url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [phi_ih]
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D ⊢ Holds D I (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) c phi) ↔ Holds D I (Function.updateITE (V ∘ σ) x d) E phi
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D ⊢ Holds D I (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d ∘ Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) E phi ↔ Holds D I (Function.updateITE (V ∘ σ) x d) E phi
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D ⊢ Holds D I (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) c phi) ↔ Holds D I (Function.updateITE (V ∘ σ) x d) E phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Holds_coincide_Var
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D ⊢ Holds D I (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d ∘ Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) E phi ↔ Holds D I (Function.updateITE (V ∘ σ) x d) E phi
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D ⊢ ∀ (v : VarName), isFreeIn v phi → (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d ∘ Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) v = Function.updateITE (V ∘ σ) x d v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D ⊢ Holds D I (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d ∘ Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) E phi ↔ Holds D I (Function.updateITE (V ∘ σ) x d) E phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
intro v a1
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D ⊢ ∀ (v : VarName), isFreeIn v phi → (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d ∘ Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) v = Function.updateITE (V ∘ σ) x d v
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi ⊢ (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d ∘ Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) v = Function.updateITE (V ∘ σ) x d v
Please generate a tactic in lean4 to solve the state. STATE: case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D ⊢ ∀ (v : VarName), isFreeIn v phi → (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d ∘ Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) v = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi ⊢ (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d ∘ Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) v = Function.updateITE (V ∘ σ) x d v
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi ⊢ Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d (Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) v) = Function.updateITE (V ∘ σ) x d v
Please generate a tactic in lean4 to solve the state. STATE: case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi ⊢ (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d ∘ Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) v = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
split_ifs
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi ⊢ Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d (Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) v) = Function.updateITE (V ∘ σ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi h✝ : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x ⊢ Function.updateITE V (fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet) d (Function.updateITE σ x (fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet) v) = Function.updateITE (V ∘ σ) x d v case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi h✝ : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x ⊢ Function.updateITE V x d (Function.updateITE σ x x v) = Function.updateITE (V ∘ σ) x d v
Please generate a tactic in lean4 to solve the state. STATE: case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi ⊢ Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d (Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply forall_congr'
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName ⊢ (∀ (d : D), Holds D I (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) c phi)) ↔ ∀ (d : D), Holds D I (Function.updateITE (V ∘ σ) x d) E phi
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName ⊢ ∀ (a : D), Holds D I (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) a) E (sub (Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) c phi) ↔ Holds D I (Function.updateITE (V ∘ σ) x a) E phi
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName ⊢ (∀ (d : D), Holds D I (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) c phi)) ↔ ∀ (d : D), Holds D I (Function.updateITE (V ∘ σ) x d) E phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply exists_congr
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName ⊢ (∃ d, Holds D I (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) c phi)) ↔ ∃ d, Holds D I (Function.updateITE (V ∘ σ) x d) E phi
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName ⊢ ∀ (a : D), Holds D I (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) a) E (sub (Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) c phi) ↔ Holds D I (Function.updateITE (V ∘ σ) x a) E phi
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName ⊢ (∃ d, Holds D I (Function.updateITE V (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE σ x (if ∃ y ∈ phi.freeVarSet \ {x}, σ y = x then fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet else x)) c phi)) ↔ ∃ d, Holds D I (Function.updateITE (V ∘ σ) x d) E phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
obtain s0 := fresh_not_mem x c (freeVarSet (sub (Function.updateITE σ x x) c phi))
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x ⊢ Function.updateITE V (fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet) d (Function.updateITE σ x (fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet) v) = Function.updateITE (V ∘ σ) x d v
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x s0 : fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet ⊢ Function.updateITE V (fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet) d (Function.updateITE σ x (fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet) v) = Function.updateITE (V ∘ σ) x d v
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x ⊢ Function.updateITE V (fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet) d (Function.updateITE σ x (fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet) v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
generalize (fresh x c (freeVarSet (sub (Function.updateITE σ x x) c phi))) = x' at *
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x s0 : fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet ⊢ Function.updateITE V (fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet) d (Function.updateITE σ x (fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet) v) = Function.updateITE (V ∘ σ) x d v
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x s0 : fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet ⊢ Function.updateITE V (fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet) d (Function.updateITE σ x (fresh x c (sub (Function.updateITE σ x x) c phi).freeVarSet) v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
by_cases c2 : v = x
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : v = x ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [c2]
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : v = x ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : v = x ⊢ Function.updateITE V x' d (Function.updateITE σ x x' x) = Function.updateITE (V ∘ σ) x d x
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : v = x ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Function.updateITE]
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : v = x ⊢ Function.updateITE V x' d (Function.updateITE σ x x' x) = Function.updateITE (V ∘ σ) x d x
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : v = x ⊢ (if (if True then x' else σ x) = x' then d else V (if True then x' else σ x)) = if True then d else (V ∘ σ) x
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : v = x ⊢ Function.updateITE V x' d (Function.updateITE σ x x' x) = Function.updateITE (V ∘ σ) x d x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : v = x ⊢ (if (if True then x' else σ x) = x' then d else V (if True then x' else σ x)) = if True then d else (V ∘ σ) x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : v = x ⊢ (if (if True then x' else σ x) = x' then d else V (if True then x' else σ x)) = if True then d else (V ∘ σ) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
