blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 6
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
87
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 15
values | visit_date
timestamp[us]date 2016-08-04 09:00:04
2023-09-05 17:18:33
| revision_date
timestamp[us]date 1998-12-11 00:15:10
2023-09-02 05:42:40
| committer_date
timestamp[us]date 2005-04-26 09:58:02
2023-09-02 05:42:40
| github_id
int64 436k
586M
⌀ | star_events_count
int64 0
12.3k
| fork_events_count
int64 0
6.3k
| gha_license_id
stringclasses 7
values | gha_event_created_at
timestamp[us]date 2012-11-16 11:45:07
2023-09-14 20:45:37
⌀ | gha_created_at
timestamp[us]date 2010-03-22 23:34:58
2023-01-07 03:47:44
⌀ | gha_language
stringclasses 36
values | src_encoding
stringclasses 17
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 15
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
826b4faade71f69a7367e4abc06d751af5cf94b2
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/blog/bow/bow.16_10.tst
|
a27ad1ba20f88870edb2839c89d9850d470b964c
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,138
|
tst
|
bow.16_10.tst
|
16 2:0.038461538461538464 13:1.0 15:0.017857142857142856 31:1.0 32:0.3333333333333333 328:1.0 375:0.3333333333333333 505:1.0 1053:1.0
16 2:0.038461538461538464 13:1.0 15:0.017857142857142856 59:0.25 103:0.14285714285714285 110:0.5 114:0.5 137:1.0 153:0.2 169:0.3333333333333333 197:1.0 209:0.2 239:1.0 283:1.0 388:1.0 479:1.0 614:1.0 773:1.0 817:0.3333333333333333 974:1.0 1000:1.0 1001:1.0 1506:1.0
16 2:0.11538461538461539 4:1.0 13:1.0 15:0.03571428571428571 32:0.3333333333333333 85:1.0 110:0.5 115:1.0 169:0.3333333333333333 282:1.0 283:1.0 375:0.3333333333333333 462:0.5 479:1.0 614:1.0 773:1.0 973:1.0 1276:1.0
16 2:0.07692307692307693 15:0.017857142857142856 31:2.0 32:0.3333333333333333 88:1.0 89:1.0 115:1.0 153:0.2 717:1.0 1111:1.0 1454:1.0
16 2:0.038461538461538464 8:1.0 15:0.017857142857142856 32:0.6666666666666666 36:0.1111111111111111 121:1.0 127:1.0 130:0.2 150:1.0 283:1.0 308:0.3333333333333333 580:1.0 1261:1.0 1733:1.0
16 2:0.038461538461538464 4:1.0 8:3.0 12:0.4 15:0.03571428571428571 19:0.3333333333333333 22:0.2222222222222222 32:0.3333333333333333 34:0.5 36:0.1111111111111111 115:2.0 130:0.2 150:1.0 308:0.3333333333333333 382:1.0 773:1.0 811:1.0 1076:1.0 1548:1.0 1568:1.0 1733:1.0
16 2:0.07692307692307693 8:2.0 12:0.4 19:0.3333333333333333 32:0.3333333333333333 36:0.1111111111111111 103:0.14285714285714285 118:1.0 150:1.0 153:0.2 169:0.3333333333333333 172:1.0 308:0.3333333333333333 702:0.3333333333333333 833:1.0 1055:1.0 1506:1.0 1520:1.0
16 12:0.2 13:1.0 15:0.03571428571428571 31:1.0 36:0.1111111111111111 115:1.0 127:1.0 165:1.0 225:0.5 231:1.0 262:1.0 306:1.0 333:1.0 704:0.07692307692307693 877:1.0
16 8:2.0 12:0.4 32:0.3333333333333333 79:0.2 279:0.5 544:1.0 917:1.0 1149:1.0
16 32:0.6666666666666666 36:0.1111111111111111 48:1.0 53:0.5 85:1.0 131:1.0 271:1.0 462:0.5 773:1.0 1399:1.0 1733:1.0
16 2:0.15384615384615385 4:2.0 8:1.0 19:0.6666666666666666 32:0.6666666666666666 36:0.1111111111111111 131:1.0 148:1.0 150:1.0 165:1.0 169:0.3333333333333333 386:1.0 704:0.07692307692307693 872:1.0 902:1.0
16 4:1.0 15:0.017857142857142856 32:0.3333333333333333 126:1.0 145:1.0 165:1.0 502:1.0 872:1.0 902:1.0 983:1.0 1023:1.0
16 15:0.017857142857142856 19:0.3333333333333333 25:1.0 32:0.6666666666666666 36:0.1111111111111111 112:1.0 115:1.0 118:1.0 165:1.0 173:1.0 225:0.5 262:1.0 308:0.3333333333333333 704:0.07692307692307693 902:1.0 1252:1.0 1674:1.0 1733:1.0
16 15:0.017857142857142856 32:0.3333333333333333 104:0.08333333333333333 169:0.3333333333333333 209:0.2 388:1.0 872:1.0 876:0.16666666666666666 1208:1.0 1613:1.0
16 169:0.3333333333333333 408:1.0 502:1.0 704:0.07692307692307693
16 12:0.2 115:1.0 1168:1.0
16 12:0.2 704:0.07692307692307693 854:1.0
16 2:0.038461538461538464 4:1.0 15:0.05357142857142857 25:1.0 27:1.0 32:0.3333333333333333 110:0.5 171:0.25 239:1.0 262:1.0 279:0.5 392:1.0 430:1.0 734:1.0 883:1.0 889:1.0 1363:1.0 1399:1.0
16 15:0.03571428571428571 16:1.0 32:0.3333333333333333 100:0.5 209:0.4 330:1.0 429:1.0 656:1.0 711:1.0 1554:1.0
16 2:0.07692307692307693 4:2.0 12:0.2 13:1.0 15:0.03571428571428571 31:2.0 32:0.3333333333333333 272:0.5 337:0.5 371:1.0 502:1.0 702:0.3333333333333333 1261:1.0
16 4:1.0 15:0.017857142857142856 702:1.0 983:1.0 1111:1.0
16 2:0.19230769230769232 12:0.2 13:2.0 15:0.017857142857142856 118:1.0 239:1.0 360:1.0 701:1.0 704:0.07692307692307693 1102:1.0 1111:1.0 1137:2.0 1244:1.0 1439:1.0
16 2:0.15384615384615385 4:1.0 12:0.2 15:0.05357142857142857 16:1.0 19:0.3333333333333333 32:0.3333333333333333 36:0.1111111111111111 115:2.0 118:1.0 167:1.0 209:0.2 225:0.5 239:1.0 499:1.0 580:1.0 1137:1.0 1243:1.0 1244:1.0 1298:1.0 1309:1.0 1336:1.0 1426:1.0
16 2:0.038461538461538464 12:0.4 13:2.0 15:0.03571428571428571 53:0.25 68:0.25 153:0.2 181:1.0 283:1.0 479:1.0 916:1.0 1612:1.0 1663:1.0 1781:1.0
16 2:0.07692307692307693 4:1.0 12:0.2 15:0.05357142857142857 19:0.3333333333333333 25:1.0 234:1.0 382:1.0 482:1.0 833:2.0 1072:1.0 1478:1.0 1636:1.0 1782:1.0
16 4:1.0 12:0.6 59:0.25 144:1.0 209:0.2 860:1.0 1270:1.0
16 15:0.017857142857142856 32:0.3333333333333333 292:0.5 395:1.0 479:1.0 614:1.0 1574:1.0
16 15:0.017857142857142856 89:1.0 92:1.0 502:1.0 541:1.0 864:1.0
16 4:1.0 13:1.0 19:0.3333333333333333 36:0.1111111111111111 153:0.4 279:0.5 702:0.3333333333333333 704:0.15384615384615385 1643:1.0 1644:1.0 1681:1.0
16 2:0.07692307692307693 15:0.017857142857142856 29:0.16666666666666666 31:1.0 179:1.0 199:1.0 535:1.0 646:1.0 785:1.0 1176:1.0 1187:1.0 1206:1.0
16 2:0.038461538461538464 4:1.0 29:0.16666666666666666 32:0.3333333333333333 115:1.0 131:1.0 174:1.0 385:1.0
16 22:0.1111111111111111 32:0.3333333333333333 63:1.0 125:1.0 233:1.0 773:1.0
16 2:0.07692307692307693 12:0.2 13:3.0 19:0.3333333333333333 115:1.0 179:1.0 180:0.3333333333333333 282:1.0 292:0.5 683:1.0 1111:1.0 1112:1.0 1307:1.0
16 15:0.03571428571428571 29:0.16666666666666666 115:1.0 262:1.0 563:1.0 771:1.0 855:1.0
16 2:0.038461538461538464 12:0.2 13:1.0 25:1.0 167:1.0 272:0.5 702:0.6666666666666666 794:1.0 860:1.0 938:2.0
16 29:0.16666666666666666 843:1.0
16 79:0.2 865:1.0
16 704:0.07692307692307693
16 13:1.0 15:0.017857142857142856 747:1.0 943:1.0 1417:1.0 1445:1.0
|
15425cbbe596d0f805ddb7cd69f4e2685e789d64
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3769/CH3/EX3.29/Ex3_29.sce
|
e952a159893e02a5405d6a8f9a4f428de898e3f6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 173
|
sce
|
Ex3_29.sce
|
clear
//Given
E=9*10**4 //N/C
r=2*10**-2 //m
m=9*10**9
//Calculation
a=r*E/(2.0*m)
printf("\n Linear charge density is %0.3f Cm-1", a)
|
e474bc628ac364dde2acc35ff2e15286a9b95b92
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/L32.prev.tst
|
be3149280623d23815629b00c177a670f8952cc2
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 71
|
tst
|
L32.prev.tst
|
Vector [32,44,55,66].gcd() = 1
Vector [32,44,55,66].extractGcd() = 1
|
cd6d2c0033fb5f3ab74cbddfbdca4d9f10122cb7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/623/CH1/EX1.1.9/U1_C1_9.sce
|
d500b082f5b8c22cc87d49930599d9d282e892d4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,256
|
sce
|
U1_C1_9.sce
|
//variable initialization
l_dash=1 //length of the rod in frame s' (meter)
Theta_dash_degree=45 //angle of the rod with x-axis in frame s' (degree)
Beta=1/2 //value of Beta
//calculation of the length of the rod and its inclination with x-axis in the frame s
Theta_dash_radian=Theta_dash_degree*(%pi/180); //conversion of angle Theta in radian from degree (radian)
l=((l_dash^2)*((sin(Theta_dash_radian))^2+((1-(Beta^2))*((cos(Theta_dash_radian))^2))))^(1/2); //length of the rod in frame s (meter)
tan_theta=tan(Theta_dash_radian)/((1-Beta^2)^(1/2)); //tan of angle of rod with x-axis in frame s
theta=atand(tan_theta); //angle of rod with x-axis in frame s (degree)
printf("\n\t The length of the rod = %f meter\n\t Inclination of rod with x-axis = %f degree",l,theta);
|
e36c8e426d4fdc22e3338528d47cf685e3db9b61
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2699/CH13/EX13.51/Ex13_51.sce
|
a74af68e4679f29e119ba22e201ad2a61c8da83a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,255
|
sce
|
Ex13_51.sce
|
//EX13_51 Pg-29
clc
clear
//subtraction of 10000 from 11010 using 1''s complement method
printf(" i)\n subtraction of 10000 from 11010 using 1''s complement method ")
printf("\n Therefore 11010-10000 =")
x=['11010'];
y=['10000'];
//binary to decimal conversion//
x=bin2dec(x)
y=bin2dec(y)
y1=bitcmp(y,5)//one's complement of the larger number
z=x+y1;//addition of x with the one's complement of y
//subtraction of smaller number from larger number
w=bitset(z,6,0)//the end round carry should be remove and add to z
a=w+1;
a1=dec2bin(a)//final result
printf(" %s",a1)
x=['1000100'];
y=['1010100'];
//subtraction of 1000100 from 1010100 using 1''s complement method
printf("\n\n Subtraction of 1010100 from 1000100 using 1''s complement method ")
printf("\n Therefore 1000100-1010100 =")
//binary to decimal conversion//
x=bin2dec(x)
y=bin2dec(y)
y1=bitcmp(y,6)//one's complement of the larger number
z=x+y1;//addition of x with the one's complement of y
//subtraction of larger number from smaller number
z=bitcmp(z,6);//one's complement of the result
a=dec2bin(z)//decimal to binary conversion
printf(" -%s\n",a)//the final result is negative
//subtraction of 10000 from 11010 using 2''s complement method
printf("\n\n ii)\n Subtraction of 10000 from 11010 using 2''s complement method")
printf("\n Therefore 11010-10000 =")
x=['11010'];
y=['10000'];
//binary to decimal conversion//
x=bin2dec(x)
y=bin2dec(y)
y1=bitcmp(y,6)//one's complement of the smaller number
y2=y1+1;//2's complement of the smaller number
//subtraction of smaller number from larger number
a=x+y2;
w=bitset(a,7,0)//we discard the carry
s=dec2bin(w)
printf(" %s",s)
//subtraction of 1000100 from 1010100 using 2''s complement method
printf("\n\n Subtraction of 1010100 from 1000100 using 2''s complement method ")
printf("\n Therefore 1000100-1010100 =")
x=['1000100'];
y=['1010100'];
//binary to decimal conversion//
x=bin2dec(x)
y=bin2dec(y)
y1=bitcmp(y,6)//one's complement of the larger number
y2=y1+1;//2's complement of the larger number
//subtraction of larger number from smaller number
a=x+y2;//result is in two complement
a1=bitcmp(a,6)//one's complement of the result
a2=a1+1;//final answer
s=dec2bin(a2)
printf(" -%s",s)//the final result is negative
|
c7fc69ae31cfc552e5d1a1f1ff41758e4c995376
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2195/CH2/EX2.7.2.d/ex_2_7_2_d.sce
|
c7e723488601e899aae6d7251bf7ca36a48b2e41
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 488
|
sce
|
ex_2_7_2_d.sce
|
//Example 2.7.2.d://probable error
clc;
clear;
n=10;//
format('v',7)
q=[101.2,101.4,101.7,101.3,101.3,101.2,101.0,101.3,101.5,101.1];//
AM= mean(q);//arithematic mean in mm
for i= 1:10
qb(i)= q(i)-AM;
end
Q= [qb(1),qb(2),qb(3),qb(4),qb(5),qb(6),qb(7),qb(8),qb(9),qb(10)];//
SD=stdev(Q);//standard deviation
Pe1=0.6745*SD;// probable error of one reading
probable_error=Pe1/sqrt(n-1);
disp(Pe1,"probable error of one reading(V) = ")
disp(probable_error,"probable error of mean(V) = ")
|
e39cafe18ed1314acf40001a82f776fd9213bc38
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/tweet/bow/bow.20_13.tst
|
ad19c9e0410eba54a112a789b92280bd05fa98f2
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 23,158
|
tst
|
bow.20_13.tst
|
20 9:0.5 21:0.3333333333333333 38:1.0 42:0.25 54:0.5 66:0.2 104:2.0 107:0.5 111:0.125 148:0.3333333333333333 158:0.1111111111111111 178:1.0 191:0.2 192:1.0 221:0.3333333333333333 310:0.25 392:0.041666666666666664 417:1.0 562:1.0 1239:1.0 1939:1.0 2303:0.3333333333333333 2504:1.0 2635:1.0 2687:1.0 2912:1.0 3178:1.0 3564:1.0 3633:1.0 4577:1.0 4680:1.0
20 9:0.5 11:1.0 42:1.25 48:0.2857142857142857 54:0.5 66:0.2 104:1.0 111:0.125 117:0.023255813953488372 158:0.1111111111111111 173:0.5 207:1.0 252:1.0 308:0.16666666666666666 350:0.07142857142857142 392:0.041666666666666664 403:1.0 405:0.1 552:0.3333333333333333 601:1.0 702:0.2 734:1.0 852:0.25 1093:1.0 1403:1.0 1595:1.0 1939:1.0 2266:2.0 2277:1.0 2325:0.2 2504:1.0 2779:1.0 3074:1.0 3516:1.0 3547:1.0 4669:1.0
20 8:0.6666666666666666 19:0.14285714285714285 42:0.25 104:1.0 135:0.1 139:1.0 148:0.3333333333333333 172:1.0 184:0.16666666666666666 207:1.0 223:1.5 248:0.2 310:0.75 392:0.041666666666666664 436:1.0 652:1.0 1023:0.5 1188:1.0 1484:1.0 1741:1.0 1754:1.0 1887:1.0 1904:1.0 1932:1.0 2132:1.0 2269:0.5 2280:1.0 2303:0.3333333333333333 2866:1.0 3042:0.5 3430:1.0 3500:1.0 3978:1.0 4209:1.0 4330:1.0
20 6:0.07142857142857142 38:1.0 42:0.5 61:0.5 66:0.4 107:0.5 117:0.023255813953488372 135:0.1 158:0.1111111111111111 207:1.0 223:1.0 389:0.25 469:0.5 1128:1.0 1599:0.2 1741:1.0 2154:1.0 2217:1.0 2220:1.0 2360:0.5 3032:1.0 4064:1.0 4097:2.0 4273:1.0
20 6:0.07142857142857142 42:0.25 107:0.5 148:0.3333333333333333 223:0.5 478:1.0 1266:0.07692307692307693 1595:1.0 1599:0.2 2220:1.0 2530:1.0 2998:0.5 3205:1.0
20 48:0.14285714285714285 51:0.125 223:0.5 248:0.2 293:1.0 392:0.041666666666666664 551:1.0 985:0.5 1595:1.0 2174:1.0 2392:1.0 2528:1.0 2782:1.0 3070:1.0 3287:1.0
20 6:0.07142857142857142 48:0.14285714285714285 66:0.2 135:0.1 148:0.3333333333333333 191:0.2 223:0.5 552:0.3333333333333333 585:0.5 702:0.2 1419:1.0 1599:0.4 2136:1.0 2220:1.0 2364:1.0 4055:1.0 4476:1.0 4477:2.0
20 9:0.25 11:1.0 17:1.0 19:0.14285714285714285 42:0.25 46:0.04 48:0.42857142857142855 66:0.2 107:0.5 158:0.2222222222222222 223:1.0 311:1.0 405:0.1 465:0.1 686:0.14285714285714285 828:0.3333333333333333 915:1.0 981:1.0 1043:1.0 1216:0.5 1595:1.0 1599:0.2 1741:1.0 2158:1.0 2220:1.0 2232:0.1111111111111111 2237:1.0 2741:1.0 3034:1.0 3177:1.0 3484:1.0 3815:1.0
20 6:0.07142857142857142 38:1.0 42:0.25 66:0.2 107:1.5 117:0.046511627906976744 148:1.0 191:0.2 223:0.5 248:0.2 252:1.0 286:0.25 310:0.25 414:0.5 520:0.5 527:0.6 552:0.3333333333333333 562:1.0 585:0.5 704:1.0 845:0.5 849:0.5 938:1.0 1599:0.2 2266:1.0 2534:1.0 3334:1.0 3405:1.0 3956:1.0 4350:1.0 4630:1.0
20 6:0.07142857142857142 107:0.5 223:0.5 248:0.6 310:0.25 469:0.5 1216:0.5 1599:0.2 1887:1.0 2220:1.0 2227:0.2 3405:1.0 4634:1.0 4798:1.0
20 6:0.07142857142857142 11:1.0 19:0.14285714285714285 54:0.5 66:0.4 107:0.5 178:1.0 207:1.0 223:0.5 248:0.2 389:0.5 392:0.041666666666666664 527:0.2 661:1.0 1012:1.0 1270:1.0 1419:1.0 1599:0.2 2144:0.25 2220:1.0 2701:1.0 3597:1.0 3826:1.0 4182:0.5 4209:1.0
20 19:0.2857142857142857 21:0.3333333333333333 42:0.25 97:1.0 111:0.125 207:1.0 223:0.5 248:0.2 283:1.0 562:1.0 566:1.0 789:0.5 1599:0.2 2129:1.0 2220:1.0 2249:0.3333333333333333 2403:1.0 2696:0.5 3023:1.0 3516:1.0
20 11:1.0 42:0.25 66:0.2 104:1.0 107:0.5 181:0.3333333333333333 191:0.2 207:1.0 223:1.0 305:1.0 327:0.5 552:0.3333333333333333 702:0.2 1023:0.25 1072:1.0 1266:0.07692307692307693 1599:0.2 2136:1.0 3287:1.0 3943:1.0
20 1:0.07692307692307693 23:0.5 38:1.0 42:0.25 66:0.2 110:0.3333333333333333 282:1.0 305:1.0 354:0.5 375:1.0 519:1.0 985:0.5 1062:1.0 1443:1.0 1939:1.0 1969:0.5 2536:1.0 2654:1.0 2944:1.0 3703:1.0
20 1:0.07692307692307693 9:0.25 38:2.0 42:0.5 46:0.04 66:0.4 117:0.023255813953488372 191:0.2 223:0.5 310:0.75 564:1.0 629:1.0 1705:0.5 1754:1.0 1969:0.5 2136:1.0 2306:1.0 2740:2.0 3103:0.5 4398:1.0 4497:1.0 4526:1.0
20 8:0.3333333333333333 11:1.0 107:1.0 110:0.3333333333333333 139:1.0 221:0.3333333333333333 223:0.5 310:0.25 383:1.0 404:1.0 839:0.6666666666666666 1018:1.0 1128:1.0 1354:1.0 1822:1.0 2651:1.0 2679:1.0 3406:1.0 3758:1.0 4386:1.0
20 1:0.07692307692307693 38:1.0 46:0.08 66:0.2 108:1.0 117:0.023255813953488372 139:2.0 260:1.0 310:0.75 727:0.3333333333333333 870:2.0 1705:0.5 1822:1.0 2450:1.0 2740:2.0 3896:1.0 4526:1.0
20 6:0.07142857142857142 11:1.0 107:0.5 117:0.023255813953488372 135:0.1 139:2.0 148:0.3333333333333333 161:1.0 172:1.0 191:0.2 207:1.0 209:1.0 223:0.5 310:0.5 527:0.2 566:1.0 711:1.0 839:0.3333333333333333 840:1.0 1588:1.0 1595:1.0 2269:0.5 3801:1.0 4403:1.0
20 8:0.3333333333333333 42:0.5 66:0.4 107:0.5 117:0.023255813953488372 135:0.1 142:0.3333333333333333 148:0.6666666666666666 184:0.16666666666666666 191:0.2 248:0.2 436:1.0 461:1.0 552:0.3333333333333333 1018:1.0 1277:1.0 1314:1.0 2132:1.0 2429:1.0 2665:1.0 2981:1.0 3429:0.5 4439:1.0
20 51:0.125 135:0.1 139:2.0 148:0.3333333333333333 153:1.0 191:0.2 223:0.5 310:0.25 392:0.041666666666666664 401:0.5 465:0.1 729:1.0 849:0.5 1419:1.0 1620:1.0 1780:1.0 2136:1.0 2154:1.0 2450:1.0 3449:1.0
20 11:2.0 38:1.0 52:0.1 104:1.0 110:0.3333333333333333 117:0.023255813953488372 139:1.0 148:0.3333333333333333 158:0.1111111111111111 223:0.5 452:1.0 469:0.5 478:1.0 576:1.0 780:1.0 1155:1.0 1291:1.0 2063:1.0 2065:1.0 2161:1.0 2217:1.0 2271:1.0 2312:1.0 2450:1.0
20 19:0.14285714285714285 42:0.25 104:2.0 107:0.5 191:0.4 221:0.3333333333333333 223:0.5 248:0.2 268:0.5 308:0.16666666666666666 313:0.2 330:1.0 434:1.0 561:0.3333333333333333 1214:1.0 1378:1.0 1625:1.0 1809:1.0 2450:1.0 4182:0.5
20 23:0.5 38:1.0 42:0.25 46:0.04 66:0.2 80:1.0 107:1.5 110:0.3333333333333333 158:0.1111111111111111 310:0.5 497:0.3333333333333333 566:1.0 720:1.0 1061:1.0 1291:1.0 1822:2.0 2363:0.5 2807:1.0 3244:0.5 3705:1.0
20 8:0.3333333333333333 11:1.0 17:1.0 19:0.14285714285714285 46:0.04 52:0.1 66:0.2 80:1.0 107:0.5 158:0.1111111111111111 350:0.07142857142857142 469:0.5 686:0.14285714285714285 2181:1.0 2211:1.0 2217:1.0 3693:1.0 3880:1.0 3983:1.0
20 6:0.07142857142857142 104:1.0 135:0.1 158:0.1111111111111111 223:1.0 352:1.0 552:0.3333333333333333 2247:1.0 3595:1.0
20 46:0.04 66:0.2 191:0.2 223:1.0 367:0.5 551:1.0 552:0.3333333333333333 887:1.0 985:0.5 2196:1.0 2312:1.0 3271:1.0
20 17:1.0 54:0.5 66:0.2 104:1.0 110:0.3333333333333333 111:0.125 223:0.5 256:0.3333333333333333 308:0.16666666666666666 313:0.2 552:0.3333333333333333 860:1.0 2410:1.0 2417:0.5 2782:1.0
20 11:1.0 17:1.0 19:0.14285714285714285 38:1.0 42:0.5 66:0.2 104:1.0 107:1.5 110:0.3333333333333333 111:0.25 117:0.046511627906976744 191:0.2 223:0.5 283:0.5 311:1.0 354:1.0 401:0.5 405:0.1 469:0.5 521:1.0 552:0.3333333333333333 562:1.0 597:1.0 702:0.2 721:1.0 1162:1.0 1712:1.0 2136:1.0 2234:1.0 2260:1.0 2397:1.0 2688:1.0 2784:1.0 4610:1.0 4733:1.0
20 11:1.0 38:2.0 42:0.5 66:0.2 104:1.0 111:0.125 191:0.2 193:1.0 223:1.0 367:0.5 392:0.041666666666666664 415:1.0 485:1.0 702:0.2 894:1.0 1088:1.0 1122:1.0 1338:1.0 1419:1.0 2136:2.0 2144:0.25 2312:1.0 2434:1.0 2841:1.0 3296:1.0 4267:1.0 4292:1.0 4759:1.0
20 1:0.07692307692307693 9:0.25 19:0.14285714285714285 42:1.0 51:0.125 54:0.5 66:0.2 107:0.5 199:1.0 223:0.5 310:0.25 325:0.5 354:0.5 629:1.0 702:0.2 782:1.0 839:0.3333333333333333 1012:1.0 1216:0.5 1393:1.0 2205:0.5 3358:1.0 3654:1.0
20 17:1.0 19:0.14285714285714285 42:0.25 46:0.04 66:0.2 104:1.0 107:0.5 111:0.125 135:0.1 178:1.0 191:0.2 223:0.5 286:0.25 405:0.1 438:1.0 521:2.0 554:1.0 677:1.0 915:1.0 1374:1.0 2136:1.0 2402:1.0 2605:0.3333333333333333 2608:1.0 4223:1.0 4495:1.0
20 19:0.2857142857142857 42:0.25 46:0.04 54:0.5 66:0.6 104:1.0 158:0.1111111111111111 305:1.0 469:0.5 513:1.0 521:1.0 554:1.0 1374:1.0 1470:1.0 2257:1.0 4223:1.0 4495:1.0
20 19:0.14285714285714285 42:0.5 107:0.5 111:0.25 191:0.2 236:0.25 305:1.0 330:1.0 415:1.0 469:0.5 527:0.2 677:1.0 702:0.2 1060:1.0 1073:1.0 1120:1.0 1244:1.0 1757:1.0 2191:1.0 2362:0.25 4405:1.0 4798:1.0
20 107:1.0 135:0.1 139:2.0 172:1.0 223:0.5 310:0.25 311:1.0 401:0.5 437:1.0 519:1.0 527:0.2 662:1.0 747:1.0 1000:0.5 1216:1.0 2136:1.0 2221:1.0 2320:0.5 2326:1.0 2444:1.0 4110:1.0 4460:1.0
20 11:1.0 38:1.0 104:1.0 117:0.046511627906976744 148:0.3333333333333333 158:0.1111111111111111 223:1.0 293:2.0 572:1.0 853:1.0 1194:1.0 1312:0.2 1822:1.0 2007:1.0 2087:1.0 2136:1.0 2176:0.5 2194:1.0 2402:1.0 2832:1.0 2935:1.0 3144:0.5 3166:1.0 3539:1.0 3722:1.0 4097:1.0
20 1:0.07692307692307693 6:0.07142857142857142 21:0.3333333333333333 38:1.0 42:0.5 48:0.14285714285714285 107:1.0 117:0.023255813953488372 135:0.1 148:0.3333333333333333 158:0.1111111111111111 191:0.2 223:1.0 232:1.0 389:0.25 727:0.3333333333333333 922:0.5 1216:0.5 1969:0.5 2136:2.0 2325:0.2 2645:1.0
20 6:0.07142857142857142 8:0.3333333333333333 11:1.0 42:0.5 48:0.2857142857142857 104:3.0 181:0.3333333333333333 223:1.0 313:0.2 389:0.25 392:0.041666666666666664 472:1.0 1939:1.0 2136:2.0 2237:1.0 2293:1.0 2320:0.5 2460:0.5 2629:1.0 4288:1.0 4340:1.0 4380:1.0 4646:1.0
20 54:0.5 111:0.125 117:0.023255813953488372 139:1.0 181:0.3333333333333333 191:0.2 223:1.0 310:0.25 439:1.0 566:1.0 896:1.0 2135:1.0 2136:2.0 2269:0.5 2303:0.3333333333333333 3074:1.0 3187:1.0 3634:1.0 3826:1.0
20 38:1.0 104:1.0 145:0.5 191:0.2 223:0.5 389:0.25 472:1.0 662:1.0 1050:1.0 2136:1.0 2325:0.2 2553:1.0 3330:1.0 3516:1.0 4538:1.0
20 3:0.5 9:0.25 11:1.0 42:0.25 54:0.5 66:0.2 104:1.0 191:0.2 221:0.3333333333333333 223:0.5 248:0.2 367:0.5 551:1.0 662:1.0 778:1.0 1018:1.0 1188:1.0 1266:0.07692307692307693 1599:0.2 1822:1.0 2022:1.0 2306:1.0 2981:1.0 3068:1.0 3287:1.0 3288:1.0 3292:1.0 3474:1.0 4818:1.0
20 19:0.14285714285714285 111:0.125 799:1.0
20 9:0.25 11:1.0 19:0.14285714285714285 42:0.25 54:0.5 66:0.2 104:2.0 107:0.5 130:1.0 148:0.3333333333333333 221:0.3333333333333333 223:0.5 552:0.3333333333333333 799:1.0 1312:0.2 1838:1.0 2144:0.25 3291:1.0
