url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.union_subset_left_right_diff
[68, 1]
[89, 12]
trans E ∪ C \ F
case left α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ A ⊆ E ∪ (C ∪ D) \ F
α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ A ⊆ E ∪ C \ F α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ E ∪ C \ F ⊆ E ∪ (C ∪ D) \ F
Please generate a tactic in lean4 to solve the state. STATE: case left α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ A ⊆ E ∪ (C ∪ D) \ F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.union_subset_left_right_diff
[68, 1]
[89, 12]
exact h1
α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ A ⊆ E ∪ C \ F
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ A ⊆ E ∪ C \ F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.union_subset_left_right_diff
[68, 1]
[89, 12]
apply Finset.union_subset_union_right
α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ E ∪ C \ F ⊆ E ∪ (C ∪ D) \ F
case h α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ C \ F ⊆ (C ∪ D) \ F
Please generate a tactic in lean4 to solve the state. STATE: α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ E ∪ C \ F ⊆ E ∪ (C ∪ D) \ F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.union_subset_left_right_diff
[68, 1]
[89, 12]
apply Finset.sdiff_subset_sdiff
case h α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ C \ F ⊆ (C ∪ D) \ F
case h.hst α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ C ⊆ C ∪ D case h.hvu α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ F ⊆ F
Please generate a tactic in lean4 to solve the state. STATE: case h α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ C \ F ⊆ (C ∪ D) \ F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.union_subset_left_right_diff
[68, 1]
[89, 12]
exact Finset.subset_union_left C D
case h.hst α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ C ⊆ C ∪ D
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.hst α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ C ⊆ C ∪ D TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.union_subset_left_right_diff
[68, 1]
[89, 12]
rfl
case h.hvu α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ F ⊆ F
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.hvu α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ F ⊆ F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.union_subset_left_right_diff
[68, 1]
[89, 12]
trans E ∪ D \ F
case right α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ B ⊆ E ∪ (C ∪ D) \ F
α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ B ⊆ E ∪ D \ F α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ E ∪ D \ F ⊆ E ∪ (C ∪ D) \ F
Please generate a tactic in lean4 to solve the state. STATE: case right α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ B ⊆ E ∪ (C ∪ D) \ F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.union_subset_left_right_diff
[68, 1]
[89, 12]
exact h2
α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ B ⊆ E ∪ D \ F
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ B ⊆ E ∪ D \ F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.union_subset_left_right_diff
[68, 1]
[89, 12]
apply Finset.union_subset_union_right
α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ E ∪ D \ F ⊆ E ∪ (C ∪ D) \ F
case h α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ D \ F ⊆ (C ∪ D) \ F
Please generate a tactic in lean4 to solve the state. STATE: α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ E ∪ D \ F ⊆ E ∪ (C ∪ D) \ F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.union_subset_left_right_diff
[68, 1]
[89, 12]
apply Finset.sdiff_subset_sdiff
case h α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ D \ F ⊆ (C ∪ D) \ F
case h.hst α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ D ⊆ C ∪ D case h.hvu α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ F ⊆ F
Please generate a tactic in lean4 to solve the state. STATE: case h α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ D \ F ⊆ (C ∪ D) \ F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.union_subset_left_right_diff
[68, 1]
[89, 12]
exact Finset.subset_union_right C D
case h.hst α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ D ⊆ C ∪ D
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.hst α : Type inst✝ : DecidableEq α A B C D E F : Finset α h1 : A ⊆ E ∪ C \ F h2 : B ⊆ E ∪ D \ F ⊢ D ⊆ C ∪ D TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.diff_union_subset
[92, 1]
[105, 67]
have s1 : (A ∪ B) \ E = (A \ E) ∪ (B \ E)
α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D ⊢ (A ∪ B) \ E ⊆ C ∪ D
case s1 α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D ⊢ (A ∪ B) \ E = A \ E ∪ B \ E α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ (A ∪ B) \ E ⊆ C ∪ D
Please generate a tactic in lean4 to solve the state. STATE: α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D ⊢ (A ∪ B) \ E ⊆ C ∪ D TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.diff_union_subset
[92, 1]
[105, 67]
exact Finset.union_sdiff_distrib A B E
case s1 α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D ⊢ (A ∪ B) \ E = A \ E ∪ B \ E α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ (A ∪ B) \ E ⊆ C ∪ D
α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ (A ∪ B) \ E ⊆ C ∪ D
Please generate a tactic in lean4 to solve the state. STATE: case s1 α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D ⊢ (A ∪ B) \ E = A \ E ∪ B \ E α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ (A ∪ B) \ E ⊆ C ∪ D TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.diff_union_subset
