url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
|---|---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.replace_no_predVar
|
[107, 1]
|
[152, 24]
|
exact phi_ih h1
|
case h.e'_2
P : PredName
zs : List VarName
H : Formula
x : VarName
phi : Formula
phi_ih : phi.predVarSet = β
β replace P zs H phi = phi
h1 : phi.predVarSet = β
β’ replace P zs H phi = phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_2
P : PredName
zs : List VarName
H : Formula
x : VarName
phi : Formula
phi_ih : phi.predVarSet = β
β replace P zs H phi = phi
h1 : phi.predVarSet = β
β’ replace P zs H phi = phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.replace_no_predVar
|
[107, 1]
|
[152, 24]
|
simp only [replace]
|
P : PredName
zs : List VarName
H : Formula
X : DefName
xs : List VarName
h1 : (def_ X xs).predVarSet = β
β’ replace P zs H (def_ X xs) = def_ X xs
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : PredName
zs : List VarName
H : Formula
X : DefName
xs : List VarName
h1 : (def_ X xs).predVarSet = β
β’ replace P zs H (def_ X xs) = def_ X xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
set E_ref := E
|
D : Type
I : Interpretation D
V V' : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
binders : Finset VarName
h1 : admitsAux P zs H binders F
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E P zs H) V E F β Holds D I V E (replace P zs H F)
|
D : Type
I : Interpretation D
V V' : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
binders : Finset VarName
h1 : admitsAux P zs H binders F
h2 : β x β binders, V x = V' x
E_ref : Env := E
β’ Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V V' : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
binders : Finset VarName
h1 : admitsAux P zs H binders F
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E P zs H) V E F β Holds D I V E (replace P zs H F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
induction E generalizing F binders V
|
D : Type
I : Interpretation D
V V' : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
binders : Finset VarName
h1 : admitsAux P zs H binders F
h2 : β x β binders, V x = V' x
E_ref : Env := E
β’ Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
|
case nil
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
V : VarAssignment D
F : Formula
binders : Finset VarName
h1 : admitsAux P zs H binders F
h2 : β x β binders, V x = V' x
E_ref : Env := []
β’ Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
case cons
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
V : VarAssignment D
F : Formula
binders : Finset VarName
h1 : admitsAux P zs H binders F
h2 : β x β binders, V x = V' x
E_ref : Env := headβ :: tailβ
β’ Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V V' : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
binders : Finset VarName
h1 : admitsAux P zs H binders F
h2 : β x β binders, V x = V' x
E_ref : Env := E
β’ Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
case nil.def_ X xs =>
simp only [replace]
simp only [E_ref]
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (replace P zs H (def_ X xs))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (replace P zs H (def_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
induction F generalizing binders V
|
case cons
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
V : VarAssignment D
F : Formula
binders : Finset VarName
h1 : admitsAux P zs H binders F
h2 : β x β binders, V x = V' x
E_ref : Env := headβ :: tailβ
β’ Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
|
case cons.pred_const_
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
aβΒΉ : PredName
aβ : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_const_ aβΒΉ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_const_ aβΒΉ aβ) β
Holds D I V E_ref (replace P zs H (pred_const_ aβΒΉ aβ))
case cons.pred_var_
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
aβΒΉ : PredName
aβ : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_var_ aβΒΉ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ aβΒΉ aβ) β Holds D I V E_ref (replace P zs H (pred_var_ aβΒΉ aβ))
case cons.eq_
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
aβΒΉ aβ : VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (eq_ aβΒΉ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (eq_ aβΒΉ aβ) β Holds D I V E_ref (replace P zs H (eq_ aβΒΉ aβ))
case cons.true_
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders true_
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref true_ β Holds D I V E_ref (replace P zs H true_)
case cons.false_
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders false_
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref false_ β Holds D I V E_ref (replace P zs H false_)
case cons.not_
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
aβ : Formula
a_ihβ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders aβ β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref aβ β Holds D I V E_ref (replace P zs H aβ))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders aβ.not_
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref aβ.not_ β Holds D I V E_ref (replace P zs H aβ.not_)
case cons.imp_
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders aβΒΉ β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref aβΒΉ β Holds D I V E_ref (replace P zs H aβΒΉ))
a_ihβ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders aβ β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref aβ β Holds D I V E_ref (replace P zs H aβ))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (aβΒΉ.imp_ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (aβΒΉ.imp_ aβ) β Holds D I V E_ref (replace P zs H (aβΒΉ.imp_ aβ))
case cons.and_
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders aβΒΉ β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref aβΒΉ β Holds D I V E_ref (replace P zs H aβΒΉ))
a_ihβ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders aβ β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref aβ β Holds D I V E_ref (replace P zs H aβ))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (aβΒΉ.and_ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (aβΒΉ.and_ aβ) β Holds D I V E_ref (replace P zs H (aβΒΉ.and_ aβ))
case cons.or_
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders aβΒΉ β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref aβΒΉ β Holds D I V E_ref (replace P zs H aβΒΉ))
a_ihβ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders aβ β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref aβ β Holds D I V E_ref (replace P zs H aβ))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (aβΒΉ.or_ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (aβΒΉ.or_ aβ) β Holds D I V E_ref (replace P zs H (aβΒΉ.or_ aβ))
case cons.iff_
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders aβΒΉ β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref aβΒΉ β Holds D I V E_ref (replace P zs H aβΒΉ))
a_ihβ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders aβ β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref aβ β Holds D I V E_ref (replace P zs H aβ))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (aβΒΉ.iff_ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (aβΒΉ.iff_ aβ) β Holds D I V E_ref (replace P zs H (aβΒΉ.iff_ aβ))
case cons.forall_
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders aβ β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref aβ β Holds D I V E_ref (replace P zs H aβ))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (forall_ aβΒΉ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (forall_ aβΒΉ aβ) β Holds D I V E_ref (replace P zs H (forall_ aβΒΉ aβ))
case cons.exists_
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders aβ β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref aβ β Holds D I V E_ref (replace P zs H aβ))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (exists_ aβΒΉ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ aβΒΉ aβ) β Holds D I V E_ref (replace P zs H (exists_ aβΒΉ aβ))
case cons.def_
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
aβΒΉ : DefName
aβ : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ aβΒΉ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ aβΒΉ aβ) β Holds D I V E_ref (replace P zs H (def_ aβΒΉ aβ))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
V : VarAssignment D
F : Formula
binders : Finset VarName
h1 : admitsAux P zs H binders F
h2 : β x β binders, V x = V' x
E_ref : Env := headβ :: tailβ
β’ Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
case pred_const_ X xs =>
simp only [replace]
simp only [Holds]
simp only [I']
simp only [Interpretation.usingPred]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_const_ X xs) β Holds D I V E_ref (replace P zs H (pred_const_ X xs))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_const_ X xs) β Holds D I V E_ref (replace P zs H (pred_const_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
case eq_ x y =>
simp only [replace]
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x y : VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (eq_ x y)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (eq_ x y) β Holds D I V E_ref (replace P zs H (eq_ x y))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x y : VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (eq_ x y)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (eq_ x y) β Holds D I V E_ref (replace P zs H (eq_ x y))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
case true_ | false_ =>
simp only [replace]
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders false_
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref false_ β Holds D I V E_ref (replace P zs H false_)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders false_
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref false_ β Holds D I V E_ref (replace P zs H false_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
case not_ phi phi_ih =>
simp only [admitsAux] at h1
simp only [replace]
simp only [Holds]
congr! 1
exact phi_ih V binders h1 h2
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi.not_
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ β Holds D I V E_ref (replace P zs H phi.not_)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi.not_
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ β Holds D I V E_ref (replace P zs H phi.not_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
case forall_ x phi phi_ih | exists_ x phi phi_ih =>
simp only [admitsAux] at h1
simp only [replace]
simp only [Holds]
first | apply forall_congr' | apply exists_congr
intro d
apply phi_ih (Function.updateITE V x d) (binders βͺ {x}) h1
intro v a1
simp only [Function.updateITE]
simp at a1
push_neg at a1
cases a1
case h.intro a1_left a1_right =>
simp only [if_neg a1_right]
exact h2 v a1_left
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (exists_ x phi)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (replace P zs H (exists_ x phi))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (exists_ x phi)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (replace P zs H (exists_ x phi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_const_ X xs) β Holds D I V E_ref (replace P zs H (pred_const_ X xs))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_const_ X xs) β Holds D I V E_ref (pred_const_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_const_ X xs) β Holds D I V E_ref (replace P zs H (pred_const_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_const_ X xs) β Holds D I V E_ref (pred_const_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ (I' D I V' E_ref P zs H).pred_const_ X (List.map V xs) β I.pred_const_ X (List.map V xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_const_ X xs) β Holds D I V E_ref (pred_const_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [I']
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ (I' D I V' E_ref P zs H).pred_const_ X (List.map V xs) β I.pred_const_ X (List.map V xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E_ref H
else I.pred_var_ Q ds).pred_const_
X (List.map V xs) β
I.pred_const_ X (List.map V xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ (I' D I V' E_ref P zs H).pred_const_ X (List.map V xs) β I.pred_const_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Interpretation.usingPred]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E_ref H
else I.pred_var_ Q ds).pred_const_
X (List.map V xs) β
I.pred_const_ X (List.map V xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E_ref H
else I.pred_var_ Q ds).pred_const_
X (List.map V xs) β
I.pred_const_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [admitsAux] at h1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_var_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ X xs) β Holds D I V E_ref (replace P zs H (pred_var_ X xs))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ X xs) β Holds D I V E_ref (replace P zs H (pred_var_ X xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (pred_var_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ X xs) β Holds D I V E_ref (replace P zs H (pred_var_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ X xs) β Holds D I V E_ref (replace P zs H (pred_var_ X xs))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ X xs) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ X xs) β Holds D I V E_ref (replace P zs H (pred_var_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ X xs) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ (I' D I V' E_ref P zs H).pred_var_ X (List.map V xs) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ X xs) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [I']
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ (I' D I V' E_ref P zs H).pred_var_ X (List.map V xs) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E_ref H
else I.pred_var_ Q ds).pred_var_
X (List.map V xs) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ (I' D I V' E_ref P zs H).pred_var_ X (List.map V xs) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Interpretation.usingPred]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E_ref H
else I.pred_var_ Q ds).pred_var_
X (List.map V xs) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ (if X = P β§ (List.map V xs).length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E_ref H
else I.pred_var_ Q ds).pred_var_
X (List.map V xs) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ (if X = P β§ (List.map V xs).length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ (if X = P β§ (List.map V xs).length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
split_ifs at h1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
hβ : X = P β§ xs.length = zs.length
h1 : Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
hβ : Β¬(X = P β§ xs.length = zs.length)
h1 : True
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
if X = P β§ xs.length = zs.length then
Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
else True
h2 : β x β binders, V x = V' x
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
case neg c1 =>
split_ifs
case pos c2 =>
contradiction
case neg c2 =>
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : Β¬(X = P β§ xs.length = zs.length)
h1 : True
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : Β¬(X = P β§ xs.length = zs.length)
h1 : True
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Sub.Var.All.Rec.admits] at h1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1 : Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1 : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1 : Var.All.Rec.admits (Function.updateListITE id zs xs) H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp at h1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1 : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1 : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H β§ β x β binders, isFreeIn x H β x β zs
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1 : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H β§ β x β binders, Β¬(isFreeIn x H β§ x β zs)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
cases h1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1 : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H β§ β x β binders, isFreeIn x H β x β zs
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
case intro
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
leftβ : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
rightβ : β x β binders, isFreeIn x H β x β zs
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1 : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H β§ β x β binders, isFreeIn x H β x β zs
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
have s1 :
Holds D I (V β Function.updateListITE id zs xs) E_ref H β
Holds D I V E_ref (Sub.Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) :=
by
exact Sub.Var.All.Rec.substitution_theorem D I V E_ref (Function.updateListITE id zs xs) H h1_left
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (V β Function.updateListITE id zs xs) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Function.updateListITE_comp] at s1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (V β Function.updateListITE id zs xs) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE (V β id) zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (V β Function.updateListITE id zs xs) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp at s1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE (V β id) zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE (V β id) zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [s2] at s1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
s1 :
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
split_ifs
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
s1 :
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
s1 :
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
hβ : X = P β§ xs.length = zs.length
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
s1 :
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
hβ : Β¬(X = P β§ xs.length = zs.length)
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
s1 :
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
case pos c2 =>
exact s1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
s1 :
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
c2 : X = P β§ xs.length = zs.length
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
s1 :
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
c2 : X = P β§ xs.length = zs.length
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
case neg _ =>
exact s1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
s1 :
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
hβ : Β¬(X = P β§ xs.length = zs.length)
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
s1 :
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
hβ : Β¬(X = P β§ xs.length = zs.length)
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
exact Sub.Var.All.Rec.substitution_theorem D I V E_ref (Function.updateListITE id zs xs) H h1_left
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
β’ Holds D I (V β Function.updateListITE id zs xs) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
β’ Holds D I (V β Function.updateListITE id zs xs) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
apply Holds_coincide_Var
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ β (v : VarName),
isFreeIn v H β Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
intro v a1
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ β (v : VarName),
isFreeIn v H β Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
β’ β (v : VarName),
isFreeIn v H β Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
by_cases c2 : v β zs
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
|
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
apply Function.updateListITE_mem_eq_len V V' v zs (List.map V xs) c2
|
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
|
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
β’ zs.length = (List.map V xs).length
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
cases c1
|
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
β’ zs.length = (List.map V xs).length
|
case pos.intro
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
leftβ : X = P
rightβ : xs.length = zs.length
β’ zs.length = (List.map V xs).length
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
β’ zs.length = (List.map V xs).length
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
case pos.intro c1_left c1_right =>
simp
symm
exact c1_right
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c1_left : X = P
c1_right : xs.length = zs.length
β’ zs.length = (List.map V xs).length
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c1_left : X = P
c1_right : xs.length = zs.length
β’ zs.length = (List.map V xs).length
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c1_left : X = P
c1_right : xs.length = zs.length
β’ zs.length = (List.map V xs).length
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c1_left : X = P
c1_right : xs.length = zs.length
β’ zs.length = xs.length
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c1_left : X = P
c1_right : xs.length = zs.length
β’ zs.length = (List.map V xs).length
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
symm
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c1_left : X = P
c1_right : xs.length = zs.length
β’ zs.length = xs.length
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c1_left : X = P
c1_right : xs.length = zs.length
β’ xs.length = zs.length
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c1_left : X = P
c1_right : xs.length = zs.length
β’ zs.length = xs.length
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
exact c1_right
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c1_left : X = P
c1_right : xs.length = zs.length
β’ xs.length = zs.length
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c1_left : X = P
c1_right : xs.length = zs.length
β’ xs.length = zs.length
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
by_cases c3 : v β binders
|
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
|
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c3 : v β binders
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c3 : v β binders
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
specialize h1_right v c3 a1
|
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c3 : v β binders
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
|
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c3 : v β binders
h1_right : v β zs
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c3 : v β binders
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
contradiction
|
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c3 : v β binders
h1_right : v β zs
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c3 : v β binders
h1_right : v β zs
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
apply Function.updateListITE_mem'
|
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c3 : v β binders
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
|
case neg.h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c3 : v β binders
β’ V v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c3 : v β binders
β’ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
exact h2 v c3
|
case neg.h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c3 : v β binders
β’ V v = V' v
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case neg.h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s1 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
v : VarName
a1 : isFreeIn v H
c2 : v β zs
c3 : v β binders
β’ V v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
exact s1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
s1 :
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
c2 : X = P β§ xs.length = zs.length
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
s1 :
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
c2 : X = P β§ xs.length = zs.length
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
exact s1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
s1 :
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
hβ : Β¬(X = P β§ xs.length = zs.length)
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : X = P β§ xs.length = zs.length
h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) β
H
h1_right : β x β binders, isFreeIn x H β x β zs
s2 :
Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H β
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
s1 :
Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
hβ : Β¬(X = P β§ xs.length = zs.length)
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
split_ifs
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : Β¬(X = P β§ xs.length = zs.length)
h1 : True
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
|
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : Β¬(X = P β§ xs.length = zs.length)
h1 : True
hβ : X = P β§ xs.length = zs.length
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : Β¬(X = P β§ xs.length = zs.length)
h1 : True
hβ : Β¬(X = P β§ xs.length = zs.length)
β’ I.pred_var_ X (List.map V xs) β Holds D I V E_ref (pred_var_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : Β¬(X = P β§ xs.length = zs.length)
h1 : True
β’ (if X = P β§ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
else I.pred_var_ X (List.map V xs)) β
Holds D I V E_ref
(if X = P β§ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H
else pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
case pos c2 =>
contradiction
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : Β¬(X = P β§ xs.length = zs.length)
h1 : True
c2 : X = P β§ xs.length = zs.length
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : Β¬(X = P β§ xs.length = zs.length)
h1 : True
c2 : X = P β§ xs.length = zs.length
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
case neg c2 =>
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : Β¬(X = P β§ xs.length = zs.length)
h1 : True
c2 : Β¬(X = P β§ xs.length = zs.length)
β’ I.pred_var_ X (List.map V xs) β Holds D I V E_ref (pred_var_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : Β¬(X = P β§ xs.length = zs.length)
h1 : True
c2 : Β¬(X = P β§ xs.length = zs.length)
β’ I.pred_var_ X (List.map V xs) β Holds D I V E_ref (pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
contradiction
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : Β¬(X = P β§ xs.length = zs.length)
h1 : True
c2 : X = P β§ xs.length = zs.length
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : Β¬(X = P β§ xs.length = zs.length)
h1 : True
c2 : X = P β§ xs.length = zs.length
β’ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H β
Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : Β¬(X = P β§ xs.length = zs.length)
h1 : True
c2 : Β¬(X = P β§ xs.length = zs.length)
β’ I.pred_var_ X (List.map V xs) β Holds D I V E_ref (pred_var_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
c1 : Β¬(X = P β§ xs.length = zs.length)
h1 : True
c2 : Β¬(X = P β§ xs.length = zs.length)
β’ I.pred_var_ X (List.map V xs) β Holds D I V E_ref (pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x y : VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (eq_ x y)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (eq_ x y) β Holds D I V E_ref (replace P zs H (eq_ x y))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x y : VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (eq_ x y)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (eq_ x y) β Holds D I V E_ref (eq_ x y)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x y : VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (eq_ x y)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (eq_ x y) β Holds D I V E_ref (replace P zs H (eq_ x y))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x y : VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (eq_ x y)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (eq_ x y) β Holds D I V E_ref (eq_ x y)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x y : VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (eq_ x y)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (eq_ x y) β Holds D I V E_ref (eq_ x y)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders false_
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref false_ β Holds D I V E_ref (replace P zs H false_)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders false_
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref false_ β Holds D I V E_ref false_
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders false_
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref false_ β Holds D I V E_ref (replace P zs H false_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders false_
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref false_ β Holds D I V E_ref false_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders false_
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref false_ β Holds D I V E_ref false_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [admitsAux] at h1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi.not_
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ β Holds D I V E_ref (replace P zs H phi.not_)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ β Holds D I V E_ref (replace P zs H phi.not_)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi.not_
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ β Holds D I V E_ref (replace P zs H phi.not_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ β Holds D I V E_ref (replace P zs H phi.not_)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ β Holds D I V E_ref (replace P zs H phi).not_
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ β Holds D I V E_ref (replace P zs H phi.not_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ β Holds D I V E_ref (replace P zs H phi).not_
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi
h2 : β x β binders, V x = V' x
β’ Β¬Holds D (I' D I V' E_ref P zs H) V E_ref phi β Β¬Holds D I V E_ref (replace P zs H phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ β Holds D I V E_ref (replace P zs H phi).not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
congr! 1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi
h2 : β x β binders, V x = V' x
β’ Β¬Holds D (I' D I V' E_ref P zs H) V E_ref phi β Β¬Holds D I V E_ref (replace P zs H phi)
|
case a.h.e'_1.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi
h2 : β x β binders, V x = V' x
β’ Β¬Holds D (I' D I V' E_ref P zs H) V E_ref phi β Β¬Holds D I V E_ref (replace P zs H phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
exact phi_ih V binders h1 h2
|
case a.h.e'_1.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [admitsAux] at h1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (phi.iff_ psi)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β Holds D I V E_ref (replace P zs H (phi.iff_ psi))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β Holds D I V E_ref (replace P zs H (phi.iff_ psi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (phi.iff_ psi)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β Holds D I V E_ref (replace P zs H (phi.iff_ psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β Holds D I V E_ref (replace P zs H (phi.iff_ psi))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β
Holds D I V E_ref ((replace P zs H phi).iff_ (replace P zs H psi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β Holds D I V E_ref (replace P zs H (phi.iff_ psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β
Holds D I V E_ref ((replace P zs H phi).iff_ (replace P zs H psi))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D (I' D I V' E_ref P zs H) V E_ref psi) β
(Holds D I V E_ref (replace P zs H phi) β Holds D I V E_ref (replace P zs H psi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β
Holds D I V E_ref ((replace P zs H phi).iff_ (replace P zs H psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
cases h1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D (I' D I V' E_ref P zs H) V E_ref psi) β
(Holds D I V E_ref (replace P zs H phi) β Holds D I V E_ref (replace P zs H psi))
|
case intro
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
leftβ : admitsAux P zs H binders phi
rightβ : admitsAux P zs H binders psi
β’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D (I' D I V' E_ref P zs H) V E_ref psi) β
(Holds D I V E_ref (replace P zs H phi) β Holds D I V E_ref (replace P zs H psi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D (I' D I V' E_ref P zs H) V E_ref psi) β
(Holds D I V E_ref (replace P zs H phi) β Holds D I V E_ref (replace P zs H psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
congr! 1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D (I' D I V' E_ref P zs H) V E_ref psi) β
(Holds D I V E_ref (replace P zs H phi) β Holds D I V E_ref (replace P zs H psi))
|
case a.h.e'_1.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi)
case a.h.e'_2.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D (I' D I V' E_ref P zs H) V E_ref psi) β
(Holds D I V E_ref (replace P zs H phi) β Holds D I V E_ref (replace P zs H psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
exact phi_ih V binders h1_left h2
|
case a.h.e'_1.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
exact psi_ih V binders h1_right h2
|
case a.h.e'_2.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [admitsAux] at h1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (exists_ x phi)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (replace P zs H (exists_ x phi))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (replace P zs H (exists_ x phi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (exists_ x phi)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (replace P zs H (exists_ x phi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (replace P zs H (exists_ x phi))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (exists_ x (replace P zs H phi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (replace P zs H (exists_ x phi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (exists_ x (replace P zs H phi))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) β
β d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (exists_ x (replace P zs H phi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
first | apply forall_congr' | apply exists_congr
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) β
β d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ β (a : D),
Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi β
Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) β
β d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
intro d
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ β (a : D),
Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi β
Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi β
Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ β (a : D),
Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi β
Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
apply phi_ih (Function.updateITE V x d) (binders βͺ {x}) h1
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi β
Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ β x_1 β binders βͺ {x}, Function.updateITE V x d x_1 = V' x_1
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi β
Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
intro v a1
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ β x_1 β binders βͺ {x}, Function.updateITE V x d x_1 = V' x_1
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ Function.updateITE V x d v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ β x_1 β binders βͺ {x}, Function.updateITE V x d x_1 = V' x_1
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Function.updateITE]
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ Function.updateITE V x d v = V' v
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ (if v = x then d else V v) = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ Function.updateITE V x d v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp at a1
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ (if v = x then d else V v) = V' v
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ Β¬v = x
β’ (if v = x then d else V v) = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ (if v = x then d else V v) = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
push_neg at a1
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ Β¬v = x
β’ (if v = x then d else V v) = V' v
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ v β x
β’ (if v = x then d else V v) = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ Β¬v = x
β’ (if v = x then d else V v) = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
cases a1
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ v β x
β’ (if v = x then d else V v) = V' v
|
case h.intro
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
leftβ : v β binders
rightβ : v β x
β’ (if v = x then d else V v) = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ v β x
β’ (if v = x then d else V v) = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
case h.intro a1_left a1_right =>
simp only [if_neg a1_right]
exact h2 v a1_left
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ (if v = x then d else V v) = V' v
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ (if v = x then d else V v) = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
apply forall_congr'
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β (d : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) β
β (d : D), Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ β (a : D),
Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi β
Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β (d : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) β
β (d : D), Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
apply exists_congr
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) β
β d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ β (a : D),
Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi β
Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) β
β d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [if_neg a1_right]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ (if v = x then d else V v) = V' v
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ V v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ (if v = x then d else V v) = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
exact h2 v a1_left
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ V v = V' v
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ V v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (replace P zs H (def_ X xs))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (replace P zs H (def_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [E_ref]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (def_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' [] P zs H) V [] (def_ X xs) β Holds D I V [] (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' [] P zs H) V [] (def_ X xs) β Holds D I V [] (def_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' [] P zs H) V [] (def_ X xs) β Holds D I V [] (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (replace P zs H (def_ X xs))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (replace P zs H (def_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [E_ref]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (def_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' (hd :: tl) P zs H) V (hd :: tl) (def_ X xs) β Holds D I V (hd :: tl) (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' (hd :: tl) P zs H) V (hd :: tl) (def_ X xs) β Holds D I V (hd :: tl) (def_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ (if X = hd.name β§ xs.length = hd.args.length then
Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs)) β
if X = hd.name β§ xs.length = hd.args.length then
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' (hd :: tl) P zs H) V (hd :: tl) (def_ X xs) β Holds D I V (hd :: tl) (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
split_ifs
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ (if X = hd.name β§ xs.length = hd.args.length then
Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs)) β
if X = hd.name β§ xs.length = hd.args.length then
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)
|
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
hβ : X = hd.name β§ xs.length = hd.args.length
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
hβ : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs) β Holds D I V tl (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ (if X = hd.name β§ xs.length = hd.args.length then
Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs)) β
if X = hd.name β§ xs.length = hd.args.length then
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
specialize ih (Function.updateListITE V hd.args (List.map V xs)) hd.q
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) (Function.updateListITE V hd.args (List.map V xs)) E_ref hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) E_ref (replace P zs H hd.q)
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace_no_predVar P zs H hd.q hd.h2] at ih
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) (Function.updateListITE V hd.args (List.map V xs)) E_ref hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) E_ref (replace P zs H hd.q)
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) (Function.updateListITE V hd.args (List.map V xs)) E_ref hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) E_ref (replace P zs H hd.q)
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
apply Holds_coincide_PredVar
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ β (P_1 : PredName) (ds : List D),
predVarOccursIn P_1 ds.length hd.q β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [I']
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H
else I.pred_var_ Q ds).pred_const_ =
I.pred_const_
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Interpretation.usingPred]
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H
else I.pred_var_ Q ds).pred_const_ =
I.pred_const_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H
else I.pred_var_ Q ds).pred_const_ =
I.pred_const_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [predVarOccursIn_iff_mem_predVarSet]
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ β (P_1 : PredName) (ds : List D),
predVarOccursIn P_1 ds.length hd.q β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ β (P_1 : PredName) (ds : List D),
(P_1, ds.length) β hd.q.predVarSet β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ β (P_1 : PredName) (ds : List D),
predVarOccursIn P_1 ds.length hd.q β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.