by_cases c3 : σ v = x'
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : σ v = x' ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : ¬σ v = x' ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
subst c3
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : σ v = x' ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet ⊢ Function.updateITE V (σ v) d (Function.updateITE σ x (σ v) v) = Function.updateITE (V ∘ σ) x d v
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : σ v = x' ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [freeVarSet_sub_eq_freeVarSet_image] at s0
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet ⊢ Function.updateITE V (σ v) d (Function.updateITE σ x (σ v) v) = Function.updateITE (V ∘ σ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ Function.updateITE V (σ v) d (Function.updateITE σ x (σ v) v) = Function.updateITE (V ∘ σ) x d v
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet ⊢ Function.updateITE V (σ v) d (Function.updateITE σ x (σ v) v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
have s1 : σ v ∈ Finset.image (Function.updateITE σ x x) (freeVarSet phi)
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ Function.updateITE V (σ v) d (Function.updateITE σ x (σ v) v) = Function.updateITE (V ∘ σ) x d v
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ σ v ∈ Finset.image (Function.updateITE σ x x) phi.freeVarSet case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet s1 : σ v ∈ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ Function.updateITE V (σ v) d (Function.updateITE σ x (σ v) v) = Function.updateITE (V ∘ σ) x d v
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ Function.updateITE V (σ v) d (Function.updateITE σ x (σ v) v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Finset.mem_image_update
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ σ v ∈ Finset.image (Function.updateITE σ x x) phi.freeVarSet case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet s1 : σ v ∈ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ Function.updateITE V (σ v) d (Function.updateITE σ x (σ v) v) = Function.updateITE (V ∘ σ) x d v
case s1.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ ¬v = x case s1.h2 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ v ∈ phi.freeVarSet case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet s1 : σ v ∈ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ Function.updateITE V (σ v) d (Function.updateITE σ x (σ v) v) = Function.updateITE (V ∘ σ) x d v
Please generate a tactic in lean4 to solve the state. STATE: case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ σ v ∈ Finset.image (Function.updateITE σ x x) phi.freeVarSet case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet s1 : σ v ∈ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ Function.updateITE V (σ v) d (Function.updateITE σ x (σ v) v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
contradiction
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet s1 : σ v ∈ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ Function.updateITE V (σ v) d (Function.updateITE σ x (σ v) v) = Function.updateITE (V ∘ σ) x d v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet s1 : σ v ∈ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ Function.updateITE V (σ v) d (Function.updateITE σ x (σ v) v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact c2
case s1.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ ¬v = x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case s1.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ ¬v = x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [← isFreeIn_iff_mem_freeVarSet]
case s1.h2 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ v ∈ phi.freeVarSet
case s1.h2 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ isFreeIn v phi
Please generate a tactic in lean4 to solve the state. STATE: case s1.h2 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ v ∈ phi.freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact a1
case s1.h2 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ isFreeIn v phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case s1.h2 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s0 : σ v ∉ Finset.image (Function.updateITE σ x x) phi.freeVarSet ⊢ isFreeIn v phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Function.updateITE]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : ¬σ v = x' ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : ¬σ v = x' ⊢ (if (if v = x then x' else σ v) = x' then d else V (if v = x then x' else σ v)) = if v = x then d else (V ∘ σ) v
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : ¬σ v = x' ⊢ Function.updateITE V x' d (Function.updateITE σ x x' v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [if_neg c2]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : ¬σ v = x' ⊢ (if (if v = x then x' else σ v) = x' then d else V (if v = x then x' else σ v)) = if v = x then d else (V ∘ σ) v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : ¬σ v = x' ⊢ (if σ v = x' then d else V (σ v)) = (V ∘ σ) v
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : ¬σ v = x' ⊢ (if (if v = x then x' else σ v) = x' then d else V (if v = x then x' else σ v)) = if v = x then d else (V ∘ σ) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [if_neg c3]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : ¬σ v = x' ⊢ (if σ v = x' then d else V (σ v)) = (V ∘ σ) v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : ¬σ v = x' ⊢ V (σ v) = (V ∘ σ) v
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : ¬σ v = x' ⊢ (if σ v = x' then d else V (σ v)) = (V ∘ σ) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : ¬σ v = x' ⊢ V (σ v) = (V ∘ σ) v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ∃ y ∈ phi.freeVarSet \ {x}, σ y = x x' : VarName s0 : x' ∉ (sub (Function.updateITE σ x x) c phi).freeVarSet c2 : ¬v = x c3 : ¬σ v = x' ⊢ V (σ v) = (V ∘ σ) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
by_cases c2 : v = x
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x ⊢ Function.updateITE V x d (Function.updateITE σ x x v) = Function.updateITE (V ∘ σ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : v = x ⊢ Function.updateITE V x d (Function.updateITE σ x x v) = Function.updateITE (V ∘ σ) x d v case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x ⊢ Function.updateITE V x d (Function.updateITE σ x x v) = Function.updateITE (V ∘ σ) x d v
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x ⊢ Function.updateITE V x d (Function.updateITE σ x x v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
subst c2
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : v = x ⊢ Function.updateITE V x d (Function.updateITE σ x x v) = Function.updateITE (V ∘ σ) x d v
case pos D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {v}, σ y = v ⊢ Function.updateITE V v d (Function.updateITE σ v v v) = Function.updateITE (V ∘ σ) v d v
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : v = x ⊢ Function.updateITE V x d (Function.updateITE σ x x v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Function.updateITE]
case pos D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {v}, σ y = v ⊢ Function.updateITE V v d (Function.updateITE σ v v v) = Function.updateITE (V ∘ σ) v d v
case pos D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {v}, σ y = v ⊢ (if (if True then v else σ v) = v then d else V (if True then v else σ v)) = if True then d else (V ∘ σ) v
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {v}, σ y = v ⊢ Function.updateITE V v d (Function.updateITE σ v v v) = Function.updateITE (V ∘ σ) v d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case pos D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {v}, σ y = v ⊢ (if (if True then v else σ v) = v then d else V (if True then v else σ v)) = if True then d else (V ∘ σ) v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {v}, σ y = v ⊢ (if (if True then v else σ v) = v then d else V (if True then v else σ v)) = if True then d else (V ∘ σ) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
have s1 : ¬ σ v = x
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x ⊢ Function.updateITE V x d (Function.updateITE σ x x v) = Function.updateITE (V ∘ σ) x d v
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x ⊢ ¬σ v = x case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s1 : ¬σ v = x ⊢ Function.updateITE V x d (Function.updateITE σ x x v) = Function.updateITE (V ∘ σ) x d v