[92, 1]
[105, 67]
trans (A \ E) ∪ (B \ E)
α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ (A ∪ B) \ E ⊆ C ∪ D
α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ (A ∪ B) \ E ⊆ A \ E ∪ B \ E α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ A \ E ∪ B \ E ⊆ C ∪ D
Please generate a tactic in lean4 to solve the state. STATE: α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ (A ∪ B) \ E ⊆ C ∪ D TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.diff_union_subset
[92, 1]
[105, 67]
simp only [s1]
α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ (A ∪ B) \ E ⊆ A \ E ∪ B \ E
α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ A \ E ∪ B \ E ⊆ A \ E ∪ B \ E
Please generate a tactic in lean4 to solve the state. STATE: α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ (A ∪ B) \ E ⊆ A \ E ∪ B \ E TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.diff_union_subset
[92, 1]
[105, 67]
rfl
α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ A \ E ∪ B \ E ⊆ A \ E ∪ B \ E
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ A \ E ∪ B \ E ⊆ A \ E ∪ B \ E TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.diff_union_subset
[92, 1]
[105, 67]
exact Finset.union_subset_left_right (A \ E) (B \ E) C D h1 h2
α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ A \ E ∪ B \ E ⊆ C ∪ D
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type inst✝ : DecidableEq α A B C D E : Finset α h1 : A \ E ⊆ C h2 : B \ E ⊆ D s1 : (A ∪ B) \ E = A \ E ∪ B \ E ⊢ A \ E ∪ B \ E ⊆ C ∪ D TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.union_right_comm_assoc
[108, 1]
[116, 41]
simp only [Finset.union_right_comm S {x} T]
α : Type inst✝ : DecidableEq α x : α S T : Finset α ⊢ S ∪ (T ∪ {x}) = S ∪ {x} ∪ T
α : Type inst✝ : DecidableEq α x : α S T : Finset α ⊢ S ∪ (T ∪ {x}) = S ∪ T ∪ {x}
Please generate a tactic in lean4 to solve the state. STATE: α : Type inst✝ : DecidableEq α x : α S T : Finset α ⊢ S ∪ (T ∪ {x}) = S ∪ {x} ∪ T TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.union_right_comm_assoc
[108, 1]
[116, 41]
simp only [Finset.union_assoc S T {x}]
α : Type inst✝ : DecidableEq α x : α S T : Finset α ⊢ S ∪ (T ∪ {x}) = S ∪ T ∪ {x}
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type inst✝ : DecidableEq α x : α S T : Finset α ⊢ S ∪ (T ∪ {x}) = S ∪ T ∪ {x} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
subst h1
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β h1 : f x = x' ⊢ image f S \ {x'} = image f (S \ {x}) \ {x'}
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β ⊢ image f S \ {f x} = image f (S \ {x}) \ {f x}
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β h1 : f x = x' ⊢ image f S \ {x'} = image f (S \ {x}) \ {x'} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
apply Finset.ext
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β ⊢ image f S \ {f x} = image f (S \ {x}) \ {f x}
case a α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β ⊢ ∀ (a : β), a ∈ image f S \ {f x} ↔ a ∈ image f (S \ {x}) \ {f x}
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β ⊢ image f S \ {f x} = image f (S \ {x}) \ {f x} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
intro a
case a α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β ⊢ ∀ (a : β), a ∈ image f S \ {f x} ↔ a ∈ image f (S \ {x}) \ {f x}
case a α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β ⊢ a ∈ image f S \ {f x} ↔ a ∈ image f (S \ {x}) \ {f x}
Please generate a tactic in lean4 to solve the state. STATE: case a α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β ⊢ ∀ (a : β), a ∈ image f S \ {f x} ↔ a ∈ image f (S \ {x}) \ {f x} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
simp
case a α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β ⊢ a ∈ image f S \ {f x} ↔ a ∈ image f (S \ {x}) \ {f x}
case a α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β ⊢ ¬a = f x → ((∃ a_2 ∈ S, f a_2 = a) ↔ ∃ a_2, (a_2 ∈ S ∧ ¬a_2 = x) ∧ f a_2 = a)
Please generate a tactic in lean4 to solve the state. STATE: case a α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β ⊢ a ∈ image f S \ {f x} ↔ a ∈ image f (S \ {x}) \ {f x} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
intro a1
case a α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β ⊢ ¬a = f x → ((∃ a_2 ∈ S, f a_2 = a) ↔ ∃ a_2, (a_2 ∈ S ∧ ¬a_2 = x) ∧ f a_2 = a)
case a α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x ⊢ (∃ a_1 ∈ S, f a_1 = a) ↔ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
Please generate a tactic in lean4 to solve the state. STATE: case a α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β ⊢ ¬a = f x → ((∃ a_2 ∈ S, f a_2 = a) ↔ ∃ a_2, (a_2 ∈ S ∧ ¬a_2 = x) ∧ f a_2 = a) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
constructor
case a α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x ⊢ (∃ a_1 ∈ S, f a_1 = a) ↔ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x ⊢ (∃ a_1 ∈ S, f a_1 = a) → ∃ a_2, (a_2 ∈ S ∧ ¬a_2 = x) ∧ f a_2 = a case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x ⊢ (∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a) → ∃ a_2 ∈ S, f a_2 = a
Please generate a tactic in lean4 to solve the state. STATE: case a α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x ⊢ (∃ a_1 ∈ S, f a_1 = a) ↔ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
intro a2
case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x ⊢ (∃ a_1 ∈ S, f a_1 = a) → ∃ a_2, (a_2 ∈ S ∧ ¬a_2 = x) ∧ f a_2 = a
case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a ⊢ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
Please generate a tactic in lean4 to solve the state. STATE: case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x ⊢ (∃ a_1 ∈ S, f a_1 = a) → ∃ a_2, (a_2 ∈ S ∧ ¬a_2 = x) ∧ f a_2 = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
apply Exists.elim a2
case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a ⊢ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a ⊢ ∀ (a_1 : α), a_1 ∈ S ∧ f a_1 = a → ∃ a_3, (a_3 ∈ S ∧ ¬a_3 = x) ∧ f a_3 = a
Please generate a tactic in lean4 to solve the state. STATE: case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a ⊢ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
intro b a3
case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a ⊢ ∀ (a_1 : α), a_1 ∈ S ∧ f a_1 = a → ∃ a_3, (a_3 ∈ S ∧ ¬a_3 = x) ∧ f a_3 = a
case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a b : α a3 : b ∈ S ∧ f b = a ⊢ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
Please generate a tactic in lean4 to solve the state. STATE: case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a ⊢ ∀ (a_1 : α), a_1 ∈ S ∧ f a_1 = a → ∃ a_3, (a_3 ∈ S ∧ ¬a_3 = x) ∧ f a_3 = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
apply Exists.intro b
case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a b : α a3 : b ∈ S ∧ f b = a ⊢ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a b : α a3 : b ∈ S ∧ f b = a ⊢ (b ∈ S ∧ ¬b = x) ∧ f b = a
Please generate a tactic in lean4 to solve the state. STATE: case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a b : α a3 : b ∈ S ∧ f b = a ⊢ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
cases a3
case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a b : α a3 : b ∈ S ∧ f b = a ⊢ (b ∈ S ∧ ¬b = x) ∧ f b = a
case a.mp.intro α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a b : α left✝ : b ∈ S right✝ : f b = a ⊢ (b ∈ S ∧ ¬b = x) ∧ f b = a
Please generate a tactic in lean4 to solve the state. STATE: case a.mp α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a b : α a3 : b ∈ S ∧ f b = a ⊢ (b ∈ S ∧ ¬b = x) ∧ f b = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
case _ a3_left a3_right => subst a3_right tauto
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a b : α a3_left : b ∈ S a3_right : f b = a ⊢ (b ∈ S ∧ ¬b = x) ∧ f b = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a b : α a3_left : b ∈ S a3_right : f b = a ⊢ (b ∈ S ∧ ¬b = x) ∧ f b = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
subst a3_right
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a b : α a3_left : b ∈ S a3_right : f b = a ⊢ (b ∈ S ∧ ¬b = x) ∧ f b = a
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β b : α a3_left : b ∈ S a1 : ¬f b = f x a2 : ∃ a ∈ S, f a = f b ⊢ (b ∈ S ∧ ¬b = x) ∧ f b = f b
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1 ∈ S, f a_1 = a b : α a3_left : b ∈ S a3_right : f b = a ⊢ (b ∈ S ∧ ¬b = x) ∧ f b = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
tauto
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β b : α a3_left : b ∈ S a1 : ¬f b = f x a2 : ∃ a ∈ S, f a = f b ⊢ (b ∈ S ∧ ¬b = x) ∧ f b = f b
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β b : α a3_left : b ∈ S a1 : ¬f b = f x a2 : ∃ a ∈ S, f a = f b ⊢ (b ∈ S ∧ ¬b = x) ∧ f b = f b TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
intro a2
case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x ⊢ (∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a) → ∃ a_2 ∈ S, f a_2 = a
case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a ⊢ ∃ a_1 ∈ S, f a_1 = a
Please generate a tactic in lean4 to solve the state. STATE: case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x ⊢ (∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a) → ∃ a_2 ∈ S, f a_2 = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
apply Exists.elim a2
case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a ⊢ ∃ a_1 ∈ S, f a_1 = a
case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a ⊢ ∀ (a_1 : α), (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a → ∃ a_3 ∈ S, f a_3 = a
Please generate a tactic in lean4 to solve the state. STATE: case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a ⊢ ∃ a_1 ∈ S, f a_1 = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
intro b a3
case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a ⊢ ∀ (a_1 : α), (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a → ∃ a_3 ∈ S, f a_3 = a
case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a b : α a3 : (b ∈ S ∧ ¬b = x) ∧ f b = a ⊢ ∃ a_1 ∈ S, f a_1 = a
Please generate a tactic in lean4 to solve the state. STATE: case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a ⊢ ∀ (a_1 : α), (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a → ∃ a_3 ∈ S, f a_3 = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
apply Exists.intro b
case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a b : α a3 : (b ∈ S ∧ ¬b = x) ∧ f b = a ⊢ ∃ a_1 ∈ S, f a_1 = a
case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a b : α a3 : (b ∈ S ∧ ¬b = x) ∧ f b = a ⊢ b ∈ S ∧ f b = a
Please generate a tactic in lean4 to solve the state. STATE: case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a b : α a3 : (b ∈ S ∧ ¬b = x) ∧ f b = a ⊢ ∃ a_1 ∈ S, f a_1 = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
cases a3
case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a b : α a3 : (b ∈ S ∧ ¬b = x) ∧ f b = a ⊢ b ∈ S ∧ f b = a
case a.mpr.intro α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a b : α left✝ : b ∈ S ∧ ¬b = x right✝ : f b = a ⊢ b ∈ S ∧ f b = a
Please generate a tactic in lean4 to solve the state. STATE: case a.mpr α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a b : α a3 : (b ∈ S ∧ ¬b = x) ∧ f b = a ⊢ b ∈ S ∧ f b = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
case _ a3_left a3_right => subst a3_right tauto
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a b : α a3_left : b ∈ S ∧ ¬b = x a3_right : f b = a ⊢ b ∈ S ∧ f b = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a b : α a3_left : b ∈ S ∧ ¬b = x a3_right : f b = a ⊢ b ∈ S ∧ f b = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
subst a3_right
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a b : α a3_left : b ∈ S ∧ ¬b = x a3_right : f b = a ⊢ b ∈ S ∧ f b = a
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β b : α a3_left : b ∈ S ∧ ¬b = x a1 : ¬f b = f x a2 : ∃ a, (a ∈ S ∧ ¬a = x) ∧ f a = f b ⊢ b ∈ S ∧ f b = f b
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β a : β a1 : ¬a = f x a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a b : α a3_left : b ∈ S ∧ ¬b = x a3_right : f b = a ⊢ b ∈ S ∧ f b = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton
[119, 1]
[152, 12]
tauto
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β b : α a3_left : b ∈ S ∧ ¬b = x a1 : ¬f b = f x a2 : ∃ a, (a ∈ S ∧ ¬a = x) ∧ f a = f b ⊢ b ∈ S ∧ f b = f b
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α f : α → β b : α a3_left : b ∈ S ∧ ¬b = x a1 : ¬f b = f x a2 : ∃ a, (a ∈ S ∧ ¬a = x) ∧ f a = f b ⊢ b ∈ S ∧ f b = f b TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton_updateITE
[155, 1]
[173, 32]
apply Finset.image_congr
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β ⊢ image (Function.updateITE f x x') (S \ {x}) = image f (S \ {x})
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β ⊢ Set.EqOn (Function.updateITE f x x') f ↑(S \ {x})
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β ⊢ image (Function.updateITE f x x') (S \ {x}) = image f (S \ {x}) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton_updateITE
[155, 1]
[173, 32]
simp only [Set.EqOn]
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β ⊢ Set.EqOn (Function.updateITE f x x') f ↑(S \ {x})
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β ⊢ ∀ ⦃x_1 : α⦄, x_1 ∈ ↑(S \ {x}) → Function.updateITE f x x' x_1 = f x_1
Please generate a tactic in lean4 to solve the state. STATE: case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β ⊢ Set.EqOn (Function.updateITE f x x') f ↑(S \ {x}) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton_updateITE
[155, 1]
[173, 32]
intro a a1
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β ⊢ ∀ ⦃x_1 : α⦄, x_1 ∈ ↑(S \ {x}) → Function.updateITE f x x' x_1 = f x_1
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β a : α a1 : a ∈ ↑(S \ {x}) ⊢ Function.updateITE f x x' a = f a
Please generate a tactic in lean4 to solve the state. STATE: case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β ⊢ ∀ ⦃x_1 : α⦄, x_1 ∈ ↑(S \ {x}) → Function.updateITE f x x' x_1 = f x_1 TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton_updateITE
[155, 1]
[173, 32]
simp at a1
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β a : α a1 : a ∈ ↑(S \ {x}) ⊢ Function.updateITE f x x' a = f a
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β a : α a1 : a ∈ S ∧ ¬a = x ⊢ Function.updateITE f x x' a = f a
Please generate a tactic in lean4 to solve the state. STATE: case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β a : α a1 : a ∈ ↑(S \ {x}) ⊢ Function.updateITE f x x' a = f a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton_updateITE
[155, 1]
[173, 32]
simp only [Function.updateITE]
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β a : α a1 : a ∈ S ∧ ¬a = x ⊢ Function.updateITE f x x' a = f a
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β a : α a1 : a ∈ S ∧ ¬a = x ⊢ (if a = x then x' else f a) = f a
Please generate a tactic in lean4 to solve the state. STATE: case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β a : α a1 : a ∈ S ∧ ¬a = x ⊢ Function.updateITE f x x' a = f a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton_updateITE
[155, 1]
[173, 32]
cases a1
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β a : α a1 : a ∈ S ∧ ¬a = x ⊢ (if a = x then x' else f a) = f a
case h.intro α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β a : α left✝ : a ∈ S right✝ : ¬a = x ⊢ (if a = x then x' else f a) = f a
Please generate a tactic in lean4 to solve the state. STATE: case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β a : α a1 : a ∈ S ∧ ¬a = x ⊢ (if a = x then x' else f a) = f a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton_updateITE
[155, 1]
[173, 32]
case _ a1_left a1_right => simp only [if_neg a1_right]
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β a : α a1_left : a ∈ S a1_right : ¬a = x ⊢ (if a = x then x' else f a) = f a
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β a : α a1_left : a ∈ S a1_right : ¬a = x ⊢ (if a = x then x' else f a) = f a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_sdiff_singleton_updateITE
[155, 1]
[173, 32]
simp only [if_neg a1_right]
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β a : α a1_left : a ∈ S a1_right : ¬a = x ⊢ (if a = x then x' else f a) = f a
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α x' : β f : α → β a : α a1_left : a ∈ S a1_right : ¬a = x ⊢ (if a = x then x' else f a) = f a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_congr_update_ite
[176, 1]
[194, 32]
apply Finset.image_congr
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β ⊢ image (Function.updateITE f x a) (S \ {x}) = image (Function.updateITE f x b) (S \ {x})
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β ⊢ Set.EqOn (Function.updateITE f x a) (Function.updateITE f x b) ↑(S \ {x})
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β ⊢ image (Function.updateITE f x a) (S \ {x}) = image (Function.updateITE f x b) (S \ {x}) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_congr_update_ite
[176, 1]
[194, 32]
simp only [Set.EqOn]
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β ⊢ Set.EqOn (Function.updateITE f x a) (Function.updateITE f x b) ↑(S \ {x})
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β ⊢ ∀ ⦃x_1 : α⦄, x_1 ∈ ↑(S \ {x}) → Function.updateITE f x a x_1 = Function.updateITE f x b x_1
Please generate a tactic in lean4 to solve the state. STATE: case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β ⊢ Set.EqOn (Function.updateITE f x a) (Function.updateITE f x b) ↑(S \ {x}) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_congr_update_ite
[176, 1]
[194, 32]
intro v a1
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β ⊢ ∀ ⦃x_1 : α⦄, x_1 ∈ ↑(S \ {x}) → Function.updateITE f x a x_1 = Function.updateITE f x b x_1
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β v : α a1 : v ∈ ↑(S \ {x}) ⊢ Function.updateITE f x a v = Function.updateITE f x b v
Please generate a tactic in lean4 to solve the state. STATE: case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β ⊢ ∀ ⦃x_1 : α⦄, x_1 ∈ ↑(S \ {x}) → Function.updateITE f x a x_1 = Function.updateITE f x b x_1 TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_congr_update_ite
[176, 1]
[194, 32]
simp at a1
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β v : α a1 : v ∈ ↑(S \ {x}) ⊢ Function.updateITE f x a v = Function.updateITE f x b v
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β v : α a1 : v ∈ S ∧ ¬v = x ⊢ Function.updateITE f x a v = Function.updateITE f x b v
Please generate a tactic in lean4 to solve the state. STATE: case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β v : α a1 : v ∈ ↑(S \ {x}) ⊢ Function.updateITE f x a v = Function.updateITE f x b v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_congr_update_ite
[176, 1]
[194, 32]
simp only [Function.updateITE]
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β v : α a1 : v ∈ S ∧ ¬v = x ⊢ Function.updateITE f x a v = Function.updateITE f x b v
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β v : α a1 : v ∈ S ∧ ¬v = x ⊢ (if v = x then a else f v) = if v = x then b else f v
Please generate a tactic in lean4 to solve the state. STATE: case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β v : α a1 : v ∈ S ∧ ¬v = x ⊢ Function.updateITE f x a v = Function.updateITE f x b v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_congr_update_ite
[176, 1]
[194, 32]
cases a1
case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β v : α a1 : v ∈ S ∧ ¬v = x ⊢ (if v = x then a else f v) = if v = x then b else f v
case h.intro α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β v : α left✝ : v ∈ S right✝ : ¬v = x ⊢ (if v = x then a else f v) = if v = x then b else f v
Please generate a tactic in lean4 to solve the state. STATE: case h α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β v : α a1 : v ∈ S ∧ ¬v = x ⊢ (if v = x then a else f v) = if v = x then b else f v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_congr_update_ite
[176, 1]
[194, 32]
case intro a1_left a1_right => simp only [if_neg a1_right]
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β v : α a1_left : v ∈ S a1_right : ¬v = x ⊢ (if v = x then a else f v) = if v = x then b else f v
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β v : α a1_left : v ∈ S a1_right : ¬v = x ⊢ (if v = x then a else f v) = if v = x then b else f v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.image_congr_update_ite
[176, 1]
[194, 32]
simp only [if_neg a1_right]
α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β v : α a1_left : v ∈ S a1_right : ¬v = x ⊢ (if v = x then a else f v) = if v = x then b else f v
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β S : Finset α x : α a b : β f : α → β v : α a1_left : v ∈ S a1_right : ¬v = x ⊢ (if v = x then a else f v) = if v = x then b else f v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.mem_image_update
[197, 1]
[212, 26]
simp only [Finset.mem_image]
α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ f y ∈ image (Function.updateITE f x x) S
α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ ∃ a ∈ S, Function.updateITE f x x a = f y
Please generate a tactic in lean4 to solve the state. STATE: α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ f y ∈ image (Function.updateITE f x x) S TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.mem_image_update
[197, 1]
[212, 26]
apply Exists.intro y
α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ ∃ a ∈ S, Function.updateITE f x x a = f y
α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ y ∈ S ∧ Function.updateITE f x x y = f y
Please generate a tactic in lean4 to solve the state. STATE: α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ ∃ a ∈ S, Function.updateITE f x x a = f y TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.mem_image_update
[197, 1]
[212, 26]
constructor
α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ y ∈ S ∧ Function.updateITE f x x y = f y
case left α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ y ∈ S case right α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ Function.updateITE f x x y = f y
Please generate a tactic in lean4 to solve the state. STATE: α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ y ∈ S ∧ Function.updateITE f x x y = f y TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.mem_image_update
[197, 1]
[212, 26]
exact h2
case left α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ y ∈ S
no goals
Please generate a tactic in lean4 to solve the state. STATE: case left α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ y ∈ S TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.mem_image_update
[197, 1]
[212, 26]
simp only [Function.updateITE]
case right α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ Function.updateITE f x x y = f y
case right α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ (if y = x then x else f y) = f y
Please generate a tactic in lean4 to solve the state. STATE: case right α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ Function.updateITE f x x y = f y TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Finset.lean
Finset.mem_image_update
[197, 1]
[212, 26]
simp only [if_neg h1]
case right α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ (if y = x then x else f y) = f y
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right α : Type inst✝ : DecidableEq α x y : α f : α → α S : Finset α h1 : ¬y = x h2 : y ∈ S ⊢ (if y = x then x else f y) = f y TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.left_id_left_inverse
[74, 1]
[83, 22]
simp only [Function.LeftInverse]
α β : Type f : α → β g : β → α h1 : g ∘ f = id ⊢ LeftInverse g f
α β : Type f : α → β g : β → α h1 : g ∘ f = id ⊢ ∀ (x : α), g (f x) = x
Please generate a tactic in lean4 to solve the state. STATE: α β : Type f : α → β g : β → α h1 : g ∘ f = id ⊢ LeftInverse g f TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.left_id_left_inverse
[74, 1]
[83, 22]
intro x
α β : Type f : α → β g : β → α h1 : g ∘ f = id ⊢ ∀ (x : α), g (f x) = x
α β : Type f : α → β g : β → α h1 : g ∘ f = id x : α ⊢ g (f x) = x
Please generate a tactic in lean4 to solve the state. STATE: α β : Type f : α → β g : β → α h1 : g ∘ f = id ⊢ ∀ (x : α), g (f x) = x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.left_id_left_inverse
[74, 1]
[83, 22]
exact congrFun h1 x
α β : Type f : α → β g : β → α h1 : g ∘ f = id x : α ⊢ g (f x) = x
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type f : α → β g : β → α h1 : g ∘ f = id x : α ⊢ g (f x) = x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.right_id_right_inverse
[86, 1]
[94, 45]
simp only [Function.RightInverse]
α β : Type f : α → β g : β → α h1 : f ∘ g = id ⊢ RightInverse g f
α β : Type f : α → β g : β → α h1 : f ∘ g = id ⊢ LeftInverse f g
Please generate a tactic in lean4 to solve the state. STATE: α β : Type f : α → β g : β → α h1 : f ∘ g = id ⊢ RightInverse g f TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.right_id_right_inverse
[86, 1]
[94, 45]
exact Function.left_id_left_inverse g f h1
α β : Type f : α → β g : β → α h1 : f ∘ g = id ⊢ LeftInverse f g
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type f : α → β g : β → α h1 : f ∘ g = id ⊢ LeftInverse f g TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
funext x
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β ⊢ updateITE f a b = Function.updateITE' f a b
case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ updateITE f a b x = Function.updateITE' f a b x
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝ : DecidableEq α f : α → β a : α b : β ⊢ updateITE f a b = Function.updateITE' f a b TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
simp only [Function.updateITE]
case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ updateITE f a b x = Function.updateITE' f a b x
case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ (if x = a then b else f x) = Function.updateITE' f a b x
Please generate a tactic in lean4 to solve the state. STATE: case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ updateITE f a b x = Function.updateITE' f a b x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
simp only [Function.updateITE']
case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ (if x = a then b else f x) = Function.updateITE' f a b x
case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ (if x = a then b else f x) = if a = x then b else f x
Please generate a tactic in lean4 to solve the state. STATE: case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ (if x = a then b else f x) = Function.updateITE' f a b x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
split_ifs
case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ (if x = a then b else f x) = if a = x then b else f x
case pos α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α h✝¹ : x = a h✝ : a = x ⊢ b = b case neg α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α h✝¹ : x = a h✝ : ¬a = x ⊢ b = f x case pos α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α h✝¹ : ¬x = a h✝ : a = x ⊢ f x = b case neg α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α h✝¹ : ¬x = a h✝ : ¬a = x ⊢ f x = f x
Please generate a tactic in lean4 to solve the state. STATE: case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ (if x = a then b else f x) = if a = x then b else f x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
case _ c1 c2 => rfl
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : x = a c2 : a = x ⊢ b = b
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : x = a c2 : a = x ⊢ b = b TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
case _ c1 c2 => subst c1 contradiction
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : x = a c2 : ¬a = x ⊢ b = f x
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : x = a c2 : ¬a = x ⊢ b = f x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
case _ c1 c2 => subst c2 contradiction
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : ¬x = a c2 : a = x ⊢ f x = b
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : ¬x = a c2 : a = x ⊢ f x = b TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
case _ c1 c2 => rfl
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : ¬x = a c2 : ¬a = x ⊢ f x = f x
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : ¬x = a c2 : ¬a = x ⊢ f x = f x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
rfl
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : x = a c2 : a = x ⊢ b = b
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : x = a c2 : a = x ⊢ b = b TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
subst c1
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : x = a c2 : ¬a = x ⊢ b = f x
α β : Type inst✝ : DecidableEq α f : α → β b : β x : α c2 : ¬x = x ⊢ b = f x
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : x = a c2 : ¬a = x ⊢ b = f x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
contradiction
α β : Type inst✝ : DecidableEq α f : α → β b : β x : α c2 : ¬x = x ⊢ b = f x
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝ : DecidableEq α f : α → β b : β x : α c2 : ¬x = x ⊢ b = f x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
subst c2
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : ¬x = a c2 : a = x ⊢ f x = b
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β c1 : ¬a = a ⊢ f a = b
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : ¬x = a c2 : a = x ⊢ f x = b TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
contradiction
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β c1 : ¬a = a ⊢ f a = b
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝ : DecidableEq α f : α → β a : α b : β c1 : ¬a = a ⊢ f a = b TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
rfl
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : ¬x = a c2 : ¬a = x ⊢ f x = f x
no goals
Please generate a tactic in lean4 to solve the state. STATE: α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : ¬x = a c2 : ¬a = x ⊢ f x = f x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_left
[124, 1]
[139, 8]
funext x
α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β ⊢ f ∘ updateITE g a b = updateITE (f ∘ g) a (f b)
case h α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α ⊢ (f ∘ updateITE g a b) x = updateITE (f ∘ g) a (f b) x
Please generate a tactic in lean4 to solve the state. STATE: α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β ⊢ f ∘ updateITE g a b = updateITE (f ∘ g) a (f b) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_left
[124, 1]
[139, 8]
simp
case h α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α ⊢ (f ∘ updateITE g a b) x = updateITE (f ∘ g) a (f b) x
case h α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α ⊢ f (updateITE g a b x) = updateITE (f ∘ g) a (f b) x
Please generate a tactic in lean4 to solve the state. STATE: case h α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α ⊢ (f ∘ updateITE g a b) x = updateITE (f ∘ g) a (f b) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_left
[124, 1]
[139, 8]
simp only [Function.updateITE]
case h α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α ⊢ f (updateITE g a b x) = updateITE (f ∘ g) a (f b) x
case h α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α ⊢ f (if x = a then b else g x) = if x = a then f b else (f ∘ g) x
Please generate a tactic in lean4 to solve the state. STATE: case h α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α ⊢ f (updateITE g a b x) = updateITE (f ∘ g) a (f b) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_left
[124, 1]
[139, 8]
split_ifs
case h α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α ⊢ f (if x = a then b else g x) = if x = a then f b else (f ∘ g) x
case pos α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α h✝ : x = a ⊢ f b = f b case neg α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α h✝ : ¬x = a ⊢ f (g x) = (f ∘ g) x
Please generate a tactic in lean4 to solve the state. STATE: case h α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α ⊢ f (if x = a then b else g x) = if x = a then f b else (f ∘ g) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_left
[124, 1]
[139, 8]
rfl
case pos α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α h✝ : x = a ⊢ f b = f b
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α h✝ : x = a ⊢ f b = f b TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_left
[124, 1]
[139, 8]
rfl
case neg α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α h✝ : ¬x = a ⊢ f (g x) = (f ∘ g) x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg α β γ : Type inst✝ : DecidableEq α f : β → γ g : α → β a : α b : β x : α h✝ : ¬x = a ⊢ f (g x) = (f ∘ g) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_right
[142, 1]
[171, 15]
funext x
α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id ⊢ updateITE g a b ∘ f = updateITE (g ∘ f) (finv a) b
case h α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ (updateITE g a b ∘ f) x = updateITE (g ∘ f) (finv a) b x
Please generate a tactic in lean4 to solve the state. STATE: α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id ⊢ updateITE g a b ∘ f = updateITE (g ∘ f) (finv a) b TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_right
[142, 1]
[171, 15]
simp
case h α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ (updateITE g a b ∘ f) x = updateITE (g ∘ f) (finv a) b x
case h α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ updateITE g a b (f x) = updateITE (g ∘ f) (finv a) b x
Please generate a tactic in lean4 to solve the state. STATE: case h α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ (updateITE g a b ∘ f) x = updateITE (g ∘ f) (finv a) b x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_right
[142, 1]
[171, 15]
simp only [Function.updateITE]
case h α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ updateITE g a b (f x) = updateITE (g ∘ f) (finv a) b x
case h α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ (if f x = a then b else g (f x)) = if x = finv a then b else (g ∘ f) x
Please generate a tactic in lean4 to solve the state. STATE: case h α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ updateITE g a b (f x) = updateITE (g ∘ f) (finv a) b x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_right
[142, 1]
[171, 15]
congr!
case h α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ (if f x = a then b else g (f x)) = if x = finv a then b else (g ∘ f) x
case h.h₁.a α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ f x = a ↔ x = finv a
Please generate a tactic in lean4 to solve the state. STATE: case h α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ (if f x = a then b else g (f x)) = if x = finv a then b else (g ∘ f) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_right
[142, 1]
[171, 15]
constructor
case h.h₁.a α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ f x = a ↔ x = finv a
case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ f x = a → x = finv a case h.h₁.a.mpr α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ x = finv a → f x = a
Please generate a tactic in lean4 to solve the state. STATE: case h.h₁.a α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ f x = a ↔ x = finv a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_right
[142, 1]
[171, 15]
intro a1
case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ f x = a → x = finv a
case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : f x = a ⊢ x = finv a
Please generate a tactic in lean4 to solve the state. STATE: case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ f x = a → x = finv a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_right
[142, 1]
[171, 15]
simp only [← a1]
case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : f x = a ⊢ x = finv a
case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : f x = a ⊢ x = finv (f x)
Please generate a tactic in lean4 to solve the state. STATE: case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : f x = a ⊢ x = finv a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_right
[142, 1]
[171, 15]
obtain s1 := Function.left_id_left_inverse f finv h1
case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : f x = a ⊢ x = finv (f x)
case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : f x = a s1 : LeftInverse finv f ⊢ x = finv (f x)
Please generate a tactic in lean4 to solve the state. STATE: case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : f x = a ⊢ x = finv (f x) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_right
[142, 1]
[171, 15]
simp only [Function.LeftInverse] at s1
case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : f x = a s1 : LeftInverse finv f ⊢ x = finv (f x)
case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : f x = a s1 : ∀ (x : α), finv (f x) = x ⊢ x = finv (f x)
Please generate a tactic in lean4 to solve the state. STATE: case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : f x = a s1 : LeftInverse finv f ⊢ x = finv (f x) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_right
[142, 1]
[171, 15]
simp only [s1 x]
case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : f x = a s1 : ∀ (x : α), finv (f x) = x ⊢ x = finv (f x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.h₁.a.mp α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : f x = a s1 : ∀ (x : α), finv (f x) = x ⊢ x = finv (f x) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_right
[142, 1]
[171, 15]
intro a1
case h.h₁.a.mpr α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ x = finv a → f x = a
case h.h₁.a.mpr α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : x = finv a ⊢ f x = a
Please generate a tactic in lean4 to solve the state. STATE: case h.h₁.a.mpr α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α ⊢ x = finv a → f x = a TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_comp_right
[142, 1]
[171, 15]
simp only [a1]
case h.h₁.a.mpr α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : x = finv a ⊢ f x = a
case h.h₁.a.mpr α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : x = finv a ⊢ f (finv a) = a
Please generate a tactic in lean4 to solve the state. STATE: case h.h₁.a.mpr α β γ : Type inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β finv : β → α g : β → γ a : β b : γ h1 : finv ∘ f = id h2 : f ∘ finv = id x : α a1 : x = finv a ⊢ f x = a TACTIC: