url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
|---|---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
simp at c1
|
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : ¬i' < j
a3_right :
(if x : i' - j < (List.map free_ zs).length then (List.map free_ zs)[i' - j]
else bound_ (i' - j - (List.map free_ zs).length + j)) =
bound_ i
⊢ i < j
|
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
a3_right :
(if x : i' - j < (List.map free_ zs).length then (List.map free_ zs)[i' - j]
else bound_ (i' - j - (List.map free_ zs).length + j)) =
bound_ i
c1 : j ≤ i'
⊢ i < j
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : ¬i' < j
a3_right :
(if x : i' - j < (List.map free_ zs).length then (List.map free_ zs)[i' - j]
else bound_ (i' - j - (List.map free_ zs).length + j)) =
bound_ i
⊢ i < j
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
simp at a3_right
|
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
a3_right :
(if x : i' - j < (List.map free_ zs).length then (List.map free_ zs)[i' - j]
else bound_ (i' - j - (List.map free_ zs).length + j)) =
bound_ i
c1 : j ≤ i'
⊢ i < j
|
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
a3_right : (if h : i' - j < zs.length then free_ (zs.get ⟨i' - j, ⋯⟩) else bound_ (i' - j - zs.length + j)) = bound_ i
⊢ i < j
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
a3_right :
(if x : i' - j < (List.map free_ zs).length then (List.map free_ zs)[i' - j]
else bound_ (i' - j - (List.map free_ zs).length + j)) =
bound_ i
c1 : j ≤ i'
⊢ i < j
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
split at a3_right
|
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
a3_right : (if h : i' - j < zs.length then free_ (zs.get ⟨i' - j, ⋯⟩) else bound_ (i' - j - zs.length + j)) = bound_ i
⊢ i < j
|
case inl
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
h✝ : i' - j < zs.length
a3_right : False
⊢ i < j
case inr
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
h✝ : ¬i' - j < zs.length
a3_right : bound_ (i' - j - zs.length + j) = bound_ i
⊢ i < j
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
a3_right : (if h : i' - j < zs.length then free_ (zs.get ⟨i' - j, ⋯⟩) else bound_ (i' - j - zs.length + j)) = bound_ i
⊢ i < j
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
case _ c2 =>
contradiction
|
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
c2 : i' - j < zs.length
a3_right : False
⊢ i < j
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
c2 : i' - j < zs.length
a3_right : False
⊢ i < j
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
case _ c2 =>
exfalso
apply c2
exact Nat.sub_lt_left_of_lt_add c1 a1
|
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
c2 : ¬i' - j < zs.length
a3_right : bound_ (i' - j - zs.length + j) = bound_ i
⊢ i < j
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
c2 : ¬i' - j < zs.length
a3_right : bound_ (i' - j - zs.length + j) = bound_ i
⊢ i < j
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
contradiction
|
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
c2 : i' - j < zs.length
a3_right : False
⊢ i < j
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
c2 : i' - j < zs.length
a3_right : False
⊢ i < j
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
exfalso
|
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
c2 : ¬i' - j < zs.length
a3_right : bound_ (i' - j - zs.length + j) = bound_ i
⊢ i < j
|
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
c2 : ¬i' - j < zs.length
a3_right : bound_ (i' - j - zs.length + j) = bound_ i
⊢ False
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
c2 : ¬i' - j < zs.length
a3_right : bound_ (i' - j - zs.length + j) = bound_ i
⊢ i < j
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
apply c2
|
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
c2 : ¬i' - j < zs.length
a3_right : bound_ (i' - j - zs.length + j) = bound_ i
⊢ False
|
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
c2 : ¬i' - j < zs.length
a3_right : bound_ (i' - j - zs.length + j) = bound_ i
⊢ i' - j < zs.length
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
c2 : ¬i' - j < zs.length
a3_right : bound_ (i' - j - zs.length + j) = bound_ i
⊢ False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
exact Nat.sub_lt_left_of_lt_add c1 a1
|
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
c2 : ¬i' - j < zs.length
a3_right : bound_ (i' - j - zs.length + j) = bound_ i
⊢ i' - j < zs.length
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
j : ℕ
zs : List String
i i' : ℕ
a3_left : bound_ i' ∈ vs
a1 : i' < j + zs.length
c1 : j ≤ i'
c2 : ¬i' - j < zs.length
a3_right : bound_ (i' - j - zs.length + j) = bound_ i
⊢ i' - j < zs.length
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
simp only [Formula.openList]
|
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) phi.not_) ↔ Formula.lc_at (j + zs.length) phi.not_
|
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) phi).not_ ↔ Formula.lc_at (j + zs.length) phi.not_
|
Please generate a tactic in lean4 to solve the state.