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x ⊢ Function.updateITE V x d (Function.updateITE σ x x v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Function.updateITE]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s1 : ¬σ v = x ⊢ Function.updateITE V x d (Function.updateITE σ x x v) = Function.updateITE (V ∘ σ) x d v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s1 : ¬σ v = x ⊢ (if (if v = x then x else σ v) = x then d else V (if v = x then x else σ v)) = if v = x then d else (V ∘ σ) v
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s1 : ¬σ v = x ⊢ Function.updateITE V x d (Function.updateITE σ x x v) = Function.updateITE (V ∘ σ) x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [if_neg c2]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s1 : ¬σ v = x ⊢ (if (if v = x then x else σ v) = x then d else V (if v = x then x else σ v)) = if v = x then d else (V ∘ σ) v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s1 : ¬σ v = x ⊢ (if σ v = x then d else V (σ v)) = (V ∘ σ) v
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s1 : ¬σ v = x ⊢ (if (if v = x then x else σ v) = x then d else V (if v = x then x else σ v)) = if v = x then d else (V ∘ σ) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [if_neg s1]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s1 : ¬σ v = x ⊢ (if σ v = x then d else V (σ v)) = (V ∘ σ) v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s1 : ¬σ v = x ⊢ V (σ v) = (V ∘ σ) v
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s1 : ¬σ v = x ⊢ (if σ v = x then d else V (σ v)) = (V ∘ σ) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s1 : ¬σ v = x ⊢ V (σ v) = (V ∘ σ) v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x s1 : ¬σ v = x ⊢ V (σ v) = (V ∘ σ) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
intro contra
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x ⊢ ¬σ v = x
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x ⊢ ¬σ v = x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply c1
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ False
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ ∃ y ∈ phi.freeVarSet \ {x}, σ y = x
Please generate a tactic in lean4 to solve the state. STATE: case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ False TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Exists.intro v
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ ∃ y ∈ phi.freeVarSet \ {x}, σ y = x
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ v ∈ phi.freeVarSet \ {x} ∧ σ v = x
Please generate a tactic in lean4 to solve the state. STATE: case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ ∃ y ∈ phi.freeVarSet \ {x}, σ y = x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
constructor
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ v ∈ phi.freeVarSet \ {x} ∧ σ v = x
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ v ∈ phi.freeVarSet \ {x} case s1.right D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ σ v = x
Please generate a tactic in lean4 to solve the state. STATE: case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ v ∈ phi.freeVarSet \ {x} ∧ σ v = x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ v ∈ phi.freeVarSet \ {x}
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ v ∈ phi.freeVarSet ∧ ¬v = x
Please generate a tactic in lean4 to solve the state. STATE: case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ v ∈ phi.freeVarSet \ {x} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [← isFreeIn_iff_mem_freeVarSet]
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ v ∈ phi.freeVarSet ∧ ¬v = x
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ isFreeIn v phi ∧ ¬v = x
Please generate a tactic in lean4 to solve the state. STATE: case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ v ∈ phi.freeVarSet ∧ ¬v = x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
tauto
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ isFreeIn v phi ∧ ¬v = x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ isFreeIn v phi ∧ ¬v = x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact contra
case s1.right D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ σ v = x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case s1.right D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (σ : VarName → VarName), Holds D I V E (sub σ c phi) ↔ Holds D I (V ∘ σ) E phi V : VarAssignment D σ : VarName → VarName d : D v : VarName a1 : isFreeIn v phi c1 : ¬∃ y ∈ phi.freeVarSet \ {x}, σ y = x c2 : ¬v = x contra : σ v = x ⊢ σ v = x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
induction E
D : Type I : Interpretation D E : Env c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName ⊢ Holds D I V E (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) E (def_ X xs)
case nil D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName ⊢ Holds D I V [] (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) [] (def_ X xs) case cons D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : Holds D I V tail✝ (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) tail✝ (def_ X xs) ⊢ Holds D I V (head✝ :: tail✝) (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) (head✝ :: tail✝) (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName ⊢ Holds D I V E (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) E (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
case nil => simp only [sub] simp only [Holds]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName ⊢ Holds D I V [] (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) [] (def_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName ⊢ Holds D I V [] (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) [] (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [sub]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName ⊢ Holds D I V [] (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) [] (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName ⊢ Holds D I V [] (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) [] (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName ⊢ Holds D I V [] (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) [] (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Holds]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName ⊢ Holds D I V [] (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) [] (def_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName ⊢ Holds D I V [] (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) [] (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [sub] at E_ih
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) ⊢ Holds D I V (E_hd :: E_tl) (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) (E_hd :: E_tl) (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) ⊢ Holds D I V (E_hd :: E_tl) (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) (E_hd :: E_tl) (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) ⊢ Holds D I V (E_hd :: E_tl) (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) (E_hd :: E_tl) (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [sub]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) ⊢ Holds D I V (E_hd :: E_tl) (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) (E_hd :: E_tl) (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) ⊢ Holds D I V (E_hd :: E_tl) (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) (E_hd :: E_tl) (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) ⊢ Holds D I V (E_hd :: E_tl) (sub σ c (def_ X xs)) ↔ Holds D I (V ∘ σ) (E_hd :: E_tl) (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Holds]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) ⊢ Holds D I V (E_hd :: E_tl) (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) (E_hd :: E_tl) (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) ⊢ (if X = E_hd.name ∧ (List.map σ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map σ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map σ xs))) ↔ if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q else Holds D I (V ∘ σ) E_tl (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) ⊢ Holds D I V (E_hd :: E_tl) (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) (E_hd :: E_tl) (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) ⊢ (if X = E_hd.name ∧ (List.map σ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map σ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map σ xs))) ↔ if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q else Holds D I (V ∘ σ) E_tl (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) ⊢ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map σ xs))) ↔ if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q else Holds D I (V ∘ σ) E_tl (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) ⊢ (if X = E_hd.name ∧ (List.map σ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map σ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map σ xs))) ↔ if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q else Holds D I (V ∘ σ) E_tl (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
