url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
|---|---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_spec_id'
|
[746, 1]
|
[764, 13]
|
simp only [Forall_] at h1
|
P : Formula
Ξ : Set Formula
h1 : IsDeduct Ξ (Forall_ [] P)
β’ IsDeduct Ξ P
|
P : Formula
Ξ : Set Formula
h1 : IsDeduct Ξ (List.foldr forall_ P [])
β’ IsDeduct Ξ P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
Ξ : Set Formula
h1 : IsDeduct Ξ (Forall_ [] P)
β’ IsDeduct Ξ P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_spec_id'
|
[746, 1]
|
[764, 13]
|
simp at h1
|
P : Formula
Ξ : Set Formula
h1 : IsDeduct Ξ (List.foldr forall_ P [])
β’ IsDeduct Ξ P
|
P : Formula
Ξ : Set Formula
h1 : IsDeduct Ξ P
β’ IsDeduct Ξ P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
Ξ : Set Formula
h1 : IsDeduct Ξ (List.foldr forall_ P [])
β’ IsDeduct Ξ P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_spec_id'
|
[746, 1]
|
[764, 13]
|
exact h1
|
P : Formula
Ξ : Set Formula
h1 : IsDeduct Ξ P
β’ IsDeduct Ξ P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
Ξ : Set Formula
h1 : IsDeduct Ξ P
β’ IsDeduct Ξ P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_spec_id'
|
[746, 1]
|
[764, 13]
|
simp only [Forall_] at h1
|
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (Forall_ (xs_hd :: xs_tl) P)
β’ IsDeduct Ξ P
|
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (List.foldr forall_ P (xs_hd :: xs_tl))
β’ IsDeduct Ξ P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (Forall_ (xs_hd :: xs_tl) P)
β’ IsDeduct Ξ P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_spec_id'
|
[746, 1]
|
[764, 13]
|
simp at h1
|
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (List.foldr forall_ P (xs_hd :: xs_tl))
β’ IsDeduct Ξ P
|
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
β’ IsDeduct Ξ P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (List.foldr forall_ P (xs_hd :: xs_tl))
β’ IsDeduct Ξ P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_spec_id'
|
[746, 1]
|
[764, 13]
|
apply xs_ih
|
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
β’ IsDeduct Ξ P
|
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
β’ IsDeduct Ξ (Forall_ xs_tl P)
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
β’ IsDeduct Ξ P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_spec_id'
|
[746, 1]
|
[764, 13]
|
simp only [Forall_]
|
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
β’ IsDeduct Ξ (Forall_ xs_tl P)
|
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
β’ IsDeduct Ξ (List.foldr forall_ P xs_tl)
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
β’ IsDeduct Ξ (Forall_ xs_tl P)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_spec_id'
|
[746, 1]
|
[764, 13]
|
apply specId xs_hd
|
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
β’ IsDeduct Ξ (List.foldr forall_ P xs_tl)
|
case h1
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
β’ IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
β’ IsDeduct Ξ (List.foldr forall_ P xs_tl)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_spec_id'
|
[746, 1]
|
[764, 13]
|
exact h1
|
case h1
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
β’ IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
P : Formula
Ξ : Set Formula
xs_hd : VarName
xs_tl : List VarName
xs_ih : IsDeduct Ξ (Forall_ xs_tl P) β IsDeduct Ξ P
h1 : IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
β’ IsDeduct Ξ (forall_ xs_hd (List.foldr forall_ P xs_tl))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isBoundIn
|
[767, 1]
|
[781, 10]
|
simp only [Formula.Forall_]
|
P : Formula
xs : List VarName
x : VarName
β’ isBoundIn x (Forall_ xs P) β x β xs β¨ isBoundIn x P
|
P : Formula
xs : List VarName
x : VarName
β’ isBoundIn x (List.foldr forall_ P xs) β x β xs β¨ isBoundIn x P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
xs : List VarName
x : VarName
β’ isBoundIn x (Forall_ xs P) β x β xs β¨ isBoundIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isBoundIn
|
[767, 1]
|
[781, 10]
|
induction xs
|
P : Formula
xs : List VarName
x : VarName
β’ isBoundIn x (List.foldr forall_ P xs) β x β xs β¨ isBoundIn x P
|
case nil
P : Formula
x : VarName
β’ isBoundIn x (List.foldr forall_ P []) β x β [] β¨ isBoundIn x P
case cons
P : Formula
x headβ : VarName
tailβ : List VarName
tail_ihβ : isBoundIn x (List.foldr forall_ P tailβ) β x β tailβ β¨ isBoundIn x P
β’ isBoundIn x (List.foldr forall_ P (headβ :: tailβ)) β x β headβ :: tailβ β¨ isBoundIn x P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
xs : List VarName
x : VarName
β’ isBoundIn x (List.foldr forall_ P xs) β x β xs β¨ isBoundIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isBoundIn
|
[767, 1]
|
[781, 10]
|
case nil =>
simp
|
P : Formula
x : VarName
β’ isBoundIn x (List.foldr forall_ P []) β x β [] β¨ isBoundIn x P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
x : VarName
β’ isBoundIn x (List.foldr forall_ P []) β x β [] β¨ isBoundIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isBoundIn
|
[767, 1]
|
[781, 10]
|
case cons xs_hd xs_tl xs_ih =>
simp
simp only [isBoundIn]
simp only [xs_ih]
tauto
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isBoundIn x (List.foldr forall_ P xs_tl) β x β xs_tl β¨ isBoundIn x P
β’ isBoundIn x (List.foldr forall_ P (xs_hd :: xs_tl)) β x β xs_hd :: xs_tl β¨ isBoundIn x P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isBoundIn x (List.foldr forall_ P xs_tl) β x β xs_tl β¨ isBoundIn x P
β’ isBoundIn x (List.foldr forall_ P (xs_hd :: xs_tl)) β x β xs_hd :: xs_tl β¨ isBoundIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isBoundIn
|
[767, 1]
|
[781, 10]
|
simp
|
P : Formula
x : VarName
β’ isBoundIn x (List.foldr forall_ P []) β x β [] β¨ isBoundIn x P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
x : VarName
β’ isBoundIn x (List.foldr forall_ P []) β x β [] β¨ isBoundIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isBoundIn
|
[767, 1]
|
[781, 10]
|
simp
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isBoundIn x (List.foldr forall_ P xs_tl) β x β xs_tl β¨ isBoundIn x P
β’ isBoundIn x (List.foldr forall_ P (xs_hd :: xs_tl)) β x β xs_hd :: xs_tl β¨ isBoundIn x P
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isBoundIn x (List.foldr forall_ P xs_tl) β x β xs_tl β¨ isBoundIn x P
β’ isBoundIn x (forall_ xs_hd (List.foldr forall_ P xs_tl)) β (x = xs_hd β¨ x β xs_tl) β¨ isBoundIn x P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isBoundIn x (List.foldr forall_ P xs_tl) β x β xs_tl β¨ isBoundIn x P
β’ isBoundIn x (List.foldr forall_ P (xs_hd :: xs_tl)) β x β xs_hd :: xs_tl β¨ isBoundIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isBoundIn
