1840:1.0 2080:2.0 2191:1.0 2238:1.0 2458:0.06666666666666667 2643:1.0 3905:1.0 4209:1.0 4445:1.0 4736:1.0 4772:1.0 4864:1.0 5058:1.0 6829:1.0
9 7:0.125 24:0.5 37:0.5 49:0.25 68:0.0625 88:0.16666666666666666 90:0.6666666666666666 123:0.028985507246376812 254:1.0 274:1.0 297:0.3333333333333333 328:1.0 443:0.25 714:0.5 776:1.0 1492:1.0 1525:1.0 1723:1.0 2684:1.0 2762:1.0 3840:1.0 4445:1.0 4522:0.5 4681:0.5 5215:1.0 5247:1.0 6235:1.0
9 25:0.25 26:1.0 31:0.14285714285714285 32:0.3333333333333333 34:0.125 37:0.5 40:1.0 49:0.25 68:0.0625 88:0.16666666666666666 90:0.3333333333333333 93:1.0 133:0.125 167:0.25 199:1.0 234:0.09090909090909091 245:0.3333333333333333 259:2.0 343:1.0 372:1.0 396:1.0 443:0.25 492:0.2 572:1.0 659:1.0 692:1.0 720:1.0 908:0.5 958:1.0 990:0.5 1061:1.0 1150:0.125 1167:2.0 1168:0.5 1898:0.5 1903:1.0 2228:1.0 2238:1.0 2613:1.0 3074:1.0 3148:1.0 3185:1.0 3230:1.0 4445:1.0 4453:1.0 4460:2.0 4486:1.0 4522:0.5 4666:1.0 4692:1.0 4912:0.5 7130:1.0
9 6:1.0 13:0.25 14:0.3333333333333333 20:0.1111111111111111 25:0.08333333333333333 31:0.14285714285714285 49:0.5 51:1.0 62:1.0 88:0.3333333333333333 106:0.1 123:0.028985507246376812 133:0.125 137:0.14285714285714285 167:0.25 225:1.0 239:0.3333333333333333 447:0.3333333333333333 460:0.5 497:1.0 506:0.14285714285714285 625:1.0 720:1.0 833:1.0 1150:0.125 1460:1.0 1909:1.0 2065:1.0 2614:1.0 4445:1.0 4522:0.5 4547:1.0 4563:1.0 4686:1.0 4709:0.5 4743:1.0 6889:1.0
9 15:0.5 23:0.5 49:0.25 103:0.5 167:0.125 259:1.0 497:1.0 521:1.0 700:1.0 720:1.0 1082:1.0 1298:0.3333333333333333 3611:1.0 4445:1.0 4493:0.1 4563:1.0 6889:1.0
9 7:0.125 20:0.1111111111111111 24:0.5 49:0.25 88:0.16666666666666666 123:0.028985507246376812 124:1.0 135:1.0 138:1.0 176:1.0 186:1.0 259:1.0 472:0.2 579:0.5 720:1.0 753:1.0 771:0.6666666666666666 861:1.0 2010:1.0 2191:1.0 2372:1.0 2478:1.0 4443:1.0 4445:1.0 4772:1.0 4970:1.0 5057:1.0 5058:1.0 6144:1.0 6628:1.0
9 24:0.5 32:0.3333333333333333 88:0.3333333333333333 103:0.5 159:0.3333333333333333 212:1.0 234:0.09090909090909091 385:1.0 472:0.2 530:0.5 692:1.0 720:1.0 1381:0.14285714285714285 2653:0.2 3905:1.0 4445:1.0 6410:1.0 6539:1.0
9 7:0.125 24:0.5 34:0.125 40:0.5 49:0.25 51:1.0 88:0.3333333333333333 90:0.6666666666666666 167:0.25 304:1.0 393:1.0 421:1.0 467:1.0 506:0.14285714285714285 591:0.5 631:1.0 709:0.5 720:1.0 797:1.0 908:0.5 1022:1.0 1150:0.125 1303:1.0 1371:0.3333333333333333 1962:1.0 2506:1.0 3006:0.25 4119:1.0 4445:1.0 4709:0.5 4745:1.0 4912:0.5 4923:1.0 5903:1.0 5943:1.0 6330:1.0 6331:1.0 6822:1.0 7478:1.0
9 14:0.3333333333333333 15:0.5 20:0.1111111111111111 23:0.5 34:0.125 49:0.25 68:0.0625 90:0.3333333333333333 123:0.014492753623188406 163:0.25 167:0.125 175:1.0 199:1.0 224:0.5 234:0.09090909090909091 259:2.0 328:1.0 393:1.0 420:1.0 426:1.0 443:0.25 492:0.1 592:0.5 626:1.0 963:0.5 1061:2.0 1167:1.0 1175:0.5 1286:1.0 1381:0.14285714285714285 1473:0.3333333333333333 1855:0.5 1898:0.5 2286:1.0 3230:1.0 4327:1.0 4443:1.0 4445:1.0 4486:1.0 4584:1.0 4811:1.0 5215:1.0 5517:1.0 5701:1.0 5903:1.0 6144:1.0 6707:1.0 7176:1.0
9 25:0.08333333333333333 49:0.5 51:1.0 62:1.0 68:0.0625 88:0.16666666666666666 90:0.3333333333333333 123:0.014492753623188406 138:1.0 163:0.25 167:0.125 234:0.18181818181818182 259:1.0 297:0.3333333333333333 351:0.5 457:0.5 459:0.058823529411764705 700:1.0 747:1.0 771:0.6666666666666666 1061:1.0 1098:1.0 1150:0.125 1216:0.5 1304:1.0 1382:1.0 1473:0.3333333333333333 1653:1.0 2604:1.0 2653:0.2 2829:1.0 3569:1.0 4429:1.0 4437:1.0 4443:2.0 4459:1.0 4522:0.5 4576:1.0 4584:1.0 4675:1.0 4715:1.0 4792:1.0 5463:0.5 6073:1.0 7302:1.0
9 18:0.3333333333333333 20:0.1111111111111111 25:0.08333333333333333 34:0.125 37:0.5 51:1.0 88:0.3333333333333333 90:0.6666666666666666 123:0.028985507246376812 124:1.0 167:0.125 234:0.09090909090909091 245:0.3333333333333333 259:1.0 308:1.0 430:1.0 443:0.25 447:0.3333333333333333 457:0.5 473:1.0 914:1.0 964:1.0 990:0.5 1061:1.0 1150:0.125 1398:1.0 1406:1.0 1473:0.6666666666666666 1690:1.0 1722:1.0 2644:1.0 4437:1.0 4457:1.0 4458:1.0 4459:2.0 4525:0.5 4584:1.0 4816:1.0 5123:0.3333333333333333 6144:1.0
9 23:0.5 25:0.16666666666666666 49:0.25 68:0.125 90:0.3333333333333333 106:0.1 123:0.028985507246376812 124:2.0 135:1.0 159:0.3333333333333333 243:0.1111111111111111 259:2.0 273:1.0 390:1.0 430:1.0 459:0.058823529411764705 486:1.0 567:0.5 573:0.5 636:0.5 659:1.0 720:1.0 1022:1.0 1150:0.125 1348:0.0625 1381:0.14285714285714285 1398:1.0 4437:1.0 4486:1.0 4516:1.0 4729:1.0 4731:1.0 4745:1.0 4891:0.3333333333333333 5247:1.0 5399:1.0 5704:1.0
9 7:0.375 24:1.0 25:0.25 33:1.0 40:0.5 68:0.0625 88:0.16666666666666666 90:0.3333333333333333 103:1.0 124:1.0 135:1.0 159:0.3333333333333333 167:0.125 220:0.3333333333333333 245:0.3333333333333333 335:2.0 467:1.0 507:0.3333333333333333 530:0.5 720:1.0 908:0.5 1217:1.0 1903:1.0 2292:1.0 2458:0.06666666666666667 3569:1.0 4229:1.0 4251:1.0 4445:1.0 4457:1.0 4458:1.0 4459:1.0 4522:0.5 4745:1.0 4864:1.0 5665:1.0 6795:1.0
9 7:0.375 20:0.2222222222222222 31:0.14285714285714285 34:0.125 49:0.5 103:0.5 123:0.028985507246376812 124:1.0 137:0.14285714285714285 138:2.0 159:0.3333333333333333 167:0.125 179:0.3333333333333333 212:1.0 241:1.0 245:0.6666666666666666 310:0.3333333333333333 345:1.0 428:1.0 443:0.25 506:0.14285714285714285 656:1.0 720:1.0 771:0.3333333333333333 980:1.0 1168:0.5 1303:1.0 1374:1.0 1381:0.14285714285714285 1938:1.0 2191:1.0 2458:0.06666666666666667 4437:1.0 4489:0.5 4493:0.1 4513:1.0 4522:0.5 4584:1.0 4654:1.0 5600:1.0 5625:1.0 7129:1.0
9 7:0.125 20:0.1111111111111111 25:0.08333333333333333 73:1.0 90:0.3333333333333333 103:0.5 167:0.125 186:1.0 259:1.0 388:1.0 412:0.5 428:1.0 492:0.1 506:0.14285714285714285 556:1.0 720:1.0 861:1.0 923:1.0 1097:1.0 1381:0.2857142857142857 1702:1.0 1909:1.0 2458:0.06666666666666667 3359:1.0 3487:1.0 3498:1.0 4218:1.0 4445:1.0 4474:1.0 4525:0.5 4530:2.0 4551:0.5 4971:1.0 5054:1.0 5123:0.3333333333333333 5268:1.0 5269:1.0
9 7:0.125 20:0.1111111111111111 24:0.5 25:0.08333333333333333 40:0.5 49:0.5 79:1.0 90:0.6666666666666666 103:0.5 106:0.1 123:0.014492753623188406 138:1.0 171:0.3333333333333333 179:0.3333333333333333 203:0.25 243:0.1111111111111111 303:1.0 351:0.5 597:0.5 720:2.0 771:0.3333333333333333 1381:0.14285714285714285 1411:0.3333333333333333 1943:1.0 2191:1.0 2254:1.0 2359:1.0 2458:0.06666666666666667 3905:1.0 3993:1.0 4445:1.0 4457:1.0 4458:1.0 4459:1.0 4513:1.0 4598:1.0 4664:1.0 5007:1.0 5283:1.0 5365:1.0 5438:1.0 5920:1.0 6187:1.0 6300:1.0 7140:1.0
9 14:0.3333333333333333 24:0.5 25:0.16666666666666666 32:0.3333333333333333 34:0.125 48:1.0 49:0.25 65:1.0 68:0.125 76:1.0 88:0.16666666666666666 117:2.0 123:0.014492753623188406 135:1.0 159:0.3333333333333333 224:0.5 310:0.3333333333333333 328:1.0 329:1.0 388:1.0 420:1.0 463:0.5 506:0.14285714285714285 525:0.3333333333333333 597:0.5 619:1.0 720:1.0 901:1.0 1082:1.0 1371:0.3333333333333333 1381:0.14285714285714285 1938:1.0 2058:1.0 2065:1.0 2589:1.0 2821:0.5 2889:1.0 4436:0.2 4437:1.0 4522:1.0 4551:0.5 4584:1.0 4715:1.0 4877:1.0 4967:1.0 7302:1.0
