url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_8
[1068, 1]
[1083, 37]
apply T_18_6
case a P_u P_v : Formula u v : VarName h1 : Similar P_u P_v u v ⊢ IsDeduct ∅ ((forall_ u P_u.not_).iff_ (forall_ v P_v.not_))
case a.h1 P_u P_v : Formula u v : VarName h1 : Similar P_u P_v u v ⊢ Similar P_u.not_ P_v.not_ u v
Please generate a tactic in lean4 to solve the state. STATE: case a P_u P_v : Formula u v : VarName h1 : Similar P_u P_v u v ⊢ IsDeduct ∅ ((forall_ u P_u.not_).iff_ (forall_ v P_v.not_)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_8
[1068, 1]
[1083, 37]
exact similar_not P_u P_v u v h1
case a.h1 P_u P_v : Formula u v : VarName h1 : Similar P_u P_v u v ⊢ Similar P_u.not_ P_v.not_ u v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h1 P_u P_v : Formula u v : VarName h1 : Similar P_u P_v u v ⊢ Similar P_u.not_ P_v.not_ u v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T18_9
[1086, 1]
[1098, 13]
apply C_18_4 (exists_ u P_u) (exists_ v P_v) Q Q' Δ h2
Q Q' P_u P_v : Formula u v : VarName Δ : Set Formula h1 : IsDeduct Δ Q h2 : IsReplOfFormulaInFormula (exists_ u P_u) (exists_ v P_v) Q Q' h3 : Similar P_u P_v u v ⊢ IsDeduct Δ Q'
case h2 Q Q' P_u P_v : Formula u v : VarName Δ : Set Formula h1 : IsDeduct Δ Q h2 : IsReplOfFormulaInFormula (exists_ u P_u) (exists_ v P_v) Q Q' h3 : Similar P_u P_v u v ⊢ IsProof ((exists_ u P_u).iff_ (exists_ v P_v)) case h3 Q Q' P_u P_v : Formula u v : VarName Δ : Set Formula h1 : IsDeduct Δ Q h2 : IsReplOfFormulaInFormula (exists_ u P_u) (exists_ v P_v) Q Q' h3 : Similar P_u P_v u v ⊢ IsDeduct Δ Q
Please generate a tactic in lean4 to solve the state. STATE: Q Q' P_u P_v : Formula u v : VarName Δ : Set Formula h1 : IsDeduct Δ Q h2 : IsReplOfFormulaInFormula (exists_ u P_u) (exists_ v P_v) Q Q' h3 : Similar P_u P_v u v ⊢ IsDeduct Δ Q' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T18_9
[1086, 1]
[1098, 13]
exact T_18_8 P_u P_v u v h3
case h2 Q Q' P_u P_v : Formula u v : VarName Δ : Set Formula h1 : IsDeduct Δ Q h2 : IsReplOfFormulaInFormula (exists_ u P_u) (exists_ v P_v) Q Q' h3 : Similar P_u P_v u v ⊢ IsProof ((exists_ u P_u).iff_ (exists_ v P_v))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h2 Q Q' P_u P_v : Formula u v : VarName Δ : Set Formula h1 : IsDeduct Δ Q h2 : IsReplOfFormulaInFormula (exists_ u P_u) (exists_ v P_v) Q Q' h3 : Similar P_u P_v u v ⊢ IsProof ((exists_ u P_u).iff_ (exists_ v P_v)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T18_9
[1086, 1]
[1098, 13]
exact h1
case h3 Q Q' P_u P_v : Formula u v : VarName Δ : Set Formula h1 : IsDeduct Δ Q h2 : IsReplOfFormulaInFormula (exists_ u P_u) (exists_ v P_v) Q Q' h3 : Similar P_u P_v u v ⊢ IsDeduct Δ Q
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h3 Q Q' P_u P_v : Formula u v : VarName Δ : Set Formula h1 : IsDeduct Δ Q h2 : IsReplOfFormulaInFormula (exists_ u P_u) (exists_ v P_v) Q Q' h3 : Similar P_u P_v u v ⊢ IsDeduct Δ Q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_1
[1101, 1]
[1119, 33]
apply IsDeduct.mp_ ((forall_ v P).imp_ P)
P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((forall_ v P).iff_ P)
case a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v P).imp_ P).imp_ ((forall_ v P).iff_ P)) case a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v P).imp_ P)
Please generate a tactic in lean4 to solve the state. STATE: P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((forall_ v P).iff_ P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_1
[1101, 1]
[1119, 33]
apply IsDeduct.mp_ (P.imp_ (forall_ v P))
case a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v P).imp_ P).imp_ ((forall_ v P).iff_ P))
case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((P.imp_ (forall_ v P)).imp_ (((forall_ v P).imp_ P).imp_ ((forall_ v P).iff_ P))) case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (P.imp_ (forall_ v P))
Please generate a tactic in lean4 to solve the state. STATE: case a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v P).imp_ P).imp_ ((forall_ v P).iff_ P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_1
[1101, 1]
[1119, 33]
simp only [def_iff_]
case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((P.imp_ (forall_ v P)).imp_ (((forall_ v P).imp_ P).imp_ ((forall_ v P).iff_ P)))
case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((P.imp_ (forall_ v P)).imp_ (((forall_ v P).imp_ P).imp_ (((forall_ v P).imp_ P).and_ (P.imp_ (forall_ v P)))))
Please generate a tactic in lean4 to solve the state. STATE: case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((P.imp_ (forall_ v P)).imp_ (((forall_ v P).imp_ P).imp_ ((forall_ v P).iff_ P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_1
[1101, 1]
[1119, 33]
simp only [def_and_]
case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((P.imp_ (forall_ v P)).imp_ (((forall_ v P).imp_ P).imp_ (((forall_ v P).imp_ P).and_ (P.imp_ (forall_ v P)))))
case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((P.imp_ (forall_ v P)).imp_ (((forall_ v P).imp_ P).imp_ (((forall_ v P).imp_ P).imp_ (P.imp_ (forall_ v P)).not_).not_))
Please generate a tactic in lean4 to solve the state. STATE: case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((P.imp_ (forall_ v P)).imp_ (((forall_ v P).imp_ P).imp_ (((forall_ v P).imp_ P).and_ (P.imp_ (forall_ v P))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_1
[1101, 1]
[1119, 33]
SC
case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((P.imp_ (forall_ v P)).imp_ (((forall_ v P).imp_ P).imp_ (((forall_ v P).imp_ P).imp_ (P.imp_ (forall_ v P)).not_).not_))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((P.imp_ (forall_ v P)).imp_ (((forall_ v P).imp_ P).imp_ (((forall_ v P).imp_ P).imp_ (P.imp_ (forall_ v P)).not_).not_)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_1
[1101, 1]
[1119, 33]
apply IsDeduct.axiom_
case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (P.imp_ (forall_ v P))
case a.a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsAxiom (P.imp_ (forall_ v P))
Please generate a tactic in lean4 to solve the state. STATE: case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (P.imp_ (forall_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_1
[1101, 1]
[1119, 33]
exact IsAxiom.pred_3_ v P h1
case a.a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsAxiom (P.imp_ (forall_ v P))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsAxiom (P.imp_ (forall_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_1
[1101, 1]
[1119, 33]
apply IsDeduct.axiom_
case a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v P).imp_ P)
case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsAxiom ((forall_ v P).imp_ P)
Please generate a tactic in lean4 to solve the state. STATE: case a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v P).imp_ P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_1
[1101, 1]
[1119, 33]
apply IsAxiom.pred_2_ v v P P
case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsAxiom ((forall_ v P).imp_ P)
case a.a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ fastAdmits v v P case a.a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ fastReplaceFree v v P = P
Please generate a tactic in lean4 to solve the state. STATE: case a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsAxiom ((forall_ v P).imp_ P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_1
[1101, 1]
[1119, 33]
apply fastAdmits_self
case a.a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ fastAdmits v v P
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ fastAdmits v v P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_1
[1101, 1]
[1119, 33]
apply fastReplaceFree_self
case a.a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ fastReplaceFree v v P = P
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a.a P : Formula v : VarName h1 : ¬isFreeIn v P ⊢ fastReplaceFree v v P = P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_2
[1122, 1]
[1135, 18]
apply IsDeduct.mp_ ((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P)))
P : Formula u v : VarName ⊢ IsProof ((forall_ u (forall_ v P)).iff_ (forall_ v (forall_ u P)))
case a P : Formula u v : VarName ⊢ IsDeduct ∅ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ ((forall_ u (forall_ v P)).iff_ (forall_ v (forall_ u P)))) case a P : Formula u v : VarName ⊢ IsDeduct ∅ ((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P)))
Please generate a tactic in lean4 to solve the state. STATE: P : Formula u v : VarName ⊢ IsProof ((forall_ u (forall_ v P)).iff_ (forall_ v (forall_ u P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_2
[1122, 1]
[1135, 18]
apply IsDeduct.mp_ ((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P)))
case a P : Formula u v : VarName ⊢ IsDeduct ∅ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ ((forall_ u (forall_ v P)).iff_ (forall_ v (forall_ u P))))
case a.a P : Formula u v : VarName ⊢ IsDeduct ∅ (((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ ((forall_ u (forall_ v P)).iff_ (forall_ v (forall_ u P))))) case a.a P : Formula u v : VarName ⊢ IsDeduct ∅ ((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P)))
Please generate a tactic in lean4 to solve the state. STATE: case a P : Formula u v : VarName ⊢ IsDeduct ∅ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ ((forall_ u (forall_ v P)).iff_ (forall_ v (forall_ u P)))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_2
[1122, 1]
[1135, 18]
simp only [def_iff_]
case a.a P : Formula u v : VarName ⊢ IsDeduct ∅ (((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ ((forall_ u (forall_ v P)).iff_ (forall_ v (forall_ u P)))))
case a.a P : Formula u v : VarName ⊢ IsDeduct ∅ (((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).and_ ((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))))))
Please generate a tactic in lean4 to solve the state. STATE: case a.a P : Formula u v : VarName ⊢ IsDeduct ∅ (((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ ((forall_ u (forall_ v P)).iff_ (forall_ v (forall_ u P))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_2
[1122, 1]
[1135, 18]
simp only [def_and_]
case a.a P : Formula u v : VarName ⊢ IsDeduct ∅ (((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).and_ ((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))))))
case a.a P : Formula u v : VarName ⊢ IsDeduct ∅ (((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ ((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))).not_).not_))
Please generate a tactic in lean4 to solve the state. STATE: case a.a P : Formula u v : VarName ⊢ IsDeduct ∅ (((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).and_ ((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P)))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_2
[1122, 1]
[1135, 18]
SC