|
[767, 1]
|
[781, 10]
|
simp only [isBoundIn]
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isBoundIn x (List.foldr forall_ P xs_tl) β x β xs_tl β¨ isBoundIn x P
β’ isBoundIn x (forall_ xs_hd (List.foldr forall_ P xs_tl)) β (x = xs_hd β¨ x β xs_tl) β¨ isBoundIn x P
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isBoundIn x (List.foldr forall_ P xs_tl) β x β xs_tl β¨ isBoundIn x P
β’ x = xs_hd β¨ isBoundIn x (List.foldr forall_ P xs_tl) β (x = xs_hd β¨ x β xs_tl) β¨ isBoundIn x P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isBoundIn x (List.foldr forall_ P xs_tl) β x β xs_tl β¨ isBoundIn x P
β’ isBoundIn x (forall_ xs_hd (List.foldr forall_ P xs_tl)) β (x = xs_hd β¨ x β xs_tl) β¨ isBoundIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isBoundIn
|
[767, 1]
|
[781, 10]
|
simp only [xs_ih]
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isBoundIn x (List.foldr forall_ P xs_tl) β x β xs_tl β¨ isBoundIn x P
β’ x = xs_hd β¨ isBoundIn x (List.foldr forall_ P xs_tl) β (x = xs_hd β¨ x β xs_tl) β¨ isBoundIn x P
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isBoundIn x (List.foldr forall_ P xs_tl) β x β xs_tl β¨ isBoundIn x P
β’ x = xs_hd β¨ x β xs_tl β¨ isBoundIn x P β (x = xs_hd β¨ x β xs_tl) β¨ isBoundIn x P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isBoundIn x (List.foldr forall_ P xs_tl) β x β xs_tl β¨ isBoundIn x P
β’ x = xs_hd β¨ isBoundIn x (List.foldr forall_ P xs_tl) β (x = xs_hd β¨ x β xs_tl) β¨ isBoundIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isBoundIn
|
[767, 1]
|
[781, 10]
|
tauto
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isBoundIn x (List.foldr forall_ P xs_tl) β x β xs_tl β¨ isBoundIn x P
β’ x = xs_hd β¨ x β xs_tl β¨ isBoundIn x P β (x = xs_hd β¨ x β xs_tl) β¨ isBoundIn x P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isBoundIn x (List.foldr forall_ P xs_tl) β x β xs_tl β¨ isBoundIn x P
β’ x = xs_hd β¨ x β xs_tl β¨ isBoundIn x P β (x = xs_hd β¨ x β xs_tl) β¨ isBoundIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isFreeIn
|
[784, 1]
|
[798, 10]
|
simp only [Formula.Forall_]
|
P : Formula
xs : List VarName
x : VarName
β’ isFreeIn x (Forall_ xs P) β x β xs β§ isFreeIn x P
|
P : Formula
xs : List VarName
x : VarName
β’ isFreeIn x (List.foldr forall_ P xs) β x β xs β§ isFreeIn x P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
xs : List VarName
x : VarName
β’ isFreeIn x (Forall_ xs P) β x β xs β§ isFreeIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isFreeIn
|
[784, 1]
|
[798, 10]
|
induction xs
|
P : Formula
xs : List VarName
x : VarName
β’ isFreeIn x (List.foldr forall_ P xs) β x β xs β§ isFreeIn x P
|
case nil
P : Formula
x : VarName
β’ isFreeIn x (List.foldr forall_ P []) β x β [] β§ isFreeIn x P
case cons
P : Formula
x headβ : VarName
tailβ : List VarName
tail_ihβ : isFreeIn x (List.foldr forall_ P tailβ) β x β tailβ β§ isFreeIn x P
β’ isFreeIn x (List.foldr forall_ P (headβ :: tailβ)) β x β headβ :: tailβ β§ isFreeIn x P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
xs : List VarName
x : VarName
β’ isFreeIn x (List.foldr forall_ P xs) β x β xs β§ isFreeIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isFreeIn
|
[784, 1]
|
[798, 10]
|
case nil =>
simp
|
P : Formula
x : VarName
β’ isFreeIn x (List.foldr forall_ P []) β x β [] β§ isFreeIn x P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
x : VarName
β’ isFreeIn x (List.foldr forall_ P []) β x β [] β§ isFreeIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isFreeIn
|
[784, 1]
|
[798, 10]
|
case cons xs_hd xs_tl xs_ih =>
simp
simp only [isFreeIn]
simp only [xs_ih]
tauto
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isFreeIn x (List.foldr forall_ P xs_tl) β x β xs_tl β§ isFreeIn x P
β’ isFreeIn x (List.foldr forall_ P (xs_hd :: xs_tl)) β x β xs_hd :: xs_tl β§ isFreeIn x P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isFreeIn x (List.foldr forall_ P xs_tl) β x β xs_tl β§ isFreeIn x P
β’ isFreeIn x (List.foldr forall_ P (xs_hd :: xs_tl)) β x β xs_hd :: xs_tl β§ isFreeIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isFreeIn
|
[784, 1]
|
[798, 10]
|
simp
|
P : Formula
x : VarName
β’ isFreeIn x (List.foldr forall_ P []) β x β [] β§ isFreeIn x P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
x : VarName
β’ isFreeIn x (List.foldr forall_ P []) β x β [] β§ isFreeIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isFreeIn
|
[784, 1]
|
[798, 10]
|
simp
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isFreeIn x (List.foldr forall_ P xs_tl) β x β xs_tl β§ isFreeIn x P
β’ isFreeIn x (List.foldr forall_ P (xs_hd :: xs_tl)) β x β xs_hd :: xs_tl β§ isFreeIn x P
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isFreeIn x (List.foldr forall_ P xs_tl) β x β xs_tl β§ isFreeIn x P
β’ isFreeIn x (forall_ xs_hd (List.foldr forall_ P xs_tl)) β (Β¬x = xs_hd β§ x β xs_tl) β§ isFreeIn x P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isFreeIn x (List.foldr forall_ P xs_tl) β x β xs_tl β§ isFreeIn x P
β’ isFreeIn x (List.foldr forall_ P (xs_hd :: xs_tl)) β x β xs_hd :: xs_tl β§ isFreeIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isFreeIn
|
[784, 1]
|
[798, 10]
|
simp only [isFreeIn]
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isFreeIn x (List.foldr forall_ P xs_tl) β x β xs_tl β§ isFreeIn x P
β’ isFreeIn x (forall_ xs_hd (List.foldr forall_ P xs_tl)) β (Β¬x = xs_hd β§ x β xs_tl) β§ isFreeIn x P
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isFreeIn x (List.foldr forall_ P xs_tl) β x β xs_tl β§ isFreeIn x P
β’ Β¬x = xs_hd β§ isFreeIn x (List.foldr forall_ P xs_tl) β (Β¬x = xs_hd β§ x β xs_tl) β§ isFreeIn x P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isFreeIn x (List.foldr forall_ P xs_tl) β x β xs_tl β§ isFreeIn x P
β’ isFreeIn x (forall_ xs_hd (List.foldr forall_ P xs_tl)) β (Β¬x = xs_hd β§ x β xs_tl) β§ isFreeIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isFreeIn
|
[784, 1]
|
[798, 10]
|
simp only [xs_ih]
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isFreeIn x (List.foldr forall_ P xs_tl) β x β xs_tl β§ isFreeIn x P
β’ Β¬x = xs_hd β§ isFreeIn x (List.foldr forall_ P xs_tl) β (Β¬x = xs_hd β§ x β xs_tl) β§ isFreeIn x P
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isFreeIn x (List.foldr forall_ P xs_tl) β x β xs_tl β§ isFreeIn x P
β’ Β¬x = xs_hd β§ x β xs_tl β§ isFreeIn x P β (Β¬x = xs_hd β§ x β xs_tl) β§ isFreeIn x P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isFreeIn x (List.foldr forall_ P xs_tl) β x β xs_tl β§ isFreeIn x P