9 1:0.3333333333333333 23:0.5 24:1.0 25:0.16666666666666666 40:0.5 46:1.0 49:0.5 88:0.16666666666666666 123:0.014492753623188406 163:0.25 224:0.5 259:1.0 426:2.0 449:1.0 472:0.2 579:0.5 639:1.0 659:1.0 661:1.0 690:1.0 709:0.5 1150:0.125 1898:0.5 2058:1.0 3569:1.0 4332:1.0 4437:1.0 4460:1.0 4462:1.0 4584:1.0 4664:1.0 4875:1.0 5405:1.0 5815:1.0 6628:1.0 6833:1.0 6980:1.0 6987:1.0 7383:1.0 7450:1.0
9 7:0.25 24:0.5 25:0.16666666666666666 31:0.14285714285714285 32:0.3333333333333333 40:0.5 49:0.75 62:1.0 68:0.125 76:2.0 88:0.16666666666666666 103:0.5 123:0.028985507246376812 137:0.14285714285714285 167:0.125 225:1.0 245:0.3333333333333333 259:1.0 388:1.0 428:1.0 430:1.0 492:0.1 656:1.0 720:1.0 771:0.3333333333333333 809:1.0 980:1.0 1150:0.125 1381:0.2857142857142857 1903:1.0 2191:1.0 3960:1.0 4445:1.0 4457:1.0 4458:1.0 4576:1.0 5072:1.0 5301:1.0 5387:1.0 5671:1.0
9 24:0.5 25:0.16666666666666666 32:0.6666666666666666 49:0.25 90:0.3333333333333333 123:0.014492753623188406 167:0.125 234:0.09090909090909091 259:1.0 328:1.0 459:0.058823529411764705 472:0.2 709:0.5 720:1.0 1249:1.0 2653:0.2 2907:1.0 3580:1.0 3977:1.0 4331:1.0 4437:1.0 5247:2.0 5384:1.0 5438:1.0 5828:1.0 6791:1.0 6914:1.0
9 24:1.0 25:0.16666666666666666 32:0.3333333333333333 47:1.0 49:0.75 92:1.0 123:0.014492753623188406 138:1.0 167:0.5 220:0.3333333333333333 234:0.18181818181818182 259:1.0 282:1.0 351:0.5 388:1.0 447:0.3333333333333333 506:0.14285714285714285 619:1.0 709:1.0 720:1.0 1315:1.0 1394:1.0 2653:0.2 2907:1.0 3580:1.0 4331:1.0 4437:1.0 4459:1.0 4535:0.5 4584:1.0 4598:1.0 5158:1.0 5384:1.0 5438:1.0 5828:1.0 6330:1.0 6331:1.0 6791:1.0 6914:1.0 7155:1.0
9 7:0.125 23:0.5 32:0.3333333333333333 49:0.25 88:0.16666666666666666 90:0.3333333333333333 103:0.5 137:0.14285714285714285 167:0.125 245:0.3333333333333333 351:0.5 492:0.1 709:0.5 720:1.0 727:1.0 1054:1.0 1381:0.14285714285714285 1840:1.0 4436:0.2 4437:1.0 5842:1.0 6479:1.0 7563:1.0
9 7:0.125 25:0.08333333333333333 31:0.14285714285714285 34:0.125 49:0.5 68:0.125 179:0.3333333333333333 259:3.0 393:1.0 531:0.3333333333333333 618:1.0 656:1.0 720:1.0 750:1.0 1348:0.0625 1653:1.0 1882:1.0 2065:1.0 2580:1.0 3230:1.0 3268:1.0 4437:1.0 4551:0.5 4576:1.0 4970:1.0 5000:0.3333333333333333 5113:1.0 5123:0.3333333333333333 5217:1.0
9 18:0.3333333333333333 20:0.1111111111111111 23:0.5 24:0.5 25:0.16666666666666666 31:0.14285714285714285 49:0.25 62:1.0 73:1.0 88:0.3333333333333333 90:0.3333333333333333 123:0.028985507246376812 167:0.5 234:0.09090909090909091 259:2.0 282:1.0 330:1.0 393:1.0 426:1.0 463:0.5 473:1.0 724:1.0 861:1.0 937:1.0 990:0.5 1303:1.0 1304:1.0 1381:0.14285714285714285 1398:1.0 1882:1.0 2250:1.0 2609:1.0 3230:1.0 4224:1.0 4445:1.0 4525:0.5 4551:0.5 4692:1.0 5048:0.25 5842:1.0 5943:1.0 6044:1.0
9 2:1.0 6:1.0 13:0.25 24:0.5 25:0.08333333333333333 34:0.125 40:0.5 49:0.75 68:0.0625 88:0.16666666666666666 90:0.3333333333333333 123:0.028985507246376812 133:0.125 167:0.125 179:0.3333333333333333 234:0.09090909090909091 245:0.3333333333333333 304:1.0 328:1.0 329:1.0 420:1.0 426:1.0 443:0.25 459:0.058823529411764705 506:0.14285714285714285 573:0.5 720:1.0 741:1.0 937:1.0 955:1.0 980:1.0 1903:1.0 2018:1.0 2058:1.0 2455:1.0 2506:1.0 2609:1.0 2714:1.0 3614:0.5 4437:1.0 4525:1.0 4545:1.0 4709:0.5 4715:1.0 4837:1.0 4877:1.0 5058:1.0 5268:1.0 5269:1.0 5633:1.0 5709:1.0
9 18:0.3333333333333333 25:0.3333333333333333 32:0.3333333333333333 34:0.125 49:0.25 51:1.0 65:1.0 73:1.0 88:0.3333333333333333 90:0.3333333333333333 128:1.0 142:0.25 159:0.3333333333333333 179:0.3333333333333333 259:1.0 457:0.5 492:0.1 537:0.5 573:0.5 656:1.0 720:1.0 861:1.0 937:1.0 1104:1.0 1963:1.0 2907:1.0 3097:0.3333333333333333 3230:1.0 4699:1.0 4789:1.0 4794:0.5 5034:1.0 5164:1.0 6156:1.0 6461:1.0
9 14:0.3333333333333333 31:0.14285714285714285 32:0.3333333333333333 40:0.5 49:0.25 68:0.125 73:1.0 88:0.3333333333333333 243:0.1111111111111111 460:0.5 492:0.2 1689:1.0 2187:1.0 2866:0.5 3776:1.0 3872:1.0 4445:1.0 4460:1.0 4522:0.5 4715:1.0
9 6:1.0 20:0.2222222222222222 23:0.5 24:0.5 25:0.16666666666666666 31:0.2857142857142857 40:0.5 49:0.5 51:3.0 62:2.0 65:1.0 88:0.16666666666666666 90:0.3333333333333333 108:1.0 123:0.028985507246376812 138:1.0 167:0.25 229:1.0 274:2.0 293:1.0 393:1.0 398:0.09090909090909091 433:1.0 486:1.5 492:0.1 510:1.0 720:1.0 931:1.0 990:0.5 1381:0.14285714285714285 1398:1.0 1686:1.0 2065:1.0 2719:1.0 2835:1.0 3438:1.0 3977:1.0 4445:1.0 4529:1.0 4543:1.0 4551:0.5 4584:1.0 4650:1.0 4692:1.0 4796:1.0 4875:1.0 5120:0.5 5520:1.0 5903:1.0 6980:1.0
9 14:0.3333333333333333 20:0.2222222222222222 24:0.5 25:0.3333333333333333 31:0.14285714285714285 49:0.25 68:0.125 76:2.0 117:1.0 123:0.043478260869565216 124:1.0 163:0.25 167:0.125 171:0.3333333333333333 224:1.0 234:0.09090909090909091 293:1.0 428:2.0 460:0.5 506:0.14285714285714285 567:0.5 573:0.5 592:0.5 619:1.0 648:1.0 720:1.0 937:1.0 1175:0.5 1255:1.0 1381:0.2857142857142857 1411:0.3333333333333333 3267:0.5 3905:1.0 4429:1.0 4445:1.0 4462:1.0 5158:1.0 6223:1.0 6411:1.0 6950:1.0 7495:1.0
9 6:1.0 7:0.375 20:0.1111111111111111 25:0.08333333333333333 31:0.14285714285714285 32:0.3333333333333333 34:0.25 51:1.0 68:0.0625 76:1.0 88:0.16666666666666666 90:0.3333333333333333 95:1.0 128:1.0 130:1.0 179:0.3333333333333333 203:0.25 224:0.5 247:1.0 259:1.0 274:1.0 293:1.0 388:1.0 393:1.0 443:0.25 619:1.0 662:1.0 681:1.0 720:1.0 776:1.0 861:1.0 1399:1.0 1840:1.0 2375:1.0 2907:1.0 3498:1.0 3840:1.0 4445:1.0 4759:1.0 5066:1.0 5079:0.125
9 7:0.125 20:0.2222222222222222 23:1.0 24:0.5 40:1.0 49:0.25 73:1.0 76:1.0 88:0.16666666666666666 90:0.3333333333333333 106:0.1 123:0.028985507246376812 124:1.0 138:1.0 199:1.0 259:2.0 293:1.0 353:1.0 449:1.0 486:1.5 521:1.0 573:0.5 720:1.0 747:1.0 771:0.3333333333333333 1249:1.0 1331:1.0 1381:0.14285714285714285 1398:1.0 2866:0.5 3913:1.0 4445:1.0 4488:1.0 4498:1.0 4710:0.3333333333333333 5120:0.5 5123:0.3333333333333333 5318:0.5 5600:1.0 6466:1.0 7176:1.0 7332:1.0
9 6:1.0 7:0.5 14:0.3333333333333333 16:0.5 20:0.1111111111111111 31:0.2857142857142857 46:1.0 49:0.5 73:1.0 88:0.16666666666666666 123:0.043478260869565216 138:1.0 142:0.25 159:0.3333333333333333 162:1.0 259:1.0 293:1.0 304:1.0 308:2.0 320:1.0 328:1.0 372:1.0 393:1.0 398:0.09090909090909091 443:0.25 449:1.0 459:0.058823529411764705 521:1.0 589:1.0 657:1.0 720:1.0 1022:1.0 1275:2.0 1398:2.0 1855:0.5 1936:1.0 2191:1.0 2375:1.0 2455:1.0 4445:1.0 4515:1.0 4770:1.0 6351:1.0 7394:1.0 7487:1.0
9 13:0.5 24:0.5 25:0.08333333333333333 32:0.3333333333333333 49:0.25 88:0.16666666666666666 90:0.3333333333333333 123:0.014492753623188406 220:0.3333333333333333 224:0.5 274:1.0 318:2.0 388:1.0 472:0.2 653:1.0 720:1.0 809:0.5 1398:1.0 1460:1.0 1467:1.0 1963:1.0 2141:1.0 2653:0.2 3341:1.0 4488:1.0 4527:1.0 4666:1.0 4709:0.5 4789:1.0 4884:1.0 5004:1.0 5101:1.0 5118:1.0 5119:1.0 5130:1.0
9 14:0.3333333333333333 18:0.3333333333333333 25:0.08333333333333333 31:0.14285714285714285 37:0.5 40:0.5 49:0.25 88:0.16666666666666666 117:1.0 123:0.014492753623188406 138:1.0 245:0.6666666666666666 259:2.0 318:1.0 459:0.058823529411764705 573:0.5 720:1.0 722:0.5 809:0.5 1140:1.0 1303:1.0 1381:0.14285714285714285 1689:1.0 4437:1.0 4515:1.0 4563:1.0 4625:1.0 4699:1.0 4794:0.5 4940:1.0 5000:0.3333333333333333 5066:1.0 5392:1.0 5552:1.0
9 18:0.6666666666666666 26:1.0 32:0.3333333333333333 49:0.25 68:0.0625 88:0.3333333333333333 90:0.6666666666666666 103:0.5 123:0.014492753623188406 167:0.125 179:0.3333333333333333 428:1.0 443:0.25 447:0.3333333333333333 492:0.1 525:0.3333333333333333 573:0.5 608:1.0 720:1.0 964:1.0 996:1.0 1082:2.0 1175:0.5 1303:1.0 1381:0.2857142857142857 1840:1.0 1963:1.0 2228:1.0 3754:1.0 4438:1.0 4443:1.0 4543:1.0 4569:1.0 4570:1.0 4666:1.0 4958:1.0 5163:1.0 5233:1.0 5438:1.0 7535:1.0
9 14:0.6666666666666666 68:0.0625 72:1.0 90:0.3333333333333333 123:0.043478260869565216 144:0.5 167:0.25 220:0.3333333333333333 224:0.5 259:1.0 388:1.0 428:1.0 492:0.1 506:0.14285714285714285 608:1.0 700:1.0 991:1.0 1082:1.0 1150:0.25 1175:0.5 1280:1.0 1304:1.0 1381:0.14285714285714285 1382:1.0 1604:0.3333333333333333 2458:0.06666666666666667 2589:1.0 2835:1.0 3408:1.0 4445:1.0 4460:1.0 4529:1.0 4555:1.0 4584:1.0 6625:1.0 7302:1.0
9 6:1.0 7:0.25 20:0.1111111111111111 24:0.5 40:0.5 44:0.5 49:0.75 51:1.0 65:1.0 68:0.125 76:1.0 88:0.16666666666666666 123:0.028985507246376812 124:1.0 135:1.0 167:0.125 351:0.5 486:0.5 608:1.0 656:1.0 1061:1.0 1140:1.0 1381:0.14285714285714285 1836:1.0 2010:1.0 2568:1.0 2644:1.0 3230:1.0 3834:1.0 4437:1.0 4530:1.0 4581:1.0 4584:2.0 4598:1.0 4664:1.0 4709:0.5 5438:1.0 7450:1.0
9 18:0.3333333333333333 25:0.08333333333333333 40:1.0 88:0.16666666666666666 90:0.3333333333333333 124:1.0 159:0.3333333333333333 163:0.25 234:0.09090909090909091 259:1.0 447:0.3333333333333333 492:0.1 934:1.0 999:1.0 1033:1.0 1216:0.5 2835:1.0 2948:1.0 4437:1.0 5129:1.0 5501:1.0 5893:1.0 5977:1.0 6688:1.0
9 7:0.125 20:0.1111111111111111 25:0.08333333333333333 79:1.0 90:0.3333333333333333 103:0.5 123:0.014492753623188406 159:1.3333333333333333 161:1.0 179:0.3333333333333333 388:1.0 472:0.2 506:0.14285714285714285 579:0.5 720:1.0 958:1.0 980:1.0 1061:1.0 1213:1.0 1381:0.14285714285714285 1525:1.0 2238:1.0 3590:1.0 4445:1.0 4460:1.0 4474:1.0 4513:1.0 5287:1.0 6251:1.0 6586:1.0 6646:1.0
9 32:0.6666666666666666 49:0.25 76:1.0 90:0.3333333333333333 107:1.0 159:0.3333333333333333 163:0.25 167:0.125 179:0.3333333333333333 254:1.0 259:1.0 459:0.058823529411764705 506:0.14285714285714285 521:1.0 720:1.0 958:2.0 1061:1.0 1216:0.5 1371:0.3333333333333333 1653:1.0 4445:1.0 4530:1.0 4729:1.0 4979:1.0 5057:1.0 5187:1.0
9 7:0.25 24:1.0 25:0.16666666666666666 32:0.3333333333333333 34:0.125 44:0.5 51:1.0 68:0.0625 73:1.0 76:1.0 88:0.16666666666666666 92:1.0 123:0.014492753623188406 163:0.25 167:0.5 212:1.0 225:1.0 245:0.3333333333333333 282:1.0 325:1.0 351:1.0 459:0.058823529411764705 472:0.2 720:1.0 1043:1.0 1167:1.0 1348:0.0625 1381:0.2857142857142857 1394:1.0 1411:0.3333333333333333 1898:0.5 2501:1.0 2821:0.5 3487:1.0 4437:1.0 4457:1.0 4474:1.0 4581:1.0 4724:1.0 4745:1.0 5216:1.0 5220:1.0 6168:1.0 6785:1.0 6832:1.0 6889:1.0
9 7:0.125 24:0.5 25:0.16666666666666666 48:1.0 49:0.25 68:0.125 92:1.0 121:1.0 123:0.014492753623188406 167:0.125 225:1.0 245:0.3333333333333333 297:0.3333333333333333 396:1.0 428:2.0 506:0.14285714285714285 720:1.0 747:1.0 771:0.3333333333333333 798:1.0 813:1.0 1381:0.2857142857142857 1848:1.0 1903:1.0 2458:0.13333333333333333 4251:1.0 4437:1.0 4474:1.0 4641:1.0 4699:1.0 4879:1.0 7360:1.0
9 15:0.5 23:0.5 24:0.5 25:0.08333333333333333 49:0.25 73:1.0 76:1.0 88:0.16666666666666666 90:0.3333333333333333 103:0.5 117:1.0 674:1.0 749:1.0 882:1.0 1061:1.0 1304:1.0 1397:1.0 2458:0.06666666666666667 2702:0.5 4437:1.0 5412:1.0 5940:0.5 7140:1.0
9 7:0.125 20:0.1111111111111111 25:0.08333333333333333 42:1.0 46:1.0 49:0.25 73:2.0 124:1.0 163:0.25 167:0.125 179:0.3333333333333333 212:1.0 486:0.5 506:0.14285714285714285 533:0.5 552:1.0 608:1.0 720:1.0 999:1.0 1082:2.0 1102:0.5 1304:1.0 1348:0.0625 1380:1.0 1381:0.2857142857142857 1901:1.0 1938:1.0 3163:0.06666666666666667 3905:1.0 4445:1.0 4493:0.1 4740:1.0 4866:1.0 5022:1.0 5319:0.5 5844:1.0 6182:1.0 6502:1.0 7022:1.0
9 25:0.16666666666666666 32:0.6666666666666666 49:0.25 88:0.5 139:1.0 142:0.25 167:0.125 225:1.0 245:0.3333333333333333 259:1.0 274:1.0 298:1.0 447:0.3333333333333333 731:1.0 1082:1.0 2191:1.0 2535:0.5 4445:1.0 4457:1.0 4458:1.0 4459:1.0 4466:1.0 4619:1.0 4740:1.0 4931:1.0 5292:1.0 6266:1.0 6980:1.0 7249:1.0
9 7:0.375 11:0.16666666666666666 13:0.25 14:0.3333333333333333 16:0.5 18:0.3333333333333333 20:0.1111111111111111 23:0.5 49:0.5 68:0.0625 73:1.0 80:1.0 88:0.3333333333333333 133:0.125 159:0.3333333333333333 234:0.09090909090909091 304:1.0 306:0.3333333333333333 388:1.0 395:1.0 492:0.1 506:0.14285714285714285 552:2.0 720:1.0 990:0.5 1689:1.0 1840:1.0 1842:1.0 2174:1.0 4437:1.0 4460:1.0 4489:0.5 4522:0.5 4664:1.0 4723:0.5 5101:1.0 5438:1.0 5887:1.0 5955:1.0 6475:1.0
9 7:0.125 14:0.3333333333333333 25:0.08333333333333333 31:0.14285714285714285 32:0.6666666666666666 49:0.5 62:1.0 90:0.3333333333333333 123:0.014492753623188406 159:0.3333333333333333 224:0.5 259:2.0 310:0.3333333333333333 372:1.0 388:1.0 460:0.5 472:0.2 473:1.0 579:0.5 731:1.0 809:0.5 833:2.0 1061:1.0 1473:0.3333333333333333 3590:1.0 4437:1.0 4443:1.0 4460:1.0 4466:1.0 4563:1.0 4796:1.0 5120:0.5 5560:1.0 6124:1.0
9 6:1.0 7:0.25 13:0.25 20:0.1111111111111111 25:0.08333333333333333 32:0.3333333333333333 49:1.5 68:0.0625 88:0.3333333333333333 123:0.014492753623188406 135:1.0 167:0.125 212:1.0 234:0.09090909090909091 259:1.0 337:1.0 351:0.5 428:1.0 486:0.5 492:0.1 506:0.14285714285714285 597:0.5 714:0.5 720:1.0 833:1.0 945:1.0 1061:1.0 1348:0.125 1381:0.2857142857142857 1473:0.3333333333333333 1666:1.0 1784:1.0 2866:0.5 4033:1.0 4437:1.0 4472:1.0 4489:0.5 4879:1.0 4970:1.0 6002:1.0 6073:1.0
9 7:0.125 16:0.5 24:1.0 25:0.3333333333333333 31:0.14285714285714285 33:1.0 88:0.16666666666666666 90:0.3333333333333333 124:1.0 137:0.14285714285714285 159:0.3333333333333333 167:0.375 224:0.5 351:1.0 396:1.0 447:0.3333333333333333 492:0.1 710:1.0 720:1.0 727:1.0 760:1.0 861:1.0 958:1.0 980:1.0 1150:0.125 1186:1.0 1381:0.14285714285714285 1411:0.3333333333333333 2238:1.0 2473:1.0 4445:1.0 4460:1.0 4530:1.0 4551:0.5 4598:1.0 4729:1.0 5319:0.5 6002:1.0 6073:1.0
9 7:0.25 23:0.5 31:0.14285714285714285 49:0.25 50:1.0 62:1.0 123:0.028985507246376812 137:0.14285714285714285 138:1.0 167:0.125 335:1.0 396:1.0 443:0.25 506:0.14285714285714285 720:1.0 1267:1.0 1348:0.0625 1381:0.14285714285714285 3006:0.25 3163:0.06666666666666667 4443:1.0 4445:1.0 4448:1.0 4476:1.0 4520:1.0 4527:1.0 4725:1.0 5079:0.125 5204:1.0 5506:1.0 5680:1.0 7425:1.0
9 7:0.125 20:0.1111111111111111 37:0.5 49:0.75 59:1.0 68:0.0625 73:1.0 76:1.0 88:0.16666666666666666 103:0.5 123:0.028985507246376812 124:1.0 159:0.3333333333333333 243:0.1111111111111111 351:0.5 492:0.1 506:0.14285714285714285 530:0.5 531:0.3333333333333333 589:1.0 720:1.0 978:1.0 1061:1.0 1150:0.125 1304:1.0 1348:0.0625 1381:0.14285714285714285 1604:0.3333333333333333 3840:2.0 3905:1.0 4437:1.0 4517:1.0 4520:1.0 4613:1.0 4731:1.0 4841:1.0 5348:1.0 5646:1.0 6448:1.0 7011:1.0
9 23:0.5 24:0.5 25:0.25 27:1.0 32:0.3333333333333333 48:1.0 49:0.5 51:1.0 68:0.125 73:1.0 117:1.0 167:0.125 259:2.0 335:1.0 472:0.4 492:0.1 659:1.0 709:0.5 720:1.0 1150:0.125 1167:1.0 1304:1.0 1381:0.14285714285714285 2169:1.0 2458:0.13333333333333333 2643:1.0 3488:1.0 4445:1.0 4664:1.0 4970:1.0 5057:1.0 5086:1.0 5520:1.0 5601:1.0 6182:1.0
9 7:0.25 24:1.0 49:0.25 68:0.0625 106:0.1 107:1.0 119:1.0 123:0.028985507246376812 138:1.0 167:0.125 259:1.0 273:1.0 303:1.0 308:1.0 328:1.0 372:1.0 506:0.14285714285714285 589:1.0 720:1.0 769:1.0 1331:1.0 1381:0.14285714285714285 1487:1.0 1573:1.0 3163:0.06666666666666667 3403:1.0 4357:1.0 4437:1.0 4476:1.0 4488:1.0 4498:1.0 4678:1.0 5043:1.0 5130:1.0 7376:1.0
9 11:0.16666666666666666 24:0.5 25:0.3333333333333333 40:0.5 49:0.25 88:0.16666666666666666 142:0.25 225:1.0 351:0.5 443:0.25 447:0.3333333333333333 492:0.2 692:1.0 727:1.0 861:1.0 1167:1.0 1381:0.14285714285714285 1470:1.0 2343:1.0 2743:1.0 2890:1.0 4437:1.0 4443:1.0 4555:1.0 4692:1.0 5116:1.0 6476:1.0
9 24:1.5 25:0.16666666666666666 40:0.5 44:0.5 49:0.75 76:1.0 90:0.3333333333333333 103:1.0 123:0.014492753623188406 163:0.25 175:1.0 259:1.0 388:1.0 420:1.0 492:0.2 507:0.3333333333333333 552:1.0 722:0.5 746:1.0 809:0.5 857:0.5 980:1.0 1061:2.0 1082:1.0 1150:0.125 1175:0.5 1406:1.0 2037:1.0 2427:1.0 2880:1.0 3590:1.0 4431:1.0 4437:1.0 4535:1.0 4581:1.0 4598:1.0 5212:1.0 5438:1.0 6833:1.0 7133:1.0
9 7:0.125 14:0.3333333333333333 25:0.25 49:0.25 51:3.0 90:0.3333333333333333 106:0.1 123:0.028985507246376812 138:1.0 163:0.25 224:0.5 225:1.0 259:2.0 306:0.3333333333333333 396:2.0 426:1.0 492:0.1 506:0.14285714285714285 639:1.0 714:0.5 720:1.0 771:0.3333333333333333 996:1.0 1061:1.0 1082:1.0 1326:1.0 2191:1.0 3905:1.0 4437:1.0 4474:1.0 4488:1.0 4576:1.0 4719:1.0 4911:1.0 5007:1.0 5247:1.0 5383:1.0 5438:1.0 5520:1.0 5706:1.0 6106:1.0 6727:1.0 6933:2.0 6987:1.0
9 7:0.375 20:0.1111111111111111 24:0.5 25:0.16666666666666666 31:0.14285714285714285 42:1.0 49:0.25 62:1.0 68:0.0625 73:1.0 88:0.16666666666666666 90:0.3333333333333333 103:0.5 137:0.14285714285714285 159:0.6666666666666666 167:0.375 220:0.3333333333333333 282:1.0 388:1.0 428:1.0 459:0.058823529411764705 467:1.0 506:0.14285714285714285 619:1.0 645:0.5 692:1.0 709:0.5 720:1.0 727:1.0 1061:2.0 1307:1.0 1348:0.0625 1381:0.14285714285714285 1407:1.0 1475:1.0 3590:1.0 4357:1.0 4437:1.0 4457:1.0 4472:1.0 4474:1.0 4618:1.0 4729:1.0 5043:1.0 5052:1.0 5185:1.0 5210:1.0 5632:1.0 5893:1.0 6106:1.0 6330:1.0 6331:1.0 6542:1.0 7146:1.0 7493:1.0
9 1:0.3333333333333333 7:0.375 23:0.5 24:1.0 25:0.08333333333333333 31:0.14285714285714285 40:0.5 51:1.0 73:1.0 90:0.3333333333333333 108:1.0 123:0.014492753623188406 124:1.0 162:1.0 163:0.25 167:0.125 245:0.6666666666666666 306:0.3333333333333333 335:1.0 351:0.5 492:0.1 506:0.14285714285714285 552:1.0 607:1.0 720:1.0 1381:0.14285714285714285 1411:0.3333333333333333 1903:1.0 1963:1.0 3163:0.06666666666666667 3378:1.0 4357:1.0 4476:1.0 4569:1.0 4570:1.0 4598:1.0 4726:1.0 4816:1.0 4841:1.0 7335:1.0
9 7:0.125 20:0.2222222222222222 24:0.5 25:0.16666666666666666 31:0.14285714285714285 40:0.5 49:0.75 50:1.0 51:1.0 88:0.16666666666666666 90:0.3333333333333333 103:0.5 123:0.014492753623188406 162:1.0 167:0.125 225:1.0 259:1.0 303:1.0 373:0.25 388:2.0 443:0.25 457:0.5 460:0.5 530:0.5 690:1.0 709:0.5 720:2.0 787:1.0 836:1.0 882:1.0 1315:1.0 1381:0.14285714285714285 2071:1.0 2323:1.0 2604:1.0 2719:1.0 4437:1.0 4466:1.0 4709:0.5 4724:1.0 4798:1.0 4970:1.0 5560:1.0 7249:1.0
9 32:0.3333333333333333 34:0.125 40:0.5 49:0.5 73:2.0 103:0.5 163:0.25 167:0.5 259:1.0 459:0.058823529411764705 473:2.0 692:1.0 709:1.0 731:1.0 809:1.0 847:1.0 937:1.0 964:1.0 1150:0.125 1286:1.0 1903:1.0 2037:1.0 4146:1.0 4445:1.0 4457:1.0 4480:1.0 4745:1.0 5122:1.0 5723:1.0 6020:1.0 6648:1.0 6795:1.0 6933:1.0
9 18:0.3333333333333333 25:0.25 26:1.0 32:0.3333333333333333 40:0.5 49:0.25 51:1.0 73:1.0 76:1.0 90:0.3333333333333333 123:0.014492753623188406 138:1.0 167:0.125 282:1.0 447:0.3333333333333333 492:0.1 552:1.0 714:0.5 1249:1.0 1251:1.0 1281:1.0 1398:1.0 1407:1.0 1841:1.0 2702:0.5 4445:1.0 4457:1.0 4458:1.0 4459:1.0 4563:1.0 4710:0.3333333333333333 5010:1.0 5210:1.0 5893:1.0 6048:1.0
9 24:1.0 25:0.16666666666666666 32:0.6666666666666666 49:0.25 62:1.0 73:1.0 88:0.16666666666666666 90:0.3333333333333333 114:1.0 138:1.0 167:0.125 199:1.0 250:1.0 318:1.0 443:0.25 510:1.0 771:0.3333333333333333 991:1.0 1175:0.5 1381:0.14285714285714285 1840:1.0 2010:1.0 2191:1.0 2880:1.0 4445:1.0 4628:1.0 4743:1.0 5247:1.0 6091:1.0 6235:1.0 6586:1.0
9 7:0.125 16:0.5 25:0.08333333333333333 31:0.14285714285714285 40:1.0 44:0.5 51:1.0 88:0.16666666666666666 90:0.6666666666666666 123:0.014492753623188406 135:1.0 155:1.0 159:0.3333333333333333 167:0.125 179:0.3333333333333333 186:1.0 243:0.1111111111111111 304:1.0 310:0.3333333333333333 328:1.0 467:1.0 492:0.1 506:0.14285714285714285 598:1.0 944:1.0 990:0.5 1391:1.0 2065:1.0 2458:0.06666666666666667 3246:1.0 3599:1.0 4437:1.0 4563:1.0 4729:1.0 4731:2.0 4874:1.0 4920:1.0 5085:1.0 5221:1.0 5501:1.0 5951:1.0 6103:1.0 6574:1.0
9 6:1.0 7:0.375 23:0.5 24:0.5 25:0.25 32:0.3333333333333333 90:0.3333333333333333 92:1.0 123:0.014492753623188406 167:0.125 234:0.09090909090909091 459:0.058823529411764705 473:1.0 506:0.14285714285714285 681:1.0 720:1.0 790:1.0 861:1.0 914:1.0 1090:1.0 1150:0.125 1348:0.0625 1511:1.0 2473:1.0 3246:1.0 4357:1.0 4445:1.0 4457:1.0 4512:1.0 4530:1.0 5054:1.0 5123:0.3333333333333333 5539:1.0 5963:1.0 6424:1.0 6648:1.0 7533:1.0
9 7:0.25 15:0.5 18:0.3333333333333333 20:0.2222222222222222 24:1.0 25:0.25 34:0.125 49:0.25 68:0.25 88:0.16666666666666666 90:1.0 103:0.5 114:1.0 123:0.014492753623188406 124:1.0 212:2.0 224:0.5 225:2.0 306:0.3333333333333333 310:0.3333333333333333 506:0.14285714285714285 720:1.0 1175:0.5 1381:0.14285714285714285 2376:1.0 2458:0.2 3498:1.0 4437:1.0 4443:1.0 4520:1.0 5283:1.0 6386:1.0 7409:1.0
9 7:0.25 15:0.5 25:0.16666666666666666 49:0.25 68:0.125 73:1.0 90:0.3333333333333333 108:1.0 123:0.028985507246376812 124:1.0 177:0.3333333333333333 179:0.3333333333333333 186:1.0 220:0.3333333333333333 245:0.3333333333333333 274:1.0 306:0.3333333333333333 388:1.0 506:0.14285714285714285 597:0.5 674:1.0 720:1.0 727:1.0 958:1.0 1061:1.0 1348:0.0625 1381:0.14285714285714285 1778:1.0 2071:1.0 4218:1.0 4443:1.0 4474:1.0 4530:1.0 4625:1.0 4651:1.0 4726:1.0 4970:1.0 4990:1.0 5438:1.0 5568:1.0 6106:1.0 6855:1.0 7335:1.0 7360:1.0
9 7:0.25 16:0.5 20:0.1111111111111111 23:0.5 24:1.0 25:0.16666666666666666 49:0.25 90:0.3333333333333333 124:1.0 159:0.3333333333333333 162:1.0 224:0.5 234:0.09090909090909091 238:0.16666666666666666 304:1.0 310:0.3333333333333333 492:0.1 720:1.0 1150:0.125 1249:1.0 1348:0.0625 1903:1.0 4437:1.0 4527:1.0 4598:1.0 4846:1.0 5109:1.0 6901:1.0 7254:1.0
9 7:0.125 25:0.08333333333333333 49:0.25 51:1.0 68:0.1875 73:2.0 88:0.16666666666666666 90:0.3333333333333333 123:0.014492753623188406 163:0.25 167:0.125 212:1.0 243:0.1111111111111111 245:0.3333333333333333 259:1.0 443:0.25 506:0.42857142857142855 533:1.0 597:0.5 674:1.0 697:1.0 720:1.0 771:0.3333333333333333 909:0.5 1061:1.0 1082:1.0 1276:1.0 1348:0.0625 1381:0.14285714285714285 1525:1.0 1973:1.0 2169:1.0 2191:1.0 4357:1.0 4493:0.1 4648:1.0 4675:1.0 5389:1.0 5615:1.0 6913:1.0
9 7:0.125 25:0.16666666666666666 32:0.3333333333333333 73:1.0 90:0.3333333333333333 131:1.0 167:0.125 176:1.0 179:0.3333333333333333 259:1.0 282:1.0 447:0.6666666666666666 506:0.14285714285714285 533:0.5 597:0.5 1061:1.0 1398:1.0 1470:1.0 1898:0.5 2844:1.0 3488:1.0 4433:0.25 4443:1.0 4445:1.0 4970:1.0 6437:1.0
9 7:0.125 25:0.08333333333333333 32:0.3333333333333333 103:0.5 179:0.3333333333333333 472:0.2 492:0.1 608:1.0 787:1.0 1061:2.0 1167:1.0 3983:1.0 4445:1.0 4468:1.0 4904:1.0 6106:1.0 6962:1.0
9 7:0.125 15:0.5 25:0.08333333333333333 31:0.2857142857142857 40:0.5 49:0.5 68:0.1875 73:1.0 90:0.3333333333333333 123:0.057971014492753624 138:1.0 239:0.3333333333333333 259:1.0 303:1.0 306:0.3333333333333333 335:1.0 372:1.0 428:1.0 472:0.2 506:0.14285714285714285 530:0.5 552:2.0 645:0.5 674:1.0 681:1.0 944:1.0 1168:0.5 1304:1.0 1408:1.0 1473:0.3333333333333333 1840:1.0 2302:1.0 2375:1.0 2458:0.06666666666666667 2589:1.0 3569:1.0 4445:1.0 4457:1.0 4458:1.0 4513:1.0 4522:0.5 4581:1.0 4628:1.0 4709:0.5 5327:1.0 5940:0.5
9 7:0.125 34:0.25 40:0.5 49:0.5 51:1.0 76:1.0 124:1.0 167:0.125 388:1.0 506:0.2857142857142857 608:1.0 626:1.0 670:1.0 746:1.0 1505:1.0 2589:1.0 2719:1.0 3267:0.5 3569:1.0 4445:1.0 4460:1.0 4513:1.0 4710:0.3333333333333333 4882:1.0 5227:1.0 5921:1.0 6625:1.0
9 1:0.3333333333333333 7:0.375 32:0.3333333333333333 68:0.0625 90:0.3333333333333333 103:1.0 159:0.3333333333333333 175:1.0 234:0.09090909090909091 245:0.3333333333333333 254:1.0 506:0.2857142857142857 507:0.3333333333333333 720:1.0 1061:1.0 1082:1.0 1249:1.0 1348:0.0625 2719:1.0 3980:1.0 4445:1.0 4522:0.5 4530:1.0 4578:1.0 4725:1.0 4841:1.0 5327:1.0 5351:1.0
9 7:0.25 24:1.0 25:0.16666666666666666 40:0.5 44:0.5 90:0.3333333333333333 123:0.014492753623188406 124:1.0 137:0.14285714285714285 167:0.125 351:1.0 473:1.0 492:0.1 518:1.0 709:0.5 720:1.0 731:1.0 1167:1.0 1348:0.0625 1411:0.3333333333333333 1903:1.0 1908:1.0 1963:1.0 3267:0.5 3341:1.0 4472:1.0 4488:1.0 4489:0.5 4520:1.0 4527:1.0 4598:1.0 4666:1.0 4715:1.0 4789:1.0 4879:1.0 4970:1.0 5004:1.0 5104:1.0 5116:1.0 5118:1.0 5119:1.0 5283:1.0 6062:1.0 6535:1.0
9 7:0.25 15:0.5 20:0.1111111111111111 24:0.5 25:0.08333333333333333 27:1.0 34:0.125 49:0.25 68:0.0625 76:1.0 90:0.3333333333333333 123:0.014492753623188406 142:0.25 167:0.125 225:1.0 245:0.3333333333333333 492:0.1 506:0.2857142857142857 525:0.3333333333333333 533:0.5 619:1.0 681:1.0 720:1.0 727:1.0 809:0.5 861:1.0 1061:1.0 1082:1.0 1249:1.0 1326:1.0 1348:0.0625 1804:1.0 2071:1.0 2458:0.06666666666666667 2719:1.0 2953:1.0 3590:1.0 4445:1.0 4479:1.0 4513:1.0 4744:1.0 4785:1.0 5000:0.3333333333333333 5961:1.0
9 7:0.25 24:0.5 25:0.08333333333333333 32:0.3333333333333333 40:0.5 49:0.25 51:3.0 68:0.125 88:0.16666666666666666 123:0.043478260869565216 124:1.0 138:1.0 155:1.0 159:0.3333333333333333 167:0.375 282:1.0 373:0.25 472:0.2 485:1.0 506:0.14285714285714285 507:0.3333333333333333 531:0.3333333333333333 593:1.0 619:1.0 681:1.0 720:1.0 722:0.5 727:1.0 1150:0.125 1406:1.0 2037:2.0 2568:1.0 3158:1.0 4436:0.2 4437:1.0 4474:1.0 4530:1.0 4704:1.0 4735:1.0 4786:1.0 4898:1.0 4937:0.5 5010:1.0 5101:1.0 5204:1.0 5348:1.0 5800:1.0 6128:1.0 7427:1.0
9 7:0.125 13:0.5 20:0.1111111111111111 24:0.5 25:0.08333333333333333 33:1.0 40:0.5 44:0.5 49:0.75 68:0.0625 73:1.0 76:1.0 90:0.3333333333333333 92:1.0 123:0.014492753623188406 133:0.125 138:1.0 159:0.3333333333333333 162:1.0 224:0.5 234:0.09090909090909091 259:2.0 443:0.5 492:0.1 507:0.3333333333333333 527:1.0 608:1.0 991:1.0 1061:1.0 1381:0.14285714285714285 1714:1.0 1924:1.0 2719:1.0 2915:1.0 4445:1.0 4486:1.0 4543:1.0 4581:1.0 4604:1.0 4709:0.5 5230:1.0 5366:1.0 6086:1.0 6410:1.0 7524:1.0
9 20:0.2222222222222222 24:0.5 25:0.16666666666666666 49:1.25 72:1.0 90:0.3333333333333333 103:0.5 106:0.2 123:0.014492753623188406 130:1.0 138:1.0 159:0.3333333333333333 167:0.25 224:0.5 259:1.0 274:1.0 304:1.0 325:1.0 372:1.0 457:0.5 510:1.0 709:0.5 714:0.5 809:0.5 1249:2.0 1963:1.0 2613:1.0 2835:1.0 3569:1.0 4445:1.0 4488:1.0 4522:0.5 4666:1.0 4789:1.0 4805:1.0 4821:1.0 4970:1.0 5004:1.0 5005:1.0 5116:1.0 5118:1.0 5119:1.0 5129:1.0 5247:1.0 5903:1.0 6062:1.0 6535:1.0
9 7:0.125 20:0.1111111111111111 24:1.0 25:0.25 26:1.0 32:0.3333333333333333 40:0.5 46:1.0 49:0.25 68:0.0625 88:0.16666666666666666 90:1.0 123:0.028985507246376812 124:2.0 138:2.0 162:1.0 175:1.0 179:0.3333333333333333 234:0.09090909090909091 245:0.3333333333333333 259:1.0 274:1.0 297:0.3333333333333333 303:1.0 472:0.2 722:0.5 727:1.0 771:0.3333333333333333 1061:1.0 1150:0.125 1381:0.42857142857142855 1689:1.0 1840:1.0 1903:1.0 2065:1.0 2191:1.0 2384:1.0 2653:0.2 3905:1.0 4437:1.0 4445:1.0 4460:1.0 4493:0.1 4584:1.0 4613:1.0 4877:1.0 5054:1.0 5463:0.5 7376:1.0
9 7:0.125 13:0.25 24:0.5 31:0.14285714285714285 34:0.25 90:0.3333333333333333 123:0.014492753623188406 124:1.0 128:1.0 130:1.0 163:0.25 167:0.125 325:1.0 388:1.0 389:1.0 430:1.0 447:0.3333333333333333 506:0.42857142857142855 636:0.5 714:0.5 720:1.0 980:1.0 1150:0.125 2065:1.0 2404:1.0 4357:1.0 4437:1.0 4445:1.0 4457:1.0 4458:1.0 4459:1.0 4460:1.0 4473:1.0 4489:0.5 4530:1.0 4581:1.0 4883:1.0 4920:1.0 4942:1.0 5349:1.0 5502:1.0
9 34:0.125 49:0.5 68:0.0625 123:0.028985507246376812 130:1.0 159:0.3333333333333333 245:0.3333333333333333 259:1.0 273:1.0 373:0.25 531:0.3333333333333333 608:1.0 656:1.0 720:1.0 908:0.5 1022:1.0 1061:1.0 1408:1.0 1525:1.0 1611:1.0 2501:1.0 2908:1.0 3006:0.25 3498:1.0 4357:1.0 4437:1.0 4445:1.0 4625:1.0 4730:0.5 4809:1.0 4891:0.3333333333333333 4942:1.0
|
4fbd0273e6afd00e9a112647372f2c06864b8bae
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3050/CH6/EX6.8/Ex6_8.sce
|
d200a9d057b8af5857ec66b603229049c1aaa43a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 199
|
sce
|
Ex6_8.sce
|
//calculating Kc
//Example 6.8
clc
clear
//E'cell=0.0591*logKc/n
Ecell=0.16
n=4
Kc=10^(n*Ecell/0.0591)//equilibrium constant
printf('Thus the equilibrium constant for the reaction = %e',Kc)
|
13e6c3d6d449ff31a6f2fcac9cb592dddd4c6c12
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1970/CH5/EX5.6/Ch05Exa6.sce
|
75fc456b46898042de0744e7d5a62326bde25b3e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 592
|
sce
|
Ch05Exa6.sce
|
// Scilab code Exa5.6: : Page 204 (2011)
clc; clear;
Z_D = 82; // Atomic number of Po
E_Po210 = 5.3; // Alpha-source for Po210, MeV
E_Po214 = 7.7; // Alpha-source for Po214, MeV
log_lambda_Po210 = -1*1.72*Z_D*E_Po210^(-1/2);
log_lambda_Po214 = -1*1.72*Z_D*E_Po214^(-1/2);
delta_OM_t = log_lambda_Po214 - log_lambda_Po210; // Difference in order of magnitude of life times of Po214 and Po210
printf("\nThe disintegration constant increases by a factor of some 10^%2d", delta_OM_t);
// Result
// The disintegration constant increases by a factor of some 10^10
|
235259d2274037c573a262a0b6011c6b1c130097
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/770/CH3/EX3.19/3_19.sce
|
2273a09601b4cf3f65be183ad48dfdc9a6373622
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,565
|
sce
|
3_19.sce
|
clear;
clc;
//Example - 3.19
//Page number - 113
printf("Example - 3.19 and Page number - 113\n\n");
//Given
T_1 = 600;//[C] - Temperature at entry
P_1 = 15;//[MPa] - Pressure at entry
T_2 = 400;//[K] - Temperature at exit
P_2 = 100;//[kPa] - Pressure at exit
A_in = 0.045;//[metre square] - flow in area
A_out = 0.31;//[metre square] - flow out area
m = 30;//[kg/s] - mass flow rate.
