url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
|---|---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [hd.h2]
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : X = hd.name ∧ xs.length = hd.args.length
ih :
∀ (binders : Finset VarName),
admitsAux P zs H binders hd.q →
(∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) →
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
⊢ ∀ (P_1 : PredName) (ds : List D),
(P_1, ds.length) ∈ hd.q.predVarSet → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : X = hd.name ∧ xs.length = hd.args.length
ih :
∀ (binders : Finset VarName),
admitsAux P zs H binders hd.q →
(∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) →
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
⊢ ∀ (P_1 : PredName) (ds : List D),
(P_1, ds.length) ∈ ∅ → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : X = hd.name ∧ xs.length = hd.args.length
ih :
∀ (binders : Finset VarName),
admitsAux P zs H binders hd.q →
(∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) →
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
⊢ ∀ (P_1 : PredName) (ds : List D),
(P_1, ds.length) ∈ hd.q.predVarSet → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : X = hd.name ∧ xs.length = hd.args.length
ih :
∀ (binders : Finset VarName),
admitsAux P zs H binders hd.q →
(∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) →
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
⊢ ∀ (P_1 : PredName) (ds : List D),
(P_1, ds.length) ∈ ∅ → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : X = hd.name ∧ xs.length = hd.args.length
ih :
∀ (binders : Finset VarName),
admitsAux P zs H binders hd.q →
(∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) →
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
⊢ ∀ (P_1 : PredName) (ds : List D),
(P_1, ds.length) ∈ ∅ → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
apply Holds_coincide_PredVar
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F →
(∀ x ∉ binders, V x = V' x) →
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs) ↔ Holds D I V tl (def_ X xs)
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F →
(∀ x ∉ binders, V x = V' x) →
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F →
(∀ x ∉ binders, V x = V' x) →
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ ∀ (P_1 : PredName) (ds : List D),
predVarOccursIn P_1 ds.length (def_ X xs) → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F →
(∀ x ∉ binders, V x = V' x) →
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs) ↔ Holds D I V tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [I']
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F →
(∀ x ∉ binders, V x = V' x) →
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F →
(∀ x ∉ binders, V x = V' x) →
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ (Interpretation.usingPred D I fun Q ds =>
if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H
else I.pred_var_ Q ds).pred_const_ =
I.pred_const_
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F →
(∀ x ∉ binders, V x = V' x) →
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Interpretation.usingPred]
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F →
(∀ x ∉ binders, V x = V' x) →
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ (Interpretation.usingPred D I fun Q ds =>
if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H
else I.pred_var_ Q ds).pred_const_ =
I.pred_const_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F →
(∀ x ∉ binders, V x = V' x) →
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ (Interpretation.usingPred D I fun Q ds =>
if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H
else I.pred_var_ Q ds).pred_const_ =
I.pred_const_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [predVarOccursIn]
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F →
(∀ x ∉ binders, V x = V' x) →
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ ∀ (P_1 : PredName) (ds : List D),
predVarOccursIn P_1 ds.length (def_ X xs) → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F →
(∀ x ∉ binders, V x = V' x) →
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ ∀ (P_1 : PredName) (ds : List D), False → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F →
(∀ x ∉ binders, V x = V' x) →
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ ∀ (P_1 : PredName) (ds : List D),
predVarOccursIn P_1 ds.length (def_ X xs) → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F →
(∀ x ∉ binders, V x = V' x) →
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ ∀ (P_1 : PredName) (ds : List D), False → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F →
(∀ x ∉ binders, V x = V' x) →
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : ∀ x ∉ binders, V x = V' x
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ ∀ (P_1 : PredName) (ds : List D), False → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem
|
[337, 1]
|
[352, 9]
|
apply substitution_theorem_aux D I V V E F P zs H ∅
|
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
⊢ Holds D (I' D I V E P zs H) V E F ↔ Holds D I V E (replace P zs H F)
|
case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
⊢ admitsAux P zs H ∅ F
case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
⊢ ∀ x ∉ ∅, V x = V x
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
⊢ Holds D (I' D I V E P zs H) V E F ↔ Holds D I V E (replace P zs H F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem
|
[337, 1]
|
[352, 9]
|
exact h1
|
case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
⊢ admitsAux P zs H ∅ F
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
⊢ admitsAux P zs H ∅ F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem
|
[337, 1]
|
[352, 9]
|
simp
|
case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
⊢ ∀ x ∉ ∅, V x = V x
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
⊢ ∀ x ∉ ∅, V x = V x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
|
[355, 1]
|
[369, 11]
|
simp only [IsValid] at h2
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : F.IsValid
⊢ (replace P zs H F).IsValid
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
⊢ (replace P zs H F).IsValid
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : F.IsValid
⊢ (replace P zs H F).IsValid
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
|
[355, 1]
|
[369, 11]
|
simp only [IsValid]
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
⊢ (replace P zs H F).IsValid
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