case a.a P : Formula u v : VarName ⊢ IsDeduct ∅ (((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ ((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))).not_).not_))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a P : Formula u v : VarName ⊢ IsDeduct ∅ (((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ (((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))).imp_ ((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))).not_).not_)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_2
[1122, 1]
[1135, 18]
apply T_17_10
case a.a P : Formula u v : VarName ⊢ IsDeduct ∅ ((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a P : Formula u v : VarName ⊢ IsDeduct ∅ ((forall_ v (forall_ u P)).imp_ (forall_ u (forall_ v P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_2
[1122, 1]
[1135, 18]
apply T_17_10
case a P : Formula u v : VarName ⊢ IsDeduct ∅ ((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a P : Formula u v : VarName ⊢ IsDeduct ∅ ((forall_ u (forall_ v P)).imp_ (forall_ v (forall_ u P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_3
[1138, 1]
[1149, 5]
simp only [def_exists_]
P : Formula v : VarName ⊢ IsProof ((forall_ v P.not_).iff_ (exists_ v P).not_)
P : Formula v : VarName ⊢ IsProof ((forall_ v P.not_).iff_ (forall_ v P.not_).not_.not_)
Please generate a tactic in lean4 to solve the state. STATE: P : Formula v : VarName ⊢ IsProof ((forall_ v P.not_).iff_ (exists_ v P).not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_3
[1138, 1]
[1149, 5]
simp only [def_iff_]
P : Formula v : VarName ⊢ IsProof ((forall_ v P.not_).iff_ (forall_ v P.not_).not_.not_)
P : Formula v : VarName ⊢ IsProof (((forall_ v P.not_).imp_ (forall_ v P.not_).not_.not_).and_ ((forall_ v P.not_).not_.not_.imp_ (forall_ v P.not_)))
Please generate a tactic in lean4 to solve the state. STATE: P : Formula v : VarName ⊢ IsProof ((forall_ v P.not_).iff_ (forall_ v P.not_).not_.not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_3
[1138, 1]
[1149, 5]
simp only [def_and_]
P : Formula v : VarName ⊢ IsProof (((forall_ v P.not_).imp_ (forall_ v P.not_).not_.not_).and_ ((forall_ v P.not_).not_.not_.imp_ (forall_ v P.not_)))
P : Formula v : VarName ⊢ IsProof (((forall_ v P.not_).imp_ (forall_ v P.not_).not_.not_).imp_ ((forall_ v P.not_).not_.not_.imp_ (forall_ v P.not_)).not_).not_
Please generate a tactic in lean4 to solve the state. STATE: P : Formula v : VarName ⊢ IsProof (((forall_ v P.not_).imp_ (forall_ v P.not_).not_.not_).and_ ((forall_ v P.not_).not_.not_.imp_ (forall_ v P.not_))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_3
[1138, 1]
[1149, 5]
SC
P : Formula v : VarName ⊢ IsProof (((forall_ v P.not_).imp_ (forall_ v P.not_).not_.not_).imp_ ((forall_ v P.not_).not_.not_.imp_ (forall_ v P.not_)).not_).not_
no goals
Please generate a tactic in lean4 to solve the state. STATE: P : Formula v : VarName ⊢ IsProof (((forall_ v P.not_).imp_ (forall_ v P.not_).not_.not_).imp_ ((forall_ v P.not_).not_.not_.imp_ (forall_ v P.not_)).not_).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
apply deduction_theorem
P : Formula u v : VarName ⊢ IsProof ((exists_ u (forall_ v P)).imp_ (forall_ v (exists_ u P)))
case h1 P : Formula u v : VarName ⊢ IsDeduct (∅ ∪ {exists_ u (forall_ v P)}) (forall_ v (exists_ u P))
Please generate a tactic in lean4 to solve the state. STATE: P : Formula u v : VarName ⊢ IsProof ((exists_ u (forall_ v P)).imp_ (forall_ v (exists_ u P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp
case h1 P : Formula u v : VarName ⊢ IsDeduct (∅ ∪ {exists_ u (forall_ v P)}) (forall_ v (exists_ u P))
case h1 P : Formula u v : VarName ⊢ IsDeduct {exists_ u (forall_ v P)} (forall_ v (exists_ u P))
Please generate a tactic in lean4 to solve the state. STATE: case h1 P : Formula u v : VarName ⊢ IsDeduct (∅ ∪ {exists_ u (forall_ v P)}) (forall_ v (exists_ u P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
apply generalization
case h1 P : Formula u v : VarName ⊢ IsDeduct {exists_ u (forall_ v P)} (forall_ v (exists_ u P))
case h1.h1 P : Formula u v : VarName ⊢ IsDeduct {exists_ u (forall_ v P)} (exists_ u P) case h1.h2 P : Formula u v : VarName ⊢ ∀ H ∈ {exists_ u (forall_ v P)}, ¬isFreeIn v H
Please generate a tactic in lean4 to solve the state. STATE: case h1 P : Formula u v : VarName ⊢ IsDeduct {exists_ u (forall_ v P)} (forall_ v (exists_ u P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
apply rule_C (forall_ v P) (exists_ u P) u {exists_ u (forall_ v P)}
case h1.h1 P : Formula u v : VarName ⊢ IsDeduct {exists_ u (forall_ v P)} (exists_ u P)
case h1.h1.h1 P : Formula u v : VarName ⊢ IsDeduct {exists_ u (forall_ v P)} (exists_ u (forall_ v P)) case h1.h1.h2 P : Formula u v : VarName ⊢ IsDeduct ({exists_ u (forall_ v P)} ∪ {forall_ v P}) (exists_ u P) case h1.h1.h3 P : Formula u v : VarName ⊢ ∀ H ∈ {exists_ u (forall_ v P)}, ¬isFreeIn u H case h1.h1.h4 P : Formula u v : VarName ⊢ ¬isFreeIn u (exists_ u P)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1 P : Formula u v : VarName ⊢ IsDeduct {exists_ u (forall_ v P)} (exists_ u P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
apply IsDeduct.assume_
case h1.h1.h1 P : Formula u v : VarName ⊢ IsDeduct {exists_ u (forall_ v P)} (exists_ u (forall_ v P))
case h1.h1.h1.a P : Formula u v : VarName ⊢ exists_ u (forall_ v P) ∈ {exists_ u (forall_ v P)}
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h1 P : Formula u v : VarName ⊢ IsDeduct {exists_ u (forall_ v P)} (exists_ u (forall_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp
case h1.h1.h1.a P : Formula u v : VarName ⊢ exists_ u (forall_ v P) ∈ {exists_ u (forall_ v P)}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h1.a P : Formula u v : VarName ⊢ exists_ u (forall_ v P) ∈ {exists_ u (forall_ v P)} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
apply exists_intro P u u
case h1.h1.h2 P : Formula u v : VarName ⊢ IsDeduct ({exists_ u (forall_ v P)} ∪ {forall_ v P}) (exists_ u P)
case h1.h1.h2.h1 P : Formula u v : VarName ⊢ fastAdmits u u P case h1.h1.h2.h2 P : Formula u v : VarName ⊢ IsDeduct ({exists_ u (forall_ v P)} ∪ {forall_ v P}) (fastReplaceFree u u P)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2 P : Formula u v : VarName ⊢ IsDeduct ({exists_ u (forall_ v P)} ∪ {forall_ v P}) (exists_ u P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
apply fastAdmits_self
case h1.h1.h2.h1 P : Formula u v : VarName ⊢ fastAdmits u u P
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h1 P : Formula u v : VarName ⊢ fastAdmits u u P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp only [fastReplaceFree_self]
case h1.h1.h2.h2 P : Formula u v : VarName ⊢ IsDeduct ({exists_ u (forall_ v P)} ∪ {forall_ v P}) (fastReplaceFree u u P)
case h1.h1.h2.h2 P : Formula u v : VarName ⊢ IsDeduct ({exists_ u (forall_ v P)} ∪ {forall_ v P}) P
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2 P : Formula u v : VarName ⊢ IsDeduct ({exists_ u (forall_ v P)} ∪ {forall_ v P}) (fastReplaceFree u u P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
apply specId v
case h1.h1.h2.h2 P : Formula u v : VarName ⊢ IsDeduct ({exists_ u (forall_ v P)} ∪ {forall_ v P}) P
case h1.h1.h2.h2.h1 P : Formula u v : VarName ⊢ IsDeduct ({exists_ u (forall_ v P)} ∪ {forall_ v P}) (forall_ v P)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2 P : Formula u v : VarName ⊢ IsDeduct ({exists_ u (forall_ v P)} ∪ {forall_ v P}) P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
apply IsDeduct.assume_
case h1.h1.h2.h2.h1 P : Formula u v : VarName ⊢ IsDeduct ({exists_ u (forall_ v P)} ∪ {forall_ v P}) (forall_ v P)
case h1.h1.h2.h2.h1.a P : Formula u v : VarName ⊢ forall_ v P ∈ {exists_ u (forall_ v P)} ∪ {forall_ v P}
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.h1 P : Formula u v : VarName ⊢ IsDeduct ({exists_ u (forall_ v P)} ∪ {forall_ v P}) (forall_ v P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp
case h1.h1.h2.h2.h1.a P : Formula u v : VarName ⊢ forall_ v P ∈ {exists_ u (forall_ v P)} ∪ {forall_ v P}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.h1.a P : Formula u v : VarName ⊢ forall_ v P ∈ {exists_ u (forall_ v P)} ∪ {forall_ v P} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp
case h1.h1.h3 P : Formula u v : VarName ⊢ ∀ H ∈ {exists_ u (forall_ v P)}, ¬isFreeIn u H
case h1.h1.h3 P : Formula u v : VarName ⊢ ¬isFreeIn u (exists_ u (forall_ v P))
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h3 P : Formula u v : VarName ⊢ ∀ H ∈ {exists_ u (forall_ v P)}, ¬isFreeIn u H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp only [def_exists_]
case h1.h1.h3 P : Formula u v : VarName ⊢ ¬isFreeIn u (exists_ u (forall_ v P))
case h1.h1.h3 P : Formula u v : VarName ⊢ ¬isFreeIn u (forall_ u (forall_ v P).not_).not_
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h3 P : Formula u v : VarName ⊢ ¬isFreeIn u (exists_ u (forall_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp only [isFreeIn]
case h1.h1.h3 P : Formula u v : VarName ⊢ ¬isFreeIn u (forall_ u (forall_ v P).not_).not_
case h1.h1.h3 P : Formula u v : VarName ⊢ ¬(¬True ∧ ¬u = v ∧ isFreeIn u P)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h3 P : Formula u v : VarName ⊢ ¬isFreeIn u (forall_ u (forall_ v P).not_).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp
case h1.h1.h3 P : Formula u v : VarName ⊢ ¬(¬True ∧ ¬u = v ∧ isFreeIn u P)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h3 P : Formula u v : VarName ⊢ ¬(¬True ∧ ¬u = v ∧ isFreeIn u P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp only [def_exists_]
case h1.h1.h4 P : Formula u v : VarName ⊢ ¬isFreeIn u (exists_ u P)
case h1.h1.h4 P : Formula u v : VarName ⊢ ¬isFreeIn u (forall_ u P.not_).not_
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h4 P : Formula u v : VarName ⊢ ¬isFreeIn u (exists_ u P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp only [isFreeIn]
case h1.h1.h4 P : Formula u v : VarName ⊢ ¬isFreeIn u (forall_ u P.not_).not_
case h1.h1.h4 P : Formula u v : VarName ⊢ ¬(¬True ∧ isFreeIn u P)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h4 P : Formula u v : VarName ⊢ ¬isFreeIn u (forall_ u P.not_).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp
case h1.h1.h4 P : Formula u v : VarName ⊢ ¬(¬True ∧ isFreeIn u P)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h4 P : Formula u v : VarName ⊢ ¬(¬True ∧ isFreeIn u P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp
case h1.h2 P : Formula u v : VarName ⊢ ∀ H ∈ {exists_ u (forall_ v P)}, ¬isFreeIn v H
case h1.h2 P : Formula u v : VarName ⊢ ¬isFreeIn v (exists_ u (forall_ v P))
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 P : Formula u v : VarName ⊢ ∀ H ∈ {exists_ u (forall_ v P)}, ¬isFreeIn v H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp only [def_exists_]
case h1.h2 P : Formula u v : VarName ⊢ ¬isFreeIn v (exists_ u (forall_ v P))