//At 15 MPa and 600 C,it has been reported in the book that the properties of steam are,
Vol_1 = 0.02491;//[m^(3)/kg] - Specific volume
H_1 = 3582.3;//[kJ/kg] - Enthalpy
// m = den*vel*A = (Vel*A)/Vol, substituting the values
vel_1 = (m*Vol_1)/A_in;//[m/s] - Velocity at point 1.
printf(" The inlet velocity is %f m/s\n",vel_1);
//At 100 MPa (saturated vapour),it has been reported in the book that the properties of steam are, T_sat = 99.63 C, and
Vol_vap_2 = 1.6940;//[m^(3)/kg] - specific volume of saturated vapour.
H_vap_2 = 2675.5;//[kJ/kg] - Enthalpy os saturated vapour.
vel_2 = (m*Vol_vap_2)/A_out;//[m/s] - Velocity at point 2.
printf(" The exit velocity is %f m/s\n",vel_2);
//From first law we get, q - w =delta_H + delta_V^(2)/2
//q = 0, therefore, -w = delta_H + delta_V^(2)/2
delta_H = H_vap_2 - H_1;//[kJ/kg] - change in enthalpy.
delta_V_square = (vel_2^(2) - vel_1^(2))/2;//[J/kg]
delta_V_square = delta_V_square*10^(-3);//[kJ/kg]
w = -(delta_H + delta_V_square);//[J/kg]
W_net = w*m;//[kW]
W_net = W_net*10^(-3);//[MW] - power produced.
printf(" The power that can be produced by the turbine is %f MW",W_net);
|
b7bd62a726a89e389a0d5271e2f28227fc611a89
|
0812f3bb6f3cc038b570df68ccee4275da04b11f
|
/models/complexity_1000/Applied_Thermodynamics_and_Engineering/CH9/EX9.4/9_4.sce
|
243a62ea4cf6d161280c69c6761a94830e420b70
|
[] |
no_license
|
apelttom/20-semester_PhD_thesis
|
edc0b55580bae9d364599932cd73cf32509f4b7a
|
ff28b115fcf5e121525e08021fa0c02b54a8e143
|
refs/heads/master
| 2018-12-26T22:03:38.510422
| 2018-12-14T20:04:11
| 2018-12-14T20:04:11
| 106,552,276
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 553
|
sce
|
9_4.sce
|
clc;
y=1.4;
p2!p1=3;
T1=288;
T2s=T1*[(p2!p1)^({y-1}/y)];
nc=0.8;
T2=T1+[T2s-T1]/nc
cps=1.005;
Wi=cps*(T2-T1);
Wo=2*(Wi)/0.98;
T6=923;
cps2=1.15;
T7=T6-Wo/cps2
nT=0.85;
T7s=T6-[(T6-T7)/nT]
y2=1.333;
p8!p9=[p2!p1^2]/[(T6/T7s)^{y2/(y2-1)}];
T8=T6;
T9s=T8/[(p8!p9)^({y2-1}/y2)];
T9=T8-nT*(T8-T9s)
N=cps2*(T8-T9)*0.98;
Tr=0.75;
T4=420.5;
T5=T4+Tr*(T9-T4)
Q=cps2*([T6-T5]+[T8-T7]);
Ceff=N/Q;
disp(Ceff,"cycle efficiency is:");
//part II
GWo=Wo+N/0.98;
Wr=N/GWo;
disp(Wr,"work ratio is:")
//part III
m=5000/N;
disp("kg/s",m,"rate of flow of air is:")
|
23e55a59b270cddc98a73ce24cf1643d1c0609ef
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/174/CH6/EX6.1/example6_1.sce
|
00f138e3c28d73fcf30e2a921c8e50620f657247
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,147
|
sce
|
example6_1.sce
|
// To find the form factor and error
// Modern Electronic Instrumentation And Measurement Techniques
// By Albert D. Helfrick, William D. Cooper
// First Edition Second Impression, 2009
// Dorling Kindersly Pvt. Ltd. India
// Example 6-1 in Page 131
clear; clc; close;
// Given data
//let
E_m = 10; //Let the peak amplitude of the square wave be 10V
T = 1; //Let the time period of the square wave be 1s
function y= f(t),y=(E_m)^2 ,endfunction
E_rms = sqrt(1/T * intg(0,T,f));
printf("(a) The rms value of the square wave = %d V \n",E_rms);
function x = ff(t),x =(E_m) ,endfunction
E_av = (2/T * intg(0,T/2,ff));
printf(" The average value of the square wave = %d V\n",E_av);
k = E_rms/E_av;
printf(" The form factor of the square wave =%d\n",k);
k_sine = 1.11;
k_square = 1;
%error = (k_sine - k_square)/k_square*100;
printf("(b) The percentage error in meter indication = %d %%",%error);
//Result
// (a) The rms value of the square wave = 10 V
// The average value of the square wave = 10 V
// The form factor of the square wave =1
// (b) The percentage error in meter indication = 11 %
|
0485fec05592455058e8e264fb9b12d6f372eef9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1529/CH5/EX5.2/5_02.sce
|
2717b1b61eb0046ce309df8f14b600beed7c3a43
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 508
|
sce
|
5_02.sce
|
// Problem 2, Figure 5.3
clc;
R=100; //Assigning the values to variable
V=25;
V1=10;
V2=4;
V3=V-V1-V2; //Calculating the voltage across Resistor R3
printf("Potential difference across R3 = %f V\n\n\n",V3);
I=V/R; //Calculating the current
printf("Current flowing through each resistor = %f A\n\n\n",I);
R2=V2/I; //Calculating the resistance of R2
printf("Resistance R2 = %f ohm\n\n\n",R2);
|
750609ec7ce7d5727f968601ffccd933b6d7eaa8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1061/CH3/EX3.31/ex3_31.sce
|
68662caf6e52b7d052b13817cf1b8ab9ef46ea2a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 318
|
sce
|
ex3_31.sce
|
//Ex:3.31
clc;
clear;
close;
n1=1.46;// core refractive index
a=45/2;// max radius in um
y=0.85;// operating wavelength in um
NA=0.17;// numerical aperture
v=(2*3.14*a*NA)/y;//normalised frequency
M=v^2/2;// number of modes
printf("The normalised frequency =%f", v);
printf("\n The number of modes =%d", M);
|
e0aa52597c6245c1dba574b73982452c86449eac
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1223/CH6/EX6.11/Ex6_11.sce
|
f1b57e17f226d084f9bbdaad4448d274b4c95838
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 509
|
sce
|
Ex6_11.sce
|
clear;
clc;
//Example 6.11
Vtnd=1;
Vtnl=1;
Kn=30;
//let W/L=x
xl=1;
Vdd=5;
Av=10;
//Av=sqrt(xd/xl)
xd=(Av)^2*xl;
printf('\nwidth to length ratio of driver transistor=%0.2f\n',xd)
Knd=xd*Kn*0.001/2;
Knl=xl*Kn*0.001/2;
printf('\nconduction parameter Knd=%.2f mA/V^2\n',Knd)
printf('\nconduction parameter Knl=%.3f mA/V^2\n',Knl)
//Vgsd-Vtnd=(Vdd-Vtnl)-sqrt(Knd/Knl)*(Vgsd-Vtnd)
y=sqrt(Knd/Knl);
Vgsd=(y+5)/(1+y);
printf('\nVgsd=%.2f V\n',Vgsd)
Vdsd=Vgsd-1;
printf('\nVdsd=%.2f V\n',Vdsd)
|
e7d445e140199eeafec22cfafe7c58af92f5e517
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1118/CH7/EX7.6/eg7_6.sce
|
acc9f544aeb831c7542731109fc48e0ae34a6cd8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 548
|
sce
|
eg7_6.sce
|
clear;
//clc();
r=0.5*3*4.75/1000;
d1=3;
d2=6;
dac1=6;
dbb1=9;
dca1=6;
dac=6;
dc1a1=6;
dab=sqrt(d1*d1 + (d1/2)*(d1/2));
dbc=dab;
da1b1=dab;
db1c1=dab;
dab1=sqrt(d1*d1 + (dac+d1/2)*(dac+d1/2));
dbc1=dab1;
dba1=dab1;
db1c=dab1;
da1b=dab1;
daa1=sqrt(d2*d2 + d2*d2);
dcc1=sqrt(d2*d2 + d2*d2);
mgmd=(dab*dbc*dac*dab1*dbc1*dca1*da1b*db1c*dac1*da1b1*db1c1*dc1a1)^(1/12);
sgmd=(((0.7788*r)^3)*(daa1*dbb1*dcc1))^(1/6);
l=2*log([mgmd/sgmd]);
xl=2*(%pi)*50*l*10^(-5);
printf("\n the inductance is: %.4f Ohm/km\n ",xl);
|
7a554bd492a999d541a145e3307aa548e9803cd0
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.4.1/Unix-Windows/scilab-2.4.1/macros/util/unix_x.sci
|
afde2adae61b25367b95a2f0d29683111ec0b3e6
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,348
|
sci
|
unix_x.sci
|
function unix_x(cmd)
//unix_x - shell command execution, results redirected in an xless window
//%Syntax
// unix_x(cmd)
//%Parameters
// cmd - a character string
//%Description
// cmd instruction is passed to shell, the standard output is redirected
// to a background xless window
//%Examples
// unix_x("ls")
//%See also
// host unix_g unix_s
//!
// Copyright INRIA
if prod(size(cmd))<>1 then error(55,1),end
if getenv('WIN32','NO')=='OK' & getenv('COMPILER','NO')=='VC++' then
tmp=strsubst(TMPDIR,'/','\')+'\unix.out';
cmd1= cmd + ' > '+ tmp;
else
tmp=TMPDIR+'/unix.out';
cmd1='('+cmd+')>'+ tmp +' 2>'+TMPDIR+'/unix.err;';
end
stat=host(cmd1);
select stat
case 0 then
if getenv('WIN32','NO')=='OK' & getenv('COMPILER','NO')=='VC++' then
host(""""+strsubst(SCI,'/','\')+'\bin\xless.exe"" '+ tmp);
else
host('$SCI/bin/xless '+tmp+' & 2>/dev/null;')
end
case -1 then // host failed
error(85)
else //sh failed
if getenv('WIN32','NO')=='OK' & getenv('COMPILER','NO')=='VC++' then
error('unix_x: shell error');
else
msg=read(TMPDIR+'/unix.err',-1,1,'(a)')
error('unix_x: '+msg(1))
end
end
// do not delete file because it is possible xless has not yet been
// launched. CLG
//if getenv('WIN32','NO')=='OK' & getenv('COMPILER','NO')=='VC++' then
// host('del '+tmp);
//else
// host('rm -f '+tmp);
//end
|
a19f5646f6a81e67483d1040cf37ec7e303cff6c
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set7/s_Electronic_Devices_And_Circuits_K._L._Kishore_1511.zip/Electronic_Devices_And_Circuits_K._L._Kishore_1511/CH2/EX2.8/ex2_8.sce
|
f63da4a004ae916107d7b738f7b6728750496da2
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 280
|
sce
|
ex2_8.sce
|
errcatch(-1,"stop");mode(2);// Example 2.8 page no-49
L=1400
E_diff=12400/L //eV
del_E=2.15
L2=12400/del_E
printf("\nE2-E1=%.2f eV\n1850 A° line is from 6.71 eV to 0 eV\nTherefore, second photon must be from %.2f to 6.71 eV.\nLambda=%d A°.",E_diff,E_diff,L2)
exit();
|
9e0e11a0e9e89a3cc69bb3d3a2f2b4d7f5b5bda5
|
683d55d55e7449e5ffb06e17d669fd6e8d7eca1c
|
/entrega2/src/ej2-4.sce
|
4268bedd1529829bf2b1267b310c66f55be0d76b
|
[] |
no_license
|
lucciano/ssc-lcc
|
58efd303220cb36c09a305457fe5e5cc97e77b63
|
fcd50437ca953ef0b0491672a71bee19383bc09b
|
refs/heads/master
| 2021-01-19T20:15:53.904767
| 2014-04-26T20:15:03
| 2014-04-26T20:15:03
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 535
|
sce
|
ej2-4.sce
|
function [t,x]=cyclic_euler(A,x0,t0,tf,h)
FE = eye(A) + A * h;
BE = inv(eye(A) - A * h);
t=[t0:h:tf];
x=zeros(length(x0), length(t));
x(:,1)=x0;
for k=1:length(t)-1
if modulo(k,2) == 1 then
x_kp1 = FE * x(:,k);
else
x_kp1 = BE * x(:,k);
end
x(:,k+1) = x_kp1;
end
endfunction
u=0;
B=zeros(x0);
x0 = [1 ; -2];
ti = 0;
tf = 25;
A = [0 , 1 ; -9.01, 0.2];
h = 0.01
[t,x] = cyclic_euler(A,x0,ti,tf,h);
x_a=ltisol(A,B,u,x0, t);
err = norm(x_a - x)/(norm(x))
|
f7f9059ff0e94857fa38b8c14fdb3ee4d24d679c
|
91da29a7783c3162b1b743ad75d48814bd1f556e
|
/2_año/MN/LU_Scilab.sce
|
3597a9c63cc4e732eb2da3e0539b0d0a4934f09c
|
[] |
no_license
|
jfarizano/LCC
|
a149631059129b07a7c603bf16df0c1b25479edb
|
70cb03b0ff0a788b1bbbf1a6bcd51beff48460fe
|
refs/heads/master
| 2022-11-15T14:46:36.171561
| 2022-11-10T21:15:13
| 2022-11-10T21:15:13
| 246,933,544
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 379
|
sce
|
LU_Scilab.sce
|
clc
clear
// Utilizaremos la factorización LU de Scilab para resolver el sistema A*x=b
A = [0 2 3; 2 0 3; 8 16 -1]
b = [7 13 -3]'
[L,U,P] = lu(A)
disp(P)
disp(L)
disp(U)
// Modificamos el vector b usando la matriz de permutación
c = P*b
// La solución del sistema A*x=b mediante la factorización LU procede en dos etapas:
y = L\c
x = U\y
disp(x)
|
12c670a2d829e182a69fecabab1468652ba8f3ba
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3769/CH17/EX17.29/Ex17_29.sce
|
284045d603c11c1e684a9c99b83c0857ad6e69be
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 187
|
sce
|
Ex17_29.sce
|
clear
//Given
u=-10.0 //cm
m=-3.0
//Calculation
v=m*u
f=1/((1/v)-(1/u))
//Result
printf("\n Image formed at %0.3f cm",v)
printf("\n Focal length is %0.3f cm",f)
|
7bb48617dd22a30b44ffde55aa6955f58f51db13
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2159/CH4/EX4.4/44.sce
|
649453ed8bc7e9968a258dbc8169c94342a53ae5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 164
|
sce
|
44.sce
|
// problem 4.4
Cd=0.6
H1=3
H2=4
b=2
g=9.81
Q=(2*Cd*b*((2*g)^0.5)*((H2*H2*H2)^0.5-(H1*H1*H1)^0.5))/3
q1=Q*1000
disp(q1,"dischsrge flow rate in litres/sec")
|
9189b29464dc5165c9e40cc18e3b28e0b63a1d2a
|
e04f3a1f9e98fd043a65910a1d4e52bdfff0d6e4
|
/New LSTMAttn Model/.data/form-split/SURPRISE-LANGUAGES/Turkic/kjh.tst
|
9564568afc9c5ec6b83126e6d8b66ed23c994d60
|
[] |
no_license
|
davidgu13/Lemma-vs-Form-Splits
|
c154f1c0c7b84ba5b325b17507012d41b9ad5cfe
|
3cce087f756420523f5a14234d02482452a7bfa5
|
refs/heads/master
| 2023-08-01T16:15:52.417307
| 2021-09-14T20:19:28
| 2021-09-14T20:19:28
| 395,023,433
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,668
|
tst
|
kjh.tst
|
пуғдай N;ALL;SG
кӱскӱ N;GEN;SG
алтын N;NOM;SG
чайғы N;NOM;PL
хар N;GEN;SG
ағас N;NOM;PL
хуча N;INS;PL
кӱскӱ N;ALL;PL
хара хурт N;NOM;SG
тарбаған N;AT;PL
иир N;ALL;SG
алтынзарых N;ALL;PL
інек N;ACC;PL
хысхы N;GEN;PL
аба N;INS;PL
тигір N;ACC;PL
кӱзен N;NOM;PL
хысхы N;NOM;SG
тағ N;GEN;SG
пулут N;ABL;PL
хымысха N;GEN;SG
тиин N;GEN;SG
алтынзарых N;INS;PL
часхы N;INS;PL
чылтыс N;INS;PL
кӧл N;ABL;PL
хамнос N;DAT;PL
хозан N;NOM;PL
хамнос N;NOM;PL
пӧрік N;NOM;SG
ӱстінзарых N;ACC;PL
чар N;ALL;PL
хозан N;ACC;SG
тирек N;NOM;SG
ӧрке N;DAT;PL
сабын N;AT;PL
суғ N;ACC;SG
киндір N;ACC;SG
кӱскӱ N;INS;PL
пуғдай N;ACC;SG
чар N;ALL;SG
тағ N;DAT;SG
пуға N;ALL;SG
тиин N;NOM;PL
пус N;INS;SG
пуға N;NOM;PL
іскер N;ABL;SG
часхы N;ACC;PL
порсых N;NOM;SG
тас N;ALL;SG
кӱн N;INS;PL
палых N;INS;PL
кӧрік N;INS;PL
іскер N;DAT;SG
тағ N;INS;SG
пуға N;AT;PL
пулут N;GEN;PL
тимір N;GEN;SG
тарбаған N;GEN;SG
тас N;ABL;SG
часхы N;AT;SG
інек N;GEN;PL
мылтых N;ABL;SG
парыс N;GEN;SG
хысхы N;NOM;PL
кӱн N;ABL;SG
мылтых N;NOM;PL
азах N;NOM;SG
палых N;ABL;PL
тіл N;AT;SG
аба N;ACC;PL
тайға N;INS;PL
кӱскӱ N;ALL;SG
хозан N;INS;PL
порсых N;DAT;PL
оо N;INS;PL
суғ N;ALL;PL
тайға N;NOM;SG
пуға N;ABL;PL
сабын N;GEN;PL
кӧл N;AT;PL
пӧрік N;ACC;PL
чис N;DAT;SG
кӱскӱ N;AT;PL
парыс N;AT;PL
хоосха N;INS;SG
тиин N;ALL;SG
алабарыс N;ACC;PL
чылан N;NOM;PL
тиин N;INS;PL
кӧл N;INS;PL
хымысха N;ABL;SG
хоосха N;INS;PL
тӱлгӱ N;ALL;SG
порсых N;GEN;PL
чылтыс N;GEN;SG
часхы N;INS;SG
ағас N;GEN;PL
азах N;ABL;PL
сыын N;AT;PL
кӧл N;ALL;PL
порсых N;INS;SG
чис N;ABL;PL
кӱмӱс N;GEN;PL
молат N;INS;SG
ағас N;ACC;PL
пӧрік N;ABL;SG
адай N;GEN;SG
чазы N;ABL;PL
харағай N;GEN;SG
кӱмӱс N;DAT;PL
кидер N;INS;SG
кӧрік N;ABL;SG
чылан N;NOM;SG
адай N;DAT;SG
азах N;DAT;SG
чил N;NOM;PL
пулут N;ALL;PL
пуға N;ABL;SG
тамыр N;NOM;SG
чылан N;ABL;SG
тибе N;ALL;PL
адай N;ACC;PL
тирек N;DAT;PL
тайға N;ALL;SG
хысхы N;ACC;PL
тамыр N;ALL;PL
алабарыс N;DAT;PL
тіл N;DAT;SG
киндір N;ALL;PL
ағас N;ACC;SG
хоосха N;GEN;PL
парыс N;AT;SG
хозан N;AT;PL
кӱн N;DAT;PL
кидер N;NOM;PL
хамнос N;INS;PL
кӱскӱ N;GEN;PL
інек N;ALL;SG
тигір N;AT;PL
сыын N;DAT;SG
тибе N;ALL;SG
алтынзарых N;GEN;PL
хозан N;AT;SG
ӱстінзарых N;ALL;PL
чон N;ACC;SG
тимір N;GEN;PL
сосха N;ALL;SG
тас N;INS;PL
часхы N;NOM;SG
тас N;ALL;PL
чазы N;ALL;SG
хуча N;DAT;PL
хузурух N;GEN;SG
наңмыр N;ALL;SG
тӱн N;ALL;SG
пуғдай N;AT;PL
талай N;ACC;PL
чар N;GEN;SG
іскер N;INS;PL
хуча N;NOM;PL
чар N;ACC;PL
хысхы N;GEN;SG
харағай N;ALL;SG
ағас N;AT;PL
сыын N;GEN;SG
тирек N;INS;SG
тигір N;ALL;SG
кӱзен N;INS;PL
кӱзен N;ABL;SG
оо N;GEN;SG
тас N;AT;SG
пуғдай N;INS;SG
тибе N;INS;SG
сосха N;ABL;PL
тағ N;AT;SG
тибе N;ACC;SG
чон N;GEN;SG
тамыр N;DAT;SG
хум N;NOM;PL
тарбаған N;NOM;PL
хамнос N;ABL;SG
тарбаған N;ABL;SG
иир N;ACC;PL
чил N;ACC;PL
тайға N;ABL;SG
парыс N;ALL;PL
алтынзарых N;ACC;PL
суғ N;INS;PL
хул N;AT;SG
чылан N;ABL;PL
молат N;INS;PL
тас N;NOM;SG
кӱзен N;ACC;PL
чазы N;ACC;SG
порсых N;DAT;SG
молат N;GEN;PL
чазы N;ACC;PL
табах N;ACC;PL
аба N;DAT;PL
тӱлгӱ N;DAT;SG
хуча N;NOM;SG
пӧрік N;ALL;PL
хара хурт N;AT;PL
адай N;NOM;PL
тарбаған N;ALL;PL
хум N;AT;SG
наңмыр N;NOM;PL
чайғы N;ALL;SG
сӧс N;NOM;SG
чылтыс N;AT;SG
чил N;NOM;SG
тиин N;ACC;PL
сосха N;ACC;SG
иир N;ABL;SG
сӧс N;AT;SG
хамнос N;AT;PL
чил N;INS;PL
харағай N;ACC;PL
парыс N;ACC;SG
чил N;ABL;PL
хуча N;ACC;SG
іскер N;GEN;PL
чис N;AT;PL
мылтых N;GEN;SG
тимір N;ACC;SG
хузурух N;DAT;PL
оо N;NOM;SG
талай N;GEN;SG
чис N;GEN;SG
тигір N;ABL;SG
табах N;GEN;SG
парыс N;ABL;PL
хум N;DAT;SG
сабын N;ALL;SG
тамыр N;ALL;SG
наңмыр N;AT;PL
сосха N;DAT;SG
хузурух N;ACC;PL
чайғы N;AT;PL
|
b3bbc0b9f4c79dd5fe44f6e5c9f0954428af871f
|
05df9394f5d45c0bddbd52e4aad8c8210e9e2743
|
/Scilab/Simpson's.sce
|
17c1cc79d3cca07f3aa181793b16f2999fd8b5c9
|
[] |
no_license
|
pikabing/Scilab
|
a9fd34b70be3bd552f47fafc409bf7c88573ac7a
|
87f2cc1914bfdb6c24a54960e9c49191bbd1f1ad
|
refs/heads/master
| 2020-03-10T09:34:56.522084
| 2018-04-12T21:51:52
| 2018-04-12T21:51:52
| 129,311,712
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 264
|
sce
|
Simpson's.sce
|
function[ans] = simpsons(a,b,n)
h1 = (b-a)/n
deff('[y] = f(x)',"y=sqrt(x^2 + 1)")
ans = 0
x0 = a
xn = b
while (x0 < xn)
ans = ans + (h1*(f(x0) + 4*f(x0 + h1) + f(x0+ 2*h1)))/3
x0 = x0 + 2*h1
end
endfunction
|
588c644b3d7d1b5140f875473ef4a93ded0f374c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3733/CH32/EX32.40/Ex32_40.sce
|
629790631c8e953017a2028e9213f161725fba37
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,777
|
sce
|
Ex32_40.sce
|
// Example 32_40
clc;funcprot(0);
//Given data
L_cap=150;// MW
L=[20 60 30];// Load in MW
T=[0 8 16 24];// Time in hours
n_1=0.9;
n_2=2.7;
// Calculation
// Considering the Consumer C_1
E_1=(L(1)*(T(2)-T(1)))+(L(2)*(T(3)-T(2)))+(L(3)*(T(4)-T(3)));// MWh
L_a1=E_1/24;// Average load in MW
L_max1=L(2);// Maximum load in MW
LF_1=L_a1/L_max1;// Load factor
// Considering the Consumer C_1
T=[0 4 12 20 24];// Time in hours
L_4=30;// Load in MW
t_4=4;// Time in hours
L_12=80;// Load in MW
t_12=12;// Time in hours
L_20=20;// Load in MW
t_20=20;// Time in hours
E_2=(L_4*(T(2)-T(1)))+(((L_12*t_12)-(L_4*t_4))/(n_1+1))+(((L_12*t_12)-(L_20*t_20))/(n_2-1))+(L_20*(T(5)-T(4)));
L_a2=E_1/24;// Average load in MW
L_max2=L_12;// Maximum load in MW
LF_2=L_a2/L_max2;// Load factor
E_t=E_1+E_2;// Total energy supplied in MW
L_ap=E_t/24;// Average load on the plant in MW
L_pmax=L_max1+L_max2;// Maximum load in MW
LF_p=L_ap/L_pmax;// Load factor
t=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24];// Time in hours
L_5=(L_4*(t(5)/t(4))^n_1);// MW
L_6=(L_5*(t(6)/t(5))^n_1);// MW
L_7=(L_6*(t(7)/t(6))^n_1);// MW
L_8=(L_7*(t(8)/t(7))^n_1);// MW
L_9=(L_8*(t(9)/t(8))^n_1);// MW
L_10=(L_9*(t(10)/t(9))^n_1);// MW
L_11=(L_10*(t(11)/t(10))^n_1);// MW
L_12=(L_11*(t(12)/t(11))^n_1);// MW
L_12=80;// MW
L_13=(L_12*((t(12)/t(13))^n_2));// MW
L_14=(L_13*(t(13)/t(14))^n_2);// MW
L_15=(L_14*(t(14)/t(15))^n_2);// MW
L_16=(L_15*(t(15)/t(16))^n_2);// MW
L_17=(L_16*(t(16)/t(17))^n_2);// MW
L_18=(L_17*(t(17)/t(18))^n_2);// MW
L_19=(L_18*(t(18)/t(19))^n_2);// MW
L_20=(L_19*(t(19)/t(20))^n_2);// MW
P_8=L(1)+L_8;// MW
P_6=L(2)+L_16;// MW
printf('\nPower supplied at 8th hour=%0.2f MW \nPower supplied at 16th hour=%0.2f MW',P_8,P_6);
|
4c8a1dee44d09ed1f173667e36def81e8f7e485c
|
01ecab2f6eeeff384acae2c4861aa9ad1b3f6861
|
/sci2blif/rasp_design_added_blocks/div_by_n.sce
|
5d6920ea23ae537929b7cd2c24c0ea11dcdbadac
|
[] |
no_license
|
jhasler/rasp30
|
9a7c2431d56c879a18b50c2d43e487d413ceccb0
|
3612de44eaa10babd7298d2e0a7cddf4a4b761f6
|
refs/heads/master
| 2023-05-25T08:21:31.003675
| 2023-05-11T16:19:59
| 2023-05-11T16:19:59
| 62,917,238
| 3
| 3
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 268
|
sce
|
div_by_n.sce
|
style.fontSize=16;
style.displayedLabel="<table> <tr><td align=left><b>CLK<br><br><br>RESET<b></td> <td></td> <td></td> <td>Divide by N</td> <td></td> <td></td> <td align=right><b>OUT<br>1:%2$s</b></td></tr></table>";
pal3 = xcosPalAddBlock(pal3,"div_by_n",[],style);
|
26d8897bc7a2588fbb739b4b5dd2d1dd80384b3e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1085/CH15/EX15.4/ex15_4.sce
|
6daf22570dec3473355d6d7c295328783adad702
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 231
|
sce
|
ex15_4.sce
|
//Exam:15.4
clc;
clear;
close;
N_a=1.1*10^20;//acceptor density in atoms/m3
n_i=2.5*10^19;//concentration of majority carrier per m3
n_p=(n_i^2)/N_a;//intrinsic density
R=n_p/n_i;//Ratio of n_p and n_i
disp(R,'n_p/n_i=');
|
54cc79c0fdce4a43f22a194d86d55f87e3b8fe97
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3819/CH4/EX4.6/Ex4_6.sce
|
a5ed04afab391d1e6f6c920d2a14062ef72ca60c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 674
|
sce
|
Ex4_6.sce
|
// A Textbook of Fluid Mecahnics and Hydraulic Machines - By R K Bansal
// Chapter 4-Buoyancy and Floatation
// Problem 4.6
//Given Data Set in the Problem
dens=1000
g=9.81
sg=0.8
theta=135
d=15
P=9.81
OB=50
OD=35
//calculations
//Let h is the depth
h=OB*sin((180-theta)*%pi/180)-(OD) //in cms
//volume of oil displaced
v_disp=2/3*%pi*(d/2)^3+h*%pi*(d/2)^2
F_buoy=sg*dens*g*v_disp*10^-6
//taking moment about the hinge
//P*20=(F_buoy-W_float)*(OB*cos 45)
function[f] = F(W)
f = P*20-(F_buoy-W)*(OB*cos((180-theta)/180*%pi))
endfunction
W= 10;
W = fsolve(W,F)
//Weight of the float
mprintf("The weight of the float is %f N\n",W)
|
e53d750b6298b56f23b233a304aa813d2a0377ce
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/23/CH3/EX3.1/Example_3_1.sce
|
acd779689d965bc792c9a59ff079540515f86c0d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,161
|
sce
|
Example_3_1.sce
|
clear;
clc;
//To find Approx Value
function[A]=approx(V,n)
A=round(V*10^n)/10^n;//V-Value n-To what place
funcprot(0)
endfunction
//Example 3.1
//Caption : Program to Find Volume Change and Pressure generated for Acetone
//Given Values for Acetone
P1=1;//Pressure=1Bar
T1=20;//Temp=293.15K(20`C)
Beta=1.487*10^(-3);//vol expansivity(K^-1)
k=62*10^(-6);//isothermal compressibility(bar^-1)
V1=1.287*10^(-3);//Volume(m^3 kg^-1)
//Solution
//(a)
//Find (dP/dT)v??
//Using eq.(3.4),V constant hence dV=0
ans_a=round(Beta/k);
disp('K^-1',ans_a,'(a)The value of (dp/dT)v is ')
//(b)
//Find Pressure when acetone heated at const. Vol from T1(1bar) to T2.
T2_b=30;//Temp2=303.15K(30`C)
del_P=ans_a*(T2_b-T1);
ans_b=P1+del_P;
disp('bar',ans_b,'(b)The pressure is ')
//(c)
//Find vol. change when acetone changed from T1(P1) to T2(P2)
T2_c=0;//Temp2=273.15K(0`C)
P2=10;//pressure=10bar
//solve using Eq. (3.5)
ln_value=(Beta*(T2_c-T1))-(k*(P2-P1));//ln(V2/V1)
ratio=exp(ln_value);//taking antilog,V2/V1
V2=ratio*V1;
del_V=approx(V2-V1,6)
disp('(X 10^-3) m^3 kg^-1',del_V*1000,'(c)The change in Volume is ')
//End
|
04d422d900a93cfd3e641c7f67c4ddfa80407631
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/881/CH8/EX8.3/exa8_3.sce
|
dd56446df3191612245cc2ca8305fb4e4c5551ac
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 281
|
sce
|
exa8_3.sce
|
clc;
//Example 8.3
//Page No 309
//Solution
SN=29; //dB
NF=4; //dB
FMi=16; //dB
disp("The predetection signal to noise ratio is ");
pre=SN-NF;
disp('dB',pre,"S/N(pre) = ");
disp("The postdetection signal to noise ratio is ");
pst=pre+FMi;
disp('dB',pst,"S/N(post) = ");
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.