⊢ ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace P zs H F)
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
⊢ (replace P zs H F).IsValid
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
|
[355, 1]
|
[369, 11]
|
intro D I V E
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
⊢ ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace P zs H F)
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
⊢ Holds D I V E (replace P zs H F)
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
⊢ ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace P zs H F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
|
[355, 1]
|
[369, 11]
|
simp only [← substitution_theorem D I V E F P zs H h1]
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
⊢ Holds D I V E (replace P zs H F)
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
⊢ Holds D (I' D I V E P zs H) V E F
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
⊢ Holds D I V E (replace P zs H F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
|
[355, 1]
|
[369, 11]
|
apply h2
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
⊢ Holds D (I' D I V E P zs H) V E F
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
⊢ Holds D (I' D I V E P zs H) V E F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
induction E generalizing F V V'
|
D : Type
I : Interpretation D
V V' : VarAssignment D
E : Env
F : Formula
h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v
⊢ Holds D I V E F ↔ Holds D I V' E F
|
case nil
D : Type
I : Interpretation D
V V' : VarAssignment D
F : Formula
h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v
⊢ Holds D I V [] F ↔ Holds D I V' [] F
case cons
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
F : Formula
h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I V' (head✝ :: tail✝) F
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V V' : VarAssignment D
E : Env
F : Formula
h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v
⊢ Holds D I V E F ↔ Holds D I V' E F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case cons.def_ hd tl ih X xs =>
split_ifs
case pos c1 =>
apply ih
intro v a1
simp only [isFreeIn_iff_mem_freeVarSet v hd.q] at a1
have s1 : v ∈ List.toFinset hd.args
apply Finset.mem_of_subset hd.h1 a1
simp only [List.mem_toFinset] at s1
apply Function.updateListITE_fun_coincide_mem_eq_len V V' hd.args xs v h1 s1
tauto
case neg c1 =>
apply ih
tauto
|
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)) ↔
if X = hd.name ∧ xs.length = hd.args.length then
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
else Holds D I V' tl (def_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)) ↔
if X = hd.name ∧ xs.length = hd.args.length then
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
else Holds D I V' tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
induction F generalizing V V'
|
case cons
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
F : Formula
h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I V' (head✝ :: tail✝) F
|
case cons.pred_const_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (pred_const_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_const_ a✝¹ a✝)
case cons.pred_var_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (pred_var_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_var_ a✝¹ a✝)
case cons.eq_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (eq_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (eq_ a✝¹ a✝)
case cons.true_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v true_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I V' (head✝ :: tail✝) true_
case cons.false_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v false_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I V' (head✝ :: tail✝) false_
case cons.not_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝.not_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I V' (head✝ :: tail✝) a✝.not_
case cons.imp_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.imp_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.imp_ a✝)
case cons.and_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.and_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.and_ a✝)
case cons.or_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.or_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.or_ a✝)
case cons.iff_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.iff_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.iff_ a✝)
case cons.forall_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (forall_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (forall_ a✝¹ a✝)
case cons.exists_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (exists_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (exists_ a✝¹ a✝)
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (def_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
F : Formula
h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I V' (head✝ :: tail✝) F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
all_goals
simp only [isFreeIn] at h1
simp only [Holds]
|
case cons.pred_const_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (pred_const_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_const_ a✝¹ a✝)
case cons.pred_var_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (pred_var_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_var_ a✝¹ a✝)
case cons.eq_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (eq_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (eq_ a✝¹ a✝)
case cons.true_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v true_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I V' (head✝ :: tail✝) true_
case cons.false_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v false_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I V' (head✝ :: tail✝) false_
case cons.not_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝.not_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I V' (head✝ :: tail✝) a✝.not_
case cons.imp_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.imp_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.imp_ a✝)
case cons.and_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.and_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.and_ a✝)
case cons.or_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.or_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.or_ a✝)
case cons.iff_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.iff_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.iff_ a✝)
case cons.forall_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (forall_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (forall_ a✝¹ a✝)
case cons.exists_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (exists_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (exists_ a✝¹ a✝)
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (def_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
|
case cons.pred_const_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ a✝, V v = V' v
⊢ I.pred_const_ a✝¹ (List.map V a✝) ↔ I.pred_const_ a✝¹ (List.map V' a✝)
case cons.pred_var_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ a✝, V v = V' v
⊢ I.pred_var_ a✝¹ (List.map V a✝) ↔ I.pred_var_ a✝¹ (List.map V' a✝)
case cons.eq_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), v = a✝¹ ∨ v = a✝ → V v = V' v
⊢ V a✝¹ = V a✝ ↔ V' a✝¹ = V' a✝
case cons.not_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝ → V v = V' v
⊢ ¬Holds D I V (head✝ :: tail✝) a✝ ↔ ¬Holds D I V' (head✝ :: tail✝) a✝
case cons.imp_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) a✝¹ → Holds D I V (head✝ :: tail✝) a✝ ↔
Holds D I V' (head✝ :: tail✝) a✝¹ → Holds D I V' (head✝ :: tail✝) a✝
case cons.and_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) a✝¹ ∧ Holds D I V (head✝ :: tail✝) a✝ ↔
Holds D I V' (head✝ :: tail✝) a✝¹ ∧ Holds D I V' (head✝ :: tail✝) a✝
case cons.or_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) a✝¹ ∨ Holds D I V (head✝ :: tail✝) a✝ ↔
Holds D I V' (head✝ :: tail✝) a✝¹ ∨ Holds D I V' (head✝ :: tail✝) a✝
case cons.iff_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ → V v = V' v
⊢ (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) a✝) ↔
(Holds D I V' (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝)
case cons.forall_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = a✝¹ ∧ isFreeIn v a✝ → V v = V' v
⊢ (∀ (d : D), Holds D I (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝) ↔
∀ (d : D), Holds D I (Function.updateITE V' a✝¹ d) (head✝ :: tail✝) a✝
case cons.exists_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = a✝¹ ∧ isFreeIn v a✝ → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝) ↔
∃ d, Holds D I (Function.updateITE V' a✝¹ d) (head✝ :: tail✝) a✝
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ a✝, V v = V' v
⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q
else Holds D I V tail✝ (def_ a✝¹ a✝)) ↔
if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I (Function.updateListITE V' head✝.args (List.map V' a✝)) tail✝ head✝.q
else Holds D I V' tail✝ (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons.pred_const_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (pred_const_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_const_ a✝¹ a✝)
case cons.pred_var_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (pred_var_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_var_ a✝¹ a✝)
case cons.eq_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (eq_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (eq_ a✝¹ a✝)
case cons.true_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v true_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I V' (head✝ :: tail✝) true_
case cons.false_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v false_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I V' (head✝ :: tail✝) false_
case cons.not_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v a✝.not_ → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I V' (head✝ :: tail✝) a✝.not_
case cons.imp_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.imp_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.imp_ a✝)
case cons.and_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.and_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.and_ a✝)
case cons.or_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.or_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.or_ a✝)
case cons.iff_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (a✝¹.iff_ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.iff_ a✝)
case cons.forall_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (forall_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (forall_ a✝¹ a✝)
case cons.exists_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (exists_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (exists_ a✝¹ a✝)
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (def_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case pred_const_ X xs | pred_var_ X xs =>
congr! 1
simp only [List.map_eq_map_iff]
exact h1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ I.pred_var_ X (List.map V xs) ↔ I.pred_var_ X (List.map V' xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ I.pred_var_ X (List.map V xs) ↔ I.pred_var_ X (List.map V' xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case eq_ x y =>
simp at h1
cases h1
case intro h1_left h1_right =>
congr! 1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), v = x ∨ v = y → V v = V' v
⊢ V x = V y ↔ V' x = V' y
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), v = x ∨ v = y → V v = V' v
⊢ V x = V y ↔ V' x = V' y
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case not_ phi phi_ih =>
congr! 1
exact phi_ih V V' h1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I V' (head✝ :: tail✝) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I V' (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case forall_ x phi phi_ih | exists_ x phi phi_ih =>
simp at h1
first | apply forall_congr' | apply exists_congr
intro d
apply phi_ih
intro v a1
simp only [Function.updateITE]
split_ifs <;> tauto
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x ∧ isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x ∧ isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp only [isFreeIn] at h1
|
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (def_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
|
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ a✝, V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v (def_ a✝¹ a✝) → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp only [Holds]
|
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ a✝, V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
|
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ a✝, V v = V' v
⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q
else Holds D I V tail✝ (def_ a✝¹ a✝)) ↔
if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I (Function.updateListITE V' head✝.args (List.map V' a✝)) tail✝ head✝.q
else Holds D I V' tail✝ (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons.def_
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ a✝, V v = V' v
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
congr! 1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ I.pred_var_ X (List.map V xs) ↔ I.pred_var_ X (List.map V' xs)
|
case a.h.e'_4
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ List.map V xs = List.map V' xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ I.pred_var_ X (List.map V xs) ↔ I.pred_var_ X (List.map V' xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp only [List.map_eq_map_iff]
|
case a.h.e'_4
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ List.map V xs = List.map V' xs
|
case a.h.e'_4
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ ∀ x ∈ xs, V x = V' x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ List.map V xs = List.map V' xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
exact h1
|
case a.h.e'_4
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ ∀ x ∈ xs, V x = V' x
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
X : PredName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ ∀ x ∈ xs, V x = V' x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp at h1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), v = x ∨ v = y → V v = V' v
⊢ V x = V y ↔ V' x = V' y
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1 : V x = V' x ∧ V y = V' y
⊢ V x = V y ↔ V' x = V' y
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1 : ∀ (v : VarName), v = x ∨ v = y → V v = V' v
⊢ V x = V y ↔ V' x = V' y
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
cases h1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1 : V x = V' x ∧ V y = V' y
⊢ V x = V y ↔ V' x = V' y
|
case intro
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
left✝ : V x = V' x
right✝ : V y = V' y
⊢ V x = V y ↔ V' x = V' y
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1 : V x = V' x ∧ V y = V' y
⊢ V x = V y ↔ V' x = V' y
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case intro h1_left h1_right =>
congr! 1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1_left : V x = V' x
h1_right : V y = V' y
⊢ V x = V y ↔ V' x = V' y
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1_left : V x = V' x
h1_right : V y = V' y
⊢ V x = V y ↔ V' x = V' y
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
congr! 1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1_left : V x = V' x
h1_right : V y = V' y
⊢ V x = V y ↔ V' x = V' y
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x y : VarName
V V' : VarAssignment D
h1_left : V x = V' x
h1_right : V y = V' y
⊢ V x = V y ↔ V' x = V' y
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
congr! 1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I V' (head✝ :: tail✝) phi
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I V' (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
exact phi_ih V V' h1
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
congr! 1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔
(Holds D I V' (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) psi)
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔
(Holds D I V' (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply phi_ih V V'
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ ∀ (v : VarName), isFreeIn v phi → V v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
intro v a1
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ ∀ (v : VarName), isFreeIn v phi → V v = V' v
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ V v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ ∀ (v : VarName), isFreeIn v phi → V v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply h1
|
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ V v = V' v
|
case a.h.e'_1.a.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ isFreeIn v phi ∨ isFreeIn v psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ V v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
left
|
case a.h.e'_1.a.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ isFreeIn v phi ∨ isFreeIn v psi
|
case a.h.e'_1.a.a.h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ isFreeIn v phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ isFreeIn v phi ∨ isFreeIn v psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
exact a1
|
case a.h.e'_1.a.a.h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ isFreeIn v phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.a.h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v phi
⊢ isFreeIn v phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply psi_ih V V'
|
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi
|
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ ∀ (v : VarName), isFreeIn v psi → V v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
intro v a1
|
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ ∀ (v : VarName), isFreeIn v psi → V v = V' v
|
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ V v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
⊢ ∀ (v : VarName), isFreeIn v psi → V v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply h1
|
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ V v = V' v
|
case a.h.e'_2.a.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ isFreeIn v phi ∨ isFreeIn v psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ V v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
right
|
case a.h.e'_2.a.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ isFreeIn v phi ∨ isFreeIn v psi
|
case a.h.e'_2.a.a.h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ isFreeIn v psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a.a
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ isFreeIn v phi ∨ isFreeIn v psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
exact a1
|
case a.h.e'_2.a.a.h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ isFreeIn v psi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a.a.h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
phi psi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
psi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v psi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v
v : VarName
a1 : isFreeIn v psi
⊢ isFreeIn v psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp at h1
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x ∧ isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x ∧ isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
first | apply forall_congr' | apply exists_congr
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
intro d
|
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) phi
|
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply phi_ih
|
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
⊢ ∀ (v : VarName), isFreeIn v phi → Function.updateITE V x d v = Function.updateITE V' x d v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
intro v a1
|
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
⊢ ∀ (v : VarName), isFreeIn v phi → Function.updateITE V x d v = Function.updateITE V' x d v
|
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
v : VarName
a1 : isFreeIn v phi
⊢ Function.updateITE V x d v = Function.updateITE V' x d v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
⊢ ∀ (v : VarName), isFreeIn v phi → Function.updateITE V x d v = Function.updateITE V' x d v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp only [Function.updateITE]
|
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
v : VarName
a1 : isFreeIn v phi
⊢ Function.updateITE V x d v = Function.updateITE V' x d v
|
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
v : VarName
a1 : isFreeIn v phi
⊢ (if v = x then d else V v) = if v = x then d else V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
v : VarName
a1 : isFreeIn v phi
⊢ Function.updateITE V x d v = Function.updateITE V' x d v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
split_ifs <;> tauto
|
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
v : VarName
a1 : isFreeIn v phi
⊢ (if v = x then d else V v) = if v = x then d else V' v
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.h1
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
d : D
v : VarName
a1 : isFreeIn v phi
⊢ (if v = x then d else V v) = if v = x then d else V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply forall_congr'
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ (∀ (d : D), Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∀ (d : D), Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ (∀ (d : D), Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∀ (d : D), Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply exists_congr
|
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
|
case h
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V V' : VarAssignment D),
(∀ (v : VarName), isFreeIn v phi → V v = V' v) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi)
V V' : VarAssignment D
h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
split_ifs
|
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)) ↔
if X = hd.name ∧ xs.length = hd.args.length then
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
else Holds D I V' tl (def_ X xs)
|
case pos
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
h✝ : X = hd.name ∧ xs.length = hd.args.length
⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
case neg
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
h✝ : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)) ↔
if X = hd.name ∧ xs.length = hd.args.length then
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
else Holds D I V' tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case pos c1 =>
apply ih
intro v a1
simp only [isFreeIn_iff_mem_freeVarSet v hd.q] at a1
have s1 : v ∈ List.toFinset hd.args
apply Finset.mem_of_subset hd.h1 a1
simp only [List.mem_toFinset] at s1
apply Function.updateListITE_fun_coincide_mem_eq_len V V' hd.args xs v h1 s1
tauto
|
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
case neg c1 =>
apply ih
tauto
|
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply ih
|
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
⊢ ∀ (v : VarName),
isFreeIn v hd.q →
Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔
Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
intro v a1
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
⊢ ∀ (v : VarName),
isFreeIn v hd.q →
Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
⊢ ∀ (v : VarName),
isFreeIn v hd.q →
Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp only [isFreeIn_iff_mem_freeVarSet v hd.q] at a1
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
have s1 : v ∈ List.toFinset hd.args
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
case s1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
⊢ v ∈ hd.args.toFinset
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args.toFinset
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply Finset.mem_of_subset hd.h1 a1
|
case s1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
⊢ v ∈ hd.args.toFinset
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args.toFinset
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args.toFinset
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case s1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
⊢ v ∈ hd.args.toFinset
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args.toFinset
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
simp only [List.mem_toFinset] at s1
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args.toFinset
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args.toFinset
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply Function.updateListITE_fun_coincide_mem_eq_len V V' hd.args xs v h1 s1
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args
⊢ hd.args.length = xs.length
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args
⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
tauto
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args
⊢ hd.args.length = xs.length
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : X = hd.name ∧ xs.length = hd.args.length
v : VarName
a1 : v ∈ hd.q.freeVarSet
s1 : v ∈ hd.args
⊢ hd.args.length = xs.length
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
apply ih
|
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X xs)
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ ∀ (v : VarName), isFreeIn v (def_ X xs) → V v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_Var
|
[101, 1]
|
[172, 12]
|
tauto
|
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ ∀ (v : VarName), isFreeIn v (def_ X xs) → V v = V' v
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
hd : Definition
tl : List Definition
ih :
∀ (V V' : VarAssignment D) (F : Formula),
(∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F)
X : DefName
xs : List VarName
V V' : VarAssignment D
h1 : ∀ v ∈ xs, V v = V' v
c1 : ¬(X = hd.name ∧ xs.length = hd.args.length)
⊢ ∀ (v : VarName), isFreeIn v (def_ X xs) → V v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
induction E generalizing F V
|
D : Type
I I' : Interpretation D
V : VarAssignment D
E : Env
F : Formula
h1 : I.pred_const_ = I'.pred_const_
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V E F ↔ Holds D I' V E F
|
case nil
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
V : VarAssignment D
F : Formula
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V [] F ↔ Holds D I' V [] F
case cons
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
F : Formula
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I' V (head✝ :: tail✝) F
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
V : VarAssignment D
E : Env
F : Formula
h1 : I.pred_const_ = I'.pred_const_
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V E F ↔ Holds D I' V E F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
case cons.def_ hd tl ih X xs =>
split_ifs
case pos c1 =>
apply ih
intro P ds a1
simp only [predVarOccursIn_iff_mem_predVarSet P ds.length] at a1
simp only [hd.h2] at a1
simp at a1
case neg c1 =>
apply ih
intro P ds a1
simp only [predVarOccursIn] at a1
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tl F ↔ Holds D I' V tl F)
X : DefName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)) ↔
if X = hd.name ∧ xs.length = hd.args.length then
Holds D I' (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I' V tl (def_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
hd : Definition
tl : List Definition
ih :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tl F ↔ Holds D I' V tl F)
X : DefName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)) ↔
if X = hd.name ∧ xs.length = hd.args.length then
Holds D I' (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I' V tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
induction F generalizing V
|
case cons
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
F : Formula
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I' V (head✝ :: tail✝) F
|
case cons.pred_const_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length (pred_const_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_const_ a✝¹ a✝)
case cons.pred_var_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length (pred_var_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_var_ a✝¹ a✝)
case cons.eq_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (eq_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (eq_ a✝¹ a✝)
case cons.true_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length true_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I' V (head✝ :: tail✝) true_
case cons.false_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length false_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I' V (head✝ :: tail✝) false_
case cons.not_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝.not_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I' V (head✝ :: tail✝) a✝.not_
case cons.imp_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.imp_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.imp_ a✝)
case cons.and_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.and_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.and_ a✝)
case cons.or_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.or_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.or_ a✝)
case cons.iff_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.iff_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.iff_ a✝)
case cons.forall_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (forall_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (forall_ a✝¹ a✝)
case cons.exists_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (exists_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (exists_ a✝¹ a✝)
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
F : Formula
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I' V (head✝ :: tail✝) F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
all_goals
simp only [predVarOccursIn] at h2
simp only [Holds]
|
case cons.pred_const_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length (pred_const_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_const_ a✝¹ a✝)
case cons.pred_var_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length (pred_var_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_var_ a✝¹ a✝)
case cons.eq_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (eq_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (eq_ a✝¹ a✝)
case cons.true_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length true_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I' V (head✝ :: tail✝) true_
case cons.false_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length false_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I' V (head✝ :: tail✝) false_
case cons.not_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝.not_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I' V (head✝ :: tail✝) a✝.not_
case cons.imp_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.imp_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.imp_ a✝)
case cons.and_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.and_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.and_ a✝)
case cons.or_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.or_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.or_ a✝)
case cons.iff_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.iff_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.iff_ a✝)
case cons.forall_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (forall_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (forall_ a✝¹ a✝)
case cons.exists_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (exists_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (exists_ a✝¹ a✝)
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
|
case cons.pred_const_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_const_ a✝¹ (List.map V a✝) ↔ I'.pred_const_ a✝¹ (List.map V a✝)
case cons.pred_var_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = a✝¹ ∧ ds.length = a✝.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ a✝¹ (List.map V a✝) ↔ I'.pred_var_ a✝¹ (List.map V a✝)
case cons.not_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ¬Holds D I V (head✝ :: tail✝) a✝ ↔ ¬Holds D I' V (head✝ :: tail✝) a✝
case cons.imp_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length a✝¹ ∨ predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) a✝¹ → Holds D I V (head✝ :: tail✝) a✝ ↔
Holds D I' V (head✝ :: tail✝) a✝¹ → Holds D I' V (head✝ :: tail✝) a✝
case cons.and_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length a✝¹ ∨ predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) a✝¹ ∧ Holds D I V (head✝ :: tail✝) a✝ ↔
Holds D I' V (head✝ :: tail✝) a✝¹ ∧ Holds D I' V (head✝ :: tail✝) a✝
case cons.or_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length a✝¹ ∨ predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) a✝¹ ∨ Holds D I V (head✝ :: tail✝) a✝ ↔
Holds D I' V (head✝ :: tail✝) a✝¹ ∨ Holds D I' V (head✝ :: tail✝) a✝
case cons.iff_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length a✝¹ ∨ predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) a✝) ↔
(Holds D I' V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝)
case cons.forall_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (∀ (d : D), Holds D I (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝) ↔
∀ (d : D), Holds D I' (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝
case cons.exists_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (∃ d, Holds D I (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝) ↔
∃ d, Holds D I' (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q
else Holds D I V tail✝ (def_ a✝¹ a✝)) ↔
if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I' (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q
else Holds D I' V tail✝ (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons.pred_const_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length (pred_const_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_const_ a✝¹ a✝)
case cons.pred_var_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : PredName
a✝ : List VarName
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length (pred_var_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_var_ a✝¹ a✝)
case cons.eq_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (eq_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (eq_ a✝¹ a✝)
case cons.true_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length true_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I' V (head✝ :: tail✝) true_
case cons.false_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length false_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I' V (head✝ :: tail✝) false_
case cons.not_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝.not_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I' V (head✝ :: tail✝) a✝.not_
case cons.imp_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.imp_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.imp_ a✝)
case cons.and_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.and_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.and_ a✝)
case cons.or_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.or_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.or_ a✝)
case cons.iff_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ a✝ : Formula
a_ih✝¹ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹)
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.iff_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.iff_ a✝)
case cons.forall_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (forall_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (forall_ a✝¹ a✝)
case cons.exists_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : VarName
a✝ : Formula
a_ih✝ :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (exists_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (exists_ a✝¹ a✝)
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
case pred_const_ X xs =>
simp only [h1]
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_const_ X (List.map V xs) ↔ I'.pred_const_ X (List.map V xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_const_ X (List.map V xs) ↔ I'.pred_const_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
case pred_var_ X xs =>
simp at h2
specialize h2 X (List.map V xs)
simp at h2
exact h2
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = X ∧ ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = X ∧ ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
case not_ phi phi_ih =>
congr! 1
exact phi_ih V h2
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I' V (head✝ :: tail✝) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I' V (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
case forall_ x phi phi_ih | exists_ x phi phi_ih =>
first | apply forall_congr' | apply exists_congr
intro d
exact phi_ih (Function.updateITE V x d) h2
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
simp only [predVarOccursIn] at h2
|
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
|
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
simp only [Holds]
|
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
|
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q
else Holds D I V tail✝ (def_ a✝¹ a✝)) ↔
if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then
Holds D I' (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q
else Holds D I' V tail✝ (def_ a✝¹ a✝)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case cons.def_
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
a✝¹ : DefName
a✝ : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
simp only [h1]
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_const_ X (List.map V xs) ↔ I'.pred_const_ X (List.map V xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_const_ X (List.map V xs) ↔ I'.pred_const_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
simp at h2
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = X ∧ ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = X → ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = X ∧ ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
specialize h2 X (List.map V xs)
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = X → ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : X = X → (List.map V xs).length = xs.length → (I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs))
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), P = X → ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
simp at h2
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : X = X → (List.map V xs).length = xs.length → (I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs))
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : X = X → (List.map V xs).length = xs.length → (I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs))
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
exact h2
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
X : PredName
xs : List VarName
V : VarAssignment D
h2 : I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
congr! 1
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I' V (head✝ :: tail✝) phi
|
case a.h.e'_1.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I' V (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
exact phi_ih V h2
|
case a.h.e'_1.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
congr! 1
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔
(Holds D I' V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) psi)
|
case a.h.e'_1.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
case a.h.e'_2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔
(Holds D I' V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
apply phi_ih
|
case a.h.e'_1.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
|
case a.h.e'_1.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
intro P ds a1
|
case a.h.e'_1.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
|
case a.h.e'_1.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ I.pred_var_ P ds ↔ I'.pred_var_ P ds
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
apply h2
|
case a.h.e'_1.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ I.pred_var_ P ds ↔ I'.pred_var_ P ds
|
case a.h.e'_1.a.h2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ I.pred_var_ P ds ↔ I'.pred_var_ P ds
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
left
|
case a.h.e'_1.a.h2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi
|
case a.h.e'_1.a.h2.a.h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ predVarOccursIn P ds.length phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
exact a1
|
case a.h.e'_1.a.h2.a.h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ predVarOccursIn P ds.length phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h2.a.h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length phi
⊢ predVarOccursIn P ds.length phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
apply psi_ih
|
case a.h.e'_2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi
|
case a.h.e'_2.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
intro P ds a1
|
case a.h.e'_2.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
|
case a.h.e'_2.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length psi
⊢ I.pred_var_ P ds ↔ I'.pred_var_ P ds
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
apply h2
|
case a.h.e'_2.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length psi
⊢ I.pred_var_ P ds ↔ I'.pred_var_ P ds
|
case a.h.e'_2.a.h2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length psi
⊢ predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a.h2
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length psi
⊢ I.pred_var_ P ds ↔ I'.pred_var_ P ds
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
right
|
case a.h.e'_2.a.h2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length psi
⊢ predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi
|
case a.h.e'_2.a.h2.a.h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length psi
⊢ predVarOccursIn P ds.length psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a.h2.a
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length psi
⊢ predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
exact a1
|
case a.h.e'_2.a.h2.a.h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length psi
⊢ predVarOccursIn P ds.length psi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a.h2.a.h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
phi psi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
psi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi)
V : VarAssignment D
h2 :
∀ (P : PredName) (ds : List D),
predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
P : PredName
ds : List D
a1 : predVarOccursIn P ds.length psi
⊢ predVarOccursIn P ds.length psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
first | apply forall_congr' | apply exists_congr
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
|
case h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I' (Function.updateITE V x a) (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
intro d
|
case h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I' (Function.updateITE V x a) (head✝ :: tail✝) phi
|
case h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
d : D
⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I' (Function.updateITE V x a) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
exact phi_ih (Function.updateITE V x d) h2
|
case h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
d : D
⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
d : D
⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
apply forall_congr'
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (∀ (d : D), Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∀ (d : D), Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
|
case h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I' (Function.updateITE V x a) (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (∀ (d : D), Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∀ (d : D), Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Semantics.lean
|
FOL.NV.Holds_coincide_PredVar
|
[175, 1]
|
[236, 40]
|
apply exists_congr
|
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
|
case h
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ ∀ (a : D),
Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔
Holds D I' (Function.updateITE V x a) (head✝ :: tail✝) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I I' : Interpretation D
h1 : I.pred_const_ = I'.pred_const_
head✝ : Definition
tail✝ : List Definition
tail_ih✝ :
∀ (V : VarAssignment D) (F : Formula),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V tail✝ F ↔ Holds D I' V tail✝ F)
x : VarName
phi : Formula
phi_ih :
∀ (V : VarAssignment D),
(∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) →
(Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi)
V : VarAssignment D
h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔
∃ d, Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.