blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
6
214
content_id
stringlengths
40
40
detected_licenses
listlengths
0
50
license_type
stringclasses
2 values
repo_name
stringlengths
6
87
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
15 values
visit_date
timestamp[us]date
2016-08-04 09:00:04
2023-09-05 17:18:33
revision_date
timestamp[us]date
1998-12-11 00:15:10
2023-09-02 05:42:40
committer_date
timestamp[us]date
2005-04-26 09:58:02
2023-09-02 05:42:40
github_id
int64
436k
586M
star_events_count
int64
0
12.3k
fork_events_count
int64
0
6.3k
gha_license_id
stringclasses
7 values
gha_event_created_at
timestamp[us]date
2012-11-16 11:45:07
2023-09-14 20:45:37
gha_created_at
timestamp[us]date
2010-03-22 23:34:58
2023-01-07 03:47:44
gha_language
stringclasses
36 values
src_encoding
stringclasses
17 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
5
10.4M
extension
stringclasses
15 values
filename
stringlengths
2
96
content
stringlengths
5
10.4M
eb60f565327c5935bec39b59365154706e62d757
449d555969bfd7befe906877abab098c6e63a0e8
/2144/CH5/EX5.1/ex5_1.sce
a4387dac1516243842fc6027f3d97614d5157b0a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
661
sce
ex5_1.sce
// Exa 5.1 clc; clear; close; // Given data T1 = 550;// in degree C T1 = T1 + 273;// in K T2 = 27;// in degree C T2 = T2 + 273;// in K Eta = ((T1-T2)/T1)*100;// in % disp(Eta,"Maximum possible efficiency for staem turbine plant in % is"); T1 = 2500;// in degree C T1 = T1 + 273;// in K T2 = 400;// in degree C T2 = T2 + 273;// in K Eta = ((T1-T2)/T1)*100;// in % disp(Eta,"Maximum possible efficiency for internal combustion engine in % is"); T1 = 450;// in degree C T1 = T1 + 273;// in K T2 = 15;// in degree C T2 = T2 + 273;// in K Eta = ((T1-T2)/T1)*100;// in % disp(Eta,"Maximum possible efficiency for nuclear power plant in % is");
0afccf3138ee0b9ea846115bdcad57aa0c47d1b0
449d555969bfd7befe906877abab098c6e63a0e8
/3769/CH9/EX9.35/Ex9_35.sce
c656f576b6cae186f246be3a53d7dd965ff8d44c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
272
sce
Ex9_35.sce
clear //Given Ig=0.015 //A G=5 I=1 V=15 //Calculation S=(Ig*G)/(I-Ig) R=G*S/(G+S) R1=(V/Ig)-G R2=R1+G //Result printf("\n (i) Resistance of ammeter of range 0-1 A is %0.3f ohm", R) printf("\n (ii) Resistance of ammeter of range 0-15 A is %0.3f ohm", R2)
ccb6f9b3f352fdbcad663e9163bcbe826c8178ca
449d555969bfd7befe906877abab098c6e63a0e8
/2699/CH3/EX3.38/Ex3_38.sce
d67f0280e376ec169beaa2e25e5fcfd4e17f778f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
591
sce
Ex3_38.sce
//EX3_38 Pg-3.75 clc Vo=5; Il=20e-3; Pz=500e-3; Rl=Vo/Il; Il_min=Il;//minimum load current Il_max=Il;//maximum load current Iz_max=Pz/Vo;//maximum zener current Iz_min=5e-3;//minimum zener current V=12;//input DC voltage Vin_min=12-3;//min input voltage Vin_max=12+3;//max input voltage Rmax=(Vin_min-Vo)/(Il_max+Iz_min); printf("\n maximum resistance required is %.0f ohm \n",Rmax) Rmin=(Vin_max-Vo)/(Il_min+Iz_max); printf("\n minimum resistance required is %.2f ohm \n",Rmin) printf("\n So series resistance must be selected between %.2f ohm to %.0f ohm \n",Rmin,Rmax)
0d025cbdf516079a7c768f47ec47f7f16f42bf51
1b969fbb81566edd3ef2887c98b61d98b380afd4
/Rez/bivariate-lcmsr-post_mi/bfas_ap_bfa_mt/~BivLCM-SR-bfas_ap_bfa_mt-PLin-VLin.tst
7207a3c67fa44b18a8c126cd297b9af4f23a1689
[]
no_license
psdlab/life-in-time-values-and-personality
35fbf5bbe4edd54b429a934caf289fbb0edfefee
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
refs/heads/master
2020-03-24T22:08:27.964205
2019-03-04T17:03:26
2019-03-04T17:03:26
143,070,821
1
0
null
null
null
null
UTF-8
Scilab
false
false
11,974
tst
~BivLCM-SR-bfas_ap_bfa_mt-PLin-VLin.tst
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM. ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 1 2 3 4 5 ________ ________ ________ ________ ________ 1 0.255103D+00 2 -0.337816D-02 0.193959D-02 3 -0.949508D-01 0.756480D-03 0.401425D+00 4 0.306227D-03 -0.737404D-03 -0.567711D-02 0.333262D-02 5 -0.269897D-03 -0.254751D-04 0.533181D-03 -0.229508D-04 0.260393D-02 6 0.125413D-03 0.222875D-04 0.175098D-03 -0.451798D-04 0.401423D-03 7 0.594951D-03 0.316171D-04 0.717580D-03 -0.134503D-04 0.227583D-03 8 -0.749739D-04 0.386614D-04 -0.224816D-05 0.134488D-03 -0.351759D-04 9 -0.227832D+00 -0.185362D-02 0.182194D+00 0.141412D-01 0.419874D-01 10 -0.216321D+00 -0.627659D-02 0.180554D+00 -0.182361D-02 0.121148D+00 11 -0.123206D+00 0.167338D-02 0.118724D+00 -0.253496D-01 0.130468D-01 12 -0.241799D+00 -0.395052D-02 0.396967D+00 0.160008D-01 0.574940D-01 13 -0.671366D-01 -0.131920D-01 -0.386493D-02 0.673655D-03 0.155726D-01 14 -0.203268D+00 0.840256D-02 0.199820D+00 0.409522D-02 -0.274249D-01 15 -0.151576D+01 0.161531D-01 -0.252775D+00 0.101468D-01 -0.108740D+00 16 -0.114369D-01 -0.748777D-02 0.171779D-01 -0.169348D-03 0.936683D-04 17 -0.447888D-03 -0.335912D-03 -0.703601D-03 0.112303D-03 -0.194062D-03 18 -0.354698D+00 0.289058D-01 -0.121659D+00 -0.253703D-01 -0.201047D-01 19 0.800963D-01 0.770574D-03 -0.815369D-02 -0.286847D-02 -0.111950D-01 20 -0.330008D-01 -0.284628D-01 0.126357D+01 0.180914D-01 0.146902D-01 21 -0.607700D-01 0.183734D-04 -0.913305D-02 0.446219D-02 0.980240D-02 22 0.199861D-02 0.539028D-04 0.187219D-02 0.248481D-03 -0.651481D-04 23 -0.959518D-02 -0.406048D-03 -0.616456D-02 0.105932D-01 0.239883D-03 24 0.243031D-02 0.219733D-03 0.328499D-02 -0.171490D-03 -0.285702D-03 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 6 7 8 9 10 ________ ________ ________ ________ ________ 6 0.814234D-03 7 0.626403D-03 0.275239D-02 8 -0.136122D-03 0.292392D-03 0.355454D-02 9 0.169267D-01 0.174281D-01 0.440739D-02 0.353783D+02 10 0.208012D-01 0.140885D-01 0.939491D-02 0.116089D+01 0.137753D+02 11 0.232116D-01 0.370970D-01 0.234293D-01 -0.227005D+01 0.174289D+01 12 -0.273609D-02 0.192828D-01 0.652543D-01 0.109478D+02 0.182363D+01 13 0.502045D-01 0.728658D-01 -0.283572D-01 0.252397D+01 0.661904D+00 14 -0.321152D-01 -0.175908D-01 0.362125D+00 0.364333D+01 0.208577D+01 15 -0.230520D-01 -0.449037D-01 0.352724D-02 -0.294043D+01 -0.864119D+01 16 0.716808D-04 0.224852D-03 -0.859379D-04 0.490762D+00 0.544276D-01 17 -0.556420D-04 -0.179011D-07 0.378379D-05 -0.753283D-01 0.552764D-02 18 -0.425315D-01 -0.609456D-01 -0.849291D-02 -0.199018D+01 -0.393477D+00 19 -0.690273D-02 0.169234D-01 -0.887762D-02 0.548902D+00 -0.112086D+01 20 0.264486D-02 0.145582D-01 -0.287216D+00 0.366485D+00 -0.234649D+01 21 0.622991D-02 -0.160754D-01 0.121171D-01 -0.920415D+00 0.108676D+01 22 -0.780075D-04 -0.184104D-03 0.221997D-03 0.137887D-01 -0.514829D-02 23 -0.455022D-03 -0.466653D-03 -0.841611D-03 0.720203D-01 -0.861615D-01 24 0.289501D-03 0.224301D-03 -0.146581D-03 -0.206561D-01 0.791425D-02 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 11 12 13 14 15 ________ ________ ________ ________ ________ 11 0.382626D+02 12 -0.156976D+02 0.105299D+03 13 -0.165284D+01 0.107338D+01 0.105067D+02 14 0.275240D+01 0.523779D+01 -0.614593D+01 0.697341D+02 15 -0.365661D+01 0.364137D+01 -0.781360D+00 -0.153695D+01 0.166372D+03 16 -0.341253D-01 0.377981D+00 0.125527D+00 0.679678D-02 0.310197D+00 17 0.533886D-01 -0.613931D-01 0.477847D-02 0.299471D-01 -0.717441D+00 18 0.241606D+01 0.113892D+02 -0.515046D+01 0.297932D+01 -0.332999D+02 19 -0.120553D+01 -0.421413D+00 -0.168924D+00 -0.127988D+01 0.686154D+00 20 0.325935D+01 -0.182719D+02 0.335832D+01 -0.482688D+02 0.172637D+02 21 0.161517D+01 0.284681D+00 0.619772D-01 0.151342D+01 -0.174253D+01 22 -0.865570D-01 0.208962D-01 -0.927457D-02 0.264129D-01 0.181073D+00 23 -0.545477D-01 0.568237D+00 -0.159631D+00 -0.270479D+00 0.365648D-01 24 -0.185238D-01 -0.613916D-01 0.195884D-01 -0.220867D-01 -0.632271D-01 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 16 17 18 19 20 ________ ________ ________ ________ ________ 16 0.309859D+00 17 -0.134547D-01 0.933216D-02 18 -0.528418D+00 0.223913D+00 0.155152D+03 19 0.901279D-01 -0.752434D-02 -0.146568D+01 0.403392D+01 20 -0.148688D+00 -0.547403D-01 -0.654058D+02 0.126998D+01 0.430685D+03 21 -0.139266D+00 0.119895D-01 0.336988D+01 -0.376262D+01 -0.257853D+01 22 0.897221D-03 -0.165124D-02 -0.680741D+00 0.111689D-01 0.206346D+00 23 0.523090D-02 0.320413D-02 -0.719749D+00 -0.159618D+00 0.465639D+01 24 0.270771D-02 0.258823D-03 0.237332D+00 0.170111D-01 -0.172424D+01 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 21 22 23 24 ________ ________ ________ ________ 21 0.445880D+01 22 -0.448862D-01 0.733777D-02 23 -0.990813D-01 0.103541D-01 0.715984D+00 24 0.646189D-03 -0.260796D-02 -0.621617D-01 0.176529D-01 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 1 2 3 4 5 ________ ________ ________ ________ ________ 1 1.000 2 -0.152 1.000 3 -0.297 0.027 1.000 4 0.011 -0.290 -0.155 1.000 5 -0.010 -0.011 0.016 -0.008 1.000 6 0.009 0.018 0.010 -0.027 0.276 7 0.022 0.014 0.022 -0.004 0.085 8 -0.002 0.015 0.000 0.039 -0.012 9 -0.076 -0.007 0.048 0.041 0.138 10 -0.115 -0.038 0.077 -0.009 0.640 11 -0.039 0.006 0.030 -0.071 0.041 12 -0.047 -0.009 0.061 0.027 0.110 13 -0.041 -0.092 -0.002 0.004 0.094 14 -0.048 0.023 0.038 0.008 -0.064 15 -0.233 0.028 -0.031 0.014 -0.165 16 -0.041 -0.305 0.049 -0.005 0.003 17 -0.009 -0.079 -0.011 0.020 -0.039 18 -0.056 0.053 -0.015 -0.035 -0.032 19 0.079 0.009 -0.006 -0.025 -0.109 20 -0.003 -0.031 0.096 0.015 0.014 21 -0.057 0.000 -0.007 0.037 0.091 22 0.046 0.014 0.034 0.050 -0.015 23 -0.022 -0.011 -0.011 0.217 0.006 24 0.036 0.038 0.039 -0.022 -0.042 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 6 7 8 9 10 ________ ________ ________ ________ ________ 6 1.000 7 0.418 1.000 8 -0.080 0.093 1.000 9 0.100 0.056 0.012 1.000 10 0.196 0.072 0.042 0.053 1.000 11 0.132 0.114 0.064 -0.062 0.076 12 -0.009 0.036 0.107 0.179 0.048 13 0.543 0.428 -0.147 0.131 0.055 14 -0.135 -0.040 0.727 0.073 0.067 15 -0.063 -0.066 0.005 -0.038 -0.181 16 0.005 0.008 -0.003 0.148 0.026 17 -0.020 0.000 0.001 -0.131 0.015 18 -0.120 -0.093 -0.011 -0.027 -0.009 19 -0.120 0.161 -0.074 0.046 -0.150 20 0.004 0.013 -0.232 0.003 -0.030 21 0.103 -0.145 0.096 -0.073 0.139 22 -0.032 -0.041 0.043 0.027 -0.016 23 -0.019 -0.011 -0.017 0.014 -0.027 24 0.076 0.032 -0.019 -0.026 0.016 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 11 12 13 14 15 ________ ________ ________ ________ ________ 11 1.000 12 -0.247 1.000 13 -0.082 0.032 1.000 14 0.053 0.061 -0.227 1.000 15 -0.046 0.028 -0.019 -0.014 1.000 16 -0.010 0.066 0.070 0.001 0.043 17 0.089 -0.062 0.015 0.037 -0.576 18 0.031 0.089 -0.128 0.029 -0.207 19 -0.097 -0.020 -0.026 -0.076 0.026 20 0.025 -0.086 0.050 -0.279 0.064 21 0.124 0.013 0.009 0.086 -0.064 22 -0.163 0.024 -0.033 0.037 0.164 23 -0.010 0.065 -0.058 -0.038 0.003 24 -0.023 -0.045 0.045 -0.020 -0.037 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 16 17 18 19 20 ________ ________ ________ ________ ________ 16 1.000 17 -0.250 1.000 18 -0.076 0.186 1.000 19 0.081 -0.039 -0.059 1.000 20 -0.013 -0.027 -0.253 0.030 1.000 21 -0.118 0.059 0.128 -0.887 -0.059 22 0.019 -0.200 -0.638 0.065 0.116 23 0.011 0.039 -0.068 -0.094 0.265 24 0.037 0.020 0.143 0.064 -0.625 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 21 22 23 24 ________ ________ ________ ________ 21 1.000 22 -0.248 1.000 23 -0.055 0.143 1.000 24 0.002 -0.229 -0.553 1.000
722566e2e11a07859b0c8e846a594ddf33c783d4
449d555969bfd7befe906877abab098c6e63a0e8
/3756/CH1/EX1.14/Ex1_14.sce
81a9265d7f111348d3b1577c64d56316affe19f3
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
201
sce
Ex1_14.sce
clc // // // //Variable declaration lambdaa=5.46*10**-7 //Wavelength t=6.3*10**-6 //thickness //Calculations mu=((6*lambdaa)/t)+1 //Result printf("\n The refractive index is %0.3f ",mu)
017795ed5ad6444b3ea35df604ee4d07f9a84131
a557f90da8513f81cafd8f65e37e2c0d66449a2f
/repetation.sce
8decced5761ab76fbbd73c40d5ba0c7187fa6f8c
[]
no_license
Sahil966121/SCI
484cd77d6247e54fe87d36b4f112965c83ab5d96
cf2921861486a4f2e2e83c3ca813a4e7710d3508
refs/heads/main
2023-03-03T17:43:08.236192
2021-02-03T05:19:43
2021-02-03T05:19:43
324,413,192
0
0
null
null
null
null
UTF-8
Scilab
false
false
217
sce
repetation.sce
clear; clc; x=input('Enter the sequence'); k=input('Enter the nmber of times the signal repeats'); x1=x; for i=1:k x1=[x1 x]; end x=abs(fft(x)); x1=abs(fft(x1)); subplot(211);plot2d3(x); subplot(212);plot2d3(x1);
704e0a405b872a5f210b27a0dca35e6cb821150e
449d555969bfd7befe906877abab098c6e63a0e8
/1301/CH10/EX10.14/ex10_14.sce
b6e852393f6dc652888b6b71199b67bf96064805
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
264
sce
ex10_14.sce
clc; k=1.38*10^-23; //Boltzmann's constant in J/K tk=273+100; //absolute temp (in Kelvin) KE=3/2*(k*tk); //calculating average Kinetic Energy in Joule using kinetic theory of gases disp(KE,"Average Kinetic Energy in Joule = "); //displaying result
ec37b0ee973517a1e5e75d880816697c1f505762
449d555969bfd7befe906877abab098c6e63a0e8
/3638/CH11/EX11.2/Ex11_2.sce
861d3897e8acae993ddbd91b0d800dbb0b810fbb
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
825
sce
Ex11_2.sce
//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999 //Example 11.2 //OS=Windows XP sp3 //Scilab version 5.5.2 clc; clear; //given //For Cr+3 ions in ruby N1=1.6e19;//Population density of E1 energy level in cm^(-3) N2=0;//Population density of E2 energy level in cm^(-3) n=1.76;//refractive index of medium Tsp=3e-3;//Spontaneous emission lifetime of atom in sec //Let g(v0) be g g=6.9e-12;//normalized lineshape function in s lambda0=694.3e-7;//wavelength at which absorption takes place in cm c=3e10;//speed of electrons in cm/s v=c/lambda0; //Let Y(v0) be Y Y=((c/n)^2)*g*(N2-N1)/(8*%pi*Tsp*(v^2));//Corresponding gain coefficient of medium mprintf("\n Absorption coefficient = %f",Y);//The answers vary due to round off error //negative sign implies absorption
fe68743c0f6c8c12ab9f540bdb8bf1e25e96d6fd
449d555969bfd7befe906877abab098c6e63a0e8
/1730/CH6/EX6.1/Exa6_1.sce
96f46c4b06f622270e2e33f9bd8859bf0d6eb520
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
506
sce
Exa6_1.sce
//Exa 6.1 clc; clear; close; // given data epsilon_r=2.5; epsilon_o=8.854*10^-12; d=.2*10^-3;// in m A=20*10^-4;// in m^2 omega=2*%pi*10^6;// in radians/s f=10^6; tan_delta=4*10^-4; C=epsilon_o*epsilon_r*A/d;// in F disp("Capicitance is : "+string(C*10^12)+" miu miu F"); // Formula P=V^2/R, so // R=V^2/P and P= V^2*2*%pi* f * C * tan delta, putting the value of P, we get R=1/(2*%pi*f*C*tan_delta);// in ohm disp("The element of parallel R-C circuit is : "+string(R*10^-6)+" M ohm");
9dfe7aa4f64600a8977665958d9913fd4c529a60
52cff1a2ef2292f8b9acf18dcfe1d4b0df75c558
/LAB 2- CONVOLUTION AND CORRELATION/60002190043_SS_SCILAB 2 convolution.sce
4abfb4ceb7951fa9500c00f334a683aaad01a216
[]
no_license
Hetankshi/SCILAB
692a3abc71e6686f40745d69a66e4511db244491
424d4cc3459bb535e2f6793249f6a583374820ad
refs/heads/main
2023-01-16T05:39:22.830875
2020-11-25T12:23:14
2020-11-25T12:23:14
315,916,735
0
0
null
null
null
null
UTF-8
Scilab
false
false
74
sce
60002190043_SS_SCILAB 2 convolution.sce
clc clear all; close; x1=[1,3,7,-2,5]; x2=[2,-1,0,3]; y=conv(x1,x2)
38d82e54cc050d6e2df60f96df4ea135abcd99e5
99b4e2e61348ee847a78faf6eee6d345fde36028
/Toolbox Test/enbw/enbw1.sce
b3f965905827e8fe4436562285b0babb77f9a1a5
[]
no_license
deecube/fosseetesting
ce66f691121021fa2f3474497397cded9d57658c
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
refs/heads/master
2021-01-20T11:34:43.535019
2016-09-27T05:12:48
2016-09-27T05:12:48
59,456,386
0
0
null
null
null
null
UTF-8
Scilab
false
false
142
sce
enbw1.sce
//check o/p when the i/p arg is a uniformly sampled hamming window win=window('hm',1000); en=enbw(win); disp(en); //output // 1.3638074 //
294e999ed7b3031d9fd3eab237c4c41c809c0910
449d555969bfd7befe906877abab098c6e63a0e8
/243/CH3/EX3.23/3_23.sce
50d9630c0bcd4e9d718273d93128ba3885a141d3
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
397
sce
3_23.sce
//Example No. 3_23 //Associative law //Pg No. 58 clear ; close ; clc ; x = 0.400000*10^40 y = 0.500000*10^70 z = 0.300000*10^(-30) disp('In book they have considered the maximum exponent can be only 99, since 110 is greater than 99 the result is erroneous') disp((x*y)*z,'xy_z = ','but in scilab the this value is much larger than 110 so we get a correct result ') disp(x*(y*z),'x_yz = ')
526bcf92ecbe9f4c02d77149b12a8ea2f11293ba
449d555969bfd7befe906877abab098c6e63a0e8
/3648/CH5/EX5.5/Ex5_5.sce
5a5edf5e41abcf60f24f1224d42d8aad3ed80f74
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
250
sce
Ex5_5.sce
//Example 5_5 clc(); clear; //To calculate the average frictional force developed m=2000 //units in Kg vf=20 //units in meters/sec d=100 //units in meters f=(0.5*m*vf^2)/d //units in Newtons printf("Average frictional force f=%d N",f)
878cf78f2d5e897aa72cc9f8e9396caaa0c2aad1
449d555969bfd7befe906877abab098c6e63a0e8
/905/CH1/EX1.9/1_9.sce
6c48a44c2b0cc0613228f7626b83c5736869a311
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
2,398
sce
1_9.sce
clear; clc; // Illustration 1.9 // Page: 27 printf('Illustration 1.9 - Page:27 \n\n'); // Solution //*****Data*****// // A-acetic acid(solute) B-acetone(solvent) T = 313; // [K] // The following data are available (Reid, et al., 1987): // Data for acetic acid T_bA = 390.4; // [K] T_cA = 594.8; // [K] P_cA = 57.9; // [bar] V_cA = 171; // [cubic cm/mole] M_A = 60; // [gram/mole] // Data for acetone T_bB = 329.2; // [K] T_cB = 508; // [K] P_cB = 47; // [bar] V_cB = 209; // [cubic cm/mole] u_bB = 0.264; // [cP] M_B = 58; // [gram/mole] phi = 1; printf('Illustration 1.9 (a) - Page:27 \n\n'); // Solution (a) // Using equation 1.48 V_bA = 0.285*(V_cA)^1.048; // [cubic cm/mole] // Using the Wilke-Chang correlation , equation 1.52 D_abo1 = (7.4*10^-8)*(sqrt(phi*M_B))*T/(u_bB*(V_bA)^.6); printf("Diffusivity of acetic acid in a dilute solution in acetone at 313 K using the Wilke-Chang correlation is %e square cm/s\n",D_abo1); // From Appendix A, the experimental value is 4.04*10^-5 square cm/s D_aboexp = 4.04*10^-5; // [square cm/s] percent_error1 = ((D_abo1-D_aboexp)/D_aboexp)*100; // [%] printf("The percent error of the estimate, compared to the experimental value is %f\n\n ",percent_error1); printf('Illustration 1.9 (b) - Page:28 \n\n'); // Solution (b) // Using the Hayduk and Minhas correlation for nonaqueous solutions V_bA = V_bA*2; // [cubic cm/mole] V_bB = 0.285*(V_cB)^1.048; // [cubic cm/mole] // For acetic acid (A) T_brA = T_bA/T_cA; // [K] // Using equation 1.55 alpha_cA = 0.9076*(1+((T_brA)*log(P_cA/1.013))/(1-T_brA)); sigma_cA = (P_cA^(2/3))*(T_cA^(1/3))*(0.132*alpha_cA-0.278)*(1-T_brA)^(11/9); // [dyn/cm] // For acetone (B) T_brB = T_bB/T_cB; // [K] // Using equation 1.55 alpha_cB = 0.9076*(1+((T_brB*log(P_cB/1.013))/(1-T_brB))); sigma_cB = (P_cB^(2/3))*(T_cB^(1/3))*(0.132*alpha_cB-0.278)*(1-T_brB)^(11/9); // [dyn/cm] // Substituting in equation 1.54 D_abo2 = (1.55*10^-8)*(V_bB^0.27)*(T^1.29)*(sigma_cB^0.125)/((V_bA^0.42)*(u_bB^0.92)*(sigma_cA^0.105)); printf("Diffusivity of acetic acid in a dilute solution in acetone at 313 K using the Hayduk and Minhas correlation is %e square cm/s\n",D_abo2); percent_error2 = ((D_abo2-D_aboexp)/D_aboexp)*100; // [%] printf("The percent error of the estimate, compared to the experimental value is %f\n\n ",percent_error2);
e974affce88efb4600fde778f59ec387f18ac6f4
449d555969bfd7befe906877abab098c6e63a0e8
/2198/CH2/EX2.11.4/Ex2_11_4.sce
1aba886f3b7049a7f32e87c6ca5e047f4d8dc31d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
704
sce
Ex2_11_4.sce
//Ex 2.11.4 clc;clear;close; format('v',8); //Given : T=300;//K m_Si=1.5;//for Si m_Ge=1.5;//for Ge EGO_Si=1.21;//volt EGO_Ge=0.785;//volt Eta_Si=2; Eta_Ge=1; VT=26/1000;//V disp("Part(i) : "); d_logIoBYdt_Ge=m_Ge/T+EGO_Ge/(Eta_Ge*T*VT);//per degree C disp(d_logIoBYdt_Ge,"d(log(Io))/dt for Ge (per degree C) : "); d_logIoBYdt_Si=m_Si/T+EGO_Si/(Eta_Si*T*VT);//per degree C disp(d_logIoBYdt_Si,"d(log(Io))/dt for Si (per degree C) : "); disp("Part(ii) : "); V=0.2;//volt dVBYdt_Ge=V/T-Eta_Ge*VT*d_logIoBYdt_Ge disp(dVBYdt_Ge*1000,"dV/dt for Si (mV per degree C) : "); V=0.6;//volt dVBYdt_Si=V/T-Eta_Si*VT*d_logIoBYdt_Si disp(dVBYdt_Si*1000,"dV/dt for Si (mV per degree C) : ");
39d98179490a42e6f51713dce766b702ad7e82cf
449d555969bfd7befe906877abab098c6e63a0e8
/3392/CH11/EX11.4/Ex11_4.sce
95dbbaa9322d4e92572bcd3754c67349c905a758
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
167
sce
Ex11_4.sce
clc // initialization of variables clear SF=1.75 p1=300 //MPa S_rr=-SF*p1 S_th=SF*325 Y=1/sqrt(2)*sqrt((S_th-S_rr)^2+S_rr^2+S_th^2) printf(' Y = %.1f MPa',Y)
4ab816f29c9934ec2621ec5f9bbb7d1345c18790
333d6160f9a6d9e23a6bea06cd03e5e8fa8785a9
/RobotLab1/SciLab/LoadData.sce
87d63ac6e3447caca681c415e298c3d8c9a2bf2d
[ "MIT" ]
permissive
DmitryIo/ROBOTS
6f6bb12a8e08dd28024136ee1a8a84ea7254da60
777f0884a098c4f21d044985c25a8be276334116
refs/heads/master
2023-04-30T12:52:54.082977
2021-05-17T19:55:34
2021-05-17T19:55:34
294,091,170
3
0
null
null
null
null
UTF-8
Scilab
false
false
180
sce
LoadData.sce
results = read(get_absolute_file_path("LoadData.sce") + "..\Data\log" + currIdx + ".txt", -1, 2); angle = results(:, 1)*%pi/180; time = results(:, 2)/1000; plot2d(time, angle, 2);
57e3a57dab4539cc7575189efa3896fc4d0cf2eb
4483ff664b4d01c53114a7fc535625c197c8f989
/green routing/sampleprob.sce
fa30ee32b8115e67e3f0cec66d2ed5c41acfc314
[]
no_license
winash1618/myproject
be9b77d4a405edce7e625a999803016b50ab99d0
2132e76e6a996bee19f356a2b68af827fa6c621b
refs/heads/master
2022-12-06T06:09:06.487979
2020-08-20T02:00:54
2020-08-20T02:00:54
288,880,158
0
0
null
null
null
null
UTF-8
Scilab
false
false
11,263
sce
sampleprob.sce
clc clear x=8 z=21 pop=10 iter=10000 a=zeros(pop,z) rag=zeros(iter) rag=zeros(iter) bd=10000000*ones(1,pop) gppd=zeros(pop,x) cap=[288 95 115 133 107 22 34 28 186 190 33 56 100 90 82 143 68 166 44 73 72 60 68 8 20 ] tim=[0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000; 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0 1; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 0; ] dib=[1 1 1 1 1 1 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1 1 1 1 1 1 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1 1 1 1 1 1 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1 1000 1000 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1 1000 1000 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1 1000 1000 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1 1000 1000; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1; ] cad=rand(pop,z) for i=1:pop for j=1:z for k=1:z if cad(i,k)==min(cad(i,:)) a(i,j)=k cad(i,k)=10000 break end end end end disp (a) best=a function [bkop,grp,sis,kip] =finddis(a,bkom) temp=zeros(pop,x) tempo=zeros(pop,x) dis=zeros(pop,x) dis1=zeros(pop,x) rep=zeros(pop,z) rep1=zeros(pop,z) for ka=1:pop po=zeros(x,z) po1=zeros(x,z) prob=rand(1,1) kop=1+round((z-1)*rand(1,(x-1))) if prob<0.4 kom=kop end if ka==1 kom=kop end i=1 for k=1:x r=1 while i<min(kom) & i<=z po(k,r)=a(ka,i) r=r+1 if i<=z i=i+1 end end for g=1:x-1 if kom(g)==min(kom) kom(g)=100 break end end end hkom=bkom(ka,:) i=1 for k=1:x r=1 while i<min(hkom) & i<=z po1(k,r)=a(ka,i) r=r+1 if i<=z i=i+1 end end for g=1:x-1 if hkom(g)==min(hkom) hkom(g)=100 break end end end kom=kop mik=1 for k=1:x for i=1:z if po(k,i+1)~=0 dis(ka,k)=dis(ka,k)+tim(po(k,i),po(k,i+1)) if tim(po(k,i),po(k,i+1))>10 rep(ka,mik)=po(k,i) end mik=mik+1 else break end end end mik=1 for k=1:x for i=1:z if po1(k,i+1)~=0 dis1(ka,k)=dis1(ka,k)+tim(po1(k,i),po1(k,i+1)) if tim(po1(k,i),po1(k,i+1))>10 rep1(ka,mik)=po1(k,i) end mik=mik+1 else break end end end for k=1:x for i=1:z if(po(k,i)~=0) temp(ka,k)=temp(ka,k)+1 end end if temp(ka,k)>0 dis(ka,k)=dis(ka,k)+dib(k,po(k,1))+dib(k,po(k,temp(ka,k))) end end for k=1:x for i=1:z if(po1(k,i)~=0) tempo(ka,k)=tempo(ka,k)+1 end end if tempo(ka,k)>0 dis1(ka,k)=dis1(ka,k)+dib(k,po1(k,1))+dib(k,po1(k,tempo(ka,k))) end end if sum(dis1(ka,:))>sum(dis(ka,:)) dis1(ka,:)=dis(ka,:) bkom(ka,:)=kom tempo(ka,:)=temp(ka,:) rep1(ka,:)=rep(ka,:) end end bkop=bkom grp=tempo sis=dis1 kip=rep1 endfunction function [n] = mutate(b,grd,kip) gnd=ones(pop,x) for k=1:pop for i=1:x if i==1 gnd(k,i)=0 else gnd(k,i)=gnd(k,i-1)+grd(k,i-1) end end oll=rand(1,1) if oll<(y/iter) then xio=rand(1,1) if xio<0.5 r=1 for i=1:x poll=rand(1,1) if i==1 mut1=1+round((grd(k,i)-1)*rand(1,1)) mut2=1+round((grd(k,i)-1)*rand(1,1)) if poll<0.2 & mut1>0 & mut2>0 & mut1~=mut2 temper=b(k,mut2) b(k,mut2)=b(k,mut1) b(k,mut1)=temper r=r+1 end else mut1=gnd(k,i)+round((grd(k,i)-1)*rand(1,1)) mut2=gnd(k,i)+round((grd(k,i)-1)*rand(1,1)) if poll<0.2 & mut1>0 & mut2>0 & mut1~=mut2 temper=b(k,mut2) b(k,mut2)=b(k,mut1) b(k,mut1)=temper r=r+1 end end if r~=1 break; end end else for mi=1:x if kip(k,mi)~=0 mut1=1+round((z-1)*rand(1,1)) temper=b(k,mut1) b(k,mut1)=b(k,mi) b(k,mi)=temper end end end else mut1=1+round((z-1)*rand(1,1)) mut2=1+round((z-1)*rand(1,1)) temper=b(k,mut2) b(k,mut2)=b(k,mut1) b(k,mut1)=temper end end n=b endfunction function [rkom,glg,gog,kip] =roulewheel(dis,a,gpd,bkom,kip) tdis=zeros(1,pop) pdis=zeros(1,pop) cdis=zeros(1,pop) calm=a calp=gpd gkom=bkom jip=kip for i=1:pop tdis(i)=sum(dis(i,:)) tdis(i)=1/(1+tdis(i)) end for i=1:pop pdis(i)=tdis(i)/(sum(tdis)) end for i=1:pop if i==1 cdis(i)=cdis(i)+pdis(i) else cdis(i)=cdis(i-1)+pdis(i) end end for i=1:pop jin=rand(1,1) for j=1:pop if j==1 if jin<cdis(j) calm(i,:)=a(j,:) calp(i,:)=gpd(j,:) gkom(i,:)=bkom(j,:) jip(i,:)=kip(j,:) break end else if cdis(j-1)<jin & jin<=cdis(j) calm(i,:)=a(j,:) calp(i,:)=gpd(j,:) gkom(i,:)=bkom(j,:) jip(i,:)=kip(j,:) break end end end end rkom=gkom gog=calm glg=calp kip=jip endfunction toper=1000000 ygh=1 kip=zeros(pop,z) esup=zeros(1,z) egd=zeros(1,x) bkom=1+round((z-1)*rand(pop,(x-1))) bbom=zeros(pop,(x-1)) for y=1:iter [bkom,gp,dis,kip]=finddis(a,bkom) mog=zeros(1,pop) for i=1:pop mog(i)=sum(dis(i,:)) if mog(i)<bd(i) then best(i,:)=a(i,:) bd(i)=mog(i) gppd(i,:)=gp(i,:) bbom(i,:)=bkom(i,:) end if toper>bd(i) then toper=bd(i) esup=best(i,:) egd=gppd(i,:) end if round(sum(bd)/pop)-round(min(bd))<15 & y>1000 if mog(i)<1.5*bd(i) then best(i,:)=a(i,:) bd(i)=mog(i) gppd(i,:)=gp(i,:) bbom(i,:)=bkom(i,:) end end end rag(y)=min(bd) ryg(y)=y a=best gpd=gppd [bkom,gpd,a,kip]=roulewheel(dis,a,gpd,bkom,kip) [a]=mutate(a,gpd,kip) end plot(ryg,rag) tomp=zeros(x) sup=esup gd=egd for j=1:x if(j==1) tomp(j)=gd(j) else tomp(j)=tomp(j-1)+gd(j) end end fine=zeros(x,z) for j=1:x if j==1 then for k=1:tomp(j) fine(j,k)=sup(k) end else i=1 for k=tomp(j-1)+1:tomp(j) fine(j,i)=sup(k) i=i+1 end end end namer=['CHEDIKULAM' 'URUPUMKUTTY' 'EDAPUZHA' 'EDOOR' 'KOLAYAD' 'VELLARVALLY' 'ARYAPARAMBA' 'PERUVA' 'KAPPAD' 'ATTENCHERY' 'PERAVOOR' 'MALOOR' 'THRIKADARIPOIL' 'THODEEKKALAM' 'EDATHOTTY' 'PALAPPUZHA' 'THALIPPOYIL' 'VATTIARA' 'PERUMPARAMBU' 'PADIKACHAL' 'PUNNAD' 'KODOLIPRAM' 'MARUTHAYI' 'VELLIYAMPARAMBA KSS LTD' 'KANHILERI' ] bmc=["KEEZHPALLY" "KEEZHPALLY" "ODEMTHODE" "ODEMTHODE" "THOLUMBRA" "THILLANKERI" "PAZHASSI RAJA NAGAR" "PAZHASSI RAJA NAGAR" ] yum=0 for i=1:1:x for j=1:z if fine(i,j)>0 if j==1 disp(bmc(i)) disp(dib(i,fine(i,j))) yum=yum+dib(i,fine(i,j)) end disp(namer(fine(i,j))) if j~=gd(i) then disp(tim(fine(i,j),fine(i,j+1))) yum=yum+tim(fine(i,j),fine(i,j+1)) end if j==gd(i) disp(dib(i,fine(i,j))) yum=yum+dib(i,fine(i,j)) disp(bmc(i)) end end end end disp(yum)
e7fbf3403fb76cc7b216f2333f4729dcbea4c865
449d555969bfd7befe906877abab098c6e63a0e8
/2507/CH7/EX7.5/Ex7_5.sce
c06537a9d540f3baf2eeb29a229610a228e26f5a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
597
sce
Ex7_5.sce
clc clear printf("Example 7.5 | Page number 192 \n\n"); //Part(a) Find the COP of reversible heat engine as refrigerator. //Part(b) Find the COP of reversible heat engine as heat pump. //Given Data T1 = 273 + 37 //K T2 = 273 - 13 //K //Part(a) printf("Part (a)\n"); COP_ref = T2/(T1-T2) //COP of reversible heat engine as refrigerator. printf("COP of reversible heat engine as refrigerator = %.1f\n\n",COP_ref) //Part(b) printf("Part (b)\n"); COP_hp = T1/(T1-T2) //COP of reversible heat engine as heat pump. printf("COP of reversible heat engine as heat pump = %.1f",COP_hp)
24494c3245c167f6b1bd44e821e34d19ad705790
449d555969bfd7befe906877abab098c6e63a0e8
/1457/CH9/EX9.8/9_8.sce
eb07e981434684c954aeb283a063c0f4e1896e5c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
192
sce
9_8.sce
clc //Initialization of variables G=100 //lb/s g=32.2 V2=300 //fps V1=250 //fps //calculations Qh= (V2^2 -V1^2)/(2*g) Q=Qh*G //results printf("Thermal energy added = %d ft lb/s",Q)
f00994e6030eb9c771d5f9c6bffcccb00149845c
449d555969bfd7befe906877abab098c6e63a0e8
/3751/CH6/EX6.7/Ex6_7.sce
8baafe52a35ee5fbd283a4cd091b1b5cbca3097e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,307
sce
Ex6_7.sce
//Fluid System By Shiv Kumar //Chapter 6 - Kaplan and Propeller Turbines //Example 6.7 //To Find (a)Diameter of Runner (b)Speed (c)Specific Speed clc clear //Given: H=32; //Head, m P=16000; //Shaft Power, KW D_per=190; //Percentage by which Diameter of Runner(D)is Larger than diameter of Boss(d) eta_0=91/100; //Overall Efficiency Ku=2; //Speed Ratio Kf=0.64; //Flow Ratio //Data Required: rho=1000; //Density of Water, Kg/m^3 g=9.81; //Acceleration due to gravity, m/s^2 //Computations Vfi=Kf*sqrt(2*g*H); //Velocity of Flow at Inlet, m/s ui= Ku*sqrt(2*g*H); //Velocity of Runner at Inlet, m/s Q=P*10^3/(rho*g*H*eta_0); //Discharge, m^3/s d=sqrt(Q/((%pi/4)*Kf*sqrt(2*g*H)*((D_per/100+1)^2-1))); // Diameter of Hub ,m //(a) Diameter of Runner ,D D=d+(D_per/100)*d; //m //(b) Speed,N N=ui*60/(%pi*D); // rpm //(iii) Specific Speed of Turbine, Ns Ns=N*P^(1/2)/(H^(5/4)); // SI Units //Results printf("(a)Diameter of Runner , D=%.3f m\n",D) printf(" (b)Speed, N =%.2f rpm\n",N) //The answer vary due to round off error printf(" (c)Specific Speed, Ns =%.2f (SI Units)\n",Ns) //The answer provided in the textbook is wrong.
aa89b7b093338ec06b97defe63311e2c4616d768
717ddeb7e700373742c617a95e25a2376565112c
/587/CH13/EX13.10/example13_10.sce
5b2b8f9e9c264f3bf65dbde3a75551e11fcb129e
[]
no_license
appucrossroads/Scilab-TBC-Uploads
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
refs/heads/master
2021-01-22T04:15:15.512674
2017-09-19T11:51:56
2017-09-19T11:51:56
92,444,732
0
0
null
2017-05-25T21:09:20
2017-05-25T21:09:19
null
UTF-8
Scilab
false
false
1,862
sce
example13_10.sce
clear; clc; //Example13.10[Heat Transfer through a Tubular Solar Collector] k=0.02588;//[W/m.degree Celcius] Pr1=0.7282,Pr2=0.7255;//Prandtl no nu1=1.608*(10^(-5)),nu2=1.702*10^(-5);//[m^2/s] T1=20,T2=40;//[degree Celcius] Tavg=((T1+T2)/2)+273;//[K] Do=0.1,L=1;//Dimensions of glass tube[m] Di=0.05;//Inner diameter of tube[m] Q_glass=30;//Rate of heat transfer from the outer surface of the glass cover[W] g=9.81;//[m^2/s] eo=0.9,ei=0.95;//Emissivity //Solution:- Ao=%pi*Do*L;//Heat transfer surface area of the glass cover[m^2] disp(Ao,Tavg) Ra_Do=g*Tavg*(T2-T1)*(Do^3)*Pr1/(nu1); disp(Ra_Do,"The Rayleigh number is") Nu=((0.6+((0.387*(Ra_Do^(1/6)))/((1+((0.559/Pr1)^(9/16)))^(8/27))))^2); disp(Nu,"The nusselt number is") ho=k*Nu/Do;//[W/m^2.degree Celcius] Qo_conv=ho*Ao*(T2-T1);//[W] Qo_rad=eo*5.67*10^(-8)*Ao*(((T2+273)^4)-((T1+273)^4));//[W] Qo_total=Qo_conv+Qo_rad;//[W] disp("W",Qo_total,"The total rate of heat loss from the glass cover Lc=(Do-Di)/2;//The characteristic length Ai=%pi*Di*L;//[m^2] //Assuming T_tube=54,T_cover=26;//Temperature of tube and glass cover[degree Celcius] T_avg=((T_tube+T_cover)/2)+273;//[K] Ra_L=g*T_avg*(T_tube-T_cover)*(Lc^3)*Pr2/(nu2); disp(Ra_L,"The Rayleigh number in this case is") F_cyl=((log(Do/Di))^4)/((Lc^3)*(((Di^(-3/5))+(Do^(-3/5)))^5)); k_eff=0.386*k*((Pr2/(0.861+Pr2))^(1/4))*((F_cyl*Ra_L)^(1/4)); disp("W/m.degree Celcius",k_eff,"The effective thermal conductivity is") QL_conv=2*%pi*k_eff*(T_tube-T_cover)/(log(Do/Di)); disp("W",QL_conv,"The rate of heat transfer between the cylinders by convection is") QL_rad=((5.67*10^(-8))*Ai*(((T_tube+273)^4)-((T_cover+273)^4)))/((1/ei)+(((1-eo)/eo)*(Di/Do))); disp("W",QL_rad,"The radiation rate of heat transfer is") QL_total=QL_conv+QL_rad;//[W] disp("W",QL_total,"The total rate of heat loss from the glass cover is")
c1a27047e25875ccf5f3e51742edee28c656e073
449d555969bfd7befe906877abab098c6e63a0e8
/728/CH8/EX8.16/Ex8_16.txt
37d76d780ffffaebed429ee0977ce30560dd21a3
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
577
txt
Ex8_16.txt
//Caption:Calculate (i)-repeller voltage V_r ,(ii)-beam current necessary to give gap voltage of 200V //Exa:8.16 clc; clear; close; e_m_ratio=1.759*10^11;//(e/m) V_o=300;//in volts R_sh=20*10^3;//in ohms f=8*10^9;//inHz w=2*%pi*f; n=2;//mode L=0.001;//spacing between repeller & cavity (in m) x=(e_m_ratio)*(2*%pi*n-%pi/2)^2/(8*w^2*L^2); volt_diff=sqrt(V_o/(x)); V_r=(volt_diff)+V_o;//repeller volatge J=0.582; V_1=200;//given (in volts) I_o=V_1/(R_sh*2*J); disp(V_r,'Repeller voltage(in volts) ='); disp(I_o*10^3,'Necessary beam current (in milliAmp.s) =');
bdbb14826db646cea2761aa63fa88d239f8d1060
5f48beee3dc825617c83ba20a7c82c544061af65
/tests/s/61.tst
2258fcede9c461bdb5c2755bbef53d16402e7eac
[]
no_license
grenkin/compiler
bed06cd6dac49c1ca89d2723174210cd3dc8efea
30634ec46fba10333cf284399f577be7fb8e5b61
refs/heads/master
2020-06-20T12:44:17.903582
2016-11-27T03:08:20
2016-11-27T03:08:20
74,863,612
3
0
null
null
null
null
WINDOWS-1251
Scilab
false
false
55
tst
61.tst
int f(float x, int y), g(int z) /* ошибка */ { }
ad5c08312c930c038b00eebdc3c0ca7a8768f160
c2249f1089957357481c4bc88e17047fb96af0fd
/TestCases/projp2.tst
44a4ecbc129d35235281e1ba5a50d3ffef73dd90
[]
no_license
FikriAnuar/LaTeXParser
9bf5d0f1ea85d26ae4cb4cb72ef0cd95a7e358d6
97a872d3903aafea98045050f1782b0ff7840ed7
refs/heads/master
2022-12-12T04:17:47.702201
2020-09-09T16:38:05
2020-09-09T16:38:05
294,170,332
0
0
null
null
null
null
UTF-8
Scilab
false
false
3,053
tst
projp2.tst
\begin{document} The second part of the semester project focuses on gaining experience with lex (flex) and yacc (bison), coupled with continued design (and redesign) skills for context free grammars (CFGs). The second part of the project is divided into two major tasks, and is worth a total of 50 points: \begin{enumerate} \item Revising the common grammar to remove the shift or reduce and rule-not-reduced conflicts. These corrections are made to the yacc or bison file, and the result must be tested extensively for different input latex documents. This task is worth 35 points. \item Using your result grammar of the first task, redesign the common grammar to support the recognition of verbatim blocks and also nested blocks. That is, recall that the different blocks (itemize, enumerate, single, etc.) can also be nested to yield different combinations of formatted text. Again, test your result using yacc.bison to demonstrate that the grammar revisions for these two changes work correctly. This task is worth 15 points. \end{enumerate} To serve as a common base for the project, there is a directory that contains a number of important files: \begin{verbatim} latex.in : A sample input file. latex.l : A sample latex lex file. latexp2.y : A yacc specification with fprintf's for debugging. latexp2clean.y: Equivalent specification without the fprintfs. y2conflicts : The shift.reduce conflicts generated by YACC. b2conflicts : The shift.reduce conflicts generated by BISON. \end{verbatim} Note that intentional errors have been placed in the files. Note also that the grammar files contain numerous shift reduce errors and other problems, as will be discussed in class. The second part of the project is due on April 6, 1994. Please hand in the following: \begin{enumerate} \item The revised yacc.bison specification for task 1. DO NOT HAND IN C files! \item A log file that documents the changes made to the grammar to eliminate the shift.reduce errors and other problems for task 1. Make sure that you provide both the original and revised grammar segments for each change that you make! Also include any remaining shift.reduce or reduce.reduce errors, but NOT the entire output file. \item The revised yacc.bison specification for task 2. DO NOT HAND IN C files! \item A log file that documents the changes made to your grammar of task 1 in support of verbatim and nested blocks. These changes may occur in both the lex (flex) and yacc (bison) files! Again, provide original.revised segments for each change, and remaining S.R or R.R errors. \item Test cases and test results for both tasks, clearly marked and organized. \item The directory location for your files and detailed compilation instructions. \end{enumerate} {\it IMPORTANT:} Do not open your directory for access by the world until 7:00 p.m. on April 6. \end{document}
639f20e24cdc9da1f8fad7cee83c061f8839248c
089894a36ef33cb3d0f697541716c9b6cd8dcc43
/NLP_Project/test/tweet/bow/bow.5_8.tst
a4ceafa88b1acfbde166c63d057b6e9d647739f6
[]
no_license
mandar15/NLP_Project
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
refs/heads/master
2020-05-20T13:36:05.842840
2013-07-31T06:53:59
2013-07-31T06:53:59
6,534,406
0
1
null
null
null
null
UTF-8
Scilab
false
false
33,650
tst
bow.5_8.tst
5 4:0.5 6:0.25 7:0.5 8:0.14285714285714285 12:0.2857142857142857 20:0.5 21:0.2 23:1.0 26:0.02857142857142857 38:0.3333333333333333 48:0.5 49:0.015503875968992248 51:2.0 55:0.36363636363636365 64:0.75 68:0.5 71:2.0 100:0.125 133:1.5 137:1.0 176:1.0 183:1.0 190:0.2 236:0.5 366:1.0 383:1.0 407:1.0 483:2.0 611:1.0 647:1.0 879:1.0 982:1.0 1087:1.0 1113:2.0 1228:1.0 1233:1.0 1606:1.0 2257:1.0 3131:1.0 3259:1.0 3338:1.0 4024:1.0 5080:1.0 5610:2.0 6054:1.0 6567:1.0 5 4:2.0 7:0.5 11:0.2 12:0.14285714285714285 20:1.0 21:0.1 38:0.6666666666666666 48:0.5 49:0.015503875968992248 51:1.0 64:0.25 67:0.3333333333333333 68:0.5 87:0.5 95:1.0 127:0.5 134:0.3333333333333333 135:1.0 158:0.3333333333333333 288:0.3333333333333333 355:1.0 383:1.0 442:1.0 541:1.0 550:0.5 571:1.0 641:0.5 1138:1.0 1345:1.0 1493:1.0 2357:1.0 3259:1.0 6454:1.0 6801:1.0 5 4:1.0 6:0.125 12:0.14285714285714285 20:0.5 21:0.3 23:1.0 26:0.02857142857142857 38:0.3333333333333333 42:1.0 44:1.0 54:0.5 55:0.09090909090909091 74:1.0 127:0.5 170:0.3333333333333333 288:0.3333333333333333 435:1.0 1354:1.0 5 4:0.5 7:0.5 9:0.25 21:0.2 23:4.0 42:1.0 49:0.015503875968992248 51:1.0 54:0.5 55:0.2727272727272727 68:0.5 71:1.0 87:0.5 137:1.0 241:0.3333333333333333 269:1.0 333:1.0 397:1.0 490:1.0 638:0.5 762:1.0 1285:1.0 2075:1.0 2224:1.0 3013:1.0 3259:1.0 4962:1.0 5 4:0.5 6:0.25 12:0.42857142857142855 21:0.1 23:2.0 49:0.007751937984496124 51:1.0 55:0.18181818181818182 62:0.16666666666666666 71:2.0 80:0.3333333333333333 93:0.1111111111111111 121:0.014084507042253521 122:1.0 126:0.25 136:1.0 147:1.0 247:1.0 331:0.5 424:0.5 667:0.5 925:1.0 1249:1.0 1340:1.0 1361:0.5 2760:1.0 2967:1.0 3441:1.0 4472:1.0 4945:1.0 5 12:0.14285714285714285 15:0.07692307692307693 17:0.2 19:0.1 20:2.0 21:0.1 23:3.0 45:1.0 46:1.0 48:0.5 49:0.007751937984496124 51:1.0 64:0.25 71:3.0 75:0.25 88:1.0 112:1.0 121:0.014084507042253521 126:0.5 148:0.3333333333333333 178:1.0 250:1.0 261:1.0 303:1.0 331:0.5 534:1.0 650:1.0 781:1.0 1529:1.0 2399:1.0 2798:1.0 2811:1.0 3031:1.0 3137:1.0 3186:1.0 3241:1.0 3776:1.0 4951:1.0 5 4:3.0 5:0.14285714285714285 7:0.5 9:0.5 12:0.14285714285714285 14:1.0 15:0.07692307692307693 20:0.5 21:0.1 23:4.0 24:0.5 49:0.007751937984496124 51:1.0 54:0.5 55:0.18181818181818182 71:1.0 79:0.5 98:0.36363636363636365 121:0.014084507042253521 127:0.5 137:1.0 175:1.0 176:1.0 185:1.0 188:1.0 197:1.0 236:1.5 251:1.0 278:0.5 284:1.0 288:0.3333333333333333 503:1.0 519:1.0 537:1.0 548:3.0 550:0.5 664:0.2 746:1.0 814:1.0 3272:1.0 3319:1.0 5 4:2.0 6:0.5 7:1.0 8:0.14285714285714285 12:0.14285714285714285 15:0.07692307692307693 19:0.1 20:0.5 23:1.0 38:0.3333333333333333 48:0.5 49:0.007751937984496124 51:1.0 63:0.5 93:0.1111111111111111 112:3.0 121:0.014084507042253521 126:0.25 175:1.0 196:1.0 278:0.5 281:0.16666666666666666 289:0.125 292:0.2 296:1.0 354:0.5 379:0.3333333333333333 383:1.0 386:1.0 397:1.0 449:1.0 548:1.0 564:1.0 651:1.0 938:1.0 1245:1.0 1622:1.0 1703:1.0 2013:1.0 2380:1.0 2995:1.0 5 4:2.5 6:0.125 7:0.5 19:0.1 20:0.5 21:0.1 48:0.5 98:0.09090909090909091 100:0.25 121:0.014084507042253521 289:0.125 303:1.0 315:1.0 316:0.5 483:1.0 745:1.0 857:1.0 1026:1.0 1060:1.0 5 4:1.0 5:0.14285714285714285 7:0.5 11:0.2 12:0.14285714285714285 20:0.5 21:0.1 23:1.0 42:1.0 48:1.0 49:0.007751937984496124 51:1.0 55:0.09090909090909091 62:0.16666666666666666 63:0.5 64:0.25 71:1.0 87:0.5 98:0.18181818181818182 100:0.125 112:1.0 113:0.5 158:0.3333333333333333 175:1.0 176:1.0 182:0.5 218:2.0 269:2.0 293:0.5 442:1.0 626:1.0 641:0.5 657:1.0 862:1.0 1060:1.0 1721:1.0 2143:1.0 2311:1.0 5 4:1.5 5:0.14285714285714285 6:0.125 8:0.14285714285714285 23:5.0 48:1.0 49:0.007751937984496124 51:1.0 55:0.2727272727272727 62:0.16666666666666666 78:1.0 80:0.3333333333333333 88:2.0 98:0.2727272727272727 101:1.0 121:0.014084507042253521 134:0.16666666666666666 141:0.16666666666666666 158:0.3333333333333333 175:1.0 182:1.0 187:1.0 188:2.0 240:1.0 280:0.3333333333333333 315:1.0 331:0.5 695:1.0 762:0.5 1060:1.0 1161:1.0 1170:0.5 3176:1.0 3463:1.0 4951:1.0 6088:1.0 5 4:0.5 5:0.14285714285714285 7:1.5 8:0.14285714285714285 9:0.25 12:0.14285714285714285 21:0.2 23:3.0 26:0.02857142857142857 38:0.3333333333333333 49:0.007751937984496124 51:1.0 55:0.09090909090909091 84:1.0 95:1.0 98:0.18181818181818182 102:1.0 197:1.0 211:1.0 298:1.0 534:1.0 550:0.5 561:1.0 1118:1.0 1251:1.0 1490:1.0 4777:1.0 5 6:0.125 7:1.0 12:0.2857142857142857 18:0.3333333333333333 21:0.1 23:4.0 26:0.02857142857142857 44:2.0 48:0.5 49:0.007751937984496124 51:1.0 62:0.5 64:0.5 71:1.0 112:3.0 121:0.04225352112676056 127:0.5 134:0.16666666666666666 136:1.0 173:0.5 198:1.0 205:0.5 331:0.5 339:1.0 386:1.0 397:1.0 424:0.5 457:1.0 550:0.5 559:1.0 862:1.0 1166:1.0 2211:1.0 5810:1.0 5 4:2.0 7:0.5 8:0.14285714285714285 21:0.1 23:1.0 41:1.0 62:0.16666666666666666 73:1.0 96:0.16666666666666666 127:0.5 141:0.16666666666666666 181:1.0 274:1.0 513:1.0 621:1.0 1317:1.0 1634:1.0 2416:1.0 2632:1.0 3649:1.0 3884:1.0 5 4:1.5 5:0.14285714285714285 8:0.2857142857142857 9:0.25 12:0.2857142857142857 20:0.5 21:0.1 23:2.0 26:0.02857142857142857 38:0.3333333333333333 40:0.5 46:1.0 48:1.0 54:0.5 55:0.18181818181818182 62:0.3333333333333333 64:0.25 70:0.5 101:1.0 110:1.0 121:0.014084507042253521 127:0.5 136:1.0 176:1.0 178:1.0 182:1.0 198:1.0 209:1.0 265:1.0 366:1.0 424:0.5 494:1.0 982:1.0 995:1.0 1030:1.0 1117:1.0 1340:1.0 1488:1.0 2099:1.0 2319:1.0 3161:1.0 3165:1.0 3597:1.0 3975:1.0 5 4:1.5 7:0.5 23:1.0 100:0.125 115:0.1 116:0.2 121:0.014084507042253521 255:1.0 390:0.5 5 4:1.5 17:0.2 20:0.5 21:0.2 26:0.02857142857142857 40:0.5 42:1.0 43:0.3333333333333333 55:0.18181818181818182 73:1.0 152:0.5 201:0.16666666666666666 1481:1.0 2211:1.0 5 4:1.0 5:0.14285714285714285 6:0.125 7:0.5 8:0.14285714285714285 9:0.25 12:0.2857142857142857 15:0.07692307692307693 21:0.1 23:4.0 24:0.5 26:0.02857142857142857 42:1.0 48:0.5 88:1.0 142:0.5 183:1.0 188:1.0 194:1.0 251:1.0 331:0.5 476:1.0 1227:1.0 1234:1.0 1580:1.0 2635:1.0 5 4:0.5 5:0.14285714285714285 7:0.5 23:1.0 38:0.3333333333333333 98:0.09090909090909091 115:0.1 116:0.2 397:1.0 513:1.0 519:1.0 1634:1.0 2017:0.5 2553:1.0 5 4:1.5 7:0.5 11:0.2 15:0.07692307692307693 20:0.5 21:0.2 24:0.5 26:0.05714285714285714 49:0.007751937984496124 51:1.0 54:0.5 55:0.09090909090909091 87:0.5 98:0.09090909090909091 121:0.014084507042253521 141:0.16666666666666666 176:1.0 250:1.0 251:2.0 331:0.5 418:1.0 483:1.0 647:1.0 803:1.0 871:1.0 925:1.0 2812:1.0 2989:1.0 5 4:1.5 17:0.2 20:1.0 23:4.0 48:0.5 49:0.015503875968992248 51:2.0 55:0.2727272727272727 75:0.25 134:0.3333333333333333 149:0.3333333333333333 156:1.0 158:0.3333333333333333 379:0.6666666666666666 490:1.0 669:0.5 1079:1.0 1128:1.0 1496:1.0 1669:1.0 2080:1.0 2082:1.0 2085:1.0 2158:1.0 2684:1.0 2972:1.0 2982:1.0 3005:1.0 3212:1.0 3213:1.0 3546:1.0 3900:1.0 5 4:1.0 7:0.5 8:0.14285714285714285 12:0.14285714285714285 20:0.5 21:0.1 23:2.0 38:0.6666666666666666 48:1.0 49:0.015503875968992248 51:1.0 55:0.36363636363636365 58:0.3333333333333333 64:0.5 93:0.1111111111111111 112:2.0 137:2.0 197:1.0 265:1.0 292:0.2 383:1.0 387:1.0 729:1.0 821:1.0 854:1.0 910:1.0 1031:1.0 1270:1.0 1455:0.5 1833:1.0 1896:1.0 2766:1.0 2871:2.0 5 4:1.0 6:0.25 7:0.5 12:0.2857142857142857 17:0.2 20:1.0 21:0.1 23:2.0 46:1.0 48:1.0 49:0.015503875968992248 51:2.0 54:0.5 55:0.09090909090909091 62:0.16666666666666666 64:0.5 71:1.0 97:0.5 98:0.09090909090909091 112:1.0 117:0.5 121:0.014084507042253521 122:1.0 134:0.16666666666666666 205:0.5 246:1.0 331:1.0 379:0.3333333333333333 401:1.0 413:1.0 424:0.5 502:1.0 506:1.0 715:1.0 823:1.0 1000:0.5 1323:1.0 1415:3.0 1562:1.0 2420:1.0 2553:1.0 2692:1.0 3248:1.0 3542:1.0 4768:1.0 5624:1.0 5 4:1.5 6:0.25 7:0.5 12:0.5714285714285714 20:1.0 23:2.0 24:0.5 42:1.0 48:0.5 49:0.015503875968992248 51:1.0 55:0.18181818181818182 64:0.5 68:0.5 71:2.0 76:1.0 97:0.5 112:1.0 134:0.16666666666666666 153:0.5 289:0.125 292:0.2 300:1.0 320:1.0 356:0.5 366:1.0 401:1.0 534:1.0 571:1.0 621:1.0 1061:1.0 1421:1.0 1562:1.0 1623:1.0 1928:1.0 2222:2.0 4269:1.0 5 4:2.5 6:0.125 11:0.2 12:0.42857142857142855 15:0.07692307692307693 17:0.4 20:0.5 23:2.0 48:0.5 49:0.015503875968992248 51:2.0 57:1.0 71:1.0 85:1.0 93:0.1111111111111111 98:0.09090909090909091 100:0.125 121:0.014084507042253521 179:1.0 194:1.0 437:1.0 442:1.0 541:1.0 543:1.0 559:1.0 561:1.0 701:1.0 875:1.0 992:1.0 1582:1.0 2024:0.5 2106:1.0 3381:1.0 5 4:1.0 7:0.5 8:1.0 11:0.2 12:0.7142857142857143 20:0.5 23:3.0 38:0.3333333333333333 48:0.5 49:0.015503875968992248 51:3.0 54:0.5 55:0.18181818181818182 64:0.5 71:1.0 73:1.0 88:1.0 112:1.0 115:0.1 116:0.2 129:0.5 141:0.16666666666666666 154:0.3333333333333333 158:0.3333333333333333 176:1.0 219:1.0 231:1.0 289:0.125 353:1.0 386:1.0 439:1.0 453:1.0 641:0.5 682:1.0 1063:1.0 1270:1.0 1562:1.0 1708:1.0 3122:1.0 3696:1.0 3874:1.0 4994:1.0 5 4:1.5 7:0.5 12:0.14285714285714285 19:0.1 24:0.5 49:0.015503875968992248 51:2.0 55:0.18181818181818182 66:1.0 71:2.0 110:1.0 131:1.0 134:0.16666666666666666 158:0.3333333333333333 175:1.0 176:1.0 215:0.16666666666666666 385:1.0 401:1.0 442:3.0 616:1.0 937:1.0 1667:1.0 2695:1.0 3047:1.0 3939:1.0 5 4:1.0 6:0.125 8:0.14285714285714285 20:0.5 21:0.1 23:3.0 24:0.5 26:0.02857142857142857 38:0.6666666666666666 42:1.0 43:0.3333333333333333 48:0.5 49:0.007751937984496124 51:1.0 55:0.18181818181818182 62:0.16666666666666666 83:1.0 104:0.5 134:0.16666666666666666 137:1.0 175:1.0 179:2.0 180:1.0 197:1.0 203:0.2 250:1.0 255:1.0 279:0.5 314:1.0 550:0.5 616:1.0 1046:1.0 1081:1.0 1153:1.0 3047:1.0 3076:1.0 3937:1.0 5 4:1.5 11:0.2 12:0.14285714285714285 15:0.15384615384615385 19:0.1 20:1.5 21:0.2 23:1.0 24:0.5 26:0.02857142857142857 49:0.007751937984496124 51:1.0 55:0.09090909090909091 58:0.6666666666666666 74:1.0 75:0.25 96:0.16666666666666666 101:1.0 121:0.014084507042253521 126:0.25 194:1.0 198:1.0 202:0.2 236:0.5 269:1.0 401:1.0 490:1.0 774:1.0 1184:1.0 1253:1.0 1375:1.0 1902:1.0 2216:1.0 2462:1.0 2981:1.0 4759:1.0 5 4:2.0 7:0.5 12:0.2857142857142857 18:0.3333333333333333 20:1.5 21:0.1 23:1.0 24:0.5 26:0.02857142857142857 48:1.0 49:0.015503875968992248 51:2.0 55:0.2727272727272727 58:0.3333333333333333 64:0.25 141:0.3333333333333333 154:0.6666666666666666 175:1.0 180:1.0 181:1.0 197:1.0 251:1.0 281:0.16666666666666666 347:1.0 359:1.0 401:1.0 451:1.0 483:1.0 519:1.0 1539:0.5 1580:1.0 3132:1.0 6215:1.0 5 7:1.0 20:0.5 21:0.1 23:1.0 26:0.02857142857142857 40:0.5 47:1.0 48:0.5 49:0.007751937984496124 51:1.0 55:0.18181818181818182 62:0.16666666666666666 71:1.0 73:1.0 136:1.0 141:0.16666666666666666 154:0.3333333333333333 199:0.3333333333333333 281:0.16666666666666666 366:1.0 479:1.0 517:1.0 550:0.5 956:1.0 1149:1.0 1782:1.0 2453:1.0 2989:1.0 5 4:1.0 7:1.0 8:0.2857142857142857 11:0.2 12:0.14285714285714285 19:0.1 20:1.5 23:3.0 24:0.5 25:1.0 48:0.5 49:0.007751937984496124 51:1.0 54:0.5 55:0.2727272727272727 98:0.09090909090909091 121:0.028169014084507043 139:1.0 141:0.16666666666666666 158:0.3333333333333333 162:1.0 198:1.0 201:0.16666666666666666 280:0.3333333333333333 333:1.0 451:1.0 1037:1.0 1093:1.0 1269:1.0 2307:1.0 2553:1.0 2743:1.0 4010:1.0 6052:1.0 5 4:1.0 21:0.1 23:1.0 26:0.02857142857142857 48:0.5 98:0.09090909090909091 176:1.0 331:1.0 529:1.0 543:1.0 669:1.0 2063:1.0 2380:1.0 5 4:1.0 11:0.2 15:0.07692307692307693 20:1.5 21:0.1 23:2.0 24:0.5 26:0.02857142857142857 44:1.0 48:0.5 49:0.007751937984496124 51:1.0 55:0.09090909090909091 78:1.0 80:0.3333333333333333 93:0.1111111111111111 98:0.09090909090909091 126:0.25 127:0.5 135:1.0 137:1.0 158:0.3333333333333333 179:1.0 198:1.0 218:1.0 449:1.0 537:3.0 550:0.5 679:1.0 746:1.0 908:1.0 952:1.0 1251:1.0 1391:1.0 1636:1.0 2418:1.0 3326:1.0 3988:1.0 5 4:1.0 7:0.5 8:0.42857142857142855 11:0.4 12:0.42857142857142855 20:0.5 23:5.0 24:1.0 48:1.0 49:0.015503875968992248 51:2.0 62:0.16666666666666666 64:0.5 71:1.0 98:0.18181818181818182 122:1.0 129:0.5 133:0.5 181:1.0 199:0.3333333333333333 218:1.0 279:0.5 312:1.0 315:1.0 331:0.5 354:0.5 385:1.0 410:1.0 439:1.0 483:1.0 493:1.0 611:1.0 623:1.0 629:1.0 657:1.0 695:1.0 814:1.0 1136:1.0 1309:1.0 1351:1.0 1525:1.0 1652:1.0 1782:1.0 1834:1.0 2029:0.3333333333333333 2431:1.0 5 4:1.5 5:0.14285714285714285 8:0.14285714285714285 12:0.14285714285714285 18:0.3333333333333333 19:0.1 20:0.5 21:0.3 23:1.0 26:0.02857142857142857 48:0.5 49:0.007751937984496124 51:2.0 55:0.09090909090909091 68:0.5 71:2.0 93:0.1111111111111111 121:0.014084507042253521 134:0.16666666666666666 147:1.0 181:1.0 198:1.0 279:1.0 307:1.0 316:0.5 446:0.3333333333333333 493:1.0 682:1.0 740:0.3333333333333333 2106:1.0 6764:1.0 5 4:2.0 5:0.14285714285714285 6:0.125 7:0.5 8:0.14285714285714285 12:0.2857142857142857 15:0.07692307692307693 20:0.5 21:0.1 23:2.0 24:1.0 26:0.02857142857142857 48:0.5 49:0.007751937984496124 51:1.0 58:0.3333333333333333 64:0.25 71:1.0 83:1.0 88:1.0 101:1.0 121:0.014084507042253521 126:0.25 158:0.3333333333333333 179:1.0 197:1.0 308:1.0 460:0.5 550:0.5 612:1.0 849:1.0 864:1.0 1187:1.0 1188:1.0 1525:1.0 1631:1.0 2012:1.0 2080:1.0 2447:1.0 2749:1.0 5 4:1.5 6:0.125 12:0.2857142857142857 17:0.2 19:0.2 20:0.5 48:0.5 49:0.007751937984496124 51:1.0 67:0.3333333333333333 96:0.16666666666666666 112:1.0 149:0.3333333333333333 158:0.3333333333333333 194:1.0 248:0.5 315:1.0 534:1.0 548:1.0 1166:1.0 1187:1.0 1202:1.0 1568:1.0 1824:1.0 1918:1.0 1968:1.0 3111:1.0 5676:1.0 6411:1.0 5 4:0.5 6:0.125 7:1.0 20:0.5 21:0.2 23:4.0 26:0.02857142857142857 38:0.3333333333333333 45:1.0 49:0.007751937984496124 51:1.0 64:0.25 71:1.0 77:1.0 78:1.0 79:0.5 80:0.3333333333333333 98:0.18181818181818182 117:0.5 135:1.0 176:1.0 199:0.3333333333333333 203:0.4 241:0.3333333333333333 285:1.0 331:0.5 397:1.0 476:1.0 519:1.0 524:0.5 530:1.0 550:0.5 1246:1.0 1985:1.0 2128:1.0 5 4:2.0 9:0.25 12:0.14285714285714285 20:0.5 21:0.1 23:2.0 24:0.5 42:1.0 48:1.0 49:0.007751937984496124 51:1.0 71:1.0 80:0.3333333333333333 120:0.2 125:0.3333333333333333 182:0.5 203:0.2 241:0.3333333333333333 249:1.0 265:1.0 333:1.0 431:1.0 483:1.0 493:1.0 524:0.5 621:1.0 675:0.3333333333333333 740:0.3333333333333333 1143:1.0 1554:1.0 5295:1.0 5 4:2.5 7:0.5 8:0.14285714285714285 9:0.25 15:0.07692307692307693 23:2.0 55:0.2727272727272727 62:0.16666666666666666 64:0.25 73:1.0 117:0.5 121:0.014084507042253521 127:0.5 131:1.0 134:0.16666666666666666 218:1.0 236:0.5 331:0.5 446:0.3333333333333333 878:1.0 1144:1.0 1212:1.0 1595:1.0 1603:2.0 1828:1.0 1969:1.0 5 4:0.5 12:0.14285714285714285 17:0.2 21:0.2 23:2.0 26:0.02857142857142857 62:0.3333333333333333 88:1.0 121:0.014084507042253521 127:0.5 203:0.2 307:1.0 446:0.3333333333333333 449:1.0 543:1.0 2063:1.0 5 4:1.5 6:0.125 7:1.0 9:0.25 19:0.1 20:1.0 21:0.1 23:2.0 44:1.0 46:1.0 48:0.5 55:0.09090909090909091 98:0.09090909090909091 117:0.5 121:0.028169014084507043 126:0.25 141:0.16666666666666666 356:0.5 503:1.0 550:0.5 682:1.0 814:1.0 929:1.0 989:1.0 1499:1.0 1500:1.0 2592:1.0 5 4:1.0 5:0.14285714285714285 12:0.14285714285714285 17:0.4 19:0.1 20:1.0 21:0.1 23:2.0 93:0.1111111111111111 98:0.09090909090909091 100:0.125 147:1.0 183:1.0 201:0.16666666666666666 218:1.0 285:1.0 424:0.5 487:1.0 499:1.0 1464:1.0 5 4:2.5 6:0.25 8:0.14285714285714285 12:0.14285714285714285 15:0.07692307692307693 17:0.2 21:0.1 22:1.0 23:1.0 24:0.5 46:1.0 48:0.5 49:0.007751937984496124 51:1.0 55:0.09090909090909091 64:0.25 71:1.0 93:0.1111111111111111 117:0.5 137:2.0 210:1.0 255:1.0 315:1.0 316:0.5 488:1.0 592:1.0 640:1.0 830:1.0 871:1.0 1011:1.0 1046:1.0 3156:1.0 6412:1.0 5 4:1.5 8:0.14285714285714285 12:0.42857142857142855 20:2.0 21:0.3 23:3.0 24:0.5 44:1.0 48:1.0 49:0.007751937984496124 51:1.0 55:0.18181818181818182 62:0.16666666666666666 64:0.5 71:1.0 98:0.09090909090909091 100:0.125 121:0.014084507042253521 134:0.16666666666666666 141:0.3333333333333333 153:0.5 162:1.0 183:1.0 190:0.2 210:1.0 285:1.0 427:1.0 457:1.0 479:1.0 483:1.0 534:1.0 537:1.0 641:0.5 664:0.2 740:0.3333333333333333 890:1.0 1084:1.0 1179:1.0 1375:1.0 1525:1.0 1790:1.0 2157:1.0 2207:1.0 2577:1.0 3652:1.0 5 4:1.0 5:0.14285714285714285 11:0.2 12:0.14285714285714285 20:1.5 21:0.1 26:0.02857142857142857 38:0.6666666666666666 49:0.007751937984496124 51:1.0 55:0.09090909090909091 75:0.25 101:1.0 112:1.0 147:1.0 158:0.3333333333333333 366:1.0 367:1.0 601:0.5 1369:1.0 1579:1.0 1708:1.0 1790:1.0 1827:1.0 1831:1.0 3352:1.0 5821:1.0 6050:1.0 5 4:1.5 5:0.14285714285714285 8:0.2857142857142857 12:0.14285714285714285 20:0.5 21:0.1 23:1.0 24:0.5 49:0.007751937984496124 55:0.09090909090909091 67:0.3333333333333333 68:0.5 73:1.0 84:1.0 112:1.0 121:0.014084507042253521 126:0.25 203:0.2 250:1.0 519:1.0 765:1.0 811:1.0 1071:1.0 1344:1.0 1890:0.5 2967:1.0 3469:1.0 4876:1.0 5 4:0.5 6:0.125 7:0.5 11:0.2 20:0.5 21:0.3 23:2.0 26:0.02857142857142857 44:1.0 48:0.5 49:0.007751937984496124 51:1.0 74:1.0 99:1.0 112:2.0 121:0.056338028169014086 133:0.5 142:0.5 185:1.0 241:0.3333333333333333 279:0.5 281:0.16666666666666666 331:1.5 401:1.0 405:1.0 424:0.5 471:1.0 530:1.0 534:1.0 664:0.1 892:1.0 1049:1.0 1144:1.0 1375:1.0 1415:1.0 1595:1.0 1992:1.0 2257:1.0 2470:1.0 4981:1.0 5 4:0.5 8:0.14285714285714285 11:0.2 15:0.07692307692307693 20:0.5 23:2.0 49:0.007751937984496124 51:1.0 71:2.0 73:1.0 75:0.25 117:0.5 136:1.0 141:0.16666666666666666 176:1.0 185:1.0 190:0.2 196:1.0 255:1.0 274:1.0 281:0.16666666666666666 401:1.0 477:1.0 548:1.0 549:1.0 1066:1.0 1149:1.0 1278:1.0 1686:1.0 2231:1.0 3241:1.0 3242:1.0 3689:1.0 5433:1.0 5 4:1.5 19:0.1 21:0.1 23:2.0 26:0.02857142857142857 55:0.09090909090909091 92:1.0 98:0.09090909090909091 100:0.125 121:0.014084507042253521 122:1.0 123:1.0 205:0.5 236:0.5 289:0.25 872:2.0 908:1.0 5 4:0.5 17:0.2 19:0.1 20:1.0 21:0.1 23:3.0 47:1.0 88:1.0 92:1.0 117:0.5 121:0.028169014084507043 126:0.25 148:0.5 331:1.0 5 4:0.5 19:0.1 20:1.0 21:0.1 23:1.0 34:1.0 35:1.0 42:1.0 55:0.09090909090909091 134:0.16666666666666666 148:0.3333333333333333 210:1.0 417:1.0 907:1.0 2525:1.0 2690:1.0 5 4:1.0 19:0.2 20:0.5 21:0.3 23:1.0 26:0.02857142857142857 42:1.0 115:0.1 116:0.2 5 4:1.5 5:0.14285714285714285 9:0.25 12:0.14285714285714285 19:0.1 21:0.1 26:0.02857142857142857 43:0.3333333333333333 62:0.16666666666666666 84:1.0 258:1.0 529:1.0 5 4:0.5 19:0.1 20:0.5 21:0.3 23:2.0 26:0.05714285714285714 121:0.014084507042253521 124:0.5 133:0.5 134:0.16666666666666666 135:1.0 136:1.0 1122:0.5 1718:1.0 5 4:1.0 5:0.14285714285714285 15:0.07692307692307693 21:0.1 23:4.0 26:0.02857142857142857 33:1.0 38:0.3333333333333333 121:0.028169014084507043 126:0.25 134:0.16666666666666666 144:1.0 149:0.3333333333333333 314:2.0 462:0.5 1074:1.0 4630:1.0 5893:1.0 5 4:1.5 21:0.1 23:1.0 26:0.02857142857142857 48:0.5 62:0.16666666666666666 63:0.5 137:1.0 148:0.3333333333333333 331:0.5 451:1.0 464:1.0 541:1.0 563:1.0 1122:0.5 1128:1.0 1415:1.0 5 4:1.5 5:0.14285714285714285 14:1.0 21:0.2 23:1.0 26:0.02857142857142857 40:0.5 67:0.3333333333333333 68:0.5 73:1.0 126:0.25 154:0.3333333333333333 202:0.4 246:1.0 278:0.5 507:1.0 1603:1.0 4576:1.0 5 4:1.0 5:0.14285714285714285 15:0.07692307692307693 20:0.5 23:1.0 54:0.5 96:0.16666666666666666 126:0.25 127:0.5 149:0.3333333333333333 214:1.0 289:0.125 355:1.0 424:0.5 513:1.0 1455:0.5 2040:1.0 5 4:1.0 21:0.1 23:1.0 26:0.02857142857142857 38:0.3333333333333333 70:0.5 194:1.0 289:0.125 298:1.0 424:0.5 1144:1.0 5 4:1.5 17:0.2 24:0.5 63:0.5 98:0.18181818181818182 144:1.0 188:1.0 249:1.0 289:0.25 307:1.0 446:0.3333333333333333 513:1.0 1313:1.0 1363:1.0 1364:1.0 1487:0.5 2748:1.0 5 4:1.0 6:0.125 7:1.5 9:0.25 12:0.14285714285714285 21:0.1 23:1.0 48:0.5 49:0.007751937984496124 51:1.0 62:0.16666666666666666 71:1.0 93:0.1111111111111111 121:0.014084507042253521 133:0.5 134:0.16666666666666666 136:1.0 175:1.0 176:1.0 202:0.2 316:0.5 390:0.5 655:1.0 1405:1.0 5 4:1.0 9:0.25 11:0.2 19:0.2 20:0.5 21:0.1 23:3.0 38:0.3333333333333333 49:0.007751937984496124 51:1.0 55:0.09090909090909091 64:0.5 80:0.3333333333333333 98:0.09090909090909091 115:0.1 116:0.2 137:1.0 200:1.0 201:0.16666666666666666 288:0.3333333333333333 292:0.2 320:1.0 386:1.0 413:1.0 424:0.5 468:1.0 476:1.0 612:1.0 621:1.0 1194:1.0 1197:1.0 2106:1.0 3049:1.0 3051:1.0 5 4:1.5 11:0.2 15:0.07692307692307693 20:0.5 21:0.1 23:2.0 24:0.5 40:0.5 42:1.0 49:0.007751937984496124 51:1.0 55:0.09090909090909091 62:0.16666666666666666 71:1.0 88:1.0 93:0.1111111111111111 125:0.3333333333333333 156:1.0 197:1.0 202:0.2 231:1.0 281:0.16666666666666666 350:1.0 451:1.0 513:1.0 908:1.0 952:1.0 1408:1.0 2040:1.0 2081:1.0 2935:1.0 4977:1.0 5 4:1.0 6:0.125 7:0.5 17:0.2 20:0.5 21:0.1 26:0.02857142857142857 49:0.007751937984496124 54:0.5 71:1.0 84:1.0 93:0.1111111111111111 99:1.0 121:0.014084507042253521 136:1.0 137:1.0 202:0.2 231:1.0 287:1.0 390:0.5 1270:1.0 2191:1.0 5 4:1.0 6:0.25 8:0.14285714285714285 15:0.07692307692307693 21:0.1 23:1.0 45:1.0 47:1.0 48:1.0 49:0.007751937984496124 51:1.0 55:0.18181818181818182 64:0.25 74:1.0 88:1.0 96:0.16666666666666666 98:0.09090909090909091 134:0.16666666666666666 175:1.0 188:1.0 212:0.5 284:1.0 460:0.5 548:1.0 549:1.0 662:0.5 952:1.0 1351:1.0 1448:1.0 2484:1.0 2691:1.0 2898:1.0 3176:1.0 5 4:1.0 8:0.2857142857142857 15:0.07692307692307693 17:0.2 19:0.1 20:0.5 21:0.4 23:3.0 26:0.02857142857142857 38:0.6666666666666666 49:0.007751937984496124 51:1.0 55:0.09090909090909091 68:0.5 88:1.0 98:0.09090909090909091 165:1.0 176:1.0 188:1.0 194:1.0 202:0.2 241:0.3333333333333333 255:1.0 296:1.0 308:1.0 331:0.5 370:1.0 390:0.5 437:1.0 536:1.0 566:1.0 652:1.0 877:1.0 991:1.0 1346:1.0 1509:1.0 1793:1.0 1863:1.0 2714:1.0 2967:1.0 3427:1.0 3547:1.0 4315:1.0 5 4:2.5 6:0.125 7:0.5 8:0.14285714285714285 15:0.07692307692307693 20:2.0 23:2.0 48:0.5 49:0.015503875968992248 51:2.0 55:0.18181818181818182 97:0.5 100:0.125 115:0.1 121:0.014084507042253521 134:0.16666666666666666 137:1.0 141:0.16666666666666666 153:1.0 154:0.3333333333333333 158:0.3333333333333333 175:1.0 176:1.0 180:1.0 200:1.0 210:1.0 264:0.5 284:1.0 333:1.0 366:1.0 424:0.5 641:0.5 652:1.0 653:0.5 682:1.0 814:1.0 890:1.0 903:1.0 1087:1.0 1278:1.0 1341:1.0 1389:0.5 1536:1.0 1620:1.0 2238:1.0 2692:1.0 3122:1.0 3301:1.0 5419:1.0 5429:1.0 5 4:1.0 6:0.125 7:0.5 12:0.14285714285714285 20:0.5 21:0.1 23:3.0 26:0.02857142857142857 38:0.3333333333333333 49:0.015503875968992248 51:2.0 55:0.18181818181818182 80:0.3333333333333333 88:1.0 98:0.09090909090909091 100:0.125 101:1.0 112:1.0 121:0.028169014084507043 122:1.0 132:1.0 139:1.0 149:0.3333333333333333 176:1.0 192:1.0 195:1.0 231:2.0 331:1.0 333:1.0 366:2.0 483:1.0 566:1.0 697:1.0 890:1.0 1060:1.0 1536:1.0 1577:1.0 2041:1.0 6050:1.0 5 4:0.5 6:0.125 7:0.5 12:0.5714285714285714 23:5.0 24:0.5 48:2.5 49:0.023255813953488372 51:2.0 55:0.2727272727272727 71:2.0 88:1.0 98:0.09090909090909091 114:1.0 134:0.16666666666666666 137:2.0 158:0.3333333333333333 159:0.5 236:0.5 251:1.0 269:1.0 331:0.5 383:1.0 537:2.0 596:1.0 641:0.5 662:0.5 675:0.3333333333333333 679:1.0 800:1.0 1189:1.0 1569:1.0 1575:1.0 1576:1.0 1603:1.0 2963:1.0 3074:1.0 3105:2.0 3212:1.0 3344:1.0 3537:1.0 4190:1.0 5 4:1.5 6:0.125 8:0.14285714285714285 11:0.2 12:0.2857142857142857 15:0.23076923076923078 20:1.0 21:0.1 22:1.0 23:4.0 24:1.5 48:1.0 49:0.015503875968992248 51:2.0 55:0.18181818181818182 68:0.5 71:1.0 88:2.0 98:0.18181818181818182 112:1.0 129:0.5 141:0.16666666666666666 158:0.3333333333333333 180:1.0 198:1.0 201:0.16666666666666666 203:0.4 250:1.0 265:1.0 281:0.16666666666666666 283:1.0 289:0.125 292:0.2 331:1.0 397:1.0 424:0.5 499:1.0 506:1.0 814:1.0 1016:1.0 1048:0.5 1130:1.0 1149:1.0 2160:1.0 2816:1.0 3087:1.0 3881:1.0 4076:1.0 4914:1.0 5270:1.0 5295:1.0 5 4:0.5 6:0.125 7:0.5 8:0.14285714285714285 11:0.2 12:0.5714285714285714 15:0.07692307692307693 19:0.1 20:1.0 21:0.1 23:5.0 24:0.5 49:0.015503875968992248 51:2.0 55:0.2727272727272727 64:0.25 68:0.5 71:1.0 78:1.0 88:1.0 95:1.0 121:0.028169014084507043 125:0.3333333333333333 136:1.0 137:2.0 141:0.16666666666666666 212:0.5 236:0.5 248:0.5 331:0.5 343:1.0 471:1.0 646:1.0 652:1.0 703:1.0 1136:1.0 1417:1.0 1489:1.0 1820:1.0 2074:1.0 2158:1.0 2475:1.0 2869:1.0 3042:1.0 3045:1.0 3212:1.0 3689:1.0 5213:1.0 5 4:1.5 6:0.125 11:0.2 12:0.42857142857142855 15:0.07692307692307693 17:0.2 18:0.3333333333333333 20:0.5 23:5.0 24:0.5 46:1.0 48:0.5 49:0.023255813953488372 51:3.0 55:0.09090909090909091 71:3.0 87:0.5 95:1.0 98:0.09090909090909091 100:0.125 112:1.0 121:0.04225352112676056 122:1.0 124:0.5 126:0.25 180:1.0 181:1.0 185:1.0 197:1.0 231:1.0 236:0.5 248:0.5 269:1.0 276:1.0 296:1.0 298:1.0 300:1.0 310:1.0 315:1.0 366:1.0 383:1.0 408:1.0 580:1.0 641:0.5 664:0.1 669:0.5 929:1.0 1285:1.0 1966:1.0 1970:1.0 2231:1.0 2380:1.0 5 4:1.0 6:0.125 7:0.5 12:0.42857142857142855 15:0.07692307692307693 19:0.1 20:1.5 21:0.2 23:3.0 24:0.5 26:0.02857142857142857 38:0.3333333333333333 48:1.0 49:0.023255813953488372 51:3.0 55:0.09090909090909091 62:0.16666666666666666 64:0.5 71:1.0 88:1.0 118:1.0 121:0.014084507042253521 134:0.16666666666666666 158:0.3333333333333333 176:1.0 188:1.0 203:0.2 241:0.3333333333333333 300:1.0 310:1.0 383:1.0 435:1.0 466:1.0 468:1.0 476:1.0 519:1.0 529:1.0 550:0.5 561:1.0 621:1.0 669:0.5 745:1.0 819:1.0 991:1.0 1244:1.0 2380:1.0 3161:1.0 4001:1.0 5480:1.0 5495:1.0 5777:1.0 6714:1.0 5 4:1.5 7:0.5 12:0.2857142857142857 19:0.1 20:1.0 21:0.2 23:5.0 24:1.0 26:0.02857142857142857 46:1.0 48:0.5 49:0.023255813953488372 51:3.0 55:0.2727272727272727 58:0.3333333333333333 62:0.16666666666666666 64:0.5 71:2.0 98:0.18181818181818182 110:1.0 112:2.0 121:0.04225352112676056 136:1.0 137:1.0 158:0.3333333333333333 179:1.0 199:0.3333333333333333 228:1.0 276:1.0 281:0.16666666666666666 300:1.0 314:1.0 323:1.0 611:1.0 664:0.1 862:1.0 929:1.0 1005:1.0 1087:1.0 1232:1.0 1269:1.0 1607:1.0 1966:1.0 2054:1.0 2214:1.0 2257:1.0 2281:1.0 2403:1.0 2462:1.0 2841:1.0 2932:1.0 3037:1.0 3038:1.0 3043:1.0 3214:1.0 4449:1.0 5 4:1.0 8:0.14285714285714285 12:0.8571428571428571 17:0.2 23:4.0 38:0.3333333333333333 48:0.5 49:0.023255813953488372 51:3.0 55:0.2727272727272727 62:0.16666666666666666 64:1.0 71:2.0 114:1.0 115:0.1 129:0.5 133:0.5 158:0.3333333333333333 194:1.0 231:1.0 280:0.3333333333333333 414:0.5 537:1.0 550:0.5 601:0.5 652:1.0 958:1.0 1037:1.0 1053:1.0 1429:1.0 1509:1.0 1554:1.0 1940:1.0 2449:1.0 2892:1.0 2893:1.0 3063:1.0 3064:1.0 3630:1.0 5 4:0.5 6:0.125 8:0.42857142857142855 12:0.7142857142857143 17:0.2 20:1.0 21:0.1 23:6.0 48:0.5 49:0.023255813953488372 51:3.0 55:0.09090909090909091 62:0.16666666666666666 67:0.3333333333333333 71:2.0 98:0.09090909090909091 112:1.0 118:1.0 129:0.5 133:0.5 154:0.3333333333333333 158:0.3333333333333333 198:1.0 223:1.0 241:0.3333333333333333 331:0.5 385:1.0 393:1.0 429:1.0 434:1.0 435:2.0 534:1.0 956:1.0 982:1.0 1081:1.0 1461:1.0 1539:0.5 2400:1.0 2488:1.0 2695:1.0 2878:1.0 3900:1.0 4575:1.0 6175:1.0 5 4:1.0 6:0.125 7:1.0 8:0.14285714285714285 11:0.2 12:0.14285714285714285 20:0.5 21:0.2 23:5.0 48:0.5 49:0.023255813953488372 51:3.0 55:0.09090909090909091 71:2.0 88:1.0 98:0.18181818181818182 158:0.3333333333333333 178:1.0 198:1.0 199:0.3333333333333333 203:0.2 250:1.0 295:1.0 312:1.0 664:0.1 728:1.0 871:1.0 877:1.0 1000:0.5 1067:1.0 1254:1.0 1949:1.0 2009:1.0 2211:1.0 3058:1.0 3060:1.0 4401:1.0 5495:1.0 5 4:2.5 6:0.25 8:0.14285714285714285 9:0.25 11:0.2 12:0.42857142857142855 15:0.07692307692307693 19:0.1 21:0.1 23:6.0 24:0.5 38:0.6666666666666666 42:1.0 46:1.0 48:1.5 49:0.023255813953488372 51:3.0 55:0.18181818181818182 61:1.0 62:0.3333333333333333 63:0.5 85:1.0 96:0.16666666666666666 100:0.125 121:0.014084507042253521 122:1.0 147:1.0 188:1.0 197:1.0 203:0.2 248:1.0 249:1.0 273:1.0 300:1.0 314:1.0 331:0.5 332:1.0 333:1.0 383:1.0 406:1.0 435:1.0 449:1.0 484:0.5 534:1.0 757:1.0 791:1.0 952:1.0 1427:1.0 2553:1.0 2592:1.0 2899:1.0 3078:1.0 4510:1.0 5 4:1.0 6:0.125 9:0.25 17:0.2 19:0.1 23:2.0 38:0.3333333333333333 46:1.0 49:0.015503875968992248 51:2.0 55:0.09090909090909091 64:0.25 112:1.0 125:0.3333333333333333 137:1.0 148:0.6666666666666666 149:0.3333333333333333 154:0.6666666666666666 182:0.5 183:1.0 188:2.0 199:0.3333333333333333 260:1.0 289:0.125 860:2.0 861:3.0 862:1.0 1187:1.0 1370:1.0 2355:1.0 6276:1.0 5 7:0.5 11:0.2 12:0.14285714285714285 18:0.3333333333333333 20:0.5 23:5.0 48:0.5 49:0.015503875968992248 51:2.0 55:0.09090909090909091 71:2.0 75:0.25 96:0.16666666666666666 98:0.09090909090909091 127:0.5 154:0.6666666666666666 158:0.3333333333333333 196:1.0 203:0.2 317:1.0 341:1.0 616:1.0 652:1.0 653:0.5 828:1.0 859:2.0 860:1.0 864:1.0 875:1.0 1116:1.0 1335:1.0 1522:1.0 1582:1.0 3132:1.0 3546:1.0 5623:1.0 5 4:1.0 8:0.14285714285714285 12:0.42857142857142855 23:3.0 49:0.023255813953488372 51:3.0 55:0.09090909090909091 85:1.0 95:1.0 127:0.5 154:0.6666666666666666 173:0.5 231:1.0 236:0.5 289:0.125 317:1.0 333:1.0 341:1.0 354:0.5 366:1.0 435:1.0 439:1.0 507:1.0 828:2.0 858:1.0 859:1.5 860:1.0 861:1.0 862:1.0 1405:1.0 1649:1.0 1701:1.0 2161:1.0 2839:1.0 5213:1.0 5 4:2.5 6:0.125 8:0.14285714285714285 12:0.42857142857142855 20:0.5 23:2.0 29:1.0 38:0.6666666666666666 48:0.5 49:0.015503875968992248 51:2.0 55:0.36363636363636365 64:0.25 71:1.0 127:0.5 137:1.0 139:1.0 154:0.3333333333333333 188:1.0 194:1.0 204:1.0 212:0.5 231:1.0 251:1.0 266:1.0 300:1.0 317:1.0 341:1.0 361:1.0 366:2.0 432:1.0 435:1.0 476:1.0 521:1.0 616:1.0 652:1.0 715:1.0 729:1.0 828:2.0 859:2.0 860:2.0 861:1.0 864:1.0 1075:1.0 1160:1.0 1251:1.0 1335:1.0 2049:1.0 2090:1.0 2921:1.0 3250:1.0 4494:1.0 6567:1.0 5 4:1.0 8:0.2857142857142857 11:0.2 15:0.07692307692307693 19:0.1 21:0.2 23:3.0 26:0.02857142857142857 49:0.023255813953488372 50:1.0 51:3.0 57:1.0 62:0.16666666666666666 64:0.5 71:1.0 112:2.0 121:0.014084507042253521 126:0.25 137:1.0 141:0.16666666666666666 165:1.0 166:1.0 179:1.0 185:1.0 196:1.0 201:0.16666666666666666 204:1.0 211:1.0 231:2.0 251:2.0 253:1.0 269:1.0 292:0.4 296:1.0 315:1.0 317:1.0 331:0.5 333:1.0 385:1.0 424:0.5 452:1.0 477:1.0 479:1.0 550:0.5 920:1.0 1209:1.0 1573:1.0 2211:1.0 5 4:2.5 7:1.0 12:0.2857142857142857 17:0.2 19:0.2 20:0.5 21:0.2 23:1.0 24:0.5 42:1.0 49:0.015503875968992248 51:2.0 55:0.18181818181818182 62:0.16666666666666666 98:0.09090909090909091 112:1.0 114:1.0 126:0.25 158:0.6666666666666666 196:1.0 317:1.0 361:1.0 390:0.5 457:1.0 558:1.0 594:1.0 708:1.0 1370:1.0 1860:1.0 2330:1.0 2357:1.0 5 4:1.5 8:0.14285714285714285 12:0.14285714285714285 19:0.2 20:1.0 23:2.0 24:0.5 49:0.015503875968992248 51:2.0 55:0.18181818181818182 100:0.125 133:0.5 185:1.0 198:1.0 210:1.0 231:1.0 251:1.0 281:0.16666666666666666 317:1.0 361:1.0 390:0.5 488:2.0 936:0.5 1149:1.0 1344:1.0 1539:0.5 1799:1.0 2077:1.0 2134:1.0 3157:1.0 4081:1.0 5 4:1.5 6:0.125 8:0.2857142857142857 12:0.14285714285714285 17:0.2 19:0.2 20:1.5 21:0.2 23:1.0 48:0.5 49:0.007751937984496124 51:1.0 55:0.09090909090909091 64:0.25 80:0.3333333333333333 92:1.0 158:0.3333333333333333 165:1.0 312:1.0 317:1.0 331:0.5 534:1.0 562:1.0 641:0.5 682:1.0 2585:0.5 2695:1.0 2724:1.0 2898:1.0 3938:1.0 5 4:2.5 49:0.007751937984496124 51:1.0 55:0.09090909090909091 68:0.5 96:0.16666666666666666 121:0.014084507042253521 136:1.0 251:1.0 317:1.0 361:1.0 390:0.5 401:1.0 601:0.5 871:1.0 1476:0.5 2296:1.0 5 4:1.0 5:0.14285714285714285 12:0.14285714285714285 17:0.2 19:0.1 20:1.0 21:0.3 23:1.0 26:0.02857142857142857 48:0.5 49:0.007751937984496124 51:1.0 113:0.5 114:1.0 116:0.2 165:1.0 317:1.0 743:1.0 5 4:1.5 8:0.14285714285714285 12:0.14285714285714285 18:0.3333333333333333 19:0.2 21:0.1 23:2.0 24:0.5 26:0.02857142857142857 38:0.3333333333333333 48:1.0 49:0.007751937984496124 51:1.0 55:0.09090909090909091 64:0.25 71:1.0 121:0.014084507042253521 165:1.0 201:0.16666666666666666 236:0.5 244:0.5 248:0.5 255:1.0 296:1.0 317:1.0 333:1.0 353:1.0 361:1.0 362:1.0 365:1.0 483:1.0 746:1.0 804:1.0 830:1.0 1546:1.0 1752:1.0 3078:1.0 5 4:0.5 6:0.125 8:0.14285714285714285 12:0.2857142857142857 19:0.1 20:0.5 23:3.0 25:1.0 38:0.3333333333333333 48:1.0 49:0.007751937984496124 51:1.0 68:0.5 88:1.0 97:0.5 98:0.09090909090909091 121:0.014084507042253521 126:0.25 136:1.0 154:0.3333333333333333 193:1.0 236:0.5 281:0.16666666666666666 289:0.125 317:1.0 361:1.0 363:1.0 364:1.0 365:1.0 418:1.0 424:0.5 534:1.0 1149:1.0 1199:1.0 1202:1.0 2213:1.0 5 4:1.5 8:0.14285714285714285 23:2.0 38:0.3333333333333333 42:1.0 55:0.09090909090909091 76:1.0 78:1.0 87:0.5 115:0.1 116:0.2 148:0.5 181:1.0 185:1.0 449:1.0 952:1.0 2384:1.0 4452:1.0 5 4:1.0 7:0.5 11:0.2 15:0.15384615384615385 22:1.0 23:1.0 73:1.0 114:1.0 120:0.2 141:0.16666666666666666 148:0.5 173:0.5 203:0.2 908:1.0 1370:1.0 2176:1.0 6088:1.0 5 4:1.5 19:0.1 20:0.5 21:0.3 23:1.0 26:0.02857142857142857 58:0.3333333333333333 64:0.25 98:0.09090909090909091 234:1.0 424:0.5 446:0.3333333333333333 462:0.5 715:1.0 1269:1.0 2288:1.0 2304:0.5 5 4:1.0 5:0.14285714285714285 21:0.2 23:1.0 26:0.05714285714285714 189:1.0 390:0.5 2233:1.0 5 4:1.0 5:0.14285714285714285 12:0.14285714285714285 17:0.2 19:0.1 20:1.0 21:0.2 23:1.0 55:0.09090909090909091 64:0.25 68:0.5 71:1.0 80:0.3333333333333333 98:0.09090909090909091 176:1.0 288:0.3333333333333333 354:0.5 366:1.0 488:1.0 740:0.3333333333333333 1364:1.0 1458:1.0 1617:1.0 1720:1.0 2695:1.0 4466:1.0 6202:1.0 5 4:0.5 5:0.14285714285714285 11:0.2 20:1.0 23:3.0 48:1.0 49:0.007751937984496124 50:1.0 51:1.0 55:0.18181818181818182 64:0.25 71:1.0 76:1.0 88:2.0 102:1.0 110:1.0 121:0.014084507042253521 129:0.5 236:0.5 244:0.5 253:1.0 315:1.0 316:0.5 428:1.0 521:1.0 550:0.5 746:1.0 1742:1.0 2222:2.0 2339:1.0 2766:1.0 3696:1.0 4561:1.0 5 4:0.5 12:0.2857142857142857 20:1.0 21:0.2 23:2.0 26:0.02857142857142857 38:0.3333333333333333 42:1.0 49:0.007751937984496124 50:1.0 51:1.0 55:0.2727272727272727 93:0.1111111111111111 98:0.18181818181818182 113:0.5 236:0.5 285:1.0 292:0.2 365:1.0 452:1.0 1065:0.3333333333333333 2339:1.0 3288:1.0 5 17:0.2 20:0.5 21:0.1 23:2.0 24:0.5 25:1.0 42:1.0 55:0.09090909090909091 64:0.5 80:0.3333333333333333 88:1.0 121:0.014084507042253521 126:0.25 134:0.16666666666666666 156:1.0 280:0.3333333333333333 459:1.0 553:1.0 1525:1.0
f6d58d3d4a1dc66ce7d850a77866c0fce9a33858
99b4e2e61348ee847a78faf6eee6d345fde36028
/Toolbox Test/rooteig/rooteig1.sce
4428203558c13a7aacb74bdef5f8007a0ef3bf79
[]
no_license
deecube/fosseetesting
ce66f691121021fa2f3474497397cded9d57658c
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
refs/heads/master
2021-01-20T11:34:43.535019
2016-09-27T05:12:48
2016-09-27T05:12:48
59,456,386
0
0
null
null
null
null
UTF-8
Scilab
false
false
196
sce
rooteig1.sce
//i/p args are x and p clc; clear; exec('/home/debdeep/Desktop/TEST NOW!!/rooteig/rooteig.sci'); x=[1 2 3 4 5 67 8 9]; p=2; y=rooteig(x,p); disp(y); //output // 0. // 2.1797329
9e6cdd5037c29dd2f118bc34406a52a7983e765f
449d555969bfd7befe906877abab098c6e63a0e8
/1664/CH2/EX2.8/Ex2_8.sce
fdd960acdfe1ebd6a69ecba1ac8441cf05de7133
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
307
sce
Ex2_8.sce
//Example No.2.8. // Page No.62. clc;clear; Op = 5*10^(-3);//Output power -[W]. I = 10*10^(-3);//Current -[A]. V = 3*10^(3);//Voltage -[V]. Ip = (10*10^(-3)*3*10^(3));//Input power. Eff = (((Op)/(Ip))*(100));//Efficiency of the laser. printf("\nThe efficiency of the laser is %.6f percent",Eff);
66d1d9359d3de0c2cea426dfd65f88c1beff7c1a
c3c3833ed7a93cc597ebb6c13fd2239f66519209
/ammod/ammod_Test_Two.sce
199752e4b26a1c0a4c26ca9cfd04ff3bdb269b5f
[]
no_license
UsamaFoad/ScilabToolboxTesting
bfae1dcb69f26b96d31a776ff16b3d1cb3684730
f6cefd595833dfa6bcc454068b2539f70110246c
refs/heads/master
2021-01-10T15:21:58.079787
2016-04-08T14:55:15
2016-04-08T14:55:15
55,781,088
0
0
null
null
null
null
UTF-8
Scilab
false
false
5,248
sce
ammod_Test_Two.sce
// Tester name: Usama A.F. Khalil // usamafoad@gmail.com // Before run this testes do not forget to execute ammod function in Scilab, ex. // exec('<Drive Letter><Path to ammod.sci file>\ammod.sci',-1) // then you can run code for each block by selecting it then Ctrl + E // // The aim of current test(s) is to check the three status for ammod function, i.e., // I) Y = ammod(x, Fc, Fs) // II) Y = ammod(x, Fc, Fs, INI_PHASE) // III) Y = ammod(x, Fc, Fs, INI_PHASE, CARRAMP) //==========(Case I)============================================================= // I) Y = ammod(x, Fc, Fs) // Test the amplitude modulation where the modulated signal has zero initial // phase and zero carrier amplitude (suppressed-carrier modulation). I'll use // the function to calculate the modulation and compare the results to manual // calculation to the same data. The expected result is equality between the // results from this two different method - if the function work correctly. // The data will satisfy that Fs > 2*(Fc+BW) // // results: Passed // fc = 10; fs = 100; t = [0:1/fs:fs/10]; x = sin(2*%pi*t); y_fun = ammod(x,fc,fs); x=x(:); t = (0:1/fs:(size(x,1)-1)/fs)'; t = t(:,ones(1,size(x,2))); y_man = (0 + x).*cos(2*%pi*fc*t+ 0); y_man = y_man'; figure subplot(3,1,1); plot(y_fun); title('Modulated signal calculated by function'); subplot(3,1,2); plot(y_man); title('Modulated signal calculated manualy'); subplot(3,1,3); plot(y_fun, 'g'), plot(y_man, 'r') ; title('Both (only one line will show if they identical)'); if y_fun == y_man then disp("Passed"); else disp("Failed"); end //==========(Case II)============================================================ // II) Y = ammod(x, Fc, Fs, INI_PHASE) // Test the amplitude modulation with initial phase in radians. // I'll use the function to calculate the modulation and compare the results to: //(A) manual calculation to the same data with initial phase //(B) manual calculation to the same data WITHOUT specifying initial phase // The expected results/output is equality between the results from the function // and the first case (A) and difference between the function results and the // second case (B). i.e., we need to know if adding the ini_phase to the function // make any difference or not. // The data will satisfy that Fs > 2*(Fc+BW) // // results: Passed // fc = 10; fs = 100; t = [0:1/fs:fs/10]; x = sin(2*%pi*t); ini_phase = 5; y_fun = ammod(x,fc,fs,ini_phase); x=x(:); t = (0:1/fs:(size(x,1)-1)/fs)'; t = t(:,ones(1,size(x,2))); //(A) y with ini_phase y_man_A = (0 + x).*cos(2*%pi*fc*t+ ini_phase); y_man_A = y_man_A'; //(B) y without ini_phase y_man_B = (0 + x).*cos(2*%pi*fc*t+ 0); y_manB = y_man_B'; title_A=["Both Modulated signal y_fun & y_man_A";"(only one line will show if they identical)"]; title_B=["Both Modulated signal y_fun & y_man_B";"(only one line will show if they identical)"]; figure subplot(3,1,1); plot(y_fun); title('Modulated signal calculated by function'); subplot(3,1,2); plot(y_fun, 'r'), plot(y_man_A, 'g'); title(title_A); subplot(3,1,3); plot(y_fun, 'r'), plot(y_man_B, 'g') ; title(title_B); if y_fun == y_man_A then disp("Passed"); else disp("Failed"); end if y_fun == y_man_B then disp("Failed"); else disp("Passed"); end //==========(Case III)=========================================================== // III) Y = ammod(x, Fc, Fs, INI_PHASE, CARRAMP) // Test the amplitude modulation with initial phase carrier amplitude // (transmitted-carrier modulation) I'll use the function to calculate the // modulation and compare the results to: //(A) manual calculation to the same data WITH carrier amplitude //(B) manual calculation to the same data WITHOUT specifying carrier amplitude // The expected results/output is equality between the results from the function // and the first case (A) and difference between the function results and the // second case (B). i.e., we need to know if adding the CARRAMP to the function // make any difference or not. // The data will satisfy that Fs > 2*(Fc+BW) // // results: FAILED // fc = 10; fs = 100; t = [0:1/fs:fs/10]; x = sin(2*%pi*t); ini_phase = 5; carr_amp = 9; y_fun = ammod(x,fc,fs,ini_phase, carr_amp); x=x(:); t = (0:1/fs:(size(x,1)-1)/fs)'; t = t(:,ones(1,size(x,2))); //(A) y with carr_amp y_man_A = (carr_amp + x).*cos(2*%pi*fc*t+ ini_phase); y_man_A = y_man_A'; //(B) y without carr_amp y_man_B = (0 + x).*cos(2*%pi*fc*t+ ini_phase); y_manB = y_man_B'; title_A=["Both Modulated signal y_fun & y_man_A";"(only one line will show if they identical)"]; title_B=["Both Modulated signal y_fun & y_man_B";"(only one line will show if they identical)"]; figure subplot(3,1,1); plot(y_fun); title('Modulated signal calculated by function'); subplot(3,1,2); plot(y_fun, 'g'), plot(y_man_A, 'r'); title(title_A); subplot(3,1,3); plot(y_fun, 'r'), plot(y_man_B, 'g') ; title(title_B); if y_fun == y_man_A then disp("Passed"); else disp("Failed"); end if y_fun == y_man_B then disp("Failed"); else disp("Passed"); end // The results show that the function always ignore carrier amplitude value and // consider it as zero. The reason for this is the 'else' statemnt in lines 47-48 // this allows evaluate to true and set carr_amp=0!
9f5fbc38f014468897f395b36974a601de021593
a5f0fbcba032f945a9ee629716f6487647cafd5f
/Machine_Learning/macros/Perceptron.sci
36406c914faef4fc3eb4b565cf933b73022ff085
[ "BSD-2-Clause" ]
permissive
SoumitraAgarwal/Scilab-gsoc
692c00e3fb7a5faf65082e6c23765620f4ecdf35
678e8f80c8a03ef0b9f4c1173bdda7f3e16d716f
refs/heads/master
2021-04-15T17:55:48.334164
2018-08-07T13:43:26
2018-08-07T13:43:26
126,500,126
1
1
null
null
null
null
UTF-8
Scilab
false
false
592
sci
Perceptron.sci
// Macro for single perceptron -- Scilab // Function to train a single perceptron model with given // rate and iterations to converge function theta = perceptronTrain(x, y, rate, iter) // Making an initial guess theta = (1.0/length(x(1, :)))*ones(1, length(x(1, :))); // Training for i = 1:iter sigm = x*theta'; theta = theta + rate.*((y - sigm)'*x); error = 0.5*norm(y - x*theta'); end endfunction // Function to predict the target given features and model parameter theta function ypred = perceptronPredict(x, theta) ypred = 1.0./(1.0 + exp(-x*theta')); endfunction
8dceb996db6837a900b4109fcbaa233eec2cd351
449d555969bfd7befe906877abab098c6e63a0e8
/3041/CH3/EX3.12/Ex3_12.sce
ac54942fcdb1e2a90c8b1d5e5b0b7c8b189f6171
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
944
sce
Ex3_12.sce
//Variable declaration k=0.0002 //device parameter Vt=4 //thevinin voltage(V) Vdd=24 //drain voltage(V) Id0=3 //drain current(mA) //Calculations Vgs=(sqrt(Id0/k))+4 //as Id=k(Vgs-Vt)^2 Rd=-(Vgs-Vdd)/Id0 //as Vds=Vdd-IdRd and Vgs=Vds=7.87 k=0.0003 //device parameter syms Id expr = solve([Id**2-7.5*Id+13.7],[Id]) printf ("equation has 2 solutions") disp(expr) // putting value of k=0.0003 in eq of Id, Id1=3.15 // we get Vgs=Vds=24-5.4Id and putting Vgs again in Id we get, // Id^2-7.5Id+13.7=0 Idchange=((Id1-Id0)/Id0)*100 //changed Id(mA) //Result printf ("change in Id is %.1f %% increase",Idchange)
f0d6d3e873e373606cadaa23cab85ac48f321497
d65667bd6da157e725e5083a95c7a5e3c5e50371
/hdf5/HDF5Examples-0.1.1-Source/C/H5T/testfiles/h5ex_t_opaque.tst
025097681018902666c9a4585abc1a3ce3b301ce
[]
no_license
DCC-Lab/Umuco
4748640ddd5869f193303057445fccbf2e1cc6c5
41c38cd6c8e8d771708959eb02c9dee054148cbc
refs/heads/master
2020-08-07T01:11:31.456247
2019-02-24T18:16:16
2019-02-24T18:16:16
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
112
tst
h5ex_t_opaque.tst
Datatype tag for DS1 is: "Character array" DS1[0]: OPAQUE0 DS1[1]: OPAQUE1 DS1[2]: OPAQUE2 DS1[3]: OPAQUE3
8d5fb45b8ffdcb10658272d69e8dc04a184a06b6
c9285067e636c3d90d2ba32cd79618a83934bb7f
/Rayleigh_PM_3.sce
49a85fa489edf884255ce237f6b2c71a0565fc53
[]
no_license
SreekanthGunishetty/ScilabAssignment
7313cc47e31aabad725b7f2b067f31e0ecf7f41f
b9df679f70d16af141534d1b18105c60476c726a
refs/heads/master
2021-01-02T20:22:47.454878
2020-04-18T10:15:08
2020-04-18T10:15:08
239,784,550
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,133
sce
Rayleigh_PM_3.sce
clc;clear;close; A=[] disp("Rayleigh Power Method") printf("\nEnter a 3x3 matrix:\n\n") for i=1:3 for j=1:3 printf("Enter element A(%d,%d):",i,j) A(i,j)=input("") end end disp(A,"The matrix is:") x0=[] disp("*****************************************************************") printf("\nEnter the initial Eigen Vector:\n") for i=1:3 x0(i,1)=input("") end disp(x0,"Initial Eigen Vector") a=max(x0) disp(a,"Initial Largest Eigen Value") disp("****************************************************************") v=A*x0 i=1 while abs(max(v)-a)>0.002 then printf("Iteration Number = %d\n",i) i=i+1 a=max(v) disp(a,"Current Eigen Value:") x1=v/a disp(x1,"Current Eigen Vector:") v=A*x1 disp("************************************************************") end format('v',5) disp("*************************************************************") printf("Iteration Number = %d \n",i) printf("(Equal Eigen Vectors in iteration number %d and %d)\n",i-1,i) disp("The largest Eigen Value:") disp(max(v)) disp("The largest Eigen Vector:") disp(v/a)
b1bee5fe89831a36bbb29800c39d7570a1cc03c9
449d555969bfd7befe906877abab098c6e63a0e8
/199/CH6/EX6.16.a/Example_6_16_a.sce
e5610738450884731b99d7bca28fbc4b3f64f7cf
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
527
sce
Example_6_16_a.sce
// Chapter6 // Page.No-238 // Example_6_16_a // Design of differentiator // Given clear;clc; C1=0.1*10^-6; // Assume fa=1*10^3; // Freq at which gain is 0 dB Rf=1/(2*%pi*fa*C1); // Using fa=1/(2*%pi*Rf*C1) printf("\n Feedback resistance is = %.1f ohm \n",Rf) Rf=1.5*10^3; // Approximation fb=20*10^3; // Gain limiting freq R1=1/(2*%pi*fb*C1); printf("\n Resistance,R1 is = %.1f ohm \n",R1) R1=82; // Approximation Cf=R1*C1/Rf; printf("\n Capacitance,Cf is = %.10f farad \n",Cf) Cf=0.005*10^-6; // Approximation
bb4907f79e8ad1d874c2b455c94056dafd469f1d
449d555969bfd7befe906877abab098c6e63a0e8
/2165/CH4/EX4.14/4_14.sce
a45186c469972ac0e7e5e64a49acb0c82baf6a11
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
533
sce
4_14.sce
clc //initialisation of variables a=1.025//in^2 h=18//in h1=24//in x=8.2//percent v=15//in v2=6.9//ft^3 p=0.74//lb/in^2 p1=50//lb/in^2 p2=83//lb/in^2 P3=48.0//lb/in P1=29.8//lb/in^2 P2=14.6//lb/in^2 h2=29.8//in D=(%pi/4)*(3/2)^2*2//ft^3 v1=23400//ft.lb W=a*v1//ft.lb V=0.082*D//ft^3 Q=1.530//ft^3 //CALCULATIONS I=V+Q//ft^3 P=P3+P2//lb/in^2 V1=p*v2//ft^3 W1=I/V1//lb S=p2+P2///l/in^2 H=659.06//C.H.U/lb T=W/(H*W1*1400)*100//percent //RESULTS printf('The thermal efficiency of the engine=% f percent',T)
8fe474eb7770643787efa5343a9b7abf8fa9c089
449d555969bfd7befe906877abab098c6e63a0e8
/2741/CH1/EX1.7/7.sce
b527a4c316ed6525caa147e76ebaca2d14e7513e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
485
sce
7.sce
clc clear //Input data Pt=100;//Pressure of air when the bulb is placed in hot water in cm of Hg P100=109.3;//Pressure of air in a constant volume thermometer at 100 degree centigrade in cm of Hg P0=80;//Pressure of air in a constant volume thermometer at 0 degree centigrade in cm of Hg //Calculations t=((Pt-P0)/(P100-P0))*100;//The temperature of the hot water in degree centigrade //Output data printf('The temperature of the hot water is %3.2f degree centigrade',t)
b514b9be2cead74aca922c0e9d331f6f5f06b185
717ddeb7e700373742c617a95e25a2376565112c
/671/CH5/EX5.13/5_13.sce
dfe16ada2471b933651b9d2d97314cbc18469a82
[]
no_license
appucrossroads/Scilab-TBC-Uploads
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
refs/heads/master
2021-01-22T04:15:15.512674
2017-09-19T11:51:56
2017-09-19T11:51:56
92,444,732
0
0
null
2017-05-25T21:09:20
2017-05-25T21:09:19
null
UTF-8
Scilab
false
false
192
sce
5_13.sce
f0=1E6 Cmax=500E-12 C=450E-12 w0=2*%pi*f L=1/(w0*w0*Cmax) w=1/sqrt(L*C) f=w/(2*%pi) wb=2*2*%pi*(f-f0) r=wb*L Q0=2*%pi*f*L/r disp(Q0,L,r) ////////calculation mistakes in book
f69a3d4ceb64501d058bb5b1e6e82d853fc751e7
449d555969bfd7befe906877abab098c6e63a0e8
/689/CH16/EX16.3/3.sce
a3bd7dbe259c12734309c08d6094a7b78e9c2a11
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
945
sce
3.sce
clc; funcprot(0); //Example 16.3 Horsepower required at sea level // Initialisation of variables W = 11200; S = 365; rho = 0.002378; // Calculations Cl = poly(0,'Cl'); Cd = 0.023 + 0.0445*Cl^2; Coeff_Velo = 19.77*sqrt(W/S); //Using equtaion 8.5.2 Coeff_HP = W^1.5/(550*sqrt(rho*S/2)); //Using equation 8.16.1 Cl = [0.2 0.3 0.4 0.6 0.8 1.0 1.2 1.4]'; Result = zeros(8,8); Result(:,1) = Cl; Result(:,2) = Cl^2; Result(:,3) = sqrt(Cl); Result(:,4) = Cl^1.5; Result(:,5) = horner(Cd,Cl); Result(:,6) = diag(diag(Result(:,5))*inv(diag(Result(:,4)))); Result(:,7) = Coeff_HP*Result(:,6); Result(:,8) = Coeff_Velo*diag(inv(diag(Result(:,3)))); disp(Result,"!!Cl Cl^2 Cl^0.5 Cl^1.5 Cd Cd/Cl^1.5 Hp req V(mph) !!") ; clf(); plot2d(Result(:,8),Result(:,7)); xlabel("Miles Per Hour"); ylabel("HorsePower"); title("Power Curves "); set(gca(),"grid",[1 1])
67af2700e45123882bb5b66b6db9bfce3891263f
449d555969bfd7befe906877abab098c6e63a0e8
/1871/CH7/EX7.5/Ch07Ex5.sce
330e83e1219cb2cb1179369ce4892b357b41ee9f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
547
sce
Ch07Ex5.sce
// Scilab code Ex7.5: Pg:288 (2008) clc;clear; m = 3.34e-027; // Mass of deutron, gm q = 1.6e-019; // Charge, coulomb r = 0.2; // Radius of the path of deutron, meter B = 1.5; // Magnetic field, weber per meter square v = q*B*r/m; // velocity of the deutron, m/s E = 1/2*m*v^2/1.6e-013; // Energy of the deutron, MeV printf("\nThe velocity of deutron = %5.3e m/s ", v); printf("\nThe energy of deutron = %5.3f MeV ", E); // Result // The velocity of deutron = 1.437e+007 m/s // The energy of deutron = 2.156 MeV
a4ee406b6edb3233cc0ccc574a861497e26547ee
87749481136b7b72a47930f587f27667e0c0f97d
/DFT/Task_1.sce
7d32c0b2966fe56e4f236b71fe1910e5ed817dc7
[ "MIT" ]
permissive
brooky56/Digital_Signal_Processing
cf15e5ac443a16edcb3efc8d7703cf4746dedcba
f28651e40b0a99b79e9ba27deabc4db8bfc7f08e
refs/heads/master
2022-06-30T17:59:28.072522
2020-05-11T18:58:39
2020-05-11T18:58:39
242,598,653
0
1
null
null
null
null
UTF-8
Scilab
false
false
1,482
sce
Task_1.sce
clear all; b = chdir('C:\Users\work\OneDrive\Documents\SciLab\lab_v5') exec('DFT.sci') exec('FFT.sci') figure(0) f = 5; Fs = 64; dt=1/Fs; T = 4; t =0:dt:T-dt; signal = cos(2*%pi*f*t); plot(signal); xlabel("Time") ylabel("Amplitude") figure(1) subplot(2,1,1) a = DFT(signal) frequinces = (0:length(signal)-1)/length(signal)*Fs; plot(frequinces, abs(a)) xlabel("Frequency, Hz", 'fontsize', 2) ylabel("Freq amplitude", 'fontsize', 2) title("Frequency response of final signal (my dft)", 'fontsize', 3) subplot(2,1,2) plot(frequinces, abs(fft(signal))) xlabel("Frequency, Hz", 'fontsize', 2) ylabel("Freq amplitude", 'fontsize', 2) title("Frequency response of final signal (build-in function)", 'fontsize', 3) figure(2) subplot(2,1,1) a = DFT(signal) a = fftshift(a) frequinces = linspace(-Fs/2, Fs/2, length(a)); plot(frequinces, abs(a)) xlabel("Frequency, Hz", 'fontsize', 2) ylabel("Freq amplitude", 'fontsize', 2) title("Frequency response of final signal (my dft)", 'fontsize', 3) subplot(2,1,2) a = fft(signal) a = fftshift(a) frequinces = linspace(-Fs/2, Fs/2, length(a)); plot(frequinces, abs(a)) xlabel("Frequency, Hz", 'fontsize', 2) ylabel("Freq amplitude", 'fontsize', 2) title("Frequency response of final signal (build-in function)", 'fontsize', 3) figure(3) b = FFT(signal) b = fftshift(b) plot(frequinces, abs(b)) xlabel("Frequency, Hz", 'fontsize', 2) ylabel("Freq amplitude", 'fontsize', 2) title("Frequency response of final signal (my fft)", 'fontsize', 3)
02a7e037b4ae9b667fb28633e53b412e66ce2433
449d555969bfd7befe906877abab098c6e63a0e8
/575/CH6/EX6.5.2/6_5_2.sce
b41570802d5d6a41f59cee1e0452eaa0559015aa
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
538
sce
6_5_2.sce
clc pathname=get_absolute_file_path('6_5_2.sce') filename=pathname+filesep()+'652.sci' exec(filename) printf(" All the values in the textbook are Approximated hence the values in this code differ from those of Textbook") outputx=S/(S+100) printf("x=%f Kg KNO3/Kg",outputx) disp("Water balance") m1=basis*(1-inputx)/(1-outputx) printf(" \n m1=%f Kg",m1) disp("Mass balance") m2=basis-m1 printf(" \n m2=%f kg",m2) percentage=m2*100/(basis*inputx) printf(" \n Percentage of KNO3 in the feed that crystallizes is %f",percentage)
977c5a4cf53989e412e7a989d9adac8858903787
367fb86cc145c187bc8aa89afab0f15f7e8826e4
/functions/cv_rgb2gray_path.sci
ea4fc04d8a49159012ccfbe61becaf5f4128a25d
[]
no_license
rishubhjain/funcforscilab
19180cefb15a88df5cd55d91c2e50ab1829e4860
3f9fb8b1f467e1e89da1297bee8bd14645da5605
refs/heads/master
2021-01-23T00:15:23.622940
2015-04-22T09:32:28
2015-04-22T09:32:28
31,612,595
0
0
null
null
null
null
UTF-8
Scilab
false
false
138
sci
cv_rgb2gray_path.sci
function [image] = cv_rgb2gray_path(path) pyImport rgb2gray_file image=rgb2gray_file.rgb2gray(path) endfunction
211195f36dcfb561d3b1561d562b732f9656c464
449d555969bfd7befe906877abab098c6e63a0e8
/1946/CH2/EX2.14.b/Ex_2_14_b.sce
e552a0c2ec115094e03043133b3211c99363d9f1
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
378
sce
Ex_2_14_b.sce
// Example 2.14.b:Maximum Core Readius clc; clear; close; n1=1.48;//Waveguide Refractive Index d= 0.01;// Cange in core-cladding refractive index a=2;// parabolic refractive index h=1.3;//wavelngth in micro meters v= 2.4*sqrt(1+(2/a));//maximum value of normalised frequence a= (v*h)/(2*%pi*n1*sqrt(2*d));//Core Radius disp(a,"maximum core radius in micro meters")
8aaa898ee4cfb641de22a2ded81afd4cb25ed77a
449d555969bfd7befe906877abab098c6e63a0e8
/3812/CH1/EX1.14.c/1_14_c.sce
d25dcad50876e7c158a2ce62f1975a12fe3fe5b2
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
205
sce
1_14_c.sce
//Example 1.14<c> // Find wheather the following signal is periodic or not x3(n)=e^(i*7*pi*n) clc; n=-21:21; x=exp(%i *7* %pi *n); f=(7*%pi)/(2*%pi); N=1/f; disp(N,'the given signal is periodic');
6491f0d48366ad4021e9ae91413c54730705aaca
449d555969bfd7befe906877abab098c6e63a0e8
/3647/CH5/EX5.4/ex5_4.sce
b85e88ff7fd515a255cc2b1db283d151ea9340f7
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
300
sce
ex5_4.sce
//Solutions to Problems In applied mechanics //A N Gobby clear all; clc //initialisation of variables d=60//rev/min s=5//in v=5//in/s a=25.2//in/s x=2.23//in b=4.59//in z=20.0//in //CALCULATIONS U=x*v//in/s V=b*v//in/s B=V/z//rad/s //RESULTS printf('the angular velocity=% f rad/s',B)
00305733e81fda4d6df5b11dbfb4708cf3e2d843
449d555969bfd7befe906877abab098c6e63a0e8
/779/CH8/EX8.19/8_19.sce
f039e0ea166334cd14127e07bd0681bcc19233c5
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
298
sce
8_19.sce
T0 = 300; T = 1500; Q = -8.5; W = 8.5; // Case (a) I = Q*(1-T0/T) + W; R = Q*(1-T0/T); disp("kW",I,"and",R,"Rate of availability transfer with heat and the irreversibility rate are") // Case (b) T1 = 500; Ib = - Q*(1-T0/T) + Q*(1-T0/T1); disp("kW",Ib,"Rate of availability in case b is")
c1aa116e63f38e72624d8fd443c70e49f10ef216
449d555969bfd7befe906877abab098c6e63a0e8
/3831/CH18/EX18.9/Ex18_9.sce
161812b5e997f048beb6e33d55cfc245aaff9651
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
377
sce
Ex18_9.sce
// Example 18_9 clc;funcprot(0); // Given data T=20.0+273.15;// K // Calculation theta_v=2740;// K c_vbyR=(5/2)+((((theta_v/T)^2)*exp((theta_v/T)))/(exp(theta_v/T)-1)^2); Y=8.3143;// kJ/kg.K M_NO=30.01;// The molecular mass of nitrous oxide R_NO=Y/M_NO;// kJ/kg.K c_v_NO=R_NO*c_vbyR;// kJ/kg.K printf("\nThe value of c_v/R for nitrous oxide is %1.2f.",c_vbyR);
ec105c6ebb1e5f77456d8c0adc6e4a5ba871104b
cfadc8057fba63a7793bcee7ce8e2e8c3e5dc359
/solvers/IncNavierStokesSolver/Tests/Pyr_channel_SVV.tst
d6ea89dd1050c88194741a9a82b22f6f65e4ab32
[ "MIT" ]
permissive
DarkOfTheMoon/nektar
a5132b836f9fb0894ec54c1f373c08df947dd5ca
b36f4214c0907f877fed8dfc08e53bd607eaea24
refs/heads/master
2021-01-20T03:59:10.430634
2017-04-27T11:50:26
2017-04-27T11:50:26
89,609,337
0
1
null
null
null
null
UTF-8
Scilab
false
false
1,011
tst
Pyr_channel_SVV.tst
<?xml version="1.0" encoding="utf-8" ?> <test> <description>3D channel flow, Pyramidic elements, using SVV</description> <executable>IncNavierStokesSolver</executable> <parameters>Pyr_channel_SVV.xml</parameters> <files> <file description="Session File">Pyr_channel_SVV.xml</file> </files> <metrics> <metric type="L2" id="1"> <value variable="u" tolerance="1e-10">2.6682e-10</value> <value variable="v" tolerance="1e-10">2.67015e-10</value> <value variable="w" tolerance="1e-9">1.15296e-09</value> <value variable="p" tolerance="1e-8">2.8591e-08</value> </metric> <metric type="Linf" id="2"> <value variable="u" tolerance="1e-9">1.838e-09</value> <value variable="v" tolerance="1e-9">1.90318e-09</value> <value variable="w" tolerance="1e-8">1.42728e-08</value> <value variable="p" tolerance="1e-6">1.0353e-06</value> </metric> </metrics> </test>
3c8210fb55187902b648a9f628d3f7afb25cf3c9
449d555969bfd7befe906877abab098c6e63a0e8
/409/CH12/EX12.5/Example12_5.sce
6d98f902ac23c5413e2e2eac5f115cc799e55501
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,192
sce
Example12_5.sce
clear ; clc; //Page No.367 // Example 12.5 printf('Example 12.5\n\n'); // Solution fig.E12.5 // Given F = 100 ;// Overall feed/basis - [kg] F_n_C5H12 = 0.80 ;// Fraction of n_C5H12 in overall feed F_i_C5H12 = 0.20 ;// Fraction of i_C5H12in overall feed S_i_C5H12 = 1 ;// Fraction of i_C5H12 in isopentane stream P_n_C5H12 = .90 ;// Fraction of n_C5H12 in overall product P_i_C5H12 = .10 ;// Fraction of i_C5H12 in overall product // Overall Balances P = (F*F_n_C5H12)/P_n_C5H12 ;//Product Material Balance of n_C5H12 -[kg] S = F - P ;// Isopentane stream (S) from overall material balance - [kg] // Balance around isopentane tower // Let x be kg of butane free gas going to isopentane tower , y be the n-C5H12 stream leaving the isopentane tower // Solve following Equations by Matrix method // x = S + y - By Total materal balance // x*F_n_C5H12 = y a = [1 -1;F_n_C5H12 -1] ;// Matrix of coefficients of unknown b = [S;0] ;// Matrix of constants x = a\b ;// Matrix of solutions, x(1) = x , x(2) = y xf = x(1)/F ;// Fraction of butane-free gas going to isopentane tower printf('Fraction of butane-free gas going to isopentane tower is %.3f .\n',xf);
d26913cbb0a188387fa09df876c7c01e01cfb014
449d555969bfd7befe906877abab098c6e63a0e8
/2858/CH1/EX1.7/Ex1_7.sce
a0b74260ce488e16119caa77bd958bc40d67e9c5
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
386
sce
Ex1_7.sce
//example 1.7 clc; funcprot(0); //parta e1=0.92; e2=0.86; Hc=2.8; s2=212;//sigma2dash s1=140;//sigma1dash Cc=(e1-e2)/log10(s2/s1); Sc=Cc*Hc/(1+e1)*log10(s2/s1); disp(Sc*1000,"consolidated depth in mm"); //part b Sct=40; T50=0.197; t=4.5; Cr=T50*12.7^2/t; U=Sct/Sc*100/1000; H=Hc/2; Tv=%pi/4*U^2/100^2; t=Tv*H^2/Cr*1000^2/60/24; disp(t,"time required in days");
8176e0b262b396d26582576516af36860a4ff51a
449d555969bfd7befe906877abab098c6e63a0e8
/3821/CH7/EX7.1/Example7_1.sce
c8d4f7c72fe3b33c7247421b3f2d7106f3079861
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
727
sce
Example7_1.sce
///Chapter No 7 Fluid Mechanics ///Example 7.1 Page No:113 ////Find mass density of liquid //Input data clc; clear; V=5; //volume of the liquid in m**3 W=45*10^3; //weight of the liquid in KN g=9.81; //acceleration due to gravity in m/s**2 rhow=1000; //constant value ////Calculation m=W/g; //mass in Kg rho=m/V; //Mass density in kg/m**3 w=W/V; //Weight Density in N/m**3 v=V/m; //Specific volume in m**3/kg S=rho/rhow; //Specific gravity //Output printf('mass=%f kg \n',m); printf('Mass density= %f kg/m^3 \n ',rho); printf('Weight Density= %f N/m^3\n ',w); printf('Specific volume=%f m^3/kg \n',v); printf('Specific gravity= %f \n',S);
0366abdd2ba73f3c22b110ae5e5b029cd39c6df0
449d555969bfd7befe906877abab098c6e63a0e8
/1673/CH2/EX2.23/2_23.sce
b4c3a25339a5cc0416e406c41803d96f0cc6d518
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
605
sce
2_23.sce
//ramanujan's method //example 2.23 //page 47 clc;clear;close; deff('y=f(x)','1-2*((3/2)*x+(1/4)*x^2-(1/48)*x^4+x^6/1440-x^8/80640)'); a1=3/2,a2=1/4,a3=0,a4=1/48,a5=0,a6=1/1440,a7=0,a8=-1/80640; b1=1; b2=a1; b3=a1*b2+a2*b1; b4=a1*b3+a2*b2+a3*b1; b5=a1*b4+a2*b3+a3*b2; b6=a1*b5+a2*b4+a3*b3; b7=a1*b6+a2*b5+a3*b4; b8=a1*b7+a2*b6+a3*b5; b9=a1*b8+a2*b7+a3*b6; printf('\n%f',b1/b2); printf('\n%f',b2/b3); printf('\n%f',b3/b4); printf('\n%f',b4/b5); printf('\n%f',b5/b6); printf('\n%f',b6/b7); printf('\n%f',b7/b8); printf('\n it appears as if the roots are converging at around %f',b7/b8)
319d8d5203a32b24f45fda64e92ff81d1653539c
449d555969bfd7befe906877abab098c6e63a0e8
/1658/CH27/EX27.12/Ex27_12.sce
10d12cb65fa314102746474c31a51a5876b66daa
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
248
sce
Ex27_12.sce
clc; //e.g 27.12 AV=1000; f1=50; f2=200*10**3; D=0.05; beta=0.01; AV1=AV/(1+beta*AV); disp(AV1); fl1=f1/(1+beta*AV); disp('HZ',fl1,"fl1="); fu2=(1+beta*AV)*f2; disp('MHZ',fu2*10**-6,"fu2="); D1=D/(1+beta*AV); disp('%',D1*100,"D1=");
6db06aad77b80cb5a6041cf708d233f95d8bbe8b
2ba48648eefadee113a7c2f5d608cab5209c3a8b
/Unit&Func Test/单元测试文档/CagOS单元测试结果/LIBC/testcase/strtok.tst
de6cc145dcda0b8e88e8279bc774445fa13a396a
[]
no_license
wangdong412/Consen-SIS
879762175575d0a62f26ec1effeb46c3fd62e3e8
bca3fac35c961c3558a3438bca55e6d20825da3a
refs/heads/master
2020-07-11T05:17:18.814104
2019-08-27T09:41:41
2019-08-27T09:41:41
204,450,874
1
5
null
null
null
null
UTF-8
Scilab
false
false
1,920
tst
strtok.tst
-- VectorCAST 6.4c (02/03/16) -- Test Case Script -- -- Environment : LIBC -- Unit(s) Under Test: abort1 abs atof atoi atol bLib memchr memcmp memcpy memmove memset ns16550 qsort rand random random_r strcat strchr strcmp strcpy strlcat strlcpy strlen strncat strncmp strncpy strpbrk strspn strtod strtok strtok_r strtol strtoul -- -- Script Features TEST.SCRIPT_FEATURE:C_DIRECT_ARRAY_INDEXING TEST.SCRIPT_FEATURE:CPP_CLASS_OBJECT_REVISION TEST.SCRIPT_FEATURE:MULTIPLE_UUT_SUPPORT TEST.SCRIPT_FEATURE:MIXED_CASE_NAMES TEST.SCRIPT_FEATURE:STATIC_HEADER_FUNCS_IN_UUTS -- -- Unit: strtok -- Subprogram: strtok -- Test Case: strtok TEST.UNIT:strtok TEST.SUBPROGRAM:strtok TEST.NEW TEST.NAME:strtok TEST.BASIS_PATH:1 of 1 TEST.NOTES: No branches in subprogram TEST.END_NOTES: TEST.VALUE:strtok.strtok.separator:<<malloc 1>> TEST.VALUE:strtok.strtok.return:<<malloc 3>> TEST.VALUE_USER_CODE:strtok.strtok.string <<strtok.strtok.string>> = ( "a,b,c" ); TEST.END_VALUE_USER_CODE: TEST.VALUE_USER_CODE:strtok.strtok.separator.separator.separator[0] <<strtok.strtok.separator>>[0] = ( "," ); TEST.END_VALUE_USER_CODE: TEST.END -- Test Case: strtok.001 TEST.UNIT:strtok TEST.SUBPROGRAM:strtok TEST.NEW TEST.NAME:strtok.001 TEST.VALUE:strtok.strtok.string:<<malloc 9>> TEST.VALUE:strtok.strtok.string:<<null>> TEST.VALUE:strtok.strtok.separator:<<malloc 2>> TEST.VALUE:strtok.strtok.separator:"1" TEST.EXPECTED:strtok.strtok.return:<<null>> TEST.END -- Test Case: strtok1 TEST.UNIT:strtok TEST.SUBPROGRAM:strtok TEST.NEW TEST.NAME:strtok1 TEST.NOTES: No branches in subprogram TEST.END_NOTES: TEST.VALUE:strtok.strtok.string:<<malloc 6>> TEST.VALUE:strtok.strtok.string:"a b c" TEST.VALUE:strtok.strtok.separator:<<malloc 1>> TEST.VALUE:strtok.strtok.return:<<malloc 3>> TEST.VALUE_USER_CODE:strtok.strtok.separator.separator.separator[0] <<strtok.strtok.separator>>[0] = ( " " ); TEST.END_VALUE_USER_CODE: TEST.END
c6b1dc8f1fb4b2a4126b801c257e4a88aa45390a
f8bb2d5287f73944d0ae4a8ddb85a18b420ce288
/Scilab/example/ナイキスト線図1.sce
46694b6291332165cecdfe21c948f6a0e2496de0
[]
no_license
nishizumi-lab/sample
1a2eb3baf0139e9db99b0c515ac618eb2ed65ad2
fcdf07eb6d5c9ad9c6f5ea539046c334afffe8d2
refs/heads/master
2023-08-22T15:52:04.998574
2023-08-20T04:09:08
2023-08-20T04:09:08
248,222,555
8
20
null
2023-02-02T09:03:50
2020-03-18T12:14:34
C
SHIFT_JIS
Scilab
false
false
156
sce
ナイキスト線図1.sce
//ナイキスト線図 s=%s; H=1; G=(s+2)^2/((s+1)*(s^2-2*s+4)); GH=G*H; sys=syslin("c",GH); clf(); nyquist(sys) CharEq=denom(GH)+numer(GH) roots(CharEq)
b54d468ae6133d2099d4da93f296ad8594f9200a
449d555969bfd7befe906877abab098c6e63a0e8
/74/CH12/EX12.1/example1_sce.sce
328fb471383f40fd5ed5422226648fbf0c9020bc
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
220
sce
example1_sce.sce
//chapter 12 //example 12.1 // page 413 n=8;// number of bits Vofs=2.55;//in volts R=2^n;//resolution disp(R) Resolution=Vofs/(2^8-1); disp(Resolution)// an input change of 1LSB cause the output to change by 10mV
eb031a2a534461ecc5622f7748ac9a038aa7287f
449d555969bfd7befe906877abab098c6e63a0e8
/3685/CH21/EX21.6/Ex21_6.sce
3ff59bb5e27bbc4c1b4c57f83dc03224b7173af3
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,434
sce
Ex21_6.sce
clc // Given that p1 = 0.56 // Ambient pressure in bar t1 = 260 // Ambient temperature in K r_p = 6 // Pressure ratio of compressor n_c = 0.85 // Efficiency of compressor v = 360 // Speed of aircraft in km/h d = 3 // Propeller diameter in m n_p = 0.8 // Propeller efficiency n_g = 0.95 // Gear reduction efficiency r_e = 5 // Expansion ratio n_t = 0.88 // Turbine efficiency t3 = 1100 // Temperature at the entrance of turbine in K n_n = 0.9 // Nozzle efficiency cv = 40 // Calorific value in MJ/kg printf("\n Example 21.6\n") gama = 1.4 // Heat capacities ratio for air Vo = v*(5/18) p2 = p1*r_p t2_s = t1*((r_p)^(0.286)) t2 = t1+((t2_s-t1)/n_c) Cp = 1.005 // The value of heat capacity of air as given in the book in kJ/kgK Wc = Cp*(t2-t1) m_f = (t3-t2)/((cv*1000/Cp)-t3) m_a = 1/m_f p3=p2 p4 = p3/r_e t4_s = t3/((r_e)^(0.286)) t4 = t3-((t3-t4_s)*n_t) Wt = (1+m_f)*(t3-t4)*Cp Pp = Wt-Wc p5 = p1 t5_s = t4/((p4/p5)^((gama-1)/gama)) Vj = sqrt(2*Cp*1000*(t4-t5_s)*n_n) Ft = (1+m_f)*Vj-1*Vo V = Vo/n_p V4 = 2*V-Vo Q = (%pi/4)*(d^2)*V Pt = (1/2)*(p1*(10^5)/(287*t1))*Q*((V4^2)-(Vo^2))/1000 PT = Pt/n_g ma_c = PT/Pp Fp = Pt*n_p/V printf("\n Air-fuel ratio = %f,\n Thrust power of the propeller = %f kJ/s ,\n Thrust by the propeller = %f kN,\n Mass flow rate of air flowing through the compressor = %f kg/s,",m_a,Pt,Fp,ma_c) // The answers are given in the book contain calculation error.
8e41bf8da80bd7f063c5c00cd2d909b329d6c22e
449d555969bfd7befe906877abab098c6e63a0e8
/3792/CH5/EX5.1/Ex5_1.sce
592e9c8d4990e8e79de5b008ee55204e6d30e04d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
918
sce
Ex5_1.sce
// SAMPLE PROBLEM 5/1 clc;clear;funcprot(0); // Given data n_1=1800;// rev/min t_0=0;// s // alpha=4t; n_2=900;// rev/min // Calculation // (a) omega_1=(-2*%pi*n_1)/60;// rad/s // omega=-(60*%pi)+2t^2 omega_2=(-2*%pi*n_2)/60;// rad/s t=sqrt((omega_2-omega_1)/2);// s // (b) // The flywheel changes direction when its angular velocity is momentarily zero. Thus, t_b=sqrt((0-omega_1)/2);// s // (c) t_0=0;// s t_1=t_b;// s theta_1=integrate('omega_1+(2*t^2)','t',t_0,t_1);// rad N_1=abs(-theta_1/(2*%pi));// rev(clockwise) t_1=t_b;// s t_2=14;// s theta_2=integrate('omega_1+(2*t^2)','t',t_1,t_2);// rad N_2=theta_2/(2*%pi);// rev N=N_1+N_2;// rev printf("\n(a)The time required for the flywheel to reduce its clockwise angular speed,t=%1.2f s \n(b)The time required for the flywheel to reverse its direction of rotation,t=%1.2f s \n(c)The total number of revolutions,N=%3.0f rev",t,t_b,N);
309f464a4269179e0085206b7cb869bb1c074b32
449d555969bfd7befe906877abab098c6e63a0e8
/226/CH4/EX4.6/example6_sce.sce
6b9ef9b16247147b4e32775a83fd04ae762000ad
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
152
sce
example6_sce.sce
//chapter 4 //example 4.6 //page 169 printf("\n") printf("given") Vbe=.7;Vce=-6; Ib=20*10^-6 Ic=2.5*10^-3//from output characteristics Bdc=Ic/Ib
6c4527e07d510dce3a0edfa9031d1dde3502f125
449d555969bfd7befe906877abab098c6e63a0e8
/623/CH10/EX2.9.2/U2_C9_2.sce
067bb56d4ee07a4d4ce3c5cbd3993ced73905aac
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
234
sce
U2_C9_2.sce
//variable initialization x=0:0.1:9999; x0=0; x1=9999; //calculation I=integrate('x^2*exp(-x)','x',x0,x1); A=sqrt(1/(I*(%pi/2))); r=(1/4)*integrate('x^3*exp(-x)','x',x0,x1); printf("\n A = %f*a0^-1.5\n r = %.1f*a0",A,r);
b6f36d2dd0c2717ddf31edae6fd6908affb3aea5
573df9bfca39973c9bf2fa36f6e5af2643d7771e
/scilab/sistemas lineares/exemplo_Gauss.sce
20611cd019af5b5d0d9d79e4b4786af1e40d684c
[]
no_license
DCC-CN/152cn
ef92c691edabe211b1a552dbb963f9fd9ceec94a
4fe0b02f961f37935a1335b5eac22d81400fa609
refs/heads/master
2016-08-13T01:34:17.966430
2015-04-07T07:31:58
2015-04-07T07:31:58
44,502,526
1
0
null
null
null
null
UTF-8
Scilab
false
false
1,905
sce
exemplo_Gauss.sce
// clc; clear ; getd('../lib'); function exemplo_Gauss(label, A, b, prec) if ~exists("prec", "local") then prec = 3; end tamanho = prec + 5; pausa = %F; mprintf("\n###################################################################################\n"); mprintf("Exemplo %s de solução de sistema linear por método de Gauss\n", label) mprintf("-----------------------------------------------------------\n"); try [x, r, Det] = gauss_dp(A, b, %F, tamanho, prec, pausa) catch mprintf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"); mprintf('%s\n',lasterror()); mprintf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"); end mprintf("\n===================================================================================\n"); mprintf("Exemplo %s de solução de sistemas lineares por método de Gauss com pivotação parcial\n", label); mprintf("------------------------------------------------------------------------------------\n"); try [x, r, Det] = gauss_dp(A, b, %T, tamanho, prec, pausa) catch mprintf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"); mprintf('%s\n',lasterror()); mprintf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"); end endfunction //------------------------------------------ // exemplo 1 de sistema linerar (pág. 51) // Matriz de coeficientes A = [ 1 -3 2; -2 8 -1; 4 -6 5]; // Vetor de termos_independentes b = [ 11; -15; 29]; exemplo_Gauss('1', A, b) //------------------------------------------ // exemplo 2 de sistema linerar (pág 53) // Matriz de coeficientes A = [1, 6, 2, 4; 3, 19, 4, 15; 1, 4, 8, -12; 5, 33, 9, 3]; // Vetor de termos_independentes b = [ 8; 25; 18; 72 ]; exemplo_Gauss('2', A, b)
6cbe2237453d479b852c29641ff98b3ec5322465
f5bb8d58446077a551e4d9a6461a55255db523fe
/interpolação_polinomial/calc3.sce
6b420e6a83ade4bc37ffc56feb3c019b8f0f3b1d
[]
no_license
appositum/numerical-calculus
6be1a9990a1621c705af6ba5694cf8c7b891d06e
7759e74ce9ce5c5826f96be7de84a2f7ecb97c91
refs/heads/master
2021-07-19T18:19:09.336819
2018-11-27T21:52:36
2018-11-27T21:52:36
143,060,426
1
0
null
null
null
null
UTF-8
Scilab
false
false
640
sce
calc3.sce
// calculo de erro de interpolaçao // x | x1 | x2 // f(x) | f(x1) | f(x2) // n = 2 // Estimativa do erro // Er(x) <= |(x-x1)(x-x2)| / 2! * max λ∈[x1, x2] * |f^(n)(λ)| // Sendo f(x) = 1/x^2 determine o pol. interpolador para x1 = 3 e x2 = 4 usando o método de Lagrange // f(x1)*(x-x2) / (x1-x2) + f(x2)*(x-x1)/(x2-x1) function y=f(x) y = x.^(-2) endfunction // derivada de segunda ordem function y=df(x) y = 6.*x.^(-4) endfunction // maximo da derivada t = 3:0.05:4 w = abs(df(t)) M = max(w) R = abs((3.5-3).*(3.5-4))./factorial(2) erro = M.*R printf("Estimativa de erro:") disp(erro)
919ea16172c3ff4127104d533bd5dfaf9d86cb9a
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set5/s_Electrical_And_Electronic_Principles_And_Technology_J._Bird_1529.zip/Electrical_And_Electronic_Principles_And_Technology_J._Bird_1529/CH12/EX12.6/12_06.sce
69f89c5a1c69be44094944b59d907b02c5c78b0a
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200029
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
283
sce
12_06.sce
errcatch(-1,"stop");mode(2);//Chapter 12, Problem 6 ; hFE=125; //common-emitter current gain Ic=50*10^-3; //collector current Ib=Ic/hFE; //calculating base current printf("Base current Ib = %d microampere",Ib*10^6); exit();
1ea526e30c35a6a3ced5f9e6dd5834084650306d
1b969fbb81566edd3ef2887c98b61d98b380afd4
/Rez/bivariate-lcmsr-post_mi/bfi_a6_bfa_mt_d/~BivLCM-SR-bfi_a6_bfa_mt_d-PLin-VLin.tst
fe05fb1dd2c22cc0dcafbfb56746256eda84d4eb
[]
no_license
psdlab/life-in-time-values-and-personality
35fbf5bbe4edd54b429a934caf289fbb0edfefee
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
refs/heads/master
2020-03-24T22:08:27.964205
2019-03-04T17:03:26
2019-03-04T17:03:26
143,070,821
1
0
null
null
null
null
UTF-8
Scilab
false
false
11,974
tst
~BivLCM-SR-bfi_a6_bfa_mt_d-PLin-VLin.tst
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM. ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 1 2 3 4 5 ________ ________ ________ ________ ________ 1 0.354061D+00 2 -0.283621D-02 0.303013D-02 3 -0.105206D+00 0.117462D-02 0.441608D+00 4 0.778745D-03 -0.757411D-03 -0.589612D-02 0.379278D-02 5 -0.363013D-04 0.171110D-03 -0.508299D-03 0.145094D-03 0.273233D-02 6 0.564229D-04 0.941603D-04 0.236403D-03 -0.109579D-03 -0.239512D-03 7 0.146188D-02 0.441788D-04 -0.154084D-02 -0.260273D-04 -0.668685D-03 8 -0.392328D-03 0.142947D-04 -0.738252D-03 0.469629D-04 -0.205284D-03 9 -0.940586D-01 0.195763D-01 -0.137999D+00 0.302407D-01 0.110247D+00 10 -0.114125D+00 0.179401D-01 0.101666D+00 0.134533D-01 0.191820D+00 11 -0.931157D-01 -0.106934D-02 -0.164560D+00 0.243534D-01 -0.783471D-01 12 -0.618056D+00 0.158550D-01 0.696342D+00 0.222496D-01 0.374117D-01 13 0.156295D+00 0.199751D-01 -0.622483D-02 -0.968875D-02 -0.152333D-01 14 -0.242231D+00 0.160532D-01 0.736288D-01 0.230437D-02 0.779403D-02 15 -0.834537D+00 0.812334D-01 -0.472794D+00 -0.116037D-01 -0.129071D+00 16 -0.350750D-01 -0.127444D-01 0.270714D-01 0.823272D-03 0.252565D-03 17 -0.126833D-01 -0.206129D-02 0.402240D-02 0.652342D-03 -0.692002D-03 18 -0.495044D+00 -0.545076D-02 -0.540285D+00 0.117071D-01 0.704507D-01 19 0.272218D-01 -0.675518D-03 0.145964D+00 -0.141234D-01 -0.549101D-02 20 -0.922104D+00 -0.137262D-02 0.174376D+01 0.633145D-02 -0.499680D-01 21 0.266031D-01 0.260297D-02 -0.179563D+00 0.788993D-02 0.205309D-02 22 0.311035D-02 0.594525D-03 -0.119643D-02 -0.567149D-03 0.875085D-04 23 -0.368003D-01 -0.268935D-02 -0.238845D-01 0.124167D-01 0.128197D-02 24 0.419237D-02 -0.278515D-03 0.329033D-02 -0.390520D-03 0.111698D-03 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 6 7 8 9 10 ________ ________ ________ ________ ________ 6 0.828535D-03 7 0.795832D-03 0.343981D-02 8 0.313900D-04 0.363908D-03 0.310993D-02 9 -0.181057D-01 -0.211841D-01 -0.104948D-01 0.812900D+02 10 -0.263181D-01 -0.812779D-01 -0.412930D-01 0.503932D+01 0.320531D+02 11 0.180674D-01 0.366517D-01 0.570959D-01 -0.106130D+02 -0.566648D+01 12 -0.262854D-01 -0.350387D-01 0.800634D-01 -0.233021D+00 0.760773D+01 13 0.648534D-01 0.152357D+00 -0.246992D-01 -0.145660D+01 -0.366492D+01 14 -0.343439D-02 0.138294D-01 0.393745D+00 0.356026D+01 0.278037D+01 15 0.442200D-01 0.582067D-01 0.312386D-01 -0.116845D+02 -0.201198D+02 16 -0.793585D-03 -0.251092D-02 0.111863D-02 0.626389D+00 -0.896896D-01 17 -0.260151D-03 -0.537728D-04 0.412996D-03 -0.209944D+00 -0.307175D-01 18 -0.802998D-01 -0.135815D+00 -0.479765D-01 0.305742D+01 0.128541D+02 19 -0.971543D-02 0.144059D-01 0.116341D-01 0.266935D+01 -0.610279D+00 20 0.285646D-01 -0.580981D-02 -0.341772D+00 -0.732122D+01 0.715340D+01 21 0.112303D-01 -0.125699D-01 -0.135075D-01 -0.285447D+01 0.465021D+00 22 0.117727D-03 -0.125846D-03 0.441237D-03 0.295902D-01 -0.209120D-01 23 -0.310052D-03 -0.183396D-02 -0.591895D-03 0.280668D-01 0.149171D+00 24 -0.450988D-04 0.134408D-03 0.132296D-03 0.311927D-01 -0.399108D-01 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 11 12 13 14 15 ________ ________ ________ ________ ________ 11 0.519913D+02 12 -0.273098D+01 0.168260D+03 13 -0.376398D+01 -0.133348D+01 0.202633D+02 14 0.708103D+01 0.960353D+01 -0.807806D+01 0.113560D+03 15 0.132585D+02 0.205456D+02 0.435211D+01 -0.225660D+01 0.372947D+03 16 0.147055D+00 0.566289D-01 -0.989638D-01 0.124822D+00 0.120520D+01 17 -0.333022D-01 -0.471390D-01 -0.319094D-01 0.121993D+00 -0.181911D+01 18 -0.637874D+01 0.886851D+01 -0.860200D+01 -0.502968D+00 -0.912629D+02 19 -0.990208D-01 0.369122D+01 0.119143D+00 0.746158D+00 -0.875628D+00 20 -0.122653D+02 -0.233716D+02 0.666595D+01 -0.718835D+02 0.476039D+02 21 0.387260D+00 -0.353138D+01 -0.127515D+00 -0.999247D+00 0.980909D-01 22 -0.541493D-01 0.397359D-01 0.419108D-02 0.651386D-01 0.432112D+00 23 -0.174144D-01 0.123770D+01 -0.845989D-01 -0.293903D+00 0.545363D+00 24 0.114729D-02 -0.163904D+00 0.210750D-02 -0.294356D-01 -0.192580D+00 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 16 17 18 19 20 ________ ________ ________ ________ ________ 16 0.527007D+00 17 -0.208536D-01 0.213707D-01 18 -0.374648D+00 0.425702D+00 0.280504D+03 19 -0.521081D-01 0.130941D-01 0.426083D+00 0.733248D+01 20 0.154713D+00 -0.209751D+00 -0.110175D+03 0.992944D+00 0.552885D+03 21 -0.165879D+00 -0.119592D-01 0.434259D+01 -0.683332D+01 -0.243753D+01 22 0.105287D-02 -0.455768D-02 -0.127840D+01 -0.164361D-01 0.396117D+00 23 0.467948D-01 0.625417D-03 -0.532301D+00 -0.154363D+00 0.556389D+01 24 0.140843D-02 0.112897D-02 0.443171D+00 -0.177560D-01 -0.242480D+01 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 21 22 23 24 ________ ________ ________ ________ 21 0.801262D+01 22 -0.432466D-01 0.131895D-01 23 -0.128543D+00 0.605328D-02 0.873066D+00 24 0.358859D-01 -0.383943D-02 -0.795550D-01 0.257971D-01 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 1 2 3 4 5 ________ ________ ________ ________ ________ 1 1.000 2 -0.087 1.000 3 -0.266 0.032 1.000 4 0.021 -0.223 -0.144 1.000 5 -0.001 0.059 -0.015 0.045 1.000 6 0.003 0.059 0.012 -0.062 -0.159 7 0.042 0.014 -0.040 -0.007 -0.218 8 -0.012 0.005 -0.020 0.014 -0.070 9 -0.018 0.039 -0.023 0.054 0.234 10 -0.034 0.058 0.027 0.039 0.648 11 -0.022 -0.003 -0.034 0.055 -0.208 12 -0.080 0.022 0.081 0.028 0.055 13 0.058 0.081 -0.002 -0.035 -0.065 14 -0.038 0.027 0.010 0.004 0.014 15 -0.073 0.076 -0.037 -0.010 -0.128 16 -0.081 -0.319 0.056 0.018 0.007 17 -0.146 -0.256 0.041 0.072 -0.091 18 -0.050 -0.006 -0.049 0.011 0.080 19 0.017 -0.005 0.081 -0.085 -0.039 20 -0.066 -0.001 0.112 0.004 -0.041 21 0.016 0.017 -0.095 0.045 0.014 22 0.046 0.094 -0.016 -0.080 0.015 23 -0.066 -0.052 -0.038 0.216 0.026 24 0.044 -0.032 0.031 -0.039 0.013 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 6 7 8 9 10 ________ ________ ________ ________ ________ 6 1.000 7 0.471 1.000 8 0.020 0.111 1.000 9 -0.070 -0.040 -0.021 1.000 10 -0.161 -0.245 -0.131 0.099 1.000 11 0.087 0.087 0.142 -0.163 -0.139 12 -0.070 -0.046 0.111 -0.002 0.104 13 0.501 0.577 -0.098 -0.036 -0.144 14 -0.011 0.022 0.663 0.037 0.046 15 0.080 0.051 0.029 -0.067 -0.184 16 -0.038 -0.059 0.028 0.096 -0.022 17 -0.062 -0.006 0.051 -0.159 -0.037 18 -0.167 -0.138 -0.051 0.020 0.136 19 -0.125 0.091 0.077 0.109 -0.040 20 0.042 -0.004 -0.261 -0.035 0.054 21 0.138 -0.076 -0.086 -0.112 0.029 22 0.036 -0.019 0.069 0.029 -0.032 23 -0.012 -0.033 -0.011 0.003 0.028 24 -0.010 0.014 0.015 0.022 -0.044 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 11 12 13 14 15 ________ ________ ________ ________ ________ 11 1.000 12 -0.029 1.000 13 -0.116 -0.023 1.000 14 0.092 0.069 -0.168 1.000 15 0.095 0.082 0.050 -0.011 1.000 16 0.028 0.006 -0.030 0.016 0.086 17 -0.032 -0.025 -0.048 0.078 -0.644 18 -0.053 0.041 -0.114 -0.003 -0.282 19 -0.005 0.105 0.010 0.026 -0.017 20 -0.072 -0.077 0.063 -0.287 0.105 21 0.019 -0.096 -0.010 -0.033 0.002 22 -0.065 0.027 0.008 0.053 0.195 23 -0.003 0.102 -0.020 -0.030 0.030 24 0.001 -0.079 0.003 -0.017 -0.062 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 16 17 18 19 20 ________ ________ ________ ________ ________ 16 1.000 17 -0.197 1.000 18 -0.031 0.174 1.000 19 -0.027 0.033 0.009 1.000 20 0.009 -0.061 -0.280 0.016 1.000 21 -0.081 -0.029 0.092 -0.891 -0.037 22 0.013 -0.271 -0.665 -0.053 0.147 23 0.069 0.005 -0.034 -0.061 0.253 24 0.012 0.048 0.165 -0.041 -0.642 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 21 22 23 24 ________ ________ ________ ________ 21 1.000 22 -0.133 1.000 23 -0.049 0.056 1.000 24 0.079 -0.208 -0.530 1.000
55761dba29ac8a087381d122c9ee50c8b899efcb
449d555969bfd7befe906877abab098c6e63a0e8
/1332/CH10/EX10.5/10_5.sce
380c7a71cbb90335029e7e7ce59b6ae6c0be3ecb
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
785
sce
10_5.sce
//Example 10.5 //Newton Raphshon Method //Page no. 320 clc;clear;close; deff('y=f1(x,y)','y=x^3-3*x*y^2+1') deff('y=f2(x,y)','y=3*x^2*y-y^3') deff('y=f11(x,y)','y=3*x^2-6*y^2') deff('y=f12(x,y)','y=-6*x*y') deff('y=f21(x,y)','y=6*x*y') deff('y=f22(x,y)','y=3*x^2-3*y^2') x=[0;1]; printf('\nx(0) = %g\ny(0) = %g\n',x(1),x(2)) for i=1:3 fx=[f1(x(1),x(2));f2(x(1),x(2))] printf('\n fx(%i) = \n',i) disp(fx) J=[f11(x(1),x(2)),f12(x(1),x(2));f21(x(1),x(2)),f22(x(1),x(2)),] disp(J,'J = ') d=det(J); if d==0 then dx1=0;dx2=0; else dx1=(fx(1)*J(2,2)-fx(2)*J(1,2))/d; dx2=(fx(2)*J(1,1)-fx(1)*J(2,1))/d; end x(1)=x(1)+dx1; x(2)=x(2)+dx2; printf('\nx(%i) = %g\ny(%i) = %g\n',i,x(1),i,x(2)) end
2d7505d93be30c993b145ae4ea2523c8de4ba44b
449d555969bfd7befe906877abab098c6e63a0e8
/3257/CH12/EX12.5/Ex12_5.sce
c33c10d690cbe3ee4abf57eb653874be13ac9be4
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
562
sce
Ex12_5.sce
// Heat generation in resistance spot welding clc I = 5500 // current in ampere R = 250 // resistance in micro ohm T = 0.15 // time in sec d = 6 // diameter in mm t = 3 // thickness in mm rho = 7850 // density in kg/m^3 E = 1400 // energy required per gram mass printf("\n Example 12.5") Heat = I^2*R*1e-6*T V = %pi/4*d^2*t m = V*rho*1e-6 E_tot = m*E H_r = Heat - E_tot H_per = H_r/Heat*100 printf("\n Amount of heat generated is %d J.", Heat) printf("\n Amount of heat in weld zone is %d J or %d%%.", H_r, H_per) // Answer in book is 196 J
7d8b5093a8665b29b1992e6286b3d39eb9e58087
8ea401b354e99fe129b2961e8ee6f780dedb12bd
/macros/melt().sci
f46c5f92b11112763e7dbd5ce56a8d29c6302795
[ "BSD-2-Clause" ]
permissive
adityadhinavahi/SciPandas
91340ca30e7b4a0d76102a6622c97733a28923eb
b78b7571652acf527f877d9f1ce18115f327fa18
refs/heads/master
2022-12-20T04:04:35.984747
2020-08-19T16:10:51
2020-08-19T16:10:51
288,765,541
0
1
null
2020-08-19T15:35:04
2020-08-19T15:14:46
Python
UTF-8
Scilab
false
false
831
sci
melt().sci
function melt() //Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. // Syntax //pd.melt(df, id_vars=['A'], value_vars=['B']) // // Parameters //id_vars: tuple, list, or ndarray, optional //value_vars: tuple, list, or ndarray, optional //var_name: scalar //value_name: scalar, default ‘value’ // // For additional information on parameters, See https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.melt.html // Returns : DataFrame // // Examples // If we want to join using the key columns, we need to set key to be the index in both df and other. The joined DataFrame will have key as its index. // df.join(other, lsuffix='_caller', rsuffix='_other') // Authors // Aditya Dhinavahi // Sundeep Akella endfunction
94230c1ba51d56cecd9165a6551b7c2c77296df2
449d555969bfd7befe906877abab098c6e63a0e8
/2705/CH11/EX11.9/Ex11_9.sce
e020aaa3e67d582c7f271868838148209dbf867e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,974
sce
Ex11_9.sce
clear; clc; disp('Example 11.9'); // aim : To determine // (a) the actual and hypothetical mean effective pressures referred to the low-pressure cylinder // (b) the overall diagram factor // (c) the pecentage of the total indicated power developed in each cylinder // given values P = 1400;// steam supply pressure, [kN/m^2] Pb = 20;// back pressure, [kN/m^2] Chp = .6;// cut-off in HP cylinder, [stroke] dh = 300*10^-3;// HP diameter, [m] di = 500*10^-3;// IP diameter, [m] dl = 900*10^-3;// LP diameter, [m] Pm1 = 590;// actual pressure of HP cylinder, [kN/m^2] Pm2 = 214;// actual pressure of IP cylinder, [kN/m^2] Pm3 = 88;// actual pressure of LP cylinder, [kN/m^2] // solution // (a) // for HP cylinder PmH = Pm1*(dh/dl)^2;// PmH referred to LP cylinder, [kN/m^2] // for IP cylinder PmI = Pm2*(di/dl)^2;// PmI referred to LP cylinder, [kN/m^2] PmA = PmH+PmI+Pm3;// actual mean effective pressure referred to LP cylinder, [kN/m^2] R = dl^2/(dh^2*Chp);// expansion ratio Pm = P/R*(1+log(R))-Pb;// hypothetical mean effective pressure referred to LP cylinder, [kN/m^2] mprintf('\n (a) The actual mean effective pressure referred to LP cylinder is = %f kN/m^2\n',PmA); mprintf('\n The hypothetical mean effective pressure referred to LP cylinder is = %f kN/m^2\n',Pm); // (b) ko = PmA/Pm;// overall diagram factor mprintf('\n (b) The overall diagram factor is = %f\n',ko); // (c) HP = PmH/PmA*100;// %age of indicated power developed in HP IP = PmI/PmA*100; // %age of indicated power developed in IP LP = Pm3/PmA*100; // %age of indicated power developed in LP mprintf('\n (c) The pecentage of the total indicated power developed in HP cylinder is = %f percent\n',HP); mprintf('\n The pecentage of the total indicated power developed in IP cylinder is = %f percent\n',IP); mprintf('\n The pecentage of the total indicated power developed in LP cylinder is = %f percent\n',LP); // End
3139879a6c72131c9513a0980aefc80fad2ad0b5
3b9a879e67cbab4a5a4a5081e2e9c38b3e27a8cc
/Área 1/Aula 6/Norma.sce
23781d086e975c5bc3e75b52effd28c155b4a518
[ "MIT" ]
permissive
JPedroSilveira/numerical-calculus-with-scilab
32e04e9b1234a0a82275f86aa2d6416198fa6c81
190bc816dfaa73ec2efe289c34baf21191944a53
refs/heads/master
2023-05-10T22:39:02.550321
2021-05-11T17:17:09
2021-05-11T17:17:09
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
170
sce
Norma.sce
A = [3 -5 7 1 -2 4 -8 1 -7] disp(norm(A,1)) disp(norm(A,2)) disp(norm(A,%inf)) x = [1 2 3] disp(norm(x,1)) disp(norm(x,2)) disp(norm(x,%inf))
3381bfba02c863acb2a4785dea25cdc406ecf85b
8217f7986187902617ad1bf89cb789618a90dd0a
/browsable_source/2.3/Unix-Windows/scilab-2.3/macros/util/g_imag.sci
ce5ef6fa6c6e45afa3fcc2cfe1bc5643f3afdc5b
[ "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-public-domain", "MIT" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
384
sci
g_imag.sci
function x=g_imag(a) // only to be called by function imag //! select type(a) case 2 then x=imag(a) //-compat next case retained for list/tlist compatibility case 15 then if a(1)=='r' then error(43) else error(43) end case 16 then if a(1)=='r' then error(43) else error(43) end case 5 [ij,v,mn]=spget(a) x=sparse(ij,imag(v),mn) else error(43) end
7124b8cac012769f5a9cf8644ded846d26ec367b
449d555969bfd7befe906877abab098c6e63a0e8
/2792/CH5/EX5.8/Ex5_8.sce
a766021f4999db172a12b39e6f616a27473c736f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,802
sce
Ex5_8.sce
clc apsilen = 11.9*8.85*10^-14 disp("apsilen = "+string(apsilen)+"F/cm") //initializing value of relative permitivity GL= 10^22 disp("GL= "+string(GL)+"cm^-3/s") //initializing value of rate of optical signal A= 10^-4 disp("A= "+string(A)+"cm^2") //initializing value of diode area Vr= 15 disp("Vr= "+string(Vr)+"V") //initializing value of reverse bias voltage Na=2*10^16 disp("Na = "+string(Na)+"cm^-3") //initializing value of acceptor atoms Nd=10^16 disp("Nd = "+string(Nd)+"cm^-3") //initializing value of donor atoms Dp = 12 disp("Dp= "+string(Dp)+"cm^2/s")//initializing value of hole diffusion coefficient Dn = 20 disp("Dn= "+string(Dn)+"cm^2/s")//initializing value of electron diffusion coefficient Tn = 10^-8 disp("Tn= "+string(Tn)+"s")//inializing value of electron minority carrier lifetime Tp = 10^-8 disp("Tp= "+string(Tp)+"s")//inializing value of hole minority carrier lifetime e = 1.6*10^-19 disp("e= "+string(e)+"C")//initializing value of charge of electron kbT = 0.026 disp("kbT = "+string(kbT)+"eV") //initializing value of kbT at 300K ni = 1.5*10^10 disp("ni= "+string(ni)+"cm^-3")//initializing value of intrinsic carrier concentration Ln = sqrt(Dn*Tn) disp("The electron diffusion length is ,Ln = sqrt(Dn*Tn)= "+string(Ln)+"cm")//calculation Lp = sqrt(Dp*Tp) disp("The hole diffusion length is ,Lp = sqrt(Dp*Tp)= "+string(Lp)+"cm")//calculation Vbi = kbT*log((Na*Nd)/ni^2) disp("The built in voltage is ,Vbi = kbT*log((Na*Nd)/ni^2)= "+string(Vbi)+"V")//calculation W = sqrt(((2*apsilen)/e)*((Na+Nd)/(Na*Nd))*(Vbi+Vr)) disp("The depletion width is ,W = sqrt(((2*apsilen)/e)*((Na+Nd)/(Na*Nd))*(Vbi+Vr))= "+string(W)+"cm")//calculation IL = e*A*GL*(W+Ln+Lp) disp("The photo current is IL = e*A*GL*(W+Ln+Lp)= "+string(IL)+"A")//calculation
a421e18196325885469b236b1c0ea07c0ccc0361
449d555969bfd7befe906877abab098c6e63a0e8
/1835/CH3/EX3.3/Ex3_3.sce
c971e4356bb4e17bf18003f9ffab858ab51b897d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
765
sce
Ex3_3.sce
//CHAPTER 3 ILLUSRTATION 3 PAGE NO 104 //TITLE:FRICTION //FIRURE 3.18 clc clear //=========================================================================================== //INPUT DATA W=500// WEGHT IN NEWTONS THETA=30// ANGLE OF INCLINATION IN DEGRESS U=0.2// COEFFICIENT FRICTION S=15// DISTANCE IN metres //============================================================================================ Rn=W*cosd(THETA)// NORMAL REACTION IN NEWTONS P=W*sind(THETA)+U*Rn// PUSHING FORCE ALONG THE DIRECTION OF MOTION w=P*S //============================================================================================ //OUTPUT printf('WORK DONE BY THE FORCE=%3.3f N-m',w)
c281fed8a67f83f70054cd68909fefea2abc10a4
67ba0a56bc27380e6e12782a5fb279adfc456bad
/STAMPER_PROG_7.4/OffsetPolyline.sci
014ec7769fc2fa5e0dc9c25c00086e563158bde5
[]
no_license
2-BiAs/STAMPER_PROG
8c1e773700375cfab0933fc4c2b0f5be0ab8e8f0
4fdc0bcdaef7d6d11a0dcd97bd25a9463b9550d0
refs/heads/master
2021-01-18T19:30:06.506977
2016-11-10T23:32:40
2016-11-10T23:32:40
71,999,971
0
0
null
null
null
null
UTF-8
Scilab
false
false
2,760
sci
OffsetPolyline.sci
function plOutput = OffsetPolyline(plInput, mOffestRegimeBoundaries, mOffsetComponents) //plInput = FwdSelfIntSmoothing(plInput, 10, .05); iPointCount = size(plInput, 1); iSegmentCount = iPointCount - 1; iIntersectionCount = iSegmentCount - 1; lnOffsetSegmentBuffer = []; plOffsetPolylineBuffer = []; plOutputBuffer = []; iOutputPolylineCount = 1 vOffsetArray = BuildOffsetMatrix(plInput, mOffestRegimeBoundaries, mOffsetComponents); //Offset each polyline segment according to vOffsetArray for i = 1:iSegmentCount lnA = plInput(i:i+1, :); lnOffsetSegmentBuffer(i*2-1:i*2,1:2) = lnA + [1 1]' * vOffsetArray(i, :); end //Find intersection point of each adjacent segment for i=1:iSegmentCount - 1 [pIntersectionBuffer(i, 1), pIntersectionBuffer(i, 2)] = IntersectionPoint(lnOffsetSegmentBuffer(i*2 - 1:i*2,:), lnOffsetSegmentBuffer(i*2 + 1:i*2 + 2, :)); end plOffsetPolylineBuffer(1, :) = lnOffsetSegmentBuffer(1,:); plOffsetPolylineBuffer(iPointCount, :) = lnOffsetSegmentBuffer($, :); for i=1:iIntersectionCount plOffsetPolylineBuffer(i + 1, :) = pIntersectionBuffer(i, :); end // if AngleReversal(plInput, plOffsetPolylineBuffer) then // plOutput = [,]; // disp("Angle Reversal Detected."); //// pause // else // plOutput = plOffsetPolylineBuffer; // end // plOffsetPolylineBuffer = RemoveKnots(plInput, plOffsetPolylineBuffer); // plOutput = plOffsetPolylineBuffer; ////////////// plOffsetPolylineBuffer = FwdSelfIntSmoothing(plOffsetPolylineBuffer, 8, .030); ////////////// plOffsetPolylineBuffer = FwdSelfIntSmoothing(plOffsetPolylineBuffer, 8, .030); ////////////// plOffsetPolylineBuffer = FwdSelfIntSmoothing(plOffsetPolylineBuffer, 18, .075); ////////////// // plOffsetPolylineBuffer = plOffsetPolylineBuffer($:-1:1,1:2); // plOffsetPolylineBuffer = FwdSelfIntSmoothing(plOffsetPolylineBuffer, 6, .05); //// plOffsetPolylineBuffer = plOffsetPolylineBuffer($:-1:1,1:2); // plOffsetPolylineBuffer = FwdSelfIntSmoothing(plOffsetPolylineBuffer, 8, .05); // plOffsetPolylineBuffer = RemoveInvertedCircles(plOffsetPolylineBuffer, 24); // plOffsetPolylineBuffer = RemoveInvertedCircles(plOffsetPolylineBuffer, 23); // plOffsetPolylineBuffer = RemoveInvertedCircles(plOffsetPolylineBuffer, 22); // plOffsetPolylineBuffer = RemoveInvertedCircles(plOffsetPolylineBuffer, 21); // plOffsetPolylineBuffer = RemoveInvertedCircles(plOffsetPolylineBuffer, 20); //plOffsetPolylineBuffer = RemoveSharpCorners(plOffsetPolylineBuffer, 30 * (%pi/180)); plOutput = plOffsetPolylineBuffer; endfunction
6be9e2ec06234c27951cad6145aa9a35d81f847a
449d555969bfd7befe906877abab098c6e63a0e8
/3841/CH5/EX5.6/Ex5_6.sce
1bd22b8b40171113d5452e44ed2ebac88a9596df
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
140
sce
Ex5_6.sce
clear //given // //find the final pressure gage a=240. b=15. IP=14.7 FP=IP*(a/b) Fpg=FP-IP printf("\n \n final pressure gage is %.2f ",Fpg)
cb34b1405f3920d88fccd5e2f455fbdb11968ee3
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set4/s_Chemical_Reaction_Engineering_O._Levenspiel_249.zip/Chemical_Reaction_Engineering_O._Levenspiel_249/CH13/EX13.4/13_04.sce
dc5fc048074abf29727592cc0cbdcf22642a2ad3
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200029
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
98
sce
13_04.sce
errcatch(-1,"stop");mode(2); disp("All the values have to be read from the given graph") exit();
2695bacb6d0c580b91c1a632358d145ec05b4b71
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set7/s_Electronics_Circuits_And_Systems_Y._N._Bapat_2561.zip/Electronics_Circuits_And_Systems_Y._N._Bapat_2561/CH10/EX10.3/Ex10_3.sce
6f14dfec0bd158f7602dbc596cbabed805391054
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200029
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
231
sce
Ex10_3.sce
errcatch(-1,"stop");mode(2);//Ex10_3 b='1001000'; disp("Binary number="+string(b))//Binary value d=bin2dec(b)// Binary to decimal value o=dec2oct(d)// Decimal to octal disp("Eqivalent Octal number="+string(o)) exit();
8fa45bd4ad19c7fb54828bdc3f37e591dafa66d2
fa73b9454b1d003e901d57ef2121b7544bcdfef2
/scenes/creat-aa.sce
1c4fd8139ea98e414e000a204e6452b3f94b9312
[]
no_license
bernielampe1/ray_tracer
ea91cf08188194f6a0d1e8c9e95baa4aea12f021
7fa963ccd07695be3a78acd4837af6cd439698b9
refs/heads/master
2021-01-02T01:16:52.595743
2020-03-02T12:36:03
2020-03-02T12:36:03
239,428,546
0
0
null
null
null
null
UTF-8
Scilab
false
false
627
sce
creat-aa.sce
sce1.0 # camera eyepos 1 -1.5 0.5 eyedir 0 1 -0.10 eyeup 0.0 0.0 1.0 wdist 1.0 fovy_deg 50 nx 400 ny 300 #options max_recursion 4 aasample 4 # scene background 0 0 0.6 ca 0.1 0.1 0.1 rotate -15 0 0 1 { #ground cr 0.4 0.5 0.4 cp 0.4 0.4 0.4 triangle -3 -10 0 3 -10 0 3 10 0 triangle -3 -10 0 3 10 0 -3 10 0 } { cr 0.6 0.6 0.6 cp 0.4 0.4 0.4 translate 1 2.9 -0.3 #rotate 25 0 1 0 scale 0.5 0.5 2 ball 1 0 0 0 } { translate 0.4 0.3 -0.56 rotate 90 1 0 0 scale 0.7 0.7 0.7 cr 0.5 0.4 0.9 cp 0.0 0.0 0.0 object_phong feline100.obj } { translate -1 -1 5 pointlight 3 0 4 0.8 0.8 0.6 } end
8bce22c28ae3846099752f79c840498e7a228228
449d555969bfd7befe906877abab098c6e63a0e8
/24/CH12/EX12.1/Example12_1.sce
c19981d70fbe355a3a6dc1cab3efe756061aa6af
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
254
sce
Example12_1.sce
//Given that M = 1.4 //in kg R = 8.5*10^-2 //in meter v = 15*10^-2 //in meter //Sample Problem 12-1 printf("**Sample Problem 12-1**\n") I = 0.5*M*R^2 w = v/R K = 0.5*M*v^2 + 0.5*I*w^2 printf("The total kinetic energy of the disk is %fJ", K)
70df97db742e39a598d3006f8b240eaeb61dc1bc
367fb86cc145c187bc8aa89afab0f15f7e8826e4
/functions/cv_dilate.sci
dfa93a0839f6b8bfb30eb93b2e8bb34503fa1c9e
[]
no_license
rishubhjain/funcforscilab
19180cefb15a88df5cd55d91c2e50ab1829e4860
3f9fb8b1f467e1e89da1297bee8bd14645da5605
refs/heads/master
2021-01-23T00:15:23.622940
2015-04-22T09:32:28
2015-04-22T09:32:28
31,612,595
0
0
null
null
null
null
UTF-8
Scilab
false
false
145
sci
cv_dilate.sci
function[img_ret]=cv_dilate(image,iterations) pyImport morphological_file img_ret=morphological_file.dilate(image,iterations) endfunction
c8a304f934e13e77480ef37362fd7049e3aff58f
ac66d3377862c825111275d71485e42fdec9c1bd
/Resources/res/map/map1307.sce
cb05b8a3f1e14606309a065766c8cf049742523d
[]
no_license
AIRIA/CreazyBomber
2338d2ad46218180f822682d680ece3a8e0b46c3
68668fb95a9865ef1306e5b0d24fd959531eb7ad
refs/heads/master
2021-01-10T19:58:49.272075
2014-07-15T09:55:00
2014-07-15T09:55:00
19,776,025
0
2
null
null
null
null
UTF-8
Scilab
false
false
3,187
sce
map1307.sce
<?xml version="1.0" encoding="UTF-8"?> <Project Name="map1307" Width="13" Height="13" CellSize="40" BackgroundSize="1" Background="11plus.png"> <Cell Name="雪灌木" X="1" Y="1" /> <Cell Name="木箱" X="2" Y="1" /> <Cell Name="雪灌木" X="5" Y="1" /> <Cell Name="冰块" X="7" Y="1" /> <Cell Name="企鹅(怪)" X="8" Y="1" arg0="15" /> <Cell Name="冰块" X="2" Y="2" /> <Cell Name="出生点" X="3" Y="2" /> <Cell Name="冰块" X="4" Y="2" /> <Cell Name="雪灌木" X="5" Y="2" /> <Cell Name="木箱" X="6" Y="2" /> <Cell Name="冰墙" X="7" Y="2" /> <Cell Name="木箱" X="8" Y="2" /> <Cell Name="雪灌木" X="9" Y="2" /> <Cell Name="雪灌木" X="10" Y="2" /> <Cell Name="冰墙" X="1" Y="3" /> <Cell Name="冰块" X="3" Y="3" /> <Cell Name="雪树" X="5" Y="3" /> <Cell Name="冰块" X="6" Y="3" /> <Cell Name="木箱" X="7" Y="3" /> <Cell Name="冰川帐篷" X="8" Y="3" arg0="1" arg1="1,1,0,0,0" arg2="14" /> <Cell Name="冰块" X="10" Y="3" /> <Cell Name="雪灌木" X="11" Y="3" /> <Cell Name="雪树" X="2" Y="4" /> <Cell Name="雪灌木" X="3" Y="4" /> <Cell Name="海豹(怪)" X="5" Y="4" arg0="16" /> <Cell Name="雪树" X="7" Y="4" /> <Cell Name="雪树" X="8" Y="4" /> <Cell Name="企鹅(怪)" X="9" Y="4" arg0="15" /> <Cell Name="鱼人(怪)" X="2" Y="5" arg0="17" /> <Cell Name="冰块" X="3" Y="5" /> <Cell Name="冰块" X="4" Y="5" /> <Cell Name="冰块" X="6" Y="5" /> <Cell Name="雪树" X="8" Y="5" /> <Cell Name="雪树" X="9" Y="5" /> <Cell Name="冰墙" X="10" Y="5" /> <Cell Name="木箱" X="11" Y="5" /> <Cell Name="雪树" X="1" Y="6" /> <Cell Name="雪树" X="2" Y="6" /> <Cell Name="冰川帐篷" X="4" Y="6" arg0="1" arg1="1,1,0,0,0" arg2="14" /> <Cell Name="雪灌木" X="5" Y="6" /> <Cell Name="冰墙" X="6" Y="6" /> <Cell Name="雪树" X="10" Y="6" /> <Cell Name="雪树" X="11" Y="6" /> <Cell Name="冰川帐篷" X="1" Y="7" arg0="1" arg1="1,1,0,0,0" arg2="14" /> <Cell Name="木箱" X="2" Y="7" /> <Cell Name="海豹(怪)" X="3" Y="7" arg0="16" /> <Cell Name="雪树" X="8" Y="7" /> <Cell Name="冰块" X="10" Y="7" /> <Cell Name="雪树" X="2" Y="8" /> <Cell Name="鱼人(怪)" X="5" Y="8" arg0="17" /> <Cell Name="雪灌木" X="6" Y="8" /> <Cell Name="雪树" X="7" Y="8" /> <Cell Name="鱼人(怪)" X="9" Y="8" arg0="17" /> <Cell Name="冰墙" X="10" Y="8" /> <Cell Name="鱼人(怪)" X="11" Y="8" arg0="17" /> <Cell Name="冰川帐篷" X="4" Y="9" arg0="1" arg1="1,1,0,0,0" arg2="14" /> <Cell Name="雪树" X="6" Y="9" /> <Cell Name="冰川帐篷" X="8" Y="9" arg0="1" arg1="1,1,0,0,0" arg2="14" /> <Cell Name="冰块" X="10" Y="9" /> <Cell Name="雪灌木" X="4" Y="10" /> <Cell Name="雪树" X="5" Y="10" /> <Cell Name="通关点-1" X="6" Y="10" /> <Cell Name="木箱" X="9" Y="10" /> <Cell Name="雪块" X="10" Y="10" /> <Cell Name="木屋1(大型建筑)" X="2" Y="11" arg0="3" arg1="2" arg2="0,2" /> <Cell Name="冰块" X="5" Y="11" /> <Cell Name="木箱" X="6" Y="11" /> <Cell Name="雪灌木" X="8" Y="11" /> <Cell Name="冰块" X="9" Y="11" /> <Cell Name="木箱" X="10" Y="11" /> </Project>
15c73002c569d11363496553593d974dc41defe1
7c3f5d0908e4b8296e6f510e1b52197d07f7aa50
/seno_taylor.sce
5427cdeeedcbdff99a3844cab34532ee3a4fc00e
[]
no_license
mtxslv/Projetos-Calculo-Numerico
883da40114255c871b47fb1882e3890a63d71d9d
96949e60d384d973f048712a5222796dc989a088
refs/heads/master
2020-03-26T08:43:46.551491
2018-09-01T23:19:56
2018-09-01T23:19:56
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
152
sce
seno_taylor.sce
function seno = seno_taylor(angulo, n) seno = 0; for i:1:n seno = seno + ((angulo)^(2*n + 1) / factorial(2*n +1)); end endfunction
e50c64fa2bdfc914d1bdad5385da9bce92e8c4bd
449d555969bfd7befe906877abab098c6e63a0e8
/1835/CH8/EX8.4/Ex8_4.sce
69e41ed5db8525c1167dbe5ab29267474cbb4271
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
653
sce
Ex8_4.sce
//CHAPTER 8 ILLUSRTATION 4 PAGE NO 225 //TITLE:BALANCING OF ROTATING MASSES pi=3.141 clc clear mB=30// mass of B in kg mC=50// mass of C in kg mD=40// mass of D in kg rA=18// radius of A in cm rB=24// radius of B in cm rC=12// radius of C in cm rD=15// radius of D in cm //============================= mA=3.6/.18// mass of A by measurement in kg theta=124// angle with mass B in degrees by measurement in degrees y=3.6/(.18*20)// position of A from B printf('mass of A=%i kg\n angle with mass B=%i degrees\n position of A from B=%i m towards right of plane B',mA,theta,y)
700f41f9bab513318983a490d2907390995eeeed
449d555969bfd7befe906877abab098c6e63a0e8
/2087/CH11/EX11.3/example11_3.sce
6744d33022b0cb83abe18e8d376d36f14c47ac8c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
858
sce
example11_3.sce
//example 11.3 //calculate //capacity of siphon //head required in oggy spillway //length of oggy weir required clc;funcprot(0); //given t=6; //tail water elevation h=1; //heigth of siphon spillway w=4; //width of siphon spillway hw=1.5; //head water elevation C=0.6; //coefficient of discharge Co=2.25; //coefficient of discharge of oggy spillway lo=4; //length of oggy spillway hc=1.5; //head on weir crest g=9.81; //acceleration due to gravity //part (a) Q=C*h*w*(2*g*(t+hw))^0.5; Q=round(Q*10)/10; mprintf("capacity of siphon=%f cumecs.",Q); //part (b) h1=(Q/(Co*lo))^(2/3); h1=round(h1*100)/100; mprintf("\nhead required in oggy spillway=%f m",h1); //part (c) L=Q/(Co*(hc)^1.5); L=round(L*100)/100; mprintf("\nlength of oggy weir required=%f m.",L);
731a286eef81cc7310927f000eb741d8a7da5bf1
449d555969bfd7befe906877abab098c6e63a0e8
/542/CH14/EX14.3/Example_14_3.sci
fab68f40e9ebda588685de7b3827cd454b8409cc
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
800
sci
Example_14_3.sci
clear; clc; printf('\n Example 14.3"); He = 2690; //He is the enthalpy of entrained steam in kJ/kg H4 = ((1*2780)+(1.6*2690))/2.60; //Again assuming isentropic compression from 101.3 to 135 kN/m2, then: H3 = 2640; //in kJ/kg (from the chart) n = (1.0+1.6)*(2725-2640)/[1.0*(2780-2375)]; printf("\n η = %.2f ",n); printf("\n This value is low, since in good design overall efficiencies approach 0.75–0.80. Obviously the higher the efficiency the greater the entrainment ratio or the higher the saving in live steam"); Pe = 101.3; //pressure of entrained vapour in kN/m^2 discharge_P = 135;//discharge pressure in kN/m^2 printf("\n the required flow of live steam = 0.5 kg/kg entrained vapour."); printf("\n In this case the ratio is (1.0/1.6) = 0.63 kg/kg");
05fd1cc3a7f91e88d5fb9eb826afd4b797d03ae3
449d555969bfd7befe906877abab098c6e63a0e8
/728/CH9/EX9.12/Ex9_12.txt
4c97fc7e5ee6c866d8dc38717c8cb0c82bb41d76
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
487
txt
Ex9_12.txt
//Caption:Calculate (i)-maximum power gain in dBs ,(ii)-noise figure F in dBs, (iii)-bandwidth for r=0.2 //Exa:9.12 clc; clear; close; ratio=8; r=0.2; r_Q=8; T_d=300;//in Kelvin T_o=300;//in Kelvin X=8; G=(ratio)*X/(1+sqrt(1+X))^2; G_in_dB=(10*log(G))/log(10);//gain disp(G_in_dB,'Maximum Gain (in dB)='); F=[10*log(1+(2*T_d/T_o)*[(1/(r_Q))+(1/(r_Q)^2)])]/log(10);//noise figure disp(F,'Noise figure (in dB) ='); B_W=2*r*sqrt(ratio);//bandwidth disp(B_W,'bandwidth =');
6e390f04a28c193424c036e90bf3663ec97d2f70
27fecbbeb6c49dcf03b9bddf1b867c31e13a3825
/Simulações/Relatório 04/t3.sci
250d890358f3609327bb4d3024c4ea3e6dfe5fcd
[]
no_license
LucasHattoriCosta/Poli
42c9fc2d34c31e01336265fbdac3e4921d56e096
b1ac609c3675539b4e921909c35ea196ffc44df3
refs/heads/master
2023-03-15T12:22:03.745943
2020-06-29T17:32:48
2020-06-29T17:32:48
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
533
sci
t3.sci
clc clear // Características do sistema: pi = %pi R = 3 c = 0.1 ro = 0.1 // kg/m g = 9.80 // m/s² l = 0.5 // m L = 2*l // m m = L*ro alpha = l/R //Vetor de Estados Iniciais theta_0 = pi/6 omega_0 = 9 E = [theta_0,omega_0] //Vetor Tempo t0 = 0 dt = 0.005 tf = 100 t = t0:dt:tf //Integração function z_dot = deriva(t,z) dk_dt = z(2) d2k_dt2 = -(g/R)*(sin(alpha)/alpha)*sin(z(1)) - L*c*z(2) z_dot = [dk_dt;d2k_dt2] endfunction //ODE X = ode([theta_0;omega_0], 0, t, deriva) ////Plots clf() scf(0) plot(t, X(2,:))
51e8a9e13e79fc53ab1ce9f5f901199eb9880942
449d555969bfd7befe906877abab098c6e63a0e8
/3773/CH24/EX24.3/Ex24_3.sce
11df63691555b41bc4c691d69c0317c2f8db0aec
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
894
sce
Ex24_3.sce
//Chapter 24: Space Wave Propagation //Example 24-9.3 clc; //Variable Initialization tx_h = 100 //Transmitting antenna height (m) rx_h = 16 //Receiving antenna height (m) tx_p = 40e3 //Transmitting antenna power radiation (W) f = 100e6 //Frequency (Hz) d = 10e3 //Distance (m) c = 3e8 //Speed of light (m/s) E = 1e-3 //Signal strength (V/m) //Calculations los = 4.12*(sqrt(tx_h) + sqrt(rx_h)) //LOS distance (km) wave_lt = c/f //Wavelength (m) Es = (88*sqrt(tx_p)/(wave_lt*(d**2)))*tx_h*rx_h //Field strength at distance d (V/m) dsig = sqrt(88*sqrt(tx_p)*tx_h*rx_h/(wave_lt*E)) //Distance at which field strength reduces to 1mV/m //Result mprintf( "The LOS distance is %.2f km", los) mprintf( "\nThe field strength at 10km is %.5f V/m", Es) mprintf( "\nThe distance at which field strength is 1mV/m is %.d m",dsig)
f05f619c93657b1f177f4bb62a3997ad74113ec2
85744a910858b3185731e57d7d39dac2b5b17982
/Frequency Modulation.sce
233ad6e56f374e90819dd86418ee7bd1b77105f0
[]
no_license
shashwat2811/Analog-Digital-Communication
b53aac1ae75d53df90e0b938ef8fdc38caaf3084
edd1ba5b0abad34aa74bed3441fddb26497f91db
refs/heads/main
2023-06-05T04:33:21.979126
2021-06-12T13:41:56
2021-06-12T13:41:56
376,288,206
0
0
null
null
null
null
UTF-8
Scilab
false
false
747
sce
Frequency Modulation.sce
t= 0:1/10000:0.02; // declare time interval Ec = 5; // amplitude of carrier signal Em = 4.5; // amplitude of modulating signal fc = 1000; // carrier frequency fm = 300; // modulating frequency //Carrier signal Vc = Ec *cos (((2*%pi)*fc)*t); //Modulating signal Vm = Em * cos (((2*%pi)*fm)*t); m1 = 1; // modulation index Vfm = Ec*cos(((( 2*%pi)*fc)*t)+m1*sin(((2*%pi)*fm)*t)); //Frequency modulation signal // plot signal subplot (311); plot (t, Vm); title("Modulating signal"); xlabel('Time - s'); ylabel('Amplitude'); subplot (312); plot (t,Vc); title("Carrier signal"); xlabel('Time - s'); ylabel('Amplitude'); subplot (313); plot (t,Vfm); title("Modulated-wave"); xlabel('Time - s'); ylabel('Amplitude');
71835c045ee8c0bb0d7af6ee13591a5f56d354c8
08ee8059476493a308f8e13adcbace48d7bcfc92
/Scilab_packetTracer_codes/fft.sce
87c39148018fa7e76e7d23cb5e89eca397dc861a
[]
no_license
Rushi-Bhatt/Self-Study
7ed44b7821154b7906c7d532255ea648ec9d6299
90cc75440328ba21769ffac878f46feadeb2f06f
refs/heads/master
2021-01-11T15:29:31.739065
2017-02-08T22:17:57
2017-02-08T22:17:57
80,360,471
0
0
null
null
null
null
UTF-8
Scilab
false
false
67
sce
fft.sce
n=1:100 x=5*sin(2*%pi*n/10) figure plot(x) a=fft(x) figure plot(a)
7b413669c112d9445160d853aeee7bdb91223757
449d555969bfd7befe906877abab098c6e63a0e8
/3886/CH5/EX5.5/5_5.sce
5251a047725f92cfaffe38b08ea42e4462377f99
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
335
sce
5_5.sce
//Smallest weight W //Refer fig. 5.9 mu=0.4 //consider equilibrium of block B //using law of friction N1=5/((0.5)+(tand(20))*(sind(20))) //kN F1=N1*tand(20) C=N1*cosd(30)-F1*cosd(60) //kN //Consider the equilibrium of block A F2=C //kN //Law of friction N2=4.196/0.4 //kN W=N2 //kN printf("\nW=%0.2f kN",W)
efdea91755a59fed084974960db33c2931e3566f
4bcfc36b3fe4f98e84b3bf8fd08adde00b7da338
/Results/exploration/graph1dIndivs_1147.364.sci
064add61785d920906effc77a06c657c964db22d
[]
no_license
CSSS2013UrbanMobility/UrbanMobilityNew
52bea127d39046a7ef6796936b07664784a8fa4c
48fb4b517718a961ca99e2fab678b80f17c22bf2
refs/heads/master
2021-01-01T18:42:37.730732
2014-02-09T16:40:18
2014-02-09T16:40:35
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
111
sci
graph1dIndivs_1147.364.sci
var=[]; max-cong=[]; max-trans=[]; var(1)=0.1; max-cong(1)=302.5990099009901; max-trans(1)=0.9518900343642611;
e6beb8f460a1a9c99c62f655d10eef21d6bff235
8217f7986187902617ad1bf89cb789618a90dd0a
/browsable_source/2.5/Unix-Windows/scilab-2.5/tests/examples/double.man.tst
16346ea36c839418e3307ee7657067d7f6e5d8d7
[ "LicenseRef-scancode-public-domain", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
45
tst
double.man.tst
clear;lines(0); x=int8([0 12 140]) double(x)
26cb341b990b28a1d41850a77f138b3f9e4245e8
449d555969bfd7befe906877abab098c6e63a0e8
/3411/CH5/EX5.9.u1/Ex5_9_u1.sce
b200c2b79888e561521ade7041f9c7b44a87ffe2
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
446
sce
Ex5_9_u1.sce
//Example 5_9_u1 clc(); clear; //To determine the interplanar spacing h=6.63*10^-34 //units in m^2 kg s^-1 m=9.1*10^-31 //units in Kgs e=1.6*10^-19 //units in coulombs v=844 //units in Volts lamda=h/sqrt(2*m*e*v) //units in meters n=1 theta=58 //units in degrees d=(n*lamda)/(2*sin(theta*(%pi/180))) //units in meters printf("The interplanar spacing d=") disp(d) printf("meters")
d8474456e54d4e1423414bab4782e5760880ccf8
449d555969bfd7befe906877abab098c6e63a0e8
/2705/CH15/EX15.3/Ex15_3.sce
8cab979faa7bab3fbd59f5b6028445d857877741
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
2,018
sce
Ex15_3.sce
clear; clc; disp('Example 15.3'); // aim : To determine // (a) the pressure, volume and temperature at each corner of the cycle // (b) the thermal efficiency of the cycle // (c) the work done per cycle // (d) the work ratio // given values m = 1;// mass of air, [kg] P1 = 1730;// initial pressure of carnot engine, [kN/m^2] T1 = 273+300;// initial temperature, [K] R = .29;// [kJ/kg K] Gama = 1.4;// heat capacity ratio // solution // taking reference Fig. 15.15 // (a) // for the isothermal process 1-2 // using ideal gas law V1 = m*R*T1/P1;// initial volume, [m^3] T2 = T1; V2 = 3*V1;// given condition // for isothermal process, P1*V1=P2*V2, so P2 = P1*(V1/V2);// [MN/m^2] // for the adiabatic process 2-3 V3 = 6*V1;// given condition T3 = T2*(V2/V3)^(Gama-1); // also for adiabatic process, P2*V2^Gama=P3*V3^Gama, so P3 = P2*(V2/V3)^Gama; // for the isothermal process 3-4 T4 = T3; // for both adiabatic processes, the temperataure ratio is same, // T1/T4 = T2/T3=(V4/V1)^(Gama-1)=(V3/V2)^(Gama-1), so V4 = 2*V1; // for isothermal process, 3-4, P3*V3=P4*V4, so P4 = P3*(V3/V4); disp('(a) At line 1'); mprintf('\n V1 = %f m^3, t1 = %f C, P1 = %f kN/m^2\n',V1,T1-273,P1); disp('At line 2'); mprintf('\n V2 = %f m^3, t2 = %f C, P2 = %f kN/m^2\n',V2,T2-273,P2); disp('At line 3'); mprintf('\n V3 = %f m^3, t3 = %f C, P3 = %f kN/m^2\n',V3,T3-273,P3); disp('At line 4'); mprintf('\n V4 = %f m^3, t4 = %f C, P4 = %f kN/m^2\n',V4,T4-273,P4); // (b) n_the = (T1-T3)/T1;// thermal efficiency mprintf('\n (b) The thermal efficiency of the cycle is = %f percent\n',n_the*100); // (c) W = m*R*T1*log(V2/V1)*n_the;// work done, [J] mprintf('\n (c) The work done per cycle is = %f kJ\n',W); // (d) wr = (T1-T3)*log(V2/V1)/(T1*log(V2/V1)+(T1-T3)/(Gama-1));// work ratio mprintf('\n (d) The work ratio is = %f\n',wr); // there is calculation mistake in the book so answer is not matching // End
3d2f6599115a039e8ab6e3c7a1c868c7fca5864e
a30abbc00448cb5a15a3ef1c07b1ac14e3142ce8
/src/library_apps/mpreduce/src/packages/assert/assert.tst
135bce389e3e23ebeed9feecd5b94fef1c5e79ea
[]
no_license
geovas01/mathpiper
692178b2d9647a8a99fe43db44a85d38cc9f7075
a1fdacb1dc7155183974fa2ea5d92fba597f23fc
refs/heads/master
2016-09-05T15:28:49.409648
2015-07-17T10:06:45
2015-07-17T10:06:45
39,245,684
3
1
null
null
null
null
UTF-8
Scilab
false
false
417
tst
assert.tst
symbolic; typedef any; typedef number checked by numberp; typedef sf checked by sfpx; typedef sq checked by sqp; procedure hugo(x1,x2); x2; assert hugo: (number,any) -> number; assert_install hugo; hugo(0,0); hugo('x,0); hugo(0,'x); assert addf: (sf,sf) -> sf; assert addsq: (sq,sq) -> sq; assert_install addf,addsq; addsq(simp 'x,numr simp 'x); algebraic; assert_analyze(); assert_uninstall_all; end;
46f3cd5250036488a44df6764dce5dffbd429edf
57e3f1898d0364ee8f61b3eebfb77304d7b59bee
/Hooke_Jeeves(Newton).sce
f18ff789a3ba089f102a48a4112a904a0a8279a8
[]
no_license
Arma-X/Metodos-de-Otimizacao
74d3cfebc74224ebda1c738273a29232c2317e74
599b0d1d50238bc27a612983ce63fb8d02e85219
refs/heads/main
2023-08-04T07:27:42.937906
2021-09-16T16:42:58
2021-09-16T16:42:58
407,217,368
1
0
null
null
null
null
UTF-8
Scilab
false
false
1,275
sce
Hooke_Jeeves(Newton).sce
// @ metodo de Hooke-Jeeves com newton @ global d; d = [1, 0; 0, 1]; global p; p = [-10, 10]; global lamb; lamb = [2,2] N = 2 function z =f(p) z = (p(1)+2)^2+(p(2)-10)^2; endfunction function y = flamb(lamb,j) global d ; y = f([p(1) + lamb*d(j,1) , p(2) + lamb*d(j,2)]); endfunction function y1 = PrimeiraDeriv(j) global lamb ; h = 1e-6 ; y1 = (flamb(lamb(j)+h,j) - flamb(lamb(j),j))/h ; endfunction function y2 = SegundaDeriv(j) global lamb ; h = 1e-3 ; y2 = (flamb(lamb(j)+h,j)-2*flamb(lamb(j),j)+flamb(lamb(j)-h,j))/h^2 ; endfunction function Newton(j) global lamb ; for(k = 1:10) lamb(j) = lamb(j) - (PrimeiraDeriv(j)/SegundaDeriv(j)) end endfunction function HookJeeves(d,p,lamb) global d; global p ; global lamb ; for(k=1:10) for(j = 1:N) Newton(j); for (w=1:N) p(w) = p(w) + lamb(j)*d(j,w); end end end mprintf("\n O ultimo ponto (x,y) é :"); mprintf("(%.7f,",p(1)); mprintf("%.7f)",p(2)); mprintf("\n valor de f no ponto é : %.6f",f(p)) endfunction //----------------------------- main ------------------------ HookJeeves(d,p,lamb);
253824f929a6ebd74b4da78d68a14b34781eccd2
449d555969bfd7befe906877abab098c6e63a0e8
/1544/CH3/EX3.19/Ch03Ex19.sce
3f97143bd34c714a376b599d5b6e8467775bc347
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
917
sce
Ch03Ex19.sce
// Scilab code Ex3.19: Pg 101-102 (2008) clc; clear; C = 270e-12; // Capacitance, F A = 60e-04; // Cross-sectional area of plate, m^2 E = 350e03; // Dielectric strength, V/m epsilon_r = 2.1; // Relative pemittivity epsilon_o = 8.854e-12; // Permittivity of free space // Part (a) // Since formula for capacitance, C = ((epsilon_o)*(eplison_r)*A)/d, solving for d d = ((epsilon_o)*(epsilon_r)*A)/C; // Thickness of dielectric, m // Part (b) // Since E = V/d, solving for V V = E*d; // Maximum possible working voltage, V printf("\nThe thickness of Teflon sheet required = %5.4f mm", d/1e-03); printf("\nThe maximum possible working voltage for the capacitor = %5.1f V", V); // Result // The thickness of Teflon sheet required = 0.413 mm // The maximum possible working voltage for the capacitor = 144.6 V
83493e8bfbc5492a17ed960b67a5a13527c1d55c
449d555969bfd7befe906877abab098c6e63a0e8
/1397/CH1/EX1.6/1_6.sce
1703f30cd22a44a7456f5d2f809350a5021b5288
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
345
sce
1_6.sce
//clc(); clear; // To determine the wavelength of source of light beeta=0.30; // fringe spacing in centimtres d=0.04; // distance between two slits in centimtres D=180; // distance between the slit and screen in centimetres lambda=(beeta*d*10^8)/D; printf("the wavelength of source of light is %f Armstrong",lambda);
6a66655058d07853d3c701b5d10344beea35494c
449d555969bfd7befe906877abab098c6e63a0e8
/564/CH26/EX26.3/26_3.sce
7d8f7d3736bf02e7793ab3907b414b2d94adc23f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
534
sce
26_3.sce
pathname=get_absolute_file_path('26_3.sce') filename=pathname+filesep()+'26_3data.sci' exec(filename) clear Tr=T*L1/2; mu=(8*G*t/(A*E*(b+a)))^0.5; L=L1/2; k1=((T*(b-a)*10^3)/(8*a*b*G*t)); k2=1/(mu*cosh(mu*L)); k3=((4*(b-a))/(a*b*(b+a))); k4=(2*T*(10^3)/(a*b*G*t*(b+a))); function[th]=f(z) w=(k1*((k2*sinh(mu*z))-z)); F=((k1*k3 +k4)*L*L*0.5 -(k1*k2*k3/mu)*cosh(mu*L)); th=(k1*k2*k3/mu)*cosh(mu*z) -(k1*k3 +k4)*z*z*0.5 + F; endfunction funcprot(); printf("\nangle of twist at mid-span θ: %f rad",f(0));
93531b7d6a2dd8ed85c0f5ac32cf7eca9723ca03
6e257f133dd8984b578f3c9fd3f269eabc0750be
/ScilabFromTheoryToPractice/CreatingPlots/testparamfplot2d.sce
b22f22d00fab6d514d8f1d51d72d0499efd9bb03
[]
no_license
markusmorawitz77/Scilab
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
7c98963a7d80915f66a3231a2235010e879049aa
refs/heads/master
2021-01-19T23:53:52.068010
2017-04-22T12:39:21
2017-04-22T12:39:21
89,051,705
0
0
null
null
null
null
UTF-8
Scilab
false
false
112
sce
testparamfplot2d.sce
function y=f(x,t) y=exp(-(x-t).^2/2) endfunction x=[-10:0.05:10].'; t=[-5:0.2:5]; clf; paramfplot2d(f,x,t);