STATE:
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) phi.not_) ↔ Formula.lc_at (j + zs.length) phi.not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
simp only [Formula.lc_at]
|
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) phi).not_ ↔ Formula.lc_at (j + zs.length) phi.not_
|
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) phi).not_ ↔ Formula.lc_at (j + zs.length) phi.not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
apply phi_ih
|
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
simp only [Formula.openList]
|
phi psi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
psi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) (phi.imp_ psi)) ↔ Formula.lc_at (j + zs.length) (phi.imp_ psi)
|
phi psi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
psi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
j : ℕ
zs : List String
⊢ Formula.lc_at j ((Formula.openList j (List.map free_ zs) phi).imp_ (Formula.openList j (List.map free_ zs) psi)) ↔
Formula.lc_at (j + zs.length) (phi.imp_ psi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
phi psi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
psi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) (phi.imp_ psi)) ↔ Formula.lc_at (j + zs.length) (phi.imp_ psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
simp only [Formula.lc_at]
|
phi psi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
psi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
j : ℕ
zs : List String
⊢ Formula.lc_at j ((Formula.openList j (List.map free_ zs) phi).imp_ (Formula.openList j (List.map free_ zs) psi)) ↔
Formula.lc_at (j + zs.length) (phi.imp_ psi)
|
phi psi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
psi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ∧
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔
Formula.lc_at (j + zs.length) phi ∧ Formula.lc_at (j + zs.length) psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
phi psi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
psi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
j : ℕ
zs : List String
⊢ Formula.lc_at j ((Formula.openList j (List.map free_ zs) phi).imp_ (Formula.openList j (List.map free_ zs) psi)) ↔
Formula.lc_at (j + zs.length) (phi.imp_ psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
congr! 1
|
phi psi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
psi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ∧
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔
Formula.lc_at (j + zs.length) phi ∧ Formula.lc_at (j + zs.length) psi
|
case a.h.e'_1.a
phi psi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
psi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
case a.h.e'_2.a
phi psi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
psi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
phi psi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
psi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ∧
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔
Formula.lc_at (j + zs.length) phi ∧ Formula.lc_at (j + zs.length) psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
apply phi_ih
|
case a.h.e'_1.a
phi psi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
psi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
phi psi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
psi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
apply psi_ih
|
case a.h.e'_2.a
phi psi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
psi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a
phi psi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
psi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) psi) ↔ Formula.lc_at (j + zs.length) psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
simp only [Formula.openList]
|
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) (forall_ a✝ phi)) ↔
Formula.lc_at (j + zs.length) (forall_ a✝ phi)
|
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at j (forall_ a✝ (Formula.openList (j + 1) (List.map free_ zs) phi)) ↔
Formula.lc_at (j + zs.length) (forall_ a✝ phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at j (Formula.openList j (List.map free_ zs) (forall_ a✝ phi)) ↔
Formula.lc_at (j + zs.length) (forall_ a✝ phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
simp only [Formula.lc_at]
|
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at j (forall_ a✝ (Formula.openList (j + 1) (List.map free_ zs) phi)) ↔
Formula.lc_at (j + zs.length) (forall_ a✝ phi)
|
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at (j + 1) (Formula.openList (j + 1) (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length + 1) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at j (forall_ a✝ (Formula.openList (j + 1) (List.map free_ zs) phi)) ↔
Formula.lc_at (j + zs.length) (forall_ a✝ phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
simp only [phi_ih]
|
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at (j + 1) (Formula.openList (j + 1) (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length + 1) phi
|
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at (j + 1 + zs.length) phi ↔ Formula.lc_at (j + zs.length + 1) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at (j + 1) (Formula.openList (j + 1) (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length + 1) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
have s1 : j + 1 + List.length zs = j + List.length zs + 1
|
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at (j + 1 + zs.length) phi ↔ Formula.lc_at (j + zs.length + 1) phi
|
case s1
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ j + 1 + zs.length = j + zs.length + 1
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
s1 : j + 1 + zs.length = j + zs.length + 1
⊢ Formula.lc_at (j + 1 + zs.length) phi ↔ Formula.lc_at (j + zs.length + 1) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ Formula.lc_at (j + 1 + zs.length) phi ↔ Formula.lc_at (j + zs.length + 1) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
linarith
|
case s1
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ j + 1 + zs.length = j + zs.length + 1
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
s1 : j + 1 + zs.length = j + zs.length + 1
⊢ Formula.lc_at (j + 1 + zs.length) phi ↔ Formula.lc_at (j + zs.length + 1) phi
|
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
s1 : j + 1 + zs.length = j + zs.length + 1
⊢ Formula.lc_at (j + 1 + zs.length) phi ↔ Formula.lc_at (j + zs.length + 1) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case s1
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
⊢ j + 1 + zs.length = j + zs.length + 1
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
s1 : j + 1 + zs.length = j + zs.length + 1
⊢ Formula.lc_at (j + 1 + zs.length) phi ↔ Formula.lc_at (j + zs.length + 1) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Paper.lean
|
LN.lc_at_instantiate
|
[1259, 1]
|
[1342, 19]
|
simp only [s1]
|
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
s1 : j + 1 + zs.length = j + zs.length + 1
⊢ Formula.lc_at (j + 1 + zs.length) phi ↔ Formula.lc_at (j + zs.length + 1) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
a✝ : String
phi : Formula
phi_ih :
∀ (j : ℕ) (zs : List String),
Formula.lc_at j (Formula.openList j (List.map free_ zs) phi) ↔ Formula.lc_at (j + zs.length) phi
j : ℕ
zs : List String
s1 : j + 1 + zs.length = j + zs.length + 1
⊢ Formula.lc_at (j + 1 + zs.length) phi ↔ Formula.lc_at (j + zs.length + 1) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
induction E generalizing F V V'
|
D : Type
I : Interpretation D
V V' : VarAssignment D
E : Env
F : Formula
h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v
⊢ Holds D I V E F ↔ Holds D I V' E F
|
case nil
D : Type
I : Interpretation D
V V' : VarAssignment D
F : Formula
h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v
⊢ Holds D I V [] F ↔ Holds D I V' [] F
case cons
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
F : Formula
h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I V' (head✝ :: tail✝) F
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V V' : VarAssignment D
E : Env
F : Formula
h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v
⊢ Holds D I V E F ↔ Holds D I V' E F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case cons.def_ hd tl ih X xs =>
split_ifs
case pos c1 =>
apply ih
intro v a1
simp only [isFreeIn_iff_mem_freeVarSet v hd.q] at a1
have s1 : v ∈ List.toFinset hd.args
apply Finset.mem_of_subset hd.h1 a1
simp only [List.mem_toFinset] at s1
apply Function.updateListITE_fun_coincide_mem_eq_len V V' hd.args xs v h1 s1
tauto
case neg c1 =>
apply ih
tauto
|
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)) ↔
if X = hd.name ∧ xs.length = hd.args.length then
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
else Holds D I V' tl (def_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)) ↔
if X = hd.name ∧ xs.length = hd.args.length then
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
else Holds D I V' tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
induction F generalizing V V'
|
case cons
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
F : Formula
h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I V' (head✝ :: tail✝) F
|
case cons.pred_const_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (pred_const_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_const_ a✝¹ a✝)
case cons.pred_var_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (pred_var_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_var_ a✝¹ a✝)
case cons.eq_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (eq_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (eq_ a✝¹ a✝)
case cons.true_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v true_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I V' (head✝ :: tail✝) true_
case cons.false_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v false_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I V' (head✝ :: tail✝) false_
case cons.not_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝.not_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I V' (head✝ :: tail✝) a✝.not_
case cons.imp_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.imp_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.imp_ a✝)
case cons.and_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.and_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.and_ a✝)
case cons.or_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.or_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.or_ a✝)
case cons.iff_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.iff_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.iff_ a✝)
case cons.forall_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (forall_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (forall_ a✝¹ a✝)
case cons.exists_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (exists_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (exists_ a✝¹ a✝)
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (def_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
F : Formula
h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I V' (head✝ :: tail✝) F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
all_goals
simp only [isFreeIn] at h1
simp only [Holds]
|
case cons.pred_const_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (pred_const_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_const_ a✝¹ a✝)
case cons.pred_var_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (pred_var_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_var_ a✝¹ a✝)
case cons.eq_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (eq_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (eq_ a✝¹ a✝)
case cons.true_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v true_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I V' (head✝ :: tail✝) true_
case cons.false_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v false_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I V' (head✝ :: tail✝) false_
case cons.not_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝.not_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I V' (head✝ :: tail✝) a✝.not_
case cons.imp_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.imp_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.imp_ a✝)
case cons.and_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.and_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.and_ a✝)
case cons.or_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.or_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.or_ a✝)
case cons.iff_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.iff_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.iff_ a✝)
case cons.forall_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (forall_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (forall_ a✝¹ a✝)
case cons.exists_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (exists_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (exists_ a✝¹ a✝)
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (def_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
|
case cons.pred_const_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ a✝, V v = V' v
⊢ I.pred_const_ a✝¹ (List.map V a✝) ↔ I.pred_const_ a✝¹ (List.map V' a✝)
case cons.pred_var_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ a✝, V v = V' v
⊢ I.pred_var_ a✝¹ (List.map V a✝) ↔ I.pred_var_ a✝¹ (List.map V' a✝)
case cons.eq_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), v = a✝¹ ∨ v = a✝ → V v = V' v
⊢ V a✝¹ = V a✝ ↔ V' a✝¹ = V' a✝
case cons.not_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝ → V v = V' v
⊢ ¬Holds D I V (head✝ :: tail✝) a✝ ↔ ¬Holds D I V' (head✝ :: tail✝) a✝
case cons.imp_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) a✝¹ → Holds D I V (head✝ :: tail✝) a✝ ↔
Holds D I V' (head✝ :: tail✝) a✝¹ → Holds D I V' (head✝ :: tail✝) a✝
case cons.and_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) a✝¹ ∧ Holds D I V (head✝ :: tail✝) a✝ ↔
Holds D I V' (head✝ :: tail✝) a✝¹ ∧ Holds D I V' (head✝ :: tail✝) a✝
case cons.or_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) a✝¹ ∨ Holds D I V (head✝ :: tail✝) a✝ ↔
Holds D I V' (head✝ :: tail✝) a✝¹ ∨ Holds D I V' (head✝ :: tail✝) a✝
case cons.iff_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ → V v = V' v
⊢ (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) a✝) ↔
(Holds D I V' (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝)
case cons.forall_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = a✝¹ ∧ isFreeIn v a✝ → V v = V' v
⊢ (∀ (d : D), Holds D I (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝) ↔
∀ (d : D), Holds D I (Function.updateITE V' a✝¹ d) (head✝ :: tail✝) a✝
case cons.exists_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = a✝¹ ∧ isFreeIn v a✝ → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝) ↔
∃ d, Holds D I (Function.updateITE V' a✝¹ d) (head✝ :: tail✝) a✝
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ a✝, V v = V' v
⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q
else Holds D I V tail✝ (def_ a✝¹ a✝)) ↔
if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I (Function.updateListITE V' head✝.args (List.map V' a✝)) tail✝ head✝.q
else Holds D I V' tail✝ (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons.pred_const_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (pred_const_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_const_ a✝¹ a✝)
case cons.pred_var_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (pred_var_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_var_ a✝¹ a✝)
case cons.eq_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (eq_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (eq_ a✝¹ a✝)
case cons.true_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v true_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I V' (head✝ :: tail✝) true_
case cons.false_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v false_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I V' (head✝ :: tail✝) false_
case cons.not_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝.not_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I V' (head✝ :: tail✝) a✝.not_
case cons.imp_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.imp_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.imp_ a✝)
case cons.and_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.and_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.and_ a✝)
case cons.or_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.or_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.or_ a✝)
case cons.iff_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.iff_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.iff_ a✝)
case cons.forall_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (forall_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (forall_ a✝¹ a✝)
case cons.exists_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (exists_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (exists_ a✝¹ a✝)
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (def_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case pred_const_ X xs | pred_var_ X xs =>
congr! 1
simp only [List.map_eq_map_iff]
exact h1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ I.pred_var_ X (List.map V xs) ↔ I.pred_var_ X (List.map V' xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ I.pred_var_ X (List.map V xs) ↔ I.pred_var_ X (List.map V' xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case eq_ x y =>
simp at h1
cases h1
case intro h1_left h1_right =>
congr! 1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), v = x ∨ v = y → V v = V' v
⊢ V x = V y ↔ V' x = V' y
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), v = x ∨ v = y → V v = V' v
⊢ V x = V y ↔ V' x = V' y
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case not_ phi phi_ih =>
congr! 1
exact phi_ih V V' h1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I V' (head✝ :: tail✝) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I V' (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case forall_ x phi phi_ih | exists_ x phi phi_ih =>
simp at h1
first | apply forall_congr' | apply exists_congr
intro d
apply phi_ih
intro v a1
simp only [Function.updateITE]
split_ifs <;> tauto
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x ∧ isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x ∧ isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp only [isFreeIn] at h1
|
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (def_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
|
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ a✝, V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (def_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp only [Holds]
|
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ a✝, V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
|
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ a✝, V v = V' v
⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q
else Holds D I V tail✝ (def_ a✝¹ a✝)) ↔
if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I (Function.updateListITE V' head✝.args (List.map V' a✝)) tail✝ head✝.q
else Holds D I V' tail✝ (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ a✝, V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
congr! 1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ I.pred_var_ X (List.map V xs) ↔ I.pred_var_ X (List.map V' xs)
|
case a.h.e'_4
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ List.map V xs = List.map V' xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ I.pred_var_ X (List.map V xs) ↔ I.pred_var_ X (List.map V' xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp only [List.map_eq_map_iff]
|
case a.h.e'_4
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ List.map V xs = List.map V' xs
|
case a.h.e'_4
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ ∀ x ∈ xs, V x = V' x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ List.map V xs = List.map V' xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
exact h1
|
case a.h.e'_4
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ ∀ x ∈ xs, V x = V' x
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ ∀ x ∈ xs, V x = V' x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp at h1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), v = x ∨ v = y → V v = V' v
⊢ V x = V y ↔ V' x = V' y
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1 : V x = V' x ∧ V y = V' y
⊢ V x = V y ↔ V' x = V' y
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), v = x ∨ v = y → V v = V' v
⊢ V x = V y ↔ V' x = V' y
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
cases h1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1 : V x = V' x ∧ V y = V' y
⊢ V x = V y ↔ V' x = V' y
|
case intro
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
left✝ : V x = V' x
right✝ : V y = V' y
⊢ V x = V y ↔ V' x = V' y
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1 : V x = V' x ∧ V y = V' y
⊢ V x = V y ↔ V' x = V' y
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case intro h1_left h1_right =>
congr! 1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1_left : V x = V' x
h1_right : V y = V' y
⊢ V x = V y ↔ V' x = V' y
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1_left : V x = V' x
h1_right : V y = V' y
⊢ V x = V y ↔ V' x = V' y
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
congr! 1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1_left : V x = V' x
h1_right : V y = V' y
⊢ V x = V y ↔ V' x = V' y
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1_left : V x = V' x
h1_right : V y = V' y
⊢ V x = V y ↔ V' x = V' y
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
congr! 1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I V' (head✝ :: tail✝) phi
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I V' (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
exact phi_ih V V' h1
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
congr! 1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔
(Holds D I V' (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) psi)
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔
(Holds D I V' (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply phi_ih V V'
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ ∀ (v : VarName), isFreeIn v phi → V v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
intro v a1
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ ∀ (v : VarName), isFreeIn v phi → V v = V' v
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ V v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ ∀ (v : VarName), isFreeIn v phi → V v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply h1
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ V v = V' v
|
case a.h.e'_1.a.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ isFreeIn v phi ∨ isFreeIn v psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ V v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
left
|
case a.h.e'_1.a.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ isFreeIn v phi ∨ isFreeIn v psi
|
case a.h.e'_1.a.a.h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ isFreeIn v phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ isFreeIn v phi ∨ isFreeIn v psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
exact a1
|
case a.h.e'_1.a.a.h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ isFreeIn v phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.a.h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ isFreeIn v phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply psi_ih V V'
|
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi
|
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ ∀ (v : VarName), isFreeIn v psi → V v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
intro v a1
|
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ ∀ (v : VarName), isFreeIn v psi → V v = V' v
|
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ V v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ ∀ (v : VarName), isFreeIn v psi → V v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply h1
|
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ V v = V' v
|
case a.h.e'_2.a.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ isFreeIn v phi ∨ isFreeIn v psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ V v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
right
|
case a.h.e'_2.a.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ isFreeIn v phi ∨ isFreeIn v psi
|
case a.h.e'_2.a.a.h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ isFreeIn v psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ isFreeIn v phi ∨ isFreeIn v psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
exact a1
|
case a.h.e'_2.a.a.h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ isFreeIn v psi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a.a.h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ isFreeIn v psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp at h1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x ∧ isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x ∧ isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
first | apply forall_congr' | apply exists_congr
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
intro d
|
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) phi
|
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply phi_ih
|
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
⊢ ∀ (v : VarName), isFreeIn v phi → Function.updateITE V x d v = Function.updateITE V' x d v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
intro v a1
|
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
⊢ ∀ (v : VarName), isFreeIn v phi → Function.updateITE V x d v = Function.updateITE V' x d v
|
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
v : VarName
a1 : isFreeIn v phi
⊢ Function.updateITE V x d v = Function.updateITE V' x d v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
⊢ ∀ (v : VarName), isFreeIn v phi → Function.updateITE V x d v = Function.updateITE V' x d v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp only [Function.updateITE]
|
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
v : VarName
a1 : isFreeIn v phi
⊢ Function.updateITE V x d v = Function.updateITE V' x d v
|
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
v : VarName
a1 : isFreeIn v phi
⊢ (if v = x then d else V v) = if v = x then d else V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
v : VarName
a1 : isFreeIn v phi
⊢ Function.updateITE V x d v = Function.updateITE V' x d v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
split_ifs <;> tauto
|
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
v : VarName
a1 : isFreeIn v phi
⊢ (if v = x then d else V v) = if v = x then d else V' v
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
v : VarName
a1 : isFreeIn v phi
⊢ (if v = x then d else V v) = if v = x then d else V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply forall_congr'
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ (∀ (d : D), Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∀ (d : D), Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ (∀ (d : D), Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∀ (d : D), Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply exists_congr
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
split_ifs
|
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)) ↔
if X = hd.name ∧ xs.length = hd.args.length then
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
else Holds D I V' tl (def_ X xs)
|
case pos
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
h✝ : X = hd.name ∧ xs.length = hd.args.length
⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
case neg
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
h✝ : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)) ↔
if X = hd.name ∧ xs.length = hd.args.length then
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
else Holds D I V' tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case pos c1 =>
apply ih
intro v a1
simp only [isFreeIn_iff_mem_freeVarSet v hd.q] at a1
have s1 : v ∈ List.toFinset hd.args
apply Finset.mem_of_subset hd.h1 a1
simp only [List.mem_toFinset] at s1
apply Function.updateListITE_fun_coincide_mem_eq_len V V' hd.args xs v h1 s1
tauto
|
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case neg c1 =>
apply ih
tauto
|
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply ih
|
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
⊢ ∀ (v : VarName),
isFreeIn v hd.q →
Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
intro v a1
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
⊢ ∀ (v : VarName),
isFreeIn v hd.q →
Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
⊢ ∀ (v : VarName),
isFreeIn v hd.q →
Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp only [isFreeIn_iff_mem_freeVarSet v hd.q] at a1
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
have s1 : v ∈ List.toFinset hd.args
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
case s1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
⊢ v ∈ hd.args.toFinset
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args.toFinset
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply Finset.mem_of_subset hd.h1 a1
|
case s1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
⊢ v ∈ hd.args.toFinset
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args.toFinset
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args.toFinset
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case s1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
⊢ v ∈ hd.args.toFinset
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args.toFinset
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp only [List.mem_toFinset] at s1
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args.toFinset
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args.toFinset
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply Function.updateListITE_fun_coincide_mem_eq_len V V' hd.args xs v h1 s1
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args
⊢ hd.args.length = xs.length
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
tauto
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args
⊢ hd.args.length = xs.length
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args
⊢ hd.args.length = xs.length
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply ih
|
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X xs)
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ ∀ (v : VarName), isFreeIn v (def_ X xs) → V v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
tauto
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ ∀ (v : VarName), isFreeIn v (def_ X xs) → V v = V' v
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ ∀ (v : VarName), isFreeIn v (def_ X xs) → V v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
induction E generalizing F V
|
D : Type
I I' : Interpretation D
V : VarAssignment D
E : Env
F : Formula
h1 : I.pred_const_ = I'.pred_const_
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V E F ↔ Holds D I' V E F
|
case nil
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
V : VarAssignment D
F : Formula
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V [] F ↔ Holds D I' V [] F
case cons
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
F : Formula
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I' V (head✝ :: tail✝) F
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
V : VarAssignment D
E : Env
F : Formula
h1 : I.pred_const_ = I'.pred_const_
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V E F ↔ Holds D I' V E F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
case cons.def_ hd tl ih X xs =>
split_ifs
case pos c1 =>
apply ih
intro P ds a1
simp only [predVarOccursIn_iff_mem_predVarSet P ds.length] at a1
simp only [hd.h2] at a1
simp at a1
case neg c1 =>
apply ih
intro P ds a1
simp only [predVarOccursIn] at a1
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tl F ↔ Holds D I' V tl F)
X : DefName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)) ↔
if X = hd.name ∧ xs.length = hd.args.length then
Holds D I' (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I' V tl (def_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tl F ↔ Holds D I' V tl F)
X : DefName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)) ↔
if X = hd.name ∧ xs.length = hd.args.length then
Holds D I' (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I' V tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
induction F generalizing V
|
case cons
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
F : Formula
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I' V (head✝ :: tail✝) F
|
case cons.pred_const_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length (pred_const_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_const_ a✝¹ a✝)
case cons.pred_var_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length (pred_var_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_var_ a✝¹ a✝)
case cons.eq_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (eq_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (eq_ a✝¹ a✝)
case cons.true_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length true_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I' V (head✝ :: tail✝) true_
case cons.false_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length false_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I' V (head✝ :: tail✝) false_
case cons.not_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝.not_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I' V (head✝ :: tail✝) a✝.not_
case cons.imp_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.imp_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.imp_ a✝)
case cons.and_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.and_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.and_ a✝)
case cons.or_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.or_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.or_ a✝)
case cons.iff_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.iff_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.iff_ a✝)
case cons.forall_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (forall_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (forall_ a✝¹ a✝)
case cons.exists_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (exists_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (exists_ a✝¹ a✝)
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
F : Formula
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I' V (head✝ :: tail✝) F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
all_goals
simp only [predVarOccursIn] at h2
simp only [Holds]
|
case cons.pred_const_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length (pred_const_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_const_ a✝¹ a✝)
case cons.pred_var_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length (pred_var_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_var_ a✝¹ a✝)
case cons.eq_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (eq_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (eq_ a✝¹ a✝)
case cons.true_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length true_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I' V (head✝ :: tail✝) true_
case cons.false_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length false_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I' V (head✝ :: tail✝) false_
case cons.not_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝.not_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I' V (head✝ :: tail✝) a✝.not_
case cons.imp_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.imp_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.imp_ a✝)
case cons.and_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.and_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.and_ a✝)
case cons.or_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.or_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.or_ a✝)
case cons.iff_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.iff_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.iff_ a✝)
case cons.forall_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (forall_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (forall_ a✝¹ a✝)
case cons.exists_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (exists_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (exists_ a✝¹ a✝)
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
|
case cons.pred_const_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_const_ a✝¹ (List.map V a✝) ↔ I'.pred_const_ a✝¹ (List.map V a✝)
case cons.pred_var_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = a✝¹ ∧ ds.length = a✝.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ a✝¹ (List.map V a✝) ↔ I'.pred_var_ a✝¹ (List.map V a✝)
case cons.not_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ¬Holds D I V (head✝ :: tail✝) a✝ ↔ ¬Holds D I' V (head✝ :: tail✝) a✝
case cons.imp_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length a✝¹ ∨ predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) a✝¹ → Holds D I V (head✝ :: tail✝) a✝ ↔
Holds D I' V (head✝ :: tail✝) a✝¹ → Holds D I' V (head✝ :: tail✝) a✝
case cons.and_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length a✝¹ ∨ predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) a✝¹ ∧ Holds D I V (head✝ :: tail✝) a✝ ↔
Holds D I' V (head✝ :: tail✝) a✝¹ ∧ Holds D I' V (head✝ :: tail✝) a✝
case cons.or_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length a✝¹ ∨ predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) a✝¹ ∨ Holds D I V (head✝ :: tail✝) a✝ ↔
Holds D I' V (head✝ :: tail✝) a✝¹ ∨ Holds D I' V (head✝ :: tail✝) a✝
case cons.iff_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length a✝¹ ∨ predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) a✝) ↔
(Holds D I' V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝)
case cons.forall_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (∀ (d : D), Holds D I (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝) ↔
∀ (d : D), Holds D I' (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝
case cons.exists_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (∃ d, Holds D I (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝) ↔
∃ d, Holds D I' (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q
else Holds D I V tail✝ (def_ a✝¹ a✝)) ↔
if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I' (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q
else Holds D I' V tail✝ (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons.pred_const_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length (pred_const_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_const_ a✝¹ a✝)
case cons.pred_var_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length (pred_var_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_var_ a✝¹ a✝)
case cons.eq_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (eq_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (eq_ a✝¹ a✝)
case cons.true_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length true_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I' V (head✝ :: tail✝) true_
case cons.false_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length false_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I' V (head✝ :: tail✝) false_
case cons.not_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝.not_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I' V (head✝ :: tail✝) a✝.not_
case cons.imp_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.imp_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.imp_ a✝)
case cons.and_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.and_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.and_ a✝)
case cons.or_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.or_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.or_ a✝)
case cons.iff_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.iff_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.iff_ a✝)
case cons.forall_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (forall_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (forall_ a✝¹ a✝)
case cons.exists_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (exists_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (exists_ a✝¹ a✝)
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
case pred_const_ X xs =>
simp only [h1]
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_const_ X (List.map V xs) ↔ I'.pred_const_ X (List.map V xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_const_ X (List.map V xs) ↔ I'.pred_const_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
case pred_var_ X xs =>
simp at h2
specialize h2 X (List.map V xs)
simp at h2
exact h2
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = X ∧ ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = X ∧ ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
case not_ phi phi_ih =>
congr! 1
exact phi_ih V h2
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I' V (head✝ :: tail✝) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I' V (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
case forall_ x phi phi_ih | exists_ x phi phi_ih =>
first | apply forall_congr' | apply exists_congr
intro d
exact phi_ih (Function.updateITE V x d) h2
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
simp only [predVarOccursIn] at h2
|
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
|
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
simp only [Holds]
|
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
|
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q
else Holds D I V tail✝ (def_ a✝¹ a✝)) ↔
if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I' (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q
else Holds D I' V tail✝ (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
simp only [h1]
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_const_ X (List.map V xs) ↔ I'.pred_const_ X (List.map V xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_const_ X (List.map V xs) ↔ I'.pred_const_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
simp at h2
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = X ∧ ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = X → ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = X ∧ ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
specialize h2 X (List.map V xs)
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = X → ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : X = X → (List.map V xs).length = xs.length → (I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs))
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = X → ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
simp at h2
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : X = X → (List.map V xs).length = xs.length → (I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs))
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : X = X → (List.map V xs).length = xs.length → (I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs))
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
exact h2
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
congr! 1
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I' V (head✝ :: tail✝) phi
|
case a.h.e'_1.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I' V (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
exact phi_ih V h2
|
case a.h.e'_1.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
congr! 1
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔
(Holds D I' V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) psi)
|
case a.h.e'_1.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
case a.h.e'_2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔
(Holds D I' V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
apply phi_ih
|
case a.h.e'_1.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
|
case a.h.e'_1.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
intro P ds a1
|
case a.h.e'_1.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
|
case a.h.e'_1.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ I.pred_var_ P ds ↔ I'.pred_var_ P ds
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
apply h2
|
case a.h.e'_1.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ I.pred_var_ P ds ↔ I'.pred_var_ P ds
|
case a.h.e'_1.a.h2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ I.pred_var_ P ds ↔ I'.pred_var_ P ds
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
left
|
case a.h.e'_1.a.h2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi
|
case a.h.e'_1.a.h2.a.h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ predVarOccursIn P ds.length phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
exact a1
|
case a.h.e'_1.a.h2.a.h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ predVarOccursIn P ds.length phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h2.a.h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ predVarOccursIn P ds.length phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
apply psi_ih
|
case a.h.e'_2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi
|
case a.h.e'_2.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
intro P ds a1
|
case a.h.e'_2.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
|
case a.h.e'_2.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length psi
⊢ I.pred_var_ P ds ↔ I'.pred_var_ P ds
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.