case h1.h2 P : Formula u v : VarName ⊢ ¬isFreeIn v (forall_ u (forall_ v P).not_).not_
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 P : Formula u v : VarName ⊢ ¬isFreeIn v (exists_ u (forall_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp only [isFreeIn]
case h1.h2 P : Formula u v : VarName ⊢ ¬isFreeIn v (forall_ u (forall_ v P).not_).not_
case h1.h2 P : Formula u v : VarName ⊢ ¬(¬v = u ∧ ¬True ∧ isFreeIn v P)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 P : Formula u v : VarName ⊢ ¬isFreeIn v (forall_ u (forall_ v P).not_).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_4
[1152, 1]
[1183, 9]
simp
case h1.h2 P : Formula u v : VarName ⊢ ¬(¬v = u ∧ ¬True ∧ isFreeIn v P)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 P : Formula u v : VarName ⊢ ¬(¬v = u ∧ ¬True ∧ isFreeIn v P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_5
[1186, 1]
[1200, 24]
apply IsDeduct.mp_ ((forall_ v P).iff_ P)
P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q)))
case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v P).iff_ P).imp_ ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q)))) case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v P).iff_ P)
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_5
[1186, 1]
[1200, 24]
apply IsDeduct.mp_ ((forall_ v (P.iff_ Q)).imp_ ((forall_ v P).iff_ (forall_ v Q)))
case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v P).iff_ P).imp_ ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q))))
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((forall_ v P).iff_ (forall_ v Q))).imp_ (((forall_ v P).iff_ P).imp_ ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q))))) case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v (P.iff_ Q)).imp_ ((forall_ v P).iff_ (forall_ v Q)))
Please generate a tactic in lean4 to solve the state. STATE: case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v P).iff_ P).imp_ ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q)))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_5
[1186, 1]
[1200, 24]
simp only [def_iff_]
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((forall_ v P).iff_ (forall_ v Q))).imp_ (((forall_ v P).iff_ P).imp_ ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q)))))
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ (((forall_ v P).imp_ (forall_ v Q)).and_ ((forall_ v Q).imp_ (forall_ v P)))).imp_ ((((forall_ v P).imp_ P).and_ (P.imp_ (forall_ v P))).imp_ ((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ ((P.imp_ (forall_ v Q)).and_ ((forall_ v Q).imp_ P)))))
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((forall_ v P).iff_ (forall_ v Q))).imp_ (((forall_ v P).iff_ P).imp_ ((forall_ v (P.iff_ Q)).imp_ (P.iff_ (forall_ v Q))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_5
[1186, 1]
[1200, 24]
simp only [def_and_]
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ (((forall_ v P).imp_ (forall_ v Q)).and_ ((forall_ v Q).imp_ (forall_ v P)))).imp_ ((((forall_ v P).imp_ P).and_ (P.imp_ (forall_ v P))).imp_ ((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ ((P.imp_ (forall_ v Q)).and_ ((forall_ v Q).imp_ P)))))
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((forall_ v P).imp_ (forall_ v Q)).imp_ ((forall_ v Q).imp_ (forall_ v P)).not_).not_).imp_ ((((forall_ v P).imp_ P).imp_ (P.imp_ (forall_ v P)).not_).not_.imp_ ((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ ((P.imp_ (forall_ v Q)).imp_ ((forall_ v Q).imp_ P).not_).not_)))
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ (((forall_ v P).imp_ (forall_ v Q)).and_ ((forall_ v Q).imp_ (forall_ v P)))).imp_ ((((forall_ v P).imp_ P).and_ (P.imp_ (forall_ v P))).imp_ ((forall_ v ((P.imp_ Q).and_ (Q.imp_ P))).imp_ ((P.imp_ (forall_ v Q)).and_ ((forall_ v Q).imp_ P))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_5
[1186, 1]
[1200, 24]
SC
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((forall_ v P).imp_ (forall_ v Q)).imp_ ((forall_ v Q).imp_ (forall_ v P)).not_).not_).imp_ ((((forall_ v P).imp_ P).imp_ (P.imp_ (forall_ v P)).not_).not_.imp_ ((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ ((P.imp_ (forall_ v Q)).imp_ ((forall_ v Q).imp_ P).not_).not_)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ (((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((forall_ v P).imp_ (forall_ v Q)).imp_ ((forall_ v Q).imp_ (forall_ v P)).not_).not_).imp_ ((((forall_ v P).imp_ P).imp_ (P.imp_ (forall_ v P)).not_).not_.imp_ ((forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ ((P.imp_ (forall_ v Q)).imp_ ((forall_ v Q).imp_ P).not_).not_))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_5
[1186, 1]
[1200, 24]
exact T_18_1 P Q v
case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v (P.iff_ Q)).imp_ ((forall_ v P).iff_ (forall_ v Q)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v (P.iff_ Q)).imp_ ((forall_ v P).iff_ (forall_ v Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_5
[1186, 1]
[1200, 24]
exact T_19_1 P v h1
case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v P).iff_ P)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a P Q : Formula v : VarName h1 : ¬isFreeIn v P ⊢ IsDeduct ∅ ((forall_ v P).iff_ P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply deduction_theorem
P Q : Formula v : VarName ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q)))
