blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 6
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
87
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 15
values | visit_date
timestamp[us]date 2016-08-04 09:00:04
2023-09-05 17:18:33
| revision_date
timestamp[us]date 1998-12-11 00:15:10
2023-09-02 05:42:40
| committer_date
timestamp[us]date 2005-04-26 09:58:02
2023-09-02 05:42:40
| github_id
int64 436k
586M
⌀ | star_events_count
int64 0
12.3k
| fork_events_count
int64 0
6.3k
| gha_license_id
stringclasses 7
values | gha_event_created_at
timestamp[us]date 2012-11-16 11:45:07
2023-09-14 20:45:37
⌀ | gha_created_at
timestamp[us]date 2010-03-22 23:34:58
2023-01-07 03:47:44
⌀ | gha_language
stringclasses 36
values | src_encoding
stringclasses 17
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 15
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
eb60f565327c5935bec39b59365154706e62d757
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2144/CH5/EX5.1/ex5_1.sce
|
a4387dac1516243842fc6027f3d97614d5157b0a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 661
|
sce
|
ex5_1.sce
|
// Exa 5.1
clc;
clear;
close;
// Given data
T1 = 550;// in degree C
T1 = T1 + 273;// in K
T2 = 27;// in degree C
T2 = T2 + 273;// in K
Eta = ((T1-T2)/T1)*100;// in %
disp(Eta,"Maximum possible efficiency for staem turbine plant in % is");
T1 = 2500;// in degree C
T1 = T1 + 273;// in K
T2 = 400;// in degree C
T2 = T2 + 273;// in K
Eta = ((T1-T2)/T1)*100;// in %
disp(Eta,"Maximum possible efficiency for internal combustion engine in % is");
T1 = 450;// in degree C
T1 = T1 + 273;// in K
T2 = 15;// in degree C
T2 = T2 + 273;// in K
Eta = ((T1-T2)/T1)*100;// in %
disp(Eta,"Maximum possible efficiency for nuclear power plant in % is");
|
0afccf3138ee0b9ea846115bdcad57aa0c47d1b0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3769/CH9/EX9.35/Ex9_35.sce
|
c656f576b6cae186f246be3a53d7dd965ff8d44c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 272
|
sce
|
Ex9_35.sce
|
clear
//Given
Ig=0.015 //A
G=5
I=1
V=15
//Calculation
S=(Ig*G)/(I-Ig)
R=G*S/(G+S)
R1=(V/Ig)-G
R2=R1+G
//Result
printf("\n (i) Resistance of ammeter of range 0-1 A is %0.3f ohm", R)
printf("\n (ii) Resistance of ammeter of range 0-15 A is %0.3f ohm", R2)
|
ccb6f9b3f352fdbcad663e9163bcbe826c8178ca
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2699/CH3/EX3.38/Ex3_38.sce
|
d67f0280e376ec169beaa2e25e5fcfd4e17f778f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 591
|
sce
|
Ex3_38.sce
|
//EX3_38 Pg-3.75
clc
Vo=5;
Il=20e-3;
Pz=500e-3;
Rl=Vo/Il;
Il_min=Il;//minimum load current
Il_max=Il;//maximum load current
Iz_max=Pz/Vo;//maximum zener current
Iz_min=5e-3;//minimum zener current
V=12;//input DC voltage
Vin_min=12-3;//min input voltage
Vin_max=12+3;//max input voltage
Rmax=(Vin_min-Vo)/(Il_max+Iz_min);
printf("\n maximum resistance required is %.0f ohm \n",Rmax)
Rmin=(Vin_max-Vo)/(Il_min+Iz_max);
printf("\n minimum resistance required is %.2f ohm \n",Rmin)
printf("\n So series resistance must be selected between %.2f ohm to %.0f ohm \n",Rmin,Rmax)
|
0d025cbdf516079a7c768f47ec47f7f16f42bf51
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfas_ap_bfa_mt/~BivLCM-SR-bfas_ap_bfa_mt-PLin-VLin.tst
|
7207a3c67fa44b18a8c126cd297b9af4f23a1689
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205
| 2019-03-04T17:03:26
| 2019-03-04T17:03:26
| 143,070,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 11,974
|
tst
|
~BivLCM-SR-bfas_ap_bfa_mt-PLin-VLin.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.255103D+00
2 -0.337816D-02 0.193959D-02
3 -0.949508D-01 0.756480D-03 0.401425D+00
4 0.306227D-03 -0.737404D-03 -0.567711D-02 0.333262D-02
5 -0.269897D-03 -0.254751D-04 0.533181D-03 -0.229508D-04 0.260393D-02
6 0.125413D-03 0.222875D-04 0.175098D-03 -0.451798D-04 0.401423D-03
7 0.594951D-03 0.316171D-04 0.717580D-03 -0.134503D-04 0.227583D-03
8 -0.749739D-04 0.386614D-04 -0.224816D-05 0.134488D-03 -0.351759D-04
9 -0.227832D+00 -0.185362D-02 0.182194D+00 0.141412D-01 0.419874D-01
10 -0.216321D+00 -0.627659D-02 0.180554D+00 -0.182361D-02 0.121148D+00
11 -0.123206D+00 0.167338D-02 0.118724D+00 -0.253496D-01 0.130468D-01
12 -0.241799D+00 -0.395052D-02 0.396967D+00 0.160008D-01 0.574940D-01
13 -0.671366D-01 -0.131920D-01 -0.386493D-02 0.673655D-03 0.155726D-01
14 -0.203268D+00 0.840256D-02 0.199820D+00 0.409522D-02 -0.274249D-01
15 -0.151576D+01 0.161531D-01 -0.252775D+00 0.101468D-01 -0.108740D+00
16 -0.114369D-01 -0.748777D-02 0.171779D-01 -0.169348D-03 0.936683D-04
17 -0.447888D-03 -0.335912D-03 -0.703601D-03 0.112303D-03 -0.194062D-03
18 -0.354698D+00 0.289058D-01 -0.121659D+00 -0.253703D-01 -0.201047D-01
19 0.800963D-01 0.770574D-03 -0.815369D-02 -0.286847D-02 -0.111950D-01
20 -0.330008D-01 -0.284628D-01 0.126357D+01 0.180914D-01 0.146902D-01
21 -0.607700D-01 0.183734D-04 -0.913305D-02 0.446219D-02 0.980240D-02
22 0.199861D-02 0.539028D-04 0.187219D-02 0.248481D-03 -0.651481D-04
23 -0.959518D-02 -0.406048D-03 -0.616456D-02 0.105932D-01 0.239883D-03
24 0.243031D-02 0.219733D-03 0.328499D-02 -0.171490D-03 -0.285702D-03
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.814234D-03
7 0.626403D-03 0.275239D-02
8 -0.136122D-03 0.292392D-03 0.355454D-02
9 0.169267D-01 0.174281D-01 0.440739D-02 0.353783D+02
10 0.208012D-01 0.140885D-01 0.939491D-02 0.116089D+01 0.137753D+02
11 0.232116D-01 0.370970D-01 0.234293D-01 -0.227005D+01 0.174289D+01
12 -0.273609D-02 0.192828D-01 0.652543D-01 0.109478D+02 0.182363D+01
13 0.502045D-01 0.728658D-01 -0.283572D-01 0.252397D+01 0.661904D+00
14 -0.321152D-01 -0.175908D-01 0.362125D+00 0.364333D+01 0.208577D+01
15 -0.230520D-01 -0.449037D-01 0.352724D-02 -0.294043D+01 -0.864119D+01
16 0.716808D-04 0.224852D-03 -0.859379D-04 0.490762D+00 0.544276D-01
17 -0.556420D-04 -0.179011D-07 0.378379D-05 -0.753283D-01 0.552764D-02
18 -0.425315D-01 -0.609456D-01 -0.849291D-02 -0.199018D+01 -0.393477D+00
19 -0.690273D-02 0.169234D-01 -0.887762D-02 0.548902D+00 -0.112086D+01
20 0.264486D-02 0.145582D-01 -0.287216D+00 0.366485D+00 -0.234649D+01
21 0.622991D-02 -0.160754D-01 0.121171D-01 -0.920415D+00 0.108676D+01
22 -0.780075D-04 -0.184104D-03 0.221997D-03 0.137887D-01 -0.514829D-02
23 -0.455022D-03 -0.466653D-03 -0.841611D-03 0.720203D-01 -0.861615D-01
24 0.289501D-03 0.224301D-03 -0.146581D-03 -0.206561D-01 0.791425D-02
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.382626D+02
12 -0.156976D+02 0.105299D+03
13 -0.165284D+01 0.107338D+01 0.105067D+02
14 0.275240D+01 0.523779D+01 -0.614593D+01 0.697341D+02
15 -0.365661D+01 0.364137D+01 -0.781360D+00 -0.153695D+01 0.166372D+03
16 -0.341253D-01 0.377981D+00 0.125527D+00 0.679678D-02 0.310197D+00
17 0.533886D-01 -0.613931D-01 0.477847D-02 0.299471D-01 -0.717441D+00
18 0.241606D+01 0.113892D+02 -0.515046D+01 0.297932D+01 -0.332999D+02
19 -0.120553D+01 -0.421413D+00 -0.168924D+00 -0.127988D+01 0.686154D+00
20 0.325935D+01 -0.182719D+02 0.335832D+01 -0.482688D+02 0.172637D+02
21 0.161517D+01 0.284681D+00 0.619772D-01 0.151342D+01 -0.174253D+01
22 -0.865570D-01 0.208962D-01 -0.927457D-02 0.264129D-01 0.181073D+00
23 -0.545477D-01 0.568237D+00 -0.159631D+00 -0.270479D+00 0.365648D-01
24 -0.185238D-01 -0.613916D-01 0.195884D-01 -0.220867D-01 -0.632271D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.309859D+00
17 -0.134547D-01 0.933216D-02
18 -0.528418D+00 0.223913D+00 0.155152D+03
19 0.901279D-01 -0.752434D-02 -0.146568D+01 0.403392D+01
20 -0.148688D+00 -0.547403D-01 -0.654058D+02 0.126998D+01 0.430685D+03
21 -0.139266D+00 0.119895D-01 0.336988D+01 -0.376262D+01 -0.257853D+01
22 0.897221D-03 -0.165124D-02 -0.680741D+00 0.111689D-01 0.206346D+00
23 0.523090D-02 0.320413D-02 -0.719749D+00 -0.159618D+00 0.465639D+01
24 0.270771D-02 0.258823D-03 0.237332D+00 0.170111D-01 -0.172424D+01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.445880D+01
22 -0.448862D-01 0.733777D-02
23 -0.990813D-01 0.103541D-01 0.715984D+00
24 0.646189D-03 -0.260796D-02 -0.621617D-01 0.176529D-01
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.152 1.000
3 -0.297 0.027 1.000
4 0.011 -0.290 -0.155 1.000
5 -0.010 -0.011 0.016 -0.008 1.000
6 0.009 0.018 0.010 -0.027 0.276
7 0.022 0.014 0.022 -0.004 0.085
8 -0.002 0.015 0.000 0.039 -0.012
9 -0.076 -0.007 0.048 0.041 0.138
10 -0.115 -0.038 0.077 -0.009 0.640
11 -0.039 0.006 0.030 -0.071 0.041
12 -0.047 -0.009 0.061 0.027 0.110
13 -0.041 -0.092 -0.002 0.004 0.094
14 -0.048 0.023 0.038 0.008 -0.064
15 -0.233 0.028 -0.031 0.014 -0.165
16 -0.041 -0.305 0.049 -0.005 0.003
17 -0.009 -0.079 -0.011 0.020 -0.039
18 -0.056 0.053 -0.015 -0.035 -0.032
19 0.079 0.009 -0.006 -0.025 -0.109
20 -0.003 -0.031 0.096 0.015 0.014
21 -0.057 0.000 -0.007 0.037 0.091
22 0.046 0.014 0.034 0.050 -0.015
23 -0.022 -0.011 -0.011 0.217 0.006
24 0.036 0.038 0.039 -0.022 -0.042
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.418 1.000
8 -0.080 0.093 1.000
9 0.100 0.056 0.012 1.000
10 0.196 0.072 0.042 0.053 1.000
11 0.132 0.114 0.064 -0.062 0.076
12 -0.009 0.036 0.107 0.179 0.048
13 0.543 0.428 -0.147 0.131 0.055
14 -0.135 -0.040 0.727 0.073 0.067
15 -0.063 -0.066 0.005 -0.038 -0.181
16 0.005 0.008 -0.003 0.148 0.026
17 -0.020 0.000 0.001 -0.131 0.015
18 -0.120 -0.093 -0.011 -0.027 -0.009
19 -0.120 0.161 -0.074 0.046 -0.150
20 0.004 0.013 -0.232 0.003 -0.030
21 0.103 -0.145 0.096 -0.073 0.139
22 -0.032 -0.041 0.043 0.027 -0.016
23 -0.019 -0.011 -0.017 0.014 -0.027
24 0.076 0.032 -0.019 -0.026 0.016
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 -0.247 1.000
13 -0.082 0.032 1.000
14 0.053 0.061 -0.227 1.000
15 -0.046 0.028 -0.019 -0.014 1.000
16 -0.010 0.066 0.070 0.001 0.043
17 0.089 -0.062 0.015 0.037 -0.576
18 0.031 0.089 -0.128 0.029 -0.207
19 -0.097 -0.020 -0.026 -0.076 0.026
20 0.025 -0.086 0.050 -0.279 0.064
21 0.124 0.013 0.009 0.086 -0.064
22 -0.163 0.024 -0.033 0.037 0.164
23 -0.010 0.065 -0.058 -0.038 0.003
24 -0.023 -0.045 0.045 -0.020 -0.037
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.250 1.000
18 -0.076 0.186 1.000
19 0.081 -0.039 -0.059 1.000
20 -0.013 -0.027 -0.253 0.030 1.000
21 -0.118 0.059 0.128 -0.887 -0.059
22 0.019 -0.200 -0.638 0.065 0.116
23 0.011 0.039 -0.068 -0.094 0.265
24 0.037 0.020 0.143 0.064 -0.625
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.248 1.000
23 -0.055 0.143 1.000
24 0.002 -0.229 -0.553 1.000
|
722566e2e11a07859b0c8e846a594ddf33c783d4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3756/CH1/EX1.14/Ex1_14.sce
|
81a9265d7f111348d3b1577c64d56316affe19f3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 201
|
sce
|
Ex1_14.sce
|
clc
//
//
//
//Variable declaration
lambdaa=5.46*10**-7 //Wavelength
t=6.3*10**-6 //thickness
//Calculations
mu=((6*lambdaa)/t)+1
//Result
printf("\n The refractive index is %0.3f ",mu)
|
017795ed5ad6444b3ea35df604ee4d07f9a84131
|
a557f90da8513f81cafd8f65e37e2c0d66449a2f
|
/repetation.sce
|
8decced5761ab76fbbd73c40d5ba0c7187fa6f8c
|
[] |
no_license
|
Sahil966121/SCI
|
484cd77d6247e54fe87d36b4f112965c83ab5d96
|
cf2921861486a4f2e2e83c3ca813a4e7710d3508
|
refs/heads/main
| 2023-03-03T17:43:08.236192
| 2021-02-03T05:19:43
| 2021-02-03T05:19:43
| 324,413,192
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 217
|
sce
|
repetation.sce
|
clear;
clc;
x=input('Enter the sequence');
k=input('Enter the nmber of times the signal repeats');
x1=x;
for i=1:k
x1=[x1 x];
end
x=abs(fft(x));
x1=abs(fft(x1));
subplot(211);plot2d3(x);
subplot(212);plot2d3(x1);
|
704e0a405b872a5f210b27a0dca35e6cb821150e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1301/CH10/EX10.14/ex10_14.sce
|
b6e852393f6dc652888b6b71199b67bf96064805
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 264
|
sce
|
ex10_14.sce
|
clc;
k=1.38*10^-23; //Boltzmann's constant in J/K
tk=273+100; //absolute temp (in Kelvin)
KE=3/2*(k*tk); //calculating average Kinetic Energy in Joule using kinetic theory of gases
disp(KE,"Average Kinetic Energy in Joule = "); //displaying result
|
ec37b0ee973517a1e5e75d880816697c1f505762
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3638/CH11/EX11.2/Ex11_2.sce
|
861d3897e8acae993ddbd91b0d800dbb0b810fbb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 825
|
sce
|
Ex11_2.sce
|
//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
//Example 11.2
//OS=Windows XP sp3
//Scilab version 5.5.2
clc;
clear;
//given
//For Cr+3 ions in ruby
N1=1.6e19;//Population density of E1 energy level in cm^(-3)
N2=0;//Population density of E2 energy level in cm^(-3)
n=1.76;//refractive index of medium
Tsp=3e-3;//Spontaneous emission lifetime of atom in sec
//Let g(v0) be g
g=6.9e-12;//normalized lineshape function in s
lambda0=694.3e-7;//wavelength at which absorption takes place in cm
c=3e10;//speed of electrons in cm/s
v=c/lambda0;
//Let Y(v0) be Y
Y=((c/n)^2)*g*(N2-N1)/(8*%pi*Tsp*(v^2));//Corresponding gain coefficient of medium
mprintf("\n Absorption coefficient = %f",Y);//The answers vary due to round off error
//negative sign implies absorption
|
fe68743c0f6c8c12ab9f540bdb8bf1e25e96d6fd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1730/CH6/EX6.1/Exa6_1.sce
|
96f46c4b06f622270e2e33f9bd8859bf0d6eb520
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 506
|
sce
|
Exa6_1.sce
|
//Exa 6.1
clc;
clear;
close;
// given data
epsilon_r=2.5;
epsilon_o=8.854*10^-12;
d=.2*10^-3;// in m
A=20*10^-4;// in m^2
omega=2*%pi*10^6;// in radians/s
f=10^6;
tan_delta=4*10^-4;
C=epsilon_o*epsilon_r*A/d;// in F
disp("Capicitance is : "+string(C*10^12)+" miu miu F");
// Formula P=V^2/R, so
// R=V^2/P and P= V^2*2*%pi* f * C * tan delta, putting the value of P, we get
R=1/(2*%pi*f*C*tan_delta);// in ohm
disp("The element of parallel R-C circuit is : "+string(R*10^-6)+" M ohm");
|
9dfe7aa4f64600a8977665958d9913fd4c529a60
|
52cff1a2ef2292f8b9acf18dcfe1d4b0df75c558
|
/LAB 2- CONVOLUTION AND CORRELATION/60002190043_SS_SCILAB 2 convolution.sce
|
4abfb4ceb7951fa9500c00f334a683aaad01a216
|
[] |
no_license
|
Hetankshi/SCILAB
|
692a3abc71e6686f40745d69a66e4511db244491
|
424d4cc3459bb535e2f6793249f6a583374820ad
|
refs/heads/main
| 2023-01-16T05:39:22.830875
| 2020-11-25T12:23:14
| 2020-11-25T12:23:14
| 315,916,735
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 74
|
sce
|
60002190043_SS_SCILAB 2 convolution.sce
|
clc
clear all;
close;
x1=[1,3,7,-2,5];
x2=[2,-1,0,3];
y=conv(x1,x2)
|
38d82e54cc050d6e2df60f96df4ea135abcd99e5
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/enbw/enbw1.sce
|
b3f965905827e8fe4436562285b0babb77f9a1a5
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 142
|
sce
|
enbw1.sce
|
//check o/p when the i/p arg is a uniformly sampled hamming window
win=window('hm',1000);
en=enbw(win);
disp(en);
//output
// 1.3638074
//
|
294e999ed7b3031d9fd3eab237c4c41c809c0910
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/243/CH3/EX3.23/3_23.sce
|
50d9630c0bcd4e9d718273d93128ba3885a141d3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 397
|
sce
|
3_23.sce
|
//Example No. 3_23
//Associative law
//Pg No. 58
clear ; close ; clc ;
x = 0.400000*10^40
y = 0.500000*10^70
z = 0.300000*10^(-30)
disp('In book they have considered the maximum exponent can be only 99, since 110 is greater than 99 the result is erroneous')
disp((x*y)*z,'xy_z = ','but in scilab the this value is much larger than 110 so we get a correct result ')
disp(x*(y*z),'x_yz = ')
|
526bcf92ecbe9f4c02d77149b12a8ea2f11293ba
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3648/CH5/EX5.5/Ex5_5.sce
|
5a5edf5e41abcf60f24f1224d42d8aad3ed80f74
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 250
|
sce
|
Ex5_5.sce
|
//Example 5_5
clc();
clear;
//To calculate the average frictional force developed
m=2000 //units in Kg
vf=20 //units in meters/sec
d=100 //units in meters
f=(0.5*m*vf^2)/d //units in Newtons
printf("Average frictional force f=%d N",f)
|
878cf78f2d5e897aa72cc9f8e9396caaa0c2aad1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/905/CH1/EX1.9/1_9.sce
|
6c48a44c2b0cc0613228f7626b83c5736869a311
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,398
|
sce
|
1_9.sce
|
clear;
clc;
// Illustration 1.9
// Page: 27
printf('Illustration 1.9 - Page:27 \n\n');
// Solution
//*****Data*****//
// A-acetic acid(solute) B-acetone(solvent)
T = 313; // [K]
// The following data are available (Reid, et al., 1987):
// Data for acetic acid
T_bA = 390.4; // [K]
T_cA = 594.8; // [K]
P_cA = 57.9; // [bar]
V_cA = 171; // [cubic cm/mole]
M_A = 60; // [gram/mole]
// Data for acetone
T_bB = 329.2; // [K]
T_cB = 508; // [K]
P_cB = 47; // [bar]
V_cB = 209; // [cubic cm/mole]
u_bB = 0.264; // [cP]
M_B = 58; // [gram/mole]
phi = 1;
printf('Illustration 1.9 (a) - Page:27 \n\n');
// Solution (a)
// Using equation 1.48
V_bA = 0.285*(V_cA)^1.048; // [cubic cm/mole]
// Using the Wilke-Chang correlation , equation 1.52
D_abo1 = (7.4*10^-8)*(sqrt(phi*M_B))*T/(u_bB*(V_bA)^.6);
printf("Diffusivity of acetic acid in a dilute solution in acetone at 313 K using the Wilke-Chang correlation is %e square cm/s\n",D_abo1);
// From Appendix A, the experimental value is 4.04*10^-5 square cm/s
D_aboexp = 4.04*10^-5; // [square cm/s]
percent_error1 = ((D_abo1-D_aboexp)/D_aboexp)*100; // [%]
printf("The percent error of the estimate, compared to the experimental value is %f\n\n ",percent_error1);
printf('Illustration 1.9 (b) - Page:28 \n\n');
// Solution (b)
// Using the Hayduk and Minhas correlation for nonaqueous solutions
V_bA = V_bA*2; // [cubic cm/mole]
V_bB = 0.285*(V_cB)^1.048; // [cubic cm/mole]
// For acetic acid (A)
T_brA = T_bA/T_cA; // [K]
// Using equation 1.55
alpha_cA = 0.9076*(1+((T_brA)*log(P_cA/1.013))/(1-T_brA));
sigma_cA = (P_cA^(2/3))*(T_cA^(1/3))*(0.132*alpha_cA-0.278)*(1-T_brA)^(11/9); // [dyn/cm]
// For acetone (B)
T_brB = T_bB/T_cB; // [K]
// Using equation 1.55
alpha_cB = 0.9076*(1+((T_brB*log(P_cB/1.013))/(1-T_brB)));
sigma_cB = (P_cB^(2/3))*(T_cB^(1/3))*(0.132*alpha_cB-0.278)*(1-T_brB)^(11/9); // [dyn/cm]
// Substituting in equation 1.54
D_abo2 = (1.55*10^-8)*(V_bB^0.27)*(T^1.29)*(sigma_cB^0.125)/((V_bA^0.42)*(u_bB^0.92)*(sigma_cA^0.105));
printf("Diffusivity of acetic acid in a dilute solution in acetone at 313 K using the Hayduk and Minhas correlation is %e square cm/s\n",D_abo2);
percent_error2 = ((D_abo2-D_aboexp)/D_aboexp)*100; // [%]
printf("The percent error of the estimate, compared to the experimental value is %f\n\n ",percent_error2);
|
e974affce88efb4600fde778f59ec387f18ac6f4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2198/CH2/EX2.11.4/Ex2_11_4.sce
|
1aba886f3b7049a7f32e87c6ca5e047f4d8dc31d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 704
|
sce
|
Ex2_11_4.sce
|
//Ex 2.11.4
clc;clear;close;
format('v',8);
//Given :
T=300;//K
m_Si=1.5;//for Si
m_Ge=1.5;//for Ge
EGO_Si=1.21;//volt
EGO_Ge=0.785;//volt
Eta_Si=2;
Eta_Ge=1;
VT=26/1000;//V
disp("Part(i) : ");
d_logIoBYdt_Ge=m_Ge/T+EGO_Ge/(Eta_Ge*T*VT);//per degree C
disp(d_logIoBYdt_Ge,"d(log(Io))/dt for Ge (per degree C) : ");
d_logIoBYdt_Si=m_Si/T+EGO_Si/(Eta_Si*T*VT);//per degree C
disp(d_logIoBYdt_Si,"d(log(Io))/dt for Si (per degree C) : ");
disp("Part(ii) : ");
V=0.2;//volt
dVBYdt_Ge=V/T-Eta_Ge*VT*d_logIoBYdt_Ge
disp(dVBYdt_Ge*1000,"dV/dt for Si (mV per degree C) : ");
V=0.6;//volt
dVBYdt_Si=V/T-Eta_Si*VT*d_logIoBYdt_Si
disp(dVBYdt_Si*1000,"dV/dt for Si (mV per degree C) : ");
|
39d98179490a42e6f51713dce766b702ad7e82cf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3392/CH11/EX11.4/Ex11_4.sce
|
95dbbaa9322d4e92572bcd3754c67349c905a758
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 167
|
sce
|
Ex11_4.sce
|
clc
// initialization of variables
clear
SF=1.75
p1=300 //MPa
S_rr=-SF*p1
S_th=SF*325
Y=1/sqrt(2)*sqrt((S_th-S_rr)^2+S_rr^2+S_th^2)
printf(' Y = %.1f MPa',Y)
|
4ab816f29c9934ec2621ec5f9bbb7d1345c18790
|
333d6160f9a6d9e23a6bea06cd03e5e8fa8785a9
|
/RobotLab1/SciLab/LoadData.sce
|
87d63ac6e3447caca681c415e298c3d8c9a2bf2d
|
[
"MIT"
] |
permissive
|
DmitryIo/ROBOTS
|
6f6bb12a8e08dd28024136ee1a8a84ea7254da60
|
777f0884a098c4f21d044985c25a8be276334116
|
refs/heads/master
| 2023-04-30T12:52:54.082977
| 2021-05-17T19:55:34
| 2021-05-17T19:55:34
| 294,091,170
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 180
|
sce
|
LoadData.sce
|
results = read(get_absolute_file_path("LoadData.sce") + "..\Data\log" + currIdx + ".txt", -1, 2);
angle = results(:, 1)*%pi/180;
time = results(:, 2)/1000;
plot2d(time, angle, 2);
|
57e3a57dab4539cc7575189efa3896fc4d0cf2eb
|
4483ff664b4d01c53114a7fc535625c197c8f989
|
/green routing/sampleprob.sce
|
fa30ee32b8115e67e3f0cec66d2ed5c41acfc314
|
[] |
no_license
|
winash1618/myproject
|
be9b77d4a405edce7e625a999803016b50ab99d0
|
2132e76e6a996bee19f356a2b68af827fa6c621b
|
refs/heads/master
| 2022-12-06T06:09:06.487979
| 2020-08-20T02:00:54
| 2020-08-20T02:00:54
| 288,880,158
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 11,263
|
sce
|
sampleprob.sce
|
clc
clear
x=8
z=21
pop=10
iter=10000
a=zeros(pop,z)
rag=zeros(iter)
rag=zeros(iter)
bd=10000000*ones(1,pop)
gppd=zeros(pop,x)
cap=[288 95 115 133 107 22 34 28 186 190 33 56 100 90 82 143 68 166 44 73 72 60 68 8 20
]
tim=[0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000;
1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1;
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0;
]
dib=[1 1 1 1 1 1 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1 1 1 1 1 1 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1 1 1 1 1 1 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1 1000 1000 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1 1000 1000 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1 1000 1000 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1 1000 1000;
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1;
]
cad=rand(pop,z)
for i=1:pop
for j=1:z
for k=1:z
if cad(i,k)==min(cad(i,:))
a(i,j)=k
cad(i,k)=10000
break
end
end
end
end
disp (a)
best=a
function [bkop,grp,sis,kip] =finddis(a,bkom)
temp=zeros(pop,x)
tempo=zeros(pop,x)
dis=zeros(pop,x)
dis1=zeros(pop,x)
rep=zeros(pop,z)
rep1=zeros(pop,z)
for ka=1:pop
po=zeros(x,z)
po1=zeros(x,z)
prob=rand(1,1)
kop=1+round((z-1)*rand(1,(x-1)))
if prob<0.4
kom=kop
end
if ka==1
kom=kop
end
i=1
for k=1:x
r=1
while i<min(kom) & i<=z
po(k,r)=a(ka,i)
r=r+1
if i<=z
i=i+1
end
end
for g=1:x-1
if kom(g)==min(kom)
kom(g)=100
break
end
end
end
hkom=bkom(ka,:)
i=1
for k=1:x
r=1
while i<min(hkom) & i<=z
po1(k,r)=a(ka,i)
r=r+1
if i<=z
i=i+1
end
end
for g=1:x-1
if hkom(g)==min(hkom)
hkom(g)=100
break
end
end
end
kom=kop
mik=1
for k=1:x
for i=1:z
if po(k,i+1)~=0
dis(ka,k)=dis(ka,k)+tim(po(k,i),po(k,i+1))
if tim(po(k,i),po(k,i+1))>10
rep(ka,mik)=po(k,i)
end
mik=mik+1
else
break
end
end
end
mik=1
for k=1:x
for i=1:z
if po1(k,i+1)~=0
dis1(ka,k)=dis1(ka,k)+tim(po1(k,i),po1(k,i+1))
if tim(po1(k,i),po1(k,i+1))>10
rep1(ka,mik)=po1(k,i)
end
mik=mik+1
else
break
end
end
end
for k=1:x
for i=1:z
if(po(k,i)~=0)
temp(ka,k)=temp(ka,k)+1
end
end
if temp(ka,k)>0
dis(ka,k)=dis(ka,k)+dib(k,po(k,1))+dib(k,po(k,temp(ka,k)))
end
end
for k=1:x
for i=1:z
if(po1(k,i)~=0)
tempo(ka,k)=tempo(ka,k)+1
end
end
if tempo(ka,k)>0
dis1(ka,k)=dis1(ka,k)+dib(k,po1(k,1))+dib(k,po1(k,tempo(ka,k)))
end
end
if sum(dis1(ka,:))>sum(dis(ka,:))
dis1(ka,:)=dis(ka,:)
bkom(ka,:)=kom
tempo(ka,:)=temp(ka,:)
rep1(ka,:)=rep(ka,:)
end
end
bkop=bkom
grp=tempo
sis=dis1
kip=rep1
endfunction
function [n] = mutate(b,grd,kip)
gnd=ones(pop,x)
for k=1:pop
for i=1:x
if i==1
gnd(k,i)=0
else
gnd(k,i)=gnd(k,i-1)+grd(k,i-1)
end
end
oll=rand(1,1)
if oll<(y/iter) then
xio=rand(1,1)
if xio<0.5
r=1
for i=1:x
poll=rand(1,1)
if i==1
mut1=1+round((grd(k,i)-1)*rand(1,1))
mut2=1+round((grd(k,i)-1)*rand(1,1))
if poll<0.2 & mut1>0 & mut2>0 & mut1~=mut2
temper=b(k,mut2)
b(k,mut2)=b(k,mut1)
b(k,mut1)=temper
r=r+1
end
else
mut1=gnd(k,i)+round((grd(k,i)-1)*rand(1,1))
mut2=gnd(k,i)+round((grd(k,i)-1)*rand(1,1))
if poll<0.2 & mut1>0 & mut2>0 & mut1~=mut2
temper=b(k,mut2)
b(k,mut2)=b(k,mut1)
b(k,mut1)=temper
r=r+1
end
end
if r~=1
break;
end
end
else
for mi=1:x
if kip(k,mi)~=0
mut1=1+round((z-1)*rand(1,1))
temper=b(k,mut1)
b(k,mut1)=b(k,mi)
b(k,mi)=temper
end
end
end
else
mut1=1+round((z-1)*rand(1,1))
mut2=1+round((z-1)*rand(1,1))
temper=b(k,mut2)
b(k,mut2)=b(k,mut1)
b(k,mut1)=temper
end
end
n=b
endfunction
function [rkom,glg,gog,kip] =roulewheel(dis,a,gpd,bkom,kip)
tdis=zeros(1,pop)
pdis=zeros(1,pop)
cdis=zeros(1,pop)
calm=a
calp=gpd
gkom=bkom
jip=kip
for i=1:pop
tdis(i)=sum(dis(i,:))
tdis(i)=1/(1+tdis(i))
end
for i=1:pop
pdis(i)=tdis(i)/(sum(tdis))
end
for i=1:pop
if i==1
cdis(i)=cdis(i)+pdis(i)
else
cdis(i)=cdis(i-1)+pdis(i)
end
end
for i=1:pop
jin=rand(1,1)
for j=1:pop
if j==1
if jin<cdis(j)
calm(i,:)=a(j,:)
calp(i,:)=gpd(j,:)
gkom(i,:)=bkom(j,:)
jip(i,:)=kip(j,:)
break
end
else
if cdis(j-1)<jin & jin<=cdis(j)
calm(i,:)=a(j,:)
calp(i,:)=gpd(j,:)
gkom(i,:)=bkom(j,:)
jip(i,:)=kip(j,:)
break
end
end
end
end
rkom=gkom
gog=calm
glg=calp
kip=jip
endfunction
toper=1000000
ygh=1
kip=zeros(pop,z)
esup=zeros(1,z)
egd=zeros(1,x)
bkom=1+round((z-1)*rand(pop,(x-1)))
bbom=zeros(pop,(x-1))
for y=1:iter
[bkom,gp,dis,kip]=finddis(a,bkom)
mog=zeros(1,pop)
for i=1:pop
mog(i)=sum(dis(i,:))
if mog(i)<bd(i) then
best(i,:)=a(i,:)
bd(i)=mog(i)
gppd(i,:)=gp(i,:)
bbom(i,:)=bkom(i,:)
end
if toper>bd(i) then
toper=bd(i)
esup=best(i,:)
egd=gppd(i,:)
end
if round(sum(bd)/pop)-round(min(bd))<15 & y>1000
if mog(i)<1.5*bd(i) then
best(i,:)=a(i,:)
bd(i)=mog(i)
gppd(i,:)=gp(i,:)
bbom(i,:)=bkom(i,:)
end
end
end
rag(y)=min(bd)
ryg(y)=y
a=best
gpd=gppd
[bkom,gpd,a,kip]=roulewheel(dis,a,gpd,bkom,kip)
[a]=mutate(a,gpd,kip)
end
plot(ryg,rag)
tomp=zeros(x)
sup=esup
gd=egd
for j=1:x
if(j==1)
tomp(j)=gd(j)
else
tomp(j)=tomp(j-1)+gd(j)
end
end
fine=zeros(x,z)
for j=1:x
if j==1 then
for k=1:tomp(j)
fine(j,k)=sup(k)
end
else
i=1
for k=tomp(j-1)+1:tomp(j)
fine(j,i)=sup(k)
i=i+1
end
end
end
namer=['CHEDIKULAM' 'URUPUMKUTTY' 'EDAPUZHA' 'EDOOR' 'KOLAYAD' 'VELLARVALLY' 'ARYAPARAMBA' 'PERUVA' 'KAPPAD' 'ATTENCHERY' 'PERAVOOR' 'MALOOR' 'THRIKADARIPOIL' 'THODEEKKALAM' 'EDATHOTTY' 'PALAPPUZHA' 'THALIPPOYIL' 'VATTIARA' 'PERUMPARAMBU' 'PADIKACHAL' 'PUNNAD' 'KODOLIPRAM' 'MARUTHAYI' 'VELLIYAMPARAMBA KSS LTD' 'KANHILERI'
]
bmc=["KEEZHPALLY" "KEEZHPALLY" "ODEMTHODE" "ODEMTHODE" "THOLUMBRA" "THILLANKERI" "PAZHASSI RAJA NAGAR" "PAZHASSI RAJA NAGAR"
]
yum=0
for i=1:1:x
for j=1:z
if fine(i,j)>0
if j==1
disp(bmc(i))
disp(dib(i,fine(i,j)))
yum=yum+dib(i,fine(i,j))
end
disp(namer(fine(i,j)))
if j~=gd(i) then
disp(tim(fine(i,j),fine(i,j+1)))
yum=yum+tim(fine(i,j),fine(i,j+1))
end
if j==gd(i)
disp(dib(i,fine(i,j)))
yum=yum+dib(i,fine(i,j))
disp(bmc(i))
end
end
end
end
disp(yum)
|
e7fbf3403fb76cc7b216f2333f4729dcbea4c865
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2507/CH7/EX7.5/Ex7_5.sce
|
c06537a9d540f3baf2eeb29a229610a228e26f5a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 597
|
sce
|
Ex7_5.sce
|
clc
clear
printf("Example 7.5 | Page number 192 \n\n");
//Part(a) Find the COP of reversible heat engine as refrigerator.
//Part(b) Find the COP of reversible heat engine as heat pump.
//Given Data
T1 = 273 + 37 //K
T2 = 273 - 13 //K
//Part(a)
printf("Part (a)\n");
COP_ref = T2/(T1-T2) //COP of reversible heat engine as refrigerator.
printf("COP of reversible heat engine as refrigerator = %.1f\n\n",COP_ref)
//Part(b)
printf("Part (b)\n");
COP_hp = T1/(T1-T2) //COP of reversible heat engine as heat pump.
printf("COP of reversible heat engine as heat pump = %.1f",COP_hp)
|
24494c3245c167f6b1bd44e821e34d19ad705790
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1457/CH9/EX9.8/9_8.sce
|
eb07e981434684c954aeb283a063c0f4e1896e5c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 192
|
sce
|
9_8.sce
|
clc
//Initialization of variables
G=100 //lb/s
g=32.2
V2=300 //fps
V1=250 //fps
//calculations
Qh= (V2^2 -V1^2)/(2*g)
Q=Qh*G
//results
printf("Thermal energy added = %d ft lb/s",Q)
|
f00994e6030eb9c771d5f9c6bffcccb00149845c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3751/CH6/EX6.7/Ex6_7.sce
|
8baafe52a35ee5fbd283a4cd091b1b5cbca3097e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,307
|
sce
|
Ex6_7.sce
|
//Fluid System By Shiv Kumar
//Chapter 6 - Kaplan and Propeller Turbines
//Example 6.7
//To Find (a)Diameter of Runner (b)Speed (c)Specific Speed
clc
clear
//Given:
H=32; //Head, m
P=16000; //Shaft Power, KW
D_per=190; //Percentage by which Diameter of Runner(D)is Larger than diameter of Boss(d)
eta_0=91/100; //Overall Efficiency
Ku=2; //Speed Ratio
Kf=0.64; //Flow Ratio
//Data Required:
rho=1000; //Density of Water, Kg/m^3
g=9.81; //Acceleration due to gravity, m/s^2
//Computations
Vfi=Kf*sqrt(2*g*H); //Velocity of Flow at Inlet, m/s
ui= Ku*sqrt(2*g*H); //Velocity of Runner at Inlet, m/s
Q=P*10^3/(rho*g*H*eta_0); //Discharge, m^3/s
d=sqrt(Q/((%pi/4)*Kf*sqrt(2*g*H)*((D_per/100+1)^2-1))); // Diameter of Hub ,m
//(a) Diameter of Runner ,D
D=d+(D_per/100)*d; //m
//(b) Speed,N
N=ui*60/(%pi*D); // rpm
//(iii) Specific Speed of Turbine, Ns
Ns=N*P^(1/2)/(H^(5/4)); // SI Units
//Results
printf("(a)Diameter of Runner , D=%.3f m\n",D)
printf(" (b)Speed, N =%.2f rpm\n",N) //The answer vary due to round off error
printf(" (c)Specific Speed, Ns =%.2f (SI Units)\n",Ns) //The answer provided in the textbook is wrong.
|
aa89b7b093338ec06b97defe63311e2c4616d768
|
717ddeb7e700373742c617a95e25a2376565112c
|
/587/CH13/EX13.10/example13_10.sce
|
5b2b8f9e9c264f3bf65dbde3a75551e11fcb129e
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 1,862
|
sce
|
example13_10.sce
|
clear;
clc;
//Example13.10[Heat Transfer through a Tubular Solar Collector]
k=0.02588;//[W/m.degree Celcius]
Pr1=0.7282,Pr2=0.7255;//Prandtl no
nu1=1.608*(10^(-5)),nu2=1.702*10^(-5);//[m^2/s]
T1=20,T2=40;//[degree Celcius]
Tavg=((T1+T2)/2)+273;//[K]
Do=0.1,L=1;//Dimensions of glass tube[m]
Di=0.05;//Inner diameter of tube[m]
Q_glass=30;//Rate of heat transfer from the outer surface of the glass cover[W]
g=9.81;//[m^2/s]
eo=0.9,ei=0.95;//Emissivity
//Solution:-
Ao=%pi*Do*L;//Heat transfer surface area of the glass cover[m^2]
disp(Ao,Tavg)
Ra_Do=g*Tavg*(T2-T1)*(Do^3)*Pr1/(nu1);
disp(Ra_Do,"The Rayleigh number is")
Nu=((0.6+((0.387*(Ra_Do^(1/6)))/((1+((0.559/Pr1)^(9/16)))^(8/27))))^2);
disp(Nu,"The nusselt number is")
ho=k*Nu/Do;//[W/m^2.degree Celcius]
Qo_conv=ho*Ao*(T2-T1);//[W]
Qo_rad=eo*5.67*10^(-8)*Ao*(((T2+273)^4)-((T1+273)^4));//[W]
Qo_total=Qo_conv+Qo_rad;//[W]
disp("W",Qo_total,"The total rate of heat loss from the glass cover
Lc=(Do-Di)/2;//The characteristic length
Ai=%pi*Di*L;//[m^2]
//Assuming
T_tube=54,T_cover=26;//Temperature of tube and glass cover[degree Celcius]
T_avg=((T_tube+T_cover)/2)+273;//[K]
Ra_L=g*T_avg*(T_tube-T_cover)*(Lc^3)*Pr2/(nu2);
disp(Ra_L,"The Rayleigh number in this case is")
F_cyl=((log(Do/Di))^4)/((Lc^3)*(((Di^(-3/5))+(Do^(-3/5)))^5));
k_eff=0.386*k*((Pr2/(0.861+Pr2))^(1/4))*((F_cyl*Ra_L)^(1/4));
disp("W/m.degree Celcius",k_eff,"The effective thermal conductivity is")
QL_conv=2*%pi*k_eff*(T_tube-T_cover)/(log(Do/Di));
disp("W",QL_conv,"The rate of heat transfer between the cylinders by convection is")
QL_rad=((5.67*10^(-8))*Ai*(((T_tube+273)^4)-((T_cover+273)^4)))/((1/ei)+(((1-eo)/eo)*(Di/Do)));
disp("W",QL_rad,"The radiation rate of heat transfer is")
QL_total=QL_conv+QL_rad;//[W]
disp("W",QL_total,"The total rate of heat loss from the glass cover is")
|
c1a27047e25875ccf5f3e51742edee28c656e073
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/728/CH8/EX8.16/Ex8_16.txt
|
37d76d780ffffaebed429ee0977ce30560dd21a3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 577
|
txt
|
Ex8_16.txt
|
//Caption:Calculate (i)-repeller voltage V_r ,(ii)-beam current necessary to give gap voltage of 200V
//Exa:8.16
clc;
clear;
close;
e_m_ratio=1.759*10^11;//(e/m)
V_o=300;//in volts
R_sh=20*10^3;//in ohms
f=8*10^9;//inHz
w=2*%pi*f;
n=2;//mode
L=0.001;//spacing between repeller & cavity (in m)
x=(e_m_ratio)*(2*%pi*n-%pi/2)^2/(8*w^2*L^2);
volt_diff=sqrt(V_o/(x));
V_r=(volt_diff)+V_o;//repeller volatge
J=0.582;
V_1=200;//given (in volts)
I_o=V_1/(R_sh*2*J);
disp(V_r,'Repeller voltage(in volts) =');
disp(I_o*10^3,'Necessary beam current (in milliAmp.s) =');
|
bdbb14826db646cea2761aa63fa88d239f8d1060
|
5f48beee3dc825617c83ba20a7c82c544061af65
|
/tests/s/61.tst
|
2258fcede9c461bdb5c2755bbef53d16402e7eac
|
[] |
no_license
|
grenkin/compiler
|
bed06cd6dac49c1ca89d2723174210cd3dc8efea
|
30634ec46fba10333cf284399f577be7fb8e5b61
|
refs/heads/master
| 2020-06-20T12:44:17.903582
| 2016-11-27T03:08:20
| 2016-11-27T03:08:20
| 74,863,612
| 3
| 0
| null | null | null | null |
WINDOWS-1251
|
Scilab
| false
| false
| 55
|
tst
|
61.tst
|
int f(float x, int y), g(int z) /* ошибка */
{
}
|
ad5c08312c930c038b00eebdc3c0ca7a8768f160
|
c2249f1089957357481c4bc88e17047fb96af0fd
|
/TestCases/projp2.tst
|
44a4ecbc129d35235281e1ba5a50d3ffef73dd90
|
[] |
no_license
|
FikriAnuar/LaTeXParser
|
9bf5d0f1ea85d26ae4cb4cb72ef0cd95a7e358d6
|
97a872d3903aafea98045050f1782b0ff7840ed7
|
refs/heads/master
| 2022-12-12T04:17:47.702201
| 2020-09-09T16:38:05
| 2020-09-09T16:38:05
| 294,170,332
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,053
|
tst
|
projp2.tst
|
\begin{document}
The second part of the semester project focuses on gaining experience with
lex (flex) and yacc (bison), coupled with continued design (and redesign)
skills for context free grammars (CFGs). The second part of the project
is divided into two major tasks, and is worth a total of 50 points:
\begin{enumerate}
\item Revising the common grammar to remove the shift or reduce and
rule-not-reduced conflicts. These corrections are made to the yacc or
bison
file, and the result must be tested extensively for different input latex
documents. This task is worth 35 points.
\item Using your result grammar of the first task, redesign the common
grammar to support the recognition of verbatim blocks and also nested
blocks. That is, recall that the different blocks (itemize,
enumerate, single, etc.) can also be nested to yield different
combinations of formatted text. Again, test your result using
yacc.bison to demonstrate that the grammar revisions for these two
changes work correctly. This task is worth 15 points.
\end{enumerate}
To serve as a common base for the project, there is a directory that
contains a number of important files:
\begin{verbatim}
latex.in : A sample input file.
latex.l : A sample latex lex file.
latexp2.y : A yacc specification with fprintf's for debugging.
latexp2clean.y: Equivalent specification without the fprintfs.
y2conflicts : The shift.reduce conflicts generated by YACC.
b2conflicts : The shift.reduce conflicts generated by BISON.
\end{verbatim}
Note that intentional errors have been placed in the files.
Note also that the grammar files contain numerous shift reduce errors and
other problems, as will be discussed in class.
The second part of the project is due on April 6, 1994. Please hand in the
following:
\begin{enumerate}
\item The revised yacc.bison specification for task 1. DO NOT HAND
IN C files!
\item A log file that documents the changes made to the grammar to
eliminate the shift.reduce errors and other problems for task 1.
Make sure that you provide both the original and revised grammar segments
for each change that you make! Also include any remaining shift.reduce
or reduce.reduce errors, but NOT the entire output file.
\item The revised yacc.bison specification for task 2. DO NOT HAND
IN C files!
\item A log file that documents the changes made to your grammar of task
1 in support of verbatim and nested blocks. These changes may occur
in both the lex (flex) and yacc (bison) files! Again, provide
original.revised segments for each change, and remaining S.R or R.R errors.
\item Test cases and test results for both tasks, clearly marked and organized.
\item The directory location for your files and detailed compilation instructions.
\end{enumerate}
{\it IMPORTANT:} Do not open your directory for access by the world until
7:00 p.m. on April 6.
\end{document}
|
639f20e24cdc9da1f8fad7cee83c061f8839248c
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/tweet/bow/bow.5_8.tst
|
a4ceafa88b1acfbde166c63d057b6e9d647739f6
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 33,650
|
tst
|
bow.5_8.tst
|
5 4:0.5 6:0.25 7:0.5 8:0.14285714285714285 12:0.2857142857142857 20:0.5 21:0.2 23:1.0 26:0.02857142857142857 38:0.3333333333333333 48:0.5 49:0.015503875968992248 51:2.0 55:0.36363636363636365 64:0.75 68:0.5 71:2.0 100:0.125 133:1.5 137:1.0 176:1.0 183:1.0 190:0.2 236:0.5 366:1.0 383:1.0 407:1.0 483:2.0 611:1.0 647:1.0 879:1.0 982:1.0 1087:1.0 1113:2.0 1228:1.0 1233:1.0 1606:1.0 2257:1.0 3131:1.0 3259:1.0 3338:1.0 4024:1.0 5080:1.0 5610:2.0 6054:1.0 6567:1.0
5 4:2.0 7:0.5 11:0.2 12:0.14285714285714285 20:1.0 21:0.1 38:0.6666666666666666 48:0.5 49:0.015503875968992248 51:1.0 64:0.25 67:0.3333333333333333 68:0.5 87:0.5 95:1.0 127:0.5 134:0.3333333333333333 135:1.0 158:0.3333333333333333 288:0.3333333333333333 355:1.0 383:1.0 442:1.0 541:1.0 550:0.5 571:1.0 641:0.5 1138:1.0 1345:1.0 1493:1.0 2357:1.0 3259:1.0 6454:1.0 6801:1.0
5 4:1.0 6:0.125 12:0.14285714285714285 20:0.5 21:0.3 23:1.0 26:0.02857142857142857 38:0.3333333333333333 42:1.0 44:1.0 54:0.5 55:0.09090909090909091 74:1.0 127:0.5 170:0.3333333333333333 288:0.3333333333333333 435:1.0 1354:1.0
5 4:0.5 7:0.5 9:0.25 21:0.2 23:4.0 42:1.0 49:0.015503875968992248 51:1.0 54:0.5 55:0.2727272727272727 68:0.5 71:1.0 87:0.5 137:1.0 241:0.3333333333333333 269:1.0 333:1.0 397:1.0 490:1.0 638:0.5 762:1.0 1285:1.0 2075:1.0 2224:1.0 3013:1.0 3259:1.0 4962:1.0
5 4:0.5 6:0.25 12:0.42857142857142855 21:0.1 23:2.0 49:0.007751937984496124 51:1.0 55:0.18181818181818182 62:0.16666666666666666 71:2.0 80:0.3333333333333333 93:0.1111111111111111 121:0.014084507042253521 122:1.0 126:0.25 136:1.0 147:1.0 247:1.0 331:0.5 424:0.5 667:0.5 925:1.0 1249:1.0 1340:1.0 1361:0.5 2760:1.0 2967:1.0 3441:1.0 4472:1.0 4945:1.0
5 12:0.14285714285714285 15:0.07692307692307693 17:0.2 19:0.1 20:2.0 21:0.1 23:3.0 45:1.0 46:1.0 48:0.5 49:0.007751937984496124 51:1.0 64:0.25 71:3.0 75:0.25 88:1.0 112:1.0 121:0.014084507042253521 126:0.5 148:0.3333333333333333 178:1.0 250:1.0 261:1.0 303:1.0 331:0.5 534:1.0 650:1.0 781:1.0 1529:1.0 2399:1.0 2798:1.0 2811:1.0 3031:1.0 3137:1.0 3186:1.0 3241:1.0 3776:1.0 4951:1.0
5 4:3.0 5:0.14285714285714285 7:0.5 9:0.5 12:0.14285714285714285 14:1.0 15:0.07692307692307693 20:0.5 21:0.1 23:4.0 24:0.5 49:0.007751937984496124 51:1.0 54:0.5 55:0.18181818181818182 71:1.0 79:0.5 98:0.36363636363636365 121:0.014084507042253521 127:0.5 137:1.0 175:1.0 176:1.0 185:1.0 188:1.0 197:1.0 236:1.5 251:1.0 278:0.5 284:1.0 288:0.3333333333333333 503:1.0 519:1.0 537:1.0 548:3.0 550:0.5 664:0.2 746:1.0 814:1.0 3272:1.0 3319:1.0
5 4:2.0 6:0.5 7:1.0 8:0.14285714285714285 12:0.14285714285714285 15:0.07692307692307693 19:0.1 20:0.5 23:1.0 38:0.3333333333333333 48:0.5 49:0.007751937984496124 51:1.0 63:0.5 93:0.1111111111111111 112:3.0 121:0.014084507042253521 126:0.25 175:1.0 196:1.0 278:0.5 281:0.16666666666666666 289:0.125 292:0.2 296:1.0 354:0.5 379:0.3333333333333333 383:1.0 386:1.0 397:1.0 449:1.0 548:1.0 564:1.0 651:1.0 938:1.0 1245:1.0 1622:1.0 1703:1.0 2013:1.0 2380:1.0 2995:1.0
5 4:2.5 6:0.125 7:0.5 19:0.1 20:0.5 21:0.1 48:0.5 98:0.09090909090909091 100:0.25 121:0.014084507042253521 289:0.125 303:1.0 315:1.0 316:0.5 483:1.0 745:1.0 857:1.0 1026:1.0 1060:1.0
5 4:1.0 5:0.14285714285714285 7:0.5 11:0.2 12:0.14285714285714285 20:0.5 21:0.1 23:1.0 42:1.0 48:1.0 49:0.007751937984496124 51:1.0 55:0.09090909090909091 62:0.16666666666666666 63:0.5 64:0.25 71:1.0 87:0.5 98:0.18181818181818182 100:0.125 112:1.0 113:0.5 158:0.3333333333333333 175:1.0 176:1.0 182:0.5 218:2.0 269:2.0 293:0.5 442:1.0 626:1.0 641:0.5 657:1.0 862:1.0 1060:1.0 1721:1.0 2143:1.0 2311:1.0
5 4:1.5 5:0.14285714285714285 6:0.125 8:0.14285714285714285 23:5.0 48:1.0 49:0.007751937984496124 51:1.0 55:0.2727272727272727 62:0.16666666666666666 78:1.0 80:0.3333333333333333 88:2.0 98:0.2727272727272727 101:1.0 121:0.014084507042253521 134:0.16666666666666666 141:0.16666666666666666 158:0.3333333333333333 175:1.0 182:1.0 187:1.0 188:2.0 240:1.0 280:0.3333333333333333 315:1.0 331:0.5 695:1.0 762:0.5 1060:1.0 1161:1.0 1170:0.5 3176:1.0 3463:1.0 4951:1.0 6088:1.0
5 4:0.5 5:0.14285714285714285 7:1.5 8:0.14285714285714285 9:0.25 12:0.14285714285714285 21:0.2 23:3.0 26:0.02857142857142857 38:0.3333333333333333 49:0.007751937984496124 51:1.0 55:0.09090909090909091 84:1.0 95:1.0 98:0.18181818181818182 102:1.0 197:1.0 211:1.0 298:1.0 534:1.0 550:0.5 561:1.0 1118:1.0 1251:1.0 1490:1.0 4777:1.0
5 6:0.125 7:1.0 12:0.2857142857142857 18:0.3333333333333333 21:0.1 23:4.0 26:0.02857142857142857 44:2.0 48:0.5 49:0.007751937984496124 51:1.0 62:0.5 64:0.5 71:1.0 112:3.0 121:0.04225352112676056 127:0.5 134:0.16666666666666666 136:1.0 173:0.5 198:1.0 205:0.5 331:0.5 339:1.0 386:1.0 397:1.0 424:0.5 457:1.0 550:0.5 559:1.0 862:1.0 1166:1.0 2211:1.0 5810:1.0
5 4:2.0 7:0.5 8:0.14285714285714285 21:0.1 23:1.0 41:1.0 62:0.16666666666666666 73:1.0 96:0.16666666666666666 127:0.5 141:0.16666666666666666 181:1.0 274:1.0 513:1.0 621:1.0 1317:1.0 1634:1.0 2416:1.0 2632:1.0 3649:1.0 3884:1.0
5 4:1.5 5:0.14285714285714285 8:0.2857142857142857 9:0.25 12:0.2857142857142857 20:0.5 21:0.1 23:2.0 26:0.02857142857142857 38:0.3333333333333333 40:0.5 46:1.0 48:1.0 54:0.5 55:0.18181818181818182 62:0.3333333333333333 64:0.25 70:0.5 101:1.0 110:1.0 121:0.014084507042253521 127:0.5 136:1.0 176:1.0 178:1.0 182:1.0 198:1.0 209:1.0 265:1.0 366:1.0 424:0.5 494:1.0 982:1.0 995:1.0 1030:1.0 1117:1.0 1340:1.0 1488:1.0 2099:1.0 2319:1.0 3161:1.0 3165:1.0 3597:1.0 3975:1.0
5 4:1.5 7:0.5 23:1.0 100:0.125 115:0.1 116:0.2 121:0.014084507042253521 255:1.0 390:0.5
5 4:1.5 17:0.2 20:0.5 21:0.2 26:0.02857142857142857 40:0.5 42:1.0 43:0.3333333333333333 55:0.18181818181818182 73:1.0 152:0.5 201:0.16666666666666666 1481:1.0 2211:1.0
5 4:1.0 5:0.14285714285714285 6:0.125 7:0.5 8:0.14285714285714285 9:0.25 12:0.2857142857142857 15:0.07692307692307693 21:0.1 23:4.0 24:0.5 26:0.02857142857142857 42:1.0 48:0.5 88:1.0 142:0.5 183:1.0 188:1.0 194:1.0 251:1.0 331:0.5 476:1.0 1227:1.0 1234:1.0 1580:1.0 2635:1.0
5 4:0.5 5:0.14285714285714285 7:0.5 23:1.0 38:0.3333333333333333 98:0.09090909090909091 115:0.1 116:0.2 397:1.0 513:1.0 519:1.0 1634:1.0 2017:0.5 2553:1.0
5 4:1.5 7:0.5 11:0.2 15:0.07692307692307693 20:0.5 21:0.2 24:0.5 26:0.05714285714285714 49:0.007751937984496124 51:1.0 54:0.5 55:0.09090909090909091 87:0.5 98:0.09090909090909091 121:0.014084507042253521 141:0.16666666666666666 176:1.0 250:1.0 251:2.0 331:0.5 418:1.0 483:1.0 647:1.0 803:1.0 871:1.0 925:1.0 2812:1.0 2989:1.0
5 4:1.5 17:0.2 20:1.0 23:4.0 48:0.5 49:0.015503875968992248 51:2.0 55:0.2727272727272727 75:0.25 134:0.3333333333333333 149:0.3333333333333333 156:1.0 158:0.3333333333333333 379:0.6666666666666666 490:1.0 669:0.5 1079:1.0 1128:1.0 1496:1.0 1669:1.0 2080:1.0 2082:1.0 2085:1.0 2158:1.0 2684:1.0 2972:1.0 2982:1.0 3005:1.0 3212:1.0 3213:1.0 3546:1.0 3900:1.0
5 4:1.0 7:0.5 8:0.14285714285714285 12:0.14285714285714285 20:0.5 21:0.1 23:2.0 38:0.6666666666666666 48:1.0 49:0.015503875968992248 51:1.0 55:0.36363636363636365 58:0.3333333333333333 64:0.5 93:0.1111111111111111 112:2.0 137:2.0 197:1.0 265:1.0 292:0.2 383:1.0 387:1.0 729:1.0 821:1.0 854:1.0 910:1.0 1031:1.0 1270:1.0 1455:0.5 1833:1.0 1896:1.0 2766:1.0 2871:2.0
5 4:1.0 6:0.25 7:0.5 12:0.2857142857142857 17:0.2 20:1.0 21:0.1 23:2.0 46:1.0 48:1.0 49:0.015503875968992248 51:2.0 54:0.5 55:0.09090909090909091 62:0.16666666666666666 64:0.5 71:1.0 97:0.5 98:0.09090909090909091 112:1.0 117:0.5 121:0.014084507042253521 122:1.0 134:0.16666666666666666 205:0.5 246:1.0 331:1.0 379:0.3333333333333333 401:1.0 413:1.0 424:0.5 502:1.0 506:1.0 715:1.0 823:1.0 1000:0.5 1323:1.0 1415:3.0 1562:1.0 2420:1.0 2553:1.0 2692:1.0 3248:1.0 3542:1.0 4768:1.0 5624:1.0
5 4:1.5 6:0.25 7:0.5 12:0.5714285714285714 20:1.0 23:2.0 24:0.5 42:1.0 48:0.5 49:0.015503875968992248 51:1.0 55:0.18181818181818182 64:0.5 68:0.5 71:2.0 76:1.0 97:0.5 112:1.0 134:0.16666666666666666 153:0.5 289:0.125 292:0.2 300:1.0 320:1.0 356:0.5 366:1.0 401:1.0 534:1.0 571:1.0 621:1.0 1061:1.0 1421:1.0 1562:1.0 1623:1.0 1928:1.0 2222:2.0 4269:1.0
5 4:2.5 6:0.125 11:0.2 12:0.42857142857142855 15:0.07692307692307693 17:0.4 20:0.5 23:2.0 48:0.5 49:0.015503875968992248 51:2.0 57:1.0 71:1.0 85:1.0 93:0.1111111111111111 98:0.09090909090909091 100:0.125 121:0.014084507042253521 179:1.0 194:1.0 437:1.0 442:1.0 541:1.0 543:1.0 559:1.0 561:1.0 701:1.0 875:1.0 992:1.0 1582:1.0 2024:0.5 2106:1.0 3381:1.0
5 4:1.0 7:0.5 8:1.0 11:0.2 12:0.7142857142857143 20:0.5 23:3.0 38:0.3333333333333333 48:0.5 49:0.015503875968992248 51:3.0 54:0.5 55:0.18181818181818182 64:0.5 71:1.0 73:1.0 88:1.0 112:1.0 115:0.1 116:0.2 129:0.5 141:0.16666666666666666 154:0.3333333333333333 158:0.3333333333333333 176:1.0 219:1.0 231:1.0 289:0.125 353:1.0 386:1.0 439:1.0 453:1.0 641:0.5 682:1.0 1063:1.0 1270:1.0 1562:1.0 1708:1.0 3122:1.0 3696:1.0 3874:1.0 4994:1.0
5 4:1.5 7:0.5 12:0.14285714285714285 19:0.1 24:0.5 49:0.015503875968992248 51:2.0 55:0.18181818181818182 66:1.0 71:2.0 110:1.0 131:1.0 134:0.16666666666666666 158:0.3333333333333333 175:1.0 176:1.0 215:0.16666666666666666 385:1.0 401:1.0 442:3.0 616:1.0 937:1.0 1667:1.0 2695:1.0 3047:1.0 3939:1.0
5 4:1.0 6:0.125 8:0.14285714285714285 20:0.5 21:0.1 23:3.0 24:0.5 26:0.02857142857142857 38:0.6666666666666666 42:1.0 43:0.3333333333333333 48:0.5 49:0.007751937984496124 51:1.0 55:0.18181818181818182 62:0.16666666666666666 83:1.0 104:0.5 134:0.16666666666666666 137:1.0 175:1.0 179:2.0 180:1.0 197:1.0 203:0.2 250:1.0 255:1.0 279:0.5 314:1.0 550:0.5 616:1.0 1046:1.0 1081:1.0 1153:1.0 3047:1.0 3076:1.0 3937:1.0
5 4:1.5 11:0.2 12:0.14285714285714285 15:0.15384615384615385 19:0.1 20:1.5 21:0.2 23:1.0 24:0.5 26:0.02857142857142857 49:0.007751937984496124 51:1.0 55:0.09090909090909091 58:0.6666666666666666 74:1.0 75:0.25 96:0.16666666666666666 101:1.0 121:0.014084507042253521 126:0.25 194:1.0 198:1.0 202:0.2 236:0.5 269:1.0 401:1.0 490:1.0 774:1.0 1184:1.0 1253:1.0 1375:1.0 1902:1.0 2216:1.0 2462:1.0 2981:1.0 4759:1.0
5 4:2.0 7:0.5 12:0.2857142857142857 18:0.3333333333333333 20:1.5 21:0.1 23:1.0 24:0.5 26:0.02857142857142857 48:1.0 49:0.015503875968992248 51:2.0 55:0.2727272727272727 58:0.3333333333333333 64:0.25 141:0.3333333333333333 154:0.6666666666666666 175:1.0 180:1.0 181:1.0 197:1.0 251:1.0 281:0.16666666666666666 347:1.0 359:1.0 401:1.0 451:1.0 483:1.0 519:1.0 1539:0.5 1580:1.0 3132:1.0 6215:1.0
5 7:1.0 20:0.5 21:0.1 23:1.0 26:0.02857142857142857 40:0.5 47:1.0 48:0.5 49:0.007751937984496124 51:1.0 55:0.18181818181818182 62:0.16666666666666666 71:1.0 73:1.0 136:1.0 141:0.16666666666666666 154:0.3333333333333333 199:0.3333333333333333 281:0.16666666666666666 366:1.0 479:1.0 517:1.0 550:0.5 956:1.0 1149:1.0 1782:1.0 2453:1.0 2989:1.0
5 4:1.0 7:1.0 8:0.2857142857142857 11:0.2 12:0.14285714285714285 19:0.1 20:1.5 23:3.0 24:0.5 25:1.0 48:0.5 49:0.007751937984496124 51:1.0 54:0.5 55:0.2727272727272727 98:0.09090909090909091 121:0.028169014084507043 139:1.0 141:0.16666666666666666 158:0.3333333333333333 162:1.0 198:1.0 201:0.16666666666666666 280:0.3333333333333333 333:1.0 451:1.0 1037:1.0 1093:1.0 1269:1.0 2307:1.0 2553:1.0 2743:1.0 4010:1.0 6052:1.0
5 4:1.0 21:0.1 23:1.0 26:0.02857142857142857 48:0.5 98:0.09090909090909091 176:1.0 331:1.0 529:1.0 543:1.0 669:1.0 2063:1.0 2380:1.0
5 4:1.0 11:0.2 15:0.07692307692307693 20:1.5 21:0.1 23:2.0 24:0.5 26:0.02857142857142857 44:1.0 48:0.5 49:0.007751937984496124 51:1.0 55:0.09090909090909091 78:1.0 80:0.3333333333333333 93:0.1111111111111111 98:0.09090909090909091 126:0.25 127:0.5 135:1.0 137:1.0 158:0.3333333333333333 179:1.0 198:1.0 218:1.0 449:1.0 537:3.0 550:0.5 679:1.0 746:1.0 908:1.0 952:1.0 1251:1.0 1391:1.0 1636:1.0 2418:1.0 3326:1.0 3988:1.0
5 4:1.0 7:0.5 8:0.42857142857142855 11:0.4 12:0.42857142857142855 20:0.5 23:5.0 24:1.0 48:1.0 49:0.015503875968992248 51:2.0 62:0.16666666666666666 64:0.5 71:1.0 98:0.18181818181818182 122:1.0 129:0.5 133:0.5 181:1.0 199:0.3333333333333333 218:1.0 279:0.5 312:1.0 315:1.0 331:0.5 354:0.5 385:1.0 410:1.0 439:1.0 483:1.0 493:1.0 611:1.0 623:1.0 629:1.0 657:1.0 695:1.0 814:1.0 1136:1.0 1309:1.0 1351:1.0 1525:1.0 1652:1.0 1782:1.0 1834:1.0 2029:0.3333333333333333 2431:1.0
5 4:1.5 5:0.14285714285714285 8:0.14285714285714285 12:0.14285714285714285 18:0.3333333333333333 19:0.1 20:0.5 21:0.3 23:1.0 26:0.02857142857142857 48:0.5 49:0.007751937984496124 51:2.0 55:0.09090909090909091 68:0.5 71:2.0 93:0.1111111111111111 121:0.014084507042253521 134:0.16666666666666666 147:1.0 181:1.0 198:1.0 279:1.0 307:1.0 316:0.5 446:0.3333333333333333 493:1.0 682:1.0 740:0.3333333333333333 2106:1.0 6764:1.0
5 4:2.0 5:0.14285714285714285 6:0.125 7:0.5 8:0.14285714285714285 12:0.2857142857142857 15:0.07692307692307693 20:0.5 21:0.1 23:2.0 24:1.0 26:0.02857142857142857 48:0.5 49:0.007751937984496124 51:1.0 58:0.3333333333333333 64:0.25 71:1.0 83:1.0 88:1.0 101:1.0 121:0.014084507042253521 126:0.25 158:0.3333333333333333 179:1.0 197:1.0 308:1.0 460:0.5 550:0.5 612:1.0 849:1.0 864:1.0 1187:1.0 1188:1.0 1525:1.0 1631:1.0 2012:1.0 2080:1.0 2447:1.0 2749:1.0
5 4:1.5 6:0.125 12:0.2857142857142857 17:0.2 19:0.2 20:0.5 48:0.5 49:0.007751937984496124 51:1.0 67:0.3333333333333333 96:0.16666666666666666 112:1.0 149:0.3333333333333333 158:0.3333333333333333 194:1.0 248:0.5 315:1.0 534:1.0 548:1.0 1166:1.0 1187:1.0 1202:1.0 1568:1.0 1824:1.0 1918:1.0 1968:1.0 3111:1.0 5676:1.0 6411:1.0
5 4:0.5 6:0.125 7:1.0 20:0.5 21:0.2 23:4.0 26:0.02857142857142857 38:0.3333333333333333 45:1.0 49:0.007751937984496124 51:1.0 64:0.25 71:1.0 77:1.0 78:1.0 79:0.5 80:0.3333333333333333 98:0.18181818181818182 117:0.5 135:1.0 176:1.0 199:0.3333333333333333 203:0.4 241:0.3333333333333333 285:1.0 331:0.5 397:1.0 476:1.0 519:1.0 524:0.5 530:1.0 550:0.5 1246:1.0 1985:1.0 2128:1.0
5 4:2.0 9:0.25 12:0.14285714285714285 20:0.5 21:0.1 23:2.0 24:0.5 42:1.0 48:1.0 49:0.007751937984496124 51:1.0 71:1.0 80:0.3333333333333333 120:0.2 125:0.3333333333333333 182:0.5 203:0.2 241:0.3333333333333333 249:1.0 265:1.0 333:1.0 431:1.0 483:1.0 493:1.0 524:0.5 621:1.0 675:0.3333333333333333 740:0.3333333333333333 1143:1.0 1554:1.0 5295:1.0
5 4:2.5 7:0.5 8:0.14285714285714285 9:0.25 15:0.07692307692307693 23:2.0 55:0.2727272727272727 62:0.16666666666666666 64:0.25 73:1.0 117:0.5 121:0.014084507042253521 127:0.5 131:1.0 134:0.16666666666666666 218:1.0 236:0.5 331:0.5 446:0.3333333333333333 878:1.0 1144:1.0 1212:1.0 1595:1.0 1603:2.0 1828:1.0 1969:1.0
5 4:0.5 12:0.14285714285714285 17:0.2 21:0.2 23:2.0 26:0.02857142857142857 62:0.3333333333333333 88:1.0 121:0.014084507042253521 127:0.5 203:0.2 307:1.0 446:0.3333333333333333 449:1.0 543:1.0 2063:1.0
5 4:1.5 6:0.125 7:1.0 9:0.25 19:0.1 20:1.0 21:0.1 23:2.0 44:1.0 46:1.0 48:0.5 55:0.09090909090909091 98:0.09090909090909091 117:0.5 121:0.028169014084507043 126:0.25 141:0.16666666666666666 356:0.5 503:1.0 550:0.5 682:1.0 814:1.0 929:1.0 989:1.0 1499:1.0 1500:1.0 2592:1.0
5 4:1.0 5:0.14285714285714285 12:0.14285714285714285 17:0.4 19:0.1 20:1.0 21:0.1 23:2.0 93:0.1111111111111111 98:0.09090909090909091 100:0.125 147:1.0 183:1.0 201:0.16666666666666666 218:1.0 285:1.0 424:0.5 487:1.0 499:1.0 1464:1.0
5 4:2.5 6:0.25 8:0.14285714285714285 12:0.14285714285714285 15:0.07692307692307693 17:0.2 21:0.1 22:1.0 23:1.0 24:0.5 46:1.0 48:0.5 49:0.007751937984496124 51:1.0 55:0.09090909090909091 64:0.25 71:1.0 93:0.1111111111111111 117:0.5 137:2.0 210:1.0 255:1.0 315:1.0 316:0.5 488:1.0 592:1.0 640:1.0 830:1.0 871:1.0 1011:1.0 1046:1.0 3156:1.0 6412:1.0
5 4:1.5 8:0.14285714285714285 12:0.42857142857142855 20:2.0 21:0.3 23:3.0 24:0.5 44:1.0 48:1.0 49:0.007751937984496124 51:1.0 55:0.18181818181818182 62:0.16666666666666666 64:0.5 71:1.0 98:0.09090909090909091 100:0.125 121:0.014084507042253521 134:0.16666666666666666 141:0.3333333333333333 153:0.5 162:1.0 183:1.0 190:0.2 210:1.0 285:1.0 427:1.0 457:1.0 479:1.0 483:1.0 534:1.0 537:1.0 641:0.5 664:0.2 740:0.3333333333333333 890:1.0 1084:1.0 1179:1.0 1375:1.0 1525:1.0 1790:1.0 2157:1.0 2207:1.0 2577:1.0 3652:1.0
5 4:1.0 5:0.14285714285714285 11:0.2 12:0.14285714285714285 20:1.5 21:0.1 26:0.02857142857142857 38:0.6666666666666666 49:0.007751937984496124 51:1.0 55:0.09090909090909091 75:0.25 101:1.0 112:1.0 147:1.0 158:0.3333333333333333 366:1.0 367:1.0 601:0.5 1369:1.0 1579:1.0 1708:1.0 1790:1.0 1827:1.0 1831:1.0 3352:1.0 5821:1.0 6050:1.0
5 4:1.5 5:0.14285714285714285 8:0.2857142857142857 12:0.14285714285714285 20:0.5 21:0.1 23:1.0 24:0.5 49:0.007751937984496124 55:0.09090909090909091 67:0.3333333333333333 68:0.5 73:1.0 84:1.0 112:1.0 121:0.014084507042253521 126:0.25 203:0.2 250:1.0 519:1.0 765:1.0 811:1.0 1071:1.0 1344:1.0 1890:0.5 2967:1.0 3469:1.0 4876:1.0
5 4:0.5 6:0.125 7:0.5 11:0.2 20:0.5 21:0.3 23:2.0 26:0.02857142857142857 44:1.0 48:0.5 49:0.007751937984496124 51:1.0 74:1.0 99:1.0 112:2.0 121:0.056338028169014086 133:0.5 142:0.5 185:1.0 241:0.3333333333333333 279:0.5 281:0.16666666666666666 331:1.5 401:1.0 405:1.0 424:0.5 471:1.0 530:1.0 534:1.0 664:0.1 892:1.0 1049:1.0 1144:1.0 1375:1.0 1415:1.0 1595:1.0 1992:1.0 2257:1.0 2470:1.0 4981:1.0
5 4:0.5 8:0.14285714285714285 11:0.2 15:0.07692307692307693 20:0.5 23:2.0 49:0.007751937984496124 51:1.0 71:2.0 73:1.0 75:0.25 117:0.5 136:1.0 141:0.16666666666666666 176:1.0 185:1.0 190:0.2 196:1.0 255:1.0 274:1.0 281:0.16666666666666666 401:1.0 477:1.0 548:1.0 549:1.0 1066:1.0 1149:1.0 1278:1.0 1686:1.0 2231:1.0 3241:1.0 3242:1.0 3689:1.0 5433:1.0
5 4:1.5 19:0.1 21:0.1 23:2.0 26:0.02857142857142857 55:0.09090909090909091 92:1.0 98:0.09090909090909091 100:0.125 121:0.014084507042253521 122:1.0 123:1.0 205:0.5 236:0.5 289:0.25 872:2.0 908:1.0
5 4:0.5 17:0.2 19:0.1 20:1.0 21:0.1 23:3.0 47:1.0 88:1.0 92:1.0 117:0.5 121:0.028169014084507043 126:0.25 148:0.5 331:1.0
5 4:0.5 19:0.1 20:1.0 21:0.1 23:1.0 34:1.0 35:1.0 42:1.0 55:0.09090909090909091 134:0.16666666666666666 148:0.3333333333333333 210:1.0 417:1.0 907:1.0 2525:1.0 2690:1.0
5 4:1.0 19:0.2 20:0.5 21:0.3 23:1.0 26:0.02857142857142857 42:1.0 115:0.1 116:0.2
5 4:1.5 5:0.14285714285714285 9:0.25 12:0.14285714285714285 19:0.1 21:0.1 26:0.02857142857142857 43:0.3333333333333333 62:0.16666666666666666 84:1.0 258:1.0 529:1.0
5 4:0.5 19:0.1 20:0.5 21:0.3 23:2.0 26:0.05714285714285714 121:0.014084507042253521 124:0.5 133:0.5 134:0.16666666666666666 135:1.0 136:1.0 1122:0.5 1718:1.0
5 4:1.0 5:0.14285714285714285 15:0.07692307692307693 21:0.1 23:4.0 26:0.02857142857142857 33:1.0 38:0.3333333333333333 121:0.028169014084507043 126:0.25 134:0.16666666666666666 144:1.0 149:0.3333333333333333 314:2.0 462:0.5 1074:1.0 4630:1.0 5893:1.0
5 4:1.5 21:0.1 23:1.0 26:0.02857142857142857 48:0.5 62:0.16666666666666666 63:0.5 137:1.0 148:0.3333333333333333 331:0.5 451:1.0 464:1.0 541:1.0 563:1.0 1122:0.5 1128:1.0 1415:1.0
5 4:1.5 5:0.14285714285714285 14:1.0 21:0.2 23:1.0 26:0.02857142857142857 40:0.5 67:0.3333333333333333 68:0.5 73:1.0 126:0.25 154:0.3333333333333333 202:0.4 246:1.0 278:0.5 507:1.0 1603:1.0 4576:1.0
5 4:1.0 5:0.14285714285714285 15:0.07692307692307693 20:0.5 23:1.0 54:0.5 96:0.16666666666666666 126:0.25 127:0.5 149:0.3333333333333333 214:1.0 289:0.125 355:1.0 424:0.5 513:1.0 1455:0.5 2040:1.0
5 4:1.0 21:0.1 23:1.0 26:0.02857142857142857 38:0.3333333333333333 70:0.5 194:1.0 289:0.125 298:1.0 424:0.5 1144:1.0
5 4:1.5 17:0.2 24:0.5 63:0.5 98:0.18181818181818182 144:1.0 188:1.0 249:1.0 289:0.25 307:1.0 446:0.3333333333333333 513:1.0 1313:1.0 1363:1.0 1364:1.0 1487:0.5 2748:1.0
5 4:1.0 6:0.125 7:1.5 9:0.25 12:0.14285714285714285 21:0.1 23:1.0 48:0.5 49:0.007751937984496124 51:1.0 62:0.16666666666666666 71:1.0 93:0.1111111111111111 121:0.014084507042253521 133:0.5 134:0.16666666666666666 136:1.0 175:1.0 176:1.0 202:0.2 316:0.5 390:0.5 655:1.0 1405:1.0
5 4:1.0 9:0.25 11:0.2 19:0.2 20:0.5 21:0.1 23:3.0 38:0.3333333333333333 49:0.007751937984496124 51:1.0 55:0.09090909090909091 64:0.5 80:0.3333333333333333 98:0.09090909090909091 115:0.1 116:0.2 137:1.0 200:1.0 201:0.16666666666666666 288:0.3333333333333333 292:0.2 320:1.0 386:1.0 413:1.0 424:0.5 468:1.0 476:1.0 612:1.0 621:1.0 1194:1.0 1197:1.0 2106:1.0 3049:1.0 3051:1.0
5 4:1.5 11:0.2 15:0.07692307692307693 20:0.5 21:0.1 23:2.0 24:0.5 40:0.5 42:1.0 49:0.007751937984496124 51:1.0 55:0.09090909090909091 62:0.16666666666666666 71:1.0 88:1.0 93:0.1111111111111111 125:0.3333333333333333 156:1.0 197:1.0 202:0.2 231:1.0 281:0.16666666666666666 350:1.0 451:1.0 513:1.0 908:1.0 952:1.0 1408:1.0 2040:1.0 2081:1.0 2935:1.0 4977:1.0
5 4:1.0 6:0.125 7:0.5 17:0.2 20:0.5 21:0.1 26:0.02857142857142857 49:0.007751937984496124 54:0.5 71:1.0 84:1.0 93:0.1111111111111111 99:1.0 121:0.014084507042253521 136:1.0 137:1.0 202:0.2 231:1.0 287:1.0 390:0.5 1270:1.0 2191:1.0
5 4:1.0 6:0.25 8:0.14285714285714285 15:0.07692307692307693 21:0.1 23:1.0 45:1.0 47:1.0 48:1.0 49:0.007751937984496124 51:1.0 55:0.18181818181818182 64:0.25 74:1.0 88:1.0 96:0.16666666666666666 98:0.09090909090909091 134:0.16666666666666666 175:1.0 188:1.0 212:0.5 284:1.0 460:0.5 548:1.0 549:1.0 662:0.5 952:1.0 1351:1.0 1448:1.0 2484:1.0 2691:1.0 2898:1.0 3176:1.0
5 4:1.0 8:0.2857142857142857 15:0.07692307692307693 17:0.2 19:0.1 20:0.5 21:0.4 23:3.0 26:0.02857142857142857 38:0.6666666666666666 49:0.007751937984496124 51:1.0 55:0.09090909090909091 68:0.5 88:1.0 98:0.09090909090909091 165:1.0 176:1.0 188:1.0 194:1.0 202:0.2 241:0.3333333333333333 255:1.0 296:1.0 308:1.0 331:0.5 370:1.0 390:0.5 437:1.0 536:1.0 566:1.0 652:1.0 877:1.0 991:1.0 1346:1.0 1509:1.0 1793:1.0 1863:1.0 2714:1.0 2967:1.0 3427:1.0 3547:1.0 4315:1.0
5 4:2.5 6:0.125 7:0.5 8:0.14285714285714285 15:0.07692307692307693 20:2.0 23:2.0 48:0.5 49:0.015503875968992248 51:2.0 55:0.18181818181818182 97:0.5 100:0.125 115:0.1 121:0.014084507042253521 134:0.16666666666666666 137:1.0 141:0.16666666666666666 153:1.0 154:0.3333333333333333 158:0.3333333333333333 175:1.0 176:1.0 180:1.0 200:1.0 210:1.0 264:0.5 284:1.0 333:1.0 366:1.0 424:0.5 641:0.5 652:1.0 653:0.5 682:1.0 814:1.0 890:1.0 903:1.0 1087:1.0 1278:1.0 1341:1.0 1389:0.5 1536:1.0 1620:1.0 2238:1.0 2692:1.0 3122:1.0 3301:1.0 5419:1.0 5429:1.0
5 4:1.0 6:0.125 7:0.5 12:0.14285714285714285 20:0.5 21:0.1 23:3.0 26:0.02857142857142857 38:0.3333333333333333 49:0.015503875968992248 51:2.0 55:0.18181818181818182 80:0.3333333333333333 88:1.0 98:0.09090909090909091 100:0.125 101:1.0 112:1.0 121:0.028169014084507043 122:1.0 132:1.0 139:1.0 149:0.3333333333333333 176:1.0 192:1.0 195:1.0 231:2.0 331:1.0 333:1.0 366:2.0 483:1.0 566:1.0 697:1.0 890:1.0 1060:1.0 1536:1.0 1577:1.0 2041:1.0 6050:1.0
5 4:0.5 6:0.125 7:0.5 12:0.5714285714285714 23:5.0 24:0.5 48:2.5 49:0.023255813953488372 51:2.0 55:0.2727272727272727 71:2.0 88:1.0 98:0.09090909090909091 114:1.0 134:0.16666666666666666 137:2.0 158:0.3333333333333333 159:0.5 236:0.5 251:1.0 269:1.0 331:0.5 383:1.0 537:2.0 596:1.0 641:0.5 662:0.5 675:0.3333333333333333 679:1.0 800:1.0 1189:1.0 1569:1.0 1575:1.0 1576:1.0 1603:1.0 2963:1.0 3074:1.0 3105:2.0 3212:1.0 3344:1.0 3537:1.0 4190:1.0
5 4:1.5 6:0.125 8:0.14285714285714285 11:0.2 12:0.2857142857142857 15:0.23076923076923078 20:1.0 21:0.1 22:1.0 23:4.0 24:1.5 48:1.0 49:0.015503875968992248 51:2.0 55:0.18181818181818182 68:0.5 71:1.0 88:2.0 98:0.18181818181818182 112:1.0 129:0.5 141:0.16666666666666666 158:0.3333333333333333 180:1.0 198:1.0 201:0.16666666666666666 203:0.4 250:1.0 265:1.0 281:0.16666666666666666 283:1.0 289:0.125 292:0.2 331:1.0 397:1.0 424:0.5 499:1.0 506:1.0 814:1.0 1016:1.0 1048:0.5 1130:1.0 1149:1.0 2160:1.0 2816:1.0 3087:1.0 3881:1.0 4076:1.0 4914:1.0 5270:1.0 5295:1.0
5 4:0.5 6:0.125 7:0.5 8:0.14285714285714285 11:0.2 12:0.5714285714285714 15:0.07692307692307693 19:0.1 20:1.0 21:0.1 23:5.0 24:0.5 49:0.015503875968992248 51:2.0 55:0.2727272727272727 64:0.25 68:0.5 71:1.0 78:1.0 88:1.0 95:1.0 121:0.028169014084507043 125:0.3333333333333333 136:1.0 137:2.0 141:0.16666666666666666 212:0.5 236:0.5 248:0.5 331:0.5 343:1.0 471:1.0 646:1.0 652:1.0 703:1.0 1136:1.0 1417:1.0 1489:1.0 1820:1.0 2074:1.0 2158:1.0 2475:1.0 2869:1.0 3042:1.0 3045:1.0 3212:1.0 3689:1.0 5213:1.0
5 4:1.5 6:0.125 11:0.2 12:0.42857142857142855 15:0.07692307692307693 17:0.2 18:0.3333333333333333 20:0.5 23:5.0 24:0.5 46:1.0 48:0.5 49:0.023255813953488372 51:3.0 55:0.09090909090909091 71:3.0 87:0.5 95:1.0 98:0.09090909090909091 100:0.125 112:1.0 121:0.04225352112676056 122:1.0 124:0.5 126:0.25 180:1.0 181:1.0 185:1.0 197:1.0 231:1.0 236:0.5 248:0.5 269:1.0 276:1.0 296:1.0 298:1.0 300:1.0 310:1.0 315:1.0 366:1.0 383:1.0 408:1.0 580:1.0 641:0.5 664:0.1 669:0.5 929:1.0 1285:1.0 1966:1.0 1970:1.0 2231:1.0 2380:1.0
5 4:1.0 6:0.125 7:0.5 12:0.42857142857142855 15:0.07692307692307693 19:0.1 20:1.5 21:0.2 23:3.0 24:0.5 26:0.02857142857142857 38:0.3333333333333333 48:1.0 49:0.023255813953488372 51:3.0 55:0.09090909090909091 62:0.16666666666666666 64:0.5 71:1.0 88:1.0 118:1.0 121:0.014084507042253521 134:0.16666666666666666 158:0.3333333333333333 176:1.0 188:1.0 203:0.2 241:0.3333333333333333 300:1.0 310:1.0 383:1.0 435:1.0 466:1.0 468:1.0 476:1.0 519:1.0 529:1.0 550:0.5 561:1.0 621:1.0 669:0.5 745:1.0 819:1.0 991:1.0 1244:1.0 2380:1.0 3161:1.0 4001:1.0 5480:1.0 5495:1.0 5777:1.0 6714:1.0
5 4:1.5 7:0.5 12:0.2857142857142857 19:0.1 20:1.0 21:0.2 23:5.0 24:1.0 26:0.02857142857142857 46:1.0 48:0.5 49:0.023255813953488372 51:3.0 55:0.2727272727272727 58:0.3333333333333333 62:0.16666666666666666 64:0.5 71:2.0 98:0.18181818181818182 110:1.0 112:2.0 121:0.04225352112676056 136:1.0 137:1.0 158:0.3333333333333333 179:1.0 199:0.3333333333333333 228:1.0 276:1.0 281:0.16666666666666666 300:1.0 314:1.0 323:1.0 611:1.0 664:0.1 862:1.0 929:1.0 1005:1.0 1087:1.0 1232:1.0 1269:1.0 1607:1.0 1966:1.0 2054:1.0 2214:1.0 2257:1.0 2281:1.0 2403:1.0 2462:1.0 2841:1.0 2932:1.0 3037:1.0 3038:1.0 3043:1.0 3214:1.0 4449:1.0
5 4:1.0 8:0.14285714285714285 12:0.8571428571428571 17:0.2 23:4.0 38:0.3333333333333333 48:0.5 49:0.023255813953488372 51:3.0 55:0.2727272727272727 62:0.16666666666666666 64:1.0 71:2.0 114:1.0 115:0.1 129:0.5 133:0.5 158:0.3333333333333333 194:1.0 231:1.0 280:0.3333333333333333 414:0.5 537:1.0 550:0.5 601:0.5 652:1.0 958:1.0 1037:1.0 1053:1.0 1429:1.0 1509:1.0 1554:1.0 1940:1.0 2449:1.0 2892:1.0 2893:1.0 3063:1.0 3064:1.0 3630:1.0
5 4:0.5 6:0.125 8:0.42857142857142855 12:0.7142857142857143 17:0.2 20:1.0 21:0.1 23:6.0 48:0.5 49:0.023255813953488372 51:3.0 55:0.09090909090909091 62:0.16666666666666666 67:0.3333333333333333 71:2.0 98:0.09090909090909091 112:1.0 118:1.0 129:0.5 133:0.5 154:0.3333333333333333 158:0.3333333333333333 198:1.0 223:1.0 241:0.3333333333333333 331:0.5 385:1.0 393:1.0 429:1.0 434:1.0 435:2.0 534:1.0 956:1.0 982:1.0 1081:1.0 1461:1.0 1539:0.5 2400:1.0 2488:1.0 2695:1.0 2878:1.0 3900:1.0 4575:1.0 6175:1.0
5 4:1.0 6:0.125 7:1.0 8:0.14285714285714285 11:0.2 12:0.14285714285714285 20:0.5 21:0.2 23:5.0 48:0.5 49:0.023255813953488372 51:3.0 55:0.09090909090909091 71:2.0 88:1.0 98:0.18181818181818182 158:0.3333333333333333 178:1.0 198:1.0 199:0.3333333333333333 203:0.2 250:1.0 295:1.0 312:1.0 664:0.1 728:1.0 871:1.0 877:1.0 1000:0.5 1067:1.0 1254:1.0 1949:1.0 2009:1.0 2211:1.0 3058:1.0 3060:1.0 4401:1.0 5495:1.0
5 4:2.5 6:0.25 8:0.14285714285714285 9:0.25 11:0.2 12:0.42857142857142855 15:0.07692307692307693 19:0.1 21:0.1 23:6.0 24:0.5 38:0.6666666666666666 42:1.0 46:1.0 48:1.5 49:0.023255813953488372 51:3.0 55:0.18181818181818182 61:1.0 62:0.3333333333333333 63:0.5 85:1.0 96:0.16666666666666666 100:0.125 121:0.014084507042253521 122:1.0 147:1.0 188:1.0 197:1.0 203:0.2 248:1.0 249:1.0 273:1.0 300:1.0 314:1.0 331:0.5 332:1.0 333:1.0 383:1.0 406:1.0 435:1.0 449:1.0 484:0.5 534:1.0 757:1.0 791:1.0 952:1.0 1427:1.0 2553:1.0 2592:1.0 2899:1.0 3078:1.0 4510:1.0
5 4:1.0 6:0.125 9:0.25 17:0.2 19:0.1 23:2.0 38:0.3333333333333333 46:1.0 49:0.015503875968992248 51:2.0 55:0.09090909090909091 64:0.25 112:1.0 125:0.3333333333333333 137:1.0 148:0.6666666666666666 149:0.3333333333333333 154:0.6666666666666666 182:0.5 183:1.0 188:2.0 199:0.3333333333333333 260:1.0 289:0.125 860:2.0 861:3.0 862:1.0 1187:1.0 1370:1.0 2355:1.0 6276:1.0
5 7:0.5 11:0.2 12:0.14285714285714285 18:0.3333333333333333 20:0.5 23:5.0 48:0.5 49:0.015503875968992248 51:2.0 55:0.09090909090909091 71:2.0 75:0.25 96:0.16666666666666666 98:0.09090909090909091 127:0.5 154:0.6666666666666666 158:0.3333333333333333 196:1.0 203:0.2 317:1.0 341:1.0 616:1.0 652:1.0 653:0.5 828:1.0 859:2.0 860:1.0 864:1.0 875:1.0 1116:1.0 1335:1.0 1522:1.0 1582:1.0 3132:1.0 3546:1.0 5623:1.0
5 4:1.0 8:0.14285714285714285 12:0.42857142857142855 23:3.0 49:0.023255813953488372 51:3.0 55:0.09090909090909091 85:1.0 95:1.0 127:0.5 154:0.6666666666666666 173:0.5 231:1.0 236:0.5 289:0.125 317:1.0 333:1.0 341:1.0 354:0.5 366:1.0 435:1.0 439:1.0 507:1.0 828:2.0 858:1.0 859:1.5 860:1.0 861:1.0 862:1.0 1405:1.0 1649:1.0 1701:1.0 2161:1.0 2839:1.0 5213:1.0
5 4:2.5 6:0.125 8:0.14285714285714285 12:0.42857142857142855 20:0.5 23:2.0 29:1.0 38:0.6666666666666666 48:0.5 49:0.015503875968992248 51:2.0 55:0.36363636363636365 64:0.25 71:1.0 127:0.5 137:1.0 139:1.0 154:0.3333333333333333 188:1.0 194:1.0 204:1.0 212:0.5 231:1.0 251:1.0 266:1.0 300:1.0 317:1.0 341:1.0 361:1.0 366:2.0 432:1.0 435:1.0 476:1.0 521:1.0 616:1.0 652:1.0 715:1.0 729:1.0 828:2.0 859:2.0 860:2.0 861:1.0 864:1.0 1075:1.0 1160:1.0 1251:1.0 1335:1.0 2049:1.0 2090:1.0 2921:1.0 3250:1.0 4494:1.0 6567:1.0
5 4:1.0 8:0.2857142857142857 11:0.2 15:0.07692307692307693 19:0.1 21:0.2 23:3.0 26:0.02857142857142857 49:0.023255813953488372 50:1.0 51:3.0 57:1.0 62:0.16666666666666666 64:0.5 71:1.0 112:2.0 121:0.014084507042253521 126:0.25 137:1.0 141:0.16666666666666666 165:1.0 166:1.0 179:1.0 185:1.0 196:1.0 201:0.16666666666666666 204:1.0 211:1.0 231:2.0 251:2.0 253:1.0 269:1.0 292:0.4 296:1.0 315:1.0 317:1.0 331:0.5 333:1.0 385:1.0 424:0.5 452:1.0 477:1.0 479:1.0 550:0.5 920:1.0 1209:1.0 1573:1.0 2211:1.0
5 4:2.5 7:1.0 12:0.2857142857142857 17:0.2 19:0.2 20:0.5 21:0.2 23:1.0 24:0.5 42:1.0 49:0.015503875968992248 51:2.0 55:0.18181818181818182 62:0.16666666666666666 98:0.09090909090909091 112:1.0 114:1.0 126:0.25 158:0.6666666666666666 196:1.0 317:1.0 361:1.0 390:0.5 457:1.0 558:1.0 594:1.0 708:1.0 1370:1.0 1860:1.0 2330:1.0 2357:1.0
5 4:1.5 8:0.14285714285714285 12:0.14285714285714285 19:0.2 20:1.0 23:2.0 24:0.5 49:0.015503875968992248 51:2.0 55:0.18181818181818182 100:0.125 133:0.5 185:1.0 198:1.0 210:1.0 231:1.0 251:1.0 281:0.16666666666666666 317:1.0 361:1.0 390:0.5 488:2.0 936:0.5 1149:1.0 1344:1.0 1539:0.5 1799:1.0 2077:1.0 2134:1.0 3157:1.0 4081:1.0
5 4:1.5 6:0.125 8:0.2857142857142857 12:0.14285714285714285 17:0.2 19:0.2 20:1.5 21:0.2 23:1.0 48:0.5 49:0.007751937984496124 51:1.0 55:0.09090909090909091 64:0.25 80:0.3333333333333333 92:1.0 158:0.3333333333333333 165:1.0 312:1.0 317:1.0 331:0.5 534:1.0 562:1.0 641:0.5 682:1.0 2585:0.5 2695:1.0 2724:1.0 2898:1.0 3938:1.0
5 4:2.5 49:0.007751937984496124 51:1.0 55:0.09090909090909091 68:0.5 96:0.16666666666666666 121:0.014084507042253521 136:1.0 251:1.0 317:1.0 361:1.0 390:0.5 401:1.0 601:0.5 871:1.0 1476:0.5 2296:1.0
5 4:1.0 5:0.14285714285714285 12:0.14285714285714285 17:0.2 19:0.1 20:1.0 21:0.3 23:1.0 26:0.02857142857142857 48:0.5 49:0.007751937984496124 51:1.0 113:0.5 114:1.0 116:0.2 165:1.0 317:1.0 743:1.0
5 4:1.5 8:0.14285714285714285 12:0.14285714285714285 18:0.3333333333333333 19:0.2 21:0.1 23:2.0 24:0.5 26:0.02857142857142857 38:0.3333333333333333 48:1.0 49:0.007751937984496124 51:1.0 55:0.09090909090909091 64:0.25 71:1.0 121:0.014084507042253521 165:1.0 201:0.16666666666666666 236:0.5 244:0.5 248:0.5 255:1.0 296:1.0 317:1.0 333:1.0 353:1.0 361:1.0 362:1.0 365:1.0 483:1.0 746:1.0 804:1.0 830:1.0 1546:1.0 1752:1.0 3078:1.0
5 4:0.5 6:0.125 8:0.14285714285714285 12:0.2857142857142857 19:0.1 20:0.5 23:3.0 25:1.0 38:0.3333333333333333 48:1.0 49:0.007751937984496124 51:1.0 68:0.5 88:1.0 97:0.5 98:0.09090909090909091 121:0.014084507042253521 126:0.25 136:1.0 154:0.3333333333333333 193:1.0 236:0.5 281:0.16666666666666666 289:0.125 317:1.0 361:1.0 363:1.0 364:1.0 365:1.0 418:1.0 424:0.5 534:1.0 1149:1.0 1199:1.0 1202:1.0 2213:1.0
5 4:1.5 8:0.14285714285714285 23:2.0 38:0.3333333333333333 42:1.0 55:0.09090909090909091 76:1.0 78:1.0 87:0.5 115:0.1 116:0.2 148:0.5 181:1.0 185:1.0 449:1.0 952:1.0 2384:1.0 4452:1.0
5 4:1.0 7:0.5 11:0.2 15:0.15384615384615385 22:1.0 23:1.0 73:1.0 114:1.0 120:0.2 141:0.16666666666666666 148:0.5 173:0.5 203:0.2 908:1.0 1370:1.0 2176:1.0 6088:1.0
5 4:1.5 19:0.1 20:0.5 21:0.3 23:1.0 26:0.02857142857142857 58:0.3333333333333333 64:0.25 98:0.09090909090909091 234:1.0 424:0.5 446:0.3333333333333333 462:0.5 715:1.0 1269:1.0 2288:1.0 2304:0.5
5 4:1.0 5:0.14285714285714285 21:0.2 23:1.0 26:0.05714285714285714 189:1.0 390:0.5 2233:1.0
5 4:1.0 5:0.14285714285714285 12:0.14285714285714285 17:0.2 19:0.1 20:1.0 21:0.2 23:1.0 55:0.09090909090909091 64:0.25 68:0.5 71:1.0 80:0.3333333333333333 98:0.09090909090909091 176:1.0 288:0.3333333333333333 354:0.5 366:1.0 488:1.0 740:0.3333333333333333 1364:1.0 1458:1.0 1617:1.0 1720:1.0 2695:1.0 4466:1.0 6202:1.0
5 4:0.5 5:0.14285714285714285 11:0.2 20:1.0 23:3.0 48:1.0 49:0.007751937984496124 50:1.0 51:1.0 55:0.18181818181818182 64:0.25 71:1.0 76:1.0 88:2.0 102:1.0 110:1.0 121:0.014084507042253521 129:0.5 236:0.5 244:0.5 253:1.0 315:1.0 316:0.5 428:1.0 521:1.0 550:0.5 746:1.0 1742:1.0 2222:2.0 2339:1.0 2766:1.0 3696:1.0 4561:1.0
5 4:0.5 12:0.2857142857142857 20:1.0 21:0.2 23:2.0 26:0.02857142857142857 38:0.3333333333333333 42:1.0 49:0.007751937984496124 50:1.0 51:1.0 55:0.2727272727272727 93:0.1111111111111111 98:0.18181818181818182 113:0.5 236:0.5 285:1.0 292:0.2 365:1.0 452:1.0 1065:0.3333333333333333 2339:1.0 3288:1.0
5 17:0.2 20:0.5 21:0.1 23:2.0 24:0.5 25:1.0 42:1.0 55:0.09090909090909091 64:0.5 80:0.3333333333333333 88:1.0 121:0.014084507042253521 126:0.25 134:0.16666666666666666 156:1.0 280:0.3333333333333333 459:1.0 553:1.0 1525:1.0
|
f6d58d3d4a1dc66ce7d850a77866c0fce9a33858
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/rooteig/rooteig1.sce
|
4428203558c13a7aacb74bdef5f8007a0ef3bf79
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 196
|
sce
|
rooteig1.sce
|
//i/p args are x and p
clc;
clear;
exec('/home/debdeep/Desktop/TEST NOW!!/rooteig/rooteig.sci');
x=[1 2 3 4 5 67 8 9];
p=2;
y=rooteig(x,p);
disp(y);
//output
// 0.
// 2.1797329
|
9e6cdd5037c29dd2f118bc34406a52a7983e765f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1664/CH2/EX2.8/Ex2_8.sce
|
fdd960acdfe1ebd6a69ecba1ac8441cf05de7133
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 307
|
sce
|
Ex2_8.sce
|
//Example No.2.8.
// Page No.62.
clc;clear;
Op = 5*10^(-3);//Output power -[W].
I = 10*10^(-3);//Current -[A].
V = 3*10^(3);//Voltage -[V].
Ip = (10*10^(-3)*3*10^(3));//Input power.
Eff = (((Op)/(Ip))*(100));//Efficiency of the laser.
printf("\nThe efficiency of the laser is %.6f percent",Eff);
|
66d1d9359d3de0c2cea426dfd65f88c1beff7c1a
|
c3c3833ed7a93cc597ebb6c13fd2239f66519209
|
/ammod/ammod_Test_Two.sce
|
199752e4b26a1c0a4c26ca9cfd04ff3bdb269b5f
|
[] |
no_license
|
UsamaFoad/ScilabToolboxTesting
|
bfae1dcb69f26b96d31a776ff16b3d1cb3684730
|
f6cefd595833dfa6bcc454068b2539f70110246c
|
refs/heads/master
| 2021-01-10T15:21:58.079787
| 2016-04-08T14:55:15
| 2016-04-08T14:55:15
| 55,781,088
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,248
|
sce
|
ammod_Test_Two.sce
|
// Tester name: Usama A.F. Khalil
// usamafoad@gmail.com
// Before run this testes do not forget to execute ammod function in Scilab, ex.
// exec('<Drive Letter><Path to ammod.sci file>\ammod.sci',-1)
// then you can run code for each block by selecting it then Ctrl + E
//
// The aim of current test(s) is to check the three status for ammod function, i.e.,
// I) Y = ammod(x, Fc, Fs)
// II) Y = ammod(x, Fc, Fs, INI_PHASE)
// III) Y = ammod(x, Fc, Fs, INI_PHASE, CARRAMP)
//==========(Case I)=============================================================
// I) Y = ammod(x, Fc, Fs)
// Test the amplitude modulation where the modulated signal has zero initial
// phase and zero carrier amplitude (suppressed-carrier modulation). I'll use
// the function to calculate the modulation and compare the results to manual
// calculation to the same data. The expected result is equality between the
// results from this two different method - if the function work correctly.
// The data will satisfy that Fs > 2*(Fc+BW)
//
// results: Passed
//
fc = 10;
fs = 100;
t = [0:1/fs:fs/10];
x = sin(2*%pi*t);
y_fun = ammod(x,fc,fs);
x=x(:);
t = (0:1/fs:(size(x,1)-1)/fs)';
t = t(:,ones(1,size(x,2)));
y_man = (0 + x).*cos(2*%pi*fc*t+ 0);
y_man = y_man';
figure
subplot(3,1,1); plot(y_fun);
title('Modulated signal calculated by function');
subplot(3,1,2); plot(y_man);
title('Modulated signal calculated manualy');
subplot(3,1,3); plot(y_fun, 'g'), plot(y_man, 'r') ;
title('Both (only one line will show if they identical)');
if y_fun == y_man then
disp("Passed");
else
disp("Failed");
end
//==========(Case II)============================================================
// II) Y = ammod(x, Fc, Fs, INI_PHASE)
// Test the amplitude modulation with initial phase in radians.
// I'll use the function to calculate the modulation and compare the results to:
//(A) manual calculation to the same data with initial phase
//(B) manual calculation to the same data WITHOUT specifying initial phase
// The expected results/output is equality between the results from the function
// and the first case (A) and difference between the function results and the
// second case (B). i.e., we need to know if adding the ini_phase to the function
// make any difference or not.
// The data will satisfy that Fs > 2*(Fc+BW)
//
// results: Passed
//
fc = 10;
fs = 100;
t = [0:1/fs:fs/10];
x = sin(2*%pi*t);
ini_phase = 5;
y_fun = ammod(x,fc,fs,ini_phase);
x=x(:);
t = (0:1/fs:(size(x,1)-1)/fs)';
t = t(:,ones(1,size(x,2)));
//(A) y with ini_phase
y_man_A = (0 + x).*cos(2*%pi*fc*t+ ini_phase);
y_man_A = y_man_A';
//(B) y without ini_phase
y_man_B = (0 + x).*cos(2*%pi*fc*t+ 0);
y_manB = y_man_B';
title_A=["Both Modulated signal y_fun & y_man_A";"(only one line will show if they identical)"];
title_B=["Both Modulated signal y_fun & y_man_B";"(only one line will show if they identical)"];
figure
subplot(3,1,1); plot(y_fun);
title('Modulated signal calculated by function');
subplot(3,1,2); plot(y_fun, 'r'), plot(y_man_A, 'g');
title(title_A);
subplot(3,1,3); plot(y_fun, 'r'), plot(y_man_B, 'g') ;
title(title_B);
if y_fun == y_man_A then
disp("Passed");
else
disp("Failed");
end
if y_fun == y_man_B then
disp("Failed");
else
disp("Passed");
end
//==========(Case III)===========================================================
// III) Y = ammod(x, Fc, Fs, INI_PHASE, CARRAMP)
// Test the amplitude modulation with initial phase carrier amplitude
// (transmitted-carrier modulation) I'll use the function to calculate the
// modulation and compare the results to:
//(A) manual calculation to the same data WITH carrier amplitude
//(B) manual calculation to the same data WITHOUT specifying carrier amplitude
// The expected results/output is equality between the results from the function
// and the first case (A) and difference between the function results and the
// second case (B). i.e., we need to know if adding the CARRAMP to the function
// make any difference or not.
// The data will satisfy that Fs > 2*(Fc+BW)
//
// results: FAILED
//
fc = 10;
fs = 100;
t = [0:1/fs:fs/10];
x = sin(2*%pi*t);
ini_phase = 5;
carr_amp = 9;
y_fun = ammod(x,fc,fs,ini_phase, carr_amp);
x=x(:);
t = (0:1/fs:(size(x,1)-1)/fs)';
t = t(:,ones(1,size(x,2)));
//(A) y with carr_amp
y_man_A = (carr_amp + x).*cos(2*%pi*fc*t+ ini_phase);
y_man_A = y_man_A';
//(B) y without carr_amp
y_man_B = (0 + x).*cos(2*%pi*fc*t+ ini_phase);
y_manB = y_man_B';
title_A=["Both Modulated signal y_fun & y_man_A";"(only one line will show if they identical)"];
title_B=["Both Modulated signal y_fun & y_man_B";"(only one line will show if they identical)"];
figure
subplot(3,1,1); plot(y_fun);
title('Modulated signal calculated by function');
subplot(3,1,2); plot(y_fun, 'g'), plot(y_man_A, 'r');
title(title_A);
subplot(3,1,3); plot(y_fun, 'r'), plot(y_man_B, 'g') ;
title(title_B);
if y_fun == y_man_A then
disp("Passed");
else
disp("Failed");
end
if y_fun == y_man_B then
disp("Failed");
else
disp("Passed");
end
// The results show that the function always ignore carrier amplitude value and
// consider it as zero. The reason for this is the 'else' statemnt in lines 47-48
// this allows evaluate to true and set carr_amp=0!
|
9f5fbc38f014468897f395b36974a601de021593
|
a5f0fbcba032f945a9ee629716f6487647cafd5f
|
/Machine_Learning/macros/Perceptron.sci
|
36406c914faef4fc3eb4b565cf933b73022ff085
|
[
"BSD-2-Clause"
] |
permissive
|
SoumitraAgarwal/Scilab-gsoc
|
692c00e3fb7a5faf65082e6c23765620f4ecdf35
|
678e8f80c8a03ef0b9f4c1173bdda7f3e16d716f
|
refs/heads/master
| 2021-04-15T17:55:48.334164
| 2018-08-07T13:43:26
| 2018-08-07T13:43:26
| 126,500,126
| 1
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 592
|
sci
|
Perceptron.sci
|
// Macro for single perceptron -- Scilab
// Function to train a single perceptron model with given
// rate and iterations to converge
function theta = perceptronTrain(x, y, rate, iter)
// Making an initial guess
theta = (1.0/length(x(1, :)))*ones(1, length(x(1, :)));
// Training
for i = 1:iter
sigm = x*theta';
theta = theta + rate.*((y - sigm)'*x);
error = 0.5*norm(y - x*theta');
end
endfunction
// Function to predict the target given features and model parameter theta
function ypred = perceptronPredict(x, theta)
ypred = 1.0./(1.0 + exp(-x*theta'));
endfunction
|
8dceb996db6837a900b4109fcbaa233eec2cd351
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3041/CH3/EX3.12/Ex3_12.sce
|
ac54942fcdb1e2a90c8b1d5e5b0b7c8b189f6171
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 944
|
sce
|
Ex3_12.sce
|
//Variable declaration
k=0.0002 //device parameter
Vt=4 //thevinin voltage(V)
Vdd=24 //drain voltage(V)
Id0=3 //drain current(mA)
//Calculations
Vgs=(sqrt(Id0/k))+4 //as Id=k(Vgs-Vt)^2
Rd=-(Vgs-Vdd)/Id0 //as Vds=Vdd-IdRd and Vgs=Vds=7.87
k=0.0003 //device parameter
syms Id
expr = solve([Id**2-7.5*Id+13.7],[Id])
printf ("equation has 2 solutions")
disp(expr) // putting value of k=0.0003 in eq of Id,
Id1=3.15 // we get Vgs=Vds=24-5.4Id and putting Vgs again in Id we get,
// Id^2-7.5Id+13.7=0
Idchange=((Id1-Id0)/Id0)*100 //changed Id(mA)
//Result
printf ("change in Id is %.1f %% increase",Idchange)
|
f0d6d3e873e373606cadaa23cab85ac48f321497
|
d65667bd6da157e725e5083a95c7a5e3c5e50371
|
/hdf5/HDF5Examples-0.1.1-Source/C/H5T/testfiles/h5ex_t_opaque.tst
|
025097681018902666c9a4585abc1a3ce3b301ce
|
[] |
no_license
|
DCC-Lab/Umuco
|
4748640ddd5869f193303057445fccbf2e1cc6c5
|
41c38cd6c8e8d771708959eb02c9dee054148cbc
|
refs/heads/master
| 2020-08-07T01:11:31.456247
| 2019-02-24T18:16:16
| 2019-02-24T18:16:16
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 112
|
tst
|
h5ex_t_opaque.tst
|
Datatype tag for DS1 is: "Character array"
DS1[0]: OPAQUE0
DS1[1]: OPAQUE1
DS1[2]: OPAQUE2
DS1[3]: OPAQUE3
|
8d5fb45b8ffdcb10658272d69e8dc04a184a06b6
|
c9285067e636c3d90d2ba32cd79618a83934bb7f
|
/Rayleigh_PM_3.sce
|
49a85fa489edf884255ce237f6b2c71a0565fc53
|
[] |
no_license
|
SreekanthGunishetty/ScilabAssignment
|
7313cc47e31aabad725b7f2b067f31e0ecf7f41f
|
b9df679f70d16af141534d1b18105c60476c726a
|
refs/heads/master
| 2021-01-02T20:22:47.454878
| 2020-04-18T10:15:08
| 2020-04-18T10:15:08
| 239,784,550
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,133
|
sce
|
Rayleigh_PM_3.sce
|
clc;clear;close;
A=[]
disp("Rayleigh Power Method")
printf("\nEnter a 3x3 matrix:\n\n")
for i=1:3
for j=1:3
printf("Enter element A(%d,%d):",i,j)
A(i,j)=input("")
end
end
disp(A,"The matrix is:")
x0=[]
disp("*****************************************************************")
printf("\nEnter the initial Eigen Vector:\n")
for i=1:3
x0(i,1)=input("")
end
disp(x0,"Initial Eigen Vector")
a=max(x0)
disp(a,"Initial Largest Eigen Value")
disp("****************************************************************")
v=A*x0
i=1
while abs(max(v)-a)>0.002 then
printf("Iteration Number = %d\n",i)
i=i+1
a=max(v)
disp(a,"Current Eigen Value:")
x1=v/a
disp(x1,"Current Eigen Vector:")
v=A*x1
disp("************************************************************")
end
format('v',5)
disp("*************************************************************")
printf("Iteration Number = %d \n",i)
printf("(Equal Eigen Vectors in iteration number %d and %d)\n",i-1,i)
disp("The largest Eigen Value:")
disp(max(v))
disp("The largest Eigen Vector:")
disp(v/a)
|
b1bee5fe89831a36bbb29800c39d7570a1cc03c9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/199/CH6/EX6.16.a/Example_6_16_a.sce
|
e5610738450884731b99d7bca28fbc4b3f64f7cf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 527
|
sce
|
Example_6_16_a.sce
|
// Chapter6
// Page.No-238
// Example_6_16_a
// Design of differentiator
// Given
clear;clc;
C1=0.1*10^-6; // Assume
fa=1*10^3; // Freq at which gain is 0 dB
Rf=1/(2*%pi*fa*C1); // Using fa=1/(2*%pi*Rf*C1)
printf("\n Feedback resistance is = %.1f ohm \n",Rf)
Rf=1.5*10^3; // Approximation
fb=20*10^3; // Gain limiting freq
R1=1/(2*%pi*fb*C1);
printf("\n Resistance,R1 is = %.1f ohm \n",R1)
R1=82; // Approximation
Cf=R1*C1/Rf;
printf("\n Capacitance,Cf is = %.10f farad \n",Cf)
Cf=0.005*10^-6; // Approximation
|
bb4907f79e8ad1d874c2b455c94056dafd469f1d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2165/CH4/EX4.14/4_14.sce
|
a45186c469972ac0e7e5e64a49acb0c82baf6a11
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 533
|
sce
|
4_14.sce
|
clc
//initialisation of variables
a=1.025//in^2
h=18//in
h1=24//in
x=8.2//percent
v=15//in
v2=6.9//ft^3
p=0.74//lb/in^2
p1=50//lb/in^2
p2=83//lb/in^2
P3=48.0//lb/in
P1=29.8//lb/in^2
P2=14.6//lb/in^2
h2=29.8//in
D=(%pi/4)*(3/2)^2*2//ft^3
v1=23400//ft.lb
W=a*v1//ft.lb
V=0.082*D//ft^3
Q=1.530//ft^3
//CALCULATIONS
I=V+Q//ft^3
P=P3+P2//lb/in^2
V1=p*v2//ft^3
W1=I/V1//lb
S=p2+P2///l/in^2
H=659.06//C.H.U/lb
T=W/(H*W1*1400)*100//percent
//RESULTS
printf('The thermal efficiency of the engine=% f percent',T)
|
8fe474eb7770643787efa5343a9b7abf8fa9c089
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2741/CH1/EX1.7/7.sce
|
b527a4c316ed6525caa147e76ebaca2d14e7513e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 485
|
sce
|
7.sce
|
clc
clear
//Input data
Pt=100;//Pressure of air when the bulb is placed in hot water in cm of Hg
P100=109.3;//Pressure of air in a constant volume thermometer at 100 degree centigrade in cm of Hg
P0=80;//Pressure of air in a constant volume thermometer at 0 degree centigrade in cm of Hg
//Calculations
t=((Pt-P0)/(P100-P0))*100;//The temperature of the hot water in degree centigrade
//Output data
printf('The temperature of the hot water is %3.2f degree centigrade',t)
|
b514b9be2cead74aca922c0e9d331f6f5f06b185
|
717ddeb7e700373742c617a95e25a2376565112c
|
/671/CH5/EX5.13/5_13.sce
|
dfe16ada2471b933651b9d2d97314cbc18469a82
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 192
|
sce
|
5_13.sce
|
f0=1E6
Cmax=500E-12
C=450E-12
w0=2*%pi*f
L=1/(w0*w0*Cmax)
w=1/sqrt(L*C)
f=w/(2*%pi)
wb=2*2*%pi*(f-f0)
r=wb*L
Q0=2*%pi*f*L/r
disp(Q0,L,r)
////////calculation mistakes in book
|
f69a3d4ceb64501d058bb5b1e6e82d853fc751e7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/689/CH16/EX16.3/3.sce
|
a3bd7dbe259c12734309c08d6094a7b78e9c2a11
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 945
|
sce
|
3.sce
|
clc; funcprot(0);
//Example 16.3 Horsepower required at sea level
// Initialisation of variables
W = 11200;
S = 365;
rho = 0.002378;
// Calculations
Cl = poly(0,'Cl');
Cd = 0.023 + 0.0445*Cl^2;
Coeff_Velo = 19.77*sqrt(W/S); //Using equtaion 8.5.2
Coeff_HP = W^1.5/(550*sqrt(rho*S/2)); //Using equation 8.16.1
Cl = [0.2 0.3 0.4 0.6 0.8 1.0 1.2 1.4]';
Result = zeros(8,8);
Result(:,1) = Cl;
Result(:,2) = Cl^2;
Result(:,3) = sqrt(Cl);
Result(:,4) = Cl^1.5;
Result(:,5) = horner(Cd,Cl);
Result(:,6) = diag(diag(Result(:,5))*inv(diag(Result(:,4))));
Result(:,7) = Coeff_HP*Result(:,6);
Result(:,8) = Coeff_Velo*diag(inv(diag(Result(:,3))));
disp(Result,"!!Cl Cl^2 Cl^0.5 Cl^1.5 Cd Cd/Cl^1.5 Hp req V(mph) !!") ;
clf();
plot2d(Result(:,8),Result(:,7));
xlabel("Miles Per Hour");
ylabel("HorsePower");
title("Power Curves ");
set(gca(),"grid",[1 1])
|
67af2700e45123882bb5b66b6db9bfce3891263f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1871/CH7/EX7.5/Ch07Ex5.sce
|
330e83e1219cb2cb1179369ce4892b357b41ee9f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 547
|
sce
|
Ch07Ex5.sce
|
// Scilab code Ex7.5: Pg:288 (2008)
clc;clear;
m = 3.34e-027; // Mass of deutron, gm
q = 1.6e-019; // Charge, coulomb
r = 0.2; // Radius of the path of deutron, meter
B = 1.5; // Magnetic field, weber per meter square
v = q*B*r/m; // velocity of the deutron, m/s
E = 1/2*m*v^2/1.6e-013; // Energy of the deutron, MeV
printf("\nThe velocity of deutron = %5.3e m/s ", v);
printf("\nThe energy of deutron = %5.3f MeV ", E);
// Result
// The velocity of deutron = 1.437e+007 m/s
// The energy of deutron = 2.156 MeV
|
a4ee406b6edb3233cc0ccc574a861497e26547ee
|
87749481136b7b72a47930f587f27667e0c0f97d
|
/DFT/Task_1.sce
|
7d32c0b2966fe56e4f236b71fe1910e5ed817dc7
|
[
"MIT"
] |
permissive
|
brooky56/Digital_Signal_Processing
|
cf15e5ac443a16edcb3efc8d7703cf4746dedcba
|
f28651e40b0a99b79e9ba27deabc4db8bfc7f08e
|
refs/heads/master
| 2022-06-30T17:59:28.072522
| 2020-05-11T18:58:39
| 2020-05-11T18:58:39
| 242,598,653
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,482
|
sce
|
Task_1.sce
|
clear all;
b = chdir('C:\Users\work\OneDrive\Documents\SciLab\lab_v5')
exec('DFT.sci')
exec('FFT.sci')
figure(0)
f = 5;
Fs = 64;
dt=1/Fs;
T = 4;
t =0:dt:T-dt;
signal = cos(2*%pi*f*t);
plot(signal);
xlabel("Time")
ylabel("Amplitude")
figure(1)
subplot(2,1,1)
a = DFT(signal)
frequinces = (0:length(signal)-1)/length(signal)*Fs;
plot(frequinces, abs(a))
xlabel("Frequency, Hz", 'fontsize', 2)
ylabel("Freq amplitude", 'fontsize', 2)
title("Frequency response of final signal (my dft)", 'fontsize', 3)
subplot(2,1,2)
plot(frequinces, abs(fft(signal)))
xlabel("Frequency, Hz", 'fontsize', 2)
ylabel("Freq amplitude", 'fontsize', 2)
title("Frequency response of final signal (build-in function)", 'fontsize', 3)
figure(2)
subplot(2,1,1)
a = DFT(signal)
a = fftshift(a)
frequinces = linspace(-Fs/2, Fs/2, length(a));
plot(frequinces, abs(a))
xlabel("Frequency, Hz", 'fontsize', 2)
ylabel("Freq amplitude", 'fontsize', 2)
title("Frequency response of final signal (my dft)", 'fontsize', 3)
subplot(2,1,2)
a = fft(signal)
a = fftshift(a)
frequinces = linspace(-Fs/2, Fs/2, length(a));
plot(frequinces, abs(a))
xlabel("Frequency, Hz", 'fontsize', 2)
ylabel("Freq amplitude", 'fontsize', 2)
title("Frequency response of final signal (build-in function)", 'fontsize', 3)
figure(3)
b = FFT(signal)
b = fftshift(b)
plot(frequinces, abs(b))
xlabel("Frequency, Hz", 'fontsize', 2)
ylabel("Freq amplitude", 'fontsize', 2)
title("Frequency response of final signal (my fft)", 'fontsize', 3)
|
02a7e037b4ae9b667fb28633e53b412e66ce2433
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/575/CH6/EX6.5.2/6_5_2.sce
|
b41570802d5d6a41f59cee1e0452eaa0559015aa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 538
|
sce
|
6_5_2.sce
|
clc
pathname=get_absolute_file_path('6_5_2.sce')
filename=pathname+filesep()+'652.sci'
exec(filename)
printf(" All the values in the textbook are Approximated hence the values in this code differ from those of Textbook")
outputx=S/(S+100)
printf("x=%f Kg KNO3/Kg",outputx)
disp("Water balance")
m1=basis*(1-inputx)/(1-outputx)
printf(" \n m1=%f Kg",m1)
disp("Mass balance")
m2=basis-m1
printf(" \n m2=%f kg",m2)
percentage=m2*100/(basis*inputx)
printf(" \n Percentage of KNO3 in the feed that crystallizes is %f",percentage)
|
977c5a4cf53989e412e7a989d9adac8858903787
|
367fb86cc145c187bc8aa89afab0f15f7e8826e4
|
/functions/cv_rgb2gray_path.sci
|
ea4fc04d8a49159012ccfbe61becaf5f4128a25d
|
[] |
no_license
|
rishubhjain/funcforscilab
|
19180cefb15a88df5cd55d91c2e50ab1829e4860
|
3f9fb8b1f467e1e89da1297bee8bd14645da5605
|
refs/heads/master
| 2021-01-23T00:15:23.622940
| 2015-04-22T09:32:28
| 2015-04-22T09:32:28
| 31,612,595
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 138
|
sci
|
cv_rgb2gray_path.sci
|
function [image] = cv_rgb2gray_path(path)
pyImport rgb2gray_file
image=rgb2gray_file.rgb2gray(path)
endfunction
|
211195f36dcfb561d3b1561d562b732f9656c464
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1946/CH2/EX2.14.b/Ex_2_14_b.sce
|
e552a0c2ec115094e03043133b3211c99363d9f1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 378
|
sce
|
Ex_2_14_b.sce
|
// Example 2.14.b:Maximum Core Readius
clc;
clear;
close;
n1=1.48;//Waveguide Refractive Index
d= 0.01;// Cange in core-cladding refractive index
a=2;// parabolic refractive index
h=1.3;//wavelngth in micro meters
v= 2.4*sqrt(1+(2/a));//maximum value of normalised frequence
a= (v*h)/(2*%pi*n1*sqrt(2*d));//Core Radius
disp(a,"maximum core radius in micro meters")
|
8aaa898ee4cfb641de22a2ded81afd4cb25ed77a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3812/CH1/EX1.14.c/1_14_c.sce
|
d25dcad50876e7c158a2ce62f1975a12fe3fe5b2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 205
|
sce
|
1_14_c.sce
|
//Example 1.14<c>
// Find wheather the following signal is periodic or not x3(n)=e^(i*7*pi*n)
clc;
n=-21:21;
x=exp(%i *7* %pi *n);
f=(7*%pi)/(2*%pi);
N=1/f;
disp(N,'the given signal is periodic');
|
6491f0d48366ad4021e9ae91413c54730705aaca
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3647/CH5/EX5.4/ex5_4.sce
|
b85e88ff7fd515a255cc2b1db283d151ea9340f7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 300
|
sce
|
ex5_4.sce
|
//Solutions to Problems In applied mechanics
//A N Gobby
clear all;
clc
//initialisation of variables
d=60//rev/min
s=5//in
v=5//in/s
a=25.2//in/s
x=2.23//in
b=4.59//in
z=20.0//in
//CALCULATIONS
U=x*v//in/s
V=b*v//in/s
B=V/z//rad/s
//RESULTS
printf('the angular velocity=% f rad/s',B)
|
00305733e81fda4d6df5b11dbfb4708cf3e2d843
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/779/CH8/EX8.19/8_19.sce
|
f039e0ea166334cd14127e07bd0681bcc19233c5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 298
|
sce
|
8_19.sce
|
T0 = 300; T = 1500;
Q = -8.5; W = 8.5;
// Case (a)
I = Q*(1-T0/T) + W;
R = Q*(1-T0/T);
disp("kW",I,"and",R,"Rate of availability transfer with heat and the irreversibility rate are")
// Case (b)
T1 = 500;
Ib = - Q*(1-T0/T) + Q*(1-T0/T1);
disp("kW",Ib,"Rate of availability in case b is")
|
c1aa116e63f38e72624d8fd443c70e49f10ef216
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3831/CH18/EX18.9/Ex18_9.sce
|
161812b5e997f048beb6e33d55cfc245aaff9651
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 377
|
sce
|
Ex18_9.sce
|
// Example 18_9
clc;funcprot(0);
// Given data
T=20.0+273.15;// K
// Calculation
theta_v=2740;// K
c_vbyR=(5/2)+((((theta_v/T)^2)*exp((theta_v/T)))/(exp(theta_v/T)-1)^2);
Y=8.3143;// kJ/kg.K
M_NO=30.01;// The molecular mass of nitrous oxide
R_NO=Y/M_NO;// kJ/kg.K
c_v_NO=R_NO*c_vbyR;// kJ/kg.K
printf("\nThe value of c_v/R for nitrous oxide is %1.2f.",c_vbyR);
|
ec105c6ebb1e5f77456d8c0adc6e4a5ba871104b
|
cfadc8057fba63a7793bcee7ce8e2e8c3e5dc359
|
/solvers/IncNavierStokesSolver/Tests/Pyr_channel_SVV.tst
|
d6ea89dd1050c88194741a9a82b22f6f65e4ab32
|
[
"MIT"
] |
permissive
|
DarkOfTheMoon/nektar
|
a5132b836f9fb0894ec54c1f373c08df947dd5ca
|
b36f4214c0907f877fed8dfc08e53bd607eaea24
|
refs/heads/master
| 2021-01-20T03:59:10.430634
| 2017-04-27T11:50:26
| 2017-04-27T11:50:26
| 89,609,337
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,011
|
tst
|
Pyr_channel_SVV.tst
|
<?xml version="1.0" encoding="utf-8" ?>
<test>
<description>3D channel flow, Pyramidic elements, using SVV</description>
<executable>IncNavierStokesSolver</executable>
<parameters>Pyr_channel_SVV.xml</parameters>
<files>
<file description="Session File">Pyr_channel_SVV.xml</file>
</files>
<metrics>
<metric type="L2" id="1">
<value variable="u" tolerance="1e-10">2.6682e-10</value>
<value variable="v" tolerance="1e-10">2.67015e-10</value>
<value variable="w" tolerance="1e-9">1.15296e-09</value>
<value variable="p" tolerance="1e-8">2.8591e-08</value>
</metric>
<metric type="Linf" id="2">
<value variable="u" tolerance="1e-9">1.838e-09</value>
<value variable="v" tolerance="1e-9">1.90318e-09</value>
<value variable="w" tolerance="1e-8">1.42728e-08</value>
<value variable="p" tolerance="1e-6">1.0353e-06</value>
</metric>
</metrics>
</test>
|
3c8210fb55187902b648a9f628d3f7afb25cf3c9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/409/CH12/EX12.5/Example12_5.sce
|
6d98f902ac23c5413e2e2eac5f115cc799e55501
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,192
|
sce
|
Example12_5.sce
|
clear ;
clc;
//Page No.367
// Example 12.5
printf('Example 12.5\n\n');
// Solution fig.E12.5
// Given
F = 100 ;// Overall feed/basis - [kg]
F_n_C5H12 = 0.80 ;// Fraction of n_C5H12 in overall feed
F_i_C5H12 = 0.20 ;// Fraction of i_C5H12in overall feed
S_i_C5H12 = 1 ;// Fraction of i_C5H12 in isopentane stream
P_n_C5H12 = .90 ;// Fraction of n_C5H12 in overall product
P_i_C5H12 = .10 ;// Fraction of i_C5H12 in overall product
// Overall Balances
P = (F*F_n_C5H12)/P_n_C5H12 ;//Product Material Balance of n_C5H12 -[kg]
S = F - P ;// Isopentane stream (S) from overall material balance - [kg]
// Balance around isopentane tower
// Let x be kg of butane free gas going to isopentane tower , y be the n-C5H12 stream leaving the isopentane tower
// Solve following Equations by Matrix method
// x = S + y - By Total materal balance
// x*F_n_C5H12 = y
a = [1 -1;F_n_C5H12 -1] ;// Matrix of coefficients of unknown
b = [S;0] ;// Matrix of constants
x = a\b ;// Matrix of solutions, x(1) = x , x(2) = y
xf = x(1)/F ;// Fraction of butane-free gas going to isopentane tower
printf('Fraction of butane-free gas going to isopentane tower is %.3f .\n',xf);
|
d26913cbb0a188387fa09df876c7c01e01cfb014
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2858/CH1/EX1.7/Ex1_7.sce
|
a0b74260ce488e16119caa77bd958bc40d67e9c5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 386
|
sce
|
Ex1_7.sce
|
//example 1.7
clc; funcprot(0);
//parta
e1=0.92;
e2=0.86;
Hc=2.8;
s2=212;//sigma2dash
s1=140;//sigma1dash
Cc=(e1-e2)/log10(s2/s1);
Sc=Cc*Hc/(1+e1)*log10(s2/s1);
disp(Sc*1000,"consolidated depth in mm");
//part b
Sct=40;
T50=0.197;
t=4.5;
Cr=T50*12.7^2/t;
U=Sct/Sc*100/1000;
H=Hc/2;
Tv=%pi/4*U^2/100^2;
t=Tv*H^2/Cr*1000^2/60/24;
disp(t,"time required in days");
|
8176e0b262b396d26582576516af36860a4ff51a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3821/CH7/EX7.1/Example7_1.sce
|
c8d4f7c72fe3b33c7247421b3f2d7106f3079861
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 727
|
sce
|
Example7_1.sce
|
///Chapter No 7 Fluid Mechanics
///Example 7.1 Page No:113
////Find mass density of liquid
//Input data
clc;
clear;
V=5; //volume of the liquid in m**3
W=45*10^3; //weight of the liquid in KN
g=9.81; //acceleration due to gravity in m/s**2
rhow=1000; //constant value
////Calculation
m=W/g; //mass in Kg
rho=m/V; //Mass density in kg/m**3
w=W/V; //Weight Density in N/m**3
v=V/m; //Specific volume in m**3/kg
S=rho/rhow; //Specific gravity
//Output
printf('mass=%f kg \n',m);
printf('Mass density= %f kg/m^3 \n ',rho);
printf('Weight Density= %f N/m^3\n ',w);
printf('Specific volume=%f m^3/kg \n',v);
printf('Specific gravity= %f \n',S);
|
0366abdd2ba73f3c22b110ae5e5b029cd39c6df0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1673/CH2/EX2.23/2_23.sce
|
b4c3a25339a5cc0416e406c41803d96f0cc6d518
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 605
|
sce
|
2_23.sce
|
//ramanujan's method
//example 2.23
//page 47
clc;clear;close;
deff('y=f(x)','1-2*((3/2)*x+(1/4)*x^2-(1/48)*x^4+x^6/1440-x^8/80640)');
a1=3/2,a2=1/4,a3=0,a4=1/48,a5=0,a6=1/1440,a7=0,a8=-1/80640;
b1=1;
b2=a1;
b3=a1*b2+a2*b1;
b4=a1*b3+a2*b2+a3*b1;
b5=a1*b4+a2*b3+a3*b2;
b6=a1*b5+a2*b4+a3*b3;
b7=a1*b6+a2*b5+a3*b4;
b8=a1*b7+a2*b6+a3*b5;
b9=a1*b8+a2*b7+a3*b6;
printf('\n%f',b1/b2);
printf('\n%f',b2/b3);
printf('\n%f',b3/b4);
printf('\n%f',b4/b5);
printf('\n%f',b5/b6);
printf('\n%f',b6/b7);
printf('\n%f',b7/b8);
printf('\n it appears as if the roots are converging at around %f',b7/b8)
|
319d8d5203a32b24f45fda64e92ff81d1653539c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1658/CH27/EX27.12/Ex27_12.sce
|
10d12cb65fa314102746474c31a51a5876b66daa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 248
|
sce
|
Ex27_12.sce
|
clc;
//e.g 27.12
AV=1000;
f1=50;
f2=200*10**3;
D=0.05;
beta=0.01;
AV1=AV/(1+beta*AV);
disp(AV1);
fl1=f1/(1+beta*AV);
disp('HZ',fl1,"fl1=");
fu2=(1+beta*AV)*f2;
disp('MHZ',fu2*10**-6,"fu2=");
D1=D/(1+beta*AV);
disp('%',D1*100,"D1=");
|
6db06aad77b80cb5a6041cf708d233f95d8bbe8b
|
2ba48648eefadee113a7c2f5d608cab5209c3a8b
|
/Unit&Func Test/单元测试文档/CagOS单元测试结果/LIBC/testcase/strtok.tst
|
de6cc145dcda0b8e88e8279bc774445fa13a396a
|
[] |
no_license
|
wangdong412/Consen-SIS
|
879762175575d0a62f26ec1effeb46c3fd62e3e8
|
bca3fac35c961c3558a3438bca55e6d20825da3a
|
refs/heads/master
| 2020-07-11T05:17:18.814104
| 2019-08-27T09:41:41
| 2019-08-27T09:41:41
| 204,450,874
| 1
| 5
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,920
|
tst
|
strtok.tst
|
-- VectorCAST 6.4c (02/03/16)
-- Test Case Script
--
-- Environment : LIBC
-- Unit(s) Under Test: abort1 abs atof atoi atol bLib memchr memcmp memcpy memmove memset ns16550 qsort rand random random_r strcat strchr strcmp strcpy strlcat strlcpy strlen strncat strncmp strncpy strpbrk strspn strtod strtok strtok_r strtol strtoul
--
-- Script Features
TEST.SCRIPT_FEATURE:C_DIRECT_ARRAY_INDEXING
TEST.SCRIPT_FEATURE:CPP_CLASS_OBJECT_REVISION
TEST.SCRIPT_FEATURE:MULTIPLE_UUT_SUPPORT
TEST.SCRIPT_FEATURE:MIXED_CASE_NAMES
TEST.SCRIPT_FEATURE:STATIC_HEADER_FUNCS_IN_UUTS
--
-- Unit: strtok
-- Subprogram: strtok
-- Test Case: strtok
TEST.UNIT:strtok
TEST.SUBPROGRAM:strtok
TEST.NEW
TEST.NAME:strtok
TEST.BASIS_PATH:1 of 1
TEST.NOTES:
No branches in subprogram
TEST.END_NOTES:
TEST.VALUE:strtok.strtok.separator:<<malloc 1>>
TEST.VALUE:strtok.strtok.return:<<malloc 3>>
TEST.VALUE_USER_CODE:strtok.strtok.string
<<strtok.strtok.string>> = ( "a,b,c" );
TEST.END_VALUE_USER_CODE:
TEST.VALUE_USER_CODE:strtok.strtok.separator.separator.separator[0]
<<strtok.strtok.separator>>[0] = ( "," );
TEST.END_VALUE_USER_CODE:
TEST.END
-- Test Case: strtok.001
TEST.UNIT:strtok
TEST.SUBPROGRAM:strtok
TEST.NEW
TEST.NAME:strtok.001
TEST.VALUE:strtok.strtok.string:<<malloc 9>>
TEST.VALUE:strtok.strtok.string:<<null>>
TEST.VALUE:strtok.strtok.separator:<<malloc 2>>
TEST.VALUE:strtok.strtok.separator:"1"
TEST.EXPECTED:strtok.strtok.return:<<null>>
TEST.END
-- Test Case: strtok1
TEST.UNIT:strtok
TEST.SUBPROGRAM:strtok
TEST.NEW
TEST.NAME:strtok1
TEST.NOTES:
No branches in subprogram
TEST.END_NOTES:
TEST.VALUE:strtok.strtok.string:<<malloc 6>>
TEST.VALUE:strtok.strtok.string:"a b c"
TEST.VALUE:strtok.strtok.separator:<<malloc 1>>
TEST.VALUE:strtok.strtok.return:<<malloc 3>>
TEST.VALUE_USER_CODE:strtok.strtok.separator.separator.separator[0]
<<strtok.strtok.separator>>[0] = ( " " );
TEST.END_VALUE_USER_CODE:
TEST.END
|
c6b1dc8f1fb4b2a4126b801c257e4a88aa45390a
|
f8bb2d5287f73944d0ae4a8ddb85a18b420ce288
|
/Scilab/example/ナイキスト線図1.sce
|
46694b6291332165cecdfe21c948f6a0e2496de0
|
[] |
no_license
|
nishizumi-lab/sample
|
1a2eb3baf0139e9db99b0c515ac618eb2ed65ad2
|
fcdf07eb6d5c9ad9c6f5ea539046c334afffe8d2
|
refs/heads/master
| 2023-08-22T15:52:04.998574
| 2023-08-20T04:09:08
| 2023-08-20T04:09:08
| 248,222,555
| 8
| 20
| null | 2023-02-02T09:03:50
| 2020-03-18T12:14:34
|
C
|
SHIFT_JIS
|
Scilab
| false
| false
| 156
|
sce
|
ナイキスト線図1.sce
|
//ナイキスト線図
s=%s;
H=1; G=(s+2)^2/((s+1)*(s^2-2*s+4));
GH=G*H;
sys=syslin("c",GH);
clf();
nyquist(sys)
CharEq=denom(GH)+numer(GH)
roots(CharEq)
|
b54d468ae6133d2099d4da93f296ad8594f9200a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/74/CH12/EX12.1/example1_sce.sce
|
328fb471383f40fd5ed5422226648fbf0c9020bc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 220
|
sce
|
example1_sce.sce
|
//chapter 12
//example 12.1
// page 413
n=8;// number of bits
Vofs=2.55;//in volts
R=2^n;//resolution
disp(R)
Resolution=Vofs/(2^8-1);
disp(Resolution)// an input change of 1LSB cause the output to change by 10mV
|
eb031a2a534461ecc5622f7748ac9a038aa7287f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3685/CH21/EX21.6/Ex21_6.sce
|
3ff59bb5e27bbc4c1b4c57f83dc03224b7173af3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,434
|
sce
|
Ex21_6.sce
|
clc
// Given that
p1 = 0.56 // Ambient pressure in bar
t1 = 260 // Ambient temperature in K
r_p = 6 // Pressure ratio of compressor
n_c = 0.85 // Efficiency of compressor
v = 360 // Speed of aircraft in km/h
d = 3 // Propeller diameter in m
n_p = 0.8 // Propeller efficiency
n_g = 0.95 // Gear reduction efficiency
r_e = 5 // Expansion ratio
n_t = 0.88 // Turbine efficiency
t3 = 1100 // Temperature at the entrance of turbine in K
n_n = 0.9 // Nozzle efficiency
cv = 40 // Calorific value in MJ/kg
printf("\n Example 21.6\n")
gama = 1.4 // Heat capacities ratio for air
Vo = v*(5/18)
p2 = p1*r_p
t2_s = t1*((r_p)^(0.286))
t2 = t1+((t2_s-t1)/n_c)
Cp = 1.005 // The value of heat capacity of air as given in the book in kJ/kgK
Wc = Cp*(t2-t1)
m_f = (t3-t2)/((cv*1000/Cp)-t3)
m_a = 1/m_f
p3=p2
p4 = p3/r_e
t4_s = t3/((r_e)^(0.286))
t4 = t3-((t3-t4_s)*n_t)
Wt = (1+m_f)*(t3-t4)*Cp
Pp = Wt-Wc
p5 = p1
t5_s = t4/((p4/p5)^((gama-1)/gama))
Vj = sqrt(2*Cp*1000*(t4-t5_s)*n_n)
Ft = (1+m_f)*Vj-1*Vo
V = Vo/n_p
V4 = 2*V-Vo
Q = (%pi/4)*(d^2)*V
Pt = (1/2)*(p1*(10^5)/(287*t1))*Q*((V4^2)-(Vo^2))/1000
PT = Pt/n_g
ma_c = PT/Pp
Fp = Pt*n_p/V
printf("\n Air-fuel ratio = %f,\n Thrust power of the propeller = %f kJ/s ,\n Thrust by the propeller = %f kN,\n Mass flow rate of air flowing through the compressor = %f kg/s,",m_a,Pt,Fp,ma_c)
// The answers are given in the book contain calculation error.
|
8e41bf8da80bd7f063c5c00cd2d909b329d6c22e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3792/CH5/EX5.1/Ex5_1.sce
|
592e9c8d4990e8e79de5b008ee55204e6d30e04d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 918
|
sce
|
Ex5_1.sce
|
// SAMPLE PROBLEM 5/1
clc;clear;funcprot(0);
// Given data
n_1=1800;// rev/min
t_0=0;// s
// alpha=4t;
n_2=900;// rev/min
// Calculation
// (a)
omega_1=(-2*%pi*n_1)/60;// rad/s
// omega=-(60*%pi)+2t^2
omega_2=(-2*%pi*n_2)/60;// rad/s
t=sqrt((omega_2-omega_1)/2);// s
// (b)
// The flywheel changes direction when its angular velocity is momentarily zero. Thus,
t_b=sqrt((0-omega_1)/2);// s
// (c)
t_0=0;// s
t_1=t_b;// s
theta_1=integrate('omega_1+(2*t^2)','t',t_0,t_1);// rad
N_1=abs(-theta_1/(2*%pi));// rev(clockwise)
t_1=t_b;// s
t_2=14;// s
theta_2=integrate('omega_1+(2*t^2)','t',t_1,t_2);// rad
N_2=theta_2/(2*%pi);// rev
N=N_1+N_2;// rev
printf("\n(a)The time required for the flywheel to reduce its clockwise angular speed,t=%1.2f s \n(b)The time required for the flywheel to reverse its direction of rotation,t=%1.2f s \n(c)The total number of revolutions,N=%3.0f rev",t,t_b,N);
|
309f464a4269179e0085206b7cb869bb1c074b32
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/226/CH4/EX4.6/example6_sce.sce
|
6b9ef9b16247147b4e32775a83fd04ae762000ad
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 152
|
sce
|
example6_sce.sce
|
//chapter 4
//example 4.6
//page 169
printf("\n")
printf("given")
Vbe=.7;Vce=-6;
Ib=20*10^-6
Ic=2.5*10^-3//from output characteristics
Bdc=Ic/Ib
|
6c4527e07d510dce3a0edfa9031d1dde3502f125
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/623/CH10/EX2.9.2/U2_C9_2.sce
|
067bb56d4ee07a4d4ce3c5cbd3993ced73905aac
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 234
|
sce
|
U2_C9_2.sce
|
//variable initialization
x=0:0.1:9999;
x0=0;
x1=9999;
//calculation
I=integrate('x^2*exp(-x)','x',x0,x1);
A=sqrt(1/(I*(%pi/2)));
r=(1/4)*integrate('x^3*exp(-x)','x',x0,x1);
printf("\n A = %f*a0^-1.5\n r = %.1f*a0",A,r);
|
b6f36d2dd0c2717ddf31edae6fd6908affb3aea5
|
573df9bfca39973c9bf2fa36f6e5af2643d7771e
|
/scilab/sistemas lineares/exemplo_Gauss.sce
|
20611cd019af5b5d0d9d79e4b4786af1e40d684c
|
[] |
no_license
|
DCC-CN/152cn
|
ef92c691edabe211b1a552dbb963f9fd9ceec94a
|
4fe0b02f961f37935a1335b5eac22d81400fa609
|
refs/heads/master
| 2016-08-13T01:34:17.966430
| 2015-04-07T07:31:58
| 2015-04-07T07:31:58
| 44,502,526
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,905
|
sce
|
exemplo_Gauss.sce
|
//
clc;
clear ;
getd('../lib');
function exemplo_Gauss(label, A, b, prec)
if ~exists("prec", "local") then
prec = 3;
end
tamanho = prec + 5;
pausa = %F;
mprintf("\n###################################################################################\n");
mprintf("Exemplo %s de solução de sistema linear por método de Gauss\n", label)
mprintf("-----------------------------------------------------------\n");
try
[x, r, Det] = gauss_dp(A, b, %F, tamanho, prec, pausa)
catch
mprintf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
mprintf('%s\n',lasterror());
mprintf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
end
mprintf("\n===================================================================================\n");
mprintf("Exemplo %s de solução de sistemas lineares por método de Gauss com pivotação parcial\n", label);
mprintf("------------------------------------------------------------------------------------\n");
try
[x, r, Det] = gauss_dp(A, b, %T, tamanho, prec, pausa)
catch
mprintf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
mprintf('%s\n',lasterror());
mprintf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
end
endfunction
//------------------------------------------
// exemplo 1 de sistema linerar (pág. 51)
// Matriz de coeficientes
A = [ 1 -3 2;
-2 8 -1;
4 -6 5];
// Vetor de termos_independentes
b = [ 11; -15; 29];
exemplo_Gauss('1', A, b)
//------------------------------------------
// exemplo 2 de sistema linerar (pág 53)
// Matriz de coeficientes
A = [1, 6, 2, 4;
3, 19, 4, 15;
1, 4, 8, -12;
5, 33, 9, 3];
// Vetor de termos_independentes
b = [ 8; 25; 18; 72 ];
exemplo_Gauss('2', A, b)
|
6cbe2237453d479b852c29641ff98b3ec5322465
|
f5bb8d58446077a551e4d9a6461a55255db523fe
|
/interpolação_polinomial/calc3.sce
|
6b420e6a83ade4bc37ffc56feb3c019b8f0f3b1d
|
[] |
no_license
|
appositum/numerical-calculus
|
6be1a9990a1621c705af6ba5694cf8c7b891d06e
|
7759e74ce9ce5c5826f96be7de84a2f7ecb97c91
|
refs/heads/master
| 2021-07-19T18:19:09.336819
| 2018-11-27T21:52:36
| 2018-11-27T21:52:36
| 143,060,426
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 640
|
sce
|
calc3.sce
|
// calculo de erro de interpolaçao
// x | x1 | x2
// f(x) | f(x1) | f(x2)
// n = 2
// Estimativa do erro
// Er(x) <= |(x-x1)(x-x2)| / 2! * max λ∈[x1, x2] * |f^(n)(λ)|
// Sendo f(x) = 1/x^2 determine o pol. interpolador para x1 = 3 e x2 = 4 usando o método de Lagrange
// f(x1)*(x-x2) / (x1-x2) + f(x2)*(x-x1)/(x2-x1)
function y=f(x)
y = x.^(-2)
endfunction
// derivada de segunda ordem
function y=df(x)
y = 6.*x.^(-4)
endfunction
// maximo da derivada
t = 3:0.05:4
w = abs(df(t))
M = max(w)
R = abs((3.5-3).*(3.5-4))./factorial(2)
erro = M.*R
printf("Estimativa de erro:")
disp(erro)
|
919ea16172c3ff4127104d533bd5dfaf9d86cb9a
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set5/s_Electrical_And_Electronic_Principles_And_Technology_J._Bird_1529.zip/Electrical_And_Electronic_Principles_And_Technology_J._Bird_1529/CH12/EX12.6/12_06.sce
|
69f89c5a1c69be44094944b59d907b02c5c78b0a
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 283
|
sce
|
12_06.sce
|
errcatch(-1,"stop");mode(2);//Chapter 12, Problem 6
;
hFE=125; //common-emitter current gain
Ic=50*10^-3; //collector current
Ib=Ic/hFE; //calculating base current
printf("Base current Ib = %d microampere",Ib*10^6);
exit();
|
1ea526e30c35a6a3ced5f9e6dd5834084650306d
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfi_a6_bfa_mt_d/~BivLCM-SR-bfi_a6_bfa_mt_d-PLin-VLin.tst
|
fe05fb1dd2c22cc0dcafbfb56746256eda84d4eb
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205
| 2019-03-04T17:03:26
| 2019-03-04T17:03:26
| 143,070,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 11,974
|
tst
|
~BivLCM-SR-bfi_a6_bfa_mt_d-PLin-VLin.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.354061D+00
2 -0.283621D-02 0.303013D-02
3 -0.105206D+00 0.117462D-02 0.441608D+00
4 0.778745D-03 -0.757411D-03 -0.589612D-02 0.379278D-02
5 -0.363013D-04 0.171110D-03 -0.508299D-03 0.145094D-03 0.273233D-02
6 0.564229D-04 0.941603D-04 0.236403D-03 -0.109579D-03 -0.239512D-03
7 0.146188D-02 0.441788D-04 -0.154084D-02 -0.260273D-04 -0.668685D-03
8 -0.392328D-03 0.142947D-04 -0.738252D-03 0.469629D-04 -0.205284D-03
9 -0.940586D-01 0.195763D-01 -0.137999D+00 0.302407D-01 0.110247D+00
10 -0.114125D+00 0.179401D-01 0.101666D+00 0.134533D-01 0.191820D+00
11 -0.931157D-01 -0.106934D-02 -0.164560D+00 0.243534D-01 -0.783471D-01
12 -0.618056D+00 0.158550D-01 0.696342D+00 0.222496D-01 0.374117D-01
13 0.156295D+00 0.199751D-01 -0.622483D-02 -0.968875D-02 -0.152333D-01
14 -0.242231D+00 0.160532D-01 0.736288D-01 0.230437D-02 0.779403D-02
15 -0.834537D+00 0.812334D-01 -0.472794D+00 -0.116037D-01 -0.129071D+00
16 -0.350750D-01 -0.127444D-01 0.270714D-01 0.823272D-03 0.252565D-03
17 -0.126833D-01 -0.206129D-02 0.402240D-02 0.652342D-03 -0.692002D-03
18 -0.495044D+00 -0.545076D-02 -0.540285D+00 0.117071D-01 0.704507D-01
19 0.272218D-01 -0.675518D-03 0.145964D+00 -0.141234D-01 -0.549101D-02
20 -0.922104D+00 -0.137262D-02 0.174376D+01 0.633145D-02 -0.499680D-01
21 0.266031D-01 0.260297D-02 -0.179563D+00 0.788993D-02 0.205309D-02
22 0.311035D-02 0.594525D-03 -0.119643D-02 -0.567149D-03 0.875085D-04
23 -0.368003D-01 -0.268935D-02 -0.238845D-01 0.124167D-01 0.128197D-02
24 0.419237D-02 -0.278515D-03 0.329033D-02 -0.390520D-03 0.111698D-03
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.828535D-03
7 0.795832D-03 0.343981D-02
8 0.313900D-04 0.363908D-03 0.310993D-02
9 -0.181057D-01 -0.211841D-01 -0.104948D-01 0.812900D+02
10 -0.263181D-01 -0.812779D-01 -0.412930D-01 0.503932D+01 0.320531D+02
11 0.180674D-01 0.366517D-01 0.570959D-01 -0.106130D+02 -0.566648D+01
12 -0.262854D-01 -0.350387D-01 0.800634D-01 -0.233021D+00 0.760773D+01
13 0.648534D-01 0.152357D+00 -0.246992D-01 -0.145660D+01 -0.366492D+01
14 -0.343439D-02 0.138294D-01 0.393745D+00 0.356026D+01 0.278037D+01
15 0.442200D-01 0.582067D-01 0.312386D-01 -0.116845D+02 -0.201198D+02
16 -0.793585D-03 -0.251092D-02 0.111863D-02 0.626389D+00 -0.896896D-01
17 -0.260151D-03 -0.537728D-04 0.412996D-03 -0.209944D+00 -0.307175D-01
18 -0.802998D-01 -0.135815D+00 -0.479765D-01 0.305742D+01 0.128541D+02
19 -0.971543D-02 0.144059D-01 0.116341D-01 0.266935D+01 -0.610279D+00
20 0.285646D-01 -0.580981D-02 -0.341772D+00 -0.732122D+01 0.715340D+01
21 0.112303D-01 -0.125699D-01 -0.135075D-01 -0.285447D+01 0.465021D+00
22 0.117727D-03 -0.125846D-03 0.441237D-03 0.295902D-01 -0.209120D-01
23 -0.310052D-03 -0.183396D-02 -0.591895D-03 0.280668D-01 0.149171D+00
24 -0.450988D-04 0.134408D-03 0.132296D-03 0.311927D-01 -0.399108D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.519913D+02
12 -0.273098D+01 0.168260D+03
13 -0.376398D+01 -0.133348D+01 0.202633D+02
14 0.708103D+01 0.960353D+01 -0.807806D+01 0.113560D+03
15 0.132585D+02 0.205456D+02 0.435211D+01 -0.225660D+01 0.372947D+03
16 0.147055D+00 0.566289D-01 -0.989638D-01 0.124822D+00 0.120520D+01
17 -0.333022D-01 -0.471390D-01 -0.319094D-01 0.121993D+00 -0.181911D+01
18 -0.637874D+01 0.886851D+01 -0.860200D+01 -0.502968D+00 -0.912629D+02
19 -0.990208D-01 0.369122D+01 0.119143D+00 0.746158D+00 -0.875628D+00
20 -0.122653D+02 -0.233716D+02 0.666595D+01 -0.718835D+02 0.476039D+02
21 0.387260D+00 -0.353138D+01 -0.127515D+00 -0.999247D+00 0.980909D-01
22 -0.541493D-01 0.397359D-01 0.419108D-02 0.651386D-01 0.432112D+00
23 -0.174144D-01 0.123770D+01 -0.845989D-01 -0.293903D+00 0.545363D+00
24 0.114729D-02 -0.163904D+00 0.210750D-02 -0.294356D-01 -0.192580D+00
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.527007D+00
17 -0.208536D-01 0.213707D-01
18 -0.374648D+00 0.425702D+00 0.280504D+03
19 -0.521081D-01 0.130941D-01 0.426083D+00 0.733248D+01
20 0.154713D+00 -0.209751D+00 -0.110175D+03 0.992944D+00 0.552885D+03
21 -0.165879D+00 -0.119592D-01 0.434259D+01 -0.683332D+01 -0.243753D+01
22 0.105287D-02 -0.455768D-02 -0.127840D+01 -0.164361D-01 0.396117D+00
23 0.467948D-01 0.625417D-03 -0.532301D+00 -0.154363D+00 0.556389D+01
24 0.140843D-02 0.112897D-02 0.443171D+00 -0.177560D-01 -0.242480D+01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.801262D+01
22 -0.432466D-01 0.131895D-01
23 -0.128543D+00 0.605328D-02 0.873066D+00
24 0.358859D-01 -0.383943D-02 -0.795550D-01 0.257971D-01
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.087 1.000
3 -0.266 0.032 1.000
4 0.021 -0.223 -0.144 1.000
5 -0.001 0.059 -0.015 0.045 1.000
6 0.003 0.059 0.012 -0.062 -0.159
7 0.042 0.014 -0.040 -0.007 -0.218
8 -0.012 0.005 -0.020 0.014 -0.070
9 -0.018 0.039 -0.023 0.054 0.234
10 -0.034 0.058 0.027 0.039 0.648
11 -0.022 -0.003 -0.034 0.055 -0.208
12 -0.080 0.022 0.081 0.028 0.055
13 0.058 0.081 -0.002 -0.035 -0.065
14 -0.038 0.027 0.010 0.004 0.014
15 -0.073 0.076 -0.037 -0.010 -0.128
16 -0.081 -0.319 0.056 0.018 0.007
17 -0.146 -0.256 0.041 0.072 -0.091
18 -0.050 -0.006 -0.049 0.011 0.080
19 0.017 -0.005 0.081 -0.085 -0.039
20 -0.066 -0.001 0.112 0.004 -0.041
21 0.016 0.017 -0.095 0.045 0.014
22 0.046 0.094 -0.016 -0.080 0.015
23 -0.066 -0.052 -0.038 0.216 0.026
24 0.044 -0.032 0.031 -0.039 0.013
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.471 1.000
8 0.020 0.111 1.000
9 -0.070 -0.040 -0.021 1.000
10 -0.161 -0.245 -0.131 0.099 1.000
11 0.087 0.087 0.142 -0.163 -0.139
12 -0.070 -0.046 0.111 -0.002 0.104
13 0.501 0.577 -0.098 -0.036 -0.144
14 -0.011 0.022 0.663 0.037 0.046
15 0.080 0.051 0.029 -0.067 -0.184
16 -0.038 -0.059 0.028 0.096 -0.022
17 -0.062 -0.006 0.051 -0.159 -0.037
18 -0.167 -0.138 -0.051 0.020 0.136
19 -0.125 0.091 0.077 0.109 -0.040
20 0.042 -0.004 -0.261 -0.035 0.054
21 0.138 -0.076 -0.086 -0.112 0.029
22 0.036 -0.019 0.069 0.029 -0.032
23 -0.012 -0.033 -0.011 0.003 0.028
24 -0.010 0.014 0.015 0.022 -0.044
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 -0.029 1.000
13 -0.116 -0.023 1.000
14 0.092 0.069 -0.168 1.000
15 0.095 0.082 0.050 -0.011 1.000
16 0.028 0.006 -0.030 0.016 0.086
17 -0.032 -0.025 -0.048 0.078 -0.644
18 -0.053 0.041 -0.114 -0.003 -0.282
19 -0.005 0.105 0.010 0.026 -0.017
20 -0.072 -0.077 0.063 -0.287 0.105
21 0.019 -0.096 -0.010 -0.033 0.002
22 -0.065 0.027 0.008 0.053 0.195
23 -0.003 0.102 -0.020 -0.030 0.030
24 0.001 -0.079 0.003 -0.017 -0.062
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.197 1.000
18 -0.031 0.174 1.000
19 -0.027 0.033 0.009 1.000
20 0.009 -0.061 -0.280 0.016 1.000
21 -0.081 -0.029 0.092 -0.891 -0.037
22 0.013 -0.271 -0.665 -0.053 0.147
23 0.069 0.005 -0.034 -0.061 0.253
24 0.012 0.048 0.165 -0.041 -0.642
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.133 1.000
23 -0.049 0.056 1.000
24 0.079 -0.208 -0.530 1.000
|
55761dba29ac8a087381d122c9ee50c8b899efcb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1332/CH10/EX10.5/10_5.sce
|
380c7a71cbb90335029e7e7ce59b6ae6c0be3ecb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 785
|
sce
|
10_5.sce
|
//Example 10.5
//Newton Raphshon Method
//Page no. 320
clc;clear;close;
deff('y=f1(x,y)','y=x^3-3*x*y^2+1')
deff('y=f2(x,y)','y=3*x^2*y-y^3')
deff('y=f11(x,y)','y=3*x^2-6*y^2')
deff('y=f12(x,y)','y=-6*x*y')
deff('y=f21(x,y)','y=6*x*y')
deff('y=f22(x,y)','y=3*x^2-3*y^2')
x=[0;1];
printf('\nx(0) = %g\ny(0) = %g\n',x(1),x(2))
for i=1:3
fx=[f1(x(1),x(2));f2(x(1),x(2))]
printf('\n fx(%i) = \n',i)
disp(fx)
J=[f11(x(1),x(2)),f12(x(1),x(2));f21(x(1),x(2)),f22(x(1),x(2)),]
disp(J,'J = ')
d=det(J);
if d==0 then
dx1=0;dx2=0;
else
dx1=(fx(1)*J(2,2)-fx(2)*J(1,2))/d;
dx2=(fx(2)*J(1,1)-fx(1)*J(2,1))/d;
end
x(1)=x(1)+dx1;
x(2)=x(2)+dx2;
printf('\nx(%i) = %g\ny(%i) = %g\n',i,x(1),i,x(2))
end
|
2d7505d93be30c993b145ae4ea2523c8de4ba44b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3257/CH12/EX12.5/Ex12_5.sce
|
c33c10d690cbe3ee4abf57eb653874be13ac9be4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 562
|
sce
|
Ex12_5.sce
|
// Heat generation in resistance spot welding
clc
I = 5500 // current in ampere
R = 250 // resistance in micro ohm
T = 0.15 // time in sec
d = 6 // diameter in mm
t = 3 // thickness in mm
rho = 7850 // density in kg/m^3
E = 1400 // energy required per gram mass
printf("\n Example 12.5")
Heat = I^2*R*1e-6*T
V = %pi/4*d^2*t
m = V*rho*1e-6
E_tot = m*E
H_r = Heat - E_tot
H_per = H_r/Heat*100
printf("\n Amount of heat generated is %d J.", Heat)
printf("\n Amount of heat in weld zone is %d J or %d%%.", H_r, H_per)
// Answer in book is 196 J
|
7d8b5093a8665b29b1992e6286b3d39eb9e58087
|
8ea401b354e99fe129b2961e8ee6f780dedb12bd
|
/macros/melt().sci
|
f46c5f92b11112763e7dbd5ce56a8d29c6302795
|
[
"BSD-2-Clause"
] |
permissive
|
adityadhinavahi/SciPandas
|
91340ca30e7b4a0d76102a6622c97733a28923eb
|
b78b7571652acf527f877d9f1ce18115f327fa18
|
refs/heads/master
| 2022-12-20T04:04:35.984747
| 2020-08-19T16:10:51
| 2020-08-19T16:10:51
| 288,765,541
| 0
| 1
| null | 2020-08-19T15:35:04
| 2020-08-19T15:14:46
|
Python
|
UTF-8
|
Scilab
| false
| false
| 831
|
sci
|
melt().sci
|
function melt()
//Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
// Syntax
//pd.melt(df, id_vars=['A'], value_vars=['B'])
//
// Parameters
//id_vars: tuple, list, or ndarray, optional
//value_vars: tuple, list, or ndarray, optional
//var_name: scalar
//value_name: scalar, default ‘value’
//
// For additional information on parameters, See https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.melt.html
// Returns : DataFrame
//
// Examples
// If we want to join using the key columns, we need to set key to be the index in both df and other. The joined DataFrame will have key as its index.
// df.join(other, lsuffix='_caller', rsuffix='_other')
// Authors
// Aditya Dhinavahi
// Sundeep Akella
endfunction
|
94230c1ba51d56cecd9165a6551b7c2c77296df2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2705/CH11/EX11.9/Ex11_9.sce
|
e020aaa3e67d582c7f271868838148209dbf867e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,974
|
sce
|
Ex11_9.sce
|
clear;
clc;
disp('Example 11.9');
// aim : To determine
// (a) the actual and hypothetical mean effective pressures referred to the low-pressure cylinder
// (b) the overall diagram factor
// (c) the pecentage of the total indicated power developed in each cylinder
// given values
P = 1400;// steam supply pressure, [kN/m^2]
Pb = 20;// back pressure, [kN/m^2]
Chp = .6;// cut-off in HP cylinder, [stroke]
dh = 300*10^-3;// HP diameter, [m]
di = 500*10^-3;// IP diameter, [m]
dl = 900*10^-3;// LP diameter, [m]
Pm1 = 590;// actual pressure of HP cylinder, [kN/m^2]
Pm2 = 214;// actual pressure of IP cylinder, [kN/m^2]
Pm3 = 88;// actual pressure of LP cylinder, [kN/m^2]
// solution
// (a)
// for HP cylinder
PmH = Pm1*(dh/dl)^2;// PmH referred to LP cylinder, [kN/m^2]
// for IP cylinder
PmI = Pm2*(di/dl)^2;// PmI referred to LP cylinder, [kN/m^2]
PmA = PmH+PmI+Pm3;// actual mean effective pressure referred to LP cylinder, [kN/m^2]
R = dl^2/(dh^2*Chp);// expansion ratio
Pm = P/R*(1+log(R))-Pb;// hypothetical mean effective pressure referred to LP cylinder, [kN/m^2]
mprintf('\n (a) The actual mean effective pressure referred to LP cylinder is = %f kN/m^2\n',PmA);
mprintf('\n The hypothetical mean effective pressure referred to LP cylinder is = %f kN/m^2\n',Pm);
// (b)
ko = PmA/Pm;// overall diagram factor
mprintf('\n (b) The overall diagram factor is = %f\n',ko);
// (c)
HP = PmH/PmA*100;// %age of indicated power developed in HP
IP = PmI/PmA*100; // %age of indicated power developed in IP
LP = Pm3/PmA*100; // %age of indicated power developed in LP
mprintf('\n (c) The pecentage of the total indicated power developed in HP cylinder is = %f percent\n',HP);
mprintf('\n The pecentage of the total indicated power developed in IP cylinder is = %f percent\n',IP);
mprintf('\n The pecentage of the total indicated power developed in LP cylinder is = %f percent\n',LP);
// End
|
3139879a6c72131c9513a0980aefc80fad2ad0b5
|
3b9a879e67cbab4a5a4a5081e2e9c38b3e27a8cc
|
/Área 1/Aula 6/Norma.sce
|
23781d086e975c5bc3e75b52effd28c155b4a518
|
[
"MIT"
] |
permissive
|
JPedroSilveira/numerical-calculus-with-scilab
|
32e04e9b1234a0a82275f86aa2d6416198fa6c81
|
190bc816dfaa73ec2efe289c34baf21191944a53
|
refs/heads/master
| 2023-05-10T22:39:02.550321
| 2021-05-11T17:17:09
| 2021-05-11T17:17:09
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 170
|
sce
|
Norma.sce
|
A = [3 -5 7
1 -2 4
-8 1 -7]
disp(norm(A,1))
disp(norm(A,2))
disp(norm(A,%inf))
x = [1
2
3]
disp(norm(x,1))
disp(norm(x,2))
disp(norm(x,%inf))
|
3381bfba02c863acb2a4785dea25cdc406ecf85b
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.3/Unix-Windows/scilab-2.3/macros/util/g_imag.sci
|
ce5ef6fa6c6e45afa3fcc2cfe1bc5643f3afdc5b
|
[
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain",
"MIT"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 384
|
sci
|
g_imag.sci
|
function x=g_imag(a)
// only to be called by function imag
//!
select type(a)
case 2 then
x=imag(a)
//-compat next case retained for list/tlist compatibility
case 15 then
if a(1)=='r' then
error(43)
else
error(43)
end
case 16 then
if a(1)=='r' then
error(43)
else
error(43)
end
case 5
[ij,v,mn]=spget(a)
x=sparse(ij,imag(v),mn)
else
error(43)
end
|
7124b8cac012769f5a9cf8644ded846d26ec367b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2792/CH5/EX5.8/Ex5_8.sce
|
a766021f4999db172a12b39e6f616a27473c736f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,802
|
sce
|
Ex5_8.sce
|
clc
apsilen = 11.9*8.85*10^-14
disp("apsilen = "+string(apsilen)+"F/cm") //initializing value of relative permitivity
GL= 10^22
disp("GL= "+string(GL)+"cm^-3/s") //initializing value of rate of optical signal
A= 10^-4
disp("A= "+string(A)+"cm^2") //initializing value of diode area
Vr= 15
disp("Vr= "+string(Vr)+"V") //initializing value of reverse bias voltage
Na=2*10^16
disp("Na = "+string(Na)+"cm^-3") //initializing value of acceptor atoms
Nd=10^16
disp("Nd = "+string(Nd)+"cm^-3") //initializing value of donor atoms
Dp = 12
disp("Dp= "+string(Dp)+"cm^2/s")//initializing value of hole diffusion coefficient
Dn = 20
disp("Dn= "+string(Dn)+"cm^2/s")//initializing value of electron diffusion coefficient
Tn = 10^-8
disp("Tn= "+string(Tn)+"s")//inializing value of electron minority carrier lifetime
Tp = 10^-8
disp("Tp= "+string(Tp)+"s")//inializing value of hole minority carrier lifetime
e = 1.6*10^-19
disp("e= "+string(e)+"C")//initializing value of charge of electron
kbT = 0.026
disp("kbT = "+string(kbT)+"eV") //initializing value of kbT at 300K
ni = 1.5*10^10
disp("ni= "+string(ni)+"cm^-3")//initializing value of intrinsic carrier concentration
Ln = sqrt(Dn*Tn)
disp("The electron diffusion length is ,Ln = sqrt(Dn*Tn)= "+string(Ln)+"cm")//calculation
Lp = sqrt(Dp*Tp)
disp("The hole diffusion length is ,Lp = sqrt(Dp*Tp)= "+string(Lp)+"cm")//calculation
Vbi = kbT*log((Na*Nd)/ni^2)
disp("The built in voltage is ,Vbi = kbT*log((Na*Nd)/ni^2)= "+string(Vbi)+"V")//calculation
W = sqrt(((2*apsilen)/e)*((Na+Nd)/(Na*Nd))*(Vbi+Vr))
disp("The depletion width is ,W = sqrt(((2*apsilen)/e)*((Na+Nd)/(Na*Nd))*(Vbi+Vr))= "+string(W)+"cm")//calculation
IL = e*A*GL*(W+Ln+Lp)
disp("The photo current is IL = e*A*GL*(W+Ln+Lp)= "+string(IL)+"A")//calculation
|
a421e18196325885469b236b1c0ea07c0ccc0361
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1835/CH3/EX3.3/Ex3_3.sce
|
c971e4356bb4e17bf18003f9ffab858ab51b897d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 765
|
sce
|
Ex3_3.sce
|
//CHAPTER 3 ILLUSRTATION 3 PAGE NO 104
//TITLE:FRICTION
//FIRURE 3.18
clc
clear
//===========================================================================================
//INPUT DATA
W=500// WEGHT IN NEWTONS
THETA=30// ANGLE OF INCLINATION IN DEGRESS
U=0.2// COEFFICIENT FRICTION
S=15// DISTANCE IN metres
//============================================================================================
Rn=W*cosd(THETA)// NORMAL REACTION IN NEWTONS
P=W*sind(THETA)+U*Rn// PUSHING FORCE ALONG THE DIRECTION OF MOTION
w=P*S
//============================================================================================
//OUTPUT
printf('WORK DONE BY THE FORCE=%3.3f N-m',w)
|
c281fed8a67f83f70054cd68909fefea2abc10a4
|
67ba0a56bc27380e6e12782a5fb279adfc456bad
|
/STAMPER_PROG_7.4/OffsetPolyline.sci
|
014ec7769fc2fa5e0dc9c25c00086e563158bde5
|
[] |
no_license
|
2-BiAs/STAMPER_PROG
|
8c1e773700375cfab0933fc4c2b0f5be0ab8e8f0
|
4fdc0bcdaef7d6d11a0dcd97bd25a9463b9550d0
|
refs/heads/master
| 2021-01-18T19:30:06.506977
| 2016-11-10T23:32:40
| 2016-11-10T23:32:40
| 71,999,971
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,760
|
sci
|
OffsetPolyline.sci
|
function plOutput = OffsetPolyline(plInput, mOffestRegimeBoundaries, mOffsetComponents)
//plInput = FwdSelfIntSmoothing(plInput, 10, .05);
iPointCount = size(plInput, 1);
iSegmentCount = iPointCount - 1;
iIntersectionCount = iSegmentCount - 1;
lnOffsetSegmentBuffer = [];
plOffsetPolylineBuffer = [];
plOutputBuffer = [];
iOutputPolylineCount = 1
vOffsetArray = BuildOffsetMatrix(plInput, mOffestRegimeBoundaries, mOffsetComponents);
//Offset each polyline segment according to vOffsetArray
for i = 1:iSegmentCount
lnA = plInput(i:i+1, :);
lnOffsetSegmentBuffer(i*2-1:i*2,1:2) = lnA + [1 1]' * vOffsetArray(i, :);
end
//Find intersection point of each adjacent segment
for i=1:iSegmentCount - 1
[pIntersectionBuffer(i, 1), pIntersectionBuffer(i, 2)] = IntersectionPoint(lnOffsetSegmentBuffer(i*2 - 1:i*2,:), lnOffsetSegmentBuffer(i*2 + 1:i*2 + 2, :));
end
plOffsetPolylineBuffer(1, :) = lnOffsetSegmentBuffer(1,:);
plOffsetPolylineBuffer(iPointCount, :) = lnOffsetSegmentBuffer($, :);
for i=1:iIntersectionCount
plOffsetPolylineBuffer(i + 1, :) = pIntersectionBuffer(i, :);
end
// if AngleReversal(plInput, plOffsetPolylineBuffer) then
// plOutput = [,];
// disp("Angle Reversal Detected.");
//// pause
// else
// plOutput = plOffsetPolylineBuffer;
// end
// plOffsetPolylineBuffer = RemoveKnots(plInput, plOffsetPolylineBuffer);
// plOutput = plOffsetPolylineBuffer;
////////////// plOffsetPolylineBuffer = FwdSelfIntSmoothing(plOffsetPolylineBuffer, 8, .030);
////////////// plOffsetPolylineBuffer = FwdSelfIntSmoothing(plOffsetPolylineBuffer, 8, .030);
////////////// plOffsetPolylineBuffer = FwdSelfIntSmoothing(plOffsetPolylineBuffer, 18, .075);
//////////////
// plOffsetPolylineBuffer = plOffsetPolylineBuffer($:-1:1,1:2);
// plOffsetPolylineBuffer = FwdSelfIntSmoothing(plOffsetPolylineBuffer, 6, .05);
//// plOffsetPolylineBuffer = plOffsetPolylineBuffer($:-1:1,1:2);
// plOffsetPolylineBuffer = FwdSelfIntSmoothing(plOffsetPolylineBuffer, 8, .05);
// plOffsetPolylineBuffer = RemoveInvertedCircles(plOffsetPolylineBuffer, 24);
// plOffsetPolylineBuffer = RemoveInvertedCircles(plOffsetPolylineBuffer, 23);
// plOffsetPolylineBuffer = RemoveInvertedCircles(plOffsetPolylineBuffer, 22);
// plOffsetPolylineBuffer = RemoveInvertedCircles(plOffsetPolylineBuffer, 21);
// plOffsetPolylineBuffer = RemoveInvertedCircles(plOffsetPolylineBuffer, 20);
//plOffsetPolylineBuffer = RemoveSharpCorners(plOffsetPolylineBuffer, 30 * (%pi/180));
plOutput = plOffsetPolylineBuffer;
endfunction
|
6be9e2ec06234c27951cad6145aa9a35d81f847a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3841/CH5/EX5.6/Ex5_6.sce
|
1bd22b8b40171113d5452e44ed2ebac88a9596df
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 140
|
sce
|
Ex5_6.sce
|
clear
//given
//
//find the final pressure gage
a=240.
b=15.
IP=14.7
FP=IP*(a/b)
Fpg=FP-IP
printf("\n \n final pressure gage is %.2f ",Fpg)
|
cb34b1405f3920d88fccd5e2f455fbdb11968ee3
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set4/s_Chemical_Reaction_Engineering_O._Levenspiel_249.zip/Chemical_Reaction_Engineering_O._Levenspiel_249/CH13/EX13.4/13_04.sce
|
dc5fc048074abf29727592cc0cbdcf22642a2ad3
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 98
|
sce
|
13_04.sce
|
errcatch(-1,"stop");mode(2);
disp("All the values have to be read from the given graph")
exit();
|
2695bacb6d0c580b91c1a632358d145ec05b4b71
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set7/s_Electronics_Circuits_And_Systems_Y._N._Bapat_2561.zip/Electronics_Circuits_And_Systems_Y._N._Bapat_2561/CH10/EX10.3/Ex10_3.sce
|
6f14dfec0bd158f7602dbc596cbabed805391054
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 231
|
sce
|
Ex10_3.sce
|
errcatch(-1,"stop");mode(2);//Ex10_3
b='1001000';
disp("Binary number="+string(b))//Binary value
d=bin2dec(b)// Binary to decimal value
o=dec2oct(d)// Decimal to octal
disp("Eqivalent Octal number="+string(o))
exit();
|
8fa45bd4ad19c7fb54828bdc3f37e591dafa66d2
|
fa73b9454b1d003e901d57ef2121b7544bcdfef2
|
/scenes/creat-aa.sce
|
1c4fd8139ea98e414e000a204e6452b3f94b9312
|
[] |
no_license
|
bernielampe1/ray_tracer
|
ea91cf08188194f6a0d1e8c9e95baa4aea12f021
|
7fa963ccd07695be3a78acd4837af6cd439698b9
|
refs/heads/master
| 2021-01-02T01:16:52.595743
| 2020-03-02T12:36:03
| 2020-03-02T12:36:03
| 239,428,546
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 627
|
sce
|
creat-aa.sce
|
sce1.0
# camera
eyepos 1 -1.5 0.5
eyedir 0 1 -0.10
eyeup 0.0 0.0 1.0
wdist 1.0
fovy_deg 50
nx 400
ny 300
#options
max_recursion 4
aasample 4
# scene
background 0 0 0.6
ca 0.1 0.1 0.1
rotate -15 0 0 1
{
#ground
cr 0.4 0.5 0.4
cp 0.4 0.4 0.4
triangle -3 -10 0 3 -10 0 3 10 0
triangle -3 -10 0 3 10 0 -3 10 0
}
{
cr 0.6 0.6 0.6
cp 0.4 0.4 0.4
translate 1 2.9 -0.3
#rotate 25 0 1 0
scale 0.5 0.5 2
ball 1 0 0 0
}
{
translate 0.4 0.3 -0.56
rotate 90 1 0 0
scale 0.7 0.7 0.7
cr 0.5 0.4 0.9
cp 0.0 0.0 0.0
object_phong feline100.obj
}
{
translate -1 -1 5
pointlight 3 0 4 0.8 0.8 0.6
}
end
|
8bce22c28ae3846099752f79c840498e7a228228
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/24/CH12/EX12.1/Example12_1.sce
|
c19981d70fbe355a3a6dc1cab3efe756061aa6af
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 254
|
sce
|
Example12_1.sce
|
//Given that
M = 1.4 //in kg
R = 8.5*10^-2 //in meter
v = 15*10^-2 //in meter
//Sample Problem 12-1
printf("**Sample Problem 12-1**\n")
I = 0.5*M*R^2
w = v/R
K = 0.5*M*v^2 + 0.5*I*w^2
printf("The total kinetic energy of the disk is %fJ", K)
|
70df97db742e39a598d3006f8b240eaeb61dc1bc
|
367fb86cc145c187bc8aa89afab0f15f7e8826e4
|
/functions/cv_dilate.sci
|
dfa93a0839f6b8bfb30eb93b2e8bb34503fa1c9e
|
[] |
no_license
|
rishubhjain/funcforscilab
|
19180cefb15a88df5cd55d91c2e50ab1829e4860
|
3f9fb8b1f467e1e89da1297bee8bd14645da5605
|
refs/heads/master
| 2021-01-23T00:15:23.622940
| 2015-04-22T09:32:28
| 2015-04-22T09:32:28
| 31,612,595
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 145
|
sci
|
cv_dilate.sci
|
function[img_ret]=cv_dilate(image,iterations)
pyImport morphological_file
img_ret=morphological_file.dilate(image,iterations)
endfunction
|
c8a304f934e13e77480ef37362fd7049e3aff58f
|
ac66d3377862c825111275d71485e42fdec9c1bd
|
/Resources/res/map/map1307.sce
|
cb05b8a3f1e14606309a065766c8cf049742523d
|
[] |
no_license
|
AIRIA/CreazyBomber
|
2338d2ad46218180f822682d680ece3a8e0b46c3
|
68668fb95a9865ef1306e5b0d24fd959531eb7ad
|
refs/heads/master
| 2021-01-10T19:58:49.272075
| 2014-07-15T09:55:00
| 2014-07-15T09:55:00
| 19,776,025
| 0
| 2
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,187
|
sce
|
map1307.sce
|
<?xml version="1.0" encoding="UTF-8"?>
<Project Name="map1307" Width="13" Height="13" CellSize="40" BackgroundSize="1" Background="11plus.png">
<Cell Name="雪灌木" X="1" Y="1" />
<Cell Name="木箱" X="2" Y="1" />
<Cell Name="雪灌木" X="5" Y="1" />
<Cell Name="冰块" X="7" Y="1" />
<Cell Name="企鹅(怪)" X="8" Y="1" arg0="15" />
<Cell Name="冰块" X="2" Y="2" />
<Cell Name="出生点" X="3" Y="2" />
<Cell Name="冰块" X="4" Y="2" />
<Cell Name="雪灌木" X="5" Y="2" />
<Cell Name="木箱" X="6" Y="2" />
<Cell Name="冰墙" X="7" Y="2" />
<Cell Name="木箱" X="8" Y="2" />
<Cell Name="雪灌木" X="9" Y="2" />
<Cell Name="雪灌木" X="10" Y="2" />
<Cell Name="冰墙" X="1" Y="3" />
<Cell Name="冰块" X="3" Y="3" />
<Cell Name="雪树" X="5" Y="3" />
<Cell Name="冰块" X="6" Y="3" />
<Cell Name="木箱" X="7" Y="3" />
<Cell Name="冰川帐篷" X="8" Y="3" arg0="1" arg1="1,1,0,0,0" arg2="14" />
<Cell Name="冰块" X="10" Y="3" />
<Cell Name="雪灌木" X="11" Y="3" />
<Cell Name="雪树" X="2" Y="4" />
<Cell Name="雪灌木" X="3" Y="4" />
<Cell Name="海豹(怪)" X="5" Y="4" arg0="16" />
<Cell Name="雪树" X="7" Y="4" />
<Cell Name="雪树" X="8" Y="4" />
<Cell Name="企鹅(怪)" X="9" Y="4" arg0="15" />
<Cell Name="鱼人(怪)" X="2" Y="5" arg0="17" />
<Cell Name="冰块" X="3" Y="5" />
<Cell Name="冰块" X="4" Y="5" />
<Cell Name="冰块" X="6" Y="5" />
<Cell Name="雪树" X="8" Y="5" />
<Cell Name="雪树" X="9" Y="5" />
<Cell Name="冰墙" X="10" Y="5" />
<Cell Name="木箱" X="11" Y="5" />
<Cell Name="雪树" X="1" Y="6" />
<Cell Name="雪树" X="2" Y="6" />
<Cell Name="冰川帐篷" X="4" Y="6" arg0="1" arg1="1,1,0,0,0" arg2="14" />
<Cell Name="雪灌木" X="5" Y="6" />
<Cell Name="冰墙" X="6" Y="6" />
<Cell Name="雪树" X="10" Y="6" />
<Cell Name="雪树" X="11" Y="6" />
<Cell Name="冰川帐篷" X="1" Y="7" arg0="1" arg1="1,1,0,0,0" arg2="14" />
<Cell Name="木箱" X="2" Y="7" />
<Cell Name="海豹(怪)" X="3" Y="7" arg0="16" />
<Cell Name="雪树" X="8" Y="7" />
<Cell Name="冰块" X="10" Y="7" />
<Cell Name="雪树" X="2" Y="8" />
<Cell Name="鱼人(怪)" X="5" Y="8" arg0="17" />
<Cell Name="雪灌木" X="6" Y="8" />
<Cell Name="雪树" X="7" Y="8" />
<Cell Name="鱼人(怪)" X="9" Y="8" arg0="17" />
<Cell Name="冰墙" X="10" Y="8" />
<Cell Name="鱼人(怪)" X="11" Y="8" arg0="17" />
<Cell Name="冰川帐篷" X="4" Y="9" arg0="1" arg1="1,1,0,0,0" arg2="14" />
<Cell Name="雪树" X="6" Y="9" />
<Cell Name="冰川帐篷" X="8" Y="9" arg0="1" arg1="1,1,0,0,0" arg2="14" />
<Cell Name="冰块" X="10" Y="9" />
<Cell Name="雪灌木" X="4" Y="10" />
<Cell Name="雪树" X="5" Y="10" />
<Cell Name="通关点-1" X="6" Y="10" />
<Cell Name="木箱" X="9" Y="10" />
<Cell Name="雪块" X="10" Y="10" />
<Cell Name="木屋1(大型建筑)" X="2" Y="11" arg0="3" arg1="2" arg2="0,2" />
<Cell Name="冰块" X="5" Y="11" />
<Cell Name="木箱" X="6" Y="11" />
<Cell Name="雪灌木" X="8" Y="11" />
<Cell Name="冰块" X="9" Y="11" />
<Cell Name="木箱" X="10" Y="11" />
</Project>
|
15c73002c569d11363496553593d974dc41defe1
|
7c3f5d0908e4b8296e6f510e1b52197d07f7aa50
|
/seno_taylor.sce
|
5427cdeeedcbdff99a3844cab34532ee3a4fc00e
|
[] |
no_license
|
mtxslv/Projetos-Calculo-Numerico
|
883da40114255c871b47fb1882e3890a63d71d9d
|
96949e60d384d973f048712a5222796dc989a088
|
refs/heads/master
| 2020-03-26T08:43:46.551491
| 2018-09-01T23:19:56
| 2018-09-01T23:19:56
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 152
|
sce
|
seno_taylor.sce
|
function seno = seno_taylor(angulo, n)
seno = 0;
for i:1:n
seno = seno + ((angulo)^(2*n + 1) / factorial(2*n +1));
end
endfunction
|
e50c64fa2bdfc914d1bdad5385da9bce92e8c4bd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1835/CH8/EX8.4/Ex8_4.sce
|
69e41ed5db8525c1167dbe5ab29267474cbb4271
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 653
|
sce
|
Ex8_4.sce
|
//CHAPTER 8 ILLUSRTATION 4 PAGE NO 225
//TITLE:BALANCING OF ROTATING MASSES
pi=3.141
clc
clear
mB=30// mass of B in kg
mC=50// mass of C in kg
mD=40// mass of D in kg
rA=18// radius of A in cm
rB=24// radius of B in cm
rC=12// radius of C in cm
rD=15// radius of D in cm
//=============================
mA=3.6/.18// mass of A by measurement in kg
theta=124// angle with mass B in degrees by measurement in degrees
y=3.6/(.18*20)// position of A from B
printf('mass of A=%i kg\n angle with mass B=%i degrees\n position of A from B=%i m towards right of plane B',mA,theta,y)
|
700f41f9bab513318983a490d2907390995eeeed
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2087/CH11/EX11.3/example11_3.sce
|
6744d33022b0cb83abe18e8d376d36f14c47ac8c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 858
|
sce
|
example11_3.sce
|
//example 11.3
//calculate
//capacity of siphon
//head required in oggy spillway
//length of oggy weir required
clc;funcprot(0);
//given
t=6; //tail water elevation
h=1; //heigth of siphon spillway
w=4; //width of siphon spillway
hw=1.5; //head water elevation
C=0.6; //coefficient of discharge
Co=2.25; //coefficient of discharge of oggy spillway
lo=4; //length of oggy spillway
hc=1.5; //head on weir crest
g=9.81; //acceleration due to gravity
//part (a)
Q=C*h*w*(2*g*(t+hw))^0.5;
Q=round(Q*10)/10;
mprintf("capacity of siphon=%f cumecs.",Q);
//part (b)
h1=(Q/(Co*lo))^(2/3);
h1=round(h1*100)/100;
mprintf("\nhead required in oggy spillway=%f m",h1);
//part (c)
L=Q/(Co*(hc)^1.5);
L=round(L*100)/100;
mprintf("\nlength of oggy weir required=%f m.",L);
|
731a286eef81cc7310927f000eb741d8a7da5bf1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/542/CH14/EX14.3/Example_14_3.sci
|
fab68f40e9ebda588685de7b3827cd454b8409cc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 800
|
sci
|
Example_14_3.sci
|
clear;
clc;
printf('\n Example 14.3");
He = 2690; //He is the enthalpy of entrained steam in kJ/kg
H4 = ((1*2780)+(1.6*2690))/2.60;
//Again assuming isentropic compression from 101.3 to 135 kN/m2, then:
H3 = 2640; //in kJ/kg (from the chart)
n = (1.0+1.6)*(2725-2640)/[1.0*(2780-2375)];
printf("\n η = %.2f ",n);
printf("\n This value is low, since in good design overall efficiencies approach 0.75–0.80. Obviously the higher the efficiency the greater the entrainment ratio or the higher the saving in live steam");
Pe = 101.3; //pressure of entrained vapour in kN/m^2
discharge_P = 135;//discharge pressure in kN/m^2
printf("\n the required flow of live steam = 0.5 kg/kg entrained vapour.");
printf("\n In this case the ratio is (1.0/1.6) = 0.63 kg/kg");
|
05fd1cc3a7f91e88d5fb9eb826afd4b797d03ae3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/728/CH9/EX9.12/Ex9_12.txt
|
4c97fc7e5ee6c866d8dc38717c8cb0c82bb41d76
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 487
|
txt
|
Ex9_12.txt
|
//Caption:Calculate (i)-maximum power gain in dBs ,(ii)-noise figure F in dBs, (iii)-bandwidth for r=0.2
//Exa:9.12
clc;
clear;
close;
ratio=8;
r=0.2;
r_Q=8;
T_d=300;//in Kelvin
T_o=300;//in Kelvin
X=8;
G=(ratio)*X/(1+sqrt(1+X))^2;
G_in_dB=(10*log(G))/log(10);//gain
disp(G_in_dB,'Maximum Gain (in dB)=');
F=[10*log(1+(2*T_d/T_o)*[(1/(r_Q))+(1/(r_Q)^2)])]/log(10);//noise figure
disp(F,'Noise figure (in dB) =');
B_W=2*r*sqrt(ratio);//bandwidth
disp(B_W,'bandwidth =');
|
6e390f04a28c193424c036e90bf3663ec97d2f70
|
27fecbbeb6c49dcf03b9bddf1b867c31e13a3825
|
/Simulações/Relatório 04/t3.sci
|
250d890358f3609327bb4d3024c4ea3e6dfe5fcd
|
[] |
no_license
|
LucasHattoriCosta/Poli
|
42c9fc2d34c31e01336265fbdac3e4921d56e096
|
b1ac609c3675539b4e921909c35ea196ffc44df3
|
refs/heads/master
| 2023-03-15T12:22:03.745943
| 2020-06-29T17:32:48
| 2020-06-29T17:32:48
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 533
|
sci
|
t3.sci
|
clc
clear
// Características do sistema:
pi = %pi
R = 3
c = 0.1
ro = 0.1 // kg/m
g = 9.80 // m/s²
l = 0.5 // m
L = 2*l // m
m = L*ro
alpha = l/R
//Vetor de Estados Iniciais
theta_0 = pi/6
omega_0 = 9
E = [theta_0,omega_0]
//Vetor Tempo
t0 = 0
dt = 0.005
tf = 100
t = t0:dt:tf
//Integração
function z_dot = deriva(t,z)
dk_dt = z(2)
d2k_dt2 = -(g/R)*(sin(alpha)/alpha)*sin(z(1)) - L*c*z(2)
z_dot = [dk_dt;d2k_dt2]
endfunction
//ODE
X = ode([theta_0;omega_0], 0, t, deriva)
////Plots
clf()
scf(0)
plot(t, X(2,:))
|
51e8a9e13e79fc53ab1ce9f5f901199eb9880942
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3773/CH24/EX24.3/Ex24_3.sce
|
11df63691555b41bc4c691d69c0317c2f8db0aec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 894
|
sce
|
Ex24_3.sce
|
//Chapter 24: Space Wave Propagation
//Example 24-9.3
clc;
//Variable Initialization
tx_h = 100 //Transmitting antenna height (m)
rx_h = 16 //Receiving antenna height (m)
tx_p = 40e3 //Transmitting antenna power radiation (W)
f = 100e6 //Frequency (Hz)
d = 10e3 //Distance (m)
c = 3e8 //Speed of light (m/s)
E = 1e-3 //Signal strength (V/m)
//Calculations
los = 4.12*(sqrt(tx_h) + sqrt(rx_h)) //LOS distance (km)
wave_lt = c/f //Wavelength (m)
Es = (88*sqrt(tx_p)/(wave_lt*(d**2)))*tx_h*rx_h //Field strength at distance d (V/m)
dsig = sqrt(88*sqrt(tx_p)*tx_h*rx_h/(wave_lt*E)) //Distance at which field strength reduces to 1mV/m
//Result
mprintf( "The LOS distance is %.2f km", los)
mprintf( "\nThe field strength at 10km is %.5f V/m", Es)
mprintf( "\nThe distance at which field strength is 1mV/m is %.d m",dsig)
|
f05f619c93657b1f177f4bb62a3997ad74113ec2
|
85744a910858b3185731e57d7d39dac2b5b17982
|
/Frequency Modulation.sce
|
233ad6e56f374e90819dd86418ee7bd1b77105f0
|
[] |
no_license
|
shashwat2811/Analog-Digital-Communication
|
b53aac1ae75d53df90e0b938ef8fdc38caaf3084
|
edd1ba5b0abad34aa74bed3441fddb26497f91db
|
refs/heads/main
| 2023-06-05T04:33:21.979126
| 2021-06-12T13:41:56
| 2021-06-12T13:41:56
| 376,288,206
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 747
|
sce
|
Frequency Modulation.sce
|
t= 0:1/10000:0.02; // declare time interval
Ec = 5; // amplitude of carrier signal
Em = 4.5; // amplitude of modulating signal
fc = 1000; // carrier frequency
fm = 300; // modulating frequency
//Carrier signal
Vc = Ec *cos (((2*%pi)*fc)*t);
//Modulating signal
Vm = Em * cos (((2*%pi)*fm)*t);
m1 = 1; // modulation index
Vfm = Ec*cos(((( 2*%pi)*fc)*t)+m1*sin(((2*%pi)*fm)*t)); //Frequency modulation signal
// plot signal
subplot (311);
plot (t, Vm);
title("Modulating signal");
xlabel('Time - s');
ylabel('Amplitude');
subplot (312);
plot (t,Vc);
title("Carrier signal");
xlabel('Time - s');
ylabel('Amplitude');
subplot (313);
plot (t,Vfm);
title("Modulated-wave");
xlabel('Time - s');
ylabel('Amplitude');
|
71835c045ee8c0bb0d7af6ee13591a5f56d354c8
|
08ee8059476493a308f8e13adcbace48d7bcfc92
|
/Scilab_packetTracer_codes/fft.sce
|
87c39148018fa7e76e7d23cb5e89eca397dc861a
|
[] |
no_license
|
Rushi-Bhatt/Self-Study
|
7ed44b7821154b7906c7d532255ea648ec9d6299
|
90cc75440328ba21769ffac878f46feadeb2f06f
|
refs/heads/master
| 2021-01-11T15:29:31.739065
| 2017-02-08T22:17:57
| 2017-02-08T22:17:57
| 80,360,471
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 67
|
sce
|
fft.sce
|
n=1:100
x=5*sin(2*%pi*n/10)
figure
plot(x)
a=fft(x)
figure
plot(a)
|
7b413669c112d9445160d853aeee7bdb91223757
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3886/CH5/EX5.5/5_5.sce
|
5251a047725f92cfaffe38b08ea42e4462377f99
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 335
|
sce
|
5_5.sce
|
//Smallest weight W
//Refer fig. 5.9
mu=0.4
//consider equilibrium of block B
//using law of friction
N1=5/((0.5)+(tand(20))*(sind(20))) //kN
F1=N1*tand(20)
C=N1*cosd(30)-F1*cosd(60) //kN
//Consider the equilibrium of block A
F2=C //kN
//Law of friction
N2=4.196/0.4 //kN
W=N2 //kN
printf("\nW=%0.2f kN",W)
|
efdea91755a59fed084974960db33c2931e3566f
|
4bcfc36b3fe4f98e84b3bf8fd08adde00b7da338
|
/Results/exploration/graph1dIndivs_1147.364.sci
|
064add61785d920906effc77a06c657c964db22d
|
[] |
no_license
|
CSSS2013UrbanMobility/UrbanMobilityNew
|
52bea127d39046a7ef6796936b07664784a8fa4c
|
48fb4b517718a961ca99e2fab678b80f17c22bf2
|
refs/heads/master
| 2021-01-01T18:42:37.730732
| 2014-02-09T16:40:18
| 2014-02-09T16:40:35
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 111
|
sci
|
graph1dIndivs_1147.364.sci
|
var=[];
max-cong=[];
max-trans=[];
var(1)=0.1;
max-cong(1)=302.5990099009901;
max-trans(1)=0.9518900343642611;
|
e6beb8f460a1a9c99c62f655d10eef21d6bff235
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.5/Unix-Windows/scilab-2.5/tests/examples/double.man.tst
|
16346ea36c839418e3307ee7657067d7f6e5d8d7
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 45
|
tst
|
double.man.tst
|
clear;lines(0);
x=int8([0 12 140])
double(x)
|
26cb341b990b28a1d41850a77f138b3f9e4245e8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3411/CH5/EX5.9.u1/Ex5_9_u1.sce
|
b200c2b79888e561521ade7041f9c7b44a87ffe2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 446
|
sce
|
Ex5_9_u1.sce
|
//Example 5_9_u1
clc();
clear;
//To determine the interplanar spacing
h=6.63*10^-34 //units in m^2 kg s^-1
m=9.1*10^-31 //units in Kgs
e=1.6*10^-19 //units in coulombs
v=844 //units in Volts
lamda=h/sqrt(2*m*e*v) //units in meters
n=1
theta=58 //units in degrees
d=(n*lamda)/(2*sin(theta*(%pi/180))) //units in meters
printf("The interplanar spacing d=")
disp(d)
printf("meters")
|
d8474456e54d4e1423414bab4782e5760880ccf8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2705/CH15/EX15.3/Ex15_3.sce
|
8cab979faa7bab3fbd59f5b6028445d857877741
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,018
|
sce
|
Ex15_3.sce
|
clear;
clc;
disp('Example 15.3');
// aim : To determine
// (a) the pressure, volume and temperature at each corner of the cycle
// (b) the thermal efficiency of the cycle
// (c) the work done per cycle
// (d) the work ratio
// given values
m = 1;// mass of air, [kg]
P1 = 1730;// initial pressure of carnot engine, [kN/m^2]
T1 = 273+300;// initial temperature, [K]
R = .29;// [kJ/kg K]
Gama = 1.4;// heat capacity ratio
// solution
// taking reference Fig. 15.15
// (a)
// for the isothermal process 1-2
// using ideal gas law
V1 = m*R*T1/P1;// initial volume, [m^3]
T2 = T1;
V2 = 3*V1;// given condition
// for isothermal process, P1*V1=P2*V2, so
P2 = P1*(V1/V2);// [MN/m^2]
// for the adiabatic process 2-3
V3 = 6*V1;// given condition
T3 = T2*(V2/V3)^(Gama-1);
// also for adiabatic process, P2*V2^Gama=P3*V3^Gama, so
P3 = P2*(V2/V3)^Gama;
// for the isothermal process 3-4
T4 = T3;
// for both adiabatic processes, the temperataure ratio is same,
// T1/T4 = T2/T3=(V4/V1)^(Gama-1)=(V3/V2)^(Gama-1), so
V4 = 2*V1;
// for isothermal process, 3-4, P3*V3=P4*V4, so
P4 = P3*(V3/V4);
disp('(a) At line 1');
mprintf('\n V1 = %f m^3, t1 = %f C, P1 = %f kN/m^2\n',V1,T1-273,P1);
disp('At line 2');
mprintf('\n V2 = %f m^3, t2 = %f C, P2 = %f kN/m^2\n',V2,T2-273,P2);
disp('At line 3');
mprintf('\n V3 = %f m^3, t3 = %f C, P3 = %f kN/m^2\n',V3,T3-273,P3);
disp('At line 4');
mprintf('\n V4 = %f m^3, t4 = %f C, P4 = %f kN/m^2\n',V4,T4-273,P4);
// (b)
n_the = (T1-T3)/T1;// thermal efficiency
mprintf('\n (b) The thermal efficiency of the cycle is = %f percent\n',n_the*100);
// (c)
W = m*R*T1*log(V2/V1)*n_the;// work done, [J]
mprintf('\n (c) The work done per cycle is = %f kJ\n',W);
// (d)
wr = (T1-T3)*log(V2/V1)/(T1*log(V2/V1)+(T1-T3)/(Gama-1));// work ratio
mprintf('\n (d) The work ratio is = %f\n',wr);
// there is calculation mistake in the book so answer is not matching
// End
|
3d2f6599115a039e8ab6e3c7a1c868c7fca5864e
|
a30abbc00448cb5a15a3ef1c07b1ac14e3142ce8
|
/src/library_apps/mpreduce/src/packages/assert/assert.tst
|
135bce389e3e23ebeed9feecd5b94fef1c5e79ea
|
[] |
no_license
|
geovas01/mathpiper
|
692178b2d9647a8a99fe43db44a85d38cc9f7075
|
a1fdacb1dc7155183974fa2ea5d92fba597f23fc
|
refs/heads/master
| 2016-09-05T15:28:49.409648
| 2015-07-17T10:06:45
| 2015-07-17T10:06:45
| 39,245,684
| 3
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 417
|
tst
|
assert.tst
|
symbolic;
typedef any;
typedef number checked by numberp;
typedef sf checked by sfpx;
typedef sq checked by sqp;
procedure hugo(x1,x2);
x2;
assert hugo: (number,any) -> number;
assert_install hugo;
hugo(0,0);
hugo('x,0);
hugo(0,'x);
assert addf: (sf,sf) -> sf;
assert addsq: (sq,sq) -> sq;
assert_install addf,addsq;
addsq(simp 'x,numr simp 'x);
algebraic;
assert_analyze();
assert_uninstall_all;
end;
|
46f3cd5250036488a44df6764dce5dffbd429edf
|
57e3f1898d0364ee8f61b3eebfb77304d7b59bee
|
/Hooke_Jeeves(Newton).sce
|
f18ff789a3ba089f102a48a4112a904a0a8279a8
|
[] |
no_license
|
Arma-X/Metodos-de-Otimizacao
|
74d3cfebc74224ebda1c738273a29232c2317e74
|
599b0d1d50238bc27a612983ce63fb8d02e85219
|
refs/heads/main
| 2023-08-04T07:27:42.937906
| 2021-09-16T16:42:58
| 2021-09-16T16:42:58
| 407,217,368
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,275
|
sce
|
Hooke_Jeeves(Newton).sce
|
// @ metodo de Hooke-Jeeves com newton @
global d;
d = [1, 0; 0, 1];
global p;
p = [-10, 10];
global lamb;
lamb = [2,2]
N = 2
function z =f(p)
z = (p(1)+2)^2+(p(2)-10)^2;
endfunction
function y = flamb(lamb,j)
global d ;
y = f([p(1) + lamb*d(j,1) , p(2) + lamb*d(j,2)]);
endfunction
function y1 = PrimeiraDeriv(j)
global lamb ;
h = 1e-6 ;
y1 = (flamb(lamb(j)+h,j) - flamb(lamb(j),j))/h ;
endfunction
function y2 = SegundaDeriv(j)
global lamb ;
h = 1e-3 ;
y2 = (flamb(lamb(j)+h,j)-2*flamb(lamb(j),j)+flamb(lamb(j)-h,j))/h^2 ;
endfunction
function Newton(j)
global lamb ;
for(k = 1:10)
lamb(j) = lamb(j) - (PrimeiraDeriv(j)/SegundaDeriv(j))
end
endfunction
function HookJeeves(d,p,lamb)
global d;
global p ;
global lamb ;
for(k=1:10)
for(j = 1:N)
Newton(j);
for (w=1:N)
p(w) = p(w) + lamb(j)*d(j,w);
end
end
end
mprintf("\n O ultimo ponto (x,y) é :");
mprintf("(%.7f,",p(1));
mprintf("%.7f)",p(2));
mprintf("\n valor de f no ponto é : %.6f",f(p))
endfunction
//----------------------------- main ------------------------
HookJeeves(d,p,lamb);
|
253824f929a6ebd74b4da78d68a14b34781eccd2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1544/CH3/EX3.19/Ch03Ex19.sce
|
3f97143bd34c714a376b599d5b6e8467775bc347
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 917
|
sce
|
Ch03Ex19.sce
|
// Scilab code Ex3.19: Pg 101-102 (2008)
clc; clear;
C = 270e-12; // Capacitance, F
A = 60e-04; // Cross-sectional area of plate, m^2
E = 350e03; // Dielectric strength, V/m
epsilon_r = 2.1; // Relative pemittivity
epsilon_o = 8.854e-12; // Permittivity of free space
// Part (a)
// Since formula for capacitance, C = ((epsilon_o)*(eplison_r)*A)/d, solving for d
d = ((epsilon_o)*(epsilon_r)*A)/C; // Thickness of dielectric, m
// Part (b)
// Since E = V/d, solving for V
V = E*d; // Maximum possible working voltage, V
printf("\nThe thickness of Teflon sheet required = %5.4f mm", d/1e-03);
printf("\nThe maximum possible working voltage for the capacitor = %5.1f V", V);
// Result
// The thickness of Teflon sheet required = 0.413 mm
// The maximum possible working voltage for the capacitor = 144.6 V
|
83493e8bfbc5492a17ed960b67a5a13527c1d55c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1397/CH1/EX1.6/1_6.sce
|
1703f30cd22a44a7456f5d2f809350a5021b5288
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 345
|
sce
|
1_6.sce
|
//clc();
clear;
// To determine the wavelength of source of light
beeta=0.30; // fringe spacing in centimtres
d=0.04; // distance between two slits in centimtres
D=180; // distance between the slit and screen in centimetres
lambda=(beeta*d*10^8)/D;
printf("the wavelength of source of light is %f Armstrong",lambda);
|
6a66655058d07853d3c701b5d10344beea35494c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/564/CH26/EX26.3/26_3.sce
|
7d8f7d3736bf02e7793ab3907b414b2d94adc23f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 534
|
sce
|
26_3.sce
|
pathname=get_absolute_file_path('26_3.sce')
filename=pathname+filesep()+'26_3data.sci'
exec(filename)
clear
Tr=T*L1/2;
mu=(8*G*t/(A*E*(b+a)))^0.5;
L=L1/2;
k1=((T*(b-a)*10^3)/(8*a*b*G*t));
k2=1/(mu*cosh(mu*L));
k3=((4*(b-a))/(a*b*(b+a)));
k4=(2*T*(10^3)/(a*b*G*t*(b+a)));
function[th]=f(z)
w=(k1*((k2*sinh(mu*z))-z));
F=((k1*k3 +k4)*L*L*0.5 -(k1*k2*k3/mu)*cosh(mu*L));
th=(k1*k2*k3/mu)*cosh(mu*z) -(k1*k3 +k4)*z*z*0.5 + F;
endfunction
funcprot();
printf("\nangle of twist at mid-span θ: %f rad",f(0));
|
93531b7d6a2dd8ed85c0f5ac32cf7eca9723ca03
|
6e257f133dd8984b578f3c9fd3f269eabc0750be
|
/ScilabFromTheoryToPractice/CreatingPlots/testparamfplot2d.sce
|
b22f22d00fab6d514d8f1d51d72d0499efd9bb03
|
[] |
no_license
|
markusmorawitz77/Scilab
|
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
|
7c98963a7d80915f66a3231a2235010e879049aa
|
refs/heads/master
| 2021-01-19T23:53:52.068010
| 2017-04-22T12:39:21
| 2017-04-22T12:39:21
| 89,051,705
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 112
|
sce
|
testparamfplot2d.sce
|
function y=f(x,t)
y=exp(-(x-t).^2/2)
endfunction
x=[-10:0.05:10].';
t=[-5:0.2:5];
clf;
paramfplot2d(f,x,t);
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.