20 11:1.0 17:1.0 19:0.2857142857142857 42:0.75 54:0.5 66:0.2 73:1.0 104:1.0 107:0.5 111:0.125 117:0.023255813953488372 118:1.0 191:0.2 207:1.0 209:1.0 305:1.0 799:2.0 1277:1.0 1969:0.5 2227:0.2 2450:1.0 2481:1.0 2975:1.0 4255:1.0 4304:1.0 4670:1.0
20 11:1.0 19:0.14285714285714285 42:0.25 66:0.2 111:0.25 142:0.6666666666666666 158:0.1111111111111111 191:0.4 527:0.2 595:1.0 799:1.0 811:1.0 980:0.3333333333333333 1595:1.0 2249:0.3333333333333333 2450:1.0 3311:1.0 3335:1.0 3697:1.0 4304:1.0
20 19:0.14285714285714285 42:0.75 104:1.0 107:1.5 111:0.125 158:0.1111111111111111 191:0.2 198:1.0 309:0.3333333333333333 414:0.5 576:1.0 597:1.0 650:0.5 980:0.3333333333333333 1280:1.0 1314:1.0 1595:1.0 2381:1.0 2397:1.0 2481:1.0 2782:1.0 3506:1.0
20 104:3.0 158:0.1111111111111111 223:0.5 310:0.5 392:0.08333333333333333 1599:0.2 1969:0.5 1974:0.5 2183:0.1111111111111111 3022:0.5 3147:1.0
20 54:0.5 66:0.2 191:0.2 223:0.5 1662:1.0 2227:0.2 3826:1.0
20 9:0.25 42:0.5 104:1.0 117:0.023255813953488372 191:0.2 223:0.5 588:1.0 734:1.0 980:0.3333333333333333 2063:1.0 2154:1.0 2329:1.0 4538:1.0
20 19:0.14285714285714285 42:0.25 54:0.5 66:0.2 107:1.0 139:2.0 158:0.2222222222222222 223:1.0 232:1.0 734:1.0 1266:0.07692307692307693 1620:1.0 1787:1.0 2121:1.0 2136:2.0 2154:1.0 3316:1.0 3540:1.0
20 21:0.3333333333333333 38:1.0 42:0.25 46:0.04 66:0.2 108:1.0 117:0.046511627906976744 148:0.3333333333333333 172:1.0 223:0.5 305:1.0 381:1.0 721:1.0 727:0.3333333333333333 839:0.3333333333333333 849:0.5 922:0.5 927:1.0 985:0.5 1213:1.0 1599:0.2 1662:1.0 1822:1.0 2239:1.0 2272:1.0 2683:1.0 2775:1.0 4818:1.0
20 66:0.2 158:0.3333333333333333 221:0.3333333333333333 223:0.5 310:0.25 313:0.2 392:0.041666666666666664 561:1.0 702:0.2 811:1.0 839:0.3333333333333333 1419:1.0 1599:0.2 2007:1.0 2741:1.0 3641:1.0
20 21:0.3333333333333333 42:0.25 54:0.5 66:0.2 104:1.0 115:1.0 148:0.6666666666666666 158:0.2222222222222222 191:0.2 207:1.0 223:1.0 312:0.5 354:0.5 377:1.0 434:1.0 472:1.0 1266:0.07692307692307693 1338:1.0 2303:0.3333333333333333 3295:1.0 3429:0.5
20 8:0.3333333333333333 11:1.0 42:0.25 48:0.14285714285714285 85:1.0 117:0.023255813953488372 148:0.3333333333333333 223:1.0 332:1.0 527:0.2 585:0.5 828:0.3333333333333333 1595:1.0 1822:1.0 2136:1.0 2158:1.0 2249:0.3333333333333333 3395:1.0 3396:1.0 4055:1.0
20 148:0.3333333333333333 273:1.0 414:0.5 551:1.0 577:1.0 652:1.0 782:1.0 845:0.5 1107:1.0 2087:1.0 2444:1.0 2832:1.0 3139:1.0 3291:1.0 3930:1.0
20 3:0.5 38:1.0 42:0.5 66:0.4 104:1.0 111:0.25 142:0.3333333333333333 163:1.0 178:1.0 191:0.2 223:0.5 248:0.2 335:1.0 415:1.0 702:0.4 734:1.0 812:1.0 986:0.5 1093:1.0 1122:1.0 1216:0.5 2136:1.0 2225:1.0 3373:1.0 3540:1.0 4484:1.0
20 8:0.3333333333333333 38:1.0 42:0.75 46:0.04 48:0.14285714285714285 66:0.2 104:2.0 111:0.125 139:1.0 158:0.1111111111111111 181:0.3333333333333333 191:0.2 308:0.16666666666666666 309:0.3333333333333333 392:0.041666666666666664 519:2.0 520:0.5 561:0.3333333333333333 1000:0.5 1314:1.0 2560:1.0 2779:1.0 3074:1.0 3765:1.0
20 11:2.0 19:0.14285714285714285 21:0.3333333333333333 48:0.14285714285714285 66:0.2 107:1.0 111:0.125 199:1.0 209:1.0 223:0.5 248:0.2 260:1.0 305:1.0 392:0.041666666666666664 552:0.3333333333333333 576:1.0 1419:1.0 1809:1.0 2109:1.0 2136:1.0 2320:0.5 2547:1.0 2896:1.0 4667:1.0
20 19:0.14285714285714285 42:0.5 104:1.0 107:0.5 108:1.0 117:0.046511627906976744 158:0.1111111111111111 172:1.0 191:0.2 223:0.5 566:1.0 576:1.0 828:0.3333333333333333 853:1.0 2331:1.0 2460:0.5 2530:1.0 2730:1.0 3326:2.0 3765:1.0 3771:1.0 4495:1.0
20 38:3.0 42:0.5 52:0.1 104:1.0 107:0.5 111:0.125 135:0.1 139:1.0 223:0.5 310:0.25 392:0.041666666666666664 782:1.0 980:0.3333333333333333 1595:1.0 1694:1.0 1969:0.5 2357:1.0 3373:1.0 3449:1.0 4446:1.0
20 8:0.3333333333333333 42:0.25 66:0.4 136:1.0 221:0.3333333333333333 308:0.16666666666666666 414:0.5 629:1.0 782:1.0 1012:1.0 2184:1.0 2205:0.5 2504:1.0 2730:1.0 3652:1.0 4127:1.0
20 11:3.0 19:0.14285714285714285 66:0.2 104:2.0 111:0.125 158:0.1111111111111111 223:0.5 260:1.0 310:0.25 682:1.0 987:0.5 1595:1.0 1721:1.0 1822:1.0 2136:1.0 2326:1.0 2516:1.0 2534:1.0 2535:1.0 2578:1.0 3787:1.0
20 11:2.0 48:0.14285714285714285 66:0.4 110:0.3333333333333333 223:1.0 310:0.5 311:1.0 313:0.2 392:0.041666666666666664 552:0.3333333333333333 828:0.3333333333333333 986:0.5 1012:1.0 1520:1.0 2130:1.0 2136:2.0 2176:0.5 2232:0.1111111111111111 2269:0.5 2908:1.0 3117:1.0 3593:1.0 4628:1.0
20 8:0.3333333333333333 17:1.0 19:0.2857142857142857 38:2.0 42:0.5 52:0.1 54:0.5 66:0.2 104:1.0 115:1.0 158:0.1111111111111111 172:1.0 405:0.1 527:0.2 601:1.0 702:0.2 2161:1.0 2194:1.0 2850:1.0 3599:1.0 3873:1.0
20 6:0.07142857142857142 46:0.04 48:0.14285714285714285 51:0.125 66:0.4 117:0.046511627906976744 207:2.0 223:0.5 260:1.0 310:0.25 527:0.2 572:1.0 980:0.3333333333333333 1248:1.0 1266:0.07692307692307693 1604:1.0 2136:1.0 2158:1.0 2163:1.0 2249:0.3333333333333333 2324:1.0 2534:1.0 2640:1.0 2728:1.0 4507:1.0 4597:1.0
20 8:0.3333333333333333 42:0.5 107:0.5 111:0.125 117:0.023255813953488372 207:1.0 371:1.0 405:0.1 520:0.5 527:0.2 980:0.3333333333333333 1000:0.5 1314:1.0 2129:1.0 2305:1.0 2419:0.5 2892:1.0 3270:1.0 3579:1.0 4136:2.0 4460:1.0
20 9:0.25 42:0.25 107:0.5 110:0.3333333333333333 117:0.06976744186046512 158:0.1111111111111111 191:0.2 223:1.0 253:0.5 282:1.0 335:1.0 350:0.07142857142857142 389:0.25 514:1.0 566:1.0 1887:1.0 2136:1.0 2172:1.0 2547:1.0 2896:1.0
20 38:1.0 66:0.2 104:1.0 142:0.3333333333333333 191:0.2 248:0.2 354:0.5 375:1.0 466:1.0 552:0.3333333333333333 1216:0.5 1719:2.0 1836:1.0 2349:0.5 2362:0.25 2397:1.0 2521:0.5 2827:1.0 3801:1.0 4327:1.0 4671:1.0
20 1:0.07692307692307693 104:1.0 107:0.5 191:0.2 350:0.07142857142857142 577:1.0 773:1.0 1204:1.0 1207:1.0 1414:1.0 3013:1.0 3042:0.5 3127:1.0 3353:1.0 3784:1.0 3997:1.0
20 6:0.07142857142857142 38:1.0 42:0.5 54:0.5 66:0.4 104:1.0 221:0.3333333333333333 223:0.5 276:1.0 310:0.5 527:0.2 566:1.0 894:1.0 1215:1.0 1787:1.0 2325:0.2 2450:1.0 2556:1.0 2826:1.0 3042:0.5 3174:1.0 4101:1.0
20 8:0.3333333333333333 48:0.14285714285714285 104:1.0 111:0.125 184:0.16666666666666666 223:0.5 327:0.5 392:0.041666666666666664 415:1.0 702:0.4 799:1.0 1122:1.0 1216:0.5 2009:1.0 2360:0.5 2429:1.0 2626:1.0 3813:1.0 3890:1.0 3913:1.0
20 11:2.0 19:0.14285714285714285 38:1.0 42:0.25 46:0.04 80:1.0 111:0.125 158:0.1111111111111111 173:0.5 191:0.4 223:0.5 276:1.0 415:1.0 702:0.2 992:1.0 1595:1.0 2237:1.0 2363:0.5 2701:1.0 3675:1.0 3715:2.0
20 11:1.0 38:1.0 42:0.5 46:0.04 48:0.14285714285714285 66:0.4 80:1.0 104:2.0 139:1.0 191:0.4 392:0.041666666666666664 542:1.0 789:0.5 992:1.0 1563:1.0 1970:1.0 2137:1.0 2363:0.5 2783:1.0 2889:1.0 3259:1.0 3715:2.0 4762:1.0
20 9:0.25 38:1.0 66:0.2 104:3.0 107:0.5 115:1.0 178:1.0 181:0.3333333333333333 223:0.5 248:0.2 327:0.5 466:1.0 552:0.3333333333333333 702:0.2 1122:1.0 1268:1.0 1836:1.0 2349:0.5 2405:0.5 2827:1.0 3417:1.0 3801:1.0 3913:1.0 4327:1.0 4528:1.0
20 11:2.0 42:0.5 54:0.5 66:0.4 104:2.0 118:1.0 221:0.3333333333333333 223:0.5 894:1.0 1000:0.5 1215:1.0 1393:1.0 1762:1.0 1787:1.0 1809:1.0 2162:1.0 2205:0.5 2232:0.1111111111111111 2239:1.0 2327:1.0 2450:1.0 2556:1.0 2826:1.0 3042:0.5 3174:1.0 4101:1.0
20 6:0.07142857142857142 66:0.2 191:0.2 207:1.0 286:0.25 358:0.5 401:0.5 552:0.3333333333333333 758:1.0 778:1.0 789:0.5 870:1.0 1000:0.5 1093:1.0 1216:0.5 1421:1.0 2419:0.5 3773:1.0 4460:1.0
20 1:0.07692307692307693 42:0.5 107:1.0 135:0.1 148:0.3333333333333333 158:0.1111111111111111 191:0.4 223:0.5 310:0.5 354:0.5 392:0.041666666666666664 734:1.0 980:0.3333333333333333 1023:0.25 1224:1.0 1514:1.0 2304:1.0 2432:1.0 3008:1.0 3295:1.0 3762:1.0
20 6:0.07142857142857142 19:0.14285714285714285 42:0.25 66:0.6 139:1.0 191:0.4 260:1.0 305:1.0 552:0.3333333333333333 585:1.0 702:0.2 747:1.0 1122:1.0 1316:1.0 2504:1.0 2545:1.0 2950:1.0 3342:1.0 3787:1.0 4068:1.0
20 6:0.07142857142857142 9:0.25 42:0.25 66:0.2 107:1.0 145:0.5 158:0.1111111111111111 191:0.2 304:0.3333333333333333 305:1.0 310:0.25 552:0.3333333333333333 1595:1.0 1599:0.2 2220:1.0 2504:1.0 3787:1.0
20 17:1.0 42:0.25 66:0.6 80:1.0 110:0.3333333333333333 117:0.023255813953488372 148:0.3333333333333333 158:0.1111111111111111 161:1.0 223:0.5 310:0.25 436:1.0 520:0.5 566:1.0 702:0.2 721:1.0 2022:1.0 3022:0.5 3578:1.0
20 6:0.07142857142857142 11:1.0 21:0.3333333333333333 38:1.0 42:0.25 48:0.14285714285714285 117:0.023255813953488372 139:1.0 148:0.3333333333333333 158:0.1111111111111111 191:0.4 223:0.5 308:0.16666666666666666 405:0.1 414:0.5 708:1.0 720:1.0 722:1.0 1822:1.0 2136:1.0 2327:1.0 2379:0.3333333333333333 2402:1.0 2434:1.0 3157:1.0 3271:1.0 3787:1.0
20 11:2.0 42:0.25 48:0.14285714285714285 54:0.5 100:0.5 104:2.0 158:0.1111111111111111 173:0.5 191:0.4 223:1.0 401:0.5 405:0.1 436:1.0 552:0.3333333333333333 595:1.0 652:1.0 1266:0.07692307692307693 1378:1.0 2136:1.0 2206:1.0 2417:0.5 3474:1.0
20 11:1.0 38:2.0 42:0.5 46:0.04 66:0.2 104:1.0 111:0.125 161:1.0 172:1.0 223:0.5 310:0.5 392:0.041666666666666664 469:0.5 2136:1.0 2293:1.0 2303:0.3333333333333333 3648:1.0 3746:1.0 4034:1.0
20 42:0.25 46:0.04 66:0.2 104:1.0 107:0.5 111:0.125 139:1.0 164:1.0 191:0.2 285:1.0 310:0.25 469:0.5 527:0.2 780:1.0 884:1.0 1216:1.0 1421:1.0 1542:1.0 2349:0.5 2397:1.0 2772:1.0 3157:1.0 3405:1.0 4528:1.0
20 11:2.0 54:0.5 61:0.5 142:0.3333333333333333 191:0.4 223:0.5 253:0.5 375:1.0 389:0.25 472:1.0 1189:1.0 1216:0.5 1346:1.0 1723:1.0 1969:0.5 2053:1.0 2249:0.3333333333333333 2397:1.0 2901:1.0 3008:1.0 3142:1.0 3335:1.0 3836:1.0 3995:1.0 4747:1.0
20 6:0.07142857142857142 42:0.25 54:0.5 66:0.2 107:0.5 161:1.0 192:1.0 223:1.5 313:0.2 414:0.5 510:1.0 887:1.0 980:0.3333333333333333 986:0.5 1216:0.5 1378:1.0 1419:1.0 2136:2.0 2303:0.3333333333333333 2414:1.0 2567:0.2 2570:1.0 2571:1.0 2901:1.0 2935:1.0
20 42:0.5 48:0.14285714285714285 54:0.5 104:1.0 111:0.125 223:1.0 392:0.041666666666666664 984:1.0 1338:1.0 1799:1.0 2182:1.0 2360:0.5 3713:1.0
20 42:0.5 54:0.5 104:1.0 107:0.5 158:0.1111111111111111 178:1.0 191:0.2 223:0.5 436:1.0 551:1.0 989:1.0 1595:1.0 1599:0.2 2299:1.0 2362:0.25 3177:1.0 3405:1.0
20 6:0.07142857142857142 42:0.25 104:1.0 117:0.046511627906976744 223:0.5 311:1.0 350:0.07142857142857142 1060:1.0 1419:1.0 1599:0.2 1762:1.0 2136:1.0 2154:1.0 2220:1.0 2232:0.1111111111111111 2239:1.0 2272:1.0 2283:1.0 2346:1.0 2402:1.0 3396:1.0 3991:1.0
20 6:0.07142857142857142 38:1.0 42:0.25 66:0.6 104:1.0 111:0.125 117:0.023255813953488372 158:0.1111111111111111 163:1.0 184:0.16666666666666666 185:1.0 223:0.5 310:0.25 332:1.0 405:0.1 472:2.0 485:1.0 577:1.0 1128:1.0 1144:1.0 1312:0.2 1443:1.0 1939:1.0 2136:1.0 2266:1.0 2269:0.5 3116:1.0 3508:1.0 3593:1.0 3801:1.0 3908:1.0
20 2:0.5 38:1.0 42:0.5 66:0.4 107:1.0 111:0.125 115:1.0 148:0.3333333333333333 158:0.1111111111111111 191:0.2 354:0.5 472:1.0 577:1.0 870:1.0 912:1.0 1216:0.5 1346:1.0 1595:1.0 1969:0.5 2154:1.0 2199:1.0 2397:1.0 2419:0.5 2685:1.0 2799:1.0 2894:1.0 3294:1.0 3405:1.0 3667:1.0
20 8:0.3333333333333333 48:0.14285714285714285 66:0.2 135:0.1 223:0.5 248:0.2 312:0.5 392:0.041666666666666664 404:1.0 629:1.0 702:0.2 1012:1.0 1244:1.0 1809:1.0 2832:1.0 2999:1.0 3177:1.0 3413:1.0 3489:1.0
20 8:0.3333333333333333 11:1.0 21:0.3333333333333333 48:0.14285714285714285 66:0.2 80:1.0 100:0.5 104:2.0 107:0.5 135:0.1 223:0.5 248:0.2 302:0.5 312:0.5 392:0.041666666666666664 629:1.0 702:0.2 727:0.3333333333333333 1007:1.0 1012:1.0 1042:1.0 1244:1.0 1809:1.0 2154:2.0 2999:1.0 3177:1.0
20 19:0.14285714285714285 21:0.3333333333333333 48:0.14285714285714285 66:0.2 107:1.5 139:1.0 172:1.0 184:0.16666666666666666 185:1.0 191:0.2 221:0.3333333333333333 252:1.0 310:0.25 405:0.1 410:0.5 485:1.0 702:0.2 778:1.0 789:0.5 860:1.0 870:1.0 1000:0.5 1093:1.0 1160:1.0 1599:0.2 2121:1.0 2129:1.0 2419:0.5 2578:1.0 2894:1.0
20 38:2.0 42:0.25 48:0.14285714285714285 61:0.5 66:0.4 104:1.0 117:0.046511627906976744 136:1.0 148:0.3333333333333333 158:0.3333333333333333 173:0.5 223:0.5 527:0.2 566:1.0 601:1.0 702:0.2 721:1.0 828:0.3333333333333333 1023:0.25 2136:1.0 2161:1.0 2194:1.0 2269:0.5 2272:1.0 2346:1.0 2359:1.0 2414:1.0 2741:1.0
20 42:0.5 104:1.0 107:0.5 111:0.125 223:0.5 308:0.16666666666666666 310:0.25 469:0.5 765:1.0 1214:1.0 1705:0.5 1887:1.0 1969:0.5 2221:1.0 2259:1.0 2272:1.0 2326:1.0 2332:1.0 3103:0.5 3528:1.0 3709:1.0 4731:1.0 4732:1.0
20 11:1.0 19:0.2857142857142857 30:1.0 110:0.3333333333333333 207:1.0 223:0.5 248:0.2 310:0.25 354:0.5 385:1.0 545:1.0 702:0.4 1058:1.0 1188:1.0 2022:1.0 2135:1.0 2300:1.0 2311:1.0 2312:1.0 2796:1.0 2981:1.0 3671:0.5 4671:1.0
20 6:0.07142857142857142 11:1.0 19:0.14285714285714285 42:0.25 54:0.5 117:0.023255813953488372 191:0.2 223:1.0 310:0.25 389:0.25 657:1.0 702:0.2 1058:1.0 1768:1.0 2135:1.0 2154:1.0 2504:1.0 2796:1.0 2890:1.0 3241:1.0 3671:0.5
20 6:0.14285714285714285 17:1.0 19:0.14285714285714285 38:1.0 42:0.75 48:0.2857142857142857 104:1.0 191:0.4 223:1.0 304:0.3333333333333333 401:0.5 410:0.5 519:1.0 2419:0.5 3003:1.0 3540:1.0 3543:1.0 4186:1.0 4398:1.0
20 11:1.0 38:1.0 42:0.25 52:0.1 107:0.5 111:0.125 158:0.1111111111111111 223:0.5 350:0.07142857142857142 367:0.5 405:0.1 439:1.0 472:1.0 552:0.3333333333333333 1060:1.0 2136:1.0 2157:1.0 2194:2.0 2299:1.0 2312:1.0 2730:1.0 3587:1.0 4141:1.0
20 1:0.07692307692307693 6:0.07142857142857142 48:0.14285714285714285 54:0.5 100:0.5 115:1.0 133:0.5 148:0.3333333333333333 158:0.1111111111111111 223:0.5 389:0.25 402:1.0 485:1.0 562:1.0 661:1.0 828:0.3333333333333333 1291:1.0 1762:1.0 2137:1.0 2154:1.0 2560:1.0 4361:1.0
|
5feac2e5b74e9570909d1c63939d02a9e6d868a8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2519/CH20/EX20.6/Ex20_6.sce
|
c6dd6ab46cb96ba93a6387d6f5a5c1d33581ee4e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 369
|
sce
|
Ex20_6.sce
|
clc
clear
//Initialization of variables
h=2 //Btu/hr ft^2 F
delta=1/6
t=125 //F
t0=100 //F
ti=350 //F
k=0.167 //Btu/hr ft F
rho=80 //lbm/ft^3
c=0.4 //Btu/lbm F
//calculations
Bi=h*delta/k
tr=(t-t0)/(ti-t0)
tau=1.5*delta^2 *rho*c/k
tr2=0.21
tc=tr2*(ti-t0) + t0
//results
printf("Cooling time = %.2f hr",tau)
printf("\n Center temperature = %d F",tc)
|
548dc4a3590f8b712ded5c6ad8407a423c2c9dde
|
717ddeb7e700373742c617a95e25a2376565112c
|
/226/CH19/EX19.24/example24_sce.sce
|
938aed6def0129e54c6f50285e34b76318d8566a
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 205
|
sce
|
example24_sce.sce
|
//chapter 19
//example 19.24
//page 875
printf("\n")
printf("given")
Rf=15*10^3;R1=5.6*10^3;vs=.5;Vp=2.7;
Acl=(2*Rf)/R1
Vo=Acl*vs
Po=(Vp)^2 /(2*Rl);
printf("load power dissipation is %3.2fW\n",Po)
|
d265083656a8682de7334cb38002b68c64cb5a40
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3785/CH6/EX6.2/Ex6_2.sce
|
b8d854ee6bdc49d8000f752d26049c059d123e0c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 232
|
sce
|
Ex6_2.sce
|
// Example 6_2
clc;funcprot(0);
// Given data
a=1.0;// s^-1
b=0.1;// s^-1
c=2.0;// s^-1 where a,b,c are constants
z=1;// m
mu=1.82*10^-5;// Pa s
// Calculation
delp=mu*(2*b);// Pa/m
printf("[delp=%1.2e Pa/m]i_x",delp)
|
ee8e5809bf72f2550ba12e69123abd799bf8b8db
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.5/macros/percent/%s_m_ip.sci
|
d7801dabb2a07a861e439d68033f192b9ec1f26a
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 102
|
sci
|
%s_m_ip.sci
|
function r=%s_m_ip(s,ip)
// s*ip
if size(s,'*')<>1 then error(10),end
r=(s*ip(1)):(s*ip(2)):(s*ip(3))
|
9380b46eae321d435bf9e8868804919a798340b6
|
76b8c4ba0a69d3281b658f0fcf0ec56a96e27581
|
/Workspace/Mission_U1.sce
|
97eac170e3b08ef5125e0ee3140b037f48734607
|
[] |
no_license
|
RomainJunca/ExoLife
|
0824fa566b38c5061f77592df6c38c3614dd8619
|
8da1524432d0ef1137d5e73e80cec339e6ec1c33
|
refs/heads/master
| 2020-05-25T14:08:07.353617
| 2017-03-20T08:31:32
| 2017-03-20T08:31:32
| 84,937,995
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 816
|
sce
|
Mission_U1.sce
|
// Mission U1
// Obtention de l'image
pathname = "C:\Users\Jean-Guillaume P\Documents\Exia\A2\Projets\Imagerie\ExoLife\Images\Mission_U\U1_surface.pbm";
img_in = readpbm(pathname);
// Application de la normalisation afin d'avoir un meilleur contraste lors de l'application d'un filtre des contours
histogramme = histogrammeFct(img_in);
minHisto = debutHistogramme(histogramme);
maxHisto = finHistogramme(histogramme);
img_norma = ameliorationContrasteNormalisation(img_in, minHisto, maxHisto);
// Application du filtre de Sobel afin de ne garder que les contours
img_out = filtreSobel(img_norma);
// Affichage
figure;
display_gray(img_in);
figure;
display_gray(img_out);
// Sauvegarde de l'image
writepbm(img_out, "C:\Users\Jean-Guillaume P\Documents\Exia\A2\Projets\Imagerie\ExoLife\Rendus\MissionU1.pbm");
|
d69b4a2111738895aaa6123aa3970d29d0df61cf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3886/CH13/EX13.12/13_12.sce
|
8e7171a0596b37cd4748f9b5331b2743b409029b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 746
|
sce
|
13_12.sce
|
//soldier fires a bullet
//refer fig 13.18
//equation of trajectory of bullet is known thus
//For the point on ground where bullet strikes
y=-50 //m
x=100 //m
u=31.32 //m/sec
//alpha=0 or
alpha=atand(2) //degree
//when alpha =0
//Horizontal component of velocity
vx=31.32 //m/sec
//Vertical component of velocity
vy=sqrt(2*9.81*50) //m/sec
//Velocity of strike
v=sqrt((31.32^2)+(31.32^2)) //m/sec
theta=atand(1) //degree
//when alpha=63.435 degree vx=14.007 m/sec
//vy=42.02 m/sec
bv=sqrt((14.007^2)+(42.02^2)) //m/sec
btheta= atand(42.02/14.007) //degree to horizontal
printf("\nalpha=%.2f degree\nv=%.2f m/sec\ntheta=%.2f degree\nv=%.2f m/sec\ntheta=%.2f degree to horizontal",alpha,v,theta,bv,btheta)
|
1efa5c3b77cb6f8cc2fd43ee35b1bdeef4a64414
|
43799901e22e995d4db64000ef28c0a787aeb11b
|
/ISAWIN/LINOV/MYREG/appli.tst
|
688764c8e1229b365ce9352ff3aca08acc2190f3
|
[
"WTFPL"
] |
permissive
|
aquaforum/tench_catch
|
7082d8e8f3a224aa50be9150a96362f2f323a2be
|
3f377476d82d7343edd985a6d3a41b57dc301f98
|
refs/heads/master
| 2023-07-17T13:33:10.901467
| 2021-08-22T19:29:09
| 2021-08-22T19:29:09
| 398,885,059
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,250
|
tst
|
appli.tst
|
@ISA_SYMBOLS,254400693
#NAME,myreg,3.41
#DATE,17.08.2018
#SIZE,G=3,S=0,T=0,L=0,P=0,V=0
#COMMENT,wsma1tst
@PROGRAMS,3
#!5001,PROG
#!5002,PI_DUO
#!5003,PIDMY
@STEPS,0
@TRANSITIONS,0
@BOOLEANS,9
#!1001,ZONE_,+X,!5002,FALSE,TRUE
#!1002,ZONE0_,+X,!5002,FALSE,TRUE
#!1003,AM_15,+X,!0000,FALSE,TRUE
#!1004,ZONE,+X,!0000,FALSE,TRUE
#!1005,AM_20,+X,!0000,FALSE,TRUE
#!1006,AM_N,+X,!5002,FALSE,TRUE
#!1007,AM_P,+X,!5002,FALSE,TRUE
#!1008,AUTO_,+X,!5003,FALSE,TRUE
#!1009,MODE_,+X,!5003,FALSE,TRUE
@ANALOGS,51
#!2001,XMAX_20,+X,!0000,F,
#!2002,XMAX_15,+X,!0000,F,
#!2003,TI_20,+X,!0000,F,
#!2004,TI_15,+X,!0000,F,
#!2005,KPR_20,+X,!0000,F,
#!2006,KPR_15,+X,!0000,F,
#!2007,SUM_N,+X,!5002,F,
#!2008,SUM_P,+X,!5002,F,
#!2009,XT_N,+X,!5002,F,
#!200A,XT_P,+X,!5002,F,
#!200B,SUM_,+X,!5002,F,
#!200C,KE_N,+X,!5002,F,
#!200D,KE_P,+X,!5002,F,
#!200E,SUM0_,+X,!5002,F,
#!200F,XOUT_N,+X,!5002,F,
#!2010,XOUT_P,+X,!5002,F,
#!2011,SUM,+X,!0000,F,
#!2012,XT_20,+X,!0000,F,
#!2013,XT_15,+X,!0000,F,
#!2014,XMIN_20,+X,!0000,F,
#!2015,XMIN_15,+X,!0000,F,
#!2016,C_20,+X,!0000,F,
#!2017,C_15,+X,!0000,F,
#!2018,SP_15,+X,!0000,F,
#!2019,V_09,+X,!0000,F,
#!201A,XMAX_N,+X,!5002,F,
#!201B,XMIN_N,+X,!5002,F,
#!201C,TI_N,+X,!5002,F,
#!201D,KPR_N,+X,!5002,F,
#!201E,XMAX_P,+X,!5002,F,
#!201F,XMIN_P,+X,!5002,F,
#!2020,TI_P,+X,!5002,F,
#!2021,KPR_P,+X,!5002,F,
#!2022,X0_N,+X,!5002,F,
#!2023,X0_P,+X,!5002,F,
#!2024,SP_,+X,!5002,F,
#!2025,PV_,+X,!5002,F,
#!2026,SUM0_,+X,!5003,F,
#!2027,XOUT_,+X,!5003,F,
#!2028,XMAX_,+X,!5003,F,
#!2029,XMIN_,+X,!5003,F,
#!202A,P0_,+X,!5003,F,
#!202B,TD_,+X,!5003,F,
#!202C,TI_,+X,!5003,F,
#!202D,KP_,+X,!5003,F,
#!202E,X0_,+X,!5003,F,
#!202F,SP_,+X,!5003,F,
#!2030,PV_,+X,!5003,F,
#!2031,KE_,+X,!5003,F,
#!2032,SUM_,+X,!5003,F,
#!2033,XT_,+X,!5003,F,
@TIMERS,0
@MESSAGES,0
@USP,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@FBINSTANCES,0
@END_SYMBOLS
|
25c3c74a4d4108326414813bf0d17e636b67e65e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1985/CH9/EX9.5/Chapter9_Example5.sce
|
a8092c3440cd40abe1d4c185e93679ec5d127687
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 523
|
sce
|
Chapter9_Example5.sce
|
clc
clear
//Input data
r=10^-14//Radius of the nucleus in m
m=(1.67*10^-27)//Mass of the proton in kg
h=(6.625*10^-34)//Plancks constant in Js
//Calculations
x=6.24150934*10^12//1 Joule in MeV
dp=(h/(2*3.14*r))/10^-20//The uncertainity in the momentum of the proton in kg m/s *10^-20
ke=((dp*10^-20)^2/(2*m))*x//Minimum kinetic energy of the proton in MeV
//Output
printf('The uncertainity in the momentum of the proton is %3.3f*10^-20 kg m/s \n Minimum kinetic energy of the proton is %3.3f MeV',dp,ke)
|
30d37633c00b3d354914f3bd3e50a0bc70e1b1f4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1067/CH23/EX23.06/23_06.sce
|
dd24eb5735fb1217943114da9975f708e79c5274
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 428
|
sce
|
23_06.sce
|
clear;
clc;
r=1250e3;
v=600;
z1=.15*%i;
z2=.3*%i;
z3=.05*%i;
z4=.55*%i;
x1=inv(inv(z2)+inv(z1));
x2=x1;
x0=inv(inv(z3)+inv(z4));
e=1;
ia1=e/(x1+x2+x0);
ia2=ia1;
ia0=ia2;
ia=3*ia1;//the difference in result is due to erroneous calculation in textbook.
base=r/(sqrt(3)*v);
ita=ia*base;
mprintf("the fault current=%fA",-imag(ita));
disp("the difference in result is due to erroneous calculation in textbook.");
|
8b64e9e2b603bb0eae3609f0a0a879b90a68ad81
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfas_ap_aspfin_d/~BivLCM-SR-bfas_ap_aspfin_d-PLin-VLin.tst
|
f00f0ca4f9dc6dcbdfbfee2077bb2fbc1c114024
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205
| 2019-03-04T17:03:26
| 2019-03-04T17:03:26
| 143,070,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 11,974
|
tst
|
~BivLCM-SR-bfas_ap_aspfin_d-PLin-VLin.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.255494D+00
2 -0.335732D-02 0.197294D-02
3 -0.830793D-01 0.165326D-02 0.604893D+00
4 0.198007D-02 -0.476514D-03 -0.911343D-02 0.459839D-02
5 -0.521808D-03 -0.187559D-04 0.271464D-02 -0.390864D-04 0.255886D-02
6 -0.476709D-03 0.783568D-04 -0.272343D-03 -0.497872D-04 0.836450D-04
7 -0.251525D-03 0.857148D-04 0.105587D-02 0.346907D-04 -0.411942D-03
8 0.857894D-03 0.880517D-04 -0.295086D-02 0.920065D-04 -0.171174D-03
9 -0.240668D+00 -0.129599D-02 0.426692D+00 -0.234993D-02 0.428012D-01
10 -0.240023D+00 -0.543135D-02 0.537648D+00 -0.511010D-02 0.119339D+00
11 0.517335D-01 0.917661D-02 -0.228986D-02 -0.966837D-02 0.325478D-02
12 -0.380415D+00 0.149528D-01 0.137300D+01 -0.211974D-01 0.183814D-01
13 -0.656811D-01 -0.387292D-02 -0.111211D+00 -0.153596D-02 -0.126482D-01
14 -0.164100D+00 0.287143D-01 0.316239D+00 -0.166851D-01 -0.287546D-01
15 -0.148568D+01 0.176795D-01 -0.264490D+00 0.207074D-01 -0.105022D+00
16 -0.122915D-01 -0.773669D-02 0.412267D-02 -0.467734D-03 0.239753D-03
17 -0.463046D-03 -0.325368D-03 -0.117816D-02 -0.259821D-03 -0.205408D-03
18 -0.485786D-01 0.413491D-01 -0.784376D+00 -0.865661D-02 -0.227208D-01
19 0.935786D-01 0.760474D-02 -0.208796D+00 0.778960D-02 -0.229056D-01
20 -0.698948D+00 -0.645518D-01 0.543645D+01 -0.230422D-01 0.159197D+00
21 -0.885545D-01 -0.643598D-02 0.194782D+00 -0.941262D-02 0.190176D-01
22 -0.191513D-03 -0.418790D-03 0.411735D-02 0.331456D-03 -0.274117D-05
23 0.240337D-02 -0.172757D-02 0.583868D-01 0.146781D-01 0.436987D-02
24 0.275838D-02 0.421829D-03 -0.117763D-01 0.842502D-03 -0.549051D-03
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.508907D-03
7 0.460773D-03 0.408550D-02
8 -0.188452D-03 0.204264D-03 0.306341D-02
9 0.147776D-01 0.767084D-02 -0.357890D-01 0.355251D+02
10 -0.300389D-02 -0.152870D-01 -0.167554D-01 0.136099D+01 0.136356D+02
11 0.130600D-01 0.447672D-01 -0.834479D-02 -0.323271D+00 -0.439911D+00
12 -0.103089D-01 -0.747544D-01 0.167212D-01 0.325477D+01 0.313471D+01
13 0.359626D-01 0.908433D-01 -0.129455D-01 0.100738D+01 -0.114818D+01
14 -0.495097D-01 0.450846D-01 0.258750D+00 0.467014D+00 0.250601D+01
15 0.776992D-02 -0.222876D-01 0.156429D-01 -0.343355D+01 -0.859751D+01
16 -0.208094D-03 -0.813484D-03 -0.133637D-02 0.487268D+00 0.663770D-01
17 -0.347468D-04 0.456386D-04 -0.145121D-03 -0.698749D-01 0.365347D-02
18 -0.322647D-01 -0.841659D-01 -0.305476D-02 -0.400927D+01 0.436116D+00
19 0.148417D-02 0.271564D-01 -0.888038D-02 -0.258077D+00 -0.231536D+01
20 -0.231041D-02 -0.534649D-01 -0.310024D+00 0.122343D+02 0.163027D+02
21 -0.117305D-02 -0.276089D-01 0.424096D-02 -0.184454D+00 0.219770D+01
22 -0.161141D-03 -0.435685D-03 0.463047D-03 0.207104D-01 -0.717289D-03
23 -0.691152D-03 -0.265883D-02 0.101254D-02 0.632045D-01 0.430934D+00
24 0.237674D-03 0.627857D-03 0.253869D-03 -0.386213D-01 -0.575195D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.368149D+02
12 -0.100830D+02 0.147564D+03
13 -0.283806D+00 -0.238987D+01 0.121393D+02
14 0.404404D+01 -0.450177D+01 -0.101634D+02 0.104039D+03
15 -0.185075D+01 0.351017D+01 -0.147995D+00 -0.233987D+01 0.170843D+03
16 -0.621876D-01 0.682987D+00 0.457306D-01 -0.177466D+00 0.342091D+00
17 0.243380D-01 -0.802196D-01 0.142527D-01 0.117767D-01 -0.757009D+00
18 0.181837D+01 0.568592D+01 -0.443553D+01 0.601419D+01 -0.279811D+02
19 0.441251D+00 -0.169309D+01 0.543772D+00 -0.384749D+00 0.219586D+01
20 -0.663395D+01 -0.927722D+01 0.319569D+01 -0.702429D+02 -0.476133D+01
21 0.355737D+00 0.143081D+01 -0.595716D+00 0.165239D+00 -0.306528D+01
22 -0.607733D-01 0.283287D-01 -0.127753D-01 0.497020D-01 0.150397D+00
23 -0.369348D+00 0.197432D+01 -0.127380D+00 0.110191D-01 -0.106855D+00
24 0.691712D-01 -0.406991D+00 0.194819D-01 0.367805D-01 -0.330993D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.306357D+00
17 -0.139769D-01 0.961022D-02
18 -0.350785D+00 0.158504D+00 0.225391D+03
19 -0.324125D-01 -0.337138D-02 -0.246687D+01 0.635359D+01
20 0.103154D+00 -0.532613D-01 -0.863099D+02 -0.552041D+01 0.835702D+03
21 -0.433098D-01 0.202134D-01 0.511125D+01 -0.573705D+01 0.323795D+01
22 0.689485D-02 -0.134780D-02 -0.107873D+01 -0.262144D-02 0.276311D+00
23 0.448482D-01 -0.572801D-02 -0.318147D+00 -0.207758D+00 0.700551D+01
24 -0.561979D-02 0.147608D-02 0.261581D+00 0.275105D-01 -0.383437D+01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.673658D+01
22 -0.644441D-01 0.126739D-01
23 -0.202216D+00 0.139418D-01 0.137942D+01
24 0.118849D-01 -0.365478D-02 -0.111762D+00 0.430634D-01
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.150 1.000
3 -0.211 0.048 1.000
4 0.058 -0.158 -0.173 1.000
5 -0.020 -0.008 0.069 -0.011 1.000
6 -0.042 0.078 -0.016 -0.033 0.073
7 -0.008 0.030 0.021 0.008 -0.127
8 0.031 0.036 -0.069 0.025 -0.061
9 -0.080 -0.005 0.092 -0.006 0.142
10 -0.129 -0.033 0.187 -0.020 0.639
11 0.017 0.034 0.000 -0.023 0.011
12 -0.062 0.028 0.145 -0.026 0.030
13 -0.037 -0.025 -0.041 -0.007 -0.072
14 -0.032 0.063 0.040 -0.024 -0.056
15 -0.225 0.030 -0.026 0.023 -0.159
16 -0.044 -0.315 0.010 -0.012 0.009
17 -0.009 -0.075 -0.015 -0.039 -0.041
18 -0.006 0.062 -0.067 -0.009 -0.030
19 0.073 0.068 -0.107 0.046 -0.180
20 -0.048 -0.050 0.242 -0.012 0.109
21 -0.067 -0.056 0.096 -0.053 0.145
22 -0.003 -0.084 0.047 0.043 0.000
23 0.004 -0.033 0.064 0.184 0.074
24 0.026 0.046 -0.073 0.060 -0.052
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.320 1.000
8 -0.151 0.058 1.000
9 0.110 0.020 -0.108 1.000
10 -0.036 -0.065 -0.082 0.062 1.000
11 0.095 0.115 -0.025 -0.009 -0.020
12 -0.038 -0.096 0.025 0.045 0.070
13 0.458 0.408 -0.067 0.049 -0.089
14 -0.215 0.069 0.458 0.008 0.067
15 0.026 -0.027 0.022 -0.044 -0.178
16 -0.017 -0.023 -0.044 0.148 0.032
17 -0.016 0.007 -0.027 -0.120 0.010
18 -0.095 -0.088 -0.004 -0.045 0.008
19 0.026 0.169 -0.064 -0.017 -0.249
20 -0.004 -0.029 -0.194 0.071 0.153
21 -0.020 -0.166 0.030 -0.012 0.229
22 -0.063 -0.061 0.074 0.031 -0.002
23 -0.026 -0.035 0.016 0.009 0.099
24 0.051 0.047 0.022 -0.031 -0.075
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 -0.137 1.000
13 -0.013 -0.056 1.000
14 0.065 -0.036 -0.286 1.000
15 -0.023 0.022 -0.003 -0.018 1.000
16 -0.019 0.102 0.024 -0.031 0.047
17 0.041 -0.067 0.042 0.012 -0.591
18 0.020 0.031 -0.085 0.039 -0.143
19 0.029 -0.055 0.062 -0.015 0.067
20 -0.038 -0.026 0.032 -0.238 -0.013
21 0.023 0.045 -0.066 0.006 -0.090
22 -0.089 0.021 -0.033 0.043 0.102
23 -0.052 0.138 -0.031 0.001 -0.007
24 0.055 -0.161 0.027 0.017 -0.012
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.258 1.000
18 -0.042 0.108 1.000
19 -0.023 -0.014 -0.065 1.000
20 0.006 -0.019 -0.199 -0.076 1.000
21 -0.030 0.079 0.131 -0.877 0.043
22 0.111 -0.122 -0.638 -0.009 0.085
23 0.069 -0.050 -0.018 -0.070 0.206
24 -0.049 0.073 0.084 0.053 -0.639
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.221 1.000
23 -0.066 0.105 1.000
24 0.022 -0.156 -0.459 1.000
|
f73bf0d7392c68f972f5ac1087cd5fd1c8c66a25
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/122/CH5/EX5.10/exa5_10.sce
|
ea5257b13e8fdcc83d46fce5a41cda7f8741ed5c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 589
|
sce
|
exa5_10.sce
|
// Example 5-10
// Response to initial condition (differential equation)
// Solution of differential equation with initial conditions
clear; clc;
xdel(winsid()); //close all windowss
t = 0:0.05:10;
s = %s;
G1 = cont_frm(1, s^3 + 8*s^2 + 17*s + 10); //get the state space model
ssprint(G1);
x0 = [2; 1; 0.5]; // initial states of the system
G = syslin('c', G1.A, G1.B, G1.C, G1.D, x0);
y = csim( zeros(1,length(t)) , t, G);
// response to zero input will give response to initial state
plot(t,y);
xgrid(color('gray'));
xtitle('Response to initial conditions','t Sec','y');
|
e10a4525c7e8ad03e225abeb4d122cea9caebb1f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1019/CH7/EX7.15/Example_7_15.sce
|
8d88989cbe6bb912b0f96cb12888e92159de1571
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 485
|
sce
|
Example_7_15.sce
|
//Example 7.15
clear;
clc;
//Given
R=8.314;//gas constant in J K^-1 mol^-1
To=278.15;//Freezing temperature in K
delHfus=9830;//heat of fusion of benzene in J mol^-1
M1=78;//molecular mass of benzene in g
//To determine the molal freezing point depression constant of benzene
Kf=(R*(To^2)*M1)/(1000*delHfus);//molal freezing point depression constant of benzene in K kg mol^-1
mprintf('The molal freezing point depression constant of benzene = %f K kg mol^-1',Kf);
//end
|
ad138f61dd36c33399df730565925d7cc85031b1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2863/CH4/EX4.2/ex4_2.sce
|
b2e584b046d96f86dc1a1a13491f43bcb4072b38
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 207
|
sce
|
ex4_2.sce
|
//chapter 4
//end fire array
//D=4(L/lamda)
//BWFN=2sqrt(2m/(L/lamda))
printf("\n");
lamda=1;
D=36;
L=D/4;
m=1;
BWFN=114.6*sqrt(2*m/L);
printf("The Beam Width First Null is %gdegree",BWFN);
|
161f84b96c6ba500b5d07dd008db710907122a2a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1853/CH4/EX4.40/Ex4_40.sce
|
01e133ea8299398d29121d5b3041158b4758e8d8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 267
|
sce
|
Ex4_40.sce
|
//calculate the line currnt nd voltage
R=200
Vl=440
f=50
V=Vl/1.732//star connection
I=V/R
Il=I
coso=1
P=3*V*I*coso
Vp=440//delta connection
Vl=440
I1=1.732*I
P1=3*Vp*I*coso
disp('active power='+string(P)+'watt' , 'active power='+string(P1)+'watt' )
|
1a3ff084d7431c33f0c6ce0abad93faa1c7fdf68
|
eda0ddb3e310b6d8e0a674f5cccfd207915546d1
|
/sci1.sce
|
86a73139c61e97d2767530952f0784f994c30b25
|
[] |
no_license
|
jithinsisaac/Scilab-Experiments
|
046e781291cf08b68eec84084446ffee91adeb14
|
3f4d18b2f32b74abed963f02d6ecb8509d5fabc1
|
refs/heads/master
| 2022-11-09T08:24:39.953452
| 2020-06-25T07:52:07
| 2020-06-25T07:52:07
| 274,857,905
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 57
|
sce
|
sci1.sce
|
clc;
clear;
x=input('Enter the Value of x: ');
disp(x);
|
59c7ca0bd78358fc69a8c118877b1d72ab119be1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/70/CH3/EX3.1.3/3_1_3.sci
|
e4fdf2d4394d23fda05172719a48c77f871367d0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 272
|
sci
|
3_1_3.sci
|
//page 145
clear;
close;
clc;
A=[1 3;2 6;3 9];
disp(A,'A=');
ns=kernel(A);
disp(ns,'Null space=');
disp(A(1,:)*ns,'A(1,:)*ns=');
disp(A(2,:)*ns,'A(2,:)*ns=');
disp(A(3,:)*ns,'A(3,:)*ns=');
disp('This shows that the null space of A is orthogonal to the row space.');
//end
|
011d75af9c3927aabbe76353eaaa51fff6879efb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1439/CH15/EX15.5/15_5.sce
|
5e443a8bd33e5a4cc97120fccd273fb923fc8176
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 123
|
sce
|
15_5.sce
|
clc
//initialisation of variables
Ka= 1.772*10^-4
//CALCULATIONS
pK= -log10(Ka)
//RESULTS
printf ('pKa = %.2f ',pK)
|
9e7def9800774a9490f941cb4f75532df0344276
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2411/CH5/EX5.5/Ex5_5.sce
|
4a69f254105e18d51684ee66ba54b62c552a5ce8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,045
|
sce
|
Ex5_5.sce
|
// Scilab Code Ex5.5: Page-285 (2008)
clc; clear;
function [] = check_energy(E, L)
phi = 4.8; // Work function for tungsten, eV
if E > phi then
printf("\nThe wavelength %d angstrom will be able to liberate an electron.", ceil(L/1e-010));
else
printf("\nThe wavelength %d angstrom will not be able to liberate an electron.", ceil(L/1e-010));
end
endfunction
h = 6.62e-034; // Planck's constant, Js
c = 3e+008; // Speed of light, m/s
// Case 1
lambda = 2000e-010; // Wavelength of incident radiation, m
E = h*c/(lambda*1.6e-019); // Energy of the incidnt radiation, eV
check_energy(E, lambda); // Check for the wavelength
// Case 2
lambda = 5000e-010; // Wavelength of incident radiation, m
E = h*c/(lambda*1.6e-019); // Energy of the incidnt radiation, eV
check_energy(E, lambda); // Check for the wavelength
// Result
// The wavelength 2000 angstrom will be able to liberate an electron.
// The wavelength 5000 angstrom will not be able to liberate an electron.
|
9999765dca16338f752b00db2958a759a42c376a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2072/CH16/EX16.7/EX16_7.sce
|
53e358bbd728c4fa857727c4cc08639ae83908db
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 118
|
sce
|
EX16_7.sce
|
//Example 16.7
clc
c1=4*10^-6
c2=4*10^-6
disp("solution a")
c_eq=1/((1/c1)+(1/c2))
disp(c_eq,"capacitance in farad=")
|
d414230c24927d702e1c9ce0ea30ce987e900cd6
|
717ddeb7e700373742c617a95e25a2376565112c
|
/557/CH24/EX24.2/2.sce
|
f10793fdce9e0a5517ac89b9cf88cb1a597dc535
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 464
|
sce
|
2.sce
|
clc; funcprot(0);
//Example 24.2
//Initializing the variables
H_friction = 2.4;
H_at = 10.3;
Hs = 1.5;
L =2;
f = 0.01;
d = 0.05;
g = 9.81;
Ds = 0.4; // Diameter of stroke
Db = 0.15; // Diameter of bore
r = 0.2;
//Calculations
A = %pi*(Db)^2/4;
a = %pi*(Dd)^2/4;
W= sqrt((H_at - Hs - H_friction )*(2*d*g/(4*f*L)))*(a/A)*(%pi/r);
W_rev = W/(2*%pi)*60; // maximum rotation speed in rev/min
disp(W_rev-40, "Increase in speed (rev/min):");
|
ce85300244cfb8aa510efd937989e2ed180cd39c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/380/CH4/EX4.9/4_9.txt
|
825b5338486e1b046f8474b01d3848ed98ed64b8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,696
|
txt
|
4_9.txt
|
//Caption:Find the (a) generator voltage (b) generator current (c) efficiency
//Exa:4.9
clc;
clear;
close;
//Refer to fig:4.29
//For region A
V_bA=230;//in Volts
S_bA=.46000;//Volt-Ampere
I_bA=S_bA/V_bA;//in Amperes
Z_bA=V_bA/I_bA;//in ohms
Z_g_pu=(0.023+%i*0.092)/Z_bA;
R_L_pu=0.023/Z_bA;
X_L_pu=0.069/Z_bA;
//For region B
//Per unit parameters on high-voltage side of the step-up transformer
V_bB=2300;//in Volts
S_bB=46000;//Volt-Ampere
I_bB=S_bB/V_bB;//in Amperes
Z_bB=V_bB/I_bB;//in ohms
R_H_pu=2.3/Z_bB;
X_H_pu=6.9/Z_bB;
R_cH_pu1=13800/Z_bB;
X_mH_pu1=6900/Z_bB;
Z_l_pu=(2.07+%i*4.14)/Z_bB;//Per-unit impedance of transmission line
//Per unit parameters on high-voltage side of the step-down transformer
X_mH_pu2=9200/Z_bB;
R_cH_pu2=11500/Z_bB;
//For region C
V_bC=115;//in Volts
S_bC=46000;//Volt-Ampere
I_bC=S_bC/V_bC;//in Amperes
Z_bC=V_bC/I_bC;//in ohms
R_L_pu=0.00575/Z_bC;
X_L_pu=0.01725/Z_bC;
V_L_pu=1*(cosd(0)+%i*sind(0));
I_L_pu=1*(cosd(-30)+%i*sind(-30));
E_l_pu=V_L_pu+(R_L_pu+%i*X_L_pu)*I_L_pu;
I_l_pu=I_L_pu+E_l_pu*(0.01-%i*(1/80));
E_g_pu=E_l_pu+I_l_pu*(0.02+%i*0.06+0.018+%i*0.036+0.02+%i*0.06);
I_g_pu=I_l_pu+E_g_pu*((1/120)-%i*(1/60));
V_g_pu=E_g_pu+I_g_pu*(0.02+0.02+%i*0.08+%i*0.06);
V_g=V_bA*V_g_pu;
disp(abs(V_g),'(a) Generator Voltage (in Volts)=');
disp(atand(imag(V_g)/real(V_g)),'Phase of generated voltage (in degree)=');
I_g=I_bA*I_g_pu;
disp(abs(I_g),'(b) Generator current (in Amperes)=');
disp(atand(imag(I_g)/real(I_g)),'Phase of generator current (in degree)=');
P_o_pu=0.866;//rated power output at pf=0.866 lagging
P_in_pu=real(V_g_pu*conj(I_g_pu));
Eff=P_o_pu/P_in_pu;
disp(Eff*100,'(c) Efficiency (%)=');
|
2679d4993d33c58856750ed8b7c4a97fe849bc35
|
eec7ebd86603d3208aacde26fd2abcbe9bd66968
|
/EAPSI_PostScanRatings_Task1_7_11_18_EN.sce
|
3650f58651c71ebf728e1be465b682d21472b9f3
|
[] |
no_license
|
sra27/Presentation-Scenarios
|
897dd11dabbc31b6baafbbaa5e3d14b2eb8030ee
|
856b244d97509847ac5c04bb3bdc305128b52326
|
refs/heads/master
| 2020-04-04T15:09:47.936450
| 2018-11-03T21:53:00
| 2018-11-03T21:53:00
| 156,026,804
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 28,631
|
sce
|
EAPSI_PostScanRatings_Task1_7_11_18_EN.sce
|
no_logfile = false;
active_buttons = 3;
button_codes = 1,2,3;
response_matching = simple_matching;
write_codes = true;
response_port_output=false;
default_monitor_sounds = false;
default_font = "Arial";
default_font_size = 40;
default_text_color = 0, 0, 0;
default_background_color = 122, 122, 122;
default_formatted_text = true;
stimulus_properties = letter, string, is_target, string, stim, string, x_pos, number, y_pos, number,
x_sel, number, y_sel, number;
event_code_delimiter = "/n";
default_path = "C:/Users/Psychology/Desktop/Losin SCNL/EAPSI/Stimuli";
begin;
#=================================================================================================
#TEXT
#=================================================================================================
picture {
text {
caption =
"Exit Program";
}ExitProgramText;
x = 0; y = 0;
}ExitProgram;
picture {
text {
caption =
" ";
}IntroText1;
x = 0; y = 0;
}Intro;
#pain intensity rating
trial {
trial_type = fixed;
stimulus_event {
nothing {};
} PainIntRateEvent;
} PainIntRateTrial;
#affect rating
trial {
trial_type = fixed;
stimulus_event {
nothing {};
} AffectRateEvent;
}AffectRateTrial;
#success rating
trial {
trial_type = fixed;
stimulus_event {
nothing {};
} SuccessRateEvent;
}SuccessRateTrial;
#---------------------------------------
#pain intensity rating scale
picture {
box { height = 1; width = 1; };
x = -400; y = 200;
text { caption =
"请用0~10间的一个数字对
每张面孔的疼痛程度进行评分"; font_size = 30; }PainIntText1;
x = -400; y = 0; } scale1;
array {
LOOP $q 11;
text {caption = " "; font_size = 35;
# background_color = 100, 100, 100; #debugging code to show label position
};
ENDLOOP;
} scale_labels1;
#---------------------------------------
#affect rating scale
picture {
box { height = 1; width = 1; };
x = -400; y = 200;
text { caption =
"请用1~9间的一个数字对
你看到每张照片时的感受进行评分"; font_size = 30; }AffectText1;
x = -400; y = 0; } scale2;
array {
LOOP $q 9;
text {caption = " "; font_size = 35;
# background_color = 100, 100, 100; #debugging code to show label position
};
ENDLOOP;
} scale_labels2;
#---------------------------------------
#success rating scale
picture {
box { height = 1; width = 1; };
x = -400; y = 200;
text { caption =
"请用1~9间的一个数字
表示当你看到每一张照片时
你多成功地压抑了自己的面部表情反应"; font_size = 30; }SuccessText1;
x = -400; y = 0; } scale3;
array {
LOOP $q 9;
text {caption = " "; font_size = 35;
# background_color = 100, 100, 100; #debugging code to show label position
};
ENDLOOP;
} scale_labels3;
#=================================================================================================
#STIMULUS ARRAYS
#=================================================================================================
array{
#Caucasian Female - Neutral
bitmap { filename = "faces/SNFF02.jpg"; preload = true; width = 550; height = 650; description = "stim_lookneu_SNFF02_"; };
bitmap { filename = "faces/SNFF03.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFF03_"; };
bitmap { filename = "faces/SNFF04.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFF04_"; };
bitmap { filename = "faces/SNFF05.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFF05_"; };
bitmap { filename = "faces/SNFF06.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFF06_"; };
bitmap { filename = "faces/SNFF07.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFF07_"; };
bitmap { filename = "faces/SNFF09.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFF09_"; };
bitmap { filename = "faces/SNFF10.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFF10_"; };
bitmap { filename = "faces/CA_N_F_01.jpg"; preload = true; width = 550; height = 650; description = "stim_lookneu_CA_N_F_01_"; };
bitmap { filename = "faces/CA_N_F_08.jpg"; preload = true; width = 550; height = 650; description = "stim_lookneu_CA_N_F_08_"; };
}FaceArray_FNeutral;
array{
#Caucasian Male - Neutral
bitmap { filename = "faces/SNFM01.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFM01_"; };
bitmap { filename = "faces/SNFM03.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFM03_"; };
bitmap { filename = "faces/SNFM04.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFM04_"; };
bitmap { filename = "faces/SNFM05.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFM05_"; };
bitmap { filename = "faces/SNFM07.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFM07_"; };
bitmap { filename = "faces/SNFM08.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFM08_"; };
bitmap { filename = "faces/SNFM09.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFM09_"; };
bitmap { filename = "faces/SNFM10.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SNFM10_"; };
bitmap { filename = "faces/CA_N_M_02.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_CA_N_M_02_"; };
bitmap { filename = "faces/CA_N_M_06.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_CA_N_M_06_"; };
}FaceArray_MNeutral;
array{
#Caucasian Female - painful
bitmap { filename = "faces/SPFF02.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneg_SPCF02_"; };
bitmap { filename = "faces/SPFF03.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneg_SPCF03_"; };
bitmap { filename = "faces/SPFF04.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneg_SPCF04_"; };
bitmap { filename = "faces/SPFF05.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneg_SPCF05_"; };
bitmap { filename = "faces/SPFF06.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneg_SPCF06_"; };
bitmap { filename = "faces/SPFF07.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneg_SPCF07_"; };
bitmap { filename = "faces/SPFF09.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneg_SPCF09_"; };
bitmap { filename = "faces/SPFF10.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneg_SPCF10_"; };
bitmap { filename = "faces/CA_P_F_01.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneg_CA_P_F_01_"; };
bitmap { filename = "faces/CA_P_F_08.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneg_CA_P_F_08_"; };
}FaceArray_FPainful;
array{
#Caucasian Male - painful
bitmap { filename = "faces/SPFM01.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SPFM01_"; };
bitmap { filename = "faces/SPFM03.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SPFM03_"; };
bitmap { filename = "faces/SPFM04.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SPFM04_"; };
bitmap { filename = "faces/SPFM05.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SPFM05_"; };
bitmap { filename = "faces/SPFM07.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SPFM07_"; };
bitmap { filename = "faces/SPFM08.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SPFM08_"; };
bitmap { filename = "faces/SPFM09.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SPFM09_"; };
bitmap { filename = "faces/SPFM10.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneu_SPFM10_"; };
bitmap { filename = "faces/CA_P_M_02.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneg_CA_P_M_02_"; };
bitmap { filename = "faces/CA_P_M_06.jpg"; preload = true; width = 550; height = 650;description = "stim_lookneg_CA_P_M_06_"; };
}FaceArray_MPainful;
bitmap { filename = "faces/SNCF01.jpg"; }FaceBit;
picture { bitmap FaceBit; x=0; y=0; }FacePic;
#=================================================================================================
#TRIALS
#=================================================================================================
# ----- Biopac Trials--------
/*trial {
stimulus_event {
nothing {};
port = 1;
port_code = 1;
code = "BiopacTrigger";
}BiopacTriggerEvent;
}BiopacTriggerTrial;
trial {
stimulus_event {
nothing {};
port = 1;
port_code = 128;
code = "BiopacPulse";
}BiopacPulseEvent;
}BiopacPulseTrial;
trial {
stimulus_event {
nothing {};
port = 1;
port_code = 255;
code = "BiopacStop";
}BiopacStopEvent;
}BiopacStopTrial;*/
#----- Picture Presentation --------
trial{
stimulus_event{
picture FacePic;
time=0;
duration=3000;
}FaceEvent;
}FaceTrial;
#----- ITI --------
trial {
trial_duration = 500;
trial_type = fixed;
stimulus_event {
picture {
text {caption = "+"; font_size = 60;}ITIText;
x = 0; y = 0;
}ITI1;
}ITIEvent;
}ITITrial;
#----- Exit Program --------
trial {
trial_duration = forever;
trial_type = specific_response;
terminator_button = 3;
stimulus_event {
picture {text ExitProgramText;x = 0; y = 0;};
} ExitProgramEvent;
}ExitProgramTrial;
#====================================================================================================
#BEGIN PCL
#====================================================================================================
begin_pcl;
# set up mouse
mouse mouse1 = response_manager.get_mouse(1);
mouse1.set_min_max( 2, -300, 300 );
mouse1.set_restricted( 2, true );
mouse1.set_xy( 0, -300 );
#====================================================================================================
#BIOPAC OUTPUT SETUP
#====================================================================================================
# set up output port for biopac
#output_port biopac = output_port_manager.get_port( 1 );
#====================================================================================================
#RATING SCALES IN PCL
#====================================================================================================
#-----Pain Intensity Rating----------
# Subroutine to draw the scale.
# Pass an array of double precision numbers for marker positions
# and an array of strings for the corresponding labels
sub
drawscale1( double& min1, double& max1, array<double,1>& markers1 , array<string,1>& labels1 )
begin
double ym1 = 600.0 / (max1 - min1); # calculate y multiplier for scale
# Build the scale:
line_graphic slider1 = new line_graphic;
slider1.set_line_width( 12.0 );
slider1.set_line_color( 0, 0, 0, 255 );
slider1.add_line( -25.0, 0.0, 25.0, 0.0 );
slider1.redraw();
scale1.add_part( slider1, 0, 0 );
line_graphic track1 = new line_graphic;
track1.set_line_width( 10.0 );
track1.set_line_color( 0, 0, 0, 255 );
track1.add_line( 0.0, -302.0, 0.0, 301.0 );
track1.redraw();
scale1.add_part( track1, 0, 0 );
line_graphic tick1 = new line_graphic;
tick1.set_line_width( 5.0 );
tick1.set_line_color( 0, 0, 0, 255 );
tick1.add_line( 0.0, 0.0, 40.0, 0.0 );
tick1.redraw();
loop
int j = 1
until
j > markers1.count()
begin
# add a tick mark to the scale:
scale1.add_part( tick1, 0, int( (markers1[j]-min1) * ym1 - 300.0 ) );
# define the text of the label:
scale_labels1[j].set_caption(labels1[j]);
scale_labels1[j].redraw();
# complicated stuff required to left-align the labels:
int xx = 50 + int( scale_labels1[j].width() / 2.0 );
# add the label to the scale:
scale1.add_part( scale_labels1[j], xx, int( (markers1[j]-min1) * ym1 - 298.0) );
j = j + 1
end;
scale1.set_part_on_top( 3, true );
end;
#-------------------------------------------------------------------
# Subroutine to display a vertical scale and collect a response.
# Pass an array of double precision numbers for marker positions
# and an array of strings for the corresponding labels
sub
double runvscale1( double& min1, double& max1, array<double,1>& markers1 , array<string,1>& labels1 )
begin
double ym1 = 600.0 / (max1 - min1); # calculate y multiplier for scale
int rt_start = clock.time();
# Show scale until button pressed:
loop
int count = response_manager.total_response_count( 1 )
until
response_manager.total_response_count( 1 ) > count
begin
mouse1.poll(); #read the mouse
scale1.set_part_y( 3, mouse1.y() ); #position the slider
scale1.present();
end;
double rating1a = double((mouse1.y() + 300)) / ym1 + min1;
PainIntRateEvent.set_event_code( "painint_rating_" + string( rating1a ) );
PainIntRateTrial.present();
return rating1a;
end;
double min1 = -100.0;
double max1 = 100.0;
array< double > markers1[11] = { -100.0, -80.0, -60.0, -40.0, -20.0, 0.0, 20.0, 40.0, 60.0, 80.0, 100.0};
array< string > labels1[11] = { "0 不疼", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10 能想象到的最疼" };
#-----Affect Rating----------
# Subroutine to draw the scale.
# Pass an array of double precision numbers for marker positions
# and an array of strings for the corresponding labels
sub
drawscale2( double& min2, double& max2, array<double,1>& markers2 , array<string,1>& labels2 )
begin
double ym2 = 600.0 / (max2 - min2); # calculate y multiplier for scale
# Build the scale:
line_graphic slider2 = new line_graphic;
slider2.set_line_width( 12.0 );
slider2.set_line_color( 0, 0, 0, 255 );
slider2.add_line( -25.0, 0.0, 25.0, 0.0 );
slider2.redraw();
scale2.add_part( slider2, 0, 0 );
line_graphic track2 = new line_graphic;
track2.set_line_width( 10.0 );
track2.set_line_color( 0, 0, 0, 255 );
track2.add_line( 0.0, -302.0, 0.0, 301.0 );
track2.redraw();
scale2.add_part( track2, 0, 0 );
line_graphic tick2 = new line_graphic;
tick2.set_line_width( 5.0 );
tick2.set_line_color( 0, 0, 0, 255 );
tick2.add_line( 0.0, 0.0, 40.0, 0.0 );
tick2.redraw();
loop
int j = 1
until
j > markers2.count()
begin
# add a tick mark to the scale:
scale2.add_part( tick2, 0, int( (markers2[j]-min2) * ym2 - 300.0 ) );
# define the text of the label:
scale_labels2[j].set_caption(labels2[j]);
scale_labels2[j].redraw();
# complicated stuff required to left-align the labels:
int xx = 50 + int( scale_labels2[j].width() / 2.0 );
# add the label to the scale:
scale2.add_part( scale_labels2[j], xx, int( (markers2[j]-min2) * ym2 - 298.0) );
j = j + 1
end;
scale2.set_part_on_top( 3, true );
end;
#-------------------------------------------------------------------
# Subroutine to display a vertical scale and collect a response.
# Pass an array of double precision numbers for marker positions
# and an array of strings for the corresponding labels
sub
double runvscale2( double& min2, double& max2, array<double,1>& markers2 , array<string,1>& labels2 )
begin
double ym2 = 600.0 / (max2 - min2); # calculate y multiplier for scale
int rt_start = clock.time();
# Show scale until button pressed:
loop
int count = response_manager.total_response_count( 1 )
until
response_manager.total_response_count( 1 ) > count
begin
mouse1.poll(); #read the mouse
scale2.set_part_y( 3, mouse1.y() ); #position the slider
scale2.present();
end;
double rating2a = double((mouse1.y() + 300)) / ym2 + min2;
AffectRateEvent.set_event_code( "affect_rating_" + string( rating2a ) );
AffectRateTrial.present();
return rating2a;
end;
double min2 = -100.0;
double max2 = 100.0;
array< double > markers2[9] = { -100.0, -75.0, -50.0, -25.0, 0, 25.0, 50.0, 75.0, 100.0};
array< string > labels2[9] = { "1 非常不愉快", "2", "3", "4", "5", "6", "7", "8", "9 非常愉快" };
#-----Success Rating----------
# Subroutine to draw the scale.
# Pass an array of double precision numbers for marker positions
# and an array of strings for the corresponding labels
sub
drawscale3( double& min3, double& max3, array<double,1>& markers3 , array<string,1>& labels3 )
begin
double ym3 = 600.0 / (max3 - min3); # calculate y multiplier for scale
# Build the scale:
line_graphic slider3 = new line_graphic;
slider3.set_line_width( 12.0 );
slider3.set_line_color( 0, 0, 0, 255 );
slider3.add_line( -25.0, 0.0, 25.0, 0.0 );
slider3.redraw();
scale3.add_part( slider3, 0, 0 );
line_graphic track3 = new line_graphic;
track3.set_line_width( 10.0 );
track3.set_line_color( 0, 0, 0, 255 );
track3.add_line( 0.0, -302.0, 0.0, 301.0 );
track3.redraw();
scale3.add_part( track3, 0, 0 );
line_graphic tick3 = new line_graphic;
tick3.set_line_width( 5.0 );
tick3.set_line_color( 0, 0, 0, 255 );
tick3.add_line( 0.0, 0.0, 40.0, 0.0 );
tick3.redraw();
loop
int j = 1
until
j > markers3.count()
begin
# add a tick mark to the scale:
scale3.add_part( tick3, 0, int( (markers3[j]-min3) * ym3 - 300.0 ) );
# define the text of the label:
scale_labels3[j].set_caption(labels3[j]);
scale_labels3[j].redraw();
# complicated stuff required to left-align the labels:
int xx = 50 + int( scale_labels3[j].width() / 2.0 );
# add the label to the scale:
scale3.add_part( scale_labels3[j], xx, int( (markers3[j]-min3) * ym3 - 298.0) );
j = j + 1
end;
scale3.set_part_on_top( 3, true );
end;
#-------------------------------------------------------------------
# Subroutine to display a vertical scale and collect a response.
# Pass an array of double precision numbers for marker positions
# and an array of strings for the corresponding labels
sub
double runvscale3( double& min3, double& max3, array<double,1>& markers3 , array<string,1>& labels3 )
begin
double ym3 = 600.0 / (max3 - min3); # calculate y multiplier for scale
int rt_start = clock.time();
# Show scale until button pressed:
loop
int count = response_manager.total_response_count( 1 )
until
response_manager.total_response_count( 1 ) > count
begin
mouse1.poll(); #read the mouse
scale3.set_part_y( 3, mouse1.y() ); #position the slider
scale3.present();
end;
double rating3a = double((mouse1.y() + 300)) / ym3 + min3;
SuccessRateEvent.set_event_code( "success_rating_" + string( rating3a ) );
SuccessRateTrial.present();
return rating3a;
end;
double min3 = -100.0;
double max3 = 100.0;
array< double > markers3[9] = { -100.0, -75.0, -50.0, -25.0, 0, 25.0, 50.0, 75.0, 100.0};
array< string > labels3[9] = { "1 完全没成功", "2", "3", "4", "5", "6", "7", "8", "9 非常成功" };
#draw scales
drawscale1(min1, max1, markers1, labels1 );
drawscale2(min2, max2, markers2, labels2 );
drawscale3(min3, max3, markers3, labels3 );
#====================================================================================================
#2D IMAGE ARRAYS FOR RANDOMIZATION
#====================================================================================================
array<bitmap> faces[4][12];
faces[1].assign( FaceArray_MNeutral);
faces[2].assign( FaceArray_FNeutral);
faces[3].assign ( FaceArray_MPainful );
faces[4].assign ( FaceArray_FPainful );
#====================================================================================================
#IMAGE RANDOMIZATION
#====================================================================================================
#temporary array to hold all possible array numbers
array<int> which_array[faces.count()];
which_array.fill( 1, 0, 1, 1 );
which_array.shuffle();
#temporary array to hold all possible stim numbers
array<int>which_stim[faces.count()][0];
loop int i = 1 until i > which_stim.count() begin
loop int j = 1 until j > faces[i].count() begin
which_stim[i].add( j );
j = j + 1;
end;
which_stim[i].shuffle();
i = i + 1;
end;
array<int>stim_order[0][0];
#now use a loop to make a full stim order
array<int>stim_ctrs[faces.count()];
stim_ctrs.fill( 1, 0, 1, 0 );
loop
int array_ctr = 1;
int i = 1
until
i > 48
begin
int this_array = which_array[array_ctr];
int this_stim = which_stim[this_array][stim_ctrs[this_array]];
array<int> temp[2];
temp[1] = this_array;
temp[2] = this_stim;
stim_order.add( temp );
#recycle the array counter once we've gone through them all
array_ctr = array_ctr + 1;
if ( array_ctr > faces.count() ) then
array_ctr = 1;
which_array.shuffle();
end;
stim_ctrs[this_array] = stim_ctrs[this_array] + 1;
i = i + 1;
end;
#====================================================================================================
#READ INPUT FILE
#====================================================================================================
/*array<int>stim_order_input[0][0];
input_file input_pictures = new input_file;
if file_exists( "C:/Users/Psychology/Desktop/EAPSI_BEIJING/EAPSI_exproom_folder_6_10_17/Output_Files/EAPSI_Task_Empathy_randomization_faces_"
+ logfile.subject() + ".txt" ) then
#open input files
input_pictures.open ( "C:/Users/Psychology/Desktop/EAPSI_BEIJING/EAPSI_exproom_folder_6_10_17/Output_Files/EAPSI_Task_Empathy_randomization_faces_"
+ logfile.subject() + ".txt" );
#get image indices from input file
loop
until
input_pictures.end_of_file() || !input_pictures.last_succeeded()
begin
array<int> temp_pictures_input[2];
temp_pictures_input[1] = input_pictures.get_int();
temp_pictures_input[2] = input_pictures.get_int();
stim_order_input.add( temp_pictures_input );
end;
#====================================================================================================
#MAIN - INPUT FILE EXISTS
#====================================================================================================
#Trigger Biopac
#BiopacTriggerEvent.set_event_code("biopac_start");
#biopac.set_pulse_width( 300 );
#BiopacTriggerTrial.present();
#Baseline Fixation
ITITrial.set_duration(1000);
ITIEvent.set_event_code("fix");
ITITrial.present();
loop
int i = 1;
int stim_ctr = 1;
until
stim_ctr > 48
begin
int this_array = stim_order_input[i][1];
int this_stim = stim_order_input[i][2];
#Biopac Pulse
#BiopacPulseEvent.set_event_code("biopac_face_present");
#biopac.set_pulse_width( 100 );
#BiopacPulseTrial.present();
#Picture Presentation
FacePic.set_part( 1, faces[this_array][this_stim]);
FaceEvent.set_event_code( faces[this_array][this_stim].description() + string( stim_ctr ) );
FaceTrial.present();
#Pain Intensity Rating
line_graphic slider1 = new line_graphic;
scale1.remove_part(3);
slider1.set_line_width( 12.0 );
slider1.set_line_color( 255, 0, 0, 255 );
slider1.add_line( -25.0, 0.0, 25.0, 0.0 );
slider1.redraw();
scale1.insert_part(3, slider1, 0, 0);
scale1.set_part_on_top( 3, true );
#show scale
mouse1.set_min_max(2, -300, 300);
mouse1.set_xy( 0, -300 );
runvscale1 (min1, max1, markers1, labels1 );
#ITI
int fix = 300;
ITITrial.set_duration(fix);
ITITrial.present();
#Self-Unpleasantness Rating
line_graphic slider2 = new line_graphic;
scale2.remove_part(3);
slider2.set_line_width( 12.0 );
slider2.set_line_color( 255, 0, 0, 255 );
slider2.add_line( -25.0, 0.0, 25.0, 0.0 );
slider2.redraw();
scale2.insert_part(3, slider2, 0, 0);
scale2.set_part_on_top( 3, true );
#show scale
mouse1.set_min_max(2, -300, 300);
mouse1.set_xy( 0, -300 );
runvscale2 (min2, max2, markers2, labels2 );
#ITI
ITIEvent.set_duration(fix);
ITITrial.present();
#Success Rating
line_graphic slider3 = new line_graphic;
scale3.remove_part(3);
slider3.set_line_width( 12.0 );
slider3.set_line_color( 255, 0, 0, 255 );
slider3.add_line( -25.0, 0.0, 25.0, 0.0 );
slider3.redraw();
scale3.insert_part(3, slider3, 0, 0);
scale3.set_part_on_top( 3, true );
#show scale
mouse1.set_min_max(2, -300, 300);
mouse1.set_xy( 0, -300 );
runvscale3 (min3, max3, markers3, labels3 );
#ITI
ITIEvent.set_duration(fix);
ITITrial.present();
i = i + 1;
stim_ctr = stim_ctr + 1;
end;
#Biopac Stop
#BiopacStopEvent.set_event_code("biopac_stop");
#biopac.set_pulse_width( 100 );
#BiopacStopTrial.present();
#Close Program
ExitProgramEvent.set_event_code("exit_program");
ExitProgramTrial.present();
############NO INPUT FILE########################
elseif !file_exists( "C:/Users/Psychology/Desktop/EAPSI_BEIJING/EAPSI_exproom_folder_6_10_17/Output_Files/EAPSI_Task_Empathy_randomization_faces_"
+ logfile.subject() + ".txt" ) then */
#====================================================================================================
#MAIN - NO INPUT FILE
#====================================================================================================
#Trigger Biopac
#BiopacTriggerEvent.set_event_code("biopac_start");
#biopac.set_pulse_width( 300 );
#BiopacTriggerTrial.present();
#Baseline Fixation
ITITrial.set_duration(1000);
ITIEvent.set_event_code("fix");
ITITrial.present();
loop
int i = 1;
int stim_ctr = 1;
until
stim_ctr > 48
begin
int this_array = stim_order[i][1];
int this_stim = stim_order[i][2];
#Biopac Pulse
#BiopacPulseEvent.set_event_code("biopac_face_present");
#biopac.set_pulse_width( 100 );
#BiopacPulseTrial.present();
#Picture Presentation
FacePic.set_part( 1, faces[this_array][this_stim]);
FaceEvent.set_event_code( faces[this_array][this_stim].description() + string( stim_ctr ) );
FaceTrial.present();
#Pain Intensity Rating
line_graphic slider1 = new line_graphic;
scale1.remove_part(3);
slider1.set_line_width( 12.0 );
slider1.set_line_color( 255, 0, 0, 255 );
slider1.add_line( -25.0, 0.0, 25.0, 0.0 );
slider1.redraw();
scale1.insert_part(3, slider1, 0, 0);
scale1.set_part_on_top( 3, true );
#show scale
mouse1.set_min_max(2, -300, 300);
mouse1.set_xy( 0, -300 );
runvscale1 (min1, max1, markers1, labels1 );
#ITI
int fix = 300;
ITITrial.set_duration(fix);
ITITrial.present();
#Self-Unpleasantness Rating
line_graphic slider2 = new line_graphic;
scale2.remove_part(3);
slider2.set_line_width( 12.0 );
slider2.set_line_color( 255, 0, 0, 255 );
slider2.add_line( -25.0, 0.0, 25.0, 0.0 );
slider2.redraw();
scale2.insert_part(3, slider2, 0, 0);
scale2.set_part_on_top( 3, true );
#show scale
mouse1.set_min_max(2, -300, 300);
mouse1.set_xy( 0, -300 );
runvscale2 (min2, max2, markers2, labels2 );
#ITI
ITIEvent.set_duration(fix);
ITITrial.present();
#Success Rating
line_graphic slider3 = new line_graphic;
scale3.remove_part(3);
slider3.set_line_width( 12.0 );
slider3.set_line_color( 255, 0, 0, 255 );
slider3.add_line( -25.0, 0.0, 25.0, 0.0 );
slider3.redraw();
scale3.insert_part(3, slider3, 0, 0);
scale3.set_part_on_top( 3, true );
#show scale
mouse1.set_min_max(2, -300, 300);
mouse1.set_xy( 0, -300 );
runvscale3 (min3, max3, markers3, labels3 );
#ITI
ITIEvent.set_duration(fix);
ITITrial.present();
i = i + 1;
stim_ctr = stim_ctr + 1;
end;
#Biopac Stop
#BiopacStopEvent.set_event_code("biopac_stop");
#biopac.set_pulse_width( 100 );
#BiopacStopTrial.present();
#Close Program
ExitProgramEvent.set_event_code("exit_program");
ExitProgramTrial.present();
#end;
|
c4ed0a7bd2a9056c9af3ccb7e28219465696651a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/191/CH3/EX3.5/Example3_5.sce
|
782e72a7752abe7e164c993e12e43e63db254893
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 920
|
sce
|
Example3_5.sce
|
//Newton's Method
//the first few iteration converges quikcly in negative root as compared to positive root
clc;
clear;
close();
funcprot(0);
format('v',9);
deff('[Newton]=fx(x)','Newton=exp(x)-x-2');
deff('[diff]=gx(x)','diff=exp(x)-1');
x = linspace(-2.5,1.5);
plot(x,exp(x)-x-2)
//from the graph the function has 2 roots
//considering the initial negative root -10
x1 = -10;
x2 = x1-fx(x1)/gx(x1);
i=0;
while abs(x1-x2)>(0.5*10^-7)
x1=x2;
x2 = x1-fx(x1)/gx(x1);
i=i+1;
end
disp(i,'Number of iterations : ')
disp(x2,'The negative root of the function is : ')
//considering the initial positive root 10
x1 = 10;
x2 = x1-fx(x1)/gx(x1);
i=0;
while abs(x1-x2)>(0.5*10^-7)
x1=x2;
x2 = x1-fx(x1)/gx(x1);
i=i+1;
end
disp(i,'Number of iteration : ')
disp(x2,'The positive root of the function is : ')
//number of iterations showing fast and slow convergent
|
e2d632f24fb9aad96a6559ad18cacc8a61026771
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/632/CH11/EX11.16/example11_16.sce
|
dbd11d8fa22dee3d4cdcb149b427210c0a8082a6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 918
|
sce
|
example11_16.sce
|
//clc()
P1 = 75;//kPa
T1 = 573;//K
Tvap = 365;//K
Tbasis = 273;//K
//Since, the boiling point of water at 75kPa is 375K, the vapour at 573K is superheated;
H1 = 3075;//kJ/kg
Cliq = 4.2;//kJ/kgK
Cvap = 1.97;//kJ/kg/K
m = 1;//kg
//let assume converting liq. water into superheated stream occurs in 3 steps,
//step1 - water is heated from 273K to 365 K at constant pressure,enthalpy change is the heat required to change the temperature,
Hc1 = m*Cliq * ( Tvap - Tbasis );
//step2 - the liq is vapurized at constant pressure and constant temperature, enthalpy change is equal to the heat of vapourisation, say Hc2
//step3 - the saturated vapour at 365K is heated to 573K at constant pressure, the enthalpy change is the heat required to raise the temperature
Hc3 = m*Cvap*(T1 - Tvap);
//total enthalpy = 3075 = Hc1 + Hc2 + Hc3, therefore
Hc2 = H1 - Hc1 - Hc3;
disp("kJ/kg",Hc2,"Heat of vapourisation = ")
|
048f5b5bf82825950232311a08e9ca9af92b6244
|
9b006fa4469f39290760b1f71db38129bb8dd438
|
/Opti Project/newton.sce
|
363a77a95690faebd096bc6d6d8549d1ca965417
|
[] |
no_license
|
vishalmry/Optimisation_Project
|
e3debf4fe18a5feceade047d161eeebeb786bc3a
|
dd2454b01a0fc9ae915de07925eb4c5f0054b38b
|
refs/heads/master
| 2022-02-25T20:00:41.343352
| 2018-12-01T14:07:12
| 2018-12-01T14:07:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 854
|
sce
|
newton.sce
|
//newton method
clc
//function to calculate value
function f=funcval(x)
f = 100*(x(2)-x(1)^2)^2+(1-x(1))^2;
endfunction
//function to calculate gradient at point x
function g=gradient(x)
g(1)=-400*x(1)*x(2)+400*x(1)^3+2*x(1)-2;
g(2)=200*x(2)-200*x(1)^2;
endfunction
//function to calculate hessian of function at point x
function h=hessian(x)
h(1,1)=-400*x(2)+1200*x(1)^2+2;
h(1,2)=-400*x(1);
h(2,1)=-400*x(1);
h(2,1)=200;
endfunction
//main program
iter=3;
x0=[-2 1];
disp('Initial point:');
disp(x0);
disp('Function value at this point:');
disp(funcval(x0));
for i=1 : iter
g=gradient(x0);
h=hessian(x0);
inverse=inv(h);
p=-1*inverse*g;
x0=x0+p';
disp('Iteration: ');
disp(i);
disp('New point:')
disp(x0)
f=funcval(x0);
disp('Function value at this point:')
disp(f)
end
|
93fbb447e03b7c54ae0fb74c75aba566ded97f39
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.5/macros/scicos/do_xsetech.sci
|
8ba56b774935123f5736462c1d12d8be6d0c9278
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 124
|
sci
|
do_xsetech.sci
|
function do_xsetech(wdm)
// Copyright INRIA
xset('alufunction',3);xbasc();xselect();
f_xsetech(wdm)
xset('alufunction',6)
|
cb33d03490339ba26d02ae5be3f67fd4e7e74293
|
b9522ba921a1ec0c09ce20a1ad2425852a7b0a86
|
/test/Bit.tst
|
073ecef436550d1a9bc31a55f230776bd25c53f2
|
[
"MIT"
] |
permissive
|
lambdart/nand2tetris
|
81b0b34fe517246e51b83ff01730e550422c43b2
|
38c7b088a98138149018bb4bc5d35123e500e3fb
|
refs/heads/master
| 2022-11-25T06:18:03.225391
| 2020-07-30T15:43:23
| 2020-07-30T15:43:23
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 6,729
|
tst
|
Bit.tst
|
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/03/a/Bit.tst
load Bit.hdl,
output-file Bit.out,
//compare-to Bit.cmp,
output-list time%S1.4.1 in%B2.1.2 load%B2.1.2 out%B2.1.2 NEXTout%B6.1.6;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 1,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 1,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 1,
tick,
output;
tock,
output;
set in 1,
set load 1,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 1,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
set in 1,
set load 0,
tick,
output;
tock,
output;
|
dc1e1e584605d9f3dcea7e088df8a8cd6bd812d5
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.5/examples/link-examples/ext4f.sce
|
39569157590c82fba9e6db8da95706a4d8994c93
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 379
|
sce
|
ext4f.sce
|
//Copyright INRIA
files=G_make(['/tmp/ext4f.o'],'ext4f.dll');
link(files,'ext4f');
a=[1,2,3];b=[4,5,6];n=3;yes='yes';
c=call('ext4f',n,1,'i',a,2,'d',b,3,'d','out',[1,3],4,'d');
if norm(c-(sin(a)+cos(b))) > %eps then pause,end
yes='no';
c=call('ext4f',n,1,'i',a,2,'d',b,3,'d','out',[1,3],4,'d');
if norm(c-(a+b)) > %eps then pause,end
//clear yes --> undefined variable : yes
|
d73a51a3ea0c8ddd4e842781b27f557938b6069c
|
a589f95d013369896bef66dc002835588232d49b
|
/solveLUD.sce
|
7a5147df607289c439370d6092f334320a81170b
|
[] |
no_license
|
saifsmailbox98/scilab-linear-algebra
|
c26273bbeb8031874e7b13e90a0d191f7a331bd8
|
2249f2d46672c8acb35e25f719c64f1db6823326
|
refs/heads/master
| 2020-05-03T12:17:35.971027
| 2019-04-07T18:26:23
| 2019-04-07T18:26:23
| 178,621,819
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 308
|
sce
|
solveLUD.sce
|
function [X] = solveLUD(A, B)
[L, U] = lu(A);
Y = L\B;
X = U\Y;
endfunction
A = [3 2 7;2 3 1; 3 4 1];
B = [4 5 7]';
X = solveLUD(A, B);
disp(X);
A = [2 3 1; 1 2 3; 3 1 2];
B = [9 6 8]';
X = solveLUD(A, B);
disp(X);
/*
0.875
1.125
-0.125
1.9444444
1.6111111
0.2777778
*/
|
45e592f9a97b74416f2e01aec6edefe2c88aaa8d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/848/CH11/EX11.6/Example11_6.sce
|
a3fbe484f39c8016f5e812680eea79ff5726eaaa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 296
|
sce
|
Example11_6.sce
|
//clear//
//Caption: Optical Signal-to-noise ratio (OSNR)
//Example11.6
//page 412
clear;
close;
clc;
Q = 6; //Q factor of 6
OSNR = (1/2)*Q*(Q+sqrt(2));
disp(10*log10(OSNR),'Optical Signal-to-noise ratio in dB OSNR =')
//Result
//Optical Signal-to-noise ratio in dB OSNR = 13.471863
|
7db4c963d94b88334efeb0405c130432f75cf95f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1133/CH6/EX6.4/Example6_4.sce
|
0ebc9718daa3e26a45bf88ae4c57580c4aa40a8c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 659
|
sce
|
Example6_4.sce
|
//Example 6.4
clc
disp("To analyze the circuit means to drive the truth table for it.")
disp("We have, D = Input XOR Q_n")
disp("")
disp("CLK Input Q_n D = input XOR Q_n Q_n+1")
disp("down 0 0 0 0")
disp("down 0 1 1 1")
disp("down 1 0 1 1")
disp("down 1 1 0 0")
disp("")
disp("In the circuit fig. 6.53, output does not change when input is 0 and it toggles when input is 1. This is the characteristics of T flip-flop. Hence, the given circui is T flip-flop constructed using D flip-flop.")
|
142f1f2e0ec80fa085a444c81c659efb3af65fd9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1658/CH31/EX31.2/Ex31_2.sce
|
85fb768683d90b61d3c6e879b31eabb72f4136ba
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 290
|
sce
|
Ex31_2.sce
|
clc;
//e.g 31.2
n=0.62;
R=5*10**3;
C=0.05*10**-6;
T=2.3*R*C*log10(1/(1-n))
disp('msec',T*10**3,"T=");
f=1/T;
disp('HZ',f*1,"f=");
f1=50;
T1=1/f1;
R=T1/(2.3*C*log10(1/(1-n)));
disp('kohm',R*10**-3,"R=");
C=0.5*10**-6;
R=T1/(2.3*C*log10(1/(1-n)));
disp('kohm',R*10**-3,"R=");
|
854f64e1e9c6dbc08b2f61354ca2ca5a4faf919b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1646/CH1/EX1.8/Ch01Ex8.sce
|
4bfc8a5252a24ba5ef43fdd14742374af375e079
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 413
|
sce
|
Ch01Ex8.sce
|
// Scilab Code Ex1.8: Page:29 (2011)
clc;clear;
c = 3e+008; // Speed of light in vacuum, m/s
tau0 = 2e-008; // Mean lifetime of meson at rest, m/s
v = 0.8*c; // Velocity of moving meason, m/s
tau = tau0/sqrt(1-v^2/c^2); // Mean lifetime of meson in motion, m/s
printf("\nThe mean lifetime of meson in motion = %4.2e s", tau);
// Result
// The mean lifetime of meson in motion = 3.33e-008 s
|
4d5ead35ee693fcc6876fd020e7278a62a6086ed
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2681/CH4/EX4.4/Ex4_4.sce
|
199b7ddbefb469530812feacccf49670a192f432
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 348
|
sce
|
Ex4_4.sce
|
//scattering matrix of inductor
//given
clc
IL=0.3//db//insertion loss
I=40//db//isolation
s21=(10^(-0.3/20))//-20log|s21|
s12=(10^(-40/20))//-20log|s12|
s11=0//FOR SCATTER MATRIX
s22=0//FOR SCATTER MATRIX
S=[s11,s12;s21,s22]
S=round(S*1000)/1000///rounding off decimals
disp(S,'THE matrix is S-matrix:')//all points are well matched
|
fca4bf24d64d30916920793c507013fe3c967db3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1541/CH5/EX5.3/Chapter5_Example3.sce
|
53ac29250bc70af9b326cc1d0ead938fa1c1fff0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 588
|
sce
|
Chapter5_Example3.sce
|
//Chapter-5, Example 5.3, Page 5.7
//=============================================================================
clc
clear
//INPUT DATA
P=8;//Number of poles
EL=11000;//Line voltage of the alternator in kV
Eph=(EL/sqrt(3));//Phase voltage per pole in V
kp=1;//Pitch factor
kd=0.98;//Distribution factor
q=0.17;//Flux in Wb
f=50;//Frequency in Hz
//CALCULATIONS
Z=(Eph/(2.22*kp*kd*f*q));//Number of conductors per phase
//OUTPUT
mprintf('Number of conductors per phase is %3.0f',Z)
//=================================END OF PROGRAM==============================
|
eed4b394714a42c3625d20ec492b625b8742d7d5
|
f0919c8ea73f22939a890aa4f8327f8200344d2b
|
/svn/script/test_kit.tst
|
6eb9efbf3da2de9f39b8919502bf567897dadd4a
|
[] |
no_license
|
kalex375/OVC
|
af5e91f90754454b90f339e846c5b9112d38d6c8
|
f4b47dfc497299c4944b4ff9b93253c279012454
|
refs/heads/master
| 2021-05-31T07:55:44.326597
| 2013-12-02T14:15:52
| 2013-12-02T14:15:52
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 141
|
tst
|
test_kit.tst
|
PL/SQL Developer Test script 3.0
5
begin
-- Call the procedure
dbms_java.set_output(5000);
ora_ver.p_ovc_svn_api.test_commit;
end;
0
0
|
6b9f58aa50e2ae620079268839f18057c0bd3b58
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/149/CH4/EX4.9/ques9.sce
|
3640589902c6bebbd05be53f6603a51f5693837e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 566
|
sce
|
ques9.sce
|
//ques4.1
//clear
//cd SCI
//cd ("..")
//cd ("..")
//exec symbolic.sce
clc
disp(' y=e^(a(sin^-1)x)) --sign inverse x ');
syms x a
y=%e^(a*(asin(x)));
disp('we have to prove (1-x^2)y(n+2)-(2n+1)xy(n+1)-(n^2+a^2)yn ') ;
//n=input('Enter the order of differentiation ");
disp('calculating yn for various values of n');
for n=1:4
//yn=diff(F,x,n)
F=(1-x^2)*diff(y,x,n+2)-(2*n+1)*x*diff(y,x,n+1)-(n^2+a^2)*diff(y,x,n);
disp(n);
disp('the expression for yn is ');
disp(F);
disp('Which is equal to 0 ');
end
disp('Hence proved');
|
3b0973d415adfc181a4e8424825eea13c883b593
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/506/CH2/EX2.1.b/Example2_1b.sce
|
5dd520b41f4abd79396c596f0b45f4e89b0f8006
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 600
|
sce
|
Example2_1b.sce
|
clear;
clc
//Example 2b
//To find the resistivity of intrinsic germanium at 300K
//Given Values
Av=6.02*(10^23) //Avogadro No.
m=72.6 //Molar mass of germanium in gm/moles
d=5.32//density in gm/cm^3
ni=2.5*(10^13);//in cm^-3
n=ni;
p=ni;//n=magnitude of free electrons, p=magnitude of holes, ni=magnitude of intrinsic concentration
q=1.6*(10^-19);//Charge of an Electron
yn=3800;//in cm^2/V-s
yp=1800;//in cm^2/V-s
//Required Formula
A=ni*q*(yn+yp); //Conductivity
disp('ohm-cm^-1',A,'Conductivity is =');
R =1/A //Resistivity
disp('ohm-cm',R,'Resistivity is =');
//End
|
ca59e570ea047a32fcff11d7a252e9ba87ac956c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/323/CH3/EX3.10/ex3_10.sci
|
7a66886e8ddd260adde3276b950f7298f57d98e9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 226
|
sci
|
ex3_10.sci
|
//Example 10,Chapter 3
//(i)
clc;
Ieff=7.071/sqrt(2)
Irms=Ieff
Im=5*sqrt(2)
//(ii)
f=(157.08)/(2*%pi)
T=(1/f)
printf("\n T=%.2f s \n",T)
//(iii)
t=(asin((7.071/7.071))+0.785)/157.08
printf("\n t=%.3f s \n",t)
|
a1b02797bea15fb6e3796e3b5588d90d21dd0b8e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1859/CH6/EX6.5/exa_6_5.sce
|
7398912100e952480dcdbe3a7ab6eb3f8d181287
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 157
|
sce
|
exa_6_5.sce
|
// Exa 6.5
clc;
clear;
close;
// Given data
S=6;// in ohm
AB= 25;// in cm
BC= 75;// in cm
R= S*AB/BC;// in ohm
disp(R,"Unknown resistance in ohm")
|
927a689913ecfec535687955c991932cd7c2e05e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1580/CH7/EX7.6/Ch07Ex6.sce
|
57a5b4300fefb32850fe53b54b3292b3122ca0c0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 564
|
sce
|
Ch07Ex6.sce
|
// Scilab Code Ex7.6: Page-7.27 (2004)
clc;clear;
A = 100e-4; // Area of parallel plates, squaremetre
d = 1e-2; // Distance between plates, metre
eo = 8.854e-12; // Permittivity of the free space, farad per metre
V = 100; // Potential, volt
C = eo*A/d; // Capacitance, farad
Q = C*V; // Charge on the plates of capacitor, C
printf("\nCapacitance = %5.3e F ", C);
printf("\nCharge on the plates of capacitor = %3.3e C", Q);
// Result
// Capacitance = 8.854e-12 F
// Charge on the plates of capacitor = 8.854e-10 C
|
2535b6f76807a16853e63c2657c2d145c872e090
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/22/CH5/EX5.3.a/ch5ex3a.sce
|
83a9b7c66b6492352cc2619ecc40bc9a57b8b6dc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 410
|
sce
|
ch5ex3a.sce
|
//signals and systems
//Inverse Z Transform:ROC |z|>1/3
z = %z;
syms n z1;//To find out Inverse z transform z must be linear z = z1
X =(8*z-19)/((z-2)*(z-3))
X1 = denom(X);
zp = roots(X1);
X1 = (8*z1-19)/((z1-2)*(z1-3))
F1 = X1*(z1^(n-1))*(z1-zp(1));
F2 = X1*(z1^(n-1))*(z1-zp(2));
h1 = limit(F1,z1,zp(1));
disp(h1,'h1[n]=')
h2 = limit(F2,z1,zp(2));
disp(h2,'h2[n]=')
h = h1+h2;
disp(h,'h[n]=')
|
21b577c15f6fb947867e2d9fae42d58a8636ecfb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/662/CH7/EX7.13/ex7_13.sci
|
4d422af7653fb91ed2305e2a4919149d1ceed7db
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,299
|
sci
|
ex7_13.sci
|
//Programming Example 7.13
//calculating depreciation
function[] = main()
choice = 0;
answer1 = 'Y';
answer2 = 'Y';
while (convstr(answer1, 'u') ~= 'N')
//read input data
if (convstr(answer2, 'u') ~= 'N') then
printf("\n Original Value: ");
val = scanf("%f");
printf("Number of years: ");
n = scanf("%d");
end
printf("\n Method: (1-SL 2-DDB 3-SYD) ");
choice = scanf("%d");
select (choice)
case 1 then //straight-line method
printf("\nStraight Line Method\n\n");
sl(val,n);
case 2 then //Double declining balance method
printf("\nDouble-Declining-Balance Method\n\n");
ddb(val,n);
case 3 then //Sum of the years - digits method
printf("\nSum Of The Years - Digits Method\n\n");
syd(val,n);
end
printf("\n\nAnother Calculation? (Y/N) ");
answer1=scanf("%1s");
if (convstr(answer1, 'u') ~= 'N') then
printf("Enter a new set of data? (Y/N) ");
answer2 = scanf("%1s");
end
end
printf("\nGoodbye, have a nice day!\n");
endfunction
function[] = sl(val,n) //straight line method
deprec = val/n;
for year = 1:1:n
val = val-deprec;
writeoutput(year, deprec, val);
end
return;
endfunction
function[] = ddb(val,n) //double declining balance method
for year = 1:1:n
deprec = 2*val/n;
val= val-deprec;
writeoutput(year, deprec, val);
end
return;
endfunction
function[] = syd(val,n) //Sum of the years - digits method
tag= val;
for year = 1:1:n
deprec = (n-year+1)*tag/(n*(n+1)/2);
val = val-deprec;
writeoutput(year, deprec, val);
end
return;
endfunction
function[] = writeoutput(year,depreciation,value) //display output data
printf("End of Year %2d", year);
printf(" Depreciation: %7.2f", depreciation);
printf(" Current Value: %8.2f\n", value);
return;
endfunction
//calling main()
main();
|
2a34ce4167c98d420344b730f97139cb7522ee30
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3392/CH15/EX15.3/Ex15_3.sce
|
44849862460947d7f0b0b20d2143083a5568f8ee
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 264
|
sce
|
Ex15_3.sce
|
clc
// initialization of variables
clear
a=100/2 //mm
Y=1500 //MPa
t=6 //mm
w=800 //mmm
c=200 //mm
a_c=a/c
fl=1.045
w=w*10^-3
t=t*10^-3
a=a*10^-3
A=w*t
Sigma=1/A
K_I=Sigma*sqrt(%pi*a)*fl
printf('part (a)')
printf('\n K_I = %.2f MPa sqrt(m)',K_I)
|
75531852e520d68833c1144af08814a4bb70a5e0
|
e0124ace5e8cdd9581e74c4e29f58b56f7f97611
|
/3913/CH3/EX3.17/Ex3_17.sce
|
0454a2c2727e85780bf8d5876f88da825b3568f7
|
[] |
no_license
|
psinalkar1988/Scilab-TBC-Uploads-1
|
159b750ddf97aad1119598b124c8ea6508966e40
|
ae4c2ff8cbc3acc5033a9904425bc362472e09a3
|
refs/heads/master
| 2021-09-25T22:44:08.781062
| 2018-10-26T06:57:45
| 2018-10-26T06:57:45
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 431
|
sce
|
Ex3_17.sce
|
//Chapter 3 : Systems of Linear Equations
//Example 3.21
//Scilab 6.0.1
//Windows 10
clear;
clc;
A=[1 2 0 2;
0 1 1 1;
1 0 1 0];
disp(A,'A=')
mprintf('a2-a4=')
t=A(:,2)-A(:,4);
disp(t)
mprintf('\nsuppose that we have l1a1+l2a2+l3a3=0')
disp('l1*')
disp(A(:,1))
disp('l2*')
disp(A(:,2))
disp('l3*')
disp(A(:,3))
mprintf('=')
disp(t)
mprintf('by solving the equation we get\n')
mprintf('l1=l2=l3=0')
|
c98b2c9452ef887612902bb92cab8e841132cf40
|
0845790d81f9fd3b8393b14fc9c2bdde0ffe46cf
|
/12_IIR_Filter/12.IIRFilter.sce
|
1993777574f6711ecef7a317ff42f2856b3f454b
|
[] |
no_license
|
NARAYAN1201/Scilab
|
1a3fb62895b157f87b0d9e024ecd2f1c000eb6df
|
48980c28ab2def9939e7519867da572660c8ac97
|
refs/heads/main
| 2023-02-26T02:09:05.762483
| 2021-02-01T07:24:54
| 2021-02-01T07:24:54
| 335,216,077
| 0
| 0
| null | 2021-02-02T08:17:23
| 2021-02-02T08:17:23
| null |
UTF-8
|
Scilab
| false
| false
| 1,477
|
sce
|
12.IIRFilter.sce
|
// Ca p tio n : To D e sig n D i g i t a l I IR B u t t e r w o r t h LPF
// Analog c u t o f f f r e q = 1000 Hz , Sampling F req =
//10000 s am pl e s / s e c
// O rde r of I IR f i l t e r N = 2
clc ;
clear ;
xdel ( winsid () ) ;
fc = input ( " Enter cut off freq in Hz f c = " )
fs = input ( " Enter sampling freq in Hz f s = " )
N = input ( " Enter order of Butterworth filter N = " )
Fp = 2* fc / fs ;
// Pa s s band e dg e f r e q u e n c y i n c y c l e s /sam pl e s
[ Hz ]= iir(N , "lp" , "butt" ,[ Fp /2 ,0] ,[0 ,0])
// d i g i t a l I IR B u t t e r wo r t h F i l t e r
[ Hw , w ] = frmag ( Hz ,256) ;
subplot (2 ,1 ,1)
plot (2* w , abs ( Hw ) );
xlabel ( " No rmali z e d D i g i t a l F r e q u e n c y w−−−> " )
ylabel ( " Magnitude |H(w)|= " )
title ( " Magnitude R e s po n s e of I IR LPF " )
xgrid (1)
subplot (2 ,1 ,2)
plot (2* w * fs , abs ( Hw ) ) ;
xlabel ( " Analog F r e q u e n c y i n Hz f −−−> " )
ylabel ( " Magnitude |H(w)|= " )
title ( " Magnitude R e s po n s e of I IR LPF " )
xgrid (1)
//Example
//
// Enter c ut off freq in Hz f c =1000
//
// Enter s ampling freq in Hz f s =10000
//
// Enter order of B u t t e r w o r t h f i l t e r N = 2
// −−>Hz
// Hz =
//
// 2
// 0 . 0 6 7 4 5 5 3 + 0 . 1 3 4 9 1 0 5 z + 0 . 0 6 7 4 5 5 3 z
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// 2
// 0 . 4 1 2 8 0 1 6 − 1 . 1 4 2 9 8 0 5 z + z
|
084d107763554a37bd66794fbf6db11e1fb4bf37
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set14/s_Linear_Integrated_Circuits_J._B._Gupta_1850.zip/Linear_Integrated_Circuits_J._B._Gupta_1850/CH7/EX7.6/exa_7_6.sce
|
4f8fb4b75ca84122e8b584a737b8591ee53d3452
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 240
|
sce
|
exa_7_6.sce
|
errcatch(-1,"stop");mode(2);// Exa 7.6
;
;
//given data
R= 10;// in kohm
R=R*10^3;// in ohm
C= 100;// in pF
C=C*10^-12;// in F
f=1/(2*%pi*R*C);// in Hz
disp(f*10^-3,"Frequency of the oscillation of the circuit in kHz")
exit();
|
aa0dcfa5a0e074ce2c406b030064029fe8450743
|
12d519f18a15ef7423dffa1727cb877966fcf913
|
/scilab/tir.sci
|
687ef3420ed8c91cd2072dc400443aebe433dd46
|
[] |
no_license
|
gviolato/gviolato.github.io
|
e9b799bf61dd345fe06760ebc296f49f467347b7
|
190748c14c115f63e366d2244a572de08daa7e5e
|
refs/heads/master
| 2021-01-17T15:29:43.924914
| 2017-01-25T23:33:53
| 2017-01-25T23:33:53
| 22,399,267
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 733
|
sci
|
tir.sci
|
function t = tir(FC)
// Função para o cálculo da Taxa Interna de Retorno (TIR)
//
// Parâmetro de entrada: FC - Fluxo de Caixa
// Parâmetro de saída: t - Taxa Interna de Retorno
//
// Autor: Júlio Xavier Vianna Neto
raizes = roots(FC($:-1:1,1)'); // Encontra as raízes do polinômio
taxas = ((1)./raizes) - 1; // Calcula as taxas correspondentes
ind = find(real(taxas) > 0 & abs(imag(taxas)) < 1e-6); // Taxas reais e positivas
if ~isempty(ind) then
t = min(real(taxas(ind)));
else
ind = find(abs(imag(taxas)) < 1e-6); // Taxas reais, mesmo que negativas
if ~isempty(ind) then
t = max(real(taxas(ind)));
else
t = %nan;
end
end
endfunction
|
b0410ea6a96f31e437c9ea8a3c705162674ca1be
|
45c1200ec894e793587fc6d8f30253e69ecec19a
|
/neiro/laba2/bin/Debug/линейно неразделимые 2D.tst
|
21f79608f36f1f63ac39e14a42ef5dfac681e8ee
|
[] |
no_license
|
dShadowHS/dShadow
|
46c0df8f6715948d2b952de001f1f8748861eb1d
|
0b4c4674d137160d09e5bb9092ff0d2253818dd0
|
refs/heads/master
| 2021-01-11T23:11:28.661559
| 2017-01-10T17:12:41
| 2017-01-10T17:12:41
| 78,555,391
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 534
|
tst
|
линейно неразделимые 2D.tst
|
202,204;20,957;0
204,251;20,327;0
205,947;13,827;0
212,435;22,435;0
212,348;20,756;0
213,789;25,805;0
211,677;12,728;0
213,155;26,929;0
208,583;13,231;0
206,511;19,552;0
204,408;20,258;1
214,648;17,206;1
204,093;20,213;1
204,09;12,778;1
200,83;14,189;1
208,787;13,941;1
205,578;17,868;1
212,065;13,329;1
207,28;15,944;1
212,225;19,248;1
212,728;15,224;2
205,8;17,291;2
218,406;25,638;2
204,361;13,624;2
207,733;23,078;2
219,205;14,998;2
215,513;15,324;2
213,574;17,395;2
208,719;23,136;2
216,29;16,614;2
|
d967cce7ac403a4173cc24ef7dffd1c9de548ded
|
36c5f94ce0d09d8d1cc8d0f9d79ecccaa78036bd
|
/Zaey_Wingman_Short.sce
|
b279fd7bc7820a136dfa716b7b5f8e1c93930627
|
[] |
no_license
|
Ahmad6543/Scenarios
|
cef76bf19d46e86249a6099c01928e4e33db5f20
|
6a4563d241e61a62020f76796762df5ae8817cc8
|
refs/heads/master
| 2023-03-18T23:30:49.653812
| 2020-09-23T06:26:05
| 2020-09-23T06:26:05
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 11,061
|
sce
|
Zaey_Wingman_Short.sce
|
Name=Zaey_Wingman_Short
PlayerCharacters=Training Apex Zaey
BotCharacters=Apex 200hp dodge hard.bot
IsChallenge=false
Timelimit=60.0
PlayerProfile=Training Apex Zaey
AddedBots=Apex 200hp dodge hard.bot;Apex 200hp dodge hard.bot;Apex 200hp dodge hard.bot;Apex 200hp dodge hard.bot
PlayerMaxLives=0
BotMaxLives=0;0;0;0
PlayerTeam=0
BotTeams=0;0;0;0
MapName=aimbotz.map
MapScale=1.3
BlockProjectilePredictors=true
BlockCheats=true
InvinciblePlayer=true
InvincibleBots=false
Timescale=1.0
BlockHealthbars=false
TimeRefilledByKill=5.0
ScoreToWin=1000.0
ScorePerDamage=2.0
ScorePerKill=150.0
ScorePerMidairDirect=10.0
ScorePerAnyDirect=0.0
ScorePerTime=0.0
ScoreLossPerDamageTaken=0.0
ScoreLossPerDeath=0.0
ScoreLossPerMidairDirected=0.0
ScoreLossPerAnyDirected=0.0
ScoreMultAccuracy=true
ScoreMultDamageEfficiency=false
ScoreMultKillEfficiency=false
GameTag=Apex Legends, Short range
WeaponHeroTag=wingman
DifficultyTag=4
AuthorsTag=Zaey
BlockHitMarkers=false
BlockHitSounds=false
BlockMissSounds=true
BlockFCT=false
Description=short range training for Wingman
GameVersion=1.0.7.2
ScorePerDistance=0.0
[Aim Profile]
Name=Default
MinReactionTime=0.3
MaxReactionTime=0.4
MinSelfMovementCorrectionTime=0.001
MaxSelfMovementCorrectionTime=0.05
FlickFOV=30.0
FlickSpeed=1.5
FlickError=15.0
TrackSpeed=3.5
TrackError=3.5
MaxTurnAngleFromPadCenter=75.0
MinRecenterTime=0.3
MaxRecenterTime=0.5
OptimalAimFOV=30.0
OuterAimPenalty=1.0
MaxError=40.0
ShootFOV=15.0
VerticalAimOffset=0.0
MaxTolerableSpread=5.0
MinTolerableSpread=1.0
TolerableSpreadDist=2000.0
MaxSpreadDistFactor=2.0
[Bot Profile]
Name=Apex 200hp dodge hard
DodgeProfileNames=Apex Strafe
DodgeProfileWeights=1.0
DodgeProfileMaxChangeTime=5.0
DodgeProfileMinChangeTime=1.0
WeaponProfileWeights=1.0;1.0;1.0;1.0;1.0;1.0;1.0;1.0
AimingProfileNames=Default;Default;Default;Default;Default;Default;Default;Default
WeaponSwitchTime=3.0
UseWeapons=true
CharacterProfile=Apex 200
SeeThroughWalls=false
NoDodging=false
NoAiming=true
[Character Profile]
Name=Training Apex Zaey
MaxHealth=200.0
WeaponProfileNames=Wingman;;;;;;;
MinRespawnDelay=3.0
MaxRespawnDelay=9.0
StepUpHeight=16.0
CrouchHeightModifier=0.5
CrouchAnimationSpeed=1.0
CameraOffset=X=0.000 Y=0.000 Z=0.000
HeadshotOnly=false
DamageKnockbackFactor=0.0
MovementType=Base
MaxSpeed=300.0
MaxCrouchSpeed=400.0
Acceleration=2000.0
AirAcceleration=16000.0
Friction=8.0
BrakingFrictionFactor=2.0
JumpVelocity=400.0
Gravity=1.6
AirControl=0.1
CanCrouch=true
CanPogoJump=false
CanCrouchInAir=false
CanJumpFromCrouch=false
EnemyBodyColor=X=0.366 Y=0.067 Z=0.371
EnemyHeadColor=X=0.847 Y=0.012 Z=0.018
TeamBodyColor=X=0.366 Y=0.067 Z=0.371
TeamHeadColor=X=0.863 Y=0.776 Z=0.434
BlockSelfDamage=false
InvinciblePlayer=false
InvincibleBots=false
BlockTeamDamage=false
AirJumpCount=0
AirJumpVelocity=270.0
MainBBType=Cylindrical
MainBBHeight=83.0
MainBBRadius=13.0
MainBBHasHead=true
MainBBHeadRadius=7.0
MainBBHeadOffset=1.0
MainBBHide=false
ProjBBType=Cuboid
ProjBBHeight=65.0
ProjBBRadius=10.0
ProjBBHasHead=true
ProjBBHeadRadius=6.0
ProjBBHeadOffset=-8.0
ProjBBHide=true
HasJetpack=false
JetpackActivationDelay=0.2
JetpackFullFuelTime=4.0
JetpackFuelIncPerSec=1.0
JetpackFuelRegensInAir=false
JetpackThrust=6000.0
JetpackMaxZVelocity=400.0
JetpackAirControlWithThrust=0.25
AbilityProfileNames=Run.abilsprint;;;
HideWeapon=false
AerialFriction=0.0
StrafeSpeedMult=1.0
BackSpeedMult=0.9
RespawnInvulnTime=0.0
BlockedSpawnRadius=0.0
BlockSpawnFOV=0.0
BlockSpawnDistance=0.0
RespawnAnimationDuration=0.1
AllowBufferedJumps=false
BounceOffWalls=false
LeanAngle=0.0
LeanDisplacement=0.0
AirJumpExtraControl=1.0
ForwardSpeedBias=1.0
HealthRegainedonkill=200.0
HealthRegenPerSec=0.0
HealthRegenDelay=0.0
JumpSpeedPenaltyDuration=0.0
JumpSpeedPenaltyPercent=0.0
ThirdPersonCamera=false
TPSArmLength=140.0
TPSOffset=X=0.000 Y=20.000 Z=0.000
BrakingDeceleration=2048.0
VerticalSpawnOffset=0.0
[Character Profile]
Name=Apex 200
MaxHealth=200.0
WeaponProfileNames=Pump;Wingman;R-99;Spitfire;;;;
MinRespawnDelay=3.0
MaxRespawnDelay=9.0
StepUpHeight=16.0
CrouchHeightModifier=0.5
CrouchAnimationSpeed=1.0
CameraOffset=X=0.000 Y=0.000 Z=0.000
HeadshotOnly=false
DamageKnockbackFactor=0.0
MovementType=Base
MaxSpeed=300.0
MaxCrouchSpeed=400.0
Acceleration=2000.0
AirAcceleration=16000.0
Friction=8.0
BrakingFrictionFactor=2.0
JumpVelocity=400.0
Gravity=1.6
AirControl=0.1
CanCrouch=true
CanPogoJump=false
CanCrouchInAir=false
CanJumpFromCrouch=false
EnemyBodyColor=X=0.366 Y=0.067 Z=0.371
EnemyHeadColor=X=0.863 Y=0.776 Z=0.434
TeamBodyColor=X=0.366 Y=0.067 Z=0.371
TeamHeadColor=X=0.863 Y=0.776 Z=0.434
BlockSelfDamage=false
InvinciblePlayer=false
InvincibleBots=false
BlockTeamDamage=false
AirJumpCount=0
AirJumpVelocity=270.0
MainBBType=Cylindrical
MainBBHeight=83.0
MainBBRadius=13.0
MainBBHasHead=true
MainBBHeadRadius=7.0
MainBBHeadOffset=1.0
MainBBHide=false
ProjBBType=Cuboid
ProjBBHeight=65.0
ProjBBRadius=10.0
ProjBBHasHead=true
ProjBBHeadRadius=6.0
ProjBBHeadOffset=-8.0
ProjBBHide=true
HasJetpack=false
JetpackActivationDelay=0.2
JetpackFullFuelTime=4.0
JetpackFuelIncPerSec=1.0
JetpackFuelRegensInAir=false
JetpackThrust=6000.0
JetpackMaxZVelocity=400.0
JetpackAirControlWithThrust=0.25
AbilityProfileNames=Run.abilsprint;Melee.abilmelee;;
HideWeapon=false
AerialFriction=0.0
StrafeSpeedMult=1.0
BackSpeedMult=0.9
RespawnInvulnTime=0.0
BlockedSpawnRadius=0.0
BlockSpawnFOV=0.0
BlockSpawnDistance=0.0
RespawnAnimationDuration=0.1
AllowBufferedJumps=false
BounceOffWalls=false
LeanAngle=0.0
LeanDisplacement=0.0
AirJumpExtraControl=1.0
ForwardSpeedBias=1.0
HealthRegainedonkill=200.0
HealthRegenPerSec=0.0
HealthRegenDelay=0.0
JumpSpeedPenaltyDuration=0.0
JumpSpeedPenaltyPercent=0.0
ThirdPersonCamera=false
TPSArmLength=140.0
TPSOffset=X=0.000 Y=20.000 Z=0.000
BrakingDeceleration=2048.0
VerticalSpawnOffset=0.0
[Dodge Profile]
Name=Apex Strafe
MaxTargetDistance=2000.0
MinTargetDistance=200.0
ToggleLeftRight=true
ToggleForwardBack=true
MinLRTimeChange=0.1
MaxLRTimeChange=0.5
MinFBTimeChange=0.2
MaxFBTimeChange=0.5
DamageReactionChangesDirection=true
DamageReactionChanceToIgnore=0.5
DamageReactionMinimumDelay=0.125
DamageReactionMaximumDelay=0.25
DamageReactionCooldown=1.0
DamageReactionThreshold=0.0
DamageReactionResetTimer=0.1
JumpFrequency=0.2
CrouchInAirFrequency=0.0
CrouchOnGroundFrequency=0.2
TargetStrafeOverride=Ignore
TargetStrafeMinDelay=0.125
TargetStrafeMaxDelay=0.16
MinProfileChangeTime=0.0
MaxProfileChangeTime=0.0
MinCrouchTime=0.1
MaxCrouchTime=0.5
MinJumpTime=0.3
MaxJumpTime=0.6
LeftStrafeTimeMult=1.0
RightStrafeTimeMult=1.0
StrafeSwapMinPause=0.0
StrafeSwapMaxPause=0.0
BlockedMovementPercent=0.5
BlockedMovementReactionMin=0.0
BlockedMovementReactionMax=0.1
[Weapon Profile]
Name=Wingman
Type=Projectile
ShotsPerClick=1
DamagePerShot=45.0
KnockbackFactor=0.0
TimeBetweenShots=0.2923
Pierces=false
Category=SemiAuto
BurstShotCount=1
TimeBetweenBursts=0.5
ChargeStartDamage=10.0
ChargeStartVelocity=X=500.000 Y=0.000 Z=0.000
ChargeTimeToAutoRelease=2.0
ChargeTimeToCap=1.0
ChargeMoveSpeedModifier=1.0
MuzzleVelocityMin=X=18000.000 Y=0.000 Z=0.000
MuzzleVelocityMax=X=18000.000 Y=0.000 Z=0.000
InheritOwnerVelocity=0.0
OriginOffset=X=0.000 Y=0.000 Z=0.000
MaxTravelTime=2.0
MaxHitscanRange=100000.0
GravityScale=0.7
HeadshotCapable=true
HeadshotMultiplier=2.0
MagazineMax=12
AmmoPerShot=1
ReloadTimeFromEmpty=2.1
ReloadTimeFromPartial=2.1
DamageFalloffStartDistance=5000.0
DamageFalloffStopDistance=5000.0
DamageAtMaxRange=45.0
DelayBeforeShot=0.0
HitscanVisualEffect=None
ProjectileGraphic=Rocket
VisualLifetime=0.1
WallParticleEffect=Gunshot
HitParticleEffect=Blood
BounceOffWorld=false
BounceFactor=0.5
BounceCount=0
HomingProjectileAcceleration=0.0
ProjectileEnemyHitRadius=0.2
CanAimDownSight=true
ADSZoomDelay=0.2
ADSZoomSensFactor=1.0
ADSMoveFactor=1.0
ADSStartDelay=0.0
ShootSoundCooldown=0.08
HitSoundCooldown=0.08
HitscanVisualOffset=X=0.000 Y=0.000 Z=-50.000
ADSBlocksShooting=false
ShootingBlocksADS=false
KnockbackFactorAir=0.0
RecoilNegatable=false
DecalType=1
DecalSize=2.0
DelayAfterShooting=0.0
BeamTracksCrosshair=false
AlsoShoot=
ADSShoot=
StunDuration=0.0
CircularSpread=true
SpreadStationaryVelocity=0.0
PassiveCharging=false
BurstFullyAuto=true
FlatKnockbackHorizontal=0.0
FlatKnockbackVertical=0.0
HitscanRadius=0.0
HitscanVisualRadius=6.0
TaggingDuration=0.0
TaggingMaxFactor=1.0
TaggingHitFactor=1.0
ProjectileTrail=Smoke
RecoilCrouchScale=1.0
RecoilADSScale=1.0
PSRCrouchScale=1.0
PSRADSScale=1.0
ProjectileAcceleration=0.0
AccelIncludeVertical=false
AimPunchAmount=0.0
AimPunchResetTime=0.05
AimPunchCooldown=0.5
AimPunchHeadshotOnly=false
AimPunchCosmeticOnly=false
MinimumDecelVelocity=0.0
PSRManualNegation=false
PSRAutoReset=true
AimPunchUpTime=0.05
AmmoReloadedOnKill=0
CancelReloadOnKill=false
FlatKnockbackHorizontalMin=0.0
FlatKnockbackVerticalMin=0.0
ADSScope=No Scope
ADSFOVOverride=90.75
ADSFOVScale=Apex Legends
ADSAllowUserOverrideFOV=false
IsBurstWeapon=false
ForceFirstPersonInADS=true
ZoomBlockedInAir=false
ADSCameraOffsetX=0.0
ADSCameraOffsetY=0.0
ADSCameraOffsetZ=0.0
QuickSwitchTime=0.1
Explosive=false
Radius=0.1
DamageAtCenter=0.0
DamageAtEdge=0.0
SelfDamageMultiplier=0.0
ExplodesOnContactWithEnemy=false
DelayAfterEnemyContact=0.0
ExplodesOnContactWithWorld=false
DelayAfterWorldContact=0.0
ExplodesOnNextAttack=false
DelayAfterSpawn=0.0
BlockedByWorld=false
SpreadSSA=0.0,0.1,0.0,0.0
SpreadSCA=0.0,0.1,0.0,0.0
SpreadMSA=0.0,0.1,0.0,0.0
SpreadMCA=0.0,0.1,0.0,0.0
SpreadSSH=2.0,2.0,3.0,6.0
SpreadSCH=2.0,2.0,3.0,6.0
SpreadMSH=2.0,2.0,3.0,6.0
SpreadMCH=2.0,2.0,3.0,6.0
MaxRecoilUp=1.3
MinRecoilUp=1.0
MinRecoilHoriz=2.0
MaxRecoilHoriz=2.0
FirstShotRecoilMult=1.0
RecoilAutoReset=true
TimeToRecoilPeak=0.05
TimeToRecoilReset=0.35
AAMode=0
AAPreferClosestPlayer=false
AAAlpha=1.0
AAMaxSpeed=360.0
AADeadZone=0.0
AAFOV=360.0
AANeedsLOS=true
TrackHorizontal=true
TrackVertical=true
AABlocksMouse=false
AAOffTimer=0.0
AABackOnTimer=0.0
TriggerBotEnabled=true
TriggerBotDelay=0.0
TriggerBotFOV=1.0
StickyLock=false
HeadLock=false
VerticalOffset=0.0
DisableLockOnKill=false
UsePerShotRecoil=false
PSRLoopStartIndex=0
PSRViewRecoilTracking=0.45
PSRCapUp=9.0
PSRCapRight=4.0
PSRCapLeft=4.0
PSRTimeToPeak=0.175
PSRResetDegreesPerSec=40.0
UsePerBulletSpread=false
PBS0=0.0,0.0
[Sprint Ability Profile]
Name=Run
MaxCharges=1.0
ChargeTimer=0.0001
ChargesRefundedOnKill=0.0
DelayAfterUse=0.0
FullyAuto=false
AbilityDuration=0.0
BlockAttackWhileSprinting=false
AbilityBlockedWhenAttacking=false
SpeedModifier=1.8
45DegreeSprint=true
90DegreeSprint=true
135DegreeSprint=true
180DegreeSprint=false
TapToSprint=true
Block45DegreesWhenSprinting=false
AIUseInCombat=true
AIUseOutOfCombat=false
AIUseOnGround=true
AIUseInAir=true
AIReuseTimer=1.0
AIMinSelfHealth=0.0
AIMaxSelfHealth=100.0
AIMinTargHealth=0.0
AIMaxTargHealth=100.0
AIMinTargDist=0.0
AIMaxTargDist=2000.0
AIMaxTargFOV=15.0
AIDamageReaction=true
AIDamageReactionIgnoreChance=0.0
AIDamageReactionMinDelay=0.125
AIDamageReactionMaxDelay=0.25
AIDamageReactionCooldown=1.0
AIDamageReactionThreshold=0.0
AIDamageReactionResetTimer=0.1
[Map Data]
|
da645b07e880242689cfdb79d2c2e63e19dda18f
|
c61d570c37971fa455028a89d2163f455f91c291
|
/gauss_pivotamento_parcial.sce
|
5146786e773a7c3d7eb3ffcf163789ef5333c67b
|
[] |
no_license
|
OgliariNatan/-ScientificComputing
|
a0af891f900f3f146a9751fd169f96052bd4ba83
|
070ea9d70430ef0c9e7944f491426b73af7c12b0
|
refs/heads/master
| 2020-04-04T23:13:12.585946
| 2017-07-03T21:46:18
| 2017-07-03T21:46:18
| 81,988,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,397
|
sce
|
gauss_pivotamento_parcial.sce
|
//sistema 4x4
//l = linha do coeficiente da matriz original
//k = linha do coeficiente da sub matriz
//i = numero de colunas
//l = i+k-1
//
function x = gausspp(A,b)
clear
//x é o vetor solução
//a é a matriz de coeficientes
//b é o vetor estimulos
[m,n] = size(A)//obter a dimenção de a
if m~=n then
error('A: deve ser quadrada');//verifica se a matriz é quadrada
end
nb = n + 1;
SIS = [A b]//junta as matriz A e b em uma matriz nova
//eliminação progressiva
for i = 1:n-1 //i vai de 1 ate n-1
//Pivotamento
[maior,k] = max (abs(SIS(i:n,i)));
l = i+k-1;
if l~=i then
disp(SIS);
SIS([l,i],:) = SIS([i,l],:);//troca a matriz de i por l
disp("INVERTEU");
end
disp(SIS);
//Fim do pivotamento
for j = i+1:n
Mult = SIS(j,i)/SIS(i,i);
//for k = 1:nb
//SIS(j,k) = SIS(j,k)- SIS(i,k)*Mult;
//end
SIS(j,1:nb) = SIS(j,1:nb)- SIS(i,1:nb)*Mult; //for implicito
disp(SIS);// Mostrando todos os passos da eliminação
end
end
//disp (SIS);
//subistituição regressiva
x = zeros(n,1);
x(n) = SIS(n,nb)/SIS(n,n);
for i = n-1:-1:1
x(i) = (SIS(i,nb) - SIS(i,(i+1):n)*x((i+1):n)) / SIS(i,i);
end
endfunction
|
eea7a8db1eed1a4182977493b951bed1967380cd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1523/CH3/EX3.15/3_15.sce
|
b7e0a4b6fffd07d29708d6584a6d4b36392173a7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 614
|
sce
|
3_15.sce
|
//Network Theorem 2
//pg no 3.16
//example 3.15
a=10;
b=2;
c=(5*a)-(20*b);
x=20;
y=30;
z=5;
r=z+((x*y)/(x+y));
i=c/(r+c);
//Calculation of Vth(Thevenin's voltage)
disp("removing the 10 ohm resistor from the circuit");
printf("\nFor mesh 1, \nI1 = %.f A",a);
printf("\nApplying KVL to mesh 2,, \nI2 = %.f A",b);
printf("\nWriting Vth equation, \n Vth = %.f V",c);
//Calculation of Rth(Thevenin's Resistance)
disp("replacing the current source of 10 A with an open circuit and voltage source of 100 V with a short circuit,");
printf("\nRth = %.f Ohm",r);
//Calculation of IL(load current)
printf("\nIL = %.2f A",i);
|
c5f50035df44b45be3f1c44be5ab8c590f869a01
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3845/CH13/EX13.12/Ex13_12.sce
|
0f28fe8edcc9aeb15fd18979dad0c59a7fb21494
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 860
|
sce
|
Ex13_12.sce
|
//Example 13.12
T=20;//Temperature (C)
T=T+273;//Temperature (K)
P=2.33*10^3;//Vapor pressure of water at 20 deg C (Pa), See Table 13.5
R=8.31;//Ideal gas constant (J/mol.K)
M=18;//Molecular mass of water (g/mol)
//From ideal gas law, n/V=rho=P/(RT)
//n=number of moles, V=volume (m^3), rho=density (mol/m^3)
rho=P/(R*T);//Density (mol/m^3)
rho=rho*M;//Density (g/m^3)
printf('Density of water vapor = %0.1f g/m^3',rho)
sat_rho=17.2;//Saturation vapor density, See Table 13.5 (g/m^3)
//Here it is found that rho=sat_rho
x=abs(rho-sat_rho);//Difference (g/m^3)
if (x<0.1)//For a maximum difference of less than 0.1 g/m^3 (assumed)
printf('\nDensity of water vapor calculated is equal to the saturation vapor density found in Table 13.5')
end
//Openstax - College Physics
//Download for free at http://cnx.org/content/col11406/latest
|
25cc7234324d387d76ee4432328085901e7423aa
|
01ecab2f6eeeff384acae2c4861aa9ad1b3f6861
|
/sci2blif/rasp_design_added_blocks/generic_dig.sce
|
06555918bcbd1db2387cb634962024b153334ab2
|
[] |
no_license
|
jhasler/rasp30
|
9a7c2431d56c879a18b50c2d43e487d413ceccb0
|
3612de44eaa10babd7298d2e0a7cddf4a4b761f6
|
refs/heads/master
| 2023-05-25T08:21:31.003675
| 2023-05-11T16:19:59
| 2023-05-11T16:19:59
| 62,917,238
| 3
| 3
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 112
|
sce
|
generic_dig.sce
|
style.fontSize=16;
style.displayedLabel="Generic Digital";
pal3 = xcosPalAddBlock(pal3,"generic_dig",[],style);
|
1052f5bebb8fd268158b84c2ed61d78803cada38
|
1db0a7f58e484c067efa384b541cecee64d190ab
|
/macros/zp2ss.sci
|
0fd288625a801dfa5e4ab30eab6aa95b6afcd6d3
|
[] |
no_license
|
sonusharma55/Signal-Toolbox
|
3eff678d177633ee8aadca7fb9782b8bd7c2f1ce
|
89bfeffefc89137fe3c266d3a3e746a749bbc1e9
|
refs/heads/master
| 2020-03-22T21:37:22.593805
| 2018-07-12T12:35:54
| 2018-07-12T12:35:54
| 140,701,211
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,515
|
sci
|
zp2ss.sci
|
function [a, b, c, d] = zp2ss (z, p, k)
<<<<<<< HEAD
//Converts zeros / poles to state space.
//Calling Sequence
//[a, b, c, d] = zp2ss (z, p, k)
//[a, b, c] = zp2ss (z, p, k)
//[a, b] = zp2ss (z, p, k)
//a = zp2ss (z, p, k)
//Parameters
//z: Zeros
//p: Poles
//k: Leading coefficient
//a: State space parameter
//a: State space parameter
//b: State space parameter
//c: State space parameter
//d: State space parameter
//Description
//This is an Octave function.
//It converts zeros / poles to state space.
//Examples
//z = [1 2 3]
// p = [4 5 6]
//k = 5
//[a, b, c, d] = zp2ss (z, p, k)
//a =
//
// -0.00000 0.00000 -1.20000
// -10.00000 0.00000 -7.40000
// 0.00000 10.00000 15.00000
//
//b =
//
// -5.7000
// -31.5000
// 45.0000
//
//c =
//
// 0.00000 0.00000 1.00000
//
//d = 5
funcprot(0);
lhs = argn(1)
rhs = argn(2)
if (rhs < 3 | rhs > 3)
error("zp2ss: Wrong number of input arguments.")
end
[num den] = zp2tf(z,p,k);
h = poly(num, "s", "c")/poly(den, "s", "c");
sys = tf2ss(num, den)
[a b c d] = abcd(sys)
=======
//Converts zeros / poles to state space.
//Calling Sequence
//[a, b, c, d] = zp2ss (z, p, k)
//[a, b, c] = zp2ss (z, p, k)
//[a, b] = zp2ss (z, p, k)
//a = zp2ss (z, p, k)
//Parameters
//z: Zeros
//p: Poles
//k: Leading coefficient
//a: State space parameter
//a: State space parameter
//b: State space parameter
//c: State space parameter
//d: State space parameter
//Description
//This is an Octave function.
//It converts zeros / poles to state space.
//Examples
//z = [1 2 3]
// p = [4 5 6]
//k = 5
//[a, b, c, d] = zp2ss (z, p, k)
//a =
//
// -0.00000 0.00000 -1.20000
// -10.00000 0.00000 -7.40000
// 0.00000 10.00000 15.00000
//
//b =
//
// -5.7000
// -31.5000
// 45.0000
//
//c =
//
// 0.00000 0.00000 1.00000
//
//d = 5
funcprot(0);
lhs = argn(1)
rhs = argn(2)
if (rhs < 3 | rhs > 3)
error("Wrong number of input arguments.")
end
select(rhs)
case 3 then
if(lhs==1)
a = callOctave("zp2ss", z, p, k)
elseif(lhs==2)
[a, b] = callOctave("zp2ss", z, p, k)
elseif(lhs==3)
[a, b, c] = callOctave("zp2ss", z, p, k)
elseif(lhs==4)
[a, b, c, d] = callOctave("zp2ss", z, p, k)
else
error("Wrong number of output argments.")
end
end
>>>>>>> 6bbb00d0f0128381ee95194cf7d008fb6504de7d
endfunction
|
ca2b590098844ea8003900bfac0033f44e25b2ed
|
491f29501fa7d484a5860f64aef3fa89fb18ca3d
|
/.sandbox/robotics/HuMAns_pa10/RobotSim/testErreur.sci
|
f68b41cef0ccf88b844b3fbaebb6512deb6986ee
|
[
"Apache-2.0"
] |
permissive
|
siconos/siconos-tutorials
|
e7e6ffbaaea49add49eddd317c46760393e3ef9a
|
0472c74e27090c76361d0b59283625ea88f80f4b
|
refs/heads/master
| 2023-06-10T16:43:13.060120
| 2023-06-01T07:21:25
| 2023-06-01T07:21:25
| 152,255,663
| 7
| 2
|
Apache-2.0
| 2021-04-08T12:00:39
| 2018-10-09T13:26:39
|
Jupyter Notebook
|
UTF-8
|
Scilab
| false
| false
| 375
|
sci
|
testErreur.sci
|
getf 'lib/modules.sci'
getf 'lib/pa10/modele.sci'
getf 'lib/pa10/pa10Jac.sci'
function [err] = xerr(x1,x2)
m1=f_Hmat(x1);
m2=f_Hmat(x2);
err= f_xerror(m1,m2);
endfunction
xerr([0 0 0 0 0 0],[0 0 0 0 0 0])
xerr([0 0 0 0 0 0],[0 0 0 0.1 0 0])
xerr([0 0 0 0 0 0],[0 0 0 0 0.1 0])
xerr([0 0 0 0 0 0.2],[0 0 0 0 0.0 0.1])
xerr([0 0 0 0 0.01 0.02],[0 0 0 0.01 0 0.01])
|
5d6f67ef7183afd2de52dcba9ff17cc72dc2a3e1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/165/CH4/EX4.6/ex4_6.sce
|
f5ae7a9c8565247c14bff8958fe9f467a6ad8d34
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 784
|
sce
|
ex4_6.sce
|
//Example 4.5
clc;
Ifsd=2*10^-3; //Full Scale Deflection Current
Rm=50; //Internal resistance of movement
//Case I: For Range 0-10 V
V=10; //Full range voltage of the instrument
Rs=V/Ifsd-Rm; //Multiplier resistence
R4=Rs;
//Case II: For Range 0-50 V
V=50; //Full range voltage of the instrument
Rs=V/Ifsd-R4-Rm; //Multiplier resistence
R3=Rs;
//Case III: For Range 0-100 V
V=100; //Full range voltage of the instrument
Rs=V/Ifsd-R3-R4-Rm; //Multiplier resistence
R2=Rs;
//Case IV: For Range 0-250 V
V=250; //Full range voltage of the instrument
Rs=V/Ifsd-R2-R3-R4-Rm; //Multiplier resistence
R1=Rs;
disp(R4,R3,R2,R1,'Value of Resistence R1, R2, R3, R4 are:')
disp('respectively')
|
a579e38dbe9b4afe9b2dbbfa0c8e70471155a536
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1646/CH4/EX4.16/Ch04Ex16.sce
|
dabb05bd74ae375c7f213c8cc83afbe10e4ec6b5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 676
|
sce
|
Ch04Ex16.sce
|
// Scilab Code Ex4.16: Page-202 (2011)
clc;clear;
mu = 1.6;....// Refractive index of aplanatic surface
R = 3.2;....// Radius of curvature, cm
R1 = R/mu;....// First radius of the aplanatic surface, cm
printf("\nR1 = %3.1f cm", R1);
R2 = R*mu;....// Second radius of the aplanatic surface, cm
printf("\nR2 = %4.2f cm", R2);
//Since the image of an object at one aplanatic point will be formed by the sphere at the other aplantic point,so the is
m = mu^2; // The lateral magnification of the image
printf("\nThe lateral magnification of the image = %4.2f", m);
// Result
// R1 = 2.0 cm
// R2 = 5.12 cm
// The lateral magnification of the image = 2.56
|
8938ad204bdd5084cca5e1ba9dfc739008cc1b0d
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.4.1/macros/fraclab/fbmfwt.sci
|
02a3cbe291e5c1c3a26d34416c01e4edfcf1e921
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,269
|
sci
|
fbmfwt.sci
|
function [x,wtx,wtxinit] = fbmfwt(N,H,noctaves,q,randseed) ;
// This Software is ( Copyright INRIA . 1998 1 )
//
// INRIA holds all the ownership rights on the Software.
// The scientific community is asked to use the SOFTWARE
// in order to test and evaluate it.
//
// INRIA freely grants the right to use modify the Software,
// integrate it in another Software.
// Any use or reproduction of this Software to obtain profit or
// for commercial ends being subject to obtaining the prior express
// authorization of INRIA.
//
// INRIA authorizes any reproduction of this Software.
//
// - in limits defined in clauses 9 and 10 of the Berne
// agreement for the protection of literary and artistic works
// respectively specify in their paragraphs 2 and 3 authorizing
// only the reproduction and quoting of works on the condition
// that :
//
// - "this reproduction does not adversely affect the normal
// exploitation of the work or cause any unjustified prejudice
// to the legitimate interests of the author".
//
// - that the quotations given by way of illustration and/or
// tuition conform to the proper uses and that it mentions
// the source and name of the author if this name features
// in the source",
//
// - under the condition that this file is included with
// any reproduction.
//
// Any commercial use made without obtaining the prior express
// agreement of INRIA would therefore constitute a fraudulent
// imitation.
//
// The Software beeing currently developed, INRIA is assuming no
// liability, and should not be responsible, in any manner or any
// case, for any direct or indirect dammages sustained by the user.
//
// Any user of the software shall notify at INRIA any comments
// concerning the use of the Sofware (e-mail : FracLab@inria.fr)
//
// This file is part of FracLab, a Fractal Analysis Software
// FBMFWT
// Paulo Goncalves.
// July 30rd 1997
//
// function [x,wtx,wtxinit] = fbmfwt(N,[H,noctaves,q,randseed]) ;
//
// Synthesis of a 1/f process using Wornell procedure (uses an orthogonal
// wavelet decomposition of a white Gaussian noise).
//
// Inputs:
// N Integer. Number of time samples
// H Real in (0,1). Power law exponent of the 1/f spectrum
// noctaves Integer. Number of analyzed octaves ( <= log2(N) )
// q Real vector. Wavelet coefficient filter
// randseed Integer. Initialization Seed of the random generator
//
// Outputs:
// x Real vector [1,N]. Synthesized signal (time samples)
// wtx Real vector. Wavelet coefficients of x
// wtxinit Real vector. Wavelet coefficient of the white Gaussian noise
//"
oldrnd=rand('info');
[nargout,nargin] = argn(0) ;
select nargin
case 2
noctaves = floor(mtlb_log2(N)) ;
q = MakeQMF('daubechies',4) ;
case 3
q = MakeQMF('daubechies',4) ;
end
if exists('randseed') ;
rand('normal') ;
rand('seed',randseed) ;
end
Xinit = rand(1,N) ;
//pause ;
[wtxinit,wti,wtl] = FWT(Xinit,noctaves,q) ;
scale = exp((0:noctaves-1) * log(2)) ;
wtx = wtxinit ;
for j = 1 : noctaves
wtx(wti(j):wti(j)+wtl(j)-1) = ...
wtx(wti(j):wti(j)+wtl(j)-1).*(scale(j).^(H+1/2)) ;
end
[x] = IWT(wtx) ;
rand(oldrnd)
|
ec91a031c0b8d56802ec8cfecc6e003a1eb10d6b
|
7b7be9b58f50415293def4aa99ef5795e6394954
|
/sim/scripts/eqn.tst
|
02b6b35191945f456c09b6e4c30f94d93fdfb642
|
[] |
no_license
|
sabualkaz/sim42
|
80d1174e4bc6ae14122f70c65e259a9a2472ad47
|
27b5afe75723c4e5414904710fa6425d5f27e13c
|
refs/heads/master
| 2022-07-30T06:23:20.119353
| 2020-05-23T16:30:01
| 2020-05-23T16:30:01
| 265,842,394
| 0
| 0
| null | 2020-05-21T12:26:00
| 2020-05-21T12:26:00
| null |
UTF-8
|
Scilab
| false
| false
| 1,353
|
tst
|
eqn.tst
|
units SI
$thermo = VirtualMaterials.Peng-Robinson
/ -> $thermo
thermo + Methane Ethane Propane
Feed = Stream.Stream_Material()
Feed.In.T = 20
Feed.In.P = 3000
Feed.In.MoleFlow = 100
Feed.In.Fraction = 70 20 10
valve = Valve.Valve()
Feed.Out -> valve.In
Outlet = Stream.Stream_Material()
valve.Out -> Outlet.In
Feed.pPort = Stream.SensorPort('P')
Outlet.pPort = Stream.SensorPort('P')
Feed.flowPort = Stream.SensorPort('MoleFlow')
cv_eqn = Equation.Equation()
cd cv_eqn
Equation = '''
Signal P(pIn, pOut) MoleFlow(f)
Signal Generic(cv)
pIn-pOut = 0.05*f^2
'''
cd /
cv_eqn.pIn -> Feed.pPort
cv_eqn.pOut -> Outlet.pPort
cv_eqn.f -> Feed.flowPort
Outlet.Out
Feed.In.MoleFlow = 200
Outlet.Out.P
# now try changing the equation so that cv is a variable
cv_eqn.Equation = '''
Signal P(pIn, pOut) MoleFlow(f)
Signal Generic(cv)
pIn-pOut = cv*f^2
'''
# try back calculating cv
Outlet.Out.P = 2500
cv_eqn.cv
# change feed flow again
Feed.In.MoleFlow = 100
cv_eqn.cv
# more than one expression is allowed in an Equation op
cv_eqn.Equation = '''
Signal P(pIn, pOut) MoleFlow(f)
Signal Generic(cv) DP(deltaP)
deltaP = pIn - pOut
deltaP = cv*f^2
'''
cv_eqn.cv
Outlet.Out.P = None
cv_eqn.deltaP = 400
cv_eqn.cv
Outlet.Out.P
copy /
paste /
cd RootClone
cv_eqn.cv
Outlet.Out.P
|
5e19eb11235663f1a4fbc4c8479fb4556e1e4faf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2360/CH6/EX6.26/ex6_26.sce
|
080549e121d5f7a89db0d84b9d839d2b0d62af88
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 592
|
sce
|
ex6_26.sce
|
// Exa 6.26
format('v',7);clc;clear;close;
// Given data
R=1.36;//resistance in ohm
r2= 32.7;//resistance in ohm
L2= 47.8;//inductance in mH
L2= L2*10^-3;// in H
f=1000;//frequency in Hz
XL2=2*%pi*f*L2;// in Ω
Z3 = 100;// in ohm
Z4 = 100;// in ohm
Z2= r2+%i*XL2;// in ohm
// Under balance condition
Z1= Z2*Z3/Z4;// in ohm
R1= real(Z1);
r1= R1-R;//resistance of the coil in ohm
XL1= imag(Z1);// in ohm
L1= XL1/(2*%pi*f);//inductance of the coil in F
L1= L1*10^3;// in mH
disp(r1,"The resistance of the coil in Ω is : ")
disp(L1,"The inductance of the coil in mH is : ")
|
db2de5ec9fb71755239c7fe541bdb03c7394be8b
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/phasez/phasez7.sce
|
27235565eb94f0ae3d399b67045b4ea27e2c8bc8
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 281
|
sce
|
phasez7.sce
|
//i/p arg sos is a vector
sos=[1 2 3 4 5 6];
n=10;
[phi,w] = phasez(sos,n);
//output
//!--error 117
//List element number 1 is Undefined.
//at line 69 of function phasez called by :
//[phi,w] = phasez(b,a,n);
//matlab o/p
// p and w are returned as 512X1 coulumn vectors
|
1195bd5f9eecfd74180f58b029da1f0514708486
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1529/CH4/EX4.2/4_02.sce
|
da3c3a5ff91464c3dfa3a3e8e6194a7a9840b558
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 395
|
sce
|
4_02.sce
|
//Chapter 4, Problem 2
clc;
r=0.02; //Internal resistance in ohm
emf=2.0; //e.m.f
I1=5; // Current in ampere
I2=50;
V1=emf-(I1*r); //Calculating Voltage
V2=emf-(I2*r);
printf("Terminal p.d when 5A current = %f V\n\n\n",V1);
printf("Terminal p.d when 50A current = %f V\n\n\n",V2);
|
7b976d946ee01058d979a63d056a39d52e78864e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1184/CH2/EX2.9/Ex2_9.sce
|
a37558d3fb7a3cb80b2bf02d14ccfbb87d59028e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 150
|
sce
|
Ex2_9.sce
|
//Example 2-9, Page No- 38
clear
clc
gain_db = 60
vin = 50*10^-6
vout = 10^(60/20)*vin
printf('The output voltage is %.2f volt',vout);
|
c171050f6f4d4532289bfb6e22033e4485cbeaec
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3012/CH9/EX9.3/Ex9_3.sce
|
bcdaa8d8604663eb9abe7b31545e68b8e6c0431f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,372
|
sce
|
Ex9_3.sce
|
// Given :-
T1 = 300.00 // beginning temperature in kelvin
p1 = 0.1 // beginning pressure in MPa
r = 18.00 // compression ratio
pr = 1.5 // The pressure ratio for the constant volume part of the heating process
vr = 1.2 // The volume ratio for the constant pressure part of the heating process
// Analysis
// States 1 and 2 are the same as in Example 9.2, so
u1 = 214.07 // in kj/kg
T2 = 898.3 // in kelvin
u2 = 673.2 // in kj/kg
// Interpolating in Table A-22, we get
h3 = 1452.6 // in kj/kg
u3 = 1065.8 // in kj/kg
// From Table A-22,
h4 = 1778.3 // in kj/kg
vr4 = 5.609
// Interpolating in Table A-22, we get
u5 = 475.96 // in kj/kg
// Calculations
// Since Process 2–3 occurs at constant volume, the ideal gas equation of state reduces to give
T3 = pr*T2 // in kelvin
// Since Process 3–4 occurs at constant pressure, the ideal gas equation of state reduces to give
T4 = vr*T3 // in kelvin
// Process 4–5 is an isentropic expansion, so
vr5 = vr4*r/vr
// Part(a)
eta = 1-(u5-u1)/((u3-u2)+(h4-h3))
// Result
printf( ' The thermal efficiency is : %.2f',eta)
// Part(b)
// The specific volume at state 1 is evaluated in Example 9.2 as
v1 = 0.861 // in m^3/kg
mep = (((u3-u2)+(h4-h3)-(u5-u1))/(v1*(1-1/r)))*10**3*10**-6 // in MPa
// Result
printf( ' The mean effective pressure, is : %.2f MPa.',mep)
|
eb232ec749be9f6b4111eb85e34033bd54b5dfb4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3472/CH30/EX30.5/Example30_5.sce
|
cb7d7aaf113d9ff10aba65c23d042c07f6d3a31d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,373
|
sce
|
Example30_5.sce
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART III : SWITCHGEAR AND PROTECTION
// CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
// EXAMPLE : 4.5 :
// Page number 514-515
clear ; clc ; close ; // Clear the work space and console
// Given data
V = 6600.0 // Alternator voltage(V)
kVA = 10000.0 // Alternator rating(kVA)
x_1 = 15.0 // Reactance to positive sequence current(%)
x_2 = 75.0 // Reactance to negative sequence current(%)
x_0 = 30.0 // Reactance to zero sequence current(%)
R_earth = 0.3 // Earth resistance(ohm)
// Calculations
a = exp(%i*120.0*%pi/180) // Operator
E_g = V/3**0.5 // Phase voltage(V)
// Case(a)
I = kVA*1000/(3**0.5*V) // Full load current of each alternator(A)
X = x_1*V/(100*3**0.5*I) // Positive sequence reactance(ohm)
Z_g1 = %i*X // Equivalent positive sequence impedance(ohm)
Z_g2 = Z_g1*x_2/100 // Equivalent negative sequence impedance(ohm)
Z_g0 = Z_g1*x_0/100 // Equivalent zero sequence impedance(ohm)
Z_1 = Z_g1/3 // Positive sequence impedance(ohm)
Z_2 = Z_g2/3 // Negative sequence impedance(ohm)
Z_0 = Z_g0/3 // Zero sequence impedance(ohm)
I_a_a = 3*E_g/(Z_1+Z_2+Z_0) // Fault current(A)
// Case(b)
Z_0_b = Z_g0 // Impedance(ohm)
I_a_b = 3*E_g/(Z_1+Z_2+Z_0_b) // Fault current(A)
// Case(c)
Z_0_c = R_earth*3+Z_g0 // Impedance(ohm)
I_a_c = 3*E_g/(Z_1+Z_2+Z_0_c) // Fault current(A)
// Results
disp("PART III - EXAMPLE : 4.5 : SOLUTION :-")
printf("\nCase(a): Fault current if all the alternator neutrals are solidly earthed, I_a = %.fj A", imag(I_a_a))
printf("\nCase(b): Fault current if only one of the alternator neutrals is solidly earthed & others isolated = %.fj A", imag(I_a_b))
printf("\nCase(c): Fault current if one of alternator neutrals is earthed through resistance & others isolated = %.f A\n", abs(I_a_c))
printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here")
|
cc0a0796a6ddc035c53f4e216be7fdf7a36b9b3c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1448/CH8/EX8.5.e/E8_5.sce
|
6d005f443ae372e90a7d4fff1a86e1e62646d9bc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 213
|
sce
|
E8_5.sce
|
clc
//Initialization of variables
vOH=5*10^-3 //L
vHClO=25*10^-3 //L
C=0.2 //mol/L
//calculations
nOH=vOH*C
nHClO=vHClO*C/2
nrem=nHClO-nOH
pH=7.53-log10(nrem/nOH)
//results
printf("Final pH= %.1f",pH)
|
85a25f8ded4b477f6feecc51b53af131a73014a8
|
676ffceabdfe022b6381807def2ea401302430ac
|
/utilities/FieldConvert/Tests/chan_quad_interppointdatatofld.tst
|
fdb293a65a2f673a2fd2add52836ffdc25fb6b5f
|
[
"MIT"
] |
permissive
|
mathLab/ITHACA-SEM
|
3adf7a49567040398d758f4ee258276fee80065e
|
065a269e3f18f2fc9d9f4abd9d47abba14d0933b
|
refs/heads/master
| 2022-07-06T23:42:51.869689
| 2022-06-21T13:27:18
| 2022-06-21T13:27:18
| 136,485,665
| 10
| 5
|
MIT
| 2019-05-15T08:31:40
| 2018-06-07T14:01:54
|
Makefile
|
UTF-8
|
Scilab
| false
| false
| 1,039
|
tst
|
chan_quad_interppointdatatofld.tst
|
<?xml version="1.0" encoding="utf-8"?>
<test>
<description> Interpolate a .csv onto a mesh </description>
<executable>FieldConvert</executable>
<parameters> -f -e -m interppointdatatofld:frompts=chan_quad_interppointdatatofld.csv chan_quad_interppointdatatofld.xml chan_quad_interppointdatatofld.fld</parameters>
<files>
<file description="Session File">chan_quad_interppointdatatofld.xml</file>
<file description="Session File">chan_quad_interppointdatatofld.csv</file>
</files>
<metrics>
<metric type="L2" id="1">
<value variable="x" tolerance="1e-4">2.12132</value>
<value variable="y" tolerance="1e-4">1.41421</value>
<value variable="u" tolerance="1e-3">3.22044</value>
</metric>
<metric type="Linf" id="2">
<value variable="x" tolerance="1e-4">1.5</value>
<value variable="y" tolerance="1e-4">1</value>
<value variable="u" tolerance="1e-3">3.23248</value>
</metric>
</metrics>
</test>
|
0c60eb717d6bc4cf68c66055d24fcac72a4d638a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3432/CH6/EX7.29/Ex7_29.sce
|
a0c479432f452ee5e3303c89efa06985ca890489
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,319
|
sce
|
Ex7_29.sce
|
//Example 7.29
// A reduced order compensator design for a satellite attitude control
xdel(winsid())//close all graphics Windows
clear;
clc;
//------------------------------------------------------------------
// State space representation
F=[0 1;0 0];
G=[0 1]';
H=[1 0];
J=0;
n=sqrt(length(F));//order of the system
//partioned system
Faa=F(1,1); Fab=F(1,2);
Fba=F(2,1); Fbb=F(2,2);
Ga=G(1);Gb=G(2);
// Desired estimator poles
Pe=[-5];
// Observer gain matrix for system
L=ppol(Fbb',Fab',Pe);
L=L';
disp(L,"L=" );
//------------------------------------------------------------------
//State feedback control law u=-Kx=-(K+[L*k2 0])[y xc]';
k1=1; k2=sqrt(2);
K=[k1 k2];
Kc=K+[L*k2 0];
//------------------------------------------------------------------
//compensator differential equation
//xc_dot=(Fbb-L*Fab)*xb_hat + (Fba - L*Faa)*y + (Gb - L*Ga)*u
//xc_dot=((Fbb-L*Fab)-k2)*xc + [(Fba - L*Faa)-(Gb - L*Ga)*(k1+L*k2)+L*(Fbb-L*Fab)]*y
Fc=(Fbb-L*Fab)-Gb*k2
Fy=(Fba - L*Faa)-(Gb - L*Ga)*(k1+k2*L)+(Fbb-L*Fab)*L
//compensator transfer function
s=poly(0,'s');
Gest=syslin('c',Fy/(s-Fc))//estimator transfer function
Dcr=-[k1+L*k2+k2*Gest]
disp(Dcr,'Dcr','compensator transfer function')
//------------------------------------------------------------------
//Root locus with reduced order compensator
G=1/s^2;
G=syslin('c',G);
exec('./zpk_dk.sci', -1);
[pl,zr Kp]=zpk_dk(Dcr);
Dcr=poly(zr,'s','roots')/poly(pl,'s','roots')
Dcr=syslin('c',Dcr);
evans(G*Dcr)
zoom_rect([-8 -4 2 4])
f=gca();
f.x_location = "origin"
f.y_location = "origin"
xset("color",2);
h=legend('');
h.visible = "off"
//Title, labels and grid to the figure
exec .\fig_settings.sci; //custom script for setting figure properties
title(['Root locus of a reduced order controller and',"$1/s^2$",...
"process"],'fontsize',3);
//------------------------------------------------------------------
//Frequnecy response for 1/s^2 and compensated
figure,
bode([-Kp*G*Dcr;G],0.01/2/%pi,100/2/%pi,"rad");
title(["Frequency response","$G(s)=1/s^2$", "with a reduced...
order estimator"],'fontsize',3)
exec .\fig_settings.sci; //custom script for setting figure properties
legend('Compensated','Uncompensated')
//------------------------------------------------------------------
|
e7f4a05a5bda74ae465e8a9fa9c8cd2800fde10f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/98/CH10/EX10.15/example10_15.sce
|
ef119f76d4050a0f514900d182d94c1712d82880
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 594
|
sce
|
example10_15.sce
|
//Chapter 10
//Example 10_15
//Page 254
clear;clc;
ll=200;
r=0.16;
xl=0.25;
y=1.5*1e-6;
pd=20*1e6;
pfr=0.8;
v_r=110*1e3;
tr=r*ll;
ty=y*ll;
txl=xl*ll;
z=tr+%i*txl;
vr=v_r/sqrt(3);
ir=pd/sqrt(3)/v_r/pfr;
vs=vr*cosh(ty*z)+ir*sqrt(z/ty)*sinh(z*ty);
is=vr*sqrt(ty/z)*sinh(ty*z)+ir*cosh(ty*z);
printf("Recieving end voltage per phase = %.0f V \n\n", vr);
printf("Recieving end current = %.0f A \n\n", ir);
printf("Sending end voltage = %.2f+j%.2f = %.2f kV \n\n", real(vs), imag(vs), abs(vs)*sqrt(3)/1000);
printf("Sending end current = %.2f+j%.2f = %.2f A \n\n", real(is), imag(is), abs(is));
|
cb8c24686cb40d78e4c0d53f9ed2a8e925ce28ed
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2216/CH6/EX6.5/ex_6_5.sce
|
a688f1cc0d5c10460643b445ce09201e4e7bd013
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 479
|
sce
|
ex_6_5.sce
|
// Example 6.5:loss
clc;
clear;
close;
format('v',5)
d1=60;//micro meter
na1=0.25;//
alpha1=2.1;//
d2=50;//in micro meter
na2=0.20;//
alpha2=1.9;//
ncd=(d2/d1)^2;//
nna=(na2/na1)^2;//
nalpha1=1;//
nalpha=((1+(2/alpha1))/(1+((2/alpha2))));//
ncd1=1;//
nna1=1;//
nt=ncd*nna*nalpha1;//
ltf=(-10*log10(nt));//in dB
nt1=ncd1*nna1*nalpha;//
ltb=(-10*log10(nt1));//in dB
disp(ltf,"total loss forward direction in dB is")
format('v',6)
disp(ltb,"total loss backward direction in dB is")
|
28027873db6da40b8fca38cfb2f8f800dfdf43b0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2210/CH6/EX6.7/6_7.sce
|
895cfbd0d7fb262ebd9e01750e33ed19d3285b1f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 713
|
sce
|
6_7.sce
|
//Chapter 6, Problem 7, figure 6.13
clc
vcc=24 //supply voltage
vds=10 //drain to source voltage
id=5e-3 //drain current
vgs=2.3 //gate to source voltage
vs=2.3 //source voltage
vp=-8 //pinch-off voltage
idss=10e-3 //drain–source current when the gate and source are shorted
//calculating the biasing resistors
rs=vgs/id
vd=vds+vs
rd=(vcc-vd)/id
vgs=vp*(1-sqrt(id/idss))
disp("Since IG = 0, RG = 1 Mohm (approx)")
printf("Rs = %.2f ohm\nRd = %.2f ohm\n\n",rs,rd)
|
20e95c1e7b896ebf3f863923ee7aa7e3f4776552
|
01ecab2f6eeeff384acae2c4861aa9ad1b3f6861
|
/xcos_blocks/div2.sci
|
5c4c8820ea81a5d4068a1fc1e881a0759fcd1cd4
|
[] |
no_license
|
jhasler/rasp30
|
9a7c2431d56c879a18b50c2d43e487d413ceccb0
|
3612de44eaa10babd7298d2e0a7cddf4a4b761f6
|
refs/heads/master
| 2023-05-25T08:21:31.003675
| 2023-05-11T16:19:59
| 2023-05-11T16:19:59
| 62,917,238
| 3
| 3
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,426
|
sci
|
div2.sci
|
function [x,y,typ]=div2(job,arg1,arg2)
// Copyright INRIA
x=[];y=[];typ=[];
select job
case 'plot' then
standard_draw(arg1)
case 'getinputs' then //** GET INPUTS
[x,y,typ]=standard_inputs(arg1)
case 'getoutputs' then
[x,y,typ]=standard_outputs(arg1)
case 'getorigin' then
[x,y]=standard_origin(arg1)
case 'set' then
x=arg1;
graphics=arg1.graphics;exprs=graphics.exprs
model=arg1.model;
while %t do
[ok,vfpath,exprs]=scicos_getvalue('Set Generic Digital Block Parameters',['Verilog File Path'],list("str",-1),exprs);
if ~ok then break,end
if ok then
graphics.exprs=exprs
model.opar = list(vfpath)
x.graphics=graphics;x.model=model
break
end
end
case 'define' then
vfpath = '/home/ubuntu/rasp30/sci2blif/benchmarks/verilog/div2.v'
model=scicos_model()
model.sim=list('div_func',5)
model.in=-[1:2]'
model.intyp=-ones(2,1)
model.out=-1
model.outtyp=-1
model.opar = list(vfpath)
model.blocktype='c'
model.dep_ut=[%t %f]
exprs=[vfpath]
gr_i=['text=[''Clk'';'' Reset''];';'xstringb(orig(1),orig(2),text,sz(1),sz(2),''fill'');']
x=standard_define([11 10],model,exprs,gr_i)
end
endfunction
|
ba5cd48ac65a1543211b2dea835beb7002a10b47
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3669/CH4/EX4.5/5.sce
|
822e63ad6fbc77e5370b4ea8a4b4dda1ccf9415c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 173
|
sce
|
5.sce
|
//Variable declaration
V=15*10**3; //voltage(V)
//Calculation
lamda=1.227/sqrt(V); //wavelength(nm)
//Result
printf('wavelength is %0.3f nm \n',(lamda))
|
8365818896ccf0786a6838468e95e82e2f77c306
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/rlevinson/rlevinson6.sce
|
ea1d954ecfa754e4ceda6ae78c23931907201136
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 364
|
sce
|
rlevinson6.sce
|
//check o/p when the prediction polynomial coefficients are negative
X = [-1 -7 -6 -5 -8 -3 -6];
efinal=0.3;
[R,U,K,e] = rlevinson(X, efinal);
disp(R);
//output
//WARNING: First coefficient of the prediction polynomial was not unity.
// 0.0104858
// 0.0020340
// - 0.0086295
// 0.0007701
// - 0.0019945
// - 0.0074447
// 0.0602488
|
288f73f8351b55d72d0c72661f2734aa494a238a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1430/CH9/EX9.2/exa9_2.sce
|
fe2aa6625fbc1c747ab66602c19ee4ad2c6dc8d3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 425
|
sce
|
exa9_2.sce
|
// Example 9.2
// Step response of an RC circuit
C=50*10^-6;
R_eq=(3000*6000)/(3000+6000); // From figure 9.10(a)
v_oc=(6*12)/(3+6);
tau=R_eq*C;
t=0:0.0001:1
v=v_oc*(1-exp(-t/tau)); // t>0
i=(v_oc-v)/(R_eq); // t>0
subplot(2,1,1)
plot(t,v,)
xlabel('t')
ylabel('v(t)')
title('Voltage waveform across capacitor')
subplot(2,1,2)
plot(t,i)
xlabel('t')
ylabel('i(t)')
title('Current waveform across capacitor')
|
98d3ce847022fecb480101fece4c8fcfbc57b2d5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1670/CH6/EX6.12/6_12.sce
|
bc040078d3c86886bdc2f2fede0efda1e2361533
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 709
|
sce
|
6_12.sce
|
//Example 6.12
//Least Square Fit
//Page no. 224
clc;close;clear;
x=[10,20,30,40,50]
y=[8,10,15,21,30]
n=1;
printf('\t\t 2\t 4\t\t\t 2\n n\tx\tx\tx\t\ty\tx y\n----------------------------------------------------------------\n')
x1=0;x2=0;x3=0;x4=0;x5=0;x6=0;x7=0;x8=0;
for i=1:5
printf(' %g\t%g\t%g\t%.9g\t\t%g\t%g\n',n,x(i),x(i)^2,x(i)^4,y(i),x(i)^2*y(i))
x1=x1+n;
x2=x2+x(i);
x3=x3+x(i)^2;
x4=x4+x(i)^4;
x5=x5+y(i);
x6=x6+x(i)^2*y(i)
end
printf('----------------------------------------------------------------\n %g\t%g\t%g\t%.9g\t\t%g\t%g\n',x1,x2,x3,x4,x5,x6)
A=[x1,x3;x3,x4;]
B=[x5;x6]
C=inv(A)*B;
disp(C)
x=poly(0,'x')
y=C(1)+C(2)*x^2
disp(y,'y =')
|
cc380f5be2fb9189c056c7d023b4d4e342ffd15c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/29/CH1/EX1.6.8/exa1_6_8.sce
|
d0f6f91c5dca39607585684627c7b4bb7ffa86ee
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 248
|
sce
|
exa1_6_8.sce
|
//Caption:steady_state_value
// example 1.6.7
//page 12
//X(s)=s/(s^2*(s^2+6*s+25))
p=poly([0 1],'s','coeff');
q=poly([0 0 25 6 1],'s','coeff');
F=p/q;
syms s
x=s*F;
y=limit(x,s,0);//final value theorem
y=dbl(y)
disp(y,"x(inf)=")//result
|
d175f79a434470e1d3df25d67e4be39819dee5a5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/167/CH8/EX8.4/ex4.sce
|
f2442f24f7a937d26299278e06c1580baf77d5f7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 453
|
sce
|
ex4.sce
|
//example 4
//irreversibility during cooling of an iron block
clear
clc
m=500 //mass of iron block in kg
cavg=0.45 //kJ/kg-K
T1=473 //Initial Temp. in K
T2=300 //Final Temp. in K
Wrev=m*cavg*((T1-T2)-T2*log(T1/T2)) //reversible work in kJ
Wu=0
I=Wrev-Wu //irreversibility of the process in kJ
printf("\n Hence, the reversible owrk for the pressure ois = %.0f kJ. \n",Wrev);
printf("\n and irreversibility of the process is = %.0f kJ. \n",I);
|
961b8f4537f5268dd375e15f16d013213be8ea07
|
67ba0a56bc27380e6e12782a5fb279adfc456bad
|
/STAMPER_PROG_7.4/TESTS/TestGeneric.sce
|
3e5753cc89b53a725691873d0b9a6ea0add96d23
|
[] |
no_license
|
2-BiAs/STAMPER_PROG
|
8c1e773700375cfab0933fc4c2b0f5be0ab8e8f0
|
4fdc0bcdaef7d6d11a0dcd97bd25a9463b9550d0
|
refs/heads/master
| 2021-01-18T19:30:06.506977
| 2016-11-10T23:32:40
| 2016-11-10T23:32:40
| 71,999,971
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 8,891
|
sce
|
TestGeneric.sce
|
clear
clc
stacksize('max')
exec('SplitRadCompFromTip.sci');
exec('ExtendVector.sci');
exec('GetUnitNormal.sci');
mPoints = csvRead("POINTS_16001_160409.csv", ";");
mPoints(:,1) = -mPoints(:,1);
fDepthsOfCutFacet = [-0.085 .005 .020 .050]; //Depth of cut values starting at last pass and working back. The last value, fDepthsOfCut($), will repeat if max(iPassCounts) > length(fDepthsOfCut)
fDepthsOfCutWall = [-0.085 .005];
fZ_Clearance = .1;
fToolRad = .5; //mm
fToolAngle = 5; //deg
//Trim Start and End
mEndPoint = mPoints($,:);
mPoints = mPoints(5:$-1, :);
exec('PlotSurface.sce');
iGrooveCount = (size(mPoints, 1) - 1) / 2;
for i=1:iGrooveCount
iGroovePassCount = 1;
bPassesComplete = %F;
vOffsetPointBuffer = mPoints(i * 2 - 1: i * 2 + 1, :);
iStepToLastPass = 0;
vWall = [mPoints(i * 2 - 1, 1) - mPoints(i * 2, 1), mPoints(i * 2 - 1, 2) - mPoints(i * 2, 2)];
vFacet = [mPoints(i * 2 + 1, 1) - mPoints(i * 2, 1), mPoints(i * 2 + 1, 2) - mPoints(i * 2, 2)];
vWallNorm = GetUnitNormal([mPoints(i * 2 - 1,:); mPoints(i * 2,:)]);
vFacetNorm = GetUnitNormal([mPoints(i * 2,:); mPoints(i * 2 + 1,:)]);
while ~bPassesComplete
fW_DoC = fDepthsOfCutWall(min(iGroovePassCount, length(fDepthsOfCutWall)));
vWallOffset = fW_DoC * vWallNorm;
fF_DoC = fDepthsOfCutFacet(min(iGroovePassCount, length(fDepthsOfCutFacet)));
vFacetOffset = fF_DoC * vFacetNorm;
vOffsetVector = vWallOffset * (vFacet / norm(vFacet))' * (vFacet / norm(vFacet)) + vFacetOffset * (vWall / norm(vWall))' * (vWall / norm(vWall));
vOffsetValley = vOffsetPointBuffer((iGroovePassCount + iStepToLastPass) * 3 - 1, :) + vOffsetVector;
vOffsetValleyExt = ExtendVector([vOffsetPointBuffer((iGroovePassCount + iStepToLastPass) * 3 - 1, :); vOffsetValley], [0,fZ_Clearance; 1, fZ_Clearance]);
vOffsetValleyExt = [vOffsetValleyExt(2, 1) - vOffsetValleyExt(1, 1), vOffsetValleyExt(2, 2) - vOffsetValleyExt(1, 2)];
bExtIsShorter = sqrt(vOffsetValleyExt * vOffsetValleyExt') <= sqrt(vOffsetVector * vOffsetVector');
if ~bExtIsShorter then
vOffsetPointBuffer(iGroovePassCount * 3 - 2: iGroovePassCount * 3, 1:2)...
= vOffsetPointBuffer((iGroovePassCount + iStepToLastPass) * 3 - 2: (iGroovePassCount + iStepToLastPass) * 3, 1:2)...
+ [vOffsetVector; vOffsetVector; vOffsetVector];
iGroovePassCount = iGroovePassCount + 1;
iStepToLastPass = -1;
else
Groove(i).OffsetArray = vOffsetPointBuffer;
Groove(i).Count = iGroovePassCount - 1;
bPassesComplete = %T
end
end
end
//vToolPathBuffer;
//Reorder Groove Points
iTotalGroovePassCount = 0;
for j = max(Groove(:).Count):-1:1
printf("j = %f\n", j);
iGroovesOnJ = 0;
for i = 1:iGrooveCount
if Groove(i).Count >= j then
iGroovesOnJ = iGroovesOnJ + 1;
iTotalGroovePassCount = iTotalGroovePassCount + 1;
vToolPathBuffer($ + 1: $ + 3, 1:2) = Groove(i).OffsetArray(j * 3 - 2: j * 3, :);
if i == 1 then //On First Groove
fStartOffset = 0;
for k = 1:j
if k <= length(fDepthsOfCutFacet) then
fStartOffset = fStartOffset + fDepthsOfCutFacet(k);
else
fStartOffset = fStartOffset + fDepthsOfCutFacet($);
end
end
if fStartOffset < fZ_Clearance then
vToolPathBuffer($+2,1:2) = vToolPathBuffer($,1:2)
vToolPathBuffer($-1:-1: $ - 2, 1:2) = ExtendVector(vToolPathBuffer($ - 3:-1: $ - 4, 1:2), [0, fStartOffset; -1, fStartOffset]);
vToolPathBuffer($ - 3:-1: $ - 4, 1:2) = [0, fStartOffset; 0, fZ_Clearance];
plot(vToolPathBuffer($:-1: $ - 4, 1), vToolPathBuffer($: -1: $ - 4, 2), 'g-O');
else
vToolPathBuffer($ - 1: -1: $ - 2, 1:2) = ExtendVector(vToolPathBuffer($ - 1:-1: $ - 2, 1:2), [0, fZ_Clearance; -1, fZ_Clearance]);
end
elseif i == iGrooveCount then //On Last Groove
vToolPathBuffer($ - 1: $, 1:2) = ExtendVector(vToolPathBuffer($ - 1 : $, 1:2), [0, fZ_Clearance; -1, fZ_Clearance]);
vA = ExtendVector(vToolPathBuffer($ - 1:-1: $ - 2, 1:2), [0, fZ_Clearance; -1, fZ_Clearance]);
if size(vToolPathBuffer, 1) > 3 & iGroovesOnJ > 1 then //If not the first groove in prog
vB = ExtendVector(vToolPathBuffer($ - 1:-1: $ - 2, 1:2), vToolPathBuffer($ - 4: $ - 3, 1:2));
if norm([vA(2, 1) - vA(1, 1), vA(2, 2) - vA(1, 2)]) < norm([vB(2, 1) - vB(1, 1), vB(2, 2) - vB(1, 2)]) then //| [vA(2, 1) - vA(1, 1), vA(2,2) - vA(1, 2)] * [0, -1]' > 0 then
vToolPathBuffer($ - 1:-1: $ - 2, 1:2) = vA;
plot(vToolPathBuffer($ - 1:-1: $ - 2, 1), vToolPathBuffer($ - 1:-1: $ - 2, 2), 'r-O');
vToolPathBuffer($ - 4: $ - 3, 1:2) = ExtendVector(vToolPathBuffer($ - 4: $ - 3, 1:2), [0, fZ_Clearance; -1, fZ_Clearance]);
else
vToolPathBuffer($ - 2:-1: $ - 3, 1:2) = vB;
vToolPathBuffer($ - 1, 1:2) = vToolPathBuffer($, 1:2);
vToolPathBuffer($, 1:2) = [,];
end
else
vToolPathBuffer($ - 1:-1: $ - 2, 1:2) = vA;
end
else //On Grooves in Between
vA = ExtendVector(vToolPathBuffer($ - 1:-1: $ - 2, 1:2), [0, fZ_Clearance; -1, fZ_Clearance]);
if size(vToolPathBuffer, 1) > 3 & iGroovesOnJ > 1 then //If not the first groove in prog
vB = ExtendVector(vToolPathBuffer($ - 1:-1: $ - 2, 1:2), vToolPathBuffer($ - 4: $ - 3, 1:2));
if norm([vA(2, 1) - vA(1, 1), vA(2, 2) - vA(1, 2)]) < norm([vB(2, 1) - vB(1, 1), vB(2, 2) - vB(1, 2)]) then
vToolPathBuffer($ - 1:-1: $ - 2, 1:2) = vA;
plot(vToolPathBuffer($ - 1:-1: $ - 2, 1), vToolPathBuffer($ - 1:-1: $ - 2, 2), 'r-O');
vToolPathBuffer($ - 4: $ - 3, 1:2) = ExtendVector(vToolPathBuffer($ - 4: $ - 3, 1:2), [0, fZ_Clearance; -1, fZ_Clearance]);
else
vToolPathBuffer($ - 2:-1: $ - 3, 1:2) = vB;
vToolPathBuffer($ - 1, 1:2) = vToolPathBuffer($, 1:2);
vToolPathBuffer($, 1:2) = [,];
end
else
vToolPathBuffer($ - 1:-1: $ - 2, 1:2) = vA;
end
end
end
end
end
sLineEndCode(1) = "F(P7)"; //Set Start Feed code
for i=1 + 1:size(vToolPathBuffer, 1)
// printf("%f == %f — %s\n", vToolPathBuffer(i - 1, 2), vToolPathBuffer(i, 2),...
// string((round(vToolPathBuffer(i - 1, 2) * 10^6)/10^6 == fZ_Clearance) & (round(vToolPathBuffer(i, 2)*10^6) / 10^6 == fZ_Clearance)));
if (round(vToolPathBuffer(i - 1, 2) * 10^6)/10^6 == fZ_Clearance) & (round(vToolPathBuffer(i, 2)*10^6) / 10^6 == fZ_Clearance) then
sLineEndCode(i) = "F(P8)";
else
sLineEndCode(i) = "F(P7)";
end
end
xpoly(vToolPathBuffer(:, 1), vToolPathBuffer(:, 2)) //, 'm-.');
p=get("hdl");
p.polyline_style=4;
vT = [sin(fToolAngle * %pi / 180) -cos(fToolAngle * %pi / 180)];
compedToolPath = SplitRadCompFromTip(vToolPathBuffer, fToolRad, vT);
plot(compedToolPath(:, 1), compedToolPath(:, 2), 'b--')
xpoly(compedToolPath(:, 1), compedToolPath(:, 2)) //, 'b-.');
p=get("hdl");
p.polyline_style=4;
p.thickness = 1;
p.foreground=2
//sFileToSave = uigetfile("*.txt", directory, "Save Formatted Points As")
sFileToSave = "TEST_PRG.pgm"
fFile = mopen(sFileToSave, 'wt');
mfprintf(fFile, ";Facet DoC = %s\n ;Wall DoC = %s\n", string(fDepthsOfCutFacet), string(fDepthsOfCutWall));
mfprintf(fFile, ";Tool Rad = %f\n ;Tool Angle = %f\n ;Z Clearance Plane = %f\n\n\n\n", fToolRad, fToolAngle, fZ_Clearance);
sLineEndCode(1:$-1) = sLineEndCode(2:$);
for i=1:length(compedToolPath(:,1))
mfprintf(fFile, "X%fZ%f", compedToolPath(i,1), compedToolPath(i,2));
if i~=1
if sLineEndCode(i) ~= sLineEndCode(i - 1) then
mfprintf(fFile, "%s", sLineEndCode(i));
end
else
mfprintf(fFile, "%s", sLineEndCode(i));
end
if i ~= length(compedToolPath(:,1)) then
mfprintf(fFile, "\n");
end
end
mclose(fFile);
//for i = 1:size(vToolPathBuffer, 1)
////
//end
|
9688774cccc2cc2d8a32f8678e5fc7c59bbcfad3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1358/CH4/EX4.6/Example46.sce
|
baf5b4ace6b18c7d13b67087458428d72b2e12fe
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 491
|
sce
|
Example46.sce
|
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 4, Example 6")
disp("The pressure ratio is given by r = P03/P01")
etac = 0.88;
sigma = 0.95;
U2 = 457;
Cp = 1005;
T01 = 288;
r = (1+etac*sigma*U2^2/(Cp*T01) )^3.5
disp("The work per kg of air")
Cw2 = 0.95*U2;
W = U2*Cw2 / 1000//kJ/kg
disp("The power for 29kg/s of air")
m = 29;
P = W * m //kW
|
c442d0bbee0b6bfea31208d056a17a5c50fc0658
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1627/CH8/EX8.5/Ex8_5.sce
|
d213163c17f99cf4749ae6f2fb8e53e605da8b30
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 323
|
sce
|
Ex8_5.sce
|
clc
//initialisation of variables
w=0.05//m^3/s
p=1000//N.s^2/m^4
v=25//m/s
a=135//deg
v1=30//m/s
b=55//deg
//CALCULATIONS
Fx=(p*w)*[(v)*-cosd(a)-v1]//N
Fy=(p*w)*(v*-cosd(a))//N
FR=sqrt((Fx)^2+(Fy)^2)//N
F=-(Fy/Fx)
F1=tand(b)//deg
//RESULTS
printf('The angle of the resultant force on the vane=% f deg',F1)
|
653130d4a1f87a8a898c9d17ef67903bd5281a97
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1430/CH7/EX7.1/exa7_1.sce
|
b3b3db530fa05f47589b52c7b55e2925dcf2c46d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 655
|
sce
|
exa7_1.sce
|
// Example 7.1
// AC Power Calculations
// From Example 6.8 we already found that,
Z=complex(4.8,6.4);
V_m=80;
V_c_m=40;
I_m=10*10^-3;
// The total average power supplied by the source is,
R_omega=4.8*10^3;
R1=40*10^3;
R2=5*10^3;
P=0.5*R_omega*I_m^2; // Average Power
// This power is actually dissipated by 40kohm and 5kohm resistor
P_R1= V_m^2/(2*R1);
P_R2=V_c_m^2/(2*R2);
disp(P,"Total Average Power Dissipation(in Watt)=")
disp(P_R1,"Power dissipated across 40kohm(in Watt)=")
disp(P_R2,"Power dissipated across 5kohm(in Watt)=")
if P==(P_R1+P_R2) then
disp("This shows average power dissipation in the due to all resistors")
end
|
cc62e4d27eb69c12f7c2771353de5ea2518c9904
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/929/CH5/EX5.1.b/Example5_1_b.sce
|
c338e93db92cd85196ecb052550069223ef9dfab
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 282
|
sce
|
Example5_1_b.sce
|
//Example 5.1(b)
clear;
clc;
R1=22*10^3;
R2=2.2*10^6;
IB=80*10^(-9);
IOS=20*10^(-9);
Rp=(R1*R2)/(R1+R2);
dcgain=(1+(R2/R1));
R=(R1*R2)/(R1+R2);
Ip=((2*IB)+IOS)/2;
In=((2*IB)-IOS)/2;
Eo=dcgain*((R*In)-(Rp*Ip));
printf("Eo=(+-)%.f mV",-Eo*10^3);
|
19503bf3c730b89e913292f4be94c3472305c2cd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/281/CH11/EX11.1/example11_1.sce
|
df46142a2bbdc6521c4be86d236c39b2c2c37722
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,050
|
sce
|
example11_1.sce
|
disp('chapter 11 ex11.1')
disp('given')
disp('design an all-pass circuit to have phase lag from 80degree to100degree')
disp('using a 741op-amp the input signal has a 1volt amplitude and a 5kHz frequency')
Vi=1
f=5000
disp('I1>IBmax')
disp('let I1=50*10^(-6)A')
IBmax=500*10^(-9)
I1=50*10^(-6)
disp('R1=Vi/I1')
R1=Vi/I1
disp('ohms',R1)
disp('use 18kohm standard value')
R1=18000
disp('R2=R1=18kohm')
R2=18000
disp('R3=R1||R2')
R3=R1*R2/(R1+R2)
disp('ohms',R3)
disp('for a 90degree phase shift,Xc1=R3')
disp('C1=1/(2*%pi*f*R3)')
C1=1/(2*%pi*f*R3)
disp('farads',C1)
disp('use 3600pF standard value')
C1=3600*10^(-12)
disp('for a 80degree phase shift,R3=tan(theta1/2)/(w*C1)')
theta1=80
R3=tan(theta1*%pi/180/2)/(2*%pi*f*C1)
disp('ohms',R3)
disp('for a 100degree phase shift,R3=tan(theta2/2)/(w*C1)')
theta2=100
R3=tan(theta2*%pi/180/2)/(2*%pi*f*C1)
disp('ohms',R3)
disp('for R3,use a 6.8kohm fixed value resistor in series with a 5kohm variable resistor to give a total resistance adjustable from 6.8kohm to 11.8kohm')
|
37b0c2d9447ae3d28a485fbfb6dd28aeba0a5278
|
92ee0d6597bbad55ede3ff57b6d98b044527cfb8
|
/Sztuczna/3/data/perceptronwielowarstwowy.sce
|
d46fca912f13bc91abc794ef105cba3f33842f2c
|
[] |
no_license
|
Dearn/Sprawozdania
|
32888683a098080434aa407b2055bc2a84f36446
|
53efa5dfb20e4d86c33b18f913a62c8a16478612
|
refs/heads/master
| 2020-04-13T00:52:24.978071
| 2014-10-24T14:49:07
| 2014-10-24T14:49:07
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,238
|
sce
|
perceptronwielowarstwowy.sce
|
clear;
clf();
// przygotowanie elementow
X = [rand(2, 20), rand(2, 20) + 1, rand(2,20)+2];
// wartosci elementow
D1 = [ones(1, 20), ones(1, 20), zeros(1,20)];
D2 = [zeros(1, 20), ones(1, 20), ones(1,20)];
D = [D1; D2]
// wyswietlenie elementow
plot(X(1, 1:20), X(2, 1:20), 'po');
plot(X(1, 20+1:40), X(2, 20+1:40), 'r+');
plot(X(1,40+1:60),X(2,40+1:60),'b^');
// generwowanie wag
w = rand(1, 3)*(0.01);
w2 = rand(1, 3)*(0.01);
// wyswietlenie prostej 1 - przed nauczeniem
k = 0;
for i = 0:0.01:3
k = k + 1;
Xw(k) = i;
Yw(k) = -(w(1) * i - w(3)) / w(2);
end;
plot2d(Xw, Yw, style=[color('red')]);
// wyswietlenie prostej 2 - przed nauczeniem
k = 0;
for i = 0:0.01:3
k = k + 1;
Xw(k) = i;
Yw(k) = -(w2(1) * i - w2(3)) / w2(2);
end;
plot2d(Xw, Yw, style=[color('red')]);
alfa = 0.2; // wspolczynnik alfa
blad = 1; //zmienne poczatkowe
net = zeros(2, 60);
y = zeros(2, 60);
// proces uczenia;
while(blad == 1)
blad = 0; // zerowanie bledu
for i = 1:60 // przebieg uczenia
net(1,i) = X(1, i) * w(1) + X(2, i) * w(2) + (-1) * w(3);
net(2,i) = X(1, i) * w2(1) + X(2, i)* w2(2) + (-1) * w2(3);
// zastosowanie funkcji unipolarnej
if net(1, i) >= 0 then
y(1,i) = 1;
if net(2,i) >= 0 then
y(2,i) = 1;
else
y(2,i) = 0;
end
else
y(1,i) = 0;
if net(2,i)>= 0 then
y(2,i) = 1;
else
y(2,i) = 0;
end
end
// sprawdzenie
if D(1,i) <> y(1,i) then
blad = 1;
end
if D(2,i) <> y(2,i) then
blad = 1;
end
// korekta wag;
w(1) = w(1) + alfa * (D(1,i) - y(1,i)) * X(1, i);
w(2) = w(2) + alfa * (D(1,i) - y(1,i)) * X(2, i);
w(3) = w(3) + alfa * (D(1,i) - y(1,i)) * -1;
// korekta wag 2
w2(1) = w2(1) + alfa * (D(2,i) - y(2,i)) * X(1, i);
w2(2) = w2(2) + alfa * (D(2,i) - y(2,i)) * X(2, i);
w2(3) = w2(3) + alfa * (D(2,i) - y(2,i)) * -1;
end
end
sleep(2000)
// wyswietlenie prostej 1 - po nauczeniu
k = 0;
for i = 0:0.01:3
k = k + 1;
Xw(k) = i;
Yw(k) = -(w(1) * i - w(3)) / w(2);
end;
plot2d(Xw, Yw, style=[color('green')]);
// wyswietlenie prostej 2 - po nauczeniu
k = 0;
for i = 0:0.01:3
k = k + 1;
Xw(k) = i;
Yw(k) = -(w2(1) * i - w2(3)) / w2(2);
end;
plot2d(Xw, Yw, style=[color('green')]);
|
14d7294a9382828500dc701d20dad973592e7a8a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1092/CH4/EX4.13/Example4_13.sce
|
f7df7860beebb53ece796cd02be45b7e8e29f3f3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,619
|
sce
|
Example4_13.sce
|
// Electric Machinery and Transformers
// Irving L kosow
// Prentice Hall of India
// 2nd editiom
// Chapter 4: DC Dynamo Torque Relations-DC Motors
// Example 4-13
clear; clc; close; // Clear the work space and console.
// Given data
V_a = 120 ; // Rated terminal voltage of dc shunt notor in volt
R_a = 0.2 ; // Armature resistance in ohm
BD = 2 ; // Brush drop in volt
I_a = 75 ; // Full load armature current in A
I_a_new = 1.5 * I_a ; // armature current in A at 150% rated load
E_c_a = 0 ; // Back EMF at starting
E_c_b = ( 25 / 100 ) * V_a ; // Back EMF in volt is 25% of Va @ 150% rated load
E_c_c = ( 50 / 100 ) * V_a ; // Back EMF in volt is 50% of Va @ 150% rated load
// Calculations
R_s_a = ( V_a - E_c_a - BD ) / I_a_new - R_a ; // Ra tapping value at starting
// in ohm
R_s_b = ( V_a - E_c_b - BD ) / I_a_new - R_a ; // Ra tapping value @ 25% of Va
// in ohm
R_s_c = ( V_a - E_c_c - BD ) / I_a_new - R_a ; // Ra tapping value @ 50% of Va
// in ohm
E_c_d = V_a - ( I_a * R_a + BD ) ; // Back EMF @ full-load without starting resistance
// Display the results
disp(" Example 4-13 Solution : ");
printf(" \n a: At starting, Ec is zero ");
printf(" \n Rs = %.2f ohm \n ", R_s_a );
printf(" \n b: When back EMF in volt is 25 percent of Va @ 150 percent rated load ");
printf(" \n Rs = %.3f ohm \n ", R_s_b );
printf(" \n c: When back EMF in volt is 50 percent of Va @ 150 percent rated load ");
printf(" \n Rs = %.3f ohm \n ", R_s_c );
printf(" \n d: Back EMF at full-load without starting resistance ");
printf(" \n Ec = %d V ", E_c_d );
|
f04db6a462fee0249a387fe24f3cce9703f83297
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set12/s_Higher_Engineering_Mathematics_B._S._Grewal_149.zip/Higher_Engineering_Mathematics_B._S._Grewal_149/CH2/EX2.24.1/ex24_1.sce
|
544886acc48741911cf7eb2504b2543c013ac674
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 96
|
sce
|
ex24_1.sce
|
errcatch(-1,"stop");mode(2);
A=[1 2 3;1 4 2;2 6 5]
disp("Rank of A is ")
rank(A)
exit();
|
a6f95d76a9f4ff4f376857060e83dc7f33cf9245
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2453/CH8/EX8.14/8_14.sce
|
dedaf191dcd730d95edb4af612f83bc19555a6a2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 310
|
sce
|
8_14.sce
|
//To calculate the diffusion coefficient of electrons
mew_e = 0.19; //electron mobility, m^2/Vs
k = 1.38*10^-23; //boltzmann constant
T = 300; //temperature, K
e = 1.6*10^-19;
Dn = mew_e*k*T/e; //diffusion coefficient, m^2/s
printf("diffusion coefficient of electrons is %f m^2/s",Dn);
|
7647f975d5dcfcbd895ee3ef5af57e7e04ed15ca
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3825/CH3/EX3.10/Ex3_10.sce
|
5887d29f05ccbf34620cd5882b87ace6211010f6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 117
|
sce
|
Ex3_10.sce
|
clc
//Ex 3_7,3_8,3_9 and 3_10 use Molier Diagram
h1=3275
h2=2725
deltah=h2-h1
mprintf("deltah=%fkJ/kg",deltah)
|
0cc2f6d6e927545ff7710090213765d9a864cde0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1409/CH8/EX8.7/8_7.sce
|
eb08c79fa47ffe3bd01519d848f4b3d7417dac66
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 498
|
sce
|
8_7.sce
|
clc;
//page no 8-27
//Example 8.7
//Given
C=0.001*10^(-6);//in Farads
Rc=50*10^3;//in ohm
fm=1*10^3;//in Hz
//we know that Zm=Rc||C
//=1/sqrt((1/Rc^2)+(1/Xc^2))
//Xc=1/(2*%pi*f*C)
//Mmax=Zm/Rc=1/Rc*sqrt((1/Rc^2)+(1/(1/2*%pi*f*C)^2)) which gives
Mmax=1/sqrt(1+(2*%pi*fm*C*Rc)^2);
disp(Mmax,'Maximum modulation index for modulation frequency 1kHz is ');
fm2=5*10^3;//in Hz
Mmax1=1/sqrt(1+(2*%pi*fm2*C*Rc)^2);
disp(Mmax1,'Maximum modulation index for modulation frequency 5kHz is ');
|
ec5ecb286ccfebc372741954ac6fcb3a8f057fed
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1970/CH15/EX15.7/CH15Exa7.sce
|
2c1946b8e7bb7c22e3f53aea319ff1ee43cbac09
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 459
|
sce
|
CH15Exa7.sce
|
// Scilab code Exa15.7 : : Page-655 (2011)
clc; clear;
B_sqr = 65; // Geometrical buckling
a = sqrt(3*%pi^2/B_sqr)*100; // Side of the cubical reactor, centi metre
R = round(%pi/sqrt(B_sqr)*100); // Radius of the cubical reactor,centi metre
printf("\nThe side of the cubical reactor = %4.1f cm\nThe critical radius of the reactor = %d cm", a, R);
// Result
// The side of the cubical reactor = 67.5 cm
// The critical radius of the reactor = 39 cm
|
b30e5364fc76a0b16262199ed7c4337d3bca4018
|
f7e335e2af57c686554eb057f28ddd8d21aab1e4
|
/tests/fuzz/c-wsp/0068.tst
|
e63a0d84124c56f9ca3c66db1b56a1df8ee2f238
|
[
"MIT"
] |
permissive
|
scravy/abnf
|
76515bd820b3b9d8e2dbc2cec2a2f845720a6022
|
cc4228f403b436cc4e34ff4d6a7def83922174be
|
refs/heads/master
| 2023-01-09T14:30:50.095268
| 2020-06-07T16:18:09
| 2020-06-07T16:18:09
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5
|
tst
|
0068.tst
|
;e
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.