case h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)}) ((exists_ v P).imp_ (exists_ v Q))
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula v : VarName ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply deduction_theorem
case h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)}) ((exists_ v P).imp_ (exists_ v Q))
case h1.h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)} ∪ {exists_ v P}) (exists_ v Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)}) ((exists_ v P).imp_ (exists_ v Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp
case h1.h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)} ∪ {exists_ v P}) (exists_ v Q)
case h1.h1 P Q : Formula v : VarName ⊢ IsDeduct {exists_ v P, forall_ v (P.iff_ Q)} (exists_ v Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)} ∪ {exists_ v P}) (exists_ v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply rule_C P (exists_ v Q) v {exists_ v P, forall_ v (P.iff_ Q)}
case h1.h1 P Q : Formula v : VarName ⊢ IsDeduct {exists_ v P, forall_ v (P.iff_ Q)} (exists_ v Q)
case h1.h1.h1 P Q : Formula v : VarName ⊢ IsDeduct {exists_ v P, forall_ v (P.iff_ Q)} (exists_ v P) case h1.h1.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (exists_ v Q) case h1.h1.h3 P Q : Formula v : VarName ⊢ ∀ H ∈ {exists_ v P, forall_ v (P.iff_ Q)}, ¬isFreeIn v H case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬isFreeIn v (exists_ v Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1 P Q : Formula v : VarName ⊢ IsDeduct {exists_ v P, forall_ v (P.iff_ Q)} (exists_ v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply IsDeduct.assume_
case h1.h1.h1 P Q : Formula v : VarName ⊢ IsDeduct {exists_ v P, forall_ v (P.iff_ Q)} (exists_ v P)
case h1.h1.h1.a P Q : Formula v : VarName ⊢ exists_ v P ∈ {exists_ v P, forall_ v (P.iff_ Q)}
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h1 P Q : Formula v : VarName ⊢ IsDeduct {exists_ v P, forall_ v (P.iff_ Q)} (exists_ v P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp
case h1.h1.h1.a P Q : Formula v : VarName ⊢ exists_ v P ∈ {exists_ v P, forall_ v (P.iff_ Q)}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h1.a P Q : Formula v : VarName ⊢ exists_ v P ∈ {exists_ v P, forall_ v (P.iff_ Q)} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply exists_intro Q v v
case h1.h1.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (exists_ v Q)
case h1.h1.h2.h1 P Q : Formula v : VarName ⊢ fastAdmits v v Q case h1.h1.h2.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (fastReplaceFree v v Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (exists_ v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply fastAdmits_self
case h1.h1.h2.h1 P Q : Formula v : VarName ⊢ fastAdmits v v Q
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h1 P Q : Formula v : VarName ⊢ fastAdmits v v Q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp only [fastReplaceFree_self]
case h1.h1.h2.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (fastReplaceFree v v Q)
case h1.h1.h2.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) Q
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (fastReplaceFree v v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply IsDeduct.mp_ P
case h1.h1.h2.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) Q
case h1.h1.h2.h2.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (P.imp_ Q) case h1.h1.h2.h2.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) P
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) Q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply IsDeduct.mp_ (P.iff_ Q)
case h1.h1.h2.h2.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (P.imp_ Q)
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) ((P.iff_ Q).imp_ (P.imp_ Q)) case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (P.iff_ Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (P.imp_ Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp only [def_iff_]
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) ((P.iff_ Q).imp_ (P.imp_ Q))
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v ((P.imp_ Q).and_ (Q.imp_ P))} ∪ {P}) (((P.imp_ Q).and_ (Q.imp_ P)).imp_ (P.imp_ Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) ((P.iff_ Q).imp_ (P.imp_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp only [def_and_]
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v ((P.imp_ Q).and_ (Q.imp_ P))} ∪ {P}) (((P.imp_ Q).and_ (Q.imp_ P)).imp_ (P.imp_ Q))
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_} ∪ {P}) (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ (P.imp_ Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v ((P.imp_ Q).and_ (Q.imp_ P))} ∪ {P}) (((P.imp_ Q).and_ (Q.imp_ P)).imp_ (P.imp_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
SC
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_} ∪ {P}) (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ (P.imp_ Q))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_} ∪ {P}) (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ (P.imp_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply specId v
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (P.iff_ Q)
case h1.h1.h2.h2.a.a.h1 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (forall_ v (P.iff_ Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (P.iff_ Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply IsDeduct.assume_
case h1.h1.h2.h2.a.a.h1 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (forall_ v (P.iff_ Q))
case h1.h1.h2.h2.a.a.h1.a P Q : Formula v : VarName ⊢ forall_ v (P.iff_ Q) ∈ {exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a.a.h1 P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) (forall_ v (P.iff_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp
case h1.h1.h2.h2.a.a.h1.a P Q : Formula v : VarName ⊢ forall_ v (P.iff_ Q) ∈ {exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a.a.h1.a P Q : Formula v : VarName ⊢ forall_ v (P.iff_ Q) ∈ {exists_ v P, forall_ v (P.iff_ Q)} ∪ {P} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
apply IsDeduct.assume_
case h1.h1.h2.h2.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) P
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ P ∈ {exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a P Q : Formula v : VarName ⊢ IsDeduct ({exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}) P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp
case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ P ∈ {exists_ v P, forall_ v (P.iff_ Q)} ∪ {P}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h2.h2.a.a P Q : Formula v : VarName ⊢ P ∈ {exists_ v P, forall_ v (P.iff_ Q)} ∪ {P} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp only [def_exists_]
case h1.h1.h3 P Q : Formula v : VarName ⊢ ∀ H ∈ {exists_ v P, forall_ v (P.iff_ Q)}, ¬isFreeIn v H
case h1.h1.h3 P Q : Formula v : VarName ⊢ ∀ H ∈ {(forall_ v P.not_).not_, forall_ v (P.iff_ Q)}, ¬isFreeIn v H
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h3 P Q : Formula v : VarName ⊢ ∀ H ∈ {exists_ v P, forall_ v (P.iff_ Q)}, ¬isFreeIn v H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp
case h1.h1.h3 P Q : Formula v : VarName ⊢ ∀ H ∈ {(forall_ v P.not_).not_, forall_ v (P.iff_ Q)}, ¬isFreeIn v H
case h1.h1.h3 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v P.not_).not_ ∧ ¬isFreeIn v (forall_ v (P.iff_ Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h3 P Q : Formula v : VarName ⊢ ∀ H ∈ {(forall_ v P.not_).not_, forall_ v (P.iff_ Q)}, ¬isFreeIn v H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp only [isFreeIn]
case h1.h1.h3 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v P.not_).not_ ∧ ¬isFreeIn v (forall_ v (P.iff_ Q))
case h1.h1.h3 P Q : Formula v : VarName ⊢ ¬(¬True ∧ isFreeIn v P) ∧ ¬(¬True ∧ (isFreeIn v P ∨ isFreeIn v Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h3 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v P.not_).not_ ∧ ¬isFreeIn v (forall_ v (P.iff_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp
case h1.h1.h3 P Q : Formula v : VarName ⊢ ¬(¬True ∧ isFreeIn v P) ∧ ¬(¬True ∧ (isFreeIn v P ∨ isFreeIn v Q))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h3 P Q : Formula v : VarName ⊢ ¬(¬True ∧ isFreeIn v P) ∧ ¬(¬True ∧ (isFreeIn v P ∨ isFreeIn v Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp only [def_exists_]
case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬isFreeIn v (exists_ v Q)
case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v Q.not_).not_
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬isFreeIn v (exists_ v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp only [isFreeIn]
case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v Q.not_).not_
case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬(¬True ∧ isFreeIn v Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v Q.not_).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_left
[1203, 1]
[1237, 9]
simp
case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬(¬True ∧ isFreeIn v Q)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h4 P Q : Formula v : VarName ⊢ ¬(¬True ∧ isFreeIn v Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply deduction_theorem
P Q : Formula v : VarName ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ ((exists_ v Q).imp_ (exists_ v P)))
case h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)}) ((exists_ v Q).imp_ (exists_ v P))
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula v : VarName ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ ((exists_ v Q).imp_ (exists_ v P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
simp
case h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)}) ((exists_ v Q).imp_ (exists_ v P))
case h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((exists_ v Q).imp_ (exists_ v P))
Please generate a tactic in lean4 to solve the state. STATE: case h1 P Q : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v (P.iff_ Q)}) ((exists_ v Q).imp_ (exists_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply IsDeduct.mp_ (forall_ v (Q.iff_ P))
case h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((exists_ v Q).imp_ (exists_ v P))
case h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((forall_ v (Q.iff_ P)).imp_ ((exists_ v Q).imp_ (exists_ v P))) case h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (forall_ v (Q.iff_ P))
Please generate a tactic in lean4 to solve the state. STATE: case h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((exists_ v Q).imp_ (exists_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply proof_imp_deduct
case h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((forall_ v (Q.iff_ P)).imp_ ((exists_ v Q).imp_ (exists_ v P)))
case h1.a.h1 P Q : Formula v : VarName ⊢ IsProof ((forall_ v (Q.iff_ P)).imp_ ((exists_ v Q).imp_ (exists_ v P)))
Please generate a tactic in lean4 to solve the state. STATE: case h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((forall_ v (Q.iff_ P)).imp_ ((exists_ v Q).imp_ (exists_ v P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply T_19_6_left Q P v
case h1.a.h1 P Q : Formula v : VarName ⊢ IsProof ((forall_ v (Q.iff_ P)).imp_ ((exists_ v Q).imp_ (exists_ v P)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1 P Q : Formula v : VarName ⊢ IsProof ((forall_ v (Q.iff_ P)).imp_ ((exists_ v Q).imp_ (exists_ v P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply generalization
case h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (forall_ v (Q.iff_ P))
case h1.a.h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (Q.iff_ P) case h1.a.h2 P Q : Formula v : VarName ⊢ ∀ H ∈ {forall_ v (P.iff_ Q)}, ¬isFreeIn v H
Please generate a tactic in lean4 to solve the state. STATE: case h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (forall_ v (Q.iff_ P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply IsDeduct.mp_ (P.iff_ Q)
case h1.a.h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (Q.iff_ P)
case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((P.iff_ Q).imp_ (Q.iff_ P)) case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (P.iff_ Q)
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (Q.iff_ P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
simp only [def_iff_]
case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((P.iff_ Q).imp_ (Q.iff_ P))
case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v ((P.imp_ Q).and_ (Q.imp_ P))} (((P.imp_ Q).and_ (Q.imp_ P)).imp_ ((Q.imp_ P).and_ (P.imp_ Q)))
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} ((P.iff_ Q).imp_ (Q.iff_ P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
simp only [def_and_]
case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v ((P.imp_ Q).and_ (Q.imp_ P))} (((P.imp_ Q).and_ (Q.imp_ P)).imp_ ((Q.imp_ P).and_ (P.imp_ Q)))
case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_} (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ ((Q.imp_ P).imp_ (P.imp_ Q).not_).not_)
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v ((P.imp_ Q).and_ (Q.imp_ P))} (((P.imp_ Q).and_ (Q.imp_ P)).imp_ ((Q.imp_ P).and_ (P.imp_ Q))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
SC
case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_} (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ ((Q.imp_ P).imp_ (P.imp_ Q).not_).not_)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_} (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ ((Q.imp_ P).imp_ (P.imp_ Q).not_).not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply specId v
case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (P.iff_ Q)
case h1.a.h1.a.h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (forall_ v (P.iff_ Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1.a P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (P.iff_ Q) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
apply IsDeduct.assume_
case h1.a.h1.a.h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (forall_ v (P.iff_ Q))
case h1.a.h1.a.h1.a P Q : Formula v : VarName ⊢ forall_ v (P.iff_ Q) ∈ {forall_ v (P.iff_ Q)}
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1.a.h1 P Q : Formula v : VarName ⊢ IsDeduct {forall_ v (P.iff_ Q)} (forall_ v (P.iff_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
simp
case h1.a.h1.a.h1.a P Q : Formula v : VarName ⊢ forall_ v (P.iff_ Q) ∈ {forall_ v (P.iff_ Q)}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h1.a.h1.a P Q : Formula v : VarName ⊢ forall_ v (P.iff_ Q) ∈ {forall_ v (P.iff_ Q)} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
simp
case h1.a.h2 P Q : Formula v : VarName ⊢ ∀ H ∈ {forall_ v (P.iff_ Q)}, ¬isFreeIn v H
case h1.a.h2 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v (P.iff_ Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h2 P Q : Formula v : VarName ⊢ ∀ H ∈ {forall_ v (P.iff_ Q)}, ¬isFreeIn v H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
simp only [isFreeIn]
case h1.a.h2 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v (P.iff_ Q))
case h1.a.h2 P Q : Formula v : VarName ⊢ ¬(¬True ∧ (isFreeIn v P ∨ isFreeIn v Q))
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h2 P Q : Formula v : VarName ⊢ ¬isFreeIn v (forall_ v (P.iff_ Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6_right
[1240, 1]
[1262, 11]
simp
case h1.a.h2 P Q : Formula v : VarName ⊢ ¬(¬True ∧ (isFreeIn v P ∨ isFreeIn v Q))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.a.h2 P Q : Formula v : VarName ⊢ ¬(¬True ∧ (isFreeIn v P ∨ isFreeIn v Q)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_19_6
[1265, 1]
[1280, 22]
apply IsDeduct.mp_ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q)))
P Q : Formula v : VarName ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).iff_ (exists_ v Q)))
case a P Q : Formula v : VarName ⊢ IsDeduct ∅ (((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q))).imp_ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).iff_ (exists_ v Q)))) case a P Q : Formula v : VarName ⊢ IsDeduct ∅ ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).imp_ (exists_ v Q)))
Please generate a tactic in lean4 to solve the state. STATE: P Q : Formula v : VarName ⊢ IsProof ((forall_ v (P.iff_ Q)).imp_ ((exists_ v P).iff_ (exists_ v Q))) TACTIC: