blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
eef3babc7adb1db65babd5af03b8c651f5c62ed4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2159/CH7/EX7.3/73.sce
|
3b63052887c76aa566fd05ecff83fa42b2e48c1c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 178
|
sce
|
73.sce
|
// problem 7.3
b=2.5
d=2.5
C=56
A=b*(7.5+d)*0.5
P=2.5+((b*b+d*d)^0.5)*2
m=A/P
i=1/1200
Q=A*C*((m*i)^0.5)
disp(Q*1000,"the diacharge through the channel in litres/sec")
|
164efb1eeb8100c3ce9e9305ee417dcd4fe5d1bb
|
7d8beb39000d2a95f50e45da16938847d4e74fed
|
/trajectory-20180709.sce
|
94f6d0909f95e65b45b7d215f642457ddfae45b7
|
[] |
no_license
|
TheMagicNacho/artemis-trajectory
|
12ff3ea967ca0da8a1754ad4ff709b2433485fd8
|
f87e7de768ac6580232c9b04f0cf407abf31f457
|
refs/heads/master
| 2020-03-19T10:23:33.660658
| 2018-06-09T21:41:35
| 2018-06-09T21:41:35
| 136,366,001
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 915
|
sce
|
trajectory-20180709.sce
|
// !!!!! VARIABLES !!!!!!!//
tstep = 1; //sec - interval for graphing
AA = 88; //degrees - Angle of Attack from horizon
T = 1650245.73705; //N - Thrust
// DOUBLE CHECK THE THRUST
M0 = 200000; //g - initial mass of vehicle
V = 11000; // m/s - velocity
// !!!!!constants don't change !!!!!!//
mdot = 592.64056;//mass flow is considered constant (kg/s)
//DOUBLE CHECK THE MDOT
Re = 6378135; //Radius of earth in meters
Gr = 9.81; //gravity g;
D = 0; // drag - left zero because there is no ATM
X0 = 30000; //m - initial launch altitude
Y0 = 0; //initial horizontal launch distance
// !!!!!! CALCULATOR OUTPUTS !!!!!!!
psi0 = 90 - AA; // angle from center line of rocket
n = (T-D / M0 * Gr); //new constant
z = tan(psi/2); // calculate change in altitude
C = V / (z^(n-1) * (1+Z^2) );
v = C * z^(n-1) * (1+z^2);
/// !!!!!!! PLOT GRAPH !!!!!!!
plot ( altitude, distance);
|
05d1ddb1c6670314fd346855407b00d37b5f67de
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2825/CH6/EX6.4/Ex6_4.sce
|
8480fb10ad3e177fa51867304afb86e4f1c30d88
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 427
|
sce
|
Ex6_4.sce
|
//Ex6_4 Pg-335
clc
Rb=330*10^(3) //base resistance in ohm
Vcc=15 //supply voltage in V
Vbe=0.7 //voltage drop in V
Rl=3.3*10^(3) //load resistor in ohm
Beta=60 //transistor gain
Ib=(Vcc-Vbe)/Rb //base current in A
Ic=Beta*Ib //collector current (value in textbook is wrong)
Vce=Vcc-(Ic+Ib)*Rl
printf("\n The collector emitter voltage = %.2f V\n ",Vce)
//collector emitter voltage (value in textbook is wrong)
|
bd708087fc675ecc216463d32c704d02086ecdff
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3886/CH4/EX4.11/Ex4_11.sce
|
0f916a3802eae4dde207ae31c203c1c7699a8573
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 817
|
sce
|
Ex4_11.sce
|
//Analyse the truss by method of tension coefficient to determine the forces
//Refer fig.4.19
//Consider entire structure
//Taking moment about A
YD=(40*2+50*6+30*4*sind(60)+60*4)/8
XA=-30 //kN
YA=40+50+60-90.49 //kN
//Take A as origin and determine co-ordinates of all other point
//Consider equilibrium of individual joints
//Joint A
tAB=-(59.51/3.464)
FAB=tAB*4 //kN
tAE=64.36/4
FAE=tAE*4 //kN
//Joint B
tBE=-11.547+17.18
FBE=tBE*4 //kN
tBC=0.5*(-17.18-5.637)
FBC=tBC*4 //kN
//Joint C
tCD=-(14.434+37.818)/2
FCD=4*tCD //kN
tCD=4 //kN
tCE=-14.434-tCD
FCE=11.692*4 //kN
//Joint D
tDE=-0.5*(-26.126)
FDE=tDE*4 //kN
printf("The forces in different members are:-\nAB=%.2d kN\nBC=%.2d kN\nCD=%.2d kN\nDE=%.2d kN\nEA=%.2d kN\nEB=%.2d kN\nEC=%.2d kN",FAB,FBC,FCD,FDE,FAE,FBE,FCE)
|
570a1b439a5f75e95d6a4f825d7ac42058105644
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1217/CH8/EX8.2/Exa8_2.sce
|
4391ec1cb4d0790324e497e8c8418b00eb6d78a1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 521
|
sce
|
Exa8_2.sce
|
// Exa 8.2
clc;
clear;
close;
// given data
disp("We have : ");
disp("Io1=gm1*(V1-Vo)");
disp("Io2=gm2*(V1-Vo)");
disp("But Vc=Io1/s*C1");
disp("So Io2=gm2(Io1/s*C1-Vo)")
disp("We also have : Io2=(Vo-V1)*s*C2");
disp("Substituting for Io1 gives :");
disp("gm2*((gm1*(V1-Vo)-s*C1*Vo)/s*C1=(Vo-V1)/s*C2)");
disp("gm1*gm2*V1-gm1*gm2*Vo-gm2*s*C1*Vo=s^2*C1*C2*Vo-s^2*C1*C2*V1");
disp("Arranging terms to get Vo/V1 we have : ");
disp("Transfer Function : V0/V1=(s^2*C1*C2+gm1*gm2)/(s^2*C1*C2+sgm1*C1+gm1*gm2)");
|
4d4a6e0eeb7aa9cb2a8394e025943fe180865f27
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2459/CH16/EX16.16/Ex16_16.sce
|
92b999d853fa2cab85269129f1cb3ba3ede078f4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 399
|
sce
|
Ex16_16.sce
|
//chapter16
//example16.16
//page356
Vcc=18 // V
R1=16 // kilo ohm
R2=22 // kilo ohm
Vbe=0.7 // V
Re=910d-3 // kilo ohm
V2=Vcc*R2/(R1+R2)
Ve=V2-Vbe
Ie=Ve/Re
printf("voltage across Re = %.3f V \n",Ve)
printf("emitter current = %.3f mA \n",Ie)
clf()
x=linspace(0,18,100)
y=-(19.78/18)*x+19.78
xtitle("dc load line","Vce(volts)","Ic(mA)")
plot2d(x,y,style=3,rect=[0,0,19,20])
|
0ea00181845b58c04f8502745887b6f992c004f4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/662/CH3/EX3.1/ex3_1.sce
|
6b1b5df94ea1479d73ea06dd5513a44833c598de
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 896
|
sce
|
ex3_1.sce
|
//Example 3.1
//unsigned integer operands
a=10
b=3
printf("\n\na+b=%d", a+b);
printf("\na-b= %d", a-b);
printf("\na*b= %d", a*b);
printf("\na/b= %d", a/b);
ab = modulo(a,b); //in scilab modulo() function is used instead of % operator of c.
printf("\n a\b= %d",ab);
v1=12.5
v2=2.0
printf("\n\nv1+v2=%f", v1+v2);
printf("\nv1-v2= %f",v1-v2);
printf("\nv1*v2= %f", v1*v2);
printf("\nv1/v2= %f", v1/v2);
// in scilab variables are not stored as thier ASCII values as in case of c.
//so for calculations including characters is done with the help of ascii().
c1='P'
c2='T'
printf("\n\nc1 = %d", ascii(c1));
c= ascii(c1)+ascii(c2);
printf("\nc1 + c2 = %d",c);
c=c+5;
printf("\nc1 + c2 + 5 = %d", c);
c=c+ascii('5');
printf("\n Here 5 is character, hence diff from statement above:");
printf("\nc1 + c2 + 5 = %d", c);
|
19fcf630b904cf8830592e51554c743154d9e47a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2741/CH4/EX4.8/Chapter4_Example8.sce
|
0d5fe54c6dd03fc37d21f0e09806f5a3c23b0d6f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 591
|
sce
|
Chapter4_Example8.sce
|
clc
clear
//Input data
t=16.5;//The temperature of air in degree centigrade
d=6.5;//The dew point in degree centigrade
s1=7.05;//S.V.P at 6 degree centigrade in mm
s2=7.51;//S.V.P at 7 degree centigrade in mm
s3=13.62;//S.V.P at 16 degree centigrade in mm
s4=14.42;//S.V.P at 17 degree centigrade in mm
//Calculations
s5=(s1+s2)/2;//S.V.P at 6.5 degree centigrade in mm
s6=(s3+s4)/2;//S.V.P at 16.5 degree centigrade in mm
R=(s5/s6)*100;//Relative humidity of air in percent
//Output
printf('The percentage relative humidity of air is R.H = %3.1f percent ',R)
|
1f0236e126440fb6937d6d3ab5cbba25d1a37771
|
1a7b63c9449ba39c7fa962de1460f524275ed219
|
/workshop04/Memoryx.tst
|
9ef4fb63381280eef2bb56cc025a460a25c28c3f
|
[
"MIT"
] |
permissive
|
raymondsim/Computer-System
|
9325bb2375b3dcea7ad16398fb147d6504ea7202
|
0b4de4d55157d92e64cae4af048933e39cb09c1f
|
refs/heads/main
| 2023-08-24T23:45:42.889417
| 2021-10-10T11:51:21
| 2021-10-10T11:51:21
| 415,566,076
| 4
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,596
|
tst
|
Memoryx.tst
|
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/05/Memory.tst
load Memory.hdl,
output-file Memoryx.out,
compare-to Memoryx.cmp,
output-list in%D1.6.1 load%B2.1.2 address%B1.15.1 out%D1.6.1;
echo "Before you run this script, select the 'Screen' option from the 'View' menu";
set in -1, // Set RAM[0] = -1
set load 1,
set address 0,
tick,
output;
tock,
output;
set in 9999, // RAM[0] holds value
set load 0,
tick,
output;
tock,
output;
set address %X2000, // Did not also write to upper RAM or Screen
eval,
output;
set address %X4000,
eval,
output;
set in 2222, // Set RAM[2000] = 2222
set load 1,
set address %X2000,
tick,
output;
tock,
output;
set in 9999, // RAM[2000] holds value
set load 0,
tick,
output;
tock,
output;
set address 0, // Did not also write to lower RAM or Screen
eval,
output;
set address %X4000,
eval,
output;
set load 0, // Low order address bits connected
set address %X0001, eval, output;
set address %X0002, eval, output;
set address %X0004, eval, output;
set address %X0008, eval, output;
set address %X0010, eval, output;
set address %X0020, eval, output;
set address %X0040, eval, output;
set address %X0080, eval, output;
set address %X0100, eval, output;
set address %X0200, eval, output;
set address %X0400, eval, output;
set address %X0800, eval, output;
set address %X1000, eval, output;
set address %X2000, eval, output;
set address %X1234, // RAM[1234] = 1234
set in 1234,
set load 1,
tick,
output;
tock,
output;
set load 0,
set address %X2234, // Did not also write to upper RAM or Screen
eval, output;
set address %X6234,
eval, output;
set address %X2345, // RAM[2345] = 2345
set in 2345,
set load 1,
tick,
output;
tock,
output;
set load 0,
set address %X0345, // Did not also write to lower RAM or Screen
eval, output;
set address %X4345,
eval, output;
//// Keyboard test
//
//set address 24576,
//echo "Click the Keyboard icon and hold down the 'K' key (uppercase) until you see the next message (it should appear shortly after that) ...",
//// It's important to keep holding the key down since if the system is busy,
//// the memory will zero itself before being outputted.
//
//while out <> 75 {
// eval,
//}
//
//clear-echo,
//output;
// Screen test
set load 1,
set in -1,
set address %X4FCF,
tick,
tock,
output,
set address %X504F,
tick,
tock,
output;
set address %X0FCF, // Did not also write to lower or upper RAM
eval,
output;
set address %X2FCF,
eval,
output;
set load 0, // Low order address bits connected
set address %X4FCE, eval, output;
set address %X4FCD, eval, output;
set address %X4FCB, eval, output;
set address %X4FC7, eval, output;
set address %X4FDF, eval, output;
set address %X4FEF, eval, output;
set address %X4F8F, eval, output;
set address %X4F4F, eval, output;
set address %X4ECF, eval, output;
set address %X4DCF, eval, output;
set address %X4BCF, eval, output;
set address %X47CF, eval, output;
set address %X5FCF, eval, output;
//set load 0,
//set address 24576,
//echo "Make sure you see ONLY two horizontal lines in the middle of the screen. Hold down 'Y' (uppercase) until you see the next message ...",
//// It's important to keep holding the key down since if the system is busy,
//// the memory will zero itself before being outputted.
//
//while out <> 89 {
// eval,
//}
//
//clear-echo,
//output;
|
da527704001afe46915bc1f901747458ef21533c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2885/CH15/EX15.6/ex15_6.sce
|
9654d7a367a75b7ded726e73e54b0073c24ed122
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 253
|
sce
|
ex15_6.sce
|
//Determine rms value of the ac voltage
clear;
clc;
//soltion
//given
l=8.3;//cm //length of the trace
D=5;// V/cm //deflection sensitivity
Vpp=l*D;
Vrms=Vpp/(2*sqrt(2));
printf("The rms value of the ac voltage %.2f V",Vrms);
|
5f4a19f26c61e4242882979bb9e16a9011c2827d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/635/CH9/EX9.3/Ch09Ex3.sci
|
868c979b5b0dce5651fc8775994d5ee4aea55304
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 875
|
sci
|
Ch09Ex3.sci
|
// Scilab Code Ex9.3 Vibrational frequency and molar heat capacity of diamond: Page-312(2010)
h = 6.626e-034; // Planck's constant, joule second
k = 1.38e-023; // Boltzmann constant, joule/mol/kelvin
T = 10; // Given temperature, kelvin
N = 6.023e+023; // Avogadro's number
R = N*k; // Universal gas constant, joule/kelvin
theta_D = 2230; // Debye temperature for diamond, kelvin
f_D = k*theta_D/h; // Debye frequency of diamond, hertz
C_v = 12/5*%pi^4*R*1e+03*(T/theta_D)^3; // Specific heat of diamond, J/kmol/kelvin
printf("\nThe highest possible vibrational frequency of diamond = %4.2e per second", f_D);
printf("\nThe molar specific heat of diamond = %5.3f J/kmol/kelvin", C_v);
// Result
// The highest possible vibrational frequency of diamond = 4.64e+013 per second
// The molar specific heat of diamond = 0.175 J/kmol/kelvin
|
fa71a57d7b8c7452c77ee59c6e2dae2d3ec717d6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1862/CH17/EX17.3/C17P3.sce
|
dd5f1f6f312326730662914e4eab18a78547a7b5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,585
|
sce
|
C17P3.sce
|
clear
clc
//to find equation for x(t)
// GIVEN:
//refer to problem 17-1
//mass of boby
M = 1.65//in Kg
//increase in length
y = 7.33//in cm
//mass of block
m = 2.43//in Kg
//distance by which spring is streched
x_m = 11.6//in cm
//displacement of block
x = 0.0624//in meters
//velocity of block
vx = 0.847//in m/s
//acceleration due to gravity
g = 9.81//in m/s^2
// SOLUTION:
//applying simple harmonic motion equation
//equating forces in y direction
//force constant k of spring
k = (-M*g)/(-y*10^-2)//in N/m //taking y in meters
//total energy of system
E = ((1/2)*m*(vx^2))+((1/2)*k*(x^2))//in J
//maximum amplitude of motion
xm = sqrt((2*E)/k)//in meters
//using cosin equation of x
//value of cos(fi)
cos_fi = x/xm
//phase constant
fi1 = acosd(cos_fi)
fi2 = 360-(fi1)
fi = fi2*(%pi/180)//in rad
//period of oscillation
T = (2*%pi*(sqrt(m/k)))*10^3//in miliseconds
//angular frequency
omega = (2*%pi)/(T*10^-3)//in rad/s
//initial velocity
v_x1 = -(omega*xm)*sind(fi1)//in m/s
v_x2 = -(omega*xm)*sind(fi2)//in m/s
xm = nearfloat("pred",0.1085)
cos_fi = nearfloat("succ",0.5751)
omega = nearfloat("succ",9.54)
fi = nearfloat("succ",5.33)
printf ("\n\n Total energy of system E = \n\n %.3f J",E)
printf ("\n\n Maximum amplitude of motion xm = \n\n %.4f m",xm)
printf ("\n\n Value of cos(fi) = \n\n %.4f",cos_fi)
printf ("\n\n Initial velocity = \n\n %.3f for fi = %.1f degree \n 0r \n %.3f for fi = %.1f degree",v_x1,fi1,v_x2,fi2)
printf ("\n\n Equation for x(t) = \n\n (%.3f m)*(cos(%.2f rad/s)t + %.2f rad)",xm,omega,fi)
|
aae777d589e671b3657e24bb1edae13d1452fb1c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1658/CH34/EX34.17/Ex34_17.sce
|
05415a0b24745d2e6ed278d6bed6663b4aac3646
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 453
|
sce
|
Ex34_17.sce
|
clc;
VL=12;
IL=200*10**-3;
Vs=30;
Rs=10;
B1=150;
Ic1=10*10**-3;
VBE1=0.7;
B2=100;
VBE2=0.7;
Vz=6;
Rz=10;
Iz=20*10**-3;
ID=10*10**-3;
I1=10*10**-3;
RD=(VL-Vz)/ID;
disp('ohm',RD*1,"RD=");
//a=R1/R2;
a=(VL/(Vz+VBE2))-1;
Ic2=Ic1;
IB2=Ic2/B2;
V2=Vz+VBE2;
Vz=12;
R1=(Vz-V2)/I1;
disp('ohm',R1*1,"R1=");
R2=R1/a;
disp('ohm',R2*1,"R2=");
hfe1=B1;
IB1=(IL+I1+ID)/hfe1;
I=IB1+Ic2;
R3=(Vs-(VBE1+VL))/I;
disp('Kohm',R3*10**-3,"R3=");
|
483df5c84beace572c2944be8cb1df1b22c20658
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1970/CH11/EX11.2/CH11Exa2.sce
|
11cf49f22bfc11dd76c3322e3df07a6365e1d18b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 687
|
sce
|
CH11Exa2.sce
|
// Scilab code Exa11.2 : : Page-536 (2011)
clc; clear;
s = 15; // Speed, metre per sec
w = 0.3; // Width of the electrode, metre
E = 3e+06; // Breakdown strength, volts per metre
eps = 8.85e-12; // Absolute permitivity of free space, farad per metre
C = 111e-12; // Capacitance, farad
i = round (2*eps*E*s*w*10^6); // Current, micro ampere
V = i/C*10^-12; // Rate of rise of electrode potential, mega volts per sec
printf("\nThe charging current = %d micro-ampere \nThe rate of rise of electrode potential = %4.2f MV/sec", i, V);
// Result
// The charging current = 239 micro-ampere
// The rate of rise of electrode potential = 2.15 MV/sec
|
278e491ce323378dd89d89f38a8fb36b52101fab
|
5ed8234edfa9f877fe2bc6ed926e81ec4d99a182
|
/Module/Simulation/AOCS/XcosToVTSQuat.sci
|
6b7713262599c9cad84f0d7355859d4f63a3d5bd
|
[] |
no_license
|
NCKU-AA-IISlab/DOCKing_System
|
23cb95adc773aeb2b7480f81817a6339bddec881
|
832d1ef0b1824e76010fe50cf253bcfa93f71c49
|
refs/heads/master
| 2021-05-29T19:17:27.929049
| 2015-09-30T11:57:31
| 2015-09-30T11:57:31
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,402
|
sci
|
XcosToVTSQuat.sci
|
// This function will write the attitude of the satellite from the simulation to a file in CIC fromat
function [] = XcosToVTSQuat(Attitude_Data,SatDate, Attitude_Type, Sat_Name, Directory, file_name)
clc;
dims = 2; // for string array concatenation
// Header definition
Header.version = ['CIC_AEM_VERS = 1.0', 'CIC_OEM_VERS = 1.0'];
Header.comment = ['COMMENT Generated by BIRDY AOCS TEAM'];
Header.time = getdate();
Header.time1 = [Header.time(1),Header.time(2), Header.time(6),Header.time(7),Header.time(8),Header.time(9), Header.time(10)];
correction_month = "";
correction_day = "";
correction_hour = "";
correction_mn = "";
correction_sec = "";
if Header.time(6) <10 then
correction_day = '0';
end
if Header.time(2) <10 then
correction_month = '0';
end
if Header.time(7) < 10 then
correction_hour = '0';
end
if Header.time(8) <10 then
correction_mn = '0';
end
if Header.time(9) <10 then
correction_sec = '0';
end
Header.time2 = strcat(['CREATION_DATE = ', string(Header.time1(1)),"-",strcat([correction_month,string(Header.time1(2))]),"-",strcat([correction_day,string(Header.time1(3))]),"T",strcat([correction_hour,string(Header.time1(4))]),":",strcat([correction_mn,string(Header.time1(5))]),":",strcat([correction_sec,string(Header.time1(6))]),".",string(Header.time1(7)) ]);
Header.originator = ['ORIGINATOR = BIRDY AOCS TEAM'];
Header.meta_Start = ['META_START'];
Header.sat_name = strcat(['OBJECT_NAME = ', Sat_Name]);
Header.ID = strcat(['OBJECT_ID = ', Sat_Name]);
Header.Ref_frame_A = ['REF_FRAME_A = EME2000'];
Header.Ref_frame_B = ['REF_FRAME_B = SC_BODY_1'];
Header.attitude_dir = ['ATTITUDE_DIR = A2B'];
Header.time_system = ['TIME_SYSTEM = UTC'];
Header.attitude_type = strcat(['ATTITUDE_TYPE = ', Attitude_Type]);
Header.euler_sequence = ['EULER_ROT_SEQ = 313'];
Header.meta_stop = ['META_STOP'];
// Possible Attitude Types
Attitude = ['QUATERNION', 'EULER ANGLE', 'POSITION'];
// Check whcih attitude the user has input
if Attitude_Type == Attitude(1) then
Header.euler_sequence = "";
end
if Attitude_Type == Attitude(3) then
Header.version = Header.version(2);
else
Header.version = Header.version(1);
end
// Check if the directory provided is correct
directory.check = isdir(Directory);
if directory.check == 'F' then
error("This Directory you provided does not exist or the Name is incorrect. Please provide a suitable directory");
else
FileDirectory = strcat([Directory, file_name])
end
// Prepare the header file
HEADER = [Header.version; Header.comment;Header.time2; Header.originator;""; Header.meta_Start; ""; Header.sat_name; Header.ID; Header.Ref_frame_A; Header.Ref_frame_B; Header.attitude_dir; Header.time_system; Header.attitude_type; Header.euler_sequence; ""; Header.meta_stop; ""];
// For Date
for count = 1:length(Attitude_Data(:,1))
Date(count,1) = SatDate;
Date(count,2) = 30*count;
end
Formated_Attitude_Data = [Date, Attitude_Data];
// Writing to file
fprintfMat(FileDirectory, Formated_Attitude_Data,"%15g",HEADER);
endfunction
|
62b4ca23a855558dfe8f4ebf338c9c1fc8a5d497
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3673/CH1/EX1.a.14/Example_a_1_14.sce
|
08cb4011ad99f3285cbeaa028d845cb59e8c0d43
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 388
|
sce
|
Example_a_1_14.sce
|
//Example 1_14 page no:31
clc;
I1=1;
I2=5;
Va=70;
V=100;
//calculating R1 and R2
V5=5*60;
Va=100-30;
R2=(70-30)/I2;
R1=(70-50)/I1;
disp(R1,"the resistance R1 is (in ohm)");
disp(R2,"the resistance R2 is (in ohm)");
//calculating R2 when current in R1 is zero
Va=50;
I2=(100-Va)/5;
R2=20/I2;
disp(R2,"the resistance R2 when current flowing through R1 is zero (in ohm)");
|
b4c8155681af2a5e9876447eddaee29a616fa47e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/830/CH8/EX8.2.5/FIR_Differentiator.sce
|
be8f92658f24ec46104dbd2d5396e42aac714891
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 522
|
sce
|
FIR_Differentiator.sce
|
//Graphical//
//Example 8.2.5
//Linear Phase FIR Differentiator of length M = 60
//Pass Band Edge frequency fp = 0.1
clear;
clc;
close;
M =60;
tuo = (M/2)-1;
Wc = 0.1;
h = zeros(1,M);
for n = 1:M
if n ~= M/2
h(n) =cos((n-1-tuo)*Wc)/(n-1-tuo);
end
end
[hm,fr]=frmag(h,1024);
disp('The Filter Coefficients are:')
h
figure
plot(fr,hm/max(hm))
a =gca();
xlabel('Normalized Digital Frequency fr');
ylabel('Magnitude');
title('Frequency Response of FIR Differentiator for M=60')
xgrid(2)
|
1526317c5aa6a6f73763ca0a0968f192c8da2200
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3875/CH2/EX2.1/Ex2_1.sce
|
46a43a15e27fb6d37878b465745d671dfc7712b7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 157
|
sce
|
Ex2_1.sce
|
clc;
clear;
V=7500 //volume in m^3
T=1.2 //time in seconds
//calculations
A=(0.162*V)/T
mprintf("Total absorption in hall = %0.1f sq-m sabine",A)
|
4ba60dbfde742426d375431153464bf1322c9dbe
|
72974db10f5812e41d63d11a47d6f5cfc4e26f46
|
/src/pla_korrekt.tst
|
5671f1c9637fcbf39066811ef3ffe5e43b2f8c7e
|
[] |
no_license
|
sleipold/plac
|
112f98a9bc38c8f03adcf217f58932a4ee6436a6
|
f25c5c0e1cec562ada6f08d5d3da87d2f076dd70
|
refs/heads/master
| 2021-04-15T18:28:42.166638
| 2018-05-30T12:34:23
| 2018-05-30T12:34:23
| 126,210,270
| 2
| 0
| null | 2018-04-04T11:48:56
| 2018-03-21T16:41:06
|
C++
|
UTF-8
|
Scilab
| false
| false
| 314
|
tst
|
pla_korrekt.tst
|
const c = 6;
var n: int , f: real, e:real;
procedure test;
var i : int, k:real;
begin
f := k+f;
i := 2;
while i <=n do
begin
f := f + k * 1.0;
f := 1.0;
if i = 0
then i := 1;
i := i+1
end
end;
begin
n := c;
call test
end$
|
1aaf7f5ace7f05f614e79ecbfb4b7a0843ea6207
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/494/CH8/EX8.14/8_14.sce
|
335e585d9fa3a2948404057bf5f90a6021fa5022
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 716
|
sce
|
8_14.sce
|
//All the quantities are expressedin SI units
p1 = 2527.3; //ambient pressure at the altitude of 25 km
T1 = 216.66; //ambient temperature at the altitude of 25 km
p0_1 = 38800; //total pressure
gam = 1.4; //ratio of specific heats
R = 287; //universal gas constant
pressure_ratio = p0_1/p1; //ratio of total to static pressure
//for this value of pressure ratio, mach number is
M1 = 3.4;
//the speed of sound is given by
a1 = sqrt(gam*R*T1)
//thus the velocity can be calculated as
V1 = M1*a1;
printf("\nRESULTS\n---------\nThe Velocity of the airplane is:\n V1 = %4.0f m/s\n",V1)
|
cbd59dc6d0204442c94423e77d5861ca252fadcf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3647/CH6/EX6.12/ex6_12.sce
|
e67dc7c1d50fd35fb664cb5abb5de75dfdf63b06
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 433
|
sce
|
ex6_12.sce
|
//Solutions to Problems In applied mechanics
//A N Gobby
clear all;
clc
//initialisation of variables
a=1/16//ft/s
h=100//lbf/in^2
w=10//lbf/in^2
q=2//in
b=%pi/4*(3/16)^2//in^2
p=5//inch valu per 12.7
//CALCULATIONS
H=(h*w)/(q*a)//lbf/in^2
F=H*1*a//lbf
A=H/2//lbf/in^2
R=(b)/(F/A)*5.14*4//per inch
F1=A*1*a//lbf
m=(b)/(F1/A)*5.14//per inch
//RESULTS
printf('the force per inch of circumferential seam=% f per in',m)
|
2c3c9b686427e2fd137e98c5b1bf928036a44130
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3392/CH5/EX5.6/Ex5_6.sce
|
1b61ab36122fa3872e5f468da7bad9f73c2f9a10
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 273
|
sce
|
Ex5_6.sce
|
clc
// initialization of variables
clear
// Material constants
E=200 //GPa
G=77.5 // GPa
Lh=5 // Lh = L/h
// part (b)
rhs1=1.8*Lh*E/G
rhs2=7*12*Lh^3/16
LHS=1.8*Lh*E/G+7*12*Lh^3/16
e=rhs1/LHS*100
printf('The error in neglecting small terms is %.2f per cent',e)
|
1455b6d403844af39749022eb1eadec2b87e533c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/812/CH9/EX9.07/9_07.sce
|
3f1d56c77a6b9842e09170d0c11c3aea6d5c9cad
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 323
|
sce
|
9_07.sce
|
//Time required//
pathname=get_absolute_file_path('9.07.sce')
filename=pathname+filesep()+'9.07-data.sci'
exec(filename)
//Time required to decelerate to 100 mph(in seconds):
t=(s1-s2)*2*w/(s1*s2)/Cd/d/A/g*3600/5280
printf("\n\nRESULTS\n\n")
printf("\n\nTime required to decelerate to 100 mph: %.3f seconds\n\n",t)
|
9f32046925610f9a18c40819c5db1597d2cc837a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3828/CH12/EX12.6/Ex12_6.sce
|
efd2cdb1f0e6c009c83370a239841366bf190b36
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 302
|
sce
|
Ex12_6.sce
|
//Chapter 12 : Semiconductor Physics
clear;
//Variable declaration
RH=3.66*10**-4 //Hall coefficient
t=10**-3 //thickness
I=1 //current
B=0.5 //magnetic induction
//Calculations
VH=(RH*I*B)/t
//Result
mprintf("Hall voltage VH= %.3f V",VH)
|
3058ae12c8738c3632bf6d71c965aa112de932a2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1892/CH1/EX1.68/Example1_68.sce
|
bf29e4680c97c09ce42b80d4ae87c6a92d378eec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 507
|
sce
|
Example1_68.sce
|
// Example 1.68
clc;clear;close;
// Given data
format('v',7);
Pis=60;//in KW
phase=3;//no. of phase
S=3;//in %
StatorLaser=1;//in KW
//calculations
S=S/100;//slip
StatorOutput=Pis-StatorLaser;//in KW
RotorInput=StatorOutput;//in KW
RotorCuLoss=S*RotorInput;//in KW
RotorCuLoss_phase=S*RotorInput/phase;//in KW/phase
disp(RotorCuLoss_phase,"Rotor Copper loss per phase in KW : ");
MechPower=RotorInput-RotorCuLoss;//in KW
disp(MechPower,"Total mechanical lpower devloped in KW : ");
|
a46519061c881b413021b80bff2c4e7c9bb91477
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3014/CH4/EX4.8/Ex4_8.sce
|
abae3cbe3fa34b470165cd08a20209a7da776ef1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 308
|
sce
|
Ex4_8.sce
|
clc
//Given that
epsilon_0 = 8.854e-12 // Permittivity of free space
E = 2000 // Electric field in V/m
P = 6.4e-8 // Polarization in C/m^2
printf("Example 4.8")
epsilon_r = 1+ P/(epsilon_0*E) // Calculation of relative permittivity
printf("\n Relative permittivity is %f\n\n\n",epsilon_r)
|
c545c62a06c37469de581b4707a24f9928909390
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/539/CH6/EX6.4.b/Example_6_4b.sce
|
af3869f2c6159a0851499e4bebe42164cac23df3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 357
|
sce
|
Example_6_4b.sce
|
//True-Stress-At-Fracture Computations
clear;
clc;
printf("\tExample 6.4\n");
di=12.8; //Initial dia in mm
df=10.7; //Final dia in mm
printf("\n\tPart B");
Ao=%pi*di^2*10^-6/4;
sig=460*10^6; //Tensile strength
F=sig*Ao;
printf("\nF = %d N",F);
Af=%pi*df^2/4;
sig_t=F/Af;
printf("\nTrue stress is %d MPa",sig_t);
//End
|
db0a8a2538b7ed40087b1a004200a569022098aa
|
08bfc8a1f8e44adc624d1f1c6250a3d9635f99de
|
/SDKs/swig/Examples/test-suite/scilab/abstract_inherit_runme.sci
|
955455717fa09a02a27cb73986dda37eaae28922
|
[] |
no_license
|
Personwithhat/CE_SDKs
|
cd998a2181fcbc9e3de8c58c7cc7b2156ca21d02
|
7afbd2f7767c9c5e95912a1af42b37c24d57f0d4
|
refs/heads/master
| 2020-04-09T22:14:56.917176
| 2019-07-04T00:19:11
| 2019-07-04T00:19:11
| 160,623,495
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 128
|
sci
|
abstract_inherit_runme.sci
|
version https://git-lfs.github.com/spec/v1
oid sha256:cc2f33639faf7dd577c3e2713b2d830c20051dd3d4b6778d3ab49aea52f90376
size 180
|
6abb7ccd086d553a3edbdbe5141bac71e763ad9d
|
b4bbf9b2a475b5cf299b30bf5e0c621e32f6c832
|
/test/assign1/solve3.tst
|
d396f4d65dd60291fcc61d777accfbb88571bebc
|
[] |
no_license
|
apetresc/castro
|
1ec1ac1307542487aa1be14c335170f7a1347bf2
|
843165af7c946188a2dd772384cd2d579723c99d
|
refs/heads/master
| 2022-02-20T14:28:41.962893
| 2019-10-07T08:41:59
| 2019-10-07T08:41:59
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 29
|
tst
|
solve3.tst
|
boardsize 3
havannah_solve 3
|
edcf5426a109b31168b02d67f33d30472caec71b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3554/CH13/EX13.2/Ex13_2.sce
|
64174d9e46ba3fbe075b8486d03541cc3dfde6a3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 526
|
sce
|
Ex13_2.sce
|
// Exa 13.2
clc;
clear;
// Given data
Ra=5; // (R1+R2) in k Ohms
Rb=5;// (R3+R4) in k Ohms
Vt=5; // Applied voltage (V)
Shaft=5; // Shaft distance in inches
// Solution
disp(" As given, wiper moves 0.5 inch towards A from the centre, it will have moved 3 inches from B");
Wiper=3; // Wiper movement from B in inches
Wiper1=2.5;//Wiper movement from A in inches
R2=Wiper/Shaft * R; // in k Ohms
R4=Wiper1/Shaft * R; // in k Ohms
//Ve=VR2-VR4
Vc=(R2/(Ra)) *Vt - (R4/(Rb)) * Vt;
printf(' The new value of Vc= %.1f V \n',Vc);
|
4868e211adb3a9737ab464ed23bbcc5fa876729d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/287/CH18/EX18.1/Exa18_1.sci
|
4118e495f78a004733f29fc51c6aad1046433fbb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 219
|
sci
|
Exa18_1.sci
|
//Determine the usage in seconds,CCS and Erlangs which has accumulated on the piece of the equipment
U = (450-0)*(5/3600)
disp(U, 'Usage in Erlangs')
disp(U*36, 'Usage in CCS')
disp(U*36*100, 'Usage in seconds')
|
edb0d10b28503233f8ad872c46fedc85e74f016c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1913/CH1/EX1.4/ex4.sce
|
3e65e4a1f057bb439cfdd1324c8a94209e0092d8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 369
|
sce
|
ex4.sce
|
clc
clear
//Input data
v1=0.056;//Initial volume of gas in m^3
v2=0.007;//Final volume of gas in m^3
p1=100;//Initial perssure compressed Isothermally in kN/m^2
//Calculations
p2=(p1*v1)/v2;//Final pressure in kN/m^2
W=p1*v1*(log(v2/v1));//Work done in kJ
//Output
printf('(a)Final pressure p2= %3.2f kN/m^2 \n (b)The work done on gas W= %3.2f kJ',p2,W)
|
286b8f8f0829bca74feaba2531ba502673a6534c
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.5/Unix-Windows/scilab-2.5/macros/m2sci/sci_type.sci
|
e2d2f11a903ce1bd526e06a2ee43e3e0f127d5a9
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 151
|
sci
|
sci_type.sci
|
function [stk,txt,top]=sci_type()
// Copyright INRIA
set_infos('type ignored',1)
txt=[txt;'// type('+stk(top)(1)+')']
stk=list(' ','-2','0','0','1')
|
8b73ef612702c40148df7faee0d45495c26ed2a4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1580/CH7/EX7.5/Ch07Ex5.sce
|
bfb50ca7499d445bbe1613ebef3b3215078b0ad7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 450
|
sce
|
Ch07Ex5.sce
|
// Scilab Code Ex7.5: Page-7.26 (2004)
clc;clear;
N = 2.7e+25; // Number density, atoms per metrecube
eo = 8.854e-12; //Permittivity of the free space, farad per metre
er = 1.0000684; // Dielectric constant of the material
alpha = eo*(er-1)/N; // Electrical polarization, farad metresquare
printf("\nElectrical polarization = %3.3e farad metresquare", alpha);
// Result
// Electrical polarization = 2.243e-41 farad metresquare
|
4ce0294404699ea75fffab954ce3f6132b5464ac
|
bc1993259ec7381d99fca78fca2858eed02b6c0b
|
/07/overflowtest/StackTestOverflow.tst
|
f5d96b07173815ced52e3d6f6372d177d241787a
|
[] |
no_license
|
DavidOriel/Nand-2-Tetris
|
e54c6c4fa49a1a9a85e0415fc89a7a093a3e7c08
|
89367ea17a9758b3ea58da56c294b06d6c084743
|
refs/heads/main
| 2022-12-29T20:08:49.105190
| 2020-10-17T11:00:36
| 2020-10-17T11:00:36
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 624
|
tst
|
StackTestOverflow.tst
|
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/07/StackArithmetic/StackTest/StackTest.tst
load StackTestOverflow.asm,
output-file StackTestOverflow.out,
compare-to StackTestOverflow.cmp,
output-list RAM[0]%D2.6.2 RAM[256]%D2.6.2 RAM[257]%D2.6.2 RAM[258]%D2.6.2 RAM[259]%D2.6.2;
set RAM[0] 256, // initializes the stack pointer
repeat 1000 { // enough cycles to complete the execution
ticktock;
}
// outputs the stack pointer (RAM[0]) and
// the stack contents: RAM[256]-RAM[265]
output;
|
60a06e24cb07cd3f66936dd0bec2755df56756fb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/40/CH5/EX5.9a/Exa_5_9a.sce
|
46f3540d15ea9de03ecec7ef1c96ff737c56e3a5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 408
|
sce
|
Exa_5_9a.sce
|
//DTFT and steady state response
a=0.5,b=1;F=0.25;
n=0:(5/1000):5;
h=(a^n);
x=10*cos(0.5*%pi*n'+%pi/3);
H=h*exp(-%i*n'*F);
Yss=H*x;
[phase_Yss,m]=phasemag(Yss);
Yss=real(Yss);
subplot(2,1,1)
plot2d(n,Yss);
xlabel('Frequency in radians')
ylabel('abs(Yss)')
title('magnitude Response')
subplot(2,1,2)
plot2d(n,phase_Yss)
xlabel('Frequency in Radians');
ylabel('<(y)')
title('Phase Response')
|
05b602a4fdcdb74dcbc0ddbdfa7ae7d541e78f09
|
33d7960e39a3e71591538dccbe1dd4014c377e78
|
/Sample Solution/Exercise_16.sce
|
b489873fa8c61afdd26352a8d51811969f8ad240
|
[] |
no_license
|
wiiwins/Compfin
|
529e2997994babb9e3795283ddbd8ec782131148
|
2629685421e970a369ec797b76dda3d2803bcbcf
|
refs/heads/master
| 2020-05-18T01:25:39.357847
| 2019-06-27T11:21:46
| 2019-06-27T11:21:46
| 184,090,400
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 961
|
sce
|
Exercise_16.sce
|
//a)
exec("./CompFin_2019_SS_BS_Price_Int.sce")
function [Delta, vega, gamma] = BS_Greeks_num(r, sigma, S0, T, g, eps)
//price function for initial parameters
V0 = BS_Price_Int(r, sigma, S0, T, g);
V_Delta = BS_Price_Int(r, sigma, (1+eps)*S0, T, g);
V_vega = BS_Price_Int(r, (1+eps)*sigma, S0, T, g);
V_gamma = BS_Price_Int(r, sigma, (1+eps)*S0, T, g);
V_gamma2 = BS_Price_Int(r, sigma, (1-eps)*S0, T, g)
//Compute greeks num
Delta = (V_Delta-V0)/(eps*S0)
vega = (V_vega-V0)/(eps*sigma)
gamma = (V_gamma-2*V0+V_gamma2)/((eps*S0)^2)
endfunction
//b)
r=0.03;
sigma=0.2;
T=1;
S0=60:1:140;
eps=0.001;
function y = g(x)
y = max(x-100, 0)
endfunction
Delta = ones(S0);
vega = ones(S0);
gamma = ones(S0);
for i = 1:length(S0)
[Delta(i), vega(i), gamma(i)] = BS_Greeks_num(r, sigma, S0(i), T, g, eps);
end
plot(S0, vega)
xlabel("S0")
ylabel("Delta")
|
1485f33f6205a87c8cd2f4a703b035bc5df7d05d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1808/CH3/EX3.19/Chapter3_Exampl19.sce
|
ea0fdfa85eebf8d6b3cc952056a57454ee53f307
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,155
|
sce
|
Chapter3_Exampl19.sce
|
clc
clear
//INPUT DATA
d=0.12;////bore of the engine in m
l=0.13;//stroke of the engine in m
p1=101.325;//pressure in atm
t1=298;//temperature in K
t3=1773;//temperature in K
n=2000;//speed in rpm
g=1.4;//constant
cp=1.005;//specific pressure in kJ/kgK
cv=0.718;//specific volume inkJ/kgK
R=0.287;//gas constant inkJ/kgK
//CALCULATIONS
Rc=1.1/0.1;//compression ratio
v1=R*t1/p1;//specific volume in m^3/kg
v2=v1/Rc;//specific volume in m^3/kg
t2=t1*((v1/v2)^(g-1));//temperature in K
p2=p1*(v1/v2)^(g);//pressure in kN/m^2
v3=v2*(t3/t2);//specific volume in m^3/kg
t4=t3*((v3/v1)^(g-1));//temperature in K
p4=p2*(v3/v1)^g;//pressure in kN/m^2
Q3=cp*(t3-t2);//heat added in kJ/kg
Qr=cv*(t4-t1);//heat rejected in kJ/kg
nd=((Q3-Qr)/Q3)*100;//Thermal efficiency in percentage
V1=1.1*(3.14*d^2*l)/4;//volume in m^3
m=4*(n/2)*(V1/(v1*240));//flow rate in kg/s
P=(Q3-Qr)*m;//Power of the engine in kg/s
//OUTPUT
printf('(a)compression ratio is %3.i \n (b)pressure and temperature at the end of compression is %3.2f kN/m^2 \n (c)Thermal efficiency is %3.2f percentage \n (d)Power of the engine is %2.3f kg/s ',Rc,p2,nd,P)
|
d7d9ce39fc8f33babf6d5682031bae0e436eb3a1
|
1a00eb132340e145c8a7d8fd0ef79a02b24605a2
|
/macros/cmd_dcmotor_release.sci
|
b94beb30104287d4c5036bca696b522789b33c24
|
[] |
no_license
|
manasdas17/Scilab-Arduino-Toolbox
|
e848d75dc810cb0700df34b1e5c606802631ada4
|
2a6c9d3f9f2e656e1f201cecccd4adfe737175e7
|
refs/heads/master
| 2018-12-28T15:51:35.378091
| 2015-08-06T07:22:15
| 2015-08-06T07:22:15
| 37,854,821
| 3
| 2
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,504
|
sci
|
cmd_dcmotor_release.sci
|
function cmd_dcmotor_release(h,motor_no)
// Command to release pins which have setup for DC motor
//
// Calling Sequence
// cmd_dcmotor_release(h,motor_no)
//
// Parameters
// h : Board number, reserved for future use. For this version, any number would do
// motor_no : ID in which the motor has been connected
//
// Description
// Arduino board does not deliver enough power, so it is necessary to use a H-bridge circuit/IC to control the motor. There are several types of H-bridge IC that do not all operate on the same principle. For example, the L298 requires the use of a PWM signal with current sense. The L293 uses two PWM to set the speed and direction. Ready-to-use Shields are also available.
//
// Remember that the PWM is 8-bit (0 to 255). The input of the block could accept any value, but it would saturate at +- 255.
//
// Examples
// ok = open_serial(1,9,115200)
// cmd_dcmotor_setup(1,3,1,9,10) // Setup DC motor of type 3 (L293), motor 1, pin 9 and 10
// cmd_dcmotor_run(1,1,255)
// sleep(1000)
// cmd_dcmotor_run(1,1,-255)
// sleep(1000)
// cmd_dcmotor_release(1,1)
// close_serial(1)
// See also
// cmd_dcmotor_setup
// cmd_dcmotor_release
//
// Authors
// Bruno JOFRET
//
code_sent="M"+ascii(48+motor_no)+"1"+ascii(0);
write_serial(h,code_sent,4);
code_sent="M"+ascii(48+motor_no)+"r";
write_serial(h,code_sent,3)
endfunction
|
853a25a1178582241d02f21f78bac8db574016ad
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/BV26.prev.tst
|
a6328879ba8e47abde1531dd1b0039cb78ffab3c
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,388
|
tst
|
BV26.prev.tst
|
[1,2,3,4,5] << 6 =
shift by 6
icol=0 sum= 0 + this(0)=1 * dipows(0)=1 * binoms(0)=1
icol=1 sum= 1 + this(1)=2 * dipows(1)=6 * binoms(1)=1
icol=2 sum= 13 + this(2)=3 * dipows(2)=36 * binoms(2)=1
icol=3 sum= 121 + this(3)=4 * dipows(3)=216 * binoms(3)=1
icol=4 sum= 985 + this(4)=5 * dipows(4)=1296 * binoms(4)=1
row 0 dipows=[1,6,36,216,1296] binoms=[1,1,1,1,1] result=[7465,0,0,0,0]
icol=1 sum= 0 + this(1)=2 * dipows(0)=1 * binoms(0)=1
icol=2 sum= 2 + this(2)=3 * dipows(1)=6 * binoms(1)=2
icol=3 sum= 38 + this(3)=4 * dipows(2)=36 * binoms(2)=3
icol=4 sum= 470 + this(4)=5 * dipows(3)=216 * binoms(3)=4
row 1 dipows=[1,6,36,216,1296] binoms=[1,2,3,4,5] result=[7465,4790,0,0,0]
icol=2 sum= 0 + this(2)=3 * dipows(0)=1 * binoms(0)=1
icol=3 sum= 3 + this(3)=4 * dipows(1)=6 * binoms(1)=3
icol=4 sum= 75 + this(4)=5 * dipows(2)=36 * binoms(2)=6
row 2 dipows=[1,6,36,216,1296] binoms=[1,3,6,10,15] result=[7465,4790,1155,0,0]
icol=3 sum= 0 + this(3)=4 * dipows(0)=1 * binoms(0)=1
icol=4 sum= 4 + this(4)=5 * dipows(1)=6 * binoms(1)=4
row 3 dipows=[1,6,36,216,1296] binoms=[1,4,10,20,35] result=[7465,4790,1155,124,0]
icol=4 sum= 0 + this(4)=5 * dipows(0)=1 * binoms(0)=1
row 4 dipows=[1,6,36,216,1296] binoms=[1,5,15,35,70] result=[7465,4790,1155,124,5]
[7465,4790,1155,124,5]
|
658bee3d925120ce17e966d84dafeac8930e6b04
|
b80969c9d72c732b0153d0de2b8fd28dc10d8a16
|
/Biologie/Site/sauvegarde/28.07.2016/www/Documents/simulation/initation_scilab/ex29.sci
|
dfff9c049e4179ba4f7adb88ffb2adc20dd45772
|
[] |
no_license
|
adamdepossylux/stem_cells
|
6a2596a0734e3604b570cfdaa1e6cb798d13d7b7
|
e1ffdf24a223fea3a3606a0bd262067edc81f5b9
|
refs/heads/master
| 2020-04-01T17:26:21.772875
| 2017-05-10T15:15:09
| 2017-05-10T15:15:09
| 61,795,551
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 192
|
sci
|
ex29.sci
|
function[x1,x2]=ex29(a,b,c)
delta=b^2-4*a*c;
if delta<0 then
error('pas de solutions reélles')
end
x1=(-b+sqrt(delta))/(2*a)
x2=(-b-sqrt(delta))/(2*a)
endfunction
|
b8e50806fef3ca88fb64115e4cb12c467e041e54
|
8ff2fa0731006b571c8e5b5f4f9fa249b5de4825
|
/TestTrajectoire.sce
|
b82d43225037b55ebb851d6dfadba2540e2d8645
|
[] |
no_license
|
rianaR/Tank
|
ef6467ca19fe8ac932798ecf3a0337afd04fa816
|
83e6bd5d905331468ecfe6fba037d9870633ebfc
|
refs/heads/master
| 2020-05-19T21:29:08.755417
| 2015-05-05T09:06:58
| 2015-05-05T09:06:58
| 31,966,295
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 522
|
sce
|
TestTrajectoire.sce
|
m=5;
g=9.81;
Te=1/1000;
v0=50;
x0=0;
y0=1;
theta0=%pi/6;
v0x=v0*cos(theta0);
v0y=v0*sin(theta0);
X0=[x0;y0;v0x;v0y;theta0];
X=[X0];
Xp=X0;
Xs=Xp;
K=0;
i=1;
while (Xs(2) > 0)
if (Xp(5) < 0) then
K=100;
end
Xs(1)=0.5*K*cos(Xp(5))*(2*i-1)*Te*Te+v0x*Te+Xp(1);
Xs(2)=0.5*(-m*g+K*sin(Xp(5)))*(2*i-1)*Te*Te+v0y*Te+Xp(2);
Xs(3)=K*cos(Xp(5))*Te+Xp(3);
Xs(4)=(-m*g+K*sin(Xp(5)))*Te+Xp(4);
Xs(5)=atan(Xs(4)/Xs(3));
X=[X,Xs];
Xp=Xs;
i=i+1;
end
X
x=X(1,:);
y=X(2,:);
plot2d(x,y)
|
7c3b8b6ee2be244c0cdfa4d04251b752275af473
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1574/CH8/EX8.4/TL_Ex_8_4.sce
|
c2c702932a9b92e47f8a8c9cddb43ba2d5386cdd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 559
|
sce
|
TL_Ex_8_4.sce
|
clc
//Chapter8
//Example8.4, page no 316
//Given
d=0.7// distance between two insertions
Ld_m= (80e-3)*(10/7)//Loading coil inductance
//disp(Ld_m)
Rd_m=100/7//Loading coil resistance
//disp(Rd_m)
R=20+Rd_m//Line resistance
L=Ld_m// Line inductance
C=0.05e-6// Line Capacitance
alfa=0.5*R*sqrt(C/L)//Attenuation Constant
//
fc=(%pi*d*sqrt(L*C))^-1//cut off freq
mprintf('The atenuation constant is %f nepers/mile\nThe Cut-off Freq is %d KHz',alfa,fc*1e-3)
// Note : There are some calculation errors in the solution presented in the book
|
8bc852a6ef4a8f3750755e7955f399963425225d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1862/CH9/EX9.7/C9P7.sce
|
d0179a9b43227bdfe698d3dfa11cc9402b01ccaf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,158
|
sce
|
C9P7.sce
|
clear
clc
//to find forces exerted on the ladder by the ground and by the wall
// GIVEN::
//refer to figure 9-23(a) from page no. 189
//length of ladder
L = 12//in meters
//mass of ladder
m = 45//in kg
//distance of upper end of ladder above the ground
h = 9.3//in meters
//mass of firefighter
M = 72//in kg
//acceleration due to gravity
g = 9.8//in m/s^2
// SOLUTION:
//refer to figure 9-23(b) from page no. 189
//distance from the wall to the foot of ladder
a = sqrt(L^2 - h^2)//in meters
//considering equillibrium conditions
//finding normal reaction by ground
N = (M+m)*g//in N
//force exerted on ladder by the wall
Fw = (g*a*(M/2 + m/3))/h//in N
N = round(N)
Fw = round(Fw)
printf ("\n\n Distance from the wall to the foot of ladder a = \n\n %.1f m",a);
//answer is slightly different than book.But answer of scilab program is same as that of calculator
printf ("\n\n Forces exerted on the ladder by the ground N = \n\n %3i N",N);
//answer is slightly different than book.But answer of scilab program is same as that of calculator
printf ("\n\n Forces exerted on the ladder by the wall Fw = \n\n %3i N",Fw);
|
3e759ec876fa2644ad8d2a20082392b3479ce8f6
|
c6990d954ae9e819a5de22440cc4437019a7b550
|
/projects/01/Or4Way.tst
|
d08370a4749c7325299539992916e1c428093857
|
[] |
no_license
|
moneytech/nand2tetris
|
28e8bacbd72065db73751d184489c1376fdafef7
|
d80ff97de782bee14ef2e2ea7fbe9e7859efea2d
|
refs/heads/master
| 2021-01-01T07:23:52.654424
| 2018-04-15T14:40:07
| 2018-04-15T14:40:07
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 488
|
tst
|
Or4Way.tst
|
load Or4Way.hdl,
output-file Or4Way.out,
compare-to Or4Way.cmp,
output-list in%B2.4.2 out%B2.1.2;
set in 0, eval, output;
set in 1, eval, output;
set in 2, eval, output;
set in 3, eval, output;
set in 4, eval, output;
set in 5, eval, output;
set in 6, eval, output;
set in 7, eval, output;
set in 8, eval, output;
set in 9, eval, output;
set in 10, eval, output;
set in 11, eval, output;
set in 12, eval, output;
set in 13, eval, output;
set in 14, eval, output;
set in 15, eval, output;
|
ffa0a56ed99420c84c10e79cbcd7bb6fd1339e15
|
f5d97602ad111cf2fe570b890646522118e3f9f1
|
/ziegler-nichols-first-method.sce
|
66328e9e8ae11c8d44e1729db740865fa9ae9e40
|
[] |
no_license
|
HugoJF/scilab-pid-controller
|
5d6d869d00e7bcc404ae358db92976863d2619cc
|
f4726b3f6a01cac1526632c31a6e2c840b6fb07c
|
refs/heads/master
| 2023-01-28T11:20:43.264090
| 2020-12-11T20:27:29
| 2020-12-11T20:27:29
| 320,695,475
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 863
|
sce
|
ziegler-nichols-first-method.sce
|
exec('C:\Users\hugo_\Desktop\trabalho-controller\prep.sce', -1)
exec('C:\Users\hugo_\Desktop\trabalho-controller\funcs.sce', -1)
// Simulation parameters
t = gettime(45, 100);
ts = gettime(20, 100); // shorter
// Method preparation
ya = csim('step', ts, g);
// Method parameters
L = 2.7
T = 6.3
// Simulations
y = csim('step', t, g/.(1));
yp = simu_zn1_p(t, T, L);
ypi = simu_zn1_pi(t, T, L);
ypid = simu_zn1_pid(t, T, L);
// Plots
subplot(311)
plot(t, y, t, yp, t, ypi);
title('Ziegler-Nichols first method for PID tuning (PID omitted)')
legend(['G response', 'P response', 'PI response']);
subplot(312)
plot(t, ypid);
title('Ziegler-Nichols first method for PID tuning (PID only)')
legend(['PID response']);
subplot(313)
plot(ts, ya);
title('Open loop system response for Ziegler-Nichols'' first method parameter estimation')
legend(['Open loop response'])
|
99083c341e726671da4828401e4d22164a5b2337
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/491/CH8/EX8.2/8_2.sce
|
0e988eb43b7be9694021806f8bd2d1adfdea7f29
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,180
|
sce
|
8_2.sce
|
a = 55 ; // Angle made by helix with longitudinal axis in degree
r = 1.8 ; // Inner radius of vessel in m
t = 0.02 ; // thickness of vessel in m
E = 200e09 ; // Modulus of ealsticity of steel in Pa
v = 0.3 ; // Poission's ratio of steel
P = 800e03 ; // Pressure inside the tank in Pa
// Part (a)
s1 = (P*r)/t ; // Circumferential stress in Pa
s2 = (P*r)/(2*t) ; // Longitudinal stress in Pa
// Part (b)
t_max_z = (s1-s2)/2 ; // Maximum inplane shear stress in Pa
t_max = s1/2 ; // Maximum out of plane shear stress in Pa
// Part (c)
e1 = (s1/(2*E))*(2-v) ; // Strain in circumferential direction
e2 = (s2/E)*(1-(2*v)); // Strain in longitudinal direction
// Part (d)
// x1 is the direction along the helix
theta = 90 - a ;
sx1 = ((P*r)/(4*t))*(3-cosd(2*theta)); // Stress along x1 direction
tx1y1 = ((P*r)/(4*t))*(sind(2*theta)); // Shear stress in x1y1 plane
sy1 = s1+s2-sx1 ; // Stress along y1 direction
// Mohr Circle Method
savg = (s1+s2)/2 ; // Average stress in Pa
R = (s1 - s2 )/2 ; // Radius of Mohr's Circle in Pa
sx1_ = savg - R*cosd(2*theta) ; // Stress along x1 direction
tx1y1_ = R*sind(2*theta); // Shear stress in x1y1 plane
|
72093e7b996f7bc65e4b9412462c95a25c46d4c4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/964/CH21/EX21.3/21_3.sce
|
5cbca050b7eeedcb5443f09f3bae3e817cb6e160
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,146
|
sce
|
21_3.sce
|
clc;
clear;
g=9.8;//m/s^2; acceleration due to gravity
m=68.1;//kg
c=12.5;//kg/sec; drag coefficient
function v=f(t)
v=g*m*(1-exp(-c*t/m))/c
endfunction
tval=289.43515;//m
a=0;
b=10;
fa=f(a);
fb=f(b);
for i=10:10:20
n=i;
h=(b-a)/n;
disp(i,"No. of segments=")
disp(h,"Segment size=")
j=a+h;
s=0;
while j<b
s=s+f(j);
j=j+h;
end
l=(b-a)*(fa+2*s+fb)/(2*n);
Et=tval-l;//error
et=Et*100/tval;//percent relative error
disp("m",l,"Estimated d=")
disp(et,"et(%)")
disp("---------------------------------------------------------")
end
for i=50:50:100
n=i;
h=(b-a)/n;
disp(i,"No. of segments=")
disp(h,"Segment size=")
j=a+h;
s=0;
while j<b
s=s+f(j);
j=j+h;
end
l=(b-a)*(fa+2*s+fb)/(2*n);
Et=tval-l;//error
et=Et*100/tval;//percent relative error
disp("m",l,"Estimated d=")
disp(et,"et(%)")
disp("---------------------------------------------------------")
end
for i=100:100:200
n=i;
h=(b-a)/n;
disp(i,"No. of segments=")
disp(h,"Segment size=")
j=a+h;
s=0;
while j<b
s=s+f(j);
j=j+h;
end
l=(b-a)*(fa+2*s+fb)/(2*n);
Et=tval-l;//error
et=Et*100/tval;//percent relative error
disp("m",l,"Estimated d=")
disp(et,"et(%)")
disp("---------------------------------------------------------")
end
for i=200:300:500
n=i;
h=(b-a)/n;
disp(i,"No. of segments=")
disp(h,"Segment size=")
j=a+h;
s=0;
while j<b
s=s+f(j);
j=j+h;
end
l=(b-a)*(fa+2*s+fb)/(2*n);
Et=tval-l;//error
et=Et*100/tval;//percent relative error
disp("m",l,"Estimated d=")
disp(et,"et(%)")
disp("---------------------------------------------------------")
end
for i=1000:1000:2000
n=i;
h=(b-a)/n;
disp(i,"No. of segments=")
disp(h,"Segment size=")
j=a+h;
s=0;
while j<b
s=s+f(j);
j=j+h;
end
l=(b-a)*(fa+2*s+fb)/(2*n);
Et=tval-l;//error
et=Et*100/tval;//percent relative error
disp("m",l,"Estimated d=")
disp(et,"et(%)")
disp("---------------------------------------------------------")
end
for i=2000:3000:5000
n=i;
h=(b-a)/n;
disp(i,"No. of segments=")
disp(h,"Segment size=")
j=a+h;
s=0;
while j<b
s=s+f(j);
j=j+h;
end
l=(b-a)*(fa+2*s+fb)/(2*n);
Et=tval-l;//error
et=Et*100/tval;//percent relative error
disp("m",l,"Estimated d=")
disp(et,"et(%)")
disp("---------------------------------------------------------")
end
for i=5000:5000:10000
n=i;
h=(b-a)/n;
disp(i,"No. of segments=")
disp(h,"Segment size=")
j=a+h;
s=0;
while j<b
s=s+f(j);
j=j+h;
end
l=(b-a)*(fa+2*s+fb)/(2*n);
Et=tval-l;//error
et=Et*100/tval;//percent relative error
disp("m",l,"Estimated d=")
disp(et,"et(%)")
disp("---------------------------------------------------------")
end
|
a6eba2af8db95dad5fb30d34e023013a91329d95
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3651/CH8/EX8.8/8.sce
|
3586f07876801318309643365383d49adb6bec6b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 168
|
sce
|
8.sce
|
//variable declaration
V=2.405
lamda=1.3
N_a=0.05
//Calculations
a_max=(V*lamda)/(2*%pi*N_a)
//Result
printf('Maximum core radius=%0.3f micro m\n',(a_max))
|
411c05d469a1846ad96814c5ea776b95f813eb87
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/405/CH6/EX6.4/6_4.sce
|
b381b646b5e36f4ce1d9ffb846a3b597096c004b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,243
|
sce
|
6_4.sce
|
clear;
clc;
printf("\t\t\tExample Number 6.4\n\n\n");
// heating of air with isothermal tube wall
// illustration6.4
// solution
p = 101325;// [Pa] pressure of air
Ta = 27;// [degree celsius] temperature of air
d = 0.005;// [m] diameter of tube
R = 287;// [] gas constant
u = 3;// [m/s] velocity of air
L = 0.1;// [m] length of tube
Tb = 77;// [degree celsius] exit bulk temperature
// we first must evaluate the flow regime and do so by taking properties at the average bulk temperature
Tb_bar = (Ta+Tb)/2;// [degree celsius]
v = 18.22*10^(-6);// [square meter/s] kinematic viscosity
k = 0.02814;// [W/m degree celsius]
Cp = 1006;// [J/kg K]
Pr = 0.703;// prandtl no.
Re_d = u*d/v;// reynolds number
disp(Re_d, "reynolds number is" );
disp("so that the flow is laminar");
// so that the flow is laminar
// now we determine Nu_d_bar for Tw = constant. for Gz_inverse = 0.0346 we read
Nu_d = 5.15;
// we thus calculate the average heat transfer coefficient as
h_bar = Nu_d*k/d;// [W/square meter degree celsius]
// we base the heat transfer on a mean bulk temperature of Tb_bar, so that
Tw = 3.49/(h_bar*%pi*d*L)+Tb_bar;// [degree celsius]
printf("\n exit wall temperature is %f degree celsius",Tw);
|
68356003b3507a9afeb3184219973fd97227d208
|
61e39cdb9efce4bc7bc35be444b193c1066f1bf2
|
/secant.sce
|
f38206563ddefd38cb912aa112bed51e84edab75
|
[] |
no_license
|
nancyanand2807/SCILAB-CODES
|
866c1c99754975f9f0deb271d3844c854db1645c
|
69bf72606e8cd62aae3d1302c734f425d381a121
|
refs/heads/master
| 2020-06-02T00:39:27.236873
| 2019-06-09T11:26:55
| 2019-06-09T11:26:55
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,561
|
sce
|
secant.sce
|
// -------------------------
// Nonlinear Equation Solver
// Using the Secant Method
// -------------------------
str=x_mdialog(['** Solve Nonlinear Equations Using Secant Method **'], ..
['Function y='; 'Initial Guess p(0)'; 'Initial Guess p(1)' ; 'Tolerance'], ..
['x**3-5*x+1'; '0'; '1'; '0.0001']);
if (str == []) then return; end//stop if press cancel
deff('y=f(x)','y='+str(1));//Function to study
//Initial Guess
p1=evstr(str(2));//Initial guess p(0)
pn=evstr(str(3));//Initial guess p(1)
tol=evstr(str(4));//Required accuracy (tolerance)
//Print some information on screen
printf('\n\n Look for a root of '+str(1)+'=0 starting with p0='+str(2)+' and p1='+str(3)+'\n')
printf("\nNote: K=|p(n)-p(n-1)|/|p(n-1)-p(n-2)|^((1+sqrt(5)/2)\n")
mprintf('\n%3s %14s %14s %14s\n','n','pn','|p(n)-p(n-1)|','K')
mprintf('%3i %14.11f %14.11f %14.11f\n',fix(0),p1,0,0)
mprintf('%3i %14.11f %14.11f %14.11f\n',fix(1),pn,0,0)
//SECANT METHOD
//-------------
n=1;Diff=abs(pn-p1);
while (Diff>=tol) //Stop when "error" smaller than tolerance
p2=p1;p1=pn;//Save previous iterations
Diff1=Diff; //Save previous difference |p(n)-p(n-1)|
n=n+1;//New iteration
pn = p1-f(p1)*(p2-p1)/(f(p2)-f(p1)); //Secant iteration
Diff = abs(pn-p1);//Update difference |p(n)-p(n-1)|
K=Diff/Diff1**((1+sqrt(5))/2);
//Print results on screen
mprintf('%3i %14.11f %14.11f %14.11f\n',fix(n),pn,Diff,K)
end
mprintf('\n%3i iterations required.to guarantee solution p=%10.7f accurate to within '+str(4)+'\n',n,pn)
|
ba48dcf0902cd4ae0fa5afd465be633b6e48c71d
|
67310b5d7500649b9d53cf62226ec2d23468413c
|
/tags/archive/TestCaseGenerator-Plugin-OpeningSequenceCoverage/trunk/tests/large-system-tests/inputs/jEdit/ground_truth/OpeningSequenceCoverage/length-1/max-150/t88.tst
|
9e00875a83af20c1b693583d2ca8c366109fdf4d
|
[] |
no_license
|
csnowleopard/guitar
|
e09cb77b2fe8b7e38d471be99b79eb7a66a5eb02
|
1fa5243fcf4de80286d26057db142b5b2357f614
|
refs/heads/master
| 2021-01-19T07:53:57.863136
| 2013-06-06T15:26:25
| 2013-06-06T15:26:25
| 10,353,457
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 660
|
tst
|
t88.tst
|
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<TestCase>
<Step>
<EventId>e6</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e23</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e17</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e38</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e78</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e46</EventId>
<ReachingStep>false</ReachingStep>
</Step>
</TestCase>
|
1fdf9fc847d99c5adfe999a34c123888ee1b63d1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/98/CH18/EX18.7/example18_7.sce
|
1d25f603808a77a53f08e427697466d11002745e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,037
|
sce
|
example18_7.sce
|
//Chapter 18
//Example 18_7
//Page 432
clear;clc;
i=90;
disp("(i) BEFORE REMOVAL OF FUSES: ");
a=1*(cosd(120)+%i*sind(120));
Ir=90*(cosd(0)+%i*sind(0));
Iy=90*(cosd(240)+%i*sind(240));
Ib=90*(cosd(120)+%i*sind(120));
Ir0=1/3*(Ir+Iy+Ib);
Ir2=1/3*(Ir+a^2*Iy+a*Ib);
Iy2=a*Ir2;
Ib2=a^2*Ir2;
Ir1=Ir;
Iy1=Iy;
Ib1=Ib;
printf("Ir = %.2f /_%.2f A \n", abs(Ir), atand(imag(Ir)/real(Ir)));
printf("Iy = %.2f /_%.2f A \n", abs(Iy), atand(imag(Iy)/real(Iy))+180);
printf("Ib = %.2f /_%.2f A \n\n", abs(Ib), atand(imag(Ib)/real(Ib))+180);
printf("Zero sequence components of three line currents are: \n");
printf("Ir0 = Iy0 = Ib0 = %d A \n\n", real(Ir0));
printf("Ir2 = %d A \n", abs(Ir2));
printf("Iy2 = %d A \n", abs(Iy2));
printf("Ib2 = %d A \n\n", abs(Ib2));
printf("Ir1 = %.2f /_%.2f A \n", abs(Ir), atand(imag(Ir)/real(Ir)));
printf("Iy1 = %.2f /_%.2f A \n", abs(Iy), atand(imag(Iy)/real(Iy))+180);
printf("Ib1 = %.2f /_%.2f A \n\n\n", abs(Ib), atand(imag(Ib)/real(Ib))+180);
disp("AFTER REMOVAL OF FUSES: ");
Ird=90*(cosd(0)+%i*sind(0));
Iyd=0;
Ibd=0;
printf("Ir = %.2f /_%.2f A \n", abs(Ird), atand(imag(Ird)/real(Ird)));
printf("Iy = %d A \n", Iyd);
printf("Ib = %d A \n\n", Ibd);
Ir0d=1/3*(Ird+Iyd+Ibd);
Ir1d=1/3*(Ird+a*Iyd+a^2*Ibd);
Ir2d=1/3*(Ird+a^2*Iyd+a*Ibd);
printf("Zero sequence components of three line currents are: \n");
printf("Ir0 = Iy0 = Ib0 = %d /_0 A \n\n", real(Ir0d));
Iy0d=Ir0d;
Ib0d=Ir0d;
Iy1d=a^2*Ir1d;
Iy2d=a*Ir2d;
Ib1d=a*Ir1d;
Ib2d=a^2*Ir2d;
printf("Ir1 = %.2f /_%.2f A \n", abs(Ir1d), atand(imag(Ir1d)/real(Ir1d)));
printf("Ir2 = %.2f /_%.2f A \n\n", abs(Ir2d), atand(imag(Ir2d)/real(Ir2d))+180);
printf("Iy1 = %.2f /_%.2f A \n", abs(Iy1d), atand(imag(Iy1d)/real(Iy1d))+180);
printf("Iy2 = %.2f /_%.2f A \n\n", abs(Iy2d), atand(imag(Iy2d)/real(Iy2d))+180);
printf("Ib1 = %.2f /_%.2f A \n", abs(Ib1d), atand(imag(Ib1d)/real(Ib1d))+180);
printf("Ib2 = %.2f /_%.2f A \n\n", abs(Ib2d), atand(imag(Ib2d)/real(Ib2d))+180);
Iyd=Iy0d+Iy1d+Iy2d;
printf("Curretn in yellow line = %d A \n\n", real(Iyd));
|
ff3b15eb92da072686b820be7b7169e9da8232de
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1226/CH12/EX12.9/EX12_9.sce
|
4ad7e8f6ae69d6e9dc25c5d42a688d5018caee95
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 671
|
sce
|
EX12_9.sce
|
clc;funcprot(0);//EXAMPLE 12.9
// Initialisation of Variables
p1=145;...........//injection pressure in bar
p2=235;.........//Injection pressure in bar (2nd case)
t1=16;.............//spray penetration time in milliseconds
s1=22;................//spray penetration length in cm
s2=22;.................//spray penetration length in cm (2nd case)
pc=30;.................//combustion chamber pressure in bar
//calculations
delp1=p1-pc;
delp2=p2-pc;
t2=(s2/s1)*t1*sqrt(delp1/delp2);..........//Spray time in seconds for 2nd case
//Given that s=t*sqrt(delp)
disp(t2,"The time required for spray penetration at an injection pressure of 235 bar in milliseconds:")
|
860febe5e8e7783ae7bdeb9a22ad3b455d220ebc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2990/CH5/EX5.10/Ex5_10.sce
|
7faa1524c9bd83660a0b7a1e9292ef12cc8f963b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 955
|
sce
|
Ex5_10.sce
|
funcprot(0);
// Initialization of Variable
function[dms]=degtodms(deg)
d = int(deg)
md = abs(deg - d) * 60
m = int(md)
sd = (md - m) * 60
sd=(round(sd*100)/100)
dms=[d m sd]
endfunction
Long=75.0//longitude in degrees
GST=11+40.0/60+32.4/3600;//GST in degrees
RA=12+25.0/60+18.35/3600;//RA in degrees
GMT=15+45.0/60+25.3/3600;//GMT in degrees
delta=22+6.0/60+32.5/3600;//angle in degrees
//calculation
e1=Long/15*9.8565/3600;
LSTofLMM=GST-e1;
LMT=GMT+Long/15;
SIT=LMT+LMT*9.8565/3600//sidereal time interval
LHA=SIT+LSTofLMM;
H=RA+24-LHA;
H=H*15;
B=atan(tan(delta*%pi/180)*tan(H*%pi/180));
B=B*180/%pi;
A=atan(tan(H*%pi/180)*cos(B*%pi/180)/sin((B-32-15.0/60)*%pi/180))
A=A*180/%pi;
TB=360+A-135-15.0/60-20.0/3600;
TB=degtodms(TB);
disp(TB,"true bearing TB in degree,minites,seconds respectively");
disp("there is slight difference in the answers due to rounding off error in the book");
clear()
|
2e1e795a1579030def165762ffa1857011eca964
|
2d52e11c7b61898224f065e3bbf4433c814c9fe1
|
/measurement/analyzed-codes/FNN_logistic.sci
|
4c131259c7c8c131c0256dba549e31784e856d7a
|
[
"MIT"
] |
permissive
|
quepas/performance-estimation-array-operations
|
b6954d753c83d235f12c5d97fa82bcc38656cf5e
|
b209ba5efebf5dee60ec5fca0fa711ca2e766e17
|
refs/heads/master
| 2021-01-24T13:24:52.734940
| 2018-05-12T15:18:20
| 2018-05-12T15:18:20
| 123,173,497
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 263
|
sci
|
FNN_logistic.sci
|
// FNN-logistic > Logistic function used
// > as an activation function in neural networks
// Array operations
// * vneg (x1)
// * vexp (x1)
// * vadd2 (x1)
// * vdiv2 (x1)
////////
function FNN_logistic(A)
R = 1 ./ (1 + exp(-A));
endfunction
|
031a730d0eca1f8db89a178f5f9f456f8fa7d711
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/978/CH6/EX6.7/Example6_7.sce
|
58dc4f6498a9e5489e8a17987c257db646271d16
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 265
|
sce
|
Example6_7.sce
|
//chapter-6,Example6_7,pg 494
R=10*10^5//scope input impedance
C1=0.31*62*10^-12//probe capacitance
C2=22*10^-12//probe input impedance
fcut=(1/(2*%pi*R*(C1+C2)))//cutoff frequency of filter
printf("cutoff frequency\n")
printf("fcut=%.2f Hz",fcut)
|
08c0f8dd272b61ca7d9cf6ecb51b9ec8d04ca5a8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1019/CH2/EX2.7/Example_2_7.sce
|
bc8f98c60431168db2138266442169c1b3541dd0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 468
|
sce
|
Example_2_7.sce
|
//Example 2.7
clear;
clc;
//Given
n=2;//moles of ideal gas
R=8.314;// gas constant in J K^-1 mol^-1
T=273;// temperature in K
p1=10;// initial pressure in atm
p2=0.4;// final pressure in atm
// To determine q,w,delH and DelE
w=(-1)*n*R*T*(1-(p2/p1));// w in joule
q=(-1)*w;
mprintf('q = %f J',q);
mprintf('\n w = %f J',w);
mprintf('\n delE = 0 J,since it is an isothermal process');
mprintf('\n delH = 0 J,since it is an isothermal process');
//end
|
88d5c202bd620742c8ce703977695d44a4e23ecf
|
e2ae697563b1b764d79ea1933b555ab0d5e3849c
|
/macros/addzero.sci
|
b26791e9d25c30ef0a0d9a5cd9680dec2b157279
|
[] |
no_license
|
gq-liu/IPDesignLab
|
c49b760740f47ec636232a6947aecb3c0626518a
|
b2f9a9eecad6616c99a2ec20fcceb14fb3ed0c3f
|
refs/heads/master
| 2022-01-18T13:30:55.972779
| 2019-05-06T17:23:12
| 2019-05-06T17:23:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,580
|
sci
|
addzero.sci
|
function addzero()
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
// Authors
// Holger Nahrstaedt - 2010
// Ishan Pendharkar - 2001-2007
//
//RLTOOL for scilab (c) Ishan Pendharkar.
//function adds a zero to the existing plant.
global g g_cont g_sensor g_plant marked_handle choice
if choice<>1 then return;end; // you cannot add zero in frequency design mode
//xset('window',0);
scf(0)
p=locate(1,1); // locate zero and clean it
p=clean(p,Limits());
if clean(p(2),Limits())==0 then
gtr_cont=g_cont*(%s-p(1)); // real zero is added
else
gtr_cont=g_cont*((%s-p(1))^2+p(2)^2); // complex zero and its conjugate is added
end;
gtr=gtr_cont*g_plant*g_sensor
whichplot(gtr); // update rootlocus plot
gtr=rl(gtr); // edit new plant
if gtr<>[] then,
g_cont=gtr_cont
g=gtr;
else
whichplot(g);
end;
marked_handle=[]
clear gtr gtr_cont;
//return;
endfunction
|
30c4167cf89ffd8508f6b216ea395fa7e67fdfa6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/476/CH8/EX8.19/Example_8_19.sce
|
a26234941f6785f64bfeac24563c89501464a220
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,208
|
sce
|
Example_8_19.sce
|
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 8
//Phase Equilibria
//Example 19
clear;
clc;
//Given:
//Wilson constants:
a12 = 1225.31; //(J/mol)
a21 = 6051.01; //(J/mol)
V1 = 74.05*10^-6; //(m^3/mol)
V2 = 18.07*10^-6; //(m^3/mol)
R = 8.314; //ideal gas constant
T = 349; //temperature in K
//Antoine Equation:
//Vapour pressure of 1st element
function [y1] = P1(T)
y1 = %e^(14.39155-(2795.817/(T-43.198)))
endfunction
//Vapour pressure of 2nd element
function [y2] = P2(T)
y2 = %e^(16.26205-(3799.887/(T-46.854)))
endfunction
//To calculate equilibrium pressure and composition
//Using eq. 8.73 (Page no. 350)
//Wilson Parameters:
W12 = (V2/V1)*%e^(-a12/(R*T));
W21 = (V1/V2)*%e^(-a21/(R*T));
//Using Antoine equation
P1_s = P1(T);
P2_s = P2(T);
//(a). Composition of vapour in equilibrium
x1 = 0.43;
x2 = 1-x1;
//Using eq. 8.72 (Page no. 350)
//Wilson equations:
//Activity coeffecient of 1st component
function [y3] = g_1(n1,n2) //n1 is mol fraction of 1 and n2 is for 2
y3 = %e^(-log(n1 + W12*n2) + n2*((W12/(n1+W12*n2))-(W21/(W21*n1+n2))));
endfunction
//Activity coeffecint of 2nd component
function [y4] = g_2(n1,n2)
y4 = %e^(-log(n2 + W21*n1) - n1*((W12/(n1+W12*n2))-(W21/(W21*n1+n2))));
endfunction
//Activity coeffecients:
g1 = g_1(x1,x2);
g2 = g_2(x1,x2);
P = (g1*x1*P1_s) + (g2*x2*P2_s);
y1 = (g1*x1*P1_s)/P;
mprintf('(a).');
mprintf('\n Equilibrium pressure is %f kPa',P);
mprintf('\n Composition of acetone vapour in equilibrium is %f',y1);
//(b). Composition of liquid in equilibrium
y1 = 0.8;
y2 = 1-y1;
g1 = 1; g2 = 1; //assumed activity coeffecients
P_as = 1/((y1/(g1*P1_s)) + (y2/(g2*P2_s)));
//Hit and trial method:
flag = 1;
while(flag==1)
x1 = (y1*P_as)/(g1*P1_s);
x2 = 1-x1;
g1 = g_1(x1,x2);
g2 = g_2(x1,x2);
P_calc = 1/((y1/(g1*P1_s)) + (y2/(g2*P2_s)));
if((P_calc-P_as)<=1) and ((P_calc-P_as)>=-1)
flag = 0;
else
P_as = P_calc;
end
end
mprintf('\n\n (b).');
mprintf('\n Equilibrium Pressure is %f kPa',P_calc);
mprintf('\n Composition of acetone in liquid in equilibrium is %f',x1);
//end
|
29e407a4fa01b07a7105041482c5d14ffcc9b141
|
a589f95d013369896bef66dc002835588232d49b
|
/coordV.sce
|
04c4f36deb192eb30e764e52bd28d22a8e179b49
|
[] |
no_license
|
saifsmailbox98/scilab-linear-algebra
|
c26273bbeb8031874e7b13e90a0d191f7a331bd8
|
2249f2d46672c8acb35e25f719c64f1db6823326
|
refs/heads/master
| 2020-05-03T12:17:35.971027
| 2019-04-07T18:26:23
| 2019-04-07T18:26:23
| 178,621,819
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 259
|
sce
|
coordV.sce
|
function [coordinates] = coordV(M, X)
coordinates = (M'\X')';
endfunction
A = [1 -2; 4 -7];
X = [5, 3];
c = coordV(A, X);
disp(c);
A = [1 2 0; 1 3 2; 0 1 3];
X = [2 7 -4];
c = coordV(A, X);
disp(c);
/*
-47. 13.
-11. 13. -10.
*/
|
c3f69599858b73329f65cd5dcbfc9c68d7449bd6
|
7b040f1a7bbc570e36aab9b2ccf77a9e59d3e5c2
|
/2-DOF_manual/2dof/init.sci
|
bb9fbd62b09222176f3ff6a9381efa4b0d5de2f6
|
[] |
no_license
|
advait23/sbhs-manual
|
e2c380051117e3a36398bb5ad046781f7b379cb9
|
d65043acd98334c44a0f0dbf480473c4c4451834
|
refs/heads/master
| 2021-01-16T19:50:40.218314
| 2012-11-16T04:11:12
| 2012-11-16T04:11:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 69
|
sci
|
init.sci
|
u_old_old = 1;
u_old = 1;
r_old = 1;
r_new = 1;
y_old = 1;
y_new = 1;
|
8732b7873fa3dfd5c6549342b99c9c0f61047488
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2159/CH2/EX2.7/27.sce
|
11111f46d2f0d9e5cfffe81ba5973264cff7a195
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 140
|
sce
|
27.sce
|
// problem 2.7
s1=19.3
s2=9
x=14/24
wg=x*10
wc=(1-x)*10
vg=wg/s1
vc=wc/s2
vt=vg+vc
disp(vt,"volume of 10gm,14 carat gold in cm3")
|
fa1c5bb3a20e4e16de4b51f3acc8727449723992
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3838/CH3/EX3.1.E/EX3_1_e.sce
|
90d6010afa78086d08ccee454e24ddaeb45e94b4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 79
|
sce
|
EX3_1_e.sce
|
//EXAMPLE 3.1.E
clc;
Syms s t e
e=laplace(exp(-4*t),t,s)-laplace(exp(4*t),t,s)
|
829c17067784e689659f7c889ad59276ba8cb589
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/167/CH9/EX9.8/ex8.sce
|
1c7bd0336b320c9e321fb999243d8a4a716d0e99
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
WINDOWS-1252
|
Scilab
| false
| false
| 1,827
|
sce
|
ex8.sce
|
//ques8
//A Gas Turbine with Reheating and Intercooling
clear
clc
//For two-stage compression and expansion, the work input is minimized and the work output is maximized when both stages of the compressor and the turbine have the same pressure ratio
//P2/P1=P4/P3=P6/P7=P8/P9=sqrt(8)=r
//At inlets: T1=T3 h1=h3 T6=T8 h6=h8
//At outlet T2=T4 h2=h4 T7=T9 h7=h9
//In the absence of any regeneration, the back work ratio and the thermal efficiency are determined by using data from Table A–17
T1=300;//temperature at state 1 in K
h1=300.19;//enthalpy at state 1 in kJ/kg
T3=T1;//temperature at state 3 in K
h3=h1;//enthalpy at state 3
Pr1=1.386;//reduced pressure at state 1
r=sqrt(8);//constant ratio
Pr2=Pr1*r;//here r is for P2/P1
//from table
T2=403.3;//temp at state 2 in K
T4=T2;//temp at state 4 in K
h2=404.31;//enthalpy at state 2 in kJ/kg
h4=h2;//enthalpy at state 4
T6=1300;//temperature at state 6 in K
T8=T6;//temp at state 8
h6=1395.97;//enthalpy at state 6
h8=h6;//enthalpy at state 8
Pr6=330.9;//reduced pressure at state 6
Pr7=1/r*Pr6;//reduced pressure at state 7
T7=1006.4;//temperature at state 7 in K
T9=T7;//temperature at state 9 in K
h7=1053.33;//enthalpy at state 7 in kJ/kg
h5=h7;//enthalpy at state 5
h9=h7;//enthalpy at state 9
Wcompin=2*(h2-h1);//input work in compression in kJ/kg
Wturbout=2*(h6-h7);//output turbine work in kJ/kg
Wnet=Wturbout-Wcompin;//net work done in kJ/kg
Qin=(h6-h4)+(h8-h7);//input heat in kJ/kg
Rbw=Wcompin/Wturbout;//back work ratio
printf('(a) Back work ratio = %.3f \n',Rbw);
nth=Wnet/Qin;//thermal efficiency
printf(' (b) Thermal Efficiency = %.3f \n',nth);
//(b)
qin=(h6-h5)+(h8-h7);//input specific heat in kJ/kg
nth=Wnet/qin;//thermal efficiency
printf(' (c) Thermal efficiency in this case = %.3f \n',nth);
|
656cafeb831bed329b757624478c417d07f1acec
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2471/CH8/EX8.2/Ex8_2.sce
|
41902bca39789085c704c274bf7bbb8a045ee060
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 693
|
sce
|
Ex8_2.sce
|
clear ;
clc;
// Example 8.2
printf('Example 8.2\n\n');
printf('Page No. 223\n\n');
// given
V1 = 100;// In Volts
V2 = 50;// In Volts
R1 = 8;// Resistance in ohm
R2 = 5;// Resistance in ohm
R3 = 10;// Resistance in ohm
R4 = 50;// Resistance in ohm
//By refering figure 8.3, and applying kirchoff's current law and kirchoff's voltage law in the given circuit diagram, we get following equations:
// I1 = I2 + I3
//V1 - R1*I1 - V2 - R3*I3 = 0
//V2 - R4*I3 + R3*I3 - R2*I2 = 0
A = [1 -1 -1;8 0 10;0 55 -10];
b = [0;50;50];
x = A\b
printf('The currents in I1 is %.1f A \n',x(1))
printf('The currents in I2 is %.1f A \n',x(2))
printf('The currents in I3 is %.1f A \n ',x(3))
|
474b8818f51fe22e7ade5959f9a1a7afd99f3081
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2231/CH4/EX4.13/Ex_4_13.sce
|
860b55d3ae18d6708591c42aee0b13be6b06e037
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 202
|
sce
|
Ex_4_13.sce
|
//Example 4_13
clc;
clear;close;
//Given data:
V=500;//V
I=10;//A
f=400;//Hz
//Solution :
alfa=0.5;//for maximum swing
//I=V/(4*f*L);//A
L=V/(4*f*I);//H
disp(L,"Series inductance(H)");
|
cbcca7ef5a1f7cc5f8ee8bf5737456c52288db48
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/635/CH6/EX6.4/Ch06Ex4.sci
|
859d94218dc5bf6a1d0d29d33e37ed4870a6f441
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 608
|
sci
|
Ch06Ex4.sci
|
// Scilab Code Ex6.4 Diffusion through a cylinder: Page-199 (2010)
r = 12; // Radius of cylindrical crystal, mm
A1 = %pi*r^2; // Cross-sectional area for diffusion through the cylinder, milli-metre square
t = 4e-07; // Assume effective thickness of the surface to be 4 angstrom = two atomic diameters, mm
A2 = 2*%pi*r*t; // Cross-sectional area for diffusion along the surface, milli-metre square
ratio = A2/A1; // Ratio of two cross-sectional areas
printf("\nThe ratio of two cross-sectional areas = %4.2e", ratio);
// Result
// The ratio of two cross-sectional areas = 6.67e-008
|
eeb6185235cbca363ef312fa83cfc9f2c9ba384b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3542/CH7/EX7.4/Ex7_4.sce
|
68af60af15d3029a21f9007c11cf8ca9f702f9aa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,395
|
sce
|
Ex7_4.sce
|
// Example no 7.4
// To determine probability that the SNR will drop below threshold SNR
// Page no. 383
clc;
clear all;
// Given data
M1=4; // Number of branch diversity
M2=1; // Number of branch diversity
gamm=10; // Specified SNR threshold in dB
gamm=10^(gamm/10); // Specified SNR threshold
Gamma=20; // Average SNR in dB
Gamma=10^(Gamma/10); // Average SNR
// Probability that the SNR will drop below 10dB when 4 branch diversity is used
P4=(1-exp(-gamm/Gamma))^M1; // Probability that the SNR will drop below 10dB
// Probability that the SNR will drop below 10dB when single branch diversity is used
P1=(1-exp(-gamm/Gamma))^M2; // Probability that the SNR will drop below 10dB
// Displaying the result in command window
printf('\n Probability that the SNR will drop below 10dB when 4 branch diversity is used = %0.6f',P4);
printf('\n Probability that the SNR will drop below 10dB when single branch diversity is used = %0.3f',P1);
printf('\n \n From above results, it is observed that without diversity the SNR drops below the specified threshold with a probability that is three orders of magnitude greater \n than if four branch diversity is used.')
|
53a192fb3bf1950f75a73f65d8c64b8403456599
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3876/CH6/EX6.1/Ex6_1.sce
|
4d95d2f3336e421bc7d3c6f02bc6148214df8b41
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 255
|
sce
|
Ex6_1.sce
|
//Chapter 6 Solutions of Electrolytes
clc;
clear;
//Initialisation of Variables
T= 25 //C
R= 0.0821 //li-atm per mole per degree
M= 0.5 //m
n= 2
m= 0.680
V= 1 //lit
//CALCULATIONS
P= R*(273+T)*M*n*m/V
//RESULTS
mprintf("Osmotic pressure= %.2f atm",P)
|
cd51f9f9e36d269054882d26762a2be772950a7b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2969/CH2/EX2.2/Ex2_2.sce
|
a06563e31f3e5e8f7c49a56136fae9b2ce80596d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,284
|
sce
|
Ex2_2.sce
|
clc
clear
//DATA GIVEN
V1=0.08; //gas burnt in calorimeter in m^3
Pg=5.2; //pressure of gas supply in cm of water
Pb=75.5; //barometer reading in cm of Hg
Ww=28; //weight of water heated by gas in kg
Tg=13; //temperature of gas in deg celsius
Twi=10; //temperature of water at inlet in deg celsius
Two=23.5; //temperature of water at outlet in deg celsius
Ms=0.06; //steam condensed in kg
//CALCULATIONS
//by using general gas equation, reducing the volume to S.T.P.
//p1*V1/T1=p2*V2/T2
p1=Pb+(Pg/13.6); //in cm of Hg
T1=Tg+273; //in K
p2=76; //in cm of Hg
T2=15+273; //in K
V2=p1*V1*T2/T1/p2; //in m^3
Hw=Ww*4.18*(Two-Twi); //heat recieved by water in kJ
HCV=Hw/V1; //higher calorific value of fuel in kJ/m^3
LCV=HCV-2465*Ms/V1; //lower calorific value of fuel in kJ/m^3
printf(' The Calorific values of fuel per m^3 of gas at 15 deg celsius and 76 cm of Hg pressure are: \n');
printf(' The Higher calorific value of fuel, H.C.V. is: %5.1f kJ/m^3. \n',HCV);
printf(' The Lower calorific value of fuel, L.C.V. is: %5.1f kJ/m^3. \n',LCV);
|
406c81c1ed7d19df95428715f4fd71a01c5f1d67
|
c2249f1089957357481c4bc88e17047fb96af0fd
|
/TestCases/projp3.tst
|
9623e9130de11dd06014147e94dd148ad35b3fdf
|
[] |
no_license
|
FikriAnuar/LaTeXParser
|
9bf5d0f1ea85d26ae4cb4cb72ef0cd95a7e358d6
|
97a872d3903aafea98045050f1782b0ff7840ed7
|
refs/heads/master
| 2022-12-12T04:17:47.702201
| 2020-09-09T16:38:05
| 2020-09-09T16:38:05
| 294,170,332
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,191
|
tst
|
projp3.tst
|
\begin{document}
The third and final part of the semester project focuses on the actual
generation of formatted output from Latex input. There are 5 tasks
for this project, with the divisions given to differentiate between
required work point totals and bonuses. Note that you {\it MUST} utilize the
{\it union} command to redefine the parsing stack in yacc bison.
This project is worth 100 points with up to 15 bonus points. The tasks
for the project are:
\begin{enumerate}
\item Basic Text Processing Capabilities (35 points total),
including: Section Subsection Table of Contents (5pts),
Line Spacing Single-Double-Triple (5pts), Page Numbering Styles (2.5pts),
Horizontal Vertical Spacing (2.5pts), Italics Roman Fonts (2.5pts),
Paragraphs Noindent (2.5pts), Right Justification (10pts), and
Begin End Single Blocks (5pts).
\item Advanced Text Processing capabilities (55 points total),
including: Itemize Blocks (5pts), Enumerate Blocks (5pts),
Center Blocks (5pts), Verbatim Blocks (5pts), Tabular Blocks (10pts),
Table Blocks with Refs Captions (5pts), and
Relevant Combinations of Blocks (20pts).
\item Documentation, Log, Testing (10 points total).
\item Bonus A: Nested Blocks within Single Environment
\item Bonus B: Full-Blown Verbatim: All possible Latex commands that are embedded
in a verbatim block (e.g., backslash, blocks, etc.) are ignored.
\end{enumerate}
The directory {\it home ug1 demurjs CSE244.SP94 Part3} contains a number of
important files, including:
\begin{verbatim}
latex.l : A common latex lex file.
latexp3.y : A yacc specification where verbatim works.
latexp3code.y : A yacc specification with sample code generation.
util.c : A number of C utility routines.
generate.c : A number of routines used to generate code.
\end{verbatim}
Portions of these and other files will be discussed in class. The third part
of the project is due on Monday, May 2, 1994. Please hand in the following:
\begin{enumerate}
\item The yacc bison specification for tasks 1, 2, and 3. DO NOT HAND
IN C files! Also include copies of any relevant C
files. Make sure that these are well-commented, clear, and organized.
\item Documentation of your solution that includes: (1) any assumptions that you
make regarding the output format and style of your document (e.g., margins,
page number locations, handling underlining, etc.); (2) a log file that
keeps track of all of your major design steps, implementation strategies,
problems encountered (with lex yacc) and their solutions, aspects of the
project that were easy hard, changes that were made to the grammar, etc.
The key word is MAJOR design steps. NOTE AGAIN THAT
YOUR DOCUMENTATION MUST BE GENERATED USING YOUR LATEX COMPILER!!!!
\item Test cases and test results for all tasks, clearly marked and organized.
\item The directory location for your files and detailed compilation instructions.
\end{enumerate}
{\it IMPORTANT:} Do not open your directory for access by the world until
7:00 p.m. on May 2.
\end{document}
|
7bc406ccea121dcca4d72ca217a6a7025755c5c9
|
6f42ce02216774066d077c6db628f9df34bc527f
|
/packages/test code/Stewardship gift log script.tst
|
1207b7c6e9f06c607142f1bd6f1d76a2caef483d
|
[] |
no_license
|
phively/nu-plsql
|
2d0181fb9eea1e1118369e47bb4ac7ab3f7ec3d9
|
806afe34fe56dfc4fb1d7237a956df04c8e9ba82
|
refs/heads/master
| 2023-09-03T23:34:37.122157
| 2023-08-30T20:11:25
| 2023-08-30T20:11:25
| 78,759,887
| 10
| 3
| null | 2023-09-07T17:11:41
| 2017-01-12T15:37:39
|
PLSQL
|
UTF-8
|
Scilab
| false
| false
| 3,964
|
tst
|
Stewardship gift log script.tst
|
PL/SQL Developer Test script 3.0
122
-- Created on 6/13/2017 by PBH634
Declare
-- Local variables here
Type rc2 Is Ref Cursor;
crs sys_refcursor;
Type rec Is Record (
ID_NUMBER varchar2(10),
PREF_MAIL_NAME varchar2(512),
FACULTY_STAFF_IND varchar2(512),
JOINT_IND varchar2(1),
JOINT_NAME_1 varchar2(512),
JOINT_NAME_2 varchar2(512),
JNT_FORMAL_SALUTATION varchar2(512),
PREF_NAME_SORT varchar2(512),
RECORD_TYPE varchar2(512),
RECORD_STATUS varchar2(512),
PREF_CLASS_YEAR varchar2(512),
PREF_SCHOOL varchar2(512),
PREF_ADDRESS_LINE1 varchar2(512),
PREF_ADDRESS_LINE2 varchar2(512),
PREF_ADDRESS_LINE3 varchar2(512),
PREF_ADDRESS_LINE4 varchar2(512),
PREF_ADDRESS_LINE5 varchar2(512),
PREF_ADDRESS_LINE6 varchar2(512),
PREF_ADDRESS_LINE7 varchar2(512),
PREF_ADDRESS_LINE8 varchar2(512),
TX_GYPM_IND varchar2(1),
TX_NUMBER varchar2(512),
TX_SEQUENCE integer,
PMT_ON_PLEDGE_NUMBER varchar2(10),
ASSOCIATED_CODE varchar2(512),
TRANSACTION_TYPE varchar2(512),
PAYMENT_TYPE varchar2(512),
DATE_OF_RECORD varchar2(10),
PROCESSED_DATE varchar2(10),
LEGAL_CREDIT float,
SOFT_CREDIT float,
TOTAL_TRANS_AMT float,
PMT_ON_PLEDGE_DATE varchar2(10),
PMT_ON_PLEDGE_AMOUNT float,
PLEDGE_BALANCE float,
PLEDGE_STATUS varchar2(512),
PAY_FREQUENCY varchar2(512),
PLEDGE_COMMENT varchar2(512),
RECURRING_12MONTHS_AMOUNT float,
ALLOCATION_CODE varchar2(512),
ALLOC_SHORT_NAME varchar2(512),
ALLOC_SCHOOL_GROUP varchar2(512),
ALLOC_DEPARTMENT varchar2(512),
APPEAL_CODE varchar2(512),
APPEAL_DESC varchar2(512),
TRANSACTION_CATEGORY varchar2(512),
TRUSTEE_CREDIT_IND varchar2(1),
BATCH_NUMBER varchar2(512),
PRIM_PREMIUM_CNT float,
PRIM_PREMIUM_AMT float,
ADJUSTMENT_IND varchar2(512),
REASON_CHANGED varchar2(512),
REASON_CHANGED_DATE varchar2(10),
CURRENT_FY varchar2(10),
CURRENT_FY_GIFT_AMOUNT float,
CURRENT_FY_GIFT_COUNT integer,
PREVIOUS_FY varchar2(10),
PREVIOUS_FY_GIFT_AMOUNT float,
PREVIOUS_FY_GIFT_COUNT integer,
SELECTED_SCHOOL_GROUP varchar2(512),
PROCESSED_COMMENT varchar2(512),
ANONYMOUS_IND varchar2(1),
NOTATIONS varchar2(1000),
REPORT_GROUPING varchar2(512),
P_MIN_AMOUNT varchar2(512),
P_MAX_AMOUNT varchar2(512),
PROSPECT_MANAGER varchar2(512),
ALLOC_LONG_NAME varchar2(512),
SALUTATION_TYPE1 varchar2(512),
STAFF_SALUTATION1 varchar2(512),
SALUTATION_TYPE2 varchar2(512),
STAFF_SALUTATION2 varchar2(512),
SALUTATION_TYPE3 varchar2(512),
STAFF_SALUTATION3 varchar2(512),
V_USER_NAME varchar2(512)
);
Type recs Is Table Of rec;
res rec;
results recs;
Begin
-- Test statements here
/* ADVANCE_NU.NU_RPT_PKG_SCHOOL_TRANSACTION.NU_RPT_P_SCHOOL_TRANS_REPORT(
p_start_date => '06/12/2017', p_end_date => '06/12/2017',
p_fiscal_year => '2017', i_username => 'pbh634', O_RC => crs
);
Fetch crs Bulk Collect Into results;
Execute Immediate 'Truncate Table rpt_pbh634.t_giftlog';
Commit Work;
Forall i in 1..(results.count)
Insert Into rpt_pbh634.t_giftlog Values results(i);
Commit Work;
*/
-- Delete table t_giftlog;
/*
Loop
Fetch crs Into res;
Exit When crs%notfound;
dbms_output.put_line(res.TX_NUMBER);
End Loop;
*/
ksm_gift_log.school_transaction_rpt;
dbms_output.put_line(ksm_pkg.get_fiscal_year(dt => add_months(trunc(sysdate, 'Month'), -1)));
dbms_output.put_line(to_char(add_months(trunc(sysdate, 'Month'), -1), 'mm/dd/yyyy'));
dbms_output.put_line(to_char(trunc(sysdate) - 1, 'mm/dd/yyyy'));
-- Scheduler test
/* dbms_scheduler.create_job(
job_name => 'rpt_pbh634.proc_ksm_gift_log',
job_type => 'PLSQL_BLOCK',
job_action => 'Begin ksm_gift_log.school_transaction_rpt; Commit; End;',
start_date => sysdate + 1/24/60, -- 1 minute in the future
enabled => True
);
*/
End;
0
0
|
a34c8e87cd8c9bb48c1d3d66baa042e44476e90a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2175/CH7/EX7.1/7_1.sce
|
148c9ff70a54b5abc845cae8a816569fd01a298f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,069
|
sce
|
7_1.sce
|
clc;
m_C=12;
m_O2=32;
x_C=0.9;
O_req_CO2=x_C*([m_O2*1]/[m_C*1]);
CO2_prod=x_C*([m_C*1]+[m_O2*1])/[m_C*1];
//HYDROGEN
m_H2=2;
x_H=0.03;
O_req_H2O=x_H*[m_O2/2/2];
steam_prod=x_H*{0.5*[(m_H2)+(m_O2)/2]};
//SULPHUR
m_S=32;
x_S=0.005;
O_req_SO2=x_S*(m_O2/32);
SO2_prod=2*x_S;
O_req=O_req_CO2+O_req_H2O+O_req_SO2;
%O=23.3;
A=O_req*100/%O;
disp("A/F ratio is:");
disp(A);
//part (ii)
actual_A=A*(1+0.2);
%N=076.7;
m_N2=28;
N_supp=actual_A*%N/100;
O_supp=actual_A*%O/100;
x_N=0.01;
N2=N_supp+x_N;
O2=O_supp-O_req;
disp("actual A/F ratio is");
disp(actual_A);
m_CO2=m_C+m_O2;
m_H2O=m_H2+0.5*m_O2;
m_SO2=m_S+m_O2;
ni_CO2=CO2_prod/m_CO2;
ni_H2O=steam_prod/m_H2O;
ni_SO2=SO2_prod/m_SO2;
ni_O2=O2/m_O2;
ni_N2=N2/m_N2;
n_wet=ni_CO2+ni_H2O+ni_SO2+ni_O2+ni_N2;
n_dry=ni_CO2+ni_SO2+ni_O2+ni_N2;
disp(O_supp)
CO2_wet=ni_CO2/n_wet;
H2O_wet=ni_H2O/n_wet;
SO2_wet=ni_SO2/n_wet;
O2_wet=ni_O2/n_wet;
N2_wet=ni_N2/n_wet;
disp("wet analysis of CO2,H2O,SO2,O2,N2");
disp(N2_wet*100,O2_wet*100,SO2_wet*100,H2O_wet*100,CO2_wet*100);
|
dac4998f27d08ee84c7db256f7147cf15edb928c
|
c02a5183ecb8b32e87391dc92c7592fd218b55f0
|
/02/IsZero16.tst
|
0808c4340161b4899da72b5520f49eee9d396142
|
[] |
no_license
|
feel-think/nand2tetris
|
386ad8065c401a5995dbf3a38025417d2ad8125b
|
819e4efa4aa523a7805c453ddab24c2c16924eee
|
refs/heads/master
| 2022-02-11T17:24:01.814746
| 2019-09-17T08:00:10
| 2019-09-17T08:00:10
| 198,190,700
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 231
|
tst
|
IsZero16.tst
|
load IsZero16.hdl,
output-file IsZero16.out,
compare-to IsZero16.cmp,
output-list in%B1.16.1 out%B2.1.2;
set in %B0000000000000000,
eval,
output;
set in %B0001000100010001,
eval,
output;
set in %B0110011001100110,
eval,
output;
|
31105d19fd6199d874c21aa577c6e57dcbb0f2ec
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2735/CH12/EX12.8/Ex12_8.sce
|
84c738348ce2c40b8168e786d2afe093deedbe41
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 517
|
sce
|
Ex12_8.sce
|
clc
clear
//Initialization of variables
p1=400 //psia
t1=600 //F
h1=1306.9 //Btu/lbm
b1=480.9 //Btu/lbm
p2=50 //psia
h2=1122 //Btu/lbm
h3=1169.5 //Btu/lbm
b3=310.9 //Btu/lbm
//calculations
disp("All the values are obtained from Mollier chart,")
dw13=h1-h3
dw12=h1-h2
dasf=b3-b1
etae=dw13/dw12
eta=abs(dw13/dasf)
dq=dw13+dasf
//results
printf("Engine efficiency = %.1f percent",etae*100)
printf("\n Effectiveness = %.1f percent",eta*100)
printf("\n Loss of available energy = %.1f Btu/lbm",dq)
|
9a610c74a23f32ef8e36500ac9f0051228b88955
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1904/CH4/EX4.7/4_7.sce
|
c08f5222676f6744932d3815840c544632634b70
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,389
|
sce
|
4_7.sce
|
//To Find feeder properties of TL and VDL
//Page 211
clc;
clear;
D=1000; //Load Density in kVA per sq miles
Vll=4.16; //Line to Lien voltage in kV
//From The Tables and Curves from the Theory
K=0.007;
//For TL
TLImax=230; //Maximum Feeder Current
TLSn=sqrt(3)*Vll*TLImax; //Maximum Load Per Feeder
TLn=4; //No of Feeders
TLTSn=TLn*TLSn; //Substation Load
TLl4=sqrt(TLSn/D); //Feeder Length
TLS=2*TLl4; //Total Spacing
TLVDn=2*K*D*(TLl4^3)/3; //TotalVoltageDrop in the main
//For VDL
VDLVDn=3; //Percent Voltage Drop
VDLl4=nthroot((3*VDLVDn/(2*K*D)),3); //Feeder Length
VDLS=2*VDLl4; //Station size
VDLSn=D*(VDLl4^2); //Maximum Load Per Feeder
VDLn=TLn; //Number Of Feeders
VDLTSn=VDLn*VDLSn; //Susbtation Load
VDLImax=VDLSn/(sqrt(3)*Vll); //Ampere Rating of the Main
R=VDLImax/TLImax; //Ampere Loading
printf('\na) For Thermally Limited \n')
printf('i) The Substation Size = %g kVA\n',TLTSn)
printf('ii) Substation Spacing = %g miles\n',TLS)
printf('iii) Maximum Load Per Feeder = %g kVA\n',TLSn)
printf('iv) The Voltage Drop is %g percent\n',TLVDn)
printf('\nb) For Voltage Drop Limited \n')
printf('i) The Substation Size = %g kVA\n',VDLTSn)
printf('ii) Substation Spacing = %g miles\n',VDLS)
printf('iii) Maximum Load Per Feeder = %g kVA\n',VDLSn)
printf('iv) Ampere Loading of the Main is %g pu\n',R)
//Note The Approximation to 750 kVA
|
d62aa6b2e3fd6aae36500fd8524a7d0af8ffb7cc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1301/CH15/EX15.8/ex15_8.sce
|
d68f9f3cd29359032a26e2d1ec6f3ad6bc5a9f63
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 343
|
sce
|
ex15_8.sce
|
clc;
r=100; //resistance in ohm
v1=120; //potential diff in Volt
n2=50; //no. of turns
n1=200; //no. of turns
v2=(n2*v1)/n1; //potential diff in volt
i2=v2/r; //calculating current
i1=(n2/n1)*i2; //calculating current
disp(i1,"Current in primary circuit in Ampere = "); //diplaying result
|
af18a3559ec5ac5f29be87e62b7322241ee345ac
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/683/CH24/EX24.2/RD_2.sce
|
2186696e923a7983e36640ad1179df5b792ac126
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 506
|
sce
|
RD_2.sce
|
// sum 24-2
clc;
clear;
W=1000;
m=0.498;
BL=78;
d=12;
Am=0.39*d^2;
dw=sqrt(Am*4/(6*19*%pi));
Ew=74.4*10^3;
Ds=56*d;
sigb=Ew*dw/Ds;
Wb=sigb*%pi*(d^2)/4*10^-3;
l=20;
Ws=m*l;
a=1.2;
Wa=a*(W/2+Ws)*10^-3;
//Let the static load be Ps
Ps=(W/2+Ws)*9.81*10^-3;
//let the effective load be Peff
Peff=Ps+Wb+Wa;
FOS1=BL/Peff;
FOS2=BL/(5+0.612);
// printing data in scilab o/p window
printf("annual FOS is %0.2f ",FOS1);
printf("\n FOS neglecting bending load is %0.1f ",FOS2);
|
60b0aa16011207f71a7cf0b7cf6816d629da3f92
|
06c050d87b5b6b7e42f2d24889ec60b0f5fdd998
|
/Ajustes de Curvas.sce
|
d1aabc39a61c2582321712476d899f4c7369b6ac
|
[] |
no_license
|
jaimedantas/Numerical-Computation-Scilab
|
06958d436ee9724daa7c03f2ea14f195e5fbb596
|
66bf163bdbc0d9453cafff0369bbd5cd2fce78f3
|
refs/heads/master
| 2021-01-11T15:18:52.809391
| 2017-01-29T03:47:50
| 2017-01-29T03:47:50
| 80,327,110
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 651
|
sce
|
Ajustes de Curvas.sce
|
clc
//AJUSTES DE CURVAS
//o problema eh resolver o sitema linear Xa = y
//o produto escalar do erro com a funcao eh zero
//logo fica xT*x = xT*y + xT*e onde xT*e eh zero
//operacao eh a = (xT*x)^-1 * xT*y
//por comparacao coma funcao f(t) = a1 + a2t com a funcao f() = a1g(t) + a2(g2(t) .....
//exemplo 1
//t = [0.5; 1; 3];
//y = [0.5; 2; 2.5];
//x = [1 0.5; 1 1; 1 3];
//a = (x' *x)^-1 * x'*y//ou utiliza inv(a) para inversa
//exemplo 2
t = [0.5; 1.5; 2];
y = [0.5; 1.5; 2.8];
x = [1 0.5; 1 1.5; 1 2];
a = inv(x'*x)*x'*y;
plot(t,y, 'o')
tempo = 0:0.1:2.5;
plot(t, y, 'o', tempo, a(1) + a(2)*tempo)
//pode usar x = [t^0 t^1 t^2...]
|
1487b9238f3758b64d8d40e8f26543c7bc0314bb
|
584105ff5b87869494a42f632079668e4c3f82de
|
/TestCases/convolver/test12.sce
|
fcea5c553956905ad046ae671f76fcbe1a9c5e3b
|
[] |
no_license
|
kevgeo/FOSSEE-Computer-Vision
|
0ceb1aafb800580498ea7d79982003714d88fb48
|
9ca5ceae56d11d81a178a9dafddc809238e412ba
|
refs/heads/master
| 2021-01-17T21:11:31.309967
| 2016-08-01T14:45:40
| 2016-08-01T14:45:40
| 63,127,286
| 6
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,735
|
sce
|
test12.sce
|
//Reading grayscale image
I1 = imread("box.png");
//Kernel or filter and convolution on image is done with this kernel
//This kernel will give same image with no change
a = [0 0 0; 0 1 0; 0 0 0];
//Checking if error message comes if we don't add "values" string in front of 'a' variable
//Perforing convolution
out1 = convolver(I1,"scalar",1,"size",3,a);
//output->in getMatrixOfString: Invalid argument type, string matrix expected
//Reading image
I2 = imread("lena.jpeg");
//Kernel or filter and convolution on image is done with this kernel
//This kernel will give same image with no change
a = [0 0 0; 0 1 0; 0 0 0];
//Checking if error message comes if we don't add "values" string in front of 'a' variable
//Perforing convolution
out2 = convolver(I2,"scalar",1,"size",3,a);
//output->in getMatrixOfString: Invalid argument type, string matrix expected
//Reading image
I3 = imread("clc1.jpg");
//Kernel or filter and convolution on image is done with this kernel
//This kernel will give same image with no change
a = [0 0 0; 0 1 0; 0 0 0];
//Checking if error message comes if we don't add "values" string in front of 'a' variable
//Perforing convolution
out3 = convolver(I3,"scalar",1,"size",3,a);
//output->in getMatrixOfString: Invalid argument type, string matrix expected
//Reading grayscale image
I4 = imread("left01.jpg");
//Kernel or filter and convolution on image is done with this kernel
//This kernel will give same image with no change
a = [0 0 0; 0 1 0; 0 0 0];
//Checking if error message comes if we don't add "values" string in front of 'a' variable
//Perforing convolution
out4 = convolver(I4,"scalar",1,"size",3,a);
//output->in getMatrixOfString: Invalid argument type, string matrix expected
|
64b22c210862e03b33e0c4916f77b6412b064b05
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1619/CH1/EX1.14.1/Example1_14_1.sce
|
2be1863a9975575a267e31d3a9fe69bcad36d59f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 445
|
sce
|
Example1_14_1.sce
|
//Example 1.14.1 page 1.41
// To calculate the number of modes...
clc;
clear;
d = 50*10^-6; // diameter of fibre...
n1 = 1.48; //RI of core..
n2 = 1.46; //RI of cladding..
lamda = 0.82*10^-6; //wavelength of light..
NA = sqrt(n1^2-n2^2); // Numerical Aperture..
Vn= %pi*d*NA/lamda; //normalised frequency...
M = Vn^2/2; // number of modes...
printf(" The number of modes in the fibre are %d",M);
|
2c1f8d544b9f309d79ceb68f993a1b7e449045fe
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/135/CH1/EX1.7/EX7.sce
|
784587c9083235f5272ad1e1e9c2a9b89f5d2362
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 857
|
sce
|
EX7.sce
|
// Example 1.7: Potential barrier
clc, clear
rho_p=0.05; // Resistivity of p side of step-graded junction in ohm metres
rho_n=0.025; // Resistivity of n side of step-graded junction in ohm metres
mu_p=475e-4; // Mobility of holes in metres square per volt second
mu_n=1500e-4; // Mobility of holes in metres square per volt second
ni=1.45e16; // Intrinsic carrier concentration in atoms per metres cube
q=1.6e-19; // Charge on an electron in coulombs
VT=25e-3; // Voltage equivalent to temperatue at room temperature in volts
NA=1/(q*mu_p*rho_p); // Acceptor concentration in atoms per metres cube
ND=1/(q*mu_n*rho_n); // Donor concentration in atoms per metres cube
Vo=VT*log(NA*ND/ni^2); // Contact difference of potential in volts
Vo=Vo*1e3; // Contact difference of potential in milivolts
disp(Vo,"Contact difference of potential (mV) = ");
|
ca423a986b56a0ee891c2fbeaa739471a0e9152b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/226/CH14/EX14.12/example12_sce.sce
|
c9b3ebf4586f95ce5f4c4b04be0fd5e92b50aeb9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 238
|
sce
|
example12_sce.sce
|
//chapter 14
//example 14.12
//page 623
printf("\n")
printf("given")
Vcc=15;Vee=-15;Av=200000;SR=.5/10^-6;Vo=14;
V=(Vcc-1)-(Vee+1)
Vi=Vo/Av
disp("rise time of output is ")
t=(V/SR)*10^6;
printf("rise time of output is %dus\n",t)
|
99f3d29382ca9dc91204fc6872776f2707a26187
|
9835e6a99ef801fdd06a9193c1846cae987d740a
|
/MissionsU/MissionU-1.sce
|
4966a52fe007193ebcd0195e9a9acbc6bfe9368e
|
[] |
no_license
|
Martinhubz/Exo-Life
|
c2356d064d2f4727b7a42b104aaca340c0e65a64
|
dcea54e689b2d7bb3b454648d7cb6fb5a57f115f
|
refs/heads/master
| 2021-04-30T08:52:50.851933
| 2018-02-13T16:19:34
| 2018-02-13T16:19:34
| 121,385,860
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 473
|
sce
|
MissionU-1.sce
|
//---------Mission U-1-----------
//-------------------------------------
// Identifier les contours
// pour déterminer la présence d'un éventuel réseau routier
//
funcprot(0)
getd("../Fonctions")
missPath="./"
nomMission="MissionU-1"
// PBM--->matrice
img = readpbm(missPath+"U1_surface.pbm")
//Traitement de l'image
//rendu = medianFilter(img)
rendu = gaussien(img);
rendu = contours(rendu);
//matrice--->PBM
writepbm(rendu,"../Rendus/"+nomMission+"2.pbm");
|
cd59dffb0f667ca4abcf654be41d214da0b76032
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/866/CH2/EX2.3/2_3.sce
|
0a151b6c435a7a94b69dcd8a828e8baa8f6ea5ff
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 428
|
sce
|
2_3.sce
|
clc
//initialisation of variables
F1= -2*cosd(45) //KN
F2= -2*sind(45) //KN
F3= -5 //KN
x1= 0.4 //m
x2= 1.0 //m
Rc= 2.5 //m
Rd= 3.7 //m
//CALCULATIONS
Rah= -F1
Rav= -F3-F2
Ma= -F3*x1-F2*x2
Ra= sqrt(Rc^2+Rd^2)
theta= atan(Rc/Rd) *180/%pi
//RESULTS
printf ('Rah= %.1f kN',Rah)
printf (' \n Rav=%.1f KN',Rav)
printf (' \n Ma=%.1f KNm',Ma)
printf (' \n Ra=%.1f KN',Ra)
printf (' \n theta=%.1f degrees',theta)
|
ccd6b8878010defbccb1af38672bbc15bdc507b8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3428/CH11/EX5.11.4/Ex5_11_4.sce
|
098271e0e8fd018889e451434e9c1448e2e9d0ab
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 421
|
sce
|
Ex5_11_4.sce
|
//Section-5,Example-4,Page no.-D.124
//To calculate the energy required for dissociation of 1 bond
clc;
B_E=95*10^3 //Bond energy
h=6.626*10^-34
c=3*10^8
lm=2450*10^-10
E=(h*c)/lm
E_1=E*(1/4.184) //Energy in Calories
disp(E_1)
N_A=6.023*10^23
Ebar=B_E/N_A
disp(Ebar,'Energy required for the dissociation of one bond')
//Since E_1>Ebar,therefore the bond will be dissociated
|
88ede218f4843446dea45f776a537f9e2046becf
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set6/s_Electronic_Circuits_M._H._Tooley_995.zip/Electronic_Circuits_M._H._Tooley_995/CH4/EX4.3/Ex4_3.sce
|
542c3aa8e2bd808f00ad09810e077192c4710b09
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 131
|
sce
|
Ex4_3.sce
|
errcatch(-1,"stop");mode(2);//Ex:4.3
;
;
T=40*10^-3;//in Hz
f=1/T;
printf("Frequency of 40 ms waveform = %f Hz",f);
exit();
|
1011938875dd1eb5279243e5a112935e45fb7c94
|
717ddeb7e700373742c617a95e25a2376565112c
|
/2474/CH8/EX8.6/Ch08Ex06.sce
|
7b146cfee8cc395d63d3a366a73a2656a9a83b7a
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 1,177
|
sce
|
Ch08Ex06.sce
|
// Scilab code Ex8.6: Pg.332-333 (2008)
clc; clear;
// Part (a)
V = 2.24e-02; // Standard volume, m^3
N = 5.24e-06; // of He molecules in atmosphereNumber
N_A = 6.02e+23; // Avagrados number
h = 6.63e-34; // Plank's constant, J-s
k = 1.38e-23; // Boltzmann constant, J/K
T = 273; // Standard temperature, K
m = 1.66e-27; // Mass of He gas, kg
l = N_A*N/V*h^3/(3*m*k*T)^(3/2);
if (l < 1) then
printf("\nFor T = %d K, Boltzmann distribution describes He behaviour.", T)
else
printf("\nFor T = %d K, Boltzmann distribution does not describe He behaviour.", T);
end;
// Part (b)
T = 4.2; // Temperature, K
m_He = 4; // Atomic weight of He, g
rho = 0.124e-06; // Density of liquid He, g/m^3
N_A_V = (N_A*rho*1e+06)/m_He; // Particle density, atoms/m^3
l = N_A*N/V*h^3/(3*m*k*T)^(3/2);
if (l < 1) then
printf("\nFor T = %d K, Boltzmann distribution describes He behaviour.", T)
else
printf("\nFor T = %d K, Boltzmann distribution does not describe He behaviour.", T);
end;
// Result
// For T = 273 K, Boltzmann distribution describes He behaviour.
// For T = 4 K, Boltzmann distribution describes He behaviour.
|
bec95c370b33cd3c2ea8f29d47ffabeb5600f2b7
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/latc2tf/latc2tf11.sce
|
1595c447b417fedcbc936f05b621a5d1db96f1ee
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 209
|
sce
|
latc2tf11.sce
|
//i/p args contain negative values
k=[0 0 0 0 0];
v=[0 0 0 0 0];
[num,den] = latc2tf(k,v);
disp(num);
disp(den);
//output
// 0. 0. 0. 0. 0. 0.
//
// 1. 0. 0. 0. 0. 0.
//
|
efb2847f21fecad4087477005d5f22393a3b2271
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1484/CH4/EX4.20/4_20.sce
|
86dcb270e7c752f332f8c057031afbe89cb5a9a0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 237
|
sce
|
4_20.sce
|
clc
//initialisation of variables
L= 3 //ft
H1= 1.5 //ft
H2= 0.75 //ft
Cd= 0.62
g= 32.2 //ft/sec^2
//CALCULATIONS
Q= 2*Cd*60*L*sqrt(2*g)*(H1^1.5-H2^1.5)/3
//RESULTS
printf ('Discharge per minute= %.1f cubic ft per minute',Q)
|
aa5bdc4910ace3b02de27dab5aaa9b25838c59ec
|
9075eb7fae04907e48cd0a730255fdc9b69071f9
|
/sci/testsFFT.sci
|
f2e5e0fc8e7fbdeb06543ca87d705ed52d697326
|
[] |
no_license
|
philippematthieu/GolfBall
|
2173288fd434cc2abf5ee277fa584757fc172ebf
|
fe75825b89187dc68e78fe8d60c1a9f5596db075
|
refs/heads/master
| 2021-07-25T22:54:22.866727
| 2020-12-16T10:06:40
| 2020-12-16T10:06:40
| 66,164,790
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 81,358
|
sci
|
testsFFT.sci
|
function toto()
x=[1;2,5;
pause;
abort;
pause;
pause;
// Copyright (C) 2017 - Corporation - Author
//
// About your license if you have any
//
// Date of creation: 30 oct. 2017
//
// Dimensions d, w, and h
// The separation distance (d) between the antenna element and the back-reflection plane should be by
// approximately λc ~= 19 mm = 0.7 in.) This will enhance frequencies close to 4 GHz.
// The width (w) of the reflection plane should, in theory, be at least 15 cm (6 in.), providing
// a full wavelength of surface area margin on each side of the antenna element in the azimuth (horizontal)
// plane. Even wider back-reflectors will provide even better performance at wide angles, but in practice anything
// wider than 20 cm (9 in.) produces rapidly diminishing returns.
// The reflector height (h) isn’t as critical due to the dipole nature of the element. However, the reflector should have at
// least ¼λc = 19 mm = 0.7 in. of top and bottom margin, especially if the reflected antenna can tilt forward/back or the
// relative elevation angle of the other radio(s) can be large (more than +/-45 o.) In this case a wider top/bottom margin is recommended. Note: one can always
//
//
////fichier = '400_TrMin.wav';
//fichier = '1150_TrMin.wav';
//fichier = 'BalleRoule3_smooth.wav';
//fichier = 'BalleRoule4_smooth.wav';
//fichier = 'BalleRoule5_smooth.wav';
//fichier = 'BalleRoule2_dimpled.wav';
//fichier = 'BalleRoule5_smooth';
//fichier = 'Driver5.wav';[z,Fs,bits]=wavread(fichier);s2 = z(2,:);s2test = s2(11300:14200);[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = 'Driver4.wav';
//fichier = 'Driver3.wav';[z,Fs,bits]=wavread(fichier);s2 = z;s2test = s2(10000:14500);[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = 'Driver2.wav';
//fichier = 'Driver1.wav';
fichier = 'Fer7_5.wav';[z,Fs,bits]=wavread(fichier);s2 = z(2,:);s2test = s2(6500:11200);[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = 'Fer7_4.wav';[z,Fs,bits]=wavread(fichier);s2 = z(2,:);s2test = s2(16950:21000);[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = 'Fer7_3.wav';
//fichier = 'Fer7_2.wav';
//fichier = 'Fer7_1.wav';
//fichier = 'fer7Radar.wav';[z,Fs,bits]=wavread(fichier);s2 = z(2,:);s2test = s2(1:4500);[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = '1150_TrMin_Bruit.wav';
//fichier = '1150_TrMin.wav';
//fichier = 'BalleRoule1_dimpled.wav';
//fichier = '400_TrMinbruit.wav';
//fichier = 'roulage1.wav';
//fichier = 'BalleRoule3.wav';
//fichier = 'voiture1.wav';
//fichier = 'testRadar.wav';[z,Fs,bits]=wavread(fichier);s2 = z;s2test = s2(20000:60000);[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = 'testRadar2.wav';[z,Fs,bits]=wavread(fichier);s2 = z;s2test = s2(20000:70000);[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = 'testRadar3.wav';[z,Fs,bits]=wavread(fichier);s2 = z;s2test = s2(1:10000);[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = 'testRadar4.wav';[z,Fs,bits]=wavread(fichier);s2 = z;s2test = s2(1:10000);[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = 'roulage2.wav';
//fichier = 'lancer.wav';
//fichier = 'BalleFil.wav';
//fichier = 'BalleFil4Tourne.wav';[z,Fs,bits]=wavread(fichier);s2 = z(2,:);s2test = s2(1:10000);[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = 'BalleFil5Tombe.wav';
//fichier = 'Fer7_seul_1.wav';[z,Fs,bits]=wavread(fichier);s2 = z(2,:);s2test = s2(58000:60600);[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = 'Fer7_seul_2.wav';[z,Fs,bits]=wavread(fichier);s2 = z(2,:);s2test = s2(52000:55500);
//fichier = 'Fer7_seul_3.wav';[z,Fs,bits]=wavread(fichier);s2 = z(2,:);s2test = s2(52000:55500);
//fichier = 'Fer7_seul_4.wav';[z,Fs,bits]=wavread(fichier);s2 = z(2,:);s2test = s2(52000:55500);
//fichier = 'RecordAudio.wav';;[z,Fs,bits]=wavread(fichier);s2=z(2,14000:24000);s2test = s2;[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = 'test2_1_dehors_metal.wav';[z,Fs,bits]=wavread(fichier);s2=z(2,:);s2test = s2;[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = 'test2_2_dehors_metal.wav';[z,Fs,bits]=wavread(fichier);s2=z(2,:);s2test = s2;[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = 'test2_3_dehors_metal.wav';[z,Fs,bits]=wavread(fichier);s2=z(2,:);s2test = s2;[s2Centre, s2f] = plotFFT(s2test,Fs);
//fichier = 'test2_4_dehors_metal.wav';[z,Fs,bits]=wavread(fichier);s2=z(2,:);s2test = s2(1000:9000);[s2Centre, s2f] = plotFFT(s2test,Fs);
[z,Fs,bits]=wavread(fichier); // lecture du fichier wav
s2 = z(2,:);// prise en compte uniquement du canal 2, car le 1 n'est pas utilise dans mon appli
[s2Centre, s2f] = plotFFT(s2test,Fs);
// pour le fer7_5
s2test = s2( 6700:7600);// swing
s2test = s2( 7600:8400);// swing
s2test = s2( 8500:10000);// swing
s2test = s2(10000:11000);//
s2test = s2(11000:12000);//
s2test = s2(6800:12500);//
[s2Centre, s2f] = plotFFT(s2test,Fs);
figure();plot(s2Centre);
s2backswing = s2test(1:2100);
s2swing = s2test(2100:4000);
s2ball = s2test(4000:$);
figure();plot(s2test);
figure();plot(s2backswing);
figure();plot(s2swing);
figure();plot(s2ball);
plotFFT(s2test,Fs);
plotFFT(s2backswing,Fs);
plotFFT(s2swing,Fs);
plotFFT(s2ball,Fs);
[T,X1,H1,k,M,tt, f_y]=splitSignal(s2Centre,Fs);
figure();xset("colormap",hotcolormap(64));plot3d1(M(:,1:$/4));
[xx,yy,zz]=genfac3d(tt,f_y,M);
figure();xset("colormap",hotcolormap(64));plot3d1(xx,yy,zz);
///////////////////////////////////////////////////////////////////////////////////
[s2Centre, s2f] = plotFFT(s2test,Fs);
s2f = filtrageVitesse(s2Centre);
//s2f = filtrageVitesseSpin(s2Centre);
//s2f = filtrage(s2Centre,1,3000);
[tt5,f5,M5,M]=animFFT(s2f,44100,128,0);
[i,j]=find(M5 == max(M5));
f5(j)/19.49 // vitesse max
/////////////////////////////////////////////////////////////////////////
//////// Calcul de la vitesse de balle suite à la animFFT ///////////////
/////////////////////////////////////////////////////////////////////////
fichier = 'test2_3_dehors_metal.wav';[z,Fs,bits]=wavread(fichier);s2=z(2,:);s2test = s2(100:9000);s2f = filtrage(s2, 0, 28000);
[tt5,f5,M5]=animFFT(s2f,44100, 512 ,50 , 1);
fichier = 'test2_4_dehors_metal.wav';[z,Fs,bits]=wavread(fichier);s2=z(2,:);s2test = s2(1:14000);
[s2Centre, s2f, MaxFreq] = plotFFT(s2,Fs);
s2f = filtrage(s2, MaxFreq-100, MaxFreq+1);// filtrage pour le spin
[M5,tt5,f5]=animDensite(s2f,44100, 512 ,10 , 1, 0.0,1);
[m,k]=max(M5,'c');
figure();plot(tt5,f5(k)/19.49);figure();plot(f5,sum(M5,'r'));
fichier = 'test2_3_dehors_metal.wav';[z,Fs,bits]=wavread(fichier);s2=z(2,:);s2test = s2(100:9000);s2f = filtrage(s2, 100, 2000);
[tt5,f5,M5]=animFFT(s2f,44100, 512 ,50 , 1);
fichier = 'test2_3_dehors_metal.wav';[z,Fs,bits]=wavread(fichier);s2=z(2,:);s2test = s2(100:9000);s2f = filtrage(s2, 1000, 6000);
[tt5,f5,M5]=animFFT(s2f,44100, 512 ,50 , 1);
tic;[tt5,f5,M5]=animFFT(s2,44100, 512 ,50 , 1);
[VClub, VBall] = Info(M5);toc
// l'idee est de déterminer l'angle d'envole entre le SmashFactor donnee par le constructeur
// et le smashfactor observe. Du coup on obtien le loft dynamic
// en appairant la vitesse du club mesuré au radar et celui calculé par le modèle.
// attention toute fois, il faut revoir la définition de la vitesse de club par le radar.
// la vitesse max du club n'est pas la vitesse du club à l'impact....
// impact club = début du vol de balle (T(vitesse enregistrée max))
[V0Clubkmh,dynamicLoft_deg] = BallGolf(VBall, 30, 0,VBall / VClub,0.04545,0.2)
[t,VOL,Res] = Golfball(18, VClub, '7', 0,0,dynamicLoft_deg-30 ,1);
/////////////////////////////////////////////////////////////////////////////
f = figure();subplot(1,6,1);g=gca();g.axes_reverse=["on","off","off"];plot(sum(M5.^2,'r'),f5);subplot(1,2/3,1);f.color_map = jjetcolormap(64);Sgrayplot(tt5,f5,M5);title("Fenetre 3000 pts Hz non filtré");xlabel("s");ylabel("Hz");
f = figure();f.color_map = jetcolormap(64);Sgrayplot(tt5,f5,M5);title("Fenetre 3000 pts Hz non filtré");xlabel("s");ylabel("Hz");
f = figure();f.color_map = matcolormap(64);Sgrayplot(tt5,f5,M5);title("Fenetre 3000 pts RPM non filtré");xlabel("s");ylabel("Hz");
f = figure();f.color_map = hotcolormap(64);Sgrayplot(tt5,f5,M5);title("Fenetre 3000 pts Hz non filtré");xlabel("s");ylabel("Hz");
f = figure();f.color_map = jetcolormap(64);Sgrayplot(tt5,f5,M);title("Fenetre 3000 pts Hz non filtré");xlabel("s");ylabel("Hz");
/////////////////////////////////////////////////////////////////////////////////////
s2Centre2 = sin(Fvb*2*%pi*t+%pi/4);
a=angle(fft(s2_filtreWavelet));
figure();subplot(2,1,1);plot(a)
subplot(2,1,2);plot(abs(real(fft(s2Centre))))
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
fichier = 'fer7Radar.wav';
[z,Fs,bits]=wavread(fichier); // lecture du fichier wav
s2 = z(2,:);// prise en compte uniquement du canal 2, car le 1 n'est pas utilise dans mon appli
[s2Centre, s2f] = plotFFT(s2(1:10000),Fs);
s2f = filtrageVitesse(s2Centre);
[tt5,f5,M5,M]=animFFT(s2f,44100,300,0);
s2f = filtrage(s2,14000,22000);
[s2Centre, s2f] = plotFFT(s2f,Fs);
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
fichier = 'Fer7_5.wav';
[z,Fs,bits]=wavread(fichier); // lecture du fichier wav
s2 = z(2,:);// prise en compte uniquement du canal 2, car le 1 n'est pas utilise dans mon appli
[s2Centre, s2f] = plotFFT(s2(6800:11300),Fs);
s2f = filtrageVitesseSpin(s2Centre);
[tt5,f5,M5,M]=animFFT(s2f,44100,600,0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////:
//////////////////////////////////////////////////////////////////////////////////////////////////////////:
figure();plot(1);ax = gca();ax.auto_clear = 'on';
Fs = 44100;
N = 512;//Fs*0.01;
f = Fs*(0:(N)-1)/N;
[wft,wfm,fr] = wfir('bp',64,[1000/Fs 6000/Fs],'hm',[-1 -1]); // définition de la fenetre du filtre passa bande
//[s2f zf] = filter(wft,1,s2); // filtrage du signal par le filtre passe bande
while %T
//y = pa_recordwav(N,Fs ,1);
s2_fft = fft(filter(wft,1,pa_recordwav(N,Fs ,1)'));
//s2_fft = abs(real(fft(filter(wft,1,pa_recordwav(N,Fs ,1)'))));
//plot(f(2:$/2),s2_fft(2:$/2));
s2_densite_real = abs(real(s2_fft.*conj(s2_fft)));
plot(f(2:$/16),s2_densite_real(2:$/16));
[m,k]=max(s2_densite_real);
//m
//f(k)/19.49
end
/////////////////////////////////////////::
// affichage continue de la capture sonnore
//figure();plot(1);ax = gca();ax.auto_clear = 'on';
Fs = 44100;
N1 = 512;//Fs*0.1;// nb echantillon
f1 = Fs*(0:(N1)-1)/N1;
N2 = 512;//Fs*1.0;// nb echantillon
N3 = N1 + N2;// nb echantillon
f2 = Fs*(0:(N2)-1)/N2;
f3 = Fs*(0:(N3)-1)/N3;
[wft,wfm,fr] = wfir('bp',64,[1000/Fs 6000/Fs],'hm',[-1 -1]); // définition de la fenetre du filtre passa bande
tic;
while %T
//tic();
s1 = pa_recordwav(N1,Fs ,1)';//toc();tic();
//s1_fft = abs(real(fft(filter(wft,1,pa_recordwav(N1,Fs ,1)'))));
//plot(s1);
if max(abs(s1))>0.3 then
s2 = pa_recordwav(N2,Fs ,1)';
break;
end;//toc();
end;
s2 = [s1 s2];
plot(s1);
figure();plot(s2);
s2_fft = abs(real((fft(filter(wft,1, s2)))));
figure();plot(f3(2:$/8),s2_fft(2:$/8));
conjuguee_s2 = conj(s2_fft);
s2_densite = s2_fft.*conjuguee_s2;
s2_densite_real = abs(real(s2_densite));
figure();plot(f3(2:$/8),s2_densite_real(2:$/8));
[m,k]=max(s2_densite_real);
[M5,tt5,f5]=animDensite(s2,44100, 512 ,16 , 1, 0.0,1);
/////////////////////////////////////////////////////////////////////
[i,j]=find(M5 == max(M5));
a=f5(j);
b=a(1:$-1);
c=a(2:$);
plot(c-b);
a=max(M5,'r');// amplitude en fonction de la fréq
b=a(1:$-1);
c=a(2:$);
figure();plot(f5(1:$-1),c-b);
figure();plot(f5,a);
aa=max(M5,'c');// amplitude en fonction de la tu temps
bb=aa(1:$-1);
cc=aa(2:$);
figure();plot(tt5(1:$-1),cc-bb);
figure();plot(tt5,aa);
/////////////////////////////////////////////////////////////////////
s2test=(s2Centre(2200:4800));
[s2Centre, s2f, MaxFreq] = plotFFT([s2test],Fs);
s2f = filtrage(s2, MaxFreq-100, MaxFreq+1);
[s2Centre, s2f, MaxFreq] = plotFFT([s2test, zeros(1,2000)],Fs);
s2f = filtrage(s2, MaxFreq-100, MaxFreq+1);
[M5,tt5,f5]=animDensite(s2f,44100, 512 ,10 , 1, 0.05,1);
///////////////////////////////////////////////////////////////////////
fichier = 'test2_2_dehors_metal.wav';[z,Fs,bits]=wavread(fichier);s2=z(2,:);s2test = s2(4001:12192);
//s2test = s2(6000:12192);figure();plot(s2test);// vecteur uniquement de la ball
//[s2Centre, s2f, MaxFreq] = plotFFT(s2test,Fs);
Fs = 44100;
N=size(s2test,'c'); // definition du nombre d'échantillons
fq=Fs*(0:(N)-1)/N;
tau = 1 / Fs; // interval temporel de l'echantillonnage
t = (0:N - 1) * tau; // construction du vecteur temps
[wft,wfm,fr] = wfir('bp',64,[600/Fs 6000/Fs],'hm',[-1 -1]);
s2Centre = s2test - mean(s2test);
[s2f zf] = filter(wft,1,s2Centre);
[M5,tt5,f5]=animDensite(s2f,44100, 512 ,16 , 1, 0.0,1);
fig = figure();fig.color_map = jetcolormap(128);Sgrayplot(tt5,f5,M5);xlabel("s");ylabel("Hz");
fig = figure();fig.color_map = jetcolormap(2);Sgrayplot(1:size(T,1),1:size(T,2),T);
s2f_fft = fft(s2f);
s2f_fft_real = abs(real(s2f_fft));
[m,n] = max(s2f_fft_real(2:$/2));
a = fq(2:$/2);
MaxFreq = a(n);
s2f = filtrage(s2Centre, (MaxFreq-1), (MaxFreq+1));// filtrage pour centrer sur le spin
[M5,tt5,f5]=animDensite(s2f,44100, 512 ,16 , 1, 0.0,1);
[vClub, vBall, SmashFactor] = Info(M5,f5)
// filtrage pour la tête de club ubiquement
s2f = filtrage(s2Centre, (MaxFreq-1000)/SmashFactor, (MaxFreq-200)/SmashFactor);// filtrage pour la tête de club ubiquement
[M5,tt5,f5]=animDensite(s2f,44100, 512 ,16 , 1, 0.0,1);
[M5,tt5,f5]=animDensite(s2Centre,44100, 512 ,16 , 1, 0.0,1);
[thetaLoft, ShafLeanImp, launchAngle, spin] = LaunchAngle(vBall, vClub, '7')
[t,VOL,Res] = Golfball(18, vClub, '7', 0,0,ShafLeanImp ,1);
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
s2test = s2(7000:10096);figure();plot(s2test);// vecteur uniquement de la ball
Fs = 44100;
N=size(s2test,'c'); // definition du nombre d'échantillons
fq=Fs*(0:(N)-1)/N;
Nf = 512;
Nr = 16;
s2Centre = s2test - mean(s2test);
y = sgolayfilt(s2Centre,12,23);
plot(s2Centre);
plot(y,'r');
s2_fft = fft(s2Centre);
s2_densite = abs(real(s2_fft.*conj(s2_fft)));
// Visualisation de la vitesse de balle et spin
// entre 2000tr/min et 10000 tr/min soit entre (freq_Ball - 24Hz) à (freq_Ball - 121Hz)
figure();plot(fq(1:$/2),s2_densite(1:$/2));
plot(fq(1:$/2),dbv(s2_densite(1:$/2)),'r');
plot(fq(1:$/2),s2_densite(1:$/2).* dbv(s2_densite(1:$/2)),'y');
[M5,tt5,f5]=animDensite(s2Centre,44100, 512 ,16 , 1, 0.0,1);
fig = figure();fig.color_map = jetcolormap(128);Sgrayplot(tt5,f5,M5);xlabel("s");ylabel("Hz");
// vitesse de la balle = Freq_Max
[m,n] = max(s2_densite(1:$/2).* dbv(s2_densite(1:$/2)));
a = fq(2:$/2);
MaxFreq = a(n);
// recherche du rpm du Spin
MaxSpin = MaxFreq - 121;
MinSpin = MaxFreq - 30;
[iMin,jMin]=find(fq > MaxSpin);
[iMax,jMax]=find(fq < MinSpin);
fq_fen = fq(jMin(1):jMax($));
s2_densite_fen = s2_densite(jMin(1):jMax($));
figure();plot(fq(jMin(1):jMax($)),s2_densite(jMin(1):jMax($)))
[val, pos] = max(s2_densite_fen);
Spin = Freq2RpmSpin(MaxFreq - max(fq_fen(pos)));
/////////
s2_fft = fft(y);
s2_densite = abs(real(s2_fft.*conj(s2_fft)));
plot(fq,s2_densite,'r');
plot(fq,abs(real(fft(s2Centre-y').*conj(fft(s2Centre-y')))));
plot(fq,abs(real(fft(s2Centre-s2f).*conj(fft(s2Centre-s2f)))));
[T,X1] = splitSignal(s2Centre,Fs, Nf, Nr);
plot(fq,signal/max(signal),'c');
plot(fq,(h1.*signal)/max((h1.*signal)),'r');
plot(fq,(h2.*signal)/max((h2.*signal)),'b');
plot(fq,(h3.*signal)/max((h3.*signal)),'b');
plot(T(516/2-1,1:$),'y');
plot(T(516/2,1:$),'b');
plot(T(516/2+1,1:$),'r');
TT = [];
for ii = 1:size(M5,2)
TT(ii,:) = splitSignal(M5(ii,:),Fs, Nf/2, Nr);
end;
plot(f5,M(1,1:$/2))
[m,k]=max(M5,'c');
figure();plot(tt5,f5(k)/19.49);figure();plot(f5,sum(M5,'r'));
dT = tt5(2:$) - tt5(1:$-1);
dT($+1) = dT($);
figure();plot(tt5,f5(k)'.*dT/19.49)
Distance = f5(k)'.*dT/19.49;
SumD = 0;
for ii=2:size(Distance,1)
SumD(ii) = SumD(ii-1)+Distance(ii-1);
end
figure();plot(tt5,SumD)
[m,k]=max(s2Centre);
t(k)
plot(tt5(2:$),SumD(2:$))./tt5(2:$))
plot3d1(tt5'*1e5,f5,M5*1e4)
////////////////////////////////////////////////////////////////////////////////
fichier = 'Fer7_seul_4.wav';[z,Fs,bits]=wavread(fichier);s2=z(2,:);s2test = s2(4001:12192);
//s2test = s2(6000:12192);figure();plot(s2test);// vecteur uniquement de la ball
//[s2Centre, s2f, MaxFreq] = plotFFT(s2test,Fs);
Fs = 44100;
N=size(s2test,'c'); // definition du nombre d'échantillons
fq=Fs*(0:(N)-1)/N;
tau = 1 / Fs; // interval temporel de l'echantillonnage
t = (0:N - 1) * tau; // construction du vecteur temps
[wft,wfm,fr] = wfir('bp',64,[2000/Fs 2001/Fs],'hm',[-1 -1]);
s2Centre = s2test - mean(s2test);
[s2f zf] = filter(wft,1,s2Centre);
[M5,tt5,f5]=animDensite(s2f,44100, 512 ,16 , 1, 0.0,1);
fig = figure();fig.color_map = jetcolormap(128);Sgrayplot(tt5,f5,M5);xlabel("s");ylabel("Hz");
fig = figure();fig.color_map = jetcolormap(4);Sgrayplot(tt5,f5,M5);xlabel("s");ylabel("Hz");
///////////////////////////////////////////////////////////////////////////////////////////////
[wft,wfm,fr] = wfir('bp',64,[0.03 0.08],'hm',[-1 -1]);
s2 = filter(wft,1, test1(Fs*5.8:Fs*6.1));
tic;[M5,tt5,f5]=animDensite(s2,44100, 512 ,16 , 1, 0.0,1);toc
[m,k]=max(M5,'c');figure();plot(tt5,f5(k)/19.49);
figure();plot(f5,sum(M5,'r'));[m,k]=max(sum(M5,'r'));
f(k)/19.49
tic;[M5,tt5,f5]=animDensite(s2,44100, 512 ,16 , 1, 0.0,0);toc
fig = figure();fig.color_map = jetcolormap(128);
plot(1);ax = gca();ax.auto_clear = 'on';
for ii=1:size(tt5,1)
//Sgrayplot(tt5,f5,M5);xlabel("s");ylabel("Hz");
plot(f5,M5(ii,:));
//sleep(50);
end;
/////////////////////////////////////////////////////////////////////////////////////////////////////
fichier = 'Serie22.wav';[s2,Fs,bits]=wavread(fichier);
test = s2;
Fs = 44100;
nbEchantillon = 1024*1;
f1 = Fs*(0:(nbEchantillon)-1)/nbEchantillon;
//fig = figure();fig.color_map = hotcolormap(128);drawlater();plot(1);ax = gca();ax.auto_clear = 'on';tic;
[wft,wfm,fr] = wfir('bp',64,[0.04 0.09],'hm',[-1 -1]);
// boucle de détection de début de swing, ou le joueur bouge, pas la vitesse max
for ii=2:size(test , 2)/nbEchantillon,
//tic;
//drawnow();
//drawlater();
//[M5,tt5,f5]=animDensite(test((ii)*nbEchantillon+1:nbEchantillon*ii),44100, nbEchantillon ,16 , 0, -100.0,1);
//fig = figure();fig.color_map = jetcolormap(128);Sgrayplot(tt5,f5,M5);
s2_fft = abs(real(fft(filter(wft,1, test((ii)*nbEchantillon+1:nbEchantillon*(ii+1))))));
if (max(s2_fft,'c') > 3) then,
break;
end;
//toc
//Sgrayplot(tt5,f5,M5);
//plot(f(1:$/2), s2_fft(1:$/2));
end;//toc
[m,k] = max(s2_fft,'c');//vitesse probable du club
//drawnow();
////////// Plot de la FFT Club puis Balle juste avec la FFT //////////////////////////////////
s2_fft = abs(real(fft(filter(wft,1, test((ii-1)*nbEchantillon+1:nbEchantillon*(ii+1))))));
f1 = Fs*(0:(size(s2_fft,2))-1)/size(s2_fft,2);
figure();plot(f1(1:$/2)/19.49, s2_fft(1:$/2)/max(s2_fft(1:$/2)),'r');
s2_fft = abs(real(fft(filter(wft,1, test((ii+2)*nbEchantillon+1:nbEchantillon*(ii+4))))));
f1 = Fs*(0:(size(s2_fft,2))-1)/size(s2_fft,2);
plot(f1(1:$/2)/19.49, s2_fft(1:$/2),'b');f1(k)/19.49
///////////////////////////////////// SIMULATION //////////////////////////////////////////
/////// recherche de la fonction sinus appérée à la fréquence sin(wt) = sin(2*%pi*F*t))
// Form a signal containing a 50 Hz sinusoid of amplitude 0.7 and a 120 Hz sinusoid of amplitude 1.
// S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
[wft,wfm,fr] = wfir('bp',64,[0.04 0.09],'hn',[-1 -1]);
[wft,wfm,fr] = wfir('bp',64,[2000/Fs 2001/Fs],'hm',[-1 -1]);
s2_fft = abs(real(fft(filter(wft,1, test((ii)*nbEchantillon+1:nbEchantillon*(ii+4))))));
[m,k] = max(s2_fft,'c');
f1 = Fs*(0:(size(s2_fft,2))-1)/size(s2_fft,2);
t = (0:size(f1,2)-1)/Fs;
Ref = GenereSignalSimu(44100, 4096, 0.03, 120, 160, 5000,[1 1 1], 0);
[wft,wfm,fr] = wfir('bp',64,[150*19.49/Fs 169*19.49/Fs],'hm',[-1 -1]);
ff1 = Fs*(0:(size(Ref,2))-1)/size(Ref,2);
Ref_fft = abs(real(fft(filter(wft,1, Ref))));
plot(ff1(1:$/2)/19.49, Ref_fft(1:$/2)/max(Ref_fft(1:$/2)),'c');
plot(f1(1:$/2), s2_fft(1:$/2)/max(s2_fft(1:$/2)),'b');f1(k)/19.49
plot(f1(1:$/2), s2_fft(1:$/2)/max(s2_fft(1:$/2))-Ref_fft(1:$/2)/max(Ref_fft(1:$/2)),'g');f1(k)/19.49
[M5,tt5,f5]=animDensite(filter(wft,1, Ref),44100, 512 ,16 , 0, -75,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,M5/19.49);
t = (0:size(test,2)-1)/Fs;
test = test - Ref;
////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////
[m,k] = max(s2_fft,'c');
f1(k)/19.49
//[M5,tt5,f5]=animDensite(filter(wft,1, test),44100, 512 ,16 , 0, 0.0,1);tic
[M5,tt5,f5]=animDensite(filter(wft,1, test((ii-1)*nbEchantillon+1:nbEchantillon*(ii+3))),44100, 512 ,16 , 0, -75,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,M5/19.49);
[vClub, vBall, SmashFactor,thetaLoft, ShafLeanImp, launchAngle, SpinZ] = Info(M5,f5,'7')
MM5 = (M5 ==1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,MM5/19.49);
figure();plot(f5/19.49,sum(MM5,'r'));
a = sum(MM5,'c');
a(find(a==0)) = %nan;
s2_fft = abs(real(fft(filter(wft,1, test((ii-1)*nbEchantillon+1:nbEchantillon*(ii+3))))));f1 = Fs*(0:(4*nbEchantillon)-1)/(4*nbEchantillon);figure();plot(f1(1:$/2)/19.49, s2_fft(1:$/2));
s2_fft = abs(real(fft(filter(wft,1, test((ii)*nbEchantillon+1:nbEchantillon*(ii+3))))));f1 = Fs*(0:(3*nbEchantillon)-1)/(3*nbEchantillon);figure();plot(f1(1:$/2)/19.49, s2_fft(1:$/2));
[t,VOL,Res] = Golfball(18, vClub, '7', 0,-0,ShafLeanImp ,0);
///////////////////////////////////////////////////////////////////////////////
/////////////// détection précise de la vitesse initiale de la balle
[wft,wfm,fr] = wfir('bp',64,[0.04 0.09],'hm',[-1 -1]);
[M5,tt5,f5]=animDensite(filter(wft,1, test((ii)*nbEchantillon+1:nbEchantillon*(ii+3))),44100, 512 ,16 , 0, -90,1);
//fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,M5/19.49);
[vClub, vBall, SmashFactor,thetaLoft, ShafLeanImp, launchAngle, SpinZ] = Info(M5,f5,'7')
freqC = vBall*19.49/Fs ;[wft,wfm,fr] = wfir('bp',64,[freqC freqC+0.00001 ],'hm',[-1 -1]);
[tt5,f5,MB5]=animDensite(filter(wft,1, test((ii-1)*nbEchantillon+1:nbEchantillon*(ii+10))),44100, 512 ,16 , 0, -90.0,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,MB5/19.49);
/////////// spin
freqC = (vBall+5)*19.49/Fs ;[wft,wfm,fr] = wfir('bp',64,[freqC - 0.000001 freqC ],'hm',[-1 -1]);
[tt5,f5,MS5]=animDensite(filter(wft,1, test((ii)*nbEchantillon+1:nbEchantillon*(ii+20))),44100, 4096 ,16 , 0, -900.0,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,MS5/19.49);
/////////////// puis détection précise de la vitesse initiale du club
freqC = vClub*19.49/Fs ;[wft,wfm,fr] = wfir('bp',64,[freqC freqC+0.000001 ],'hm',[-1 -1]);
[tt5,f5,MC5]=animDensite(filter(wft,1, test((ii-1)*nbEchantillon+1:nbEchantillon*(ii+2))),44100, 512 ,16 , 0, -90.0,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,MC5/19.49);
[vClub, vBall, SmashFactor,thetaLoft, ShafLeanImp, launchAngle, SpinZ] = Info(M5,f5,'7')
M55 = -M5(1:$-1,:)+M5(2:$,:);
M55 = [0*(1:size(M55,'c'));M55];
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,(M5+M5.*M55)/19.49);
[m,k]=max(M5,'c');
figure();plot(tt5,f5(k)/19.49);
figure();plot(f5/19.49,sum(M5,'r'));
f_fft = abs(real(fft(f5(k)-mean(f5(k)))));;
ffft = Fs*(0:(size(f_fft,2))-1)/size(f_fft,2);
figure();
subplot(2,1,1);plot(ffft(1:$/2),f_fft(1:$/2));
a=angle(fft(f_fft(1:$/2)));
subplot(2,1,2);plot(ffft(1:$/2),a);
////////////////////////////////////////////////////////////////////////////////
// Etude de la variation de l'angle de l'objet eclaire en focntion de la vitesse doppler mesurée
//
// F = 2*V*(Ft/c)*Cos(theta) = 19.49*V*Cos(Theta)
// dF = 19.49*V*sin(theta)
Theta = [20*%pi/180; VOL(2:$,3)./VOL(2:$,1)];
plot(VOL(:,1),cos(atan(Theta))*160);
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////// Algo de détection de vitesse club et balle //////////////
/////////////////////////// avec la fft capturée //////////////
// lecture du signal
// lecture de largeur de spectre se fait à -20db
//
forder = 64;
[wft,wfm,fr] = wfir('bp',forder,[0.044 0.09],'hm',[-1 -1]);
//Calculate window coefficients
//[win_l_,cwp_]=window(wtype,forder,ffpar);
//wtype = 'hm';
//ffpar = [-1 -1];
forder = 64;
fl = 0.044; // fcbasse = 2000/44100
fh = 0.09; // fchaute = 6000/44100 no2=(forder-1)/2;
ino2 = int(no2);
xt=(-no2:no2);
un=ones(1,forder);
// hamming
win_l=.54*un+.46*cos(2*%pi*xt/(forder-1));
//hanning
//win_l=.5*un+.5*cos(2*%pi*xt/(n-1));
//Get forder samples of the appropriate filter type
//hfilt_=ffilt(ftype,forder,fl,fh);
//Calculate n samples of the sinc function
//Band pass filter
wc=%pi*(fh+fl);
fl=(fh-fl)/2;
//x=filt_sinc(forder,fl);
wl = fl*2*%pi;
xn = sin(wl*(-no2:no2));
xd = %pi*(-no2:no2);
if ino2==no2 then
xn(no2+1) = 2*fl;
xd(no2+1) = 1;
end
x=xn./xd;
y=2*cos(wc*(-no2:no2));
hfilt=x.*y;
//Multiply window with sinc function
wft_=win_l.*hfilt;
Fs = 44100;
nbEchantillon = 256*1;
fichier = 'serie211.wav';
[test,Fs,bits]=wavread(fichier); // serie211 : 122.68kmh et 154.23kmh
tic;
test = test - mean(test);
// boucle de détection de début de swing, ou le joueur bouge
// l'indice ii donne le début du signal
for ii=2:size(test , 2)/nbEchantillon,
s2_fft = abs(real(fftpadding(filter(wft,1, test((ii)*nbEchantillon+1:nbEchantillon*(ii+1))))));
if (max(s2_fft,'c') > 3) then,
break;
end;
end;//
// Identificatin de la vitesse de club
s2_fft = abs(real(fftpadding(filter(wft,1, test((ii-1)*nbEchantillon+1:nbEchantillon*(ii+3))))));//1024 echantillon.
//[s2_fft, f1] = FftFiltree(test((ii)*nbEchantillon+1:nbEchantillon*(ii+2)),Fs,1700,6000);
//f1 = Fs*(0:(size(s2_fft,2))-1)/size(s2_fft,2);plot(f1(1:$/2)/19.49, s2_fft(1:$/2)/max(s2_fft(1:$/2)),'r');
//[M5,tt5,f5]=animDensite(filter(wft,1, (test((ii-5)*nbEchantillon+1:nbEchantillon*(ii+50)))),44100, 1024 ,16 , 1, -90,1);
[m,k] = max(s2_fft,'c');VClub = Fs*((k)-1)/size(s2_fft,2)/19.49;//vitesse probable du club, qui est la première détection de vitesse seuille
// Identification de la vitesse de balle probable
s2_fft = abs(real(fft(filter(wft,1, test((ii+7)*nbEchantillon+1:nbEchantillon*(ii+20))))));
//f1 = Fs*(0:(size(s2_fft,2))-1)/size(s2_fft,2);plot(f1(1:$/2)/19.49, s2_fft(1:$/2)/max(s2_fft(1:$/2)));
//[s2_fft, f1] = FftFiltree(test((ii+4)*nbEchantillon+1:nbEchantillon*(ii+8)),Fs,1700,6000);
//[M5,tt5,f5]=animDensite(filter(wft,1, (test((ii+3)*nbEchantillon+1:nbEchantillon*(ii+8)))),44100, 256 ,16 , 1, -90,1);
//f1 = Fs*(0:(size(s2_fft,2))-1)/size(s2_fft,2);plot(f1(1:$/2)/19.49, s2_fft(1:$/2)/max(s2_fft(1:$/2)),'b');
[m,k] = max(s2_fft,'c');VBall = Fs*((k)-1)/size(s2_fft,2)/19.49;//vitesse probable de la balle, qui est la première détection de vitesse seuil f1 = Fs*((k)-1)/size(s2_fft,2)
// identification précise de la vitesse de la balle avec un filtrage passe bande fin
freqC = VBall*19.49/Fs ;[wft,wfm,fr] = wfir('bp',forder,[freqC-0.000001 freqC+0.000001 ],'hm',[-1 -1]);
s2_fft = abs(real(fftpadding(filter(wft,1, test((ii+7)*nbEchantillon+1:nbEchantillon*(ii+20))))));
//
//f1 = Fs*(0:(size(s2_fft,2))-1)/size(s2_fft,2);
//plot(f1(1:$/2)/19.49, s2_fft(1:$/2)/max(s2_fft(1:$/2)),'g');
[m,k] = max(s2_fft,'c');VBall = Fs*((k)-1)/size(s2_fft,2)/19.49;//vitesse probable de la balle, qui est la première détection de vitesse seuil
toc
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////
//
// Filtrage pour déterminer le spin balle
//
///////////////////////////////////////////
tic;
[wft1,wfm1,fr1] = wfir('bp',forder,[(VBall*19.49-RpmSpin2Freq(7000))/Fs (VBall*19.49-RpmSpin2Freq(3000))/Fs],'hm',[-1 -1]);
[wft2,wfm2,fr2] = wfir('sb',forder+1,[(VBall*19.49-100)/Fs (VBall*19.49+100)/Fs],'hm',[-1 -1]);
[wft3,wfm3,fr3] = wfir('bp',forder,[(VBall*19.49+RpmSpin2Freq(3000))/Fs (VBall*19.49+RpmSpin2Freq(7000))/Fs],'hm',[-1 -1]);
[wft4,wfm4,fr4] = wfir('bp',forder+1,[(VBall*19.49+RpmSpin2Freq(3000))/Fs (VBall*19.49+RpmSpin2Freq(15000))/Fs],'hm',[-1 -1]);
//[wft,wfm,fr] = wfir('bp',forder+1,[(VBall-0.5)*19.49/Fs (VBall+0.5)*19.49/Fs],'hm',[-1 -1]);
//s2_fft = abs(real(fftpadding(filter(wft,1, (x)))));
//[s2_fft, f1] = FftFiltree(test((ii+4)*nbEchantillon+1:nbEchantillon*(ii+8)),Fs,(VBall-0.5)*19.49 , (VBall+0.5)*19.49);
//f1 = Fs*(0:(size(s2_fft,2))-1)/size(s2_fft,2);
//plot(f1(1:$/2), s2_fft(1:$/2)/max(s2_fft(1:$/2)),'g');
s2_fftb = abs(real(fft( filter(wft1,1, filter(wft2,1, x)))));
//[s2_fftb, f1] = FftFiltree(test((ii+4)*nbEchantillon+1:nbEchantillon*(ii+8)),Fs,(VBall*19.49-RpmSpin2Freq(10000)) , VBall*19.49-RpmSpin2Freq(3000));
//f1 = Fs*(0:(size(s2_fftb,2))-1)/size(s2_fftb,2);
//plot(f1(1:$/2), s2_fftb(1:$/2)/max(s2_fftb(1:$/2)),'b')
[m k]=max(s2_fftb); MIN = (f1(k));
s2_fftc = abs(real(fft( filter(wft4, 1,filter(wft2, 1,x)))));
//[s2_fftc, f1] = FftFiltree(test((ii+4)*nbEchantillon+1:nbEchantillon*(ii+8)),Fs,(VBall*19.49+RpmSpin2Freq(3000)) , (VBall*19.49+RpmSpin2Freq(10000)));
//f1 = Fs*(0:(size(s2_fftc,2))-1)/size(s2_fftc,2);
//plot(f1(1:$/2), s2_fftc(1:$/2)/max(s2_fftc(1:$/2)),'r')
[m k]=max(s2_fftc); MAX = (f1(k));
toc
[Freq2RpmSpin(VBall*19.49-MIN) Freq2RpmSpin(-VBall*19.49+MAX)]
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
Ref_total = GenereSignalSimu(44100, 4096, 0.03, VClub, VBall, [Freq2RpmSpin(VBall*19.49-MIN) Freq2RpmSpin(-VBall*19.49+MAX)], [1, 1, 0], 0);
ff1 = Fs*(0:(size(Ref_total,2))-1)/size(Ref_total,2);
[wft,wfm,fr] = wfir('bp',forder,[(VBall-5)*19.49/Fs (VBall+5)*19.49/Fs],'hm',[-0 -0]);
Ref_total_fft = abs(real(fftpadding(filter(wft,1,Ref_total))));
plot(ff1(1:$/2), Ref_total_fft(1:$/2)/max(Ref_total_fft(1:$/2)),'b-o');
[wft1,wfm1,fr1] = wfir('bp',forder,[(VBall*19.49-RpmSpin2Freq(9000))/Fs (VBall*19.49+RpmSpin2Freq(9000))/Fs],'hm',[-1 -1]);
s2_fftb = abs(real(fftpadding( filter(wft1,1, x))));
f1 = Fs*(0:(size(s2_fftb,2))-1)/size(s2_fftb,2);plot(f1(1:$/2), s2_fftb(1:$/2)/max(s2_fftb(1:$/2)),'r');
[wft,wfm,fr1] = wfir('bp',forder,[(MIN)/Fs (MAX)/Fs],'hm',[-1 -1]);
[M5, tt5, f5]= animDensite(filter(wft,1, Ref_total),44100, 4096 ,64 , 0, -0,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,M5(:,1:$-1)/19.49);
[M5, tt5, f5]= animDensite(filter(wft,1, x),44100, 4096 ,64 , 0, -0,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,M5(:,1:$-1)/19.49);
xd = wden(x,'heursure','s','one',1,'sym8');figure();plot(t,xd);
s2_fft = abs(real(fftpadding( ( xd))));
f1 = Fs*(0:(size(xd,2))-1)/size(xd,2);
figure();plot(f1(1:$/2), s2_fft(1:$/2)/max(s2_fft(1:$/2)),'b');
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// calcul du signal de référence simulé en fonction de la vitesse de balle pour identifier le spin
t = (0:size(f1,2)-1)/Fs;
spin = 7634;//a déterminer
Ref_total = GenereSignalSimu(44100, 4096, 0.03, VClub, VBall, spin, [1, 1, 0], 0);
ff1 = Fs*(0:(size(Ref_total,2))-1)/size(Ref_total,2);
[wft,wfm,fr] = wfir('bp',forder,[(VBall-5)*19.49/Fs (VBall+5)*19.49/Fs],'hm',[-0 -0]);
Ref_total_fft = abs(real(fftpadding(Ref_total)));//
Ref_total_fft = abs(real(fftpadding(filter(wft,1,Ref_total))));
Ref_spin = GenereSignalSimu(44100, 4096, 0.03, VClub, VBall, spin, [0, 1, 0], 0);
[wft,wfm,fr] = wfir('bp',forder,[(VBall*19.49+RpmSpin2Freq(3000)))/Fs (VBall*19.49+RpmSpin2Freq(3000)))/Fs],'hm',[-1 -1]);
Ref_spin_fft = abs(real(fftpadding( Ref_spin)));//
Ref_ball = GenereSignalSimu(44100, 4096, 0.03, VClub, VBall, spin, [1, 0, 0], 0);
[wft,wfm,fr] = wfir('bp',forder,[(VBall-5)*19.49/Fs (VBall+5)*19.49/Fs],'hm',[-1 -1]);
Ref_ball_fft = abs(real(fftpadding(Ref_ball))); //
//////////////////////////////////////////
//
// Affichage des courbes simulées et captées
//
/////////////
figure();
plot2d(ff1(1:$/2)/19.49, [Ref_total_fft(1:$/2)/max(Ref_total_fft(1:$/2)); Ref_ball_fft(1:$/2)/max(Ref_ball_fft(1:$/2)); Ref_spin_fft(1:$/2)/max(Ref_spin_fft(1:$/2))]');
f1 = Fs*(0:(size(s2_fft,2))-1)/size(s2_fft,2);
plot(f1(1:$/2)/19.49, s2_fft(1:$/2)/max(s2_fft(1:$/2)),'r');
legends(['Signal Total: VClub: ' + string(VClub)+' kmh';'Signal Ball: ' + string(VBall) + ' kmh';'Signal Spin: '+ string(spin)+'rpm';'Signal Capturé'],[1 2 3 5],opt=1);
[M5,tt5,f5]=animDensite(filter(wft,1, test((ii+4)*nbEchantillon+1:nbEchantillon*(ii+19))),44100, 1024 ,16 , 0, -90,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,M5/19.49);
[vClub, vBall, SmashFactor,thetaLoft, ShafLeanImp, launchAngle, SpinZ] = Info(M5,f5,'7')
///////////////////////////////////////////////////
//
// Vue d'une coupe bande fin sur la vitesse
// identification précise de la vitesse de la balle avec un filtrage passe bande fin
//
//////////////
forder = 64;
x = test((ii+4)*nbEchantillon+1:nbEchantillon*(ii+8));
freqC = VBall*19.49/Fs ;[wft1,wfm1,fr1] = wfir('bp',forder,(VBall-5)*19.49/Fs (VBall +5)*19.49/Fs],'hm',[-1 -1]);
//freqC = VBall*19.49/Fs ;[wft2,wfm2,fr2] = wfir('sb',forder+1,[(VBall-0.5)*19.49/Fs (VBall+0.5)*19.49/Fs],'hm',[-1 -1]);
//s2_fft = abs(real(fftpadding(filter(wft2,1, filter(wft1,1, x)))));
[m k]=max(s2_fft);MIN = (f1(k)-31); MAX = (f1(k)+31);
ll = find(((f1) >= MIN) & ((f1) <= MAX));
s2_fftb = s2_fft;
s2_fftb(ll) = 0;
f1 = Fs*(0:(size(s2_fftb,2))-1)/size(s2_fftb,2);plot(f1(1:$/2)/19.49, s2_fftb(1:$/2)/max(s2_fftb(1:$/2)),'b');
[m k]=max(s2_fft(1:ll(1))); MIN = (f1(k)); [m k]=max(s2_fft(ll($):$/2));MAX = (f1(ll($)+k-1));
[wft1,wfm1,fr1] = wfir('bp',forder,[(VBall*19.49+RpmSpin2Freq(3000))/Fs (VBall*19.49+RpmSpin2Freq(9000))/Fs],'hm',[-1 -1]);
s2_fftb = abs(real(fftpadding( filter(wft1,1, x))));
f1 = Fs*(0:(size(s2_fftb,2))-1)/size(s2_fftb,2);plot(f1(1:$/2), s2_fftb(1:$/2)/max(s2_fftb(1:$/2)),'r');
[wft1,wfm1,fr1] = wfir('bp',forder,[(VBall*19.49-RpmSpin2Freq(9000))/Fs (VBall*19.49-RpmSpin2Freq(3000))/Fs],'hm',[-1 -1]);
s2_fftb = abs(real(fftpadding( filter(wft1,1, x))));
f1 = Fs*(0:(size(s2_fftb,2))-1)/size(s2_fftb,2);plot(f1(1:$/2), s2_fftb(1:$/2)/max(s2_fftb(1:$/2)),'b');
/////////////////////////////////////////////////////////////////////////////////////////////////
// essais sur plusieurs fréquences ou echantillonnages avec fenêtre glissante
//
i=1;
freqC = (500*i)/Fs ;[wft,wfm,fr] = wfir('bp',64,[freqC freqC+0.000001 ],'hm',[-1 -1]);
[M5, tt5, f5]= animDensite(filter(wft,1, test((ii-2)*nbEchantillon+1:nbEchantillon*(ii+19))),44100, 4096/(2^i) ,16 , 0, -550,1);;
M5[];
for i=2:8;
freqC = (3100)/Fs ;[wft,wfm,fr] = wfir('bp',64,[freqC freqC+0.000001 ],'hm',[-1 -1]);
[M5, tt5, f5]=animDensite(filter(wft,1, test((ii-2)*nbEchantillon+1:nbEchantillon*(ii+19))),44100, 4096/(2^i) ,16 , 0, -190,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,M5/19.49);
end
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,M5/19.49);
/////////////////////////////////////////
//
// Wavelet
// recherche du temps de la vitesse max
//
///////////////////////////////////////
fichier = 'serie211.wav';
[test,Fs,bits]=wavread(fichier); // serie211 : 122.68kmh et 154.23kmh
test = test - mean(test);
[wft,wfm,fr] = wfir('bp',64,[0.044 0.09],'hm',[-1 -1]);
Fs = 44100;
nbEchantillon = 1024*1;
// boucle de détection de début de swing, ou le joueur bouge
// l'indice ii donne le début du signal
for ii=2:size(test , 2)/nbEchantillon,
s2_fft = abs(real(fft(filter(wft,1, test((ii)*nbEchantillon+1:nbEchantillon*(ii+1))))));
if (max(s2_fft,'c') > 3) then,
break;
end;
end;//
freqC = (VBall*19.49)/Fs ;[wft,wfm,fr] = wfir('bp',64,[freqC freqC+0.000001 ],'hm',[-1 -1]);
x = test((ii-2)*nbEchantillon+1:nbEchantillon*(ii+15));
f1 = Fs*(0:(size(x,2))-1)/size(x,2);
t = (0:size(x,2)-1)/Fs;
level = 2;
//[cA,cD] = dwt(filter(wft,level, x),'haar');
[C,L]=wavedec(filter(wft,1, x),level,'haar');wavedecplot(C,L);
scf();clf();
subplot(511)
plot(x,'r')
subplot(512)
plot(C(1:L(1)))
subplot(513)
s2_filtreWavelet = C(L(1):sum(L(1:2)));
plot(s2_filtreWavelet,'g');
//f1 = Fs*(0:(size(s2_filtreWavelet,2))-1)/size(s2_fft,2);
//plot(f1,abs(real(fft(filter(wft,1, s2_filtreWavelet)))));
subplot(514)
plot(C(sum(L(1:2)):sum(L(1:3))),'b');//detcoef(C,L,2)
subplot(515)
plot(C(sum(L(1:3)):sum(L(1:4))),'c');//plot(detcoef(C,L,2))
level = 2;
[C,L]=wavedec(filter(wft,1, x),level,'haar');wavedecplot(C,L);
d1 = detcoef(C, L, level);
d1up = dyadup(d1,0);
subplot(211)
plot(t,x)
subplot(212)
plot(d1up)
freqC = (VBall*19.49)/Fs ;[wft,wfm,fr] = wfir('bp',64,[freqC freqC+0.000001 ],'hm',[-1 -1]);
[M5, tt5, f5] = animDensite(filter(wft,1, x),44100, 512 ,64 , 0, -70, 1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,M5/19.49);
figure();subplot(211);plot(f5/19.49,sum(M5,'r'));subplot(212);plot(tt5,sum(M5,'c'));
[m,k] = max(sum(M5,'c')); tt5(k);// temps du shoot
[m,k] = max(M5,'c');f5(142)/19.49://vitesse max
x = GenereSignalSimu(44100, 4096, 0.03, VClub, VBall, 6000,[1 1 1], 0);
N=256;
t = (0:size(x,2)-1)/Fs;
f1 = Fs*(0:N-1)/N;
scales = [1:1:N];
[coef] = cwt(filter(wft,1, x),scales,'mexh');
w=wcodemat(coef,N);
cmap=jetcolormap(N);
c=ind2rgb(w,cmap); // SIP function
imshow(c);
figure();plot(t,abs(coef(1,:)));
f1(1) = .00001;
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(t,f1/19.49,abs(coef)');
f1 = Fs*(0:N-1)/60;figure();subplot(2,1,1);plot(f1/19.49,sum(coef,'c'));subplot(2,1,2);plot(t,sum(coef,'r'))
[m,k] = max(coef); t(k(2))
cwtplot(coef,scales,%t,64);p = graycolormap(256);
f = gcf();f.color_map=p;f.background=256;
// Calcul de la transformée en ondelettes continue
//w=TOC(fct,'OT_Mexicain(t,a,b)',a,b);
aa=gca();
// Légende du graphique sur X
legGradx=[];
// On veut 6 graduations
nbGradX=6
// Position des graduations
px=[];
for i=0:nbGradX-1
ind=min(fix(i*size(coef,2)/(nbGradX-1))+1,size(coef,2));
px=[px ind];
legGradx=[legGradx; string(fix(100*t(ind))/100)];
end
aa.x_ticks = tlist(["ticks", "locations", "labels"], px', legGradx);
figure();plot(t,x);
plot2d(f1(k(2)-256:k(2)+1024),abs(real(fft(filter(wft,1, x(k(2)-256:k(2)+1024))))));
[thr,sorh,keepapp] = ddencmp('den','wv',x);
xd = wden(x,'heursure','s','one',1,'sym8');figure();plot(t,xd);
[M5,tt5,f5]=animDensite(filter(wft,1, xd),44100, 128 ,32 , 0, -550,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,M5/19.49);
[M5,tt5,f5]=animDensite(filter(wft,1, x(k(2)-256:k(2)+1024)),44100, 1024 ,16 , 0, -75,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,M5/19.49);
// Calcul de l'angle de décolage zMdfl3#j infini
// Vmesure = Vreelle * cos(launchAngle)
// on admet que sur la courte distance la vitesse est constante et correspond à
// la vitesse max (où la balle et pile poile dans le faisceau avec une incidence à 0)
// shoot à 0.06,
// le max est 156kmh à 0.1s soit (0.1-0.06)*156/3.6= 1.7333m
// et 149.7kmh à 0.25s soit (0.25-0.06)*156/3.6 = 8.233m, soit 0.15s plus tard ==> 0.15*156/3.6 = 6.5m
// donc en 6.5m la mesure à perdue 6.3kmh
// ainsi Vm2/Vm1 = cos(launchAngle) ==> acos(Vm2/Vm1)*180/%pi =
// launchAngle = acos(149.7/156)*180/%pi = 16.34°
freqC = (VBall*19.49)/Fs ;
f1 = Fs*(0:(size(test,2))-1)/size(test,2);
[wft,wfm,fr] = wfir('bp',512,[freqC freqC+0.000001 ],'hm',[-1 -1]);
[wft]=ffilt('bp',64,200000,500000);
plot(f1,abs(real(fft(test)))/max(abs(real(fft(test)))));
plot(f1,abs(real(fft(filter(wft,1, test))))/max(abs(real(fft(filter(wft,1, test))))),'r');
[wft,wfm,fr] = wfir('bp',512,[freqC freqC+0.000001 ],'re',[-1 -1]);
figure();
plot(f1,abs(real(fft(test)))/max(abs(real(fft(test)))));
plot(f1,abs(real(fft(filter(wft,1, test))))/max(abs(real(fft(filter(wft,1, test))))),'g');
Ref_1 = GenereSignalSimu(44100, 4096, 0.02, VClub, VBall, Spin(2), [1 1 1], 0);
Ref_2 = GenereSignalSimu(44100, 4096, 0.02, VClub, VBall, Spin(2), [1 1 0], 0.2*%pi/2);
figure();plot([Ref_1 ; Ref_2]');
//////////////////////////////////////////////////////////////////////////
//
//
//
////////////////////////////////////////////////////////
fichier = 'serie211.wav';
//fichier='serie11.wav';
[x,Fs,bits]=wavread(fichier);
//x=x(2,:);
Fs = 44100;
t = (0:size(xx,2)-1)/Fs;
figure();plot(t,x);// serie211 : 122.68kmh et 154.23kmh
[wft,wfm,fr] = wfir('bp',64,[2000/Fs 6000/Fs ],'re',[-1 -1]);
//wft=iir(3,'bp','ellip',[1000/Fs 6000/Fs ],[.08 .03]);
//[wfm,fr]=frmag(wft,256);
//xx = filter(wfm,1,x);
[VBall, VClub, Spin, SpinAxis, xresult]=GetSwing(filter(wft,1,x), Fs, 2000, 6000, 3)
[thetaLoft, ShafLeanImp, launchAngle, SpinZ] = LaunchAngle(VBall, VClub, '7')
FaceAngle = 0;
[t,VOL,Res] = Golfball(18, VClub, '7', 0,FaceAngle, ShafLeanImp ,1);
xx = (x(size(x,2)/3:size(x,2)/3*2));
[wft,wfm,fr] = wfir('bp',64,[1500/Fs 6000/Fs ],'re',[-1 -1]);
[M5,tt5,f5]=animDensite(filter(wft,1,x),44100, 256 ,32 , 1, -50,1);
[tt,f,M1] = animFFT(filter(wft,1,xx),44100,512,16,1,0.5);
I=filter(wft,1,2*%pi*cos(t*Fs).*xx);
Q=filter(wft,1,2*%pi*sin(t*Fs).*xx);
enveloppe = (sqrt(I.^2+Q.^2));
t = (0:size(xx,2)-1)/Fs;
figure();
plot(t,enveloppe,'b');
plot(t,xx,'r');
xy = xx(1:99);
xy(1) = mean(xx(2:$));
for ii=2:size(xx,2)
xy(ii) = mean(xx([1 :ii-1, ii+1: size(xx,2)]));
end
xy = xy';
//////////////////////////////////////////////////////////////
[tps,VOL,Res] = Golfball(18, 164, 'D', -0, -0, 2, 0);
VOL(find(VOL(:,1)==0),1) = 0.00001;
VTotale = sqrt(VOL(:,2).^2+VOL(:,4).^2+VOL(:,6).^2);
fichier = 'serie211.wav';
//fichier='serie11.wav';
[x,Fs,bits]=wavread(fichier);
//x=x(2,:);
Fs = 44100;
[wft,wfm,fr] = wfir('bp',64,[2150/Fs 4000/Fs ],'re',[-1 -1]);
[M5,tt5,f5]=animDensite(filter(wft,1,x),44100, 256 ,32 , 1, -18,1);
// angle de décollage
// composé de phi pout l'angle la hauteur par rapport à Y vers le haut
// théta pour la largeur par raport Z dérive sur la droite/gauche
// les radars sont disposés sur l'axe Y et Z?
// R1 la référence
// R2 30cm à droite sur l'axe Z
// R3 30cm en haut sur l'axe Y
d = 0.000000001; // pour éviter la division par zéro
dz = 0.3; // distance du 2èm ou 3èm radar par rapport au principal
position = 1.5; // distance du de la valise par rapport à la balle
L =(VOL(:,1)); // Longueur (x))
H = (VOL(:,3));// Hauteur (y))
l = (VOL(:,5));// largeur (z))
VL =(VOL(:,2)); // Longueur (x))
VH = (VOL(:,4));// Hauteur (y))
Vl = (VOL(:,6));// largeur (z))
// elevation
phi = asin((H) ./ (sqrt((L + position).^2 + (H).^2 + (l).^2) + d)); // ASIN(Hauteur / (sqrt( Largeur^2+Longueur^2 +Hauteur^2) + d))
phi(1) = 0*%pi/180;
phiz = asin((H) ./ (sqrt((L + position).^2 + (l-dz).^2 + (H).^2) + d));// // Phi avec le radar décallé latérallement
phiz(1) = 0*%pi/180;
phiy = asin((H-dz) ./ (sqrt((L + position).^2 + (l).^2 + (H-dz).^2) + d));// // Phi avec le radar décallé verticallement
phiy(1) = -90*%pi/180;
figure();title('Phi mesure d''Elevation si on décale de 30cm à droite sur Z le long du sol');
subplot(2,2,1);plot(L,[phi phiz phiy]*180/%pi);xlabel('philongueur phiHauteur m');ylabel('Dégre °');legend(['phi'; 'phil'; 'phiHy']);
subplot(2,2,2);plot(L,[(phiz-phi) (phiy-phi)]*180/%pi);xlabel('phi-phiz m');ylabel('Delta Dégre °');legend(['phiz-phi'; 'phiy-phi']);
// derive laterale
theta = acos((L + position)./(sqrt((L + position).^2+(l).^2 ) + d));//
theta(1) = 0;
thetaz = asin((l-dz)./(sqrt((L + position).^2+(l-dz).^2 ) + d));//
thetaz(1) = 0;
title('Lateral mesure de la Derive si on monte de 30cm à droite sur Z le long du sol');
subplot(2,2,3);plot(L,[theta thetaz]*180/%pi);xlabel('thétaZ m');ylabel('Dégre °');legend(['theta'; 'thetaz']);
subplot(2,2,4);plot(L,(theta-thetaz)*180/%pi);ylabel('Delta Dégre °');xlabel('théta - thétaZ m');legend(['theta-thetaz']);
newV = VTotale.*cos(phi).*cos(theta);
newVy = VTotale.*cos(phiy).*cos(theta);
newVy(1) = newV(1);
newVz = VTotale.*cos(phiz).*cos(thetaz);
figure();subplot(1,2,1);plot(L,[VTotale , newV, newVy, newVz]*3.6);legend(['V Reelle'; 'newV R0'; 'newVy Rup'; 'newVz Rright']);
subplot(1,2,2);plot(L,H);
155/cos(19*%pi/180)
[m,k]=max(M5,'c');
figure();plot(tt5,f5(k)/19.49);figure();plot(f5,sum(M5(:,1:$-1),'r'));
figure();plot(tt5,f5(k)'/19.49/3.6.*(tt5));
[n,l]=max(M5(a=find(M5>0.5)),'c');
figure();plot(tt5,f5(l)/19.49);figure();plot(f5,sum(M5(:,1:$-1),'r'));
//////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////
// DEPHASAGE entre 2 signaux : negatif = retard, positif = avance
// phi/lambda = tau/T ==> tau = phi / (lambda*F)
// tau = phi/(2*%pi*F)
// theta = 10*%pi/180
// D = lambda
// phi = (2*%pi/lambda)*D*sin(theta)
Fs = 44100;
t=0:0.01:5;
Vlumiere = 299792458 ; // m/s
Freq = 10.525e9; // 1/s
lambda = Vlumiere / Freq;
F = 3000; // 3kHz
wt = 2*%pi*t;
dephasage = %pi/4;
s1=cos(wt);
s2=cos(wt+dephasage);
// plot des signaux
plot(t,[s1; s2]);legend('s1','s2')
//calcul du spectre par TF
tfS1=fft(s1);
tfS2=fft(s2);
tfS12=fft(s1+s2);
//soit H la pseudo fct de transfert
H=tfS1./tfS2;
[fmax Amax]=max(abs(tfS1));
//phase_H=phase(H);
phase_H=angle(H);
f1 = Fs*(0:(size(tfS1,2))-1)/size(tfS1,2);
plot(f1(1:$/2),phase_H(1:$/2));
// On regarde la phase à la frequence ou TfS1 est max
phi = phase_H(Amax)
//On regarde la conséquence sur FFT
plot(f1(1:$/2), abs(real(tfS1(1:$/2)/max(real((tfS1(1:$/2)))))),'r');
plot(f1(1:$/2), abs(real(tfS2(1:$/2)/max(abs(real(tfS2(1:$/2)))))),'b'); // ==> Aucun changement normale ;-)
plot(f1(1:$/2),real(tfS1(1:$/2).*conj(tfS1(1:$/2))/max(real((tfS1(1:$/2).*conj(tfS1(1:$/2)))))),'g');
//
tau = phi / (lambda*F)
Theta = asin(tau * Vlumiere / 0.02) * 180/%pi
// tau = sin(10*%pi/180)*0.01/Vlumiere
/////////////////////////////////////////////////////////////////////////////
[c, lag] = xcorr(s1,s2);
[maxC,I]=max(c);
lag(I)
////////////////////////////////////////////////////////////////////////////
h1= hilbert(s1);
h2= hilbert (s2);
P1=unwrap(angle(h1));
P2=unwrap(angle(h2));
dephasageResult = mean(P2-P1)
/////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////
fichier = 'serie211.wav';
//fichier='Serie34.wav';
//fichier = uigetfile("*.wav", "D:\Users\f009770\Documents\Golf\Radar\");[x,Fs,bits]=wavread(fichier); xg = x(1,:);xd = x(2,:);
[x,Fs,bits]=wavread(fichier); xg = x(1,:);
Fs = 44100;
Vlumiere = 299792458 ; // m/s
Freq = 10.525e9; // 1/s
lambda = Vlumiere / Freq;
v = 156/(1000*3600);
w = 5000/9.5493107;
t = 0; // Amplitude max pour T = 2*%pi, donc pour t=0;
r = 0.04267 /2;
Fdopp_B = (2/lambda)*(v + r*w*cos(w*t))
Rpm = (((Fdopp_B*lambda/2) - v) / r)*9.5493107
[wft,wfm,fr] = wfir('bp',64,[800/Fs 5000/Fs ],'rec',[-1 -1]);
[M5,tt5,f5]=animDensite(filter(wft,1,x),44100, 256 ,32 , 1, -18,1);
xfft = real(abs(fft( filter(wft,1,x))));
xdensite = abs(real(xfft.*conj(xfft)));
f1 = Fs*(0:(size(xfft,2))-1)/size(xfft,2);
f1 = Fs*(0:(size(xdensite,2))-1)/size(xdensite,2);
plot(f1(1:$/2),xfft(1:$/2)/max(xfft(1:$/2)));
plot(f1(1:$/2),xdensite(1:$/2),'r');
t=(0:44100)/44100;
xhat=1/50*cos ((2995*2*%pi*t) + 0.35* sin( 2*%pi*(800)*t)) ;
// x = xhat;
// A1*cos(porteuse + A2*sin(signalModulant)))
xfft = real(abs(fft( filter(wft,1,x));
f1 = Fs*(0:(size(xfft,2))-1)/size(xfft,2);
plot(f1(1:$/2),xfft(1:$/2)/max(xfft(1:$/2)),'r');
plot(xhat,'b');
// 3118.4kmh et 1559.2 kmh
// Carrier = Porteuse
// y = fmdemod(xModulated, Carrier amplitude signal, Message signal amplitude in volts, Carrier signal amplitude in volts, Carrier signal frequency in Hz, Sampling frequency in samples/sec)
f1 = Fs*(0:(size(x($/2.3:$/2.25),2))-1)/size(x($/2.3:$/2.25),2);
xfft = real(abs(fft( filter(wft,1,x($/2.3:$/2.25)))));
plot(f1(1:$/2), xfft(1:$/2)/max(xfft(1:$/2)),'r');
[A,B] = max(xfft);
maxXfft = (f1(B))
y = fmdemod(filter(wft,1,x($/2.3:$/2.25)), 15, maxXfft, Fs);plot(y);
f1 = Fs*(0:(size(y,2))-1)/size(y,2);
yfft = real(abs(fft( filter(wft,1,y))));
[A,B] = max(yfft);
figure();plot(f1(1:$/2), yfft(1:$/2)/max(yfft(1:$/2)),'b');
MAX = (f1(B))
fichier = uigetfile("*.wav", "D:\Users\f009770\Documents\Golf\Radar\");[x,Fs,bits]=wavread(fichier); xg = x(1,$/1.4:$/1.25);xd = x(2,$/1.4:$/1.25);
//xg = x(1,1:$/1.15);xd = x(2,1:$/1.15);
[wft,wfm,fr] = wfir('bp',256,[1800/Fs 6000/Fs ],'hm',[-1 -1]);
[M52,tt5,f52]=animDensite(filter(wft,1,xg),44100, 256 ,32 , 1, -0, 1);
[M51,tt5,f51]=animDensite(filter(wft,1,xd),44100, 256 ,32 , 1, -0, 1);
figure();plot(tt5,sum(M51(:,1:$-1),'c'));plot(tt5,sum(M52(:,1:$-1),'c'),'r');
figure();plot(f5,sum(M51(:,1:$-1),'r')/max(sum(M51(:,1:$-1),'r')));plot(f5,sum(M52(:,1:$-1),'r')/max(sum(M52(:,1:$-1),'r')),'r');
figure();plot(f5,sum(M51($/2:$,1:$-1),'r')/max(sum(M51($/2:$,1:$-1),'r')),'b');plot(f5,sum(M52($/2:$,1:$-1),'r')/max(sum(M52($/2:$,1:$-1),'r')),'r');
[a,b] = max(sum(M51(:,1:$-1),'r'))
[c,d] = max(sum(M52(:,1:$-1),'r'))
//angle entre les 2 radars en degré.
//f(b) et f(d) sont les freq max !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
acos(f52(d)/f51(b))*180/%pi
[wft1,wfm,fr] = wfir('sb',255,[(f51(b)-50)/Fs (f51(b)+50)/Fs ],'hm',[-1 -1]);
[M52,tt5,f52]=animDensite(filter(wft1,1,(filter(wft,1,xg)),44100, 256 ,32 , 1, -0, 1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5,M51(:,1:$-1));
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5/19.49,M52(:,1:$-1)/19.49);
[t,VOL,Res] = Golfball(8,110,'7',10,-15,-10,1);
[l,c]=find(M52(:,1:$-1)==1);
plot(tt5(l),f5(c),'b*');
//////////////////////////// HILBERT ///////////////////////////
/// Frequency demodulation: Demodulates the FM waveform //////
/// by modulating the Hilbert transform of y by a complex //////
/// exponential of frequency -fc Hz and obtains the //////
/// instantaneous frequency of the result. //////
/// F(t) = d(phase)/dt / (2*%pi)) Frequence instantanéé //////
///
fichier = uigetfile("*.wav", "D:\Users\f009770\Documents\Golf\Radar\");[x,Fs,bits]=wavread(fichier);
xg = x(1,1:$);xd = x(2,1:$);
xg = x(1,$/1.4:$/1.25);xd = x(2,$/1.4:$/1.25);
//xg = x(1,1:$/1.15);xd = x(2,1:$/1.15);
xg = x(1,$/4.:$/1.2);xd = x(2,$/4.:$/1.2);
[wft,wfm,fr] = wfir('bp',256,[1500/Fs 5000/Fs ],'re',[-1 -1]);
[wft1,wfm,fr] = wfir('sb',255,[2950/Fs 3100/Fs ],'re',[-1 -1]);
[wft2,wfm,fr] = wfir('lp',255,[4000/Fs 6000/Fs ],'re',[-1 -1]);
plot((diff(unwrap(angle(hilbert(filter(wft,1,filter(wft1,1,xg))))))/(2*%pi*1/Fs)));
plot((diff(unwrap(angle(hilbert(filter(wft,1,xg)))))/(2*%pi*1/Fs)),'r');
dt = 1/Fs;
fc = 2930; // carrier porteuse = vitesse de la balle
df = 500; // modulation excursion
fm = 1100; // modulation
tAx = dt:dt:0.1; // time axis in seconds
u = sin(2*%pi*fc*tAx + (df/fm)*cos(2*%pi*fm*tAx));
u = filter(wft,1,xg);
u = filter(wft,1,filter(wft1,1,xg)); // u = signal filtre
w = unwrap(angle(hilbert(u))); // xa = hilbert(u); PHASE = angle(hilbert(u));
v = (diff(w)/(2*%pi*dt)); // instantaneous frequency
subplot(2,1,1);
t=(0:size(u,2)-1)/Fs;
plot(t,u/max(u))
subplot(2,1,2);
t=(0:size(v,2)-1)/Fs;
plot(t,filter(wft2,1,abs(v)),'r');
mean(v(50:$-50))
min(v(50:$-50))
max(v(50:$-50))
// definir l'enveloppe de l'espace de Hilbert et cela défini la plage de fréquence instantanée ==> Démodulation
[enveloppe,t] = Enveloppe(v, Fs,1500, 4000);
plot(t,enveloppe);
y = demod(filter(wft,1,xg),fc,Fs,'fm');plot(y,'r')
y = demod(u,fc,Fs,'fm');plot(y);//plot(u)
[M52,tt5,f5]=animDensite(u,44100, 256 ,32 , 0, 0,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5,M52(:,1:$-1));
xg=x(1,1:$);
xg = x(1,$/1.3:$/1.1);xd = x(2,$/1.3:$/1.1);
xg = x(1,$/4.:$/1.2);xd = x(2,$/4.:$/1.2);
xgf = filter(wft,1,xg); // passe band filtrage centre sur 1kHz 6kHz
xa = (hilbert(xgf));
xgi = (imag(hilbert(xgf)));
u = filter(wft1,1,xgf); // filtrage coupe bande sur la frequence de la balle
xgiu=(u.*xgi);
[M52,tt5,f5]=animDensite(xgf,44100, 256 ,32 , 0, -5,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5,M52(:,1:$-1));
f=figure();plot(f5,sum(M52($/2:$,1:$-1),'r'),'r'); // vitesse du shaft (1er pic), vitesse de la balle 2eme pic)
[M52,tt5,f5]=animDensite(filter(wft,1,xgiu),44100, 256 ,32 , 0, -155,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5,M52(:,1:$-1));
scf(f);
figure();plot(f5,sum(M52($/2:$,1:$-1),'r'),'b'); // vitesse du club (1er pic), vitesse de la balle 2eme pic)
figure();plot([0:size(xa,'c')-1]/Fs,u);
plot([0:size(xa,'c')-1]/Fs,abs(xa).^2,'r');
plot(f5,M52(120,1:$-1))
f=figure();f.color_map = jetcolormap(64);
w=wigner(xg,ones(1:64),12,128);
N = 69;
tau = 1 / Fs; // interval temporel de l'echantillonnage
t = (0:N - 1) * tau*1000; // construction du vecteur temps
plot3d1(t*10000,[1:64]*Fs/(64),abs(w(1:69,1:64))*1000);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(t,[1:64]*Fs/(64*1000),abs(w(1:69,1:64)));
tfrqview
//////////////////////////////////////////////////////
fichier = uigetfile("*.wav", "D:\Users\f009770\Documents\Golf\Radar\");[x,Fs,bits]=wavread(fichier);
xg = x(1,1:$);xd = x(2,1:$);
u = filter(wft,1,xg);
a=((diff(unwrap(angle(hilbert(filter(wft1,1,filter(wft,1,xg($/3.5:$/2)))))))/(2*%pi*1/Fs)));
a=((diff(unwrap(angle(hilbert(xg($/3.5:$/2)))))/(2*%pi*1/Fs)));
y = sgolayfilt(a,9,69)';
[M52,tt5,f5]=animDensite(a,44100, 256*4 ,32*4 , 0, -150,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5,M52(:,1:$-1));
figure();plot(f5,sum(M52($/2:$,1:$-1),'r'),'b'); // vitesse du club (1er pic), vitesse de la balle 2eme pic)
[m,k] = max(sum(M52($/2:$,1:$-1),'r'));f5(k)
Freq2RpmSpin(f5(k));
fichier = uigetfile("*.wav", "D:\Users\f009770\Documents\Golf\Radar\");[x,Fs,bits]=wavread(fichier); xg = x(1,1:$);xd = x(2,1:$);
[vBall, vClub, SmashFactor,thetaLoft, ShafLeanImp, launchAngle, SpinZC, SpinZM, SpinLR, gamaFacePath,a] = Info2(filter(wft,1,xg),'7'),fichier
N = size(xg,2);
dt = 1/Fs;
fc = 2930; // carrier porteuse = vitesse de la balle
df = 50; // modulation excursion
FreqRPM = 800; // modulation//Freq2RpmSpin(833) = 5273.0706 tr/min rpm = 552 rad/s = 1 rad/sec? The answer is 9.54929659643 RPM
dFreqRPM = 50;
m=dFreqRPM/FreqRPM;
vb=1500; // 150 kmh
r = 0.043/2;
c = 299792458 ;
lambda = c /10.525E9;
tAx = dt:dt:N/Fs; // time axis in seconds
at = 1;
modt = 1;
sa = at*exp(-%i*2*%pi*fc*tAx);
smod = modt*exp(-%i*2*(2*%pi*FreqRPM)*r*sin(2*%pi*FreqRPM*tAx)/lambda);
// signal du patch B:
//
S = modt*cos(2*%pi*fc*tAx+m*sin(2*%pi*FreqRPM*tAx));
clf;
F0 = vBall*19.49;
D=1.5;//:3;
[fm,am,iflaw] = doppler(N,Fs,F0,D,vBall/3.6,1);
subplot(211); plot(real(am.*fm));xtitle(("Signal "));
subplot(212); plot(iflaw);
[ifhat,t]=instfreq(sigmerge(am.*fm,smod,15),11:502,10);
plot(t,ifhat,'g');
xtitle(("Instantaneous frequency"))
legend([_("Requested"),_("Observed")]);
//[M52,tt5,f5]=animDensite(real(sigmerge((am.*fm)',noisecg(N)',15)),44100, 256 ,32 , 1, -150,1);
[M52,tt5,f5]=animDensite(real(sigmerge((am.*fm)',smod,1)),44100, 256 ,32 , 1, -150,1);
figure();plot(f5,sum(M52($/2:$,1:$-1),'r'),'b'); // vitesse du club (1er pic), vitesse de la balle 2eme pic)
[Y,IFLAW]=fmsin(N);
phi=if2phase(iflaw)
/////////////////////////////////
// Modele de signale Echo s(t) //
/////////////////////////////////
fichier = uigetfile("*.wav", "D:\Golf\Radar\");[x,Fs,bits]=wavread(fichier);
xg = x(1,1:$);xd = x(2,1:$);
[wft,wfm,fr] = wfir('bp',256,[1300/Fs 4000/Fs ],'re',[-1 -1]);
[wft1,wfm,fr] = wfir('sb',255,[2900/Fs 3000/Fs ],'re',[-1 -1]);
dt = 1/Fs;
fc = 2930; // carrier porteuse = vitesse de la balle
df = 50; // modulation excursion
fm = 800; // modulation//Freq2RpmSpin(833) = 5273.0706 tr/min rpm = 552 rad/s = 1 rad/sec? The answer is 9.54929659643 RPM
vb=150; // 150 kmh
r = 0.043/2;
c = 299792458 ;
lambda = c /10.525E9;
tAx = dt:dt:0.01; // time axis in seconds
at = 1;
sa = at*exp(-%i*2*%pi*fc*tAx);
modt = 1;
smod = modt*exp(-%i*2*(2*%pi*fm)*r*sin(2*%pi*fm*tAx)/lambda);
u = real(sa.*smod);
plot(tAx,u);
uf = filter(wft,1,u);
uf1 = filter(wft,1,filter(wft1,1,u));
w = unwrap(angle(hilbert(u)));
v = (diff(w)/(2*%pi*dt)); // instantaneous phase differential
subplot(2,1,1);
t=(0:size(u,2)-1)/Fs;
plot(t,u)
subplot(2,1,2);
t=(0:size(v,2)-1)/Fs;
plot(t,abs(v))
[M52,tt5,f5]=animDensite(filter(wft,1,xg),44100, 256 ,32 , 0, -5,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5,M52(:,1:$-1));
[vBall, vClub, SmashFactor,thetaLoft, ShafLeanImp, launchAngle, SpinZC, SpinZM, SpinLR, gamaFacePath,xgBall] = Info2(filter(wft,1,xg),'7');fichier
[wft1,wfm,fr] = wfir('sb',255,[(vBall*19.49-200)/Fs (vBall*19.49+200)/Fs ],'re',[-1 -1]);
[M52,tt5,f5]=animDensite(xgBall,44100, 1024 ,128 , 0, -5,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5,M52(:,1:$-1));
figure();plot(f5,max(M52($/2:$,1:$-1),'r'),'b'); // vitesse du club (1er pic), vitesse de la balle 2eme pic)
figure();plot(f5,sum(M52(:,1:$-1),'r'),1);
[vBall, vClub, SmashFactor,thetaLoft, ShafLeanImp, launchAngle, SpinZC, SpinZM, SpinLR, gamaFacePath,xgBall] = Info2(filter(wft,1,xg),'7');fichier
[wft1,wfm,fr] = wfir('bp',256,[(vBall*19.49-200)/Fs (vBall*19.49+200)/Fs ],'re',[-1 -1]);
[M52,tt5,f5]=animDensite(filter(wft1,1,xg),44100, 256*8 ,32*8 , 1, -5,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5,M52(:,1:$-1));
[m,k]=(find((M52($/2:$,1:$-1))==1));
plot(tt5(m)',f5(k),'o');
[M52,tt5,f5]=animDensite(filter(wft1,1,xg),44100, 256*8 ,32*8 , 0, -5,1);
[m,k]=find(M52($/2:$,1:$-1)==1);
subplot(2,1,1);
plot(tt5(m)',f5(k),'ro');
Dg=(f5(k)/19.49/3.6).*tt5(m)';
subplot(2,1,2);
plot(tt5(m),Dg,'ro');
[M52,tt5,f5]=animDensite(filter(wft1,1,xd),44100, 256*8 ,32*8 , 0, -5,1);
[m,k]=find(M52($/2:$,1:$-1)==1);
subplot(2,1,1);
plot(tt5(m)',f5(k),'b*');
subplot(2,1,1);
Dd=(f5(k)/19.49/3.6).*tt5(m)';
subplot(2,1,2);
plot(tt5(m),Dd,'b*');
figure();
plot(tt5(m),Dd-Dg);
///////////////////////
[wft,wfm,fr] = wfir('bp',256,[1300/Fs 6000/Fs ],'re',[-1 -1]);
[M52,tt5,f5]=animDensite(filter(wft,1,xg(4410:$)),44100, 256*32 ,32*32 , 0, -5,1);
fig = figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5,M52(:,1:$-1));
[vBall, vClub, SmashFactor,thetaLoft, ShafLeanImp, launchAngle, SpinZC, SpinZM, SpinLR, gamaFacePath,xgBall] = Info2(filter(wft,1,xg),'7');fichier
[wft1,wfm,fr] = wfir('sb',255,[(vBall*19.49-200)/Fs (vBall*19.49+200)/Fs ],'re',[-1 -1]);
[M52,tt5,f5]=animDensite(filter(wft1,1,xg),44100, 256*32 ,32*32 , 0, -55,1);
s2_fft = abs(real(fft(filter(wft,1, test((ii)*nbEchantillon+1:nbEchantillon*(ii+1))))));
h = figure();
for i = 1:size(M52,'r')
plot(f5,sum(M52(i,1:$-1),'r'),1);
end
f=figure();plot(f5,sum(M52($/2:$,1:$-1)/max(sum(M52($/2:$,1:$-1),'r')),'r')); // vitesse du shaft (1er pic), vitesse de la balle 2eme pic)
//////////////////// Video Read ////////////////////////
function my_eventhandler(win, x, y, ibut)
if ibut==-1000 then return,end
[x,y]=xchange(x,y,'i2f')
xinfo(msprintf('Event code % d %d at mouse position is (%f,%f)',win ,ibut,x,y));
endfunction
plot2d()
fig = gcf() ;
fig.event_handler = 'my_eventhandler' ;
fig.event_handler_enable = "on" ;
fig.event_handler_enable = "off" ; //suppress the event handler
n = camopen(0);
sleep(10);
im = camread(n); //get a frame
imshow(im);
camcloseall();
/////////////////////////////// ANN ////////////////////////////////
// reseau de neuronnes
//
// 5 entrées
// 20 cachés
// 1 sorties
N = [5 , 20 , 1];
// training cycles
T = 400;
// input training
// Res = [V0Club,V0Ballkmh, alphaClubPath*180/%pi,gamaFacePath*180/%pi,SpinZ,SpinY,Xchute, Zchute,XX($,1) , ZZ($,1),Ymax,LaunchAngledeg,VerticalLand,sum(t)];
x=[];
// sortie désirées
t=[];
for ii=1:1
x($+1,:)=[80+ii/10,6,0,0,-8];
[temps,VOL,Res] = Golfball(8,80+ii/10,'7',0,0,-8,0);
t($+1,:)=Res;
end
// learning rate and threshold
lp = [0.1, 0];
W = ann_FF_init(N);
// Training
W = ann_FF_Std_online(x,t,N,W,lp,T);
// full run
ann_FF_run(x,N,W);
function D = Plage(nb, minA, maxA)
a = rand(1:nb);
b = (a-min(a));
c = b/max(b);
D = c*(max(maxA)-min(minA))+minA;
endfunction
nb = 2;
VC = Plage(nb , 80 , 110);
SM = Plage(nb , 1.1 , 1.5);
VB = SM.*VC;
launchAngleTab = [];
for ii=1:size(VC,2),
[thetaLoft, ShafLeanImp, launchAngle, SpinZC, gamaFacePath] = LaunchAngle(VC(ii), VB(ii), '7', 0);
launchAngleTab($+1) = ShafLeanImp;
end
[wlaunchAngle,blaunchAngle] = ann_PERCEPTRON([VC' , VB'] , launchAngleTab');
ylaunchAngle = ann_PERCEPTRON_run(P , wlaunchAngle , blaunchAngle);
////////////////////////
//
// simulation de signal
//
////////////////////////////
fichier = uigetfile("*.wav", "D:\Users\f009770\Documents\Golf\Radar\");[x,Fs,bits]=wavread(fichier);
xg = x(1,1:$);xd = x(2,1:$);xg = xg - mean(xg);xd = xd - mean(xd);
xgp = padding(xg,2);
xgp = padding2(xg);
xgp = padding3(xg);
plot(xg);
xgpp = [xg,zeros(xg)];
[vBall, vBallCorrigee, vClub, SmashFactor,thetaLoft, ShafLeanImp, launchAngle, SpinZC, SpinZM, SpinLR, gamaFacePath,PointShoot,tt5d,f5d] = Info2(xgp,'7',44100*2);
x = xgp(PointShoot+600:$) - mean(xgp(PointShoot+600:$));
plot(x,'b');
Ec = 0.5;
Em = 0.5;
Fs = 44100;
fs = Fs;
fc = 3000;
fm = 800;
tfin = 0.1;
[x,Vm,Vc]=pmmod(Ec,Em,fm,fc,fs,tfin);
[x,Vm,Vc]=fmmod(Ec,Em,fm,fc,fs,tfin);
[x,Vm,Vc]=ampmod(Ec,Em,fm,fc,fs,tfin);
[wft,wfm,fr] = wfir('bp',254,[1500/Fs 6000/Fs ],'hn',[-1 -1]);
[wft1,wfm,fr] = wfir('sb',255,[3000/Fs 3040/Fs ],'hm',[-1 -1]);
[wft2,wfm,fr] = wfir('bp',254,[2000/Fs 4000/Fs ],'re',[-1 -1]);
[wft3,wfm,fr] = wfir('lp',254,[6000/Fs 4000/Fs ],'re',[-1 -1]);
[M52,tt5,f5]=animDensite(filter(wft2,1,x),44100, 256*8 ,32*8 , 1, 0,1);
[M52,tt5,f5]=animDensite(x,44100, 256*8 ,32*8 , 1, 0,1);
[M52,tt5,f5]=animDensite(filter(wft1,1,filter(wft,1,xgp(PointShoot:$))),44100*2, 256*8 ,32*8 , 1, -10, 1);
f=figure();plot(f5,sum(M52($/2:$,1:$-1)/max(sum(M52($/2:$,1:$-1),'r')),'r')); // vitesse du shaft (1er pic), vitesse de la balle 2eme pic)
// Longueur onde 10.525Ghz = 2.84838439905
// 24Ghz = 1.249135241667
xgraw = xg.*window('hn',length(xg));
y=real(fft(xg,1));
xgp = padding(xg,2);
y=abs(real(fft(padding(xg,size(xg,2),6),1)));
// tests sur BARTLETT
xgp = padding2(xg);
[vBall, vBallCorrigee, vClub, SmashFactor,thetaLoft, ShafLeanImp, launchAngle, SpinZC, SpinZM, SpinLR, gamaFacePath,PointShoot,tt5d,f5d] = Info2(xgp,'7',44100*2);
[M52,tt5,f5]=animDensite(filter(wft1,1,filter(wft,1,xgp(PointShoot:$))),44100*2, 256*2 ,32 , 1, -150,1);
plot(f5,sum(M52($/2:$,1:$-1),'r')/size(M52,2));
plot(tt5,M52(:,$/2));
plot(f5,M52($/2,2:$));
sm=pspect(32 , 256,'tr',(filter(wft,1,xgp(PointShoot:$))));smsize=max(size(sm));fr=(1:smsize)/smsize;plot(f5(1:$/2)*2,(sm(1:$/2)));
f = figure();f.color_map = hotcolormap(4);Sgrayplot(tt5,f5,M52(:,1:$-1));
f = figure();f.color_map = jetcolormap(2);Sgrayplot(tt5,f5,M52(:,1:$-1));
t=0:1/(2*44100):16882/(44100*2);
t=t(1:$-1);
u = cos(2*3020*%pi*t);
demo = xg.*u;
demodp = padding2(demo);
Ec = 0.5;
Em = 0.2;
Fs = 44100;
fs = Fs;
fc = 2728;
fm = 0;
tfin = 0.1;
tfin = (size(xg,2)-1)/Fs;
[xp,Vm,Vc,t]=pmmod(Ec,Em,fm,fc,fs,tfin);
[xf,Vm,Vc,t]=fmmod(Ec,Em,fm,fc,fs,tfin);
[xa,Vm,Vc,t]=ampmod(Ec,Em,fm,fc,fs,tfin);
[M52,tt5,f5]=animDensite(xp,44100, 256*2 ,32 , 1, -150,1);
figure();plot(f5,sum(M52($/2:$,1:$-1),'r')/size(M52,2));
[M52,tt5,f5]=animDensite(xf,44100, 256*2 ,32 , 1, -150,1);
figure();plot(f5,sum(M52($/2:$,1:$-1),'r')/size(M52,2));
[M52,tt5,f5]=animDensite(xg,44100, 256*2 ,32 , 1, -150,1);
figure();plot(f5,sum(M52($/2:$,1:$-1),'r')/size(M52,2));
[vBall, vBallCorrigee, vClub, SmashFactor,thetaLoft, ShafLeanImp, launchAngle, SpinZC, SpinZM, SpinLR, gamaFacePath,PointShoot,tt5d,f5d] = Info2(xgp,'7',44100);
[wft1,wfm,fr] = wfir('sb',255,[(vBall*19.49-130)/Fs (vBall*19.49+130)/Fs],'hm',[-1 -1]);
[x]=ampdemod(xg(PointShoot:$), Vc, fc, fs, Em, Ec);
[M52,tt5,f5]=animDensite(filter(wft1 ,1,filter(wft,1,x)),44100, 256*4 ,32*4 , 1, -150,1);
figure();plot(f5,sum(M52($/2:$,1:$-1),'r')/size(M52,2));
[x,x2] = demod(xg(PointShoot:$), fc, fs, 'fm');
[M52,tt5,f5]=animDensite(filter(wft1 ,1,filter(wft,1,x)),44100, 256*4 ,32*4 , 1, -150,1);
figure();plot(f5,sum(M52($/2:$,1:$-1),'r')/size(M52,2));
N=size(xgp(PointShoot:$),2);
[fm,am,iflaw]=doppler(N, 44100, 5400, 2, 43.,1);
clf;
xg = real(am.*fm)';
subplot(211); plot(xg);xtitle(_("Signal "))
subplot(212); plot(iflaw);
clf;gcf().color_map= jetcolormap(128);
subplot(211);Sgrayplot(tt5,f5,M52(:,1:$-1));
[HT,RHO,THETA] = htl(M52,129,427,1,'plot');
subplot(212);grayplot(RHO,THETA,HT);
[m,ind]=max(HT);theta=THETA(ind(2));rho=RHO(ind(1));
xl=N/2-rho*sin(theta)+60*cos(theta)*[-1 1];
yl=N/2+rho*cos(theta)+60*sin(theta)*[-1 1];
xpoly(xl/max(tt5),yl/max(f5));
[MARGT,MARGF,E]=margtfr(M52(:,1:$-1)',tt5,f5);
subplot(211); plot(tt5,MARGT);
subplot(212); plot(f5,MARGF);
subplot(211); plot((0:(size(xg(PointShoot/2:$/2),2)-1))/44100,xg(PointShoot/2:$/2));
[vBall, vBallCorrigee, vClub, SmashFactor,thetaLoft, ShafLeanImp, launchAngle, SpinZC, SpinZM, SpinLR, gamaFacePath,PointShoot,tt5d,f5d,xg] = Info2('7',44100);
Fs = 44100*2;
[wft,wfm,fr] = wfir('bp',254,[1500/Fs 12000/Fs ],'hn',[-1 -1]);
[wft1,wfm,fr] = wfir('sb',255,[(vBall*19.49-30)/Fs (vBall*19.49+30)/Fs ],'hm',[-1 -1]);
[wft2,wfm,fr] = wfir('bp',254,[(vBall*19.49-1000)/Fs (vBall*19.49+1000)/Fs ],'re',[-1 -1]);
[wft3,wfm,fr] = wfir('bp',254,[30/Fs 6000/Fs ],'re',[-1 -1]);
[wftb,wfm,fr] = wfir('bp',256,[(FBall/1.5)/Fs (FBall/1)/Fs ],'re',[-1 -1]); // coupe bande autour de la club
[x,y] = demod(filter(wft,1,xg(PointShoot:$)), vBall*19.49, Fs,'am');
x=filter(wft2,1,xg(PointShoot:$));
[x2,y2] = demod(x, 800, Fs,'pm');
[M51,tt5,f5]=animDensite(filter(wft1, 1,filter(wft2, 1,xg(PointShoot+600:$))),Fs, 256*16*2 ,32*16*2 , 1, -50,1);
[M51,tt5,f5]=animDensite(filter(wft3,1,x2),Fs, 256*16*2 ,32*16*2 , 1, -10,0);
[M52,tt5,f5]=animDensite(filter(wft2, 1,xg(PointShoot+600:$)),Fs, 256*16*2 ,32*16*2 , 1, -10,1);
plot(f5,sum(M51($/2:$,1:$-1),'r'),'r');
figure();plot(f5,sum(M51($/2:$,1:$-1)/max(sum(M51($/2:$,1:$-1),'r')),'r'),'r');
plot(f5,sum(M52($/2:$,1:$-1)/max(sum(M52($/2:$,1:$-1),'r')),'r'));
xgpf = filter(wft,1,filter(wft,1,xgp(9500:$/2)));
[SP,F]=frpowerspec(xgpf+0*%i);plot(F*44100*2,SP);
[thr,sorh,keepapp] = ddencmp('den','wv',xgpf);
xd = wdencmp('gbl',xgpf,'db3',4,thr,sorh,keepapp);
plot(xd,'g');plot(xgpf,'r');
[SP,F]=frpowerspec(xd+0*%i);plot(F($/2:$)*44100*2,SP($/2:$));
[m,k]=max(SP($/2+1:$));F(size(SP($/2:$),'r')+k)*44100*2
[xd,SP, F] = Info3('7', 'D:\Users\f009770\Documents\Golf\Radar\2019-02-24-F7-133m-160kmh-5432trm-311trm-cs117.wav');
fichier = uigetfile("*.wav", "D:\Golf\Radar\");
fichier = 'D:\Golf\Radar\2019-02-24-F7-133m-160kmh-5432trm-311trm-cs117.wav';
fichier = 'D:\Users\f009770\Documents\Golf\Radar\2019-05-05-2.wav';
fichier = 'D:\Users\f009770\Documents\Golf\Radar\2019-05-05-debruite.wav';
fichier = 'D:\Users\f009770\Documents\Golf\Radar\1150_TrMin.wav';
fichier = 'D:\Users\f009770\Documents\Golf\Radar\test1_7_dehors_metal.wav';
[x,Fs,bits]=wavread(fichier);
xg = x(1,1:$);xg = xg - mean(xg); LeWav =xg;//pour AnaSpecEga
xd = x(2,1:$);xd = xd - mean(xd);LeWav=xg;xgp = xg;
[vBall, vBallCorrigee, vClub, SmashFactor,thetaLoft, ShafLeanImp, launchAngle, SpinZC, SpinZM, SpinLR, gamaFacePath,PointShoot,tt5xd,f5xd] = Info2(xd, '7',44100)
[vBall, vBallCorrigee, vClub, SmashFactor,thetaLoft, ShafLeanImp, launchAngle, SpinZC, SpinZM, SpinLR, gamaFacePath,PointShoot,tt5xg,f5xg] = Info2(xg, '7',44100)
[Bg,kg]=gsort(tt5xg,'g','i');
figure();plot(Bg,f5xg(kg),'b');
[Bd,kd]=gsort(tt5xd,'g','i');
plot(Bd,f5xd(kd),'r');
xgp = padding2(xg);
Fs = Fs*2;
[wft,wfm,fr] = wfir('bp',254,[1200/Fs 12000/Fs ],'hn',[-1 -1]);
xgpf = filter(wft,1,filter(wft,1,xgp));
[M51,tt5,f5]=animDensite(xgpf,Fs, 256*16*2 ,32*16*2 , 1, -50,1);
[M51,tt5,f5]=animDensite3(xgpf,Fs, 256*2 ,32*2 , 1, -50,1);
//Denoise
[thr,sorh,keepapp] = ddencmp('den','wv',xgpf);
xd = wdencmp('gbl',xgpf,'db3',4,thr,sorh,keepapp);
[M51,tt5,f5]=animDensite3(xd,Fs, 256*16*4 ,32*16*4 , 1, -50,1);
plot(f5,sum(M51(3*$/4:$,1:$)/max(sum(M51(3*$/4:$,1:$),'r')),'r'),'r');
[x1,y] = demod(xd, 3000, Fs,'am');
[wft1,wfm,fr] = wfir('lp',254,[600/Fs 12000/Fs ],'hn',[-1 -1]);
x1 = filter(wft1,1,x1);
[M51,tt5,f5]=animDensite3(x1,Fs, 256*16*2 ,32*16*2 , 1, -10,1);
[x2,y2] = demod(x1, 250, Fs,'pm');
[wft2,wfm,fr] = wfir('lp',254,[300/Fs 12000/Fs ],'hn',[-1 -1]);
x2 = filter(wft2,1,x2);
[M51,tt5,f5]=animDensite3(x2,Fs, 256*16*2 ,32*16*2 , 1, -10,1);
N=size(xd,2);
[fm,am,iflaw] = doppler(N,44100,5400/60,0.1,168,1);
clf;
xg_hat = real(am.*fm)'; plot(xg_hat);xtitle(_("Signal "))
[M51,tt5,f5]=animDensite3(xg_hat,Fs, 256*16*2 ,32*16*2 , 1, -10,1);
f1 = Fs*(0:(size(s2_fft,2))-1)/size(s2_fft,2);
// Modelisation
t=0:1/44100:.3;
s_B = signal_B(t,44,5400);
s_modb = smod_B(t,44,5400);
s_A = signal_A(t,44,5400);
[x1,y] = demod(abs(real(s_B)), 3000, 44100,'am');
[wft1,wfm,fr] = wfir('bp',254,[60/44100 6000/44100 ],'hn',[-1 -1]);
x1 = filter(wft1,1,x1);
[M51,tt5,f5]=animDensite(x1,44100, 256*16*2 ,32*16*2 , 1, -10,1);
[x2,y2] = demod(x1, 250, 44100,'pm');
[wft2,wfm,fr] = wfir('lp',254,[300/44100 12000/44100 ],'hn',[-1 -1]);
x2 = filter(wft2,1,x2);
[M51,tt5,f5]=animDensite(x2,44100, 256*16*2 ,32*16*2 , 1, -10,1);
plot(f5,sum(M51(3*$/4:$,1:$-1)/max(sum(M51(3*$/4:$,1:$-1),'r')),'r'),'b');
[M51,tt5,f5]=animDensite((real(s_modb)), 44100, 256*16*2 ,32*16*2 , 1, -10,1);
h2=window('hn',63);
[TFR,T,F]=tfrsp(xd(9000:$),1:256*8*2,128*8*2,h2);
[TFR,T,F]=tfrwv(xd(9000:$));
clf;gcf().color_map= jetcolormap(128);
subplot(121);Sgrayplot(T,F(1:$/2)*44100*2,TFR(1:$/2,:)');
subplot(122);plot(fftshift(F'*44100*2),fftshift(TFR(:,100)));
tt5=1:64;f5=1:256;
clf;gcf().color_map= jetcolormap(128);
Sgrayplot(tt5,f5,abs(stft'));
for ii=1:25
[j,k] = max(M5Sqr(ii,:));
plot(ii,f5(k),'o')
end;
[wft,wfm,fr] = wfir('bp',254,[1200/Fs 6000/Fs ],'hn',[-1 -1]);
Vitesse = max(afficheVitesse(afficheDenoise(filter(wft,1,xg(getPointShoot(xg,Fs,158):$)),0.01),Fs))/19.49
afficheVitesse(padding2(filter(wft,1,afficheDenoise(xg,0.0))),2*Fs);
PoinShoot = getPointShoot(xg,Fs,158)
[wft1,wfm,fr] = wfir('bp',254,[1200/Fs 3000/Fs ],'hn',[-1 -1]);
xp2 = xg(1:PoinShoot-100);
xp2f = filter(wft1,1,padding2(afficheDenoise(xp2,0.0)));
[M5,tt5,f5]=animDensite3(xp2f,2*Fs, 256*4 ,32*4 , 0, -15,0);
fig=figure();subplot(221);
fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5,M5(:,1:$));
subplot(223);plot(f5,sum(M5(:,1:$)/max(sum(M5(:,1:$),'r')),'r'),'b');
[wft,wfm,fr] = wfir('bp',254,[1000/Fs 6000/Fs ],'hn',[-1 -1]);
xp = xg(PoinShoot+200:$);
xpf = filter(wft,1,padding2(afficheDenoise(xp,0.0)));
[M5,tt5,f5]=animDensite3(xpf,2*Fs, 256*16*2 ,32*16*2 , 0, -15,0);
subplot(222);
fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5,M5(:,1:$));
subplot(224);plot(f5,sum(M5(:,1:$),'r'),'b');
freqMax = afficheDemod(xpf, 2*Fs, 153)*60*2
N=size(xpf,2);
F0 = 5200;
D=1.5;//:3;
t=getT(xpf,2*Fs);
[fm,am,iflaw] = doppler(N,2*Fs,F0,D,155/3.6,1);
subplot(211); plot(t,real(am.*fm)/2);xtitle(("Signal "));
subplot(212); plot(t,iflaw);
[ifhat,t]=instfreq(sigmerge(am.*fm,xp,15),11:502,10);
plot(t,ifhat,'g');
sig = sum(M5(:,1:$),'r');
pics = find(diff(sig,2)<0);
plot(f5(pics),sig(pics));// ici
[u, i] = gsort(-sig(pics)) ;
hauteur = sig(pics(i)) ;
plot(f5(pics(i)), sig(pics(i)) ,'ro')
pics2 = find(diff(sig(pics),2)<0);
plot(f5(pics2),sig(pics2));// ici
s_B = signal_B(t,3000/19.49,5400);
[enveloppe,t] = Enveloppe(xg, Fs,2500, 3500);
xg_hat = real(enveloppe.*s_B);
[M51,tt5,f5]=animDensite3(xg_hat(5000:$), 44100, 256*16 ,32*16 , 0, 0,0);
fig=figure();fig.color_map = jetcolormap(64);Sgrayplot(tt5,f5,M51(:,1:$-1));
subplot(223);
plot(f5,sum(M51(:,1:$-1)/max(sum(M51(:,1:$-1),'r')),'r'),'b');
[m,k]=max(sum(M51(:,1:$-1),'r'));
f5(k)
///Extracting instantaneous amplitude,phase,frequency – application of Analytic signal/Hilbert transform
[wft,wfm,fr] = wfir('bp',254,[2500/Fs 3500/Fs ],'hn',[-1 -1]);
z = hilbert(filter(wft,1,xg)); //%form the analytical signal
inst_amplitude = abs(z); //%envelope extraction
inst_phase = unwrap(angle(z));//%inst phase
regenerated_carrier = cos(inst_phase);
inst_freq = diff(inst_phase)/(2*%pi)*Fs;//%inst frequency
plot(t, filter(wft,1,xg));
plot(t,inst_amplitude,'r');
plot(t,regenerated_carrier);
plot(t,inst_freq);
v = diff(inst_phase)/(2*%pi/Fs); // instantaneous phase differential normalized to Hz
plot(t,v); //
s=fft(regenerated_carrier);
nbEchantillon = size(s,2);
f=Fs*(0:(nbEchantillon)-1)/nbEchantillon;
plot(f,s);
fichier = 'C:\Users\F009770\Documents\Golf\Radar\2019-02-24-F7-133m-160kmh-5432trm-311trm-cs117.wav';
fichier = 'C:\Users\F009770\Documents\Golf\Radar\2019-05-05-2.wav';
fichier = 'C:\Users\F009770\Documents\Golf\Radar\2019-05-05-debruite.wav';
fichier = 'C:\Users\F009770\Documents\Golf\Radar\1150_TrMin.wav';
fichier = 'C:\Users\F009770\Documents\Golf\Radar\test1_7_dehors_metal.wav';
[x,Fs,bits]=wavread(fichier);
xg = x(1,1:$);mu= [mean(x);stdev(x)];xg = (xg - mu(1))/mu(2);
xg = xg(5000:9095);//Pour mettre la taille en puissance de 2
xd = x(2,1:$);xd = xd - mean(xd);
xg_hat = real(signal_B(getT(xg,Fs), 3015.0165/19.49/3.6, 5400)); // stimateur du signal Doppler
[wft,wfm,fr] = wfir('bp',254,[300/Fs 8000/Fs ],'re',[-1 -1]);
[wft1,wfm,fr] = wfir('bp',254,[10/Fs 300/Fs ],'re',[-1 -1]);
xgpf = filter(wft,1,padding3(xg));t=getT(xgpf,2*Fs);plot(t,xgpf);
xgpf_hat = filter(wft,1,padding3(xg_hat));t=getT(xgpf_hat,2*Fs);plot(t,xgpf_hat,'r')
s=abs(real(fft(xgpf)));s_hat=abs(real(fft(xgpf_hat)));nbEchantillon = size(s,2);f=2*Fs*(0:(nbEchantillon)-1)/nbEchantillon;plot(f,[s', s_hat']);
[x1,y] = demod(xgpf, 3015.0165, 2*44100,'am');
[x1_hat,y] = demod(xgpf_hat, 3015.0165, 2*44100,'am');
[py,fy] = pWelch(filter(wft1,1,x1),[],0,length(x1),Fs);
[py_hat,fy] = pWelch(filter(wft1,1,x1_hat),[],0,length(x1),Fs);
s=abs(real(fft(xgpf)));s_hat=abs(real(fft(xgpf_hat)));nbEchantillon = size(s,2);f=2*Fs*(0:(nbEchantillon)-1)/nbEchantillon;plot(f,[s', s_hat']);
plot(fy,[py, py_hat*20]);
[x2,y] = demod(filter(wft1,1,x1), 100, 2*44100,'fm');
[x2_hat,y] = demod(filter(wft1,1,x1_hat), 100, 2*44100,'fm');
s=abs(real(fft(x2)));s_hat=abs(real(fft(x2_hat)));nbEchantillon = size(s,2);f=2*Fs*(0:(nbEchantillon)-1)/nbEchantillon;plot(f,[s', s_hat']);
[py,fy] = pWelch(filter(wft1,1,x2),[],0,length(xgpf),Fs);
[py_hat,fy] = pWelch(filter(wft1,1,x2_hat),[],0,length(xgpf),Fs);
plot(fy,[py, py_hat*1]);
t=getT(x2, 2*Fs);
plot(t,[filter(wft1,1,x2)' filter(wft1,1,x2_hat)']);
plot(real(afficheDenoise(xgpf,0.0)));
[M51,tt5,f5]=animDensite3(xgpf_hat,2*44100, 256*4*4 ,32*4*4 , 0, -10,1);
figure();plot(f5,sum(M51(:,1:$)/max(sum(M51(:,1:$),'r')),'r'),'r');
[M51,tt5,f5]=animDensite3(afficheDenoise(xgpf,0.0),2*44100, 256*4*4 ,32*4 , 0, -1, 1);
plot(f5,sum(M51(:,1:$)/max(sum(M51(:,1:$),'r')),'r'),'r');
[M51,tt5,f5]=animDensite3(x1,2*44100, 256*4 ,32*4 , 1, 50,0);
[M51,tt5,f5]=animDensite3(filter(wft1,1,x1_hat),2*44100, 256*4 ,32*4 , 1, 50,0);
// Create a modulated signal in the same form as in equation (1)
A = 1;
tp = 2^12;
omega1 = 560;
omega2 = 1;
gamma = %pi/7;
beta = 5;
t = 0:2*%pi/tp:2*%pi*(1-1/tp);
x = A*cos(omega1*t+gamma+beta*sin(omega2*t));
plot(t(1:round(length(x)/omega2)),x(1:round(length(x)/omega2)));
//Transform the signal into the frequency domain
ff = fft(x);
ax = linspace(-tp/%pi/4,(tp-2)/%pi/4,tp);
dbf = 20*log10((abs(ff)/length(ff)*2+10E-12)/10E-12);
dbf = fftshift(dbf);
plot(ax,dbf);
//Set negative frequencies to zero, and double all positive frequencies (remember not to
//double the zero frequency) and inverse transform back to the time domain to create
//the analytic signal
gf = ff; //%create dummy variable
gf(2:$) = 2*ff(2:$); //%double positive freq’s
gf($/2+1:$) = 0; //%set negative freq’s to zero
g = ifft(gf); //%transform back to time domain
dbg = 20*log10((abs(gf)/length(gf)*2+10E-12)/10E-12);
dbg = fftshift(dbg);
plot(ax,dbg);
//Now calculate the instantaneous angle of the analytic signal and the unwrapped
//instantaneous phase of the original signal
pha = angle(g); //%instantaneous phase of analytic signal
phau = unwrap(pha); //% unwrap phase
//If the carrier frequency is known this can be done by multiplying the carrier frequency
//by the inverse of the sampling frequency and subtracting from the unwrapped
//instantaneous phase, or if the carrier frequency is unknown then the linear fit of the
//unwrapped phase will give the estimate of Ωt . This method is used here
p = polyfit(t,phau,1); //%linear fit to unwrapped
//%phase
p(2) = phau(1);
omega1t = polyval(p,t);
phaus = phau - omega1t; //%subtract linear offset
mf = fft(phaus); //%spectrum of phase demodulated signal en rad/s
dbmf = 20*log10((abs(mf)/length(mf)*2+10E-12)/10E-12);
dbmf = fftshift(dbmf);
plot(ax,dbmf);
//If the actual linear phase is used then the mass line can be
//seen to be removed:
phaus2 = phau - omega1*t; //%removal of linear phase increase if carrier freq is known
mf2 = fft(phaus2);
dbmf2 = 20*log10((abs(mf2)/length(mf2)*2+10E-12)/10E-12);
dbmf2 = fftshift(dbmf2);
plot(ax,dbmf2);
gammae1 = abs(mf(1))/length(mf);
betae1 = abs(mf(omega2+1))/length(mf)*2;
gammae2 = abs(mf2(1))/length(mf2);
phie1 = angle(mf(omega2+1))+%pi/2;
betae2 = abs(mf2(omega2+1))/length(mf2)*2;
phie2 = angle(mf2(omega2+1))+%pi/2;
[wft,wfm,fr] = wfir('bp',254,[300/Fs 8000/Fs ],'re',[-1 -1]);
[wft1,wfm,fr] = wfir('bp',254,[10/Fs 300/Fs ],'re',[-1 -1]);
t=(0:size(xg,2)-1)/Fs;
xgf = filter(wft,1,(xg));
subplot(2,1,1);
plot(t,xgf);
subplot(2,1,2);
plot(t(1:$-1),filter(wft1, 1,abs(diff(unwrap(angle(hilbert(filter(wft,1,xg)))))/(2*%pi*1/Fs))),'r');
endfunction
|
43b712da2acf6a7b4a9b84a7258201a3101d6ac3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1646/CH17/EX17.8/Ch017Ex8.sce
|
ff001444d5074ebfe42fa235d98da6c4b3e2a866
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,578
|
sce
|
Ch017Ex8.sce
|
// Scilab code Ex17.8 : Pg:892 (2011)
clc;clear;
amu = 931.5; // Energy equivalent of 1 amu, MeV
nucleus = cell(4,3);
nucleus(1,1).entries = 'F';
nucleus(1,2).entries = 9;
nucleus(1,3).entries = 19;
M_P = 19.0457; // Mass of product nucleus, amu
nucleus(2,1).entries = 'n';
nucleus(2,2).entries = 0;
nucleus(2,3).entries = 1;
m_i = 1.0087; // Mass of incident particle, amu
nucleus(3,1).entries = 'O';
nucleus(3,2).entries = 8;
nucleus(3,3).entries = 19;
nucleus(4,1).entries = 'H';
nucleus(4,2).entries = 1;
nucleus(4,3).entries = 1;
m_e = 1.00728; // Mass of emitted particle, amu
K_i = 15; // Kinetic energy of incident neutrons, MeV
Q = -7.6342; // Q-value of the reaction, MeV
K_e = (Q*M_P-(m_i-M_P)*K_i)/(m_e+M_P); // Kinetic energy of emitted photon, MeV
E_th = -1*Q*(M_P+m_i)/M_P; // Threshold energy required to initiate the reaction, MeV
printf("\nThe kinetic energy of emitted photon = %5.3f MeV", K_e);
printf("\nThe threshold energy required to initiate the reaction");
printf("\n\t%s(%d,%d) + %s(%d,%d) --> %s(%d,%d) + %s(%d,%d)", nucleus(1,1).entries, nucleus(1,2).entries, nucleus(1,3).entries, nucleus(2,1).entries, nucleus(2,2).entries, nucleus(2,3).entries, nucleus(3,1).entries, nucleus(3,2).entries, nucleus(3,3).entries, nucleus(4,1).entries, nucleus(4,2).entries, nucleus(4,3).entries);
printf("\nis %5.3f MeV", E_th);
// Result
// The kinetic energy of emitted photon = 6.241 MeV
// The threshold energy required to initiate the reaction
// F(9,19) + n(0,1) --> O(8,19) + H(1,1)
// is 8.039 MeV
|
c7c8d41d42f33d0d4219f4321f2db857e9e0ac1d
|
6b85d1958ff11075634ed9e0f6dbef2de9548f1b
|
/ANN_Toolbox/demos/enc848_m_nb.sci
|
8872d835cefd239f96030be85818ba25919b281b
|
[
"Unlicense"
] |
permissive
|
ademarazn/REDES_NEURAIS
|
8a048c13aab33daa4068f52e18b263cc8325884f
|
a9a35744476d1f7e8405df04d5e4a9f8e4ed4595
|
refs/heads/master
| 2021-05-06T13:09:56.514632
| 2018-04-25T18:49:30
| 2018-04-25T18:49:30
| 113,248,743
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 905
|
sci
|
enc848_m_nb.sci
|
// Loose 8-4-8 encoder
// on a backpropagation network without biases, with momentum
// (Note that the tight 8-4-8 encoder will not work without biases)
rand('seed',0);
// network def.
// - neurons per layer, including input
N = [8,4,8];
// inputs
x = [1,0,0,0,0,0,0,0;
0,1,0,0,0,0,0,0;
0,0,1,0,0,0,0,0;
0,0,0,1,0,0,0,0;
0,0,0,0,1,0,0,0;
0,0,0,0,0,1,0,0;
0,0,0,0,0,0,1,0;
0,0,0,0,0,0,0,1]';
// targets, at training stage is acts as identity network
t = x;
// learning parameter
lp = [2.5,0.1,0.9,0.25];
// init randomize weights between:
r = [-1,7];
W = ann_FF_init_nb(N,r);
Delta_W_old = hypermat(size(W)');
// 250 epochs are enough to ilustrate
T = 250;
[W,Delta_W_old] = ann_FF_Mom_online_nb(x,t,N,W,lp,T,Delta_W_old);
// full run
ann_FF_run_nb(x,N,W)
// encoder
encoder = ann_FF_run_nb(x,N,W,[2,2])
// decoder
decoder = ann_FF_run_nb(encoder,N,W,[3,3])
|
ba9b53435a402f9048a2750a4c725ee3234bc30f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/213/CH11/EX11.3/11_3.sce
|
a9c5cd144aecc84e2f907ce023f72773f2fb4415
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,773
|
sce
|
11_3.sce
|
//To find radii of stepped pulleys
clc
//Given:
N1=160, N3=N1, N5=N3, N2=60, N4=80, N6=100 //rpm
x=720, r1=40 //mm
//Solution:
//For a crossed belt:
//Calcluating the radii of pulleys 2, 3, 4, 5, and 6
r2=r1*(N1/N2) //mm
//For pulleys 3 and 4, r4 = r3*(N3/N4), or r3*(N3/N4)-r4 = 0
//For a crossed belt drive, r3+r4 = r1+r2
A=[N3/N4 -1; 1 1]
B=[0; r1+r2]
V=A \ B
r3=V(1) //mm
r4=V(2) //mm
//For pulleys 5 and 6, r6 = r5*(N5/N6), or r5*(N5/N6)-r6 = 0
//For a crossed belt drive, r5+r6 = r1+r2
A=[N5/N6 -1; 1 1]
B=[0; r1+r2]
V=A \ B
r5=V(1) //mm
r6=V(2) //mm
//Results:
printf("\n\n For a crossed belt,\n r2 = %.1fmm;\n",r2)
printf(" r3 = %.1f mm;\n",r3)
printf(" r4 = %.1f mm;\n",r4)
printf(" r5 = %.1f mm;\n",r5)
printf(" r6 = %.1f mm.\n\n",r6)
//For an open belt:
//Calcluating the radii of pulleys 2, 3, 4, 5, and 6
r2=r1*(N1/N2) //mm
//Calculating the length of belt for an open belt drive
L=%pi*(r1+r2)+(r2-r1)^2/x+2*x //mm
//For pulleys 3 and 4, r4 = r3*(N3/N4), or r3*(N3/N4)-r4 = 0
//Since L is constant, for pulleys 3 and 4, %pi*(r3+r4)+(r4-r3)^2/x+2*x-L = 0
funcprot(0)
function y=f(a)
r3=a(1)
r4=a(2)
y(1)=r3*(N3/N4)-r4
y(2)=%pi*(r3+r4)+(r4-r3)^2/x+2*x-L
endfunction
z=fsolve([1,1],f)
r3=z(1) //mm
r4=z(2) //mm
//For pulleys 5 and 6, r6 = r5*(N5/N6), or r5*(N5/N6)-r6 = 0
//Since L is constant, for pulleys 5 and 6, %pi*(r5+r6)+(r6-r5)^2/x+2*x-L = 0
function y=f(a)
r5=a(1)
r6=a(2)
y(1)=r5*(N5/N6)-r6
y(2)=%pi*(r5+r6)+(r6-r5)^2/x+2*x-L
endfunction
z=fsolve([1,1],f)
r5=z(1) //mm
r6=z(2) //mm
//Results:
printf(" For an open belt,\n r2 = %.1fmm,\n",r2)
printf(" r3 = %.1f mm;\n",r3)
printf(" r4 = %.1f mm;\n",r4)
printf(" r5 = %d mm;\n",r5)
printf(" r6 = %d mm.\n\n",r6)
|
aece649c33fc6c65148a716e730d58d58c877747
|
3c47dba28e5d43bda9b77dca3b741855c25d4802
|
/microdaq/tests/AIO_COMPLEX_TEST/test_defines.sce
|
17d638e1ffad16b8d14468a10b063270f49b26ab
|
[
"BSD-3-Clause"
] |
permissive
|
microdaq/Scilab
|
78dd3b4a891e39ec20ebc4e9b77572fd12c90947
|
ce0baa6e6a1b56347c2fda5583fb1ccdb120afaf
|
refs/heads/master
| 2021-09-29T11:55:21.963637
| 2019-10-18T09:47:29
| 2019-10-18T09:47:29
| 35,049,912
| 6
| 3
|
BSD-3-Clause
| 2019-10-18T09:47:30
| 2015-05-04T17:48:48
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 393
|
sce
|
test_defines.sce
|
// ------ CONSTATNTS ------
global %microdaq;
mprintf("Loading test defines...\n")
AI10_24 = [-10.24 10.24];
AI5_12 = [-5.12 5.12];
AI2_56 = [-2.56 2.56];
AI1_28 = [-1.28 1.28];
AI0_64 = [-0.64 0.64];
AO10 = [-10 10];
AO5 = [-5 5];
AO10_0 = [0 10];
AO5_0 = [0 5];
ADC_ID = %microdaq.private.adc_info.id;
DAC_ID = %microdaq.private.dac_info.id;
SCRIPT_MODE = 0;
SIM_MODE = 1;
DSP_MODE = 2;
|
752d6dcfdd37a61c8d7c44d3d8eddff393d9bdb9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2102/CH2/EX2.25/exa_2_25.sce
|
fb21807bff60ca103ba5648ba3f299209ed262db
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 299
|
sce
|
exa_2_25.sce
|
// Exa 2.25
clc;
clear;
close;
// Given data
q=1.6*10^-19;// in C
miu_n= 0.18;// in m^2/v-s
N_D= 10^21;// per m^3
N_A= 5*10^20;// per m^3
N_deshD= N_D-N_A;// per m^3
n=N_deshD;// per m^3
sigma= q*n*miu_n;// in (Ωm)^-1
disp(sigma,"Conductivity of the silicon sample in (Ωm)^-1 is : ")
|
1980ef85ae8cbd58be158455e2ffa1470743a794
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1997/CH4/EX4.2/example2.sce
|
c69731e54271a6c13206f41b04ba6844af565c36
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 843
|
sce
|
example2.sce
|
//Chapter-4 example 4.2
//=============================================================================
clc;
clear;
//input data
F = 1*10^9; //operating frequency of monopulse radar in Hz
Vo = 3*10^8; //velocity of EM wave in m/s
theta_d = 10 //angle blw los and perpendicular bisector of line joining two antennas
PD_d = 20; //phase difference in degrees
// calculations
lamda = Vo/F //wavelength in m
//PD = (2*%pi/lamda)*(d*sin(theta));
theta_r = theta_d*(%pi/180) //degree to radian conversion
PD_r = PD_d*(%pi/180) //degree to radian conversion
d = (PD_r*lamda)/(2*%pi*sin(theta_r));
//output
mprintf('Spacing between the antennas is %3.2f cms',d*100);
//===============end of the program============================================
|
bf4f44baba06049f2cadd59c65a38fa535766410
|
ffe30bb7dcdef053e8f540de90cab35f8bcb011f
|
/questao_04.sce
|
19f7e7a08e06ee36e909fd8452323c4481679342
|
[] |
no_license
|
jaimedantas/Signal-Processing-Assignments
|
fca8861401b6f3412bd7fa46d45797c27de1d421
|
4cf92066551842af94c3e39b4652f2759ebbe3e0
|
refs/heads/master
| 2020-05-20T12:59:21.319349
| 2017-04-07T20:43:46
| 2017-04-07T20:43:46
| 80,398,198
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 802
|
sce
|
questao_04.sce
|
//condicoes iniciais
n_c = 2;//numero de condicoes iniciais
n_i = 5;//numero de interacoes
y(2) = 1;//y(-1)
y(1) = 0;//y(-2)
//laco de interacao
for i = 3:(n_i + n_c)
y(i) = (3/4)*y(i-1) -(1/8)*y(i-2) +(1/2)^(i-3);
end
//deslocamento do vetor y para a possicao 1
for i = 1:(n_i)
aux(i) = y(i+n_c);
end
f = aux'//transposta do vetor resposta
//agora o vetor aux eh o vetor y(i) ordemado corretamente a partir da posicao y(1)
//f = aux';
//grafico
//vetor de n discreto
n=[1:1:n_i];
//variáveis auxiliares para o grafico
x_min = n(1)-2;
x_max= n(length(n));
y_min = min(f);
y_max = max(f)+0.5;
plot2d3(n-1,f, style = -4, rect = [x_min,y_min,x_max,y_max]);//grafico discreto de y(n) em funcao de n
xtitle("",["n"],["y(n)"], boxed = 0);//titulo dos eixos
xgrid(4);
|
7c709dced63802251431942cef5b6901300f75e4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2282/CH5/EX5.6/ex5_6.sce
|
30b440b04f52c0d68f10c9dd6c14216d84c9b75e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 212
|
sce
|
ex5_6.sce
|
// Example 5.6, page no-190
clear
clc
printf("comparing given equation with stanard equation, we have,\n Maximum phase deviation = 6 radian\n Maximum frequency deviation = 12*3.14*10^3 radian/s = 6 KHz")
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.