β’ Β¬x = xs_hd β§ isFreeIn x (List.foldr forall_ P xs_tl) β (Β¬x = xs_hd β§ x β xs_tl) β§ isFreeIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.Forall_isFreeIn
|
[784, 1]
|
[798, 10]
|
tauto
|
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isFreeIn x (List.foldr forall_ P xs_tl) β x β xs_tl β§ isFreeIn x P
β’ Β¬x = xs_hd β§ x β xs_tl β§ isFreeIn x P β (Β¬x = xs_hd β§ x β xs_tl) β§ isFreeIn x P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
x xs_hd : VarName
xs_tl : List VarName
xs_ih : isFreeIn x (List.foldr forall_ P xs_tl) β x β xs_tl β§ isFreeIn x P
β’ Β¬x = xs_hd β§ x β xs_tl β§ isFreeIn x P β (Β¬x = xs_hd β§ x β xs_tl) β§ isFreeIn x P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
induction h1
|
U V P_U P_V : Formula
l : List VarName
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_U β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (P_U.iff_ P_V))
|
case same_
U V P_U P_V : Formula
l : List VarName
P_uβ P_vβ : Formula
aβ : P_uβ = P_vβ
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
case diff_
U V P_U P_V : Formula
l : List VarName
P_uβ P_vβ : Formula
aβΒΉ : P_uβ = U
aβ : P_vβ = V
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
case not_
U V P_U P_V : Formula
l : List VarName
P_uβ P_vβ : Formula
aβ : IsReplOfFormulaInFormula U V P_uβ P_vβ
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ.not_ β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.not_.iff_ P_vβ.not_))
case imp_
U V P_U P_V : Formula
l : List VarName
P_uβ Q_uβ P_vβ Q_vβ : Formula
aβΒΉ : IsReplOfFormulaInFormula U V P_uβ P_vβ
aβ : IsReplOfFormulaInFormula U V Q_uβ Q_vβ
a_ihβΒΉ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v Q_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (Q_uβ.iff_ Q_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (P_uβ.imp_ Q_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((P_uβ.imp_ Q_uβ).iff_ (P_vβ.imp_ Q_vβ)))
case and_
U V P_U P_V : Formula
l : List VarName
P_uβ Q_uβ P_vβ Q_vβ : Formula
aβΒΉ : IsReplOfFormulaInFormula U V P_uβ P_vβ
aβ : IsReplOfFormulaInFormula U V Q_uβ Q_vβ
a_ihβΒΉ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v Q_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (Q_uβ.iff_ Q_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (P_uβ.and_ Q_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((P_uβ.and_ Q_uβ).iff_ (P_vβ.and_ Q_vβ)))
case or_
U V P_U P_V : Formula
l : List VarName
P_uβ Q_uβ P_vβ Q_vβ : Formula
aβΒΉ : IsReplOfFormulaInFormula U V P_uβ P_vβ
aβ : IsReplOfFormulaInFormula U V Q_uβ Q_vβ
a_ihβΒΉ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v Q_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (Q_uβ.iff_ Q_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (P_uβ.or_ Q_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((P_uβ.or_ Q_uβ).iff_ (P_vβ.or_ Q_vβ)))
case iff_
U V P_U P_V : Formula
l : List VarName
P_uβ Q_uβ P_vβ Q_vβ : Formula
aβΒΉ : IsReplOfFormulaInFormula U V P_uβ P_vβ
aβ : IsReplOfFormulaInFormula U V Q_uβ Q_vβ
a_ihβΒΉ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v Q_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (Q_uβ.iff_ Q_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (P_uβ.iff_ Q_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((P_uβ.iff_ Q_uβ).iff_ (P_vβ.iff_ Q_vβ)))
case forall_
U V P_U P_V : Formula
l : List VarName
xβ : VarName
P_uβ P_vβ : Formula
aβ : IsReplOfFormulaInFormula U V P_uβ P_vβ
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (forall_ xβ P_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((forall_ xβ P_uβ).iff_ (forall_ xβ P_vβ)))
case exists_
U V P_U P_V : Formula
l : List VarName
xβ : VarName
P_uβ P_vβ : Formula
aβ : IsReplOfFormulaInFormula U V P_uβ P_vβ
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (exists_ xβ P_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((exists_ xβ P_uβ).iff_ (exists_ xβ P_vβ)))
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_U β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (P_U.iff_ P_V))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
case same_ h1_P h1_P' h1_1 =>
subst h1_1
simp only [def_iff_]
simp only [def_and_]
SC
|
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : h1_P = h1_P'
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : h1_P = h1_P'
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
case diff_ h1_P h1_P' h1_1 h1_2 =>
subst h1_1
subst h1_2
apply Forall_spec_id
|
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : h1_P = U
h1_2 : h1_P' = V
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : h1_P = U
h1_2 : h1_P' = V
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
all_goals
sorry
|
case and_
U V P_U P_V : Formula
l : List VarName
P_uβ Q_uβ P_vβ Q_vβ : Formula
aβΒΉ : IsReplOfFormulaInFormula U V P_uβ P_vβ
aβ : IsReplOfFormulaInFormula U V Q_uβ Q_vβ
a_ihβΒΉ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v Q_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (Q_uβ.iff_ Q_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (P_uβ.and_ Q_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((P_uβ.and_ Q_uβ).iff_ (P_vβ.and_ Q_vβ)))
case or_
U V P_U P_V : Formula
l : List VarName
P_uβ Q_uβ P_vβ Q_vβ : Formula
aβΒΉ : IsReplOfFormulaInFormula U V P_uβ P_vβ
aβ : IsReplOfFormulaInFormula U V Q_uβ Q_vβ
a_ihβΒΉ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v Q_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (Q_uβ.iff_ Q_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (P_uβ.or_ Q_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((P_uβ.or_ Q_uβ).iff_ (P_vβ.or_ Q_vβ)))
case iff_
U V P_U P_V : Formula
l : List VarName
P_uβ Q_uβ P_vβ Q_vβ : Formula
aβΒΉ : IsReplOfFormulaInFormula U V P_uβ P_vβ
aβ : IsReplOfFormulaInFormula U V Q_uβ Q_vβ
a_ihβΒΉ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v Q_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (Q_uβ.iff_ Q_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (P_uβ.iff_ Q_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((P_uβ.iff_ Q_uβ).iff_ (P_vβ.iff_ Q_vβ)))
case exists_
U V P_U P_V : Formula
l : List VarName
xβ : VarName
P_uβ P_vβ : Formula
aβ : IsReplOfFormulaInFormula U V P_uβ P_vβ
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (exists_ xβ P_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((exists_ xβ P_uβ).iff_ (exists_ xβ P_vβ)))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case and_
U V P_U P_V : Formula
l : List VarName
P_uβ Q_uβ P_vβ Q_vβ : Formula
aβΒΉ : IsReplOfFormulaInFormula U V P_uβ P_vβ
aβ : IsReplOfFormulaInFormula U V Q_uβ Q_vβ
a_ihβΒΉ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v Q_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (Q_uβ.iff_ Q_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (P_uβ.and_ Q_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((P_uβ.and_ Q_uβ).iff_ (P_vβ.and_ Q_vβ)))
case or_
U V P_U P_V : Formula
l : List VarName
P_uβ Q_uβ P_vβ Q_vβ : Formula
aβΒΉ : IsReplOfFormulaInFormula U V P_uβ P_vβ
aβ : IsReplOfFormulaInFormula U V Q_uβ Q_vβ
a_ihβΒΉ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v Q_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (Q_uβ.iff_ Q_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (P_uβ.or_ Q_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((P_uβ.or_ Q_uβ).iff_ (P_vβ.or_ Q_vβ)))
case iff_
U V P_U P_V : Formula
l : List VarName
P_uβ Q_uβ P_vβ Q_vβ : Formula
aβΒΉ : IsReplOfFormulaInFormula U V P_uβ P_vβ
aβ : IsReplOfFormulaInFormula U V Q_uβ Q_vβ
a_ihβΒΉ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v Q_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (Q_uβ.iff_ Q_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (P_uβ.iff_ Q_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((P_uβ.iff_ Q_uβ).iff_ (P_vβ.iff_ Q_vβ)))
case exists_
U V P_U P_V : Formula
l : List VarName
xβ : VarName
P_uβ P_vβ : Formula
aβ : IsReplOfFormulaInFormula U V P_uβ P_vβ
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (exists_ xβ P_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((exists_ xβ P_uβ).iff_ (exists_ xβ P_vβ)))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
subst h1_1
|
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : h1_P = h1_P'
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
U V P_U P_V : Formula
l : List VarName
h1_P : Formula
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P))
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : h1_P = h1_P'
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp only [def_iff_]
|
U V P_U P_V : Formula
l : List VarName
h1_P : Formula
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P))
|
U V P_U P_V : Formula
l : List VarName
h1_P : Formula
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_P.imp_ h1_P).and_ (h1_P.imp_ h1_P)))
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_P : Formula
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp only [def_and_]
|
U V P_U P_V : Formula
l : List VarName
h1_P : Formula
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_P.imp_ h1_P).and_ (h1_P.imp_ h1_P)))
|
U V P_U P_V : Formula
l : List VarName
h1_P : Formula
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ ((h1_P.imp_ h1_P).imp_ (h1_P.imp_ h1_P).not_).not_)
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_P : Formula
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_P.imp_ h1_P).and_ (h1_P.imp_ h1_P)))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
SC
|
U V P_U P_V : Formula
l : List VarName
h1_P : Formula
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ ((h1_P.imp_ h1_P).imp_ (h1_P.imp_ h1_P).not_).not_)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_P : Formula
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ ((h1_P.imp_ h1_P).imp_ (h1_P.imp_ h1_P).not_).not_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
subst h1_1
|
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : h1_P = U
h1_2 : h1_P' = V
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_2 : h1_P' = V
h2 : β (v : VarName), (isFreeIn v h1_P β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (h1_P.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : h1_P = U
h1_2 : h1_P' = V
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
subst h1_2
|
V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_2 : h1_P' = V
h2 : β (v : VarName), (isFreeIn v h1_P β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (h1_P.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h2 : β (v : VarName), (isFreeIn v h1_P β¨ isFreeIn v h1_P') β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (h1_P.iff_ h1_P')).imp_ (h1_P.iff_ h1_P'))
|
Please generate a tactic in lean4 to solve the state.
STATE:
V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_2 : h1_P' = V
h2 : β (v : VarName), (isFreeIn v h1_P β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (h1_P.iff_ V)).imp_ (h1_P.iff_ h1_P'))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply Forall_spec_id
|
P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h2 : β (v : VarName), (isFreeIn v h1_P β¨ isFreeIn v h1_P') β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (h1_P.iff_ h1_P')).imp_ (h1_P.iff_ h1_P'))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h2 : β (v : VarName), (isFreeIn v h1_P β¨ isFreeIn v h1_P') β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (h1_P.iff_ h1_P')).imp_ (h1_P.iff_ h1_P'))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp only [isBoundIn] at h2
|
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P.not_ β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.not_.iff_ h1_P'.not_))
|
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.not_.iff_ h1_P'.not_))
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P.not_ β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.not_.iff_ h1_P'.not_))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply IsDeduct.mp_ ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.not_.iff_ h1_P'.not_))
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsDeduct β
(((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')).imp_ ((Forall_ l (U.iff_ V)).imp_ (h1_P.not_.iff_ h1_P'.not_)))
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsDeduct β
((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.not_.iff_ h1_P'.not_))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp only [def_iff_]
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsDeduct β
(((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')).imp_ ((Forall_ l (U.iff_ V)).imp_ (h1_P.not_.iff_ h1_P'.not_)))
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsDeduct β
(((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_P.imp_ h1_P').and_ (h1_P'.imp_ h1_P))).imp_
((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_P.not_.imp_ h1_P'.not_).and_ (h1_P'.not_.imp_ h1_P.not_))))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsDeduct β
(((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')).imp_ ((Forall_ l (U.iff_ V)).imp_ (h1_P.not_.iff_ h1_P'.not_)))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp only [def_and_]
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsDeduct β
(((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_P.imp_ h1_P').and_ (h1_P'.imp_ h1_P))).imp_
((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_P.not_.imp_ h1_P'.not_).and_ (h1_P'.not_.imp_ h1_P.not_))))
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsDeduct β
(((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ ((h1_P.imp_ h1_P').imp_ (h1_P'.imp_ h1_P).not_).not_).imp_
((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_
((h1_P.not_.imp_ h1_P'.not_).imp_ (h1_P'.not_.imp_ h1_P.not_).not_).not_))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsDeduct β
(((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_P.imp_ h1_P').and_ (h1_P'.imp_ h1_P))).imp_
((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_P.not_.imp_ h1_P'.not_).and_ (h1_P'.not_.imp_ h1_P.not_))))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
SC
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsDeduct β
(((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ ((h1_P.imp_ h1_P').imp_ (h1_P'.imp_ h1_P).not_).not_).imp_
((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_
((h1_P.not_.imp_ h1_P'.not_).imp_ (h1_P'.not_.imp_ h1_P.not_).not_).not_))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsDeduct β
(((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ ((h1_P.imp_ h1_P').imp_ (h1_P'.imp_ h1_P).not_).not_).imp_
((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_
((h1_P.not_.imp_ h1_P'.not_).imp_ (h1_P'.not_.imp_ h1_P.not_).not_).not_))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
exact h1_ih h2
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsDeduct β
((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
β’ IsDeduct β
((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp only [isBoundIn] at h2
|
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (h1_P.imp_ h1_Q) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q')))
|
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q')))
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (h1_P.imp_ h1_Q) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q')))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply IsDeduct.mp_ ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q')))
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
(((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')).imp_
((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q'))))
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q')))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply IsDeduct.mp_ ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
(((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')).imp_
((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q'))))
|
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
(((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')).imp_
(((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')).imp_
((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q')))))
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
(((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')).imp_
((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q'))))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp only [def_iff_]
|
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
(((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')).imp_
(((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')).imp_
((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q')))))
|
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
(((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_Q.imp_ h1_Q').and_ (h1_Q'.imp_ h1_Q))).imp_
(((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_P.imp_ h1_P').and_ (h1_P'.imp_ h1_P))).imp_
((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_
(((h1_P.imp_ h1_Q).imp_ (h1_P'.imp_ h1_Q')).and_ ((h1_P'.imp_ h1_Q').imp_ (h1_P.imp_ h1_Q))))))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
(((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')).imp_
(((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')).imp_
((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q')))))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp only [def_and_]
|
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
(((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_Q.imp_ h1_Q').and_ (h1_Q'.imp_ h1_Q))).imp_
(((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_P.imp_ h1_P').and_ (h1_P'.imp_ h1_P))).imp_
((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_
(((h1_P.imp_ h1_Q).imp_ (h1_P'.imp_ h1_Q')).and_ ((h1_P'.imp_ h1_Q').imp_ (h1_P.imp_ h1_Q))))))
|
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
(((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ ((h1_Q.imp_ h1_Q').imp_ (h1_Q'.imp_ h1_Q).not_).not_).imp_
(((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_
((h1_P.imp_ h1_P').imp_ (h1_P'.imp_ h1_P).not_).not_).imp_
((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_
(((h1_P.imp_ h1_Q).imp_ (h1_P'.imp_ h1_Q')).imp_ ((h1_P'.imp_ h1_Q').imp_ (h1_P.imp_ h1_Q)).not_).not_)))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
(((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_Q.imp_ h1_Q').and_ (h1_Q'.imp_ h1_Q))).imp_
(((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_P.imp_ h1_P').and_ (h1_P'.imp_ h1_P))).imp_
((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_
(((h1_P.imp_ h1_Q).imp_ (h1_P'.imp_ h1_Q')).and_ ((h1_P'.imp_ h1_Q').imp_ (h1_P.imp_ h1_Q))))))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
SC
|
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
(((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ ((h1_Q.imp_ h1_Q').imp_ (h1_Q'.imp_ h1_Q).not_).not_).imp_
(((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_
((h1_P.imp_ h1_P').imp_ (h1_P'.imp_ h1_P).not_).not_).imp_
((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_
(((h1_P.imp_ h1_Q).imp_ (h1_P'.imp_ h1_Q')).imp_ ((h1_P'.imp_ h1_Q').imp_ (h1_P.imp_ h1_Q)).not_).not_)))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
(((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ ((h1_Q.imp_ h1_Q').imp_ (h1_Q'.imp_ h1_Q).not_).not_).imp_
(((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_
((h1_P.imp_ h1_P').imp_ (h1_P'.imp_ h1_P).not_).not_).imp_
((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_
(((h1_P.imp_ h1_Q).imp_ (h1_P'.imp_ h1_Q')).imp_ ((h1_P'.imp_ h1_Q').imp_ (h1_P.imp_ h1_Q)).not_).not_)))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply h1_ih_2
|
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
|
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
intro v a2
|
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l
|
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a2 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q
β’ v β l
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply h2 v
|
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a2 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q
β’ v β l
|
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a2 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q
β’ (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a2 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q
β’ v β l
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
tauto
|
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a2 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q
β’ (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a2 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q
β’ (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply h1_ih_1
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ IsDeduct β
((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
intro v a1
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P
β’ v β l
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
β’ β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply h2 v
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P
β’ v β l
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P
β’ (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P
β’ v β l
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
cases a1
|
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P
β’ (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q)
|
case a.intro
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
leftβ : isFreeIn v U β¨ isFreeIn v V
rightβ : isBoundIn v h1_P
β’ (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P
β’ (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
constructor
|
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q)
|
case left
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ isFreeIn v U β¨ isFreeIn v V
case right
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ isBoundIn v h1_P β¨ isBoundIn v h1_Q
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
exact a1_left
|
case left
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ isFreeIn v U β¨ isFreeIn v V
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case left
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ isFreeIn v U β¨ isFreeIn v V
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
left
|
case right
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ isBoundIn v h1_P β¨ isBoundIn v h1_Q
|
case right.h
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ isBoundIn v h1_P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ isBoundIn v h1_P β¨ isBoundIn v h1_Q
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
exact a1_right
|
case right.h
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ isBoundIn v h1_P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right.h
U V P_U P_V : Formula
l : List VarName
h1_P h1_Q h1_P' h1_Q' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q'
h1_ih_1 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h1_ih_2 :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_Q β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (isBoundIn v h1_P β¨ isBoundIn v h1_Q) β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ isBoundIn v h1_P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp only [isBoundIn] at h2
|
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (forall_ h1_x h1_P) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
|
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (v = h1_x β¨ isBoundIn v h1_P) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (forall_ h1_x h1_P) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp at h2
|
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (v = h1_x β¨ isBoundIn v h1_P) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
|
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ (v = h1_x β¨ isBoundIn v h1_P) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply deduction_theorem
|
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
|
case h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct (β
βͺ {Forall_ l (U.iff_ V)}) ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P'))
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp
|
case h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct (β
βͺ {Forall_ l (U.iff_ V)}) ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P'))
|
case h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P'))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct (β
βͺ {Forall_ l (U.iff_ V)}) ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P'))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply IsDeduct.mp_ (forall_ h1_x (h1_P.iff_ h1_P'))
|
case h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P'))
|
case h1.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)}
((forall_ h1_x (h1_P.iff_ h1_P')).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
case h1.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} (forall_ h1_x (h1_P.iff_ h1_P'))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P'))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply proof_imp_deduct
|
case h1.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)}
((forall_ h1_x (h1_P.iff_ h1_P')).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
|
case h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsProof ((forall_ h1_x (h1_P.iff_ h1_P')).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)}
((forall_ h1_x (h1_P.iff_ h1_P')).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply T_18_1
|
case h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsProof ((forall_ h1_x (h1_P.iff_ h1_P')).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsProof ((forall_ h1_x (h1_P.iff_ h1_P')).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply generalization
|
case h1.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} (forall_ h1_x (h1_P.iff_ h1_P'))
|
case h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} (h1_P.iff_ h1_P')
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ β H β {Forall_ l (U.iff_ V)}, Β¬isFreeIn h1_x H
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} (forall_ h1_x (h1_P.iff_ h1_P'))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply IsDeduct.mp_ (Forall_ l (U.iff_ V))
|
case h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} (h1_P.iff_ h1_P')
|
case h1.a.h1.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
case h1.a.h1.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} (Forall_ l (U.iff_ V))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} (h1_P.iff_ h1_P')
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply proof_imp_deduct
|
case h1.a.h1.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
case h1.a.h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h1.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply h1_ih
|
case h1.a.h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
|
case h1.a.h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
intro v a1
|
case h1.a.h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
|
case h1.a.h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P
β’ v β l
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
cases a1
|
case h1.a.h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P
β’ v β l
|
case h1.a.h1.a.h1.intro
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
v : VarName
leftβ : isFreeIn v U β¨ isFreeIn v V
rightβ : isBoundIn v h1_P
β’ v β l
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h1.a.h1
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P
β’ v β l
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
case _ a1_left a1_right =>
apply h2 v a1_left
right
apply a1_right
|
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ v β l
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ v β l
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply h2 v a1_left
|
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ v β l
|
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ v = h1_x β¨ isBoundIn v h1_P
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ v β l
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
right
|
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ v = h1_x β¨ isBoundIn v h1_P
|
case h
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ isBoundIn v h1_P
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ v = h1_x β¨ isBoundIn v h1_P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply a1_right
|
case h
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ isBoundIn v h1_P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
v : VarName
a1_left : isFreeIn v U β¨ isFreeIn v V
a1_right : isBoundIn v h1_P
β’ isBoundIn v h1_P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
apply IsDeduct.assume_
|
case h1.a.h1.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} (Forall_ l (U.iff_ V))
|
case h1.a.h1.a.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Forall_ l (U.iff_ V) β {Forall_ l (U.iff_ V)}
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h1.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ IsDeduct {Forall_ l (U.iff_ V)} (Forall_ l (U.iff_ V))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp
|
case h1.a.h1.a.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Forall_ l (U.iff_ V) β {Forall_ l (U.iff_ V)}
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h1.a.a
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Forall_ l (U.iff_ V) β {Forall_ l (U.iff_ V)}
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
intro H a1
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ β H β {Forall_ l (U.iff_ V)}, Β¬isFreeIn h1_x H
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
H : Formula
a1 : H β {Forall_ l (U.iff_ V)}
β’ Β¬isFreeIn h1_x H
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ β H β {Forall_ l (U.iff_ V)}, Β¬isFreeIn h1_x H
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp at a1
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
H : Formula
a1 : H β {Forall_ l (U.iff_ V)}
β’ Β¬isFreeIn h1_x H
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
H : Formula
a1 : H = Forall_ l (U.iff_ V)
β’ Β¬isFreeIn h1_x H
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
H : Formula
a1 : H β {Forall_ l (U.iff_ V)}
β’ Β¬isFreeIn h1_x H
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
subst a1
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
H : Formula
a1 : H = Forall_ l (U.iff_ V)
β’ Β¬isFreeIn h1_x H
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬isFreeIn h1_x (Forall_ l (U.iff_ V))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
H : Formula
a1 : H = Forall_ l (U.iff_ V)
β’ Β¬isFreeIn h1_x H
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp only [Forall_isFreeIn]
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬isFreeIn h1_x (Forall_ l (U.iff_ V))
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬(h1_x β l β§ isFreeIn h1_x (U.iff_ V))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬isFreeIn h1_x (Forall_ l (U.iff_ V))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp only [def_iff_]
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬(h1_x β l β§ isFreeIn h1_x (U.iff_ V))
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬(h1_x β l β§ isFreeIn h1_x ((U.imp_ V).and_ (V.imp_ U)))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬(h1_x β l β§ isFreeIn h1_x (U.iff_ V))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp only [def_and_]
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬(h1_x β l β§ isFreeIn h1_x ((U.imp_ V).and_ (V.imp_ U)))
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬(h1_x β l β§ isFreeIn h1_x ((U.imp_ V).imp_ (V.imp_ U).not_).not_)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬(h1_x β l β§ isFreeIn h1_x ((U.imp_ V).and_ (V.imp_ U)))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
simp only [isFreeIn]
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬(h1_x β l β§ isFreeIn h1_x ((U.imp_ V).imp_ (V.imp_ U).not_).not_)
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬(h1_x β l β§ ((isFreeIn h1_x U β¨ isFreeIn h1_x V) β¨ isFreeIn h1_x V β¨ isFreeIn h1_x U))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬(h1_x β l β§ isFreeIn h1_x ((U.imp_ V).imp_ (V.imp_ U).not_).not_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
sorry
|
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬(h1_x β l β§ ((isFreeIn h1_x U β¨ isFreeIn h1_x V) β¨ isFreeIn h1_x V β¨ isFreeIn h1_x U))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1.a.h2
U V P_U P_V : Formula
l : List VarName
h1_x : VarName
h1_P h1_P' : Formula
h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P'
h1_ih :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v h1_P β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
h2 : β (v : VarName), isFreeIn v U β¨ isFreeIn v V β v = h1_x β¨ isBoundIn v h1_P β v β l
β’ Β¬(h1_x β l β§ ((isFreeIn h1_x U β¨ isFreeIn h1_x V) β¨ isFreeIn h1_x V β¨ isFreeIn h1_x U))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.T_18_2
|
[802, 1]
|
[886, 10]
|
sorry
|
case exists_
U V P_U P_V : Formula
l : List VarName
xβ : VarName
P_uβ P_vβ : Formula
aβ : IsReplOfFormulaInFormula U V P_uβ P_vβ
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (exists_ xβ P_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((exists_ xβ P_uβ).iff_ (exists_ xβ P_vβ)))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case exists_
U V P_U P_V : Formula
l : List VarName
xβ : VarName
P_uβ P_vβ : Formula
aβ : IsReplOfFormulaInFormula U V P_uβ P_vβ
a_ihβ :
(β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_uβ β v β l) β
IsProof ((Forall_ l (U.iff_ V)).imp_ (P_uβ.iff_ P_vβ))
h2 : β (v : VarName), (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v (exists_ xβ P_uβ) β v β l
β’ IsProof ((Forall_ l (U.iff_ V)).imp_ ((exists_ xβ P_uβ).iff_ (exists_ xβ P_vβ)))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.C_18_3
|
[889, 1]
|
[913, 13]
|
apply
IsDeduct.mp_
(Forall_ ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList (U.iff_ V))
|
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ IsProof (P_U.iff_ P_V)
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ IsDeduct β
((Forall_ ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList (U.iff_ V)).imp_ (P_U.iff_ P_V))
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ IsDeduct β
(Forall_ ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList (U.iff_ V))
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ IsProof (P_U.iff_ P_V)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.C_18_3
|
[889, 1]
|
[913, 13]
|
apply T_18_2 U V P_U P_V ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList h1
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ IsDeduct β
((Forall_ ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList (U.iff_ V)).imp_ (P_U.iff_ P_V))
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ β (v : VarName),
(isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_U β v β ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ IsDeduct β
((Forall_ ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList (U.iff_ V)).imp_ (P_U.iff_ P_V))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.C_18_3
|
[889, 1]
|
[913, 13]
|
intro v a1
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ β (v : VarName),
(isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_U β v β ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_U
β’ v β ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ β (v : VarName),
(isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_U β v β ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.C_18_3
|
[889, 1]
|
[913, 13]
|
simp
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_U
β’ v β ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_U
β’ (v β U.freeVarSet β¨ v β V.freeVarSet) β§ v β P_U.boundVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_U
β’ v β ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.C_18_3
|
[889, 1]
|
[913, 13]
|
simp only [isFreeIn_iff_mem_freeVarSet] at a1
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_U
β’ (v β U.freeVarSet β¨ v β V.freeVarSet) β§ v β P_U.boundVarSet
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
v : VarName
a1 : (v β U.freeVarSet β¨ v β V.freeVarSet) β§ isBoundIn v P_U
β’ (v β U.freeVarSet β¨ v β V.freeVarSet) β§ v β P_U.boundVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
v : VarName
a1 : (isFreeIn v U β¨ isFreeIn v V) β§ isBoundIn v P_U
β’ (v β U.freeVarSet β¨ v β V.freeVarSet) β§ v β P_U.boundVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.C_18_3
|
[889, 1]
|
[913, 13]
|
simp only [isBoundIn_iff_mem_boundVarSet] at a1
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
v : VarName
a1 : (v β U.freeVarSet β¨ v β V.freeVarSet) β§ isBoundIn v P_U
β’ (v β U.freeVarSet β¨ v β V.freeVarSet) β§ v β P_U.boundVarSet
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
v : VarName
a1 : (v β U.freeVarSet β¨ v β V.freeVarSet) β§ v β P_U.boundVarSet
β’ (v β U.freeVarSet β¨ v β V.freeVarSet) β§ v β P_U.boundVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
v : VarName
a1 : (v β U.freeVarSet β¨ v β V.freeVarSet) β§ isBoundIn v P_U
β’ (v β U.freeVarSet β¨ v β V.freeVarSet) β§ v β P_U.boundVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.C_18_3
|
[889, 1]
|
[913, 13]
|
exact a1
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
v : VarName
a1 : (v β U.freeVarSet β¨ v β V.freeVarSet) β§ v β P_U.boundVarSet
β’ (v β U.freeVarSet β¨ v β V.freeVarSet) β§ v β P_U.boundVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
v : VarName
a1 : (v β U.freeVarSet β¨ v β V.freeVarSet) β§ v β P_U.boundVarSet
β’ (v β U.freeVarSet β¨ v β V.freeVarSet) β§ v β P_U.boundVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.C_18_3
|
[889, 1]
|
[913, 13]
|
simp only [Formula.Forall_]
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ IsDeduct β
(Forall_ ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList (U.iff_ V))
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ IsDeduct β
(List.foldr forall_ (U.iff_ V) ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ IsDeduct β
(Forall_ ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList (U.iff_ V))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.C_18_3
|
[889, 1]
|
[913, 13]
|
induction ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList
|
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ IsDeduct β
(List.foldr forall_ (U.iff_ V) ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList)
|
case a.nil
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ IsDeduct β
(List.foldr forall_ (U.iff_ V) [])
case a.cons
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
headβ : VarName
tailβ : List VarName
tail_ihβ : IsDeduct β
(List.foldr forall_ (U.iff_ V) tailβ)
β’ IsDeduct β
(List.foldr forall_ (U.iff_ V) (headβ :: tailβ))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ IsDeduct β
(List.foldr forall_ (U.iff_ V) ((U.freeVarSet βͺ V.freeVarSet) β© P_U.boundVarSet).toList)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Fol.lean
|
FOL.NV.C_18_3
|
[889, 1]
|
[913, 13]
|
case _ =>
simp
exact h2
|
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ IsDeduct β
(List.foldr forall_ (U.iff_ V) [])
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
U V P_U P_V : Formula
h1 : IsReplOfFormulaInFormula U V P_U P_V
h2 : IsProof (U.iff_ V)
β’ IsDeduct β
(List.foldr forall_ (U.iff_ V) [])
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.