split_ifs
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) ⊢ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map σ xs))) ↔ if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q else Holds D I (V ∘ σ) E_tl (def_ X xs)
case pos D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) h✝ : X = E_hd.name ∧ xs.length = E_hd.args.length ⊢ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q case neg D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) h✝ : ¬(X = E_hd.name ∧ xs.length = E_hd.args.length) ⊢ Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) ⊢ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map σ xs))) ↔ if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q else Holds D I (V ∘ σ) E_tl (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
case neg c1 => exact E_ih
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : ¬(X = E_hd.name ∧ xs.length = E_hd.args.length) ⊢ Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : ¬(X = E_hd.name ∧ xs.length = E_hd.args.length) ⊢ Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Holds_coincide_Var
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length ⊢ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q
case h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length ⊢ ∀ (v : VarName), isFreeIn v E_hd.q → Function.updateListITE V E_hd.args (List.map (V ∘ σ) xs) v = Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs) v
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length ⊢ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs)) E_tl E_hd.q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
intro v a1
case h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length ⊢ ∀ (v : VarName), isFreeIn v E_hd.q → Function.updateListITE V E_hd.args (List.map (V ∘ σ) xs) v = Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs) v
case h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊢ Function.updateListITE V E_hd.args (List.map (V ∘ σ) xs) v = Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs) v
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length ⊢ ∀ (v : VarName), isFreeIn v E_hd.q → Function.updateListITE V E_hd.args (List.map (V ∘ σ) xs) v = Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Function.updateListITE_map_mem_ext
case h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊢ Function.updateListITE V E_hd.args (List.map (V ∘ σ) xs) v = Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs) v
case h1.h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊢ ∀ y ∈ xs, (V ∘ σ) y = (V ∘ σ) y case h1.h2 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊢ E_hd.args.length = xs.length case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊢ v ∈ E_hd.args
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊢ Function.updateListITE V E_hd.args (List.map (V ∘ σ) xs) v = Function.updateListITE (V ∘ σ) E_hd.args (List.map (V ∘ σ) xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case h1.h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊢ ∀ y ∈ xs, (V ∘ σ) y = (V ∘ σ) y
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊢ ∀ y ∈ xs, (V ∘ σ) y = (V ∘ σ) y TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
cases c1
case h1.h2 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊢ E_hd.args.length = xs.length
case h1.h2.intro D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q left✝ : X = E_hd.name right✝ : xs.length = E_hd.args.length ⊢ E_hd.args.length = xs.length
Please generate a tactic in lean4 to solve the state. STATE: case h1.h2 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊢ E_hd.args.length = xs.length TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
case _ c1_left c1_right => symm exact c1_right
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊢ E_hd.args.length = xs.length
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊢ E_hd.args.length = xs.length TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
symm
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊢ E_hd.args.length = xs.length
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊢ xs.length = E_hd.args.length
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊢ E_hd.args.length = xs.length TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact c1_right
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊢ xs.length = E_hd.args.length
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊢ xs.length = E_hd.args.length TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [isFreeIn_iff_mem_freeVarSet] at a1
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊢ v ∈ E_hd.args
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : v ∈ E_hd.q.freeVarSet ⊢ v ∈ E_hd.args
Please generate a tactic in lean4 to solve the state. STATE: case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊢ v ∈ E_hd.args TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [← List.mem_toFinset]
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : v ∈ E_hd.q.freeVarSet ⊢ v ∈ E_hd.args
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : v ∈ E_hd.q.freeVarSet ⊢ v ∈ E_hd.args.toFinset
Please generate a tactic in lean4 to solve the state. STATE: case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : v ∈ E_hd.q.freeVarSet ⊢ v ∈ E_hd.args TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Finset.mem_of_subset E_hd.h1 a1
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : v ∈ E_hd.q.freeVarSet ⊢ v ∈ E_hd.args.toFinset
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : v ∈ E_hd.q.freeVarSet ⊢ v ∈ E_hd.args.toFinset TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact E_ih
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : ¬(X = E_hd.name ∧ xs.length = E_hd.args.length) ⊢ Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D σ : VarName → VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) c1 : ¬(X = E_hd.name ∧ xs.length = E_hd.args.length) ⊢ Holds D I V E_tl (def_ X (List.map σ xs)) ↔ Holds D I (V ∘ σ) E_tl (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
simp only [IsValid] at h1
σ : VarName → VarName c : Char F : Formula h1 : F.IsValid ⊢ (sub σ c F).IsValid
σ : VarName → VarName c : Char F : Formula h1 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊢ (sub σ c F).IsValid
Please generate a tactic in lean4 to solve the state. STATE: σ : VarName → VarName c : Char F : Formula h1 : F.IsValid ⊢ (sub σ c F).IsValid TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
simp only [IsValid]
σ : VarName → VarName c : Char F : Formula h1 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊢ (sub σ c F).IsValid
σ : VarName → VarName c : Char F : Formula h1 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊢ ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (sub σ c F)
Please generate a tactic in lean4 to solve the state. STATE: σ : VarName → VarName c : Char F : Formula h1 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊢ (sub σ c F).IsValid TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
intro D I V E
σ : VarName → VarName c : Char F : Formula h1 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊢ ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (sub σ c F)
σ : VarName → VarName c : Char F : Formula h1 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊢ Holds D I V E (sub σ c F)
Please generate a tactic in lean4 to solve the state. STATE: σ : VarName → VarName c : Char F : Formula h1 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊢ ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (sub σ c F) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
simp only [substitution_theorem]
σ : VarName → VarName c : Char F : Formula h1 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊢ Holds D I V E (sub σ c F)
σ : VarName → VarName c : Char F : Formula h1 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊢ Holds D I (V ∘ σ) E F
Please generate a tactic in lean4 to solve the state. STATE: σ : VarName → VarName c : Char F : Formula h1 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊢ Holds D I V E (sub σ c F) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
apply h1
σ : VarName → VarName c : Char F : Formula h1 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊢ Holds D I (V ∘ σ) E F
no goals
Please generate a tactic in lean4 to solve the state. STATE: σ : VarName → VarName c : Char F : Formula h1 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊢ Holds D I (V ∘ σ) E F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationEmpty
[208, 1]
[218, 7]
cases h1
V_N V_T : Type R : V_N → PE V_N V_T n : ℕ xs : List V_T o : Option (List V_T) h1 : Interpretation V_N V_T R (empty, xs) (n, o) ⊢ n = 1 ∧ o = some []
case empty V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T ⊢ 1 = 1 ∧ some [] = some []
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N → PE V_N V_T n : ℕ xs : List V_T o : Option (List V_T) h1 : Interpretation V_N V_T R (empty, xs) (n, o) ⊢ n = 1 ∧ o = some [] TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationEmpty
[208, 1]
[218, 7]
simp
case empty V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T ⊢ 1 = 1 ∧ some [] = some []
no goals
Please generate a tactic in lean4 to solve the state. STATE: case empty V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T ⊢ 1 = 1 ∧ some [] = some [] TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationSteps
[221, 1]
[233, 10]
cases h1
V_N V_T : Type R : V_N → PE V_N V_T e : PE V_N V_T xs : List V_T o : Option (List V_T) n : ℕ h1 : Interpretation V_N V_T R (e, xs) (n, o) ⊢ n > 0
case empty V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T ⊢ 1 > 0 case terminal_success V_N V_T : Type R : V_N → PE V_N V_T a✝ : V_T xs✝ : List V_T ⊢ 1 > 0 case terminal_failure_1 V_N V_T : Type R : V_N → PE V_N V_T a✝¹ b✝ : V_T xs✝ : List V_T a✝ : ¬a✝¹ = b✝ ⊢ 1 > 0 case terminal_failure_2 V_N V_T : Type R : V_N → PE V_N V_T a✝ : V_T xs✝ : List V_T ⊢ 1 > 0 case nonTerminal V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T o : Option (List V_T) A✝ : V_N n✝ : ℕ a✝ : Interpretation V_N V_T R (R A✝, xs) (n✝, o) ⊢ n✝ + 1 > 0 case seq_success V_N V_T : Type R : V_N → PE V_N V_T e1✝ e2✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e2✝, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ⊢ n1✝ + n2✝ + 1 > 0 case seq_failure_1 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e1✝ e2✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e1✝, xs) (n✝, none) ⊢ n✝ + 1 > 0 case seq_failure_2 V_N V_T : Type R : V_N → PE V_N V_T e1✝ e2✝ : PE V_N V_T xs✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs✝ ++ ys✝) (n1✝, some xs✝) a✝ : Interpretation V_N V_T R (e2✝, ys✝) (n2✝, none) ⊢ n1✝ + n2✝ + 1 > 0 case choice_1 V_N V_T : Type R : V_N → PE V_N V_T e1✝ e2✝ : PE V_N V_T xs✝ ys✝ : List V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e1✝, xs✝ ++ ys✝) (n✝, some xs✝) ⊢ n✝ + 1 > 0 case choice_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T o : Option (List V_T) e1✝ e2✝ : PE V_N V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs) (n1✝, none) a✝ : Interpretation V_N V_T R (e2✝, xs) (n2✝, o) ⊢ n1✝ + n2✝ + 1 > 0 case star_repetition V_N V_T : Type R : V_N → PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ⊢ n1✝ + n2✝ + 1 > 0 case star_termination V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ⊢ n✝ + 1 > 0 case notP_1 V_N V_T : Type R : V_N → PE V_N V_T e✝ : PE V_N V_T xs✝ ys✝ : List V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs✝ ++ ys✝) (n✝, some xs✝) ⊢ n✝ + 1 > 0 case notP_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ⊢ n✝ + 1 > 0
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N → PE V_N V_T e : PE V_N V_T xs : List V_T o : Option (List V_T) n : ℕ h1 : Interpretation V_N V_T R (e, xs) (n, o) ⊢ n > 0 TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationSteps
[221, 1]
[233, 10]
all_goals omega
case empty V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T ⊢ 1 > 0 case terminal_success V_N V_T : Type R : V_N → PE V_N V_T a✝ : V_T xs✝ : List V_T ⊢ 1 > 0 case terminal_failure_1 V_N V_T : Type R : V_N → PE V_N V_T a✝¹ b✝ : V_T xs✝ : List V_T a✝ : ¬a✝¹ = b✝ ⊢ 1 > 0 case terminal_failure_2 V_N V_T : Type R : V_N → PE V_N V_T a✝ : V_T xs✝ : List V_T ⊢ 1 > 0 case nonTerminal V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T o : Option (List V_T) A✝ : V_N n✝ : ℕ a✝ : Interpretation V_N V_T R (R A✝, xs) (n✝, o) ⊢ n✝ + 1 > 0 case seq_success V_N V_T : Type R : V_N → PE V_N V_T e1✝ e2✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e2✝, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ⊢ n1✝ + n2✝ + 1 > 0 case seq_failure_1 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e1✝ e2✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e1✝, xs) (n✝, none) ⊢ n✝ + 1 > 0 case seq_failure_2 V_N V_T : Type R : V_N → PE V_N V_T e1✝ e2✝ : PE V_N V_T xs✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs✝ ++ ys✝) (n1✝, some xs✝) a✝ : Interpretation V_N V_T R (e2✝, ys✝) (n2✝, none) ⊢ n1✝ + n2✝ + 1 > 0 case choice_1 V_N V_T : Type R : V_N → PE V_N V_T e1✝ e2✝ : PE V_N V_T xs✝ ys✝ : List V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e1✝, xs✝ ++ ys✝) (n✝, some xs✝) ⊢ n✝ + 1 > 0 case choice_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T o : Option (List V_T) e1✝ e2✝ : PE V_N V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs) (n1✝, none) a✝ : Interpretation V_N V_T R (e2✝, xs) (n2✝, o) ⊢ n1✝ + n2✝ + 1 > 0 case star_repetition V_N V_T : Type R : V_N → PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ⊢ n1✝ + n2✝ + 1 > 0 case star_termination V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ⊢ n✝ + 1 > 0 case notP_1 V_N V_T : Type R : V_N → PE V_N V_T e✝ : PE V_N V_T xs✝ ys✝ : List V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs✝ ++ ys✝) (n✝, some xs✝) ⊢ n✝ + 1 > 0 case notP_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ⊢ n✝ + 1 > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case empty V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T ⊢ 1 > 0 case terminal_success V_N V_T : Type R : V_N → PE V_N V_T a✝ : V_T xs✝ : List V_T ⊢ 1 > 0 case terminal_failure_1 V_N V_T : Type R : V_N → PE V_N V_T a✝¹ b✝ : V_T xs✝ : List V_T a✝ : ¬a✝¹ = b✝ ⊢ 1 > 0 case terminal_failure_2 V_N V_T : Type R : V_N → PE V_N V_T a✝ : V_T xs✝ : List V_T ⊢ 1 > 0 case nonTerminal V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T o : Option (List V_T) A✝ : V_N n✝ : ℕ a✝ : Interpretation V_N V_T R (R A✝, xs) (n✝, o) ⊢ n✝ + 1 > 0 case seq_success V_N V_T : Type R : V_N → PE V_N V_T e1✝ e2✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e2✝, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ⊢ n1✝ + n2✝ + 1 > 0 case seq_failure_1 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e1✝ e2✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e1✝, xs) (n✝, none) ⊢ n✝ + 1 > 0 case seq_failure_2 V_N V_T : Type R : V_N → PE V_N V_T e1✝ e2✝ : PE V_N V_T xs✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs✝ ++ ys✝) (n1✝, some xs✝) a✝ : Interpretation V_N V_T R (e2✝, ys✝) (n2✝, none) ⊢ n1✝ + n2✝ + 1 > 0 case choice_1 V_N V_T : Type R : V_N → PE V_N V_T e1✝ e2✝ : PE V_N V_T xs✝ ys✝ : List V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e1✝, xs✝ ++ ys✝) (n✝, some xs✝) ⊢ n✝ + 1 > 0 case choice_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T o : Option (List V_T) e1✝ e2✝ : PE V_N V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs) (n1✝, none) a✝ : Interpretation V_N V_T R (e2✝, xs) (n2✝, o) ⊢ n1✝ + n2✝ + 1 > 0 case star_repetition V_N V_T : Type R : V_N → PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ⊢ n1✝ + n2✝ + 1 > 0 case star_termination V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ⊢ n✝ + 1 > 0 case notP_1 V_N V_T : Type R : V_N → PE V_N V_T e✝ : PE V_N V_T xs✝ ys✝ : List V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs✝ ++ ys✝) (n✝, some xs✝) ⊢ n✝ + 1 > 0 case notP_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ⊢ n✝ + 1 > 0 TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationSteps
[221, 1]
[233, 10]
omega
case notP_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ⊢ n✝ + 1 > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case notP_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ⊢ n✝ + 1 > 0 TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
EmptyStringPrefix
[236, 1]
[241, 27]
exact List.nil_prefix xs
α : Type xs : List α ⊢ [].IsPrefix xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type xs : List α ⊢ [].IsPrefix xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
CharPrefix
[244, 1]
[250, 40]
exact List.prefix_iff_eq_take.mpr rfl
α : Type x : α xs : List α ⊢ [x].IsPrefix (x :: xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type x : α xs : List α ⊢ [x].IsPrefix (x :: xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
PrefixAppend
[253, 1]
[258, 33]
exact List.prefix_append xs ys
α : Type xs ys : List α ⊢ xs.IsPrefix (xs ++ ys)
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type xs ys : List α ⊢ xs.IsPrefix (xs ++ ys) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
induction n using Nat.strongInductionOn generalizing e
V_N V_T : Type R : V_N → PE V_N V_T e : PE V_N V_T xs ys : List V_T n : ℕ h1 : Interpretation V_N V_T R (e, xs) (n, some ys) ⊢ ys.IsPrefix xs
case ind V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T n✝ : ℕ a✝ : ∀ m < n✝, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs e : PE V_N V_T h1 : Interpretation V_N V_T R (e, xs) (n✝, some ys) ⊢ ys.IsPrefix xs
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N → PE V_N V_T e : PE V_N V_T xs ys : List V_T n : ℕ h1 : Interpretation V_N V_T R (e, xs) (n, some ys) ⊢ ys.IsPrefix xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
cases h1
V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T n : ℕ ih : ∀ m < n, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs e : PE V_N V_T h1 : Interpretation V_N V_T R (e, xs) (n, some ys) ⊢ ys.IsPrefix xs
case empty V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T ih : ∀ m < 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) → [].IsPrefix xs ⊢ [].IsPrefix xs case terminal_success V_N V_T : Type R : V_N → PE V_N V_T a✝ : V_T xs✝ : List V_T ih : ∀ m < 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, a✝ :: xs✝) (m, some [a✝]) → [a✝].IsPrefix (a✝ :: xs✝) ⊢ [a✝].IsPrefix (a✝ :: xs✝) case nonTerminal V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T A✝ : V_N n✝ : ℕ ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs a✝ : Interpretation V_N V_T R (R A✝, xs) (n✝, some ys) ⊢ ys.IsPrefix xs case seq_success V_N V_T : Type R : V_N → PE V_N V_T e1✝ e2✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e2✝, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : ∀ m < n1✝ + n2✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) → (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊢ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) case choice_1 V_N V_T : Type R : V_N → PE V_N V_T ys : List V_T e1✝ e2✝ : PE V_N V_T ys✝ : List V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e1✝, ys ++ ys✝) (n✝, some ys) ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, ys ++ ys✝) (m, some ys) → ys.IsPrefix (ys ++ ys✝) ⊢ ys.IsPrefix (ys ++ ys✝) case choice_2 V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T e1✝ e2✝ : PE V_N V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs) (n1✝, none) ih : ∀ m < n1✝ + n2✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs a✝ : Interpretation V_N V_T R (e2✝, xs) (n2✝, some ys) ⊢ ys.IsPrefix xs case star_repetition V_N V_T : Type R : V_N → PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : ∀ m < n1✝ + n2✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) → (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊢ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) case star_termination V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) → [].IsPrefix xs ⊢ [].IsPrefix xs case notP_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) → [].IsPrefix xs ⊢ [].IsPrefix xs
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T n : ℕ ih : ∀ m < n, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs e : PE V_N V_T h1 : Interpretation V_N V_T R (e, xs) (n, some ys) ⊢ ys.IsPrefix xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
any_goals first | apply EmptyStringPrefix | apply CharPrefix | apply PrefixAppend
case empty V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T ih : ∀ m < 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) → [].IsPrefix xs ⊢ [].IsPrefix xs case terminal_success V_N V_T : Type R : V_N → PE V_N V_T a✝ : V_T xs✝ : List V_T ih : ∀ m < 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, a✝ :: xs✝) (m, some [a✝]) → [a✝].IsPrefix (a✝ :: xs✝) ⊢ [a✝].IsPrefix (a✝ :: xs✝) case nonTerminal V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T A✝ : V_N n✝ : ℕ ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs a✝ : Interpretation V_N V_T R (R A✝, xs) (n✝, some ys) ⊢ ys.IsPrefix xs case seq_success V_N V_T : Type R : V_N → PE V_N V_T e1✝ e2✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e2✝, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : ∀ m < n1✝ + n2✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) → (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊢ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) case choice_1 V_N V_T : Type R : V_N → PE V_N V_T ys : List V_T e1✝ e2✝ : PE V_N V_T ys✝ : List V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e1✝, ys ++ ys✝) (n✝, some ys) ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, ys ++ ys✝) (m, some ys) → ys.IsPrefix (ys ++ ys✝) ⊢ ys.IsPrefix (ys ++ ys✝) case choice_2 V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T e1✝ e2✝ : PE V_N V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs) (n1✝, none) ih : ∀ m < n1✝ + n2✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs a✝ : Interpretation V_N V_T R (e2✝, xs) (n2✝, some ys) ⊢ ys.IsPrefix xs case star_repetition V_N V_T : Type R : V_N → PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : ∀ m < n1✝ + n2✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) → (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊢ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) case star_termination V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) → [].IsPrefix xs ⊢ [].IsPrefix xs case notP_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) → [].IsPrefix xs ⊢ [].IsPrefix xs
case nonTerminal V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T A✝ : V_N n✝ : ℕ ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs a✝ : Interpretation V_N V_T R (R A✝, xs) (n✝, some ys) ⊢ ys.IsPrefix xs case choice_2 V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T e1✝ e2✝ : PE V_N V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs) (n1✝, none) ih : ∀ m < n1✝ + n2✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs a✝ : Interpretation V_N V_T R (e2✝, xs) (n2✝, some ys) ⊢ ys.IsPrefix xs
Please generate a tactic in lean4 to solve the state. STATE: case empty V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T ih : ∀ m < 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) → [].IsPrefix xs ⊢ [].IsPrefix xs case terminal_success V_N V_T : Type R : V_N → PE V_N V_T a✝ : V_T xs✝ : List V_T ih : ∀ m < 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, a✝ :: xs✝) (m, some [a✝]) → [a✝].IsPrefix (a✝ :: xs✝) ⊢ [a✝].IsPrefix (a✝ :: xs✝) case nonTerminal V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T A✝ : V_N n✝ : ℕ ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs a✝ : Interpretation V_N V_T R (R A✝, xs) (n✝, some ys) ⊢ ys.IsPrefix xs case seq_success V_N V_T : Type R : V_N → PE V_N V_T e1✝ e2✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e2✝, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : ∀ m < n1✝ + n2✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) → (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊢ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) case choice_1 V_N V_T : Type R : V_N → PE V_N V_T ys : List V_T e1✝ e2✝ : PE V_N V_T ys✝ : List V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e1✝, ys ++ ys✝) (n✝, some ys) ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, ys ++ ys✝) (m, some ys) → ys.IsPrefix (ys ++ ys✝) ⊢ ys.IsPrefix (ys ++ ys✝) case choice_2 V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T e1✝ e2✝ : PE V_N V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e1✝, xs) (n1✝, none) ih : ∀ m < n1✝ + n2✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs a✝ : Interpretation V_N V_T R (e2✝, xs) (n2✝, some ys) ⊢ ys.IsPrefix xs case star_repetition V_N V_T : Type R : V_N → PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : ∀ m < n1✝ + n2✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) → (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊢ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) case star_termination V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) → [].IsPrefix xs ⊢ [].IsPrefix xs case notP_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) → [].IsPrefix xs ⊢ [].IsPrefix xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
first | apply EmptyStringPrefix | apply CharPrefix | apply PrefixAppend
case notP_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) → [].IsPrefix xs ⊢ [].IsPrefix xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: case notP_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) → [].IsPrefix xs ⊢ [].IsPrefix xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
apply EmptyStringPrefix
case notP_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) → [].IsPrefix xs ⊢ [].IsPrefix xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: case notP_2 V_N V_T : Type R : V_N → PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : ℕ a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : ∀ m < n✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) → [].IsPrefix xs ⊢ [].IsPrefix xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
apply CharPrefix
case terminal_success V_N V_T : Type R : V_N → PE V_N V_T a✝ : V_T xs✝ : List V_T ih : ∀ m < 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, a✝ :: xs✝) (m, some [a✝]) → [a✝].IsPrefix (a✝ :: xs✝) ⊢ [a✝].IsPrefix (a✝ :: xs✝)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case terminal_success V_N V_T : Type R : V_N → PE V_N V_T a✝ : V_T xs✝ : List V_T ih : ∀ m < 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, a✝ :: xs✝) (m, some [a✝]) → [a✝].IsPrefix (a✝ :: xs✝) ⊢ [a✝].IsPrefix (a✝ :: xs✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
apply PrefixAppend
case star_repetition V_N V_T : Type R : V_N → PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : ∀ m < n1✝ + n2✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) → (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊢ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case star_repetition V_N V_T : Type R : V_N → PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : ℕ a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : ∀ m < n1✝ + n2✝ + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) → (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊢ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
specialize ih n _ (R A)
V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T A : V_N n : ℕ ih : ∀ m < n + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ⊢ ys.IsPrefix xs
V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T A : V_N n : ℕ ih : ∀ m < n + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ⊢ n < n + 1 V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T A : V_N n : ℕ ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ih : Interpretation V_N V_T R (R A, xs) (n, some ys) → ys.IsPrefix xs ⊢ ys.IsPrefix xs
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T A : V_N n : ℕ ih : ∀ m < n + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ⊢ ys.IsPrefix xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
omega
V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T A : V_N n : ℕ ih : ∀ m < n + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ⊢ n < n + 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T A : V_N n : ℕ ih : ∀ m < n + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ⊢ n < n + 1 TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
exact ih ih_1
V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T A : V_N n : ℕ ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ih : Interpretation V_N V_T R (R A, xs) (n, some ys) → ys.IsPrefix xs ⊢ ys.IsPrefix xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T A : V_N n : ℕ ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ih : Interpretation V_N V_T R (R A, xs) (n, some ys) → ys.IsPrefix xs ⊢ ys.IsPrefix xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
specialize ih n2 _ e2
V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : ℕ ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih : ∀ m < n1 + n2 + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ⊢ ys.IsPrefix xs
V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : ℕ ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih : ∀ m < n1 + n2 + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ⊢ n2 < n1 + n2 + 1 V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : ℕ ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ih : Interpretation V_N V_T R (e2, xs) (n2, some ys) → ys.IsPrefix xs ⊢ ys.IsPrefix xs
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : ℕ ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih : ∀ m < n1 + n2 + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ⊢ ys.IsPrefix xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
omega
V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : ℕ ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih : ∀ m < n1 + n2 + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ⊢ n2 < n1 + n2 + 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : ℕ ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih : ∀ m < n1 + n2 + 1, ∀ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) → ys.IsPrefix xs ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ⊢ n2 < n1 + n2 + 1 TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
exact ih ih_2
V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : ℕ ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ih : Interpretation V_N V_T R (e2, xs) (n2, some ys) → ys.IsPrefix xs ⊢ ys.IsPrefix xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N → PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : ℕ ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ih : Interpretation V_N V_T R (e2, xs) (n2, some ys) → ys.IsPrefix xs ⊢ ys.IsPrefix xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
subst h2
F F' : Formula v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders F h2 : Rec.fastReplaceFree v u F = F' ⊢ IsSub F v u F'
F : Formula v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders F ⊢ IsSub F v u (Rec.fastReplaceFree v u F)
Please generate a tactic in lean4 to solve the state. STATE: F F' : Formula v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders F h2 : Rec.fastReplaceFree v u F = F' ⊢ IsSub F v u F' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
induction F generalizing binders
F : Formula v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders F ⊢ IsSub F v u (Rec.fastReplaceFree v u F)
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) ⊢ IsSub (pred_const_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (pred_const_ a✝¹ a✝)) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) ⊢ IsSub (pred_var_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (pred_var_ a✝¹ a✝)) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (eq_ a✝¹ a✝) ⊢ IsSub (eq_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (eq_ a✝¹ a✝)) case true_ v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders true_ ⊢ IsSub true_ v u (Rec.fastReplaceFree v u true_) case false_ v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders false_ ⊢ IsSub false_ v u (Rec.fastReplaceFree v u false_) case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝.not_ ⊢ IsSub a✝.not_ v u (Rec.fastReplaceFree v u a✝.not_) case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.imp_ a✝) ⊢ IsSub (a✝¹.imp_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.imp_ a✝)) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.and_ a✝) ⊢ IsSub (a✝¹.and_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.and_ a✝)) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.or_ a✝) ⊢ IsSub (a✝¹.or_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.or_ a✝)) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.iff_ a✝) ⊢ IsSub (a✝¹.iff_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.iff_ a✝)) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (forall_ a✝¹ a✝) ⊢ IsSub (forall_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (forall_ a✝¹ a✝)) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (exists_ a✝¹ a✝) ⊢ IsSub (exists_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (exists_ a✝¹ a✝)) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊢ IsSub (def_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (def_ a✝¹ a✝))
Please generate a tactic in lean4 to solve the state. STATE: F : Formula v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders F ⊢ IsSub F v u (Rec.fastReplaceFree v u F) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
all_goals simp only [Rec.fastAdmitsAux] at h1 simp only [Rec.fastReplaceFree]
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) ⊢ IsSub (pred_const_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (pred_const_ a✝¹ a✝)) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) ⊢ IsSub (pred_var_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (pred_var_ a✝¹ a✝)) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (eq_ a✝¹ a✝) ⊢ IsSub (eq_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (eq_ a✝¹ a✝)) case true_ v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders true_ ⊢ IsSub true_ v u (Rec.fastReplaceFree v u true_) case false_ v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders false_ ⊢ IsSub false_ v u (Rec.fastReplaceFree v u false_) case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝.not_ ⊢ IsSub a✝.not_ v u (Rec.fastReplaceFree v u a✝.not_) case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.imp_ a✝) ⊢ IsSub (a✝¹.imp_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.imp_ a✝)) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.and_ a✝) ⊢ IsSub (a✝¹.and_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.and_ a✝)) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.or_ a✝) ⊢ IsSub (a✝¹.or_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.or_ a✝)) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.iff_ a✝) ⊢ IsSub (a✝¹.iff_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.iff_ a✝)) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (forall_ a✝¹ a✝) ⊢ IsSub (forall_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (forall_ a✝¹ a✝)) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (exists_ a✝¹ a✝) ⊢ IsSub (exists_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (exists_ a✝¹ a✝)) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊢ IsSub (def_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (def_ a✝¹ a✝))
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ → u ∉ binders ⊢ IsSub (pred_const_ a✝¹ a✝) v u (pred_const_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ → u ∉ binders ⊢ IsSub (pred_var_ a✝¹ a✝) v u (pred_var_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v = a✝¹ ∨ v = a✝ → u ∉ binders ⊢ IsSub (eq_ a✝¹ a✝) v u (eq_ (if v = a✝¹ then u else a✝¹) (if v = a✝ then u else a✝)) case true_ v u : VarName binders : Finset VarName h1 : True ⊢ IsSub true_ v u true_ case false_ v u : VarName binders : Finset VarName h1 : True ⊢ IsSub false_ v u false_ case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝ ⊢ IsSub a✝.not_ v u (Rec.fastReplaceFree v u a✝).not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝¹ ∧ Rec.fastAdmitsAux v u binders a✝ ⊢ IsSub (a✝¹.imp_ a✝) v u ((Rec.fastReplaceFree v u a✝¹).imp_ (Rec.fastReplaceFree v u a✝)) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝¹ ∧ Rec.fastAdmitsAux v u binders a✝ ⊢ IsSub (a✝¹.and_ a✝) v u ((Rec.fastReplaceFree v u a✝¹).and_ (Rec.fastReplaceFree v u a✝)) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝¹ ∧ Rec.fastAdmitsAux v u binders a✝ ⊢ IsSub (a✝¹.or_ a✝) v u ((Rec.fastReplaceFree v u a✝¹).or_ (Rec.fastReplaceFree v u a✝)) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝¹ ∧ Rec.fastAdmitsAux v u binders a✝ ⊢ IsSub (a✝¹.iff_ a✝) v u ((Rec.fastReplaceFree v u a✝¹).iff_ (Rec.fastReplaceFree v u a✝)) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : v = a✝¹ ∨ Rec.fastAdmitsAux v u (binders ∪ {a✝¹}) a✝ ⊢ IsSub (forall_ a✝¹ a✝) v u (if v = a✝¹ then forall_ a✝¹ a✝ else forall_ a✝¹ (Rec.fastReplaceFree v u a✝)) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : v = a✝¹ ∨ Rec.fastAdmitsAux v u (binders ∪ {a✝¹}) a✝ ⊢ IsSub (exists_ a✝¹ a✝) v u (if v = a✝¹ then exists_ a✝¹ a✝ else exists_ a✝¹ (Rec.fastReplaceFree v u a✝)) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ → u ∉ binders ⊢ IsSub (def_ a✝¹ a✝) v u (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝))
Please generate a tactic in lean4 to solve the state. STATE: case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) ⊢ IsSub (pred_const_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (pred_const_ a✝¹ a✝)) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) ⊢ IsSub (pred_var_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (pred_var_ a✝¹ a✝)) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (eq_ a✝¹ a✝) ⊢ IsSub (eq_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (eq_ a✝¹ a✝)) case true_ v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders true_ ⊢ IsSub true_ v u (Rec.fastReplaceFree v u true_) case false_ v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders false_ ⊢ IsSub false_ v u (Rec.fastReplaceFree v u false_) case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝.not_ ⊢ IsSub a✝.not_ v u (Rec.fastReplaceFree v u a✝.not_) case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.imp_ a✝) ⊢ IsSub (a✝¹.imp_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.imp_ a✝)) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.and_ a✝) ⊢ IsSub (a✝¹.and_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.and_ a✝)) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.or_ a✝) ⊢ IsSub (a✝¹.or_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.or_ a✝)) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ → IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.iff_ a✝) ⊢ IsSub (a✝¹.iff_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.iff_ a✝)) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (forall_ a✝¹ a✝) ⊢ IsSub (forall_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (forall_ a✝¹ a✝)) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ → IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (exists_ a✝¹ a✝) ⊢ IsSub (exists_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (exists_ a✝¹ a✝)) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊢ IsSub (def_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (def_ a✝¹ a✝)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
case pred_const_ X xs | pred_var_ X xs => first | apply IsSub.pred_const_ | apply IsSub.pred_var_
v u : VarName X : PredName xs : List VarName binders : Finset VarName h1 : v ∈ xs → u ∉ binders ⊢ IsSub (pred_var_ X xs) v u (pred_var_ X (List.map (fun x => if v = x then u else x) xs))
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName X : PredName xs : List VarName binders : Finset VarName h1 : v ∈ xs → u ∉ binders ⊢ IsSub (pred_var_ X xs) v u (pred_var_ X (List.map (fun x => if v = x then u else x) xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
case eq_ x y => apply IsSub.eq_
v u x y : VarName binders : Finset VarName h1 : v = x ∨ v = y → u ∉ binders ⊢ IsSub (eq_ x y) v u (eq_ (if v = x then u else x) (if v = y then u else y))
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v = x ∨ v = y → u ∉ binders ⊢ IsSub (eq_ x y) v u (eq_ (if v = x then u else x) (if v = y then u else y)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
case true_ | false_ => first | apply IsSub.true_ | apply IsSub.false_
v u : VarName binders : Finset VarName h1 : True ⊢ IsSub false_ v u false_
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName binders : Finset VarName h1 : True ⊢ IsSub false_ v u false_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
case not_ phi phi_ih => apply IsSub.not_ exact phi_ih binders h1
v u : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders phi → IsSub phi v u (Rec.fastReplaceFree v u phi) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders phi ⊢ IsSub phi.not_ v u (Rec.fastReplaceFree v u phi).not_
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), Rec.fastAdmitsAux v u binders phi → IsSub phi v u (Rec.fastReplaceFree v u phi) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders phi ⊢ IsSub phi.not_ v u (Rec.fastReplaceFree v u phi).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
case def_ X xs => apply IsSub.def_
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v ∈ xs → u ∉ binders ⊢ IsSub (def_ X xs) v u (def_ X (List.map (fun x => if v = x then u else x) xs))
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v ∈ xs → u ∉ binders ⊢ IsSub (def_ X xs) v u (def_ X (List.map (fun x => if v = x then u else x) xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
simp only [Rec.fastAdmitsAux] at h1
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊢ IsSub (def_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (def_ a✝¹ a✝))
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ → u ∉ binders ⊢ IsSub (def_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (def_ a✝¹ a✝))
Please generate a tactic in lean4 to solve the state. STATE: case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊢ IsSub (def_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (def_ a✝¹ a✝)) TACTIC: