url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.isFreeSub_imp_fastReplaceFree
[234, 1]
[275, 10]
simp only [isFreeIn] at h1_1
F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : isFreeIn h1_v (exists_ h1_x h1_phi) a✝¹ : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : Rec.fastReplaceFree h1_v h1_t h1_phi = h1_phi' ⊢ (if h1_v = h1_x then exists_ h1_x h1_phi else exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi)) = exists_ h1_x h1_phi'
F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi a✝¹ : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : Rec.fastReplaceFree h1_v h1_t h1_phi = h1_phi' ⊢ (if h1_v = h1_x then exists_ h1_x h1_phi else exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi)) = exists_ h1_x h1_phi'
Please generate a tactic in lean4 to solve the state. STATE: F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : isFreeIn h1_v (exists_ h1_x h1_phi) a✝¹ : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : Rec.fastReplaceFree h1_v h1_t h1_phi = h1_phi' ⊢ (if h1_v = h1_x then exists_ h1_x h1_phi else exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi)) = exists_ h1_x h1_phi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.isFreeSub_imp_fastReplaceFree
[234, 1]
[275, 10]
cases h1_1
F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi a✝¹ : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : Rec.fastReplaceFree h1_v h1_t h1_phi = h1_phi' ⊢ (if h1_v = h1_x then exists_ h1_x h1_phi else exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi)) = exists_ h1_x h1_phi'
case intro F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝¹ : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : Rec.fastReplaceFree h1_v h1_t h1_phi = h1_phi' left✝ : ¬h1_v = h1_x right✝ : isFreeIn h1_v h1_phi ⊢ (if h1_v = h1_x then exists_ h1_x h1_phi else exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi)) = exists_ h1_x h1_phi'
Please generate a tactic in lean4 to solve the state. STATE: F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi a✝¹ : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : Rec.fastReplaceFree h1_v h1_t h1_phi = h1_phi' ⊢ (if h1_v = h1_x then exists_ h1_x h1_phi else exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi)) = exists_ h1_x h1_phi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.isFreeSub_imp_fastReplaceFree
[234, 1]
[275, 10]
case intro h1_1_left h1_1_right => simp only [if_neg h1_1_left] subst h1_ih rfl
F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝¹ : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : Rec.fastReplaceFree h1_v h1_t h1_phi = h1_phi' h1_1_left : ¬h1_v = h1_x h1_1_right : isFreeIn h1_v h1_phi ⊢ (if h1_v = h1_x then exists_ h1_x h1_phi else exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi)) = exists_ h1_x h1_phi'
no goals
Please generate a tactic in lean4 to solve the state. STATE: F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝¹ : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : Rec.fastReplaceFree h1_v h1_t h1_phi = h1_phi' h1_1_left : ¬h1_v = h1_x h1_1_right : isFreeIn h1_v h1_phi ⊢ (if h1_v = h1_x then exists_ h1_x h1_phi else exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi)) = exists_ h1_x h1_phi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.isFreeSub_imp_fastReplaceFree
[234, 1]
[275, 10]
simp only [if_neg h1_1_left]
F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝¹ : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : Rec.fastReplaceFree h1_v h1_t h1_phi = h1_phi' h1_1_left : ¬h1_v = h1_x h1_1_right : isFreeIn h1_v h1_phi ⊢ (if h1_v = h1_x then exists_ h1_x h1_phi else exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi)) = exists_ h1_x h1_phi'
F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝¹ : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : Rec.fastReplaceFree h1_v h1_t h1_phi = h1_phi' h1_1_left : ¬h1_v = h1_x h1_1_right : isFreeIn h1_v h1_phi ⊢ exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi) = exists_ h1_x h1_phi'
Please generate a tactic in lean4 to solve the state. STATE: F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝¹ : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : Rec.fastReplaceFree h1_v h1_t h1_phi = h1_phi' h1_1_left : ¬h1_v = h1_x h1_1_right : isFreeIn h1_v h1_phi ⊢ (if h1_v = h1_x then exists_ h1_x h1_phi else exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi)) = exists_ h1_x h1_phi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.isFreeSub_imp_fastReplaceFree
[234, 1]
[275, 10]
subst h1_ih
F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝¹ : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : Rec.fastReplaceFree h1_v h1_t h1_phi = h1_phi' h1_1_left : ¬h1_v = h1_x h1_1_right : isFreeIn h1_v h1_phi ⊢ exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi) = exists_ h1_x h1_phi'
F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName a✝¹ : ¬h1_x = h1_t h1_1_left : ¬h1_v = h1_x h1_1_right : isFreeIn h1_v h1_phi a✝ : IsSub h1_phi h1_v h1_t (Rec.fastReplaceFree h1_v h1_t h1_phi) ⊢ exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi) = exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi)
Please generate a tactic in lean4 to solve the state. STATE: F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝¹ : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : Rec.fastReplaceFree h1_v h1_t h1_phi = h1_phi' h1_1_left : ¬h1_v = h1_x h1_1_right : isFreeIn h1_v h1_phi ⊢ exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi) = exists_ h1_x h1_phi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.isFreeSub_imp_fastReplaceFree
[234, 1]
[275, 10]
rfl
F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName a✝¹ : ¬h1_x = h1_t h1_1_left : ¬h1_v = h1_x h1_1_right : isFreeIn h1_v h1_phi a✝ : IsSub h1_phi h1_v h1_t (Rec.fastReplaceFree h1_v h1_t h1_phi) ⊢ exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi) = exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: F F' : Formula v u h1_x : VarName h1_phi : Formula h1_v h1_t : VarName a✝¹ : ¬h1_x = h1_t h1_1_left : ¬h1_v = h1_x h1_1_right : isFreeIn h1_v h1_phi a✝ : IsSub h1_phi h1_v h1_t (Rec.fastReplaceFree h1_v h1_t h1_phi) ⊢ exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi) = exists_ h1_x (Rec.fastReplaceFree h1_v h1_t h1_phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
induction h1 generalizing V
D : Type I : Interpretation D V : VarAssignment D E : Env v t : VarName F F' : Formula h1 : IsSub F v t F' ⊢ Holds D I (Function.updateITE V v (V t)) E F ↔ Holds D I V E F'
case pred_const_ D : Type I : Interpretation D E : Env v t : VarName F F' : Formula X✝ : PredName xs✝ : List VarName v✝ t✝ : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E (pred_const_ X✝ xs✝) ↔ Holds D I V E (pred_const_ X✝ (List.map (fun x => if v✝ = x then t✝ else x) xs✝)) case pred_var_ D : Type I : Interpretation D E : Env v t : VarName F F' : Formula X✝ : PredName xs✝ : List VarName v✝ t✝ : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E (pred_var_ X✝ xs✝) ↔ Holds D I V E (pred_var_ X✝ (List.map (fun x => if v✝ = x then t✝ else x) xs✝)) case eq_ D : Type I : Interpretation D E : Env v t : VarName F F' : Formula x✝ y✝ v✝ t✝ : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E (eq_ x✝ y✝) ↔ Holds D I V E (eq_ (if v✝ = x✝ then t✝ else x✝) (if v✝ = y✝ then t✝ else y✝)) case true_ D : Type I : Interpretation D E : Env v t : VarName F F' : Formula v✝ t✝ : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E true_ ↔ Holds D I V E true_ case false_ D : Type I : Interpretation D E : Env v t : VarName F F' : Formula v✝ t✝ : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E false_ ↔ Holds D I V E false_ case not_ D : Type I : Interpretation D E : Env v t : VarName F F' phi✝ : Formula v✝ t✝ : VarName phi'✝ : Formula a✝ : IsSub phi✝ v✝ t✝ phi'✝ a_ih✝ : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V v✝ (V t✝)) E phi✝ ↔ Holds D I V E phi'✝ V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E phi✝.not_ ↔ Holds D I V E phi'✝.not_ case imp_ D : Type I : Interpretation D E : Env v t : VarName F F' phi✝ psi✝ : Formula v✝ t✝ : VarName phi'✝ psi'✝ : Formula a✝¹ : IsSub phi✝ v✝ t✝ phi'✝ a✝ : IsSub psi✝ v✝ t✝ psi'✝ a_ih✝¹ : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V v✝ (V t✝)) E phi✝ ↔ Holds D I V E phi'✝ a_ih✝ : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V v✝ (V t✝)) E psi✝ ↔ Holds D I V E psi'✝ V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E (phi✝.imp_ psi✝) ↔ Holds D I V E (phi'✝.imp_ psi'✝) case and_ D : Type I : Interpretation D E : Env v t : VarName F F' phi✝ psi✝ : Formula v✝ t✝ : VarName phi'✝ psi'✝ : Formula a✝¹ : IsSub phi✝ v✝ t✝ phi'✝ a✝ : IsSub psi✝ v✝ t✝ psi'✝ a_ih✝¹ : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V v✝ (V t✝)) E phi✝ ↔ Holds D I V E phi'✝ a_ih✝ : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V v✝ (V t✝)) E psi✝ ↔ Holds D I V E psi'✝ V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E (phi✝.and_ psi✝) ↔ Holds D I V E (phi'✝.and_ psi'✝) case or_ D : Type I : Interpretation D E : Env v t : VarName F F' phi✝ psi✝ : Formula v✝ t✝ : VarName phi'✝ psi'✝ : Formula a✝¹ : IsSub phi✝ v✝ t✝ phi'✝ a✝ : IsSub psi✝ v✝ t✝ psi'✝ a_ih✝¹ : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V v✝ (V t✝)) E phi✝ ↔ Holds D I V E phi'✝ a_ih✝ : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V v✝ (V t✝)) E psi✝ ↔ Holds D I V E psi'✝ V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E (phi✝.or_ psi✝) ↔ Holds D I V E (phi'✝.or_ psi'✝) case iff_ D : Type I : Interpretation D E : Env v t : VarName F F' phi✝ psi✝ : Formula v✝ t✝ : VarName phi'✝ psi'✝ : Formula a✝¹ : IsSub phi✝ v✝ t✝ phi'✝ a✝ : IsSub psi✝ v✝ t✝ psi'✝ a_ih✝¹ : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V v✝ (V t✝)) E phi✝ ↔ Holds D I V E phi'✝ a_ih✝ : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V v✝ (V t✝)) E psi✝ ↔ Holds D I V E psi'✝ V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E (phi✝.iff_ psi✝) ↔ Holds D I V E (phi'✝.iff_ psi'✝) case forall_not_free_in D : Type I : Interpretation D E : Env v t : VarName F F' : Formula x✝ : VarName phi✝ : Formula v✝ t✝ : VarName a✝ : ¬isFreeIn v✝ (forall_ x✝ phi✝) V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E (forall_ x✝ phi✝) ↔ Holds D I V E (forall_ x✝ phi✝) case forall_free_in D : Type I : Interpretation D E : Env v t : VarName F F' : Formula x✝ : VarName phi✝ : Formula v✝ t✝ : VarName phi'✝ : Formula a✝² : isFreeIn v✝ (forall_ x✝ phi✝) a✝¹ : ¬x✝ = t✝ a✝ : IsSub phi✝ v✝ t✝ phi'✝ a_ih✝ : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V v✝ (V t✝)) E phi✝ ↔ Holds D I V E phi'✝ V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E (forall_ x✝ phi✝) ↔ Holds D I V E (forall_ x✝ phi'✝) case exists_not_free_in D : Type I : Interpretation D E : Env v t : VarName F F' : Formula x✝ : VarName phi✝ : Formula v✝ t✝ : VarName a✝ : ¬isFreeIn v✝ (exists_ x✝ phi✝) V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E (exists_ x✝ phi✝) ↔ Holds D I V E (exists_ x✝ phi✝) case exists_free_in D : Type I : Interpretation D E : Env v t : VarName F F' : Formula x✝ : VarName phi✝ : Formula v✝ t✝ : VarName phi'✝ : Formula a✝² : isFreeIn v✝ (exists_ x✝ phi✝) a✝¹ : ¬x✝ = t✝ a✝ : IsSub phi✝ v✝ t✝ phi'✝ a_ih✝ : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V v✝ (V t✝)) E phi✝ ↔ Holds D I V E phi'✝ V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E (exists_ x✝ phi✝) ↔ Holds D I V E (exists_ x✝ phi'✝) case def_ D : Type I : Interpretation D E : Env v t : VarName F F' : Formula X✝ : DefName xs✝ : List VarName v✝ t✝ : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E (def_ X✝ xs✝) ↔ Holds D I V E (def_ X✝ (List.map (fun x => if v✝ = x then t✝ else x) xs✝))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V : VarAssignment D E : Env v t : VarName F F' : Formula h1 : IsSub F v t F' ⊢ Holds D I (Function.updateITE V v (V t)) E F ↔ Holds D I V E F' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case pred_const_ h1_X h1_xs h1_v h1_t | pred_var_ h1_X h1_xs h1_v h1_t => simp only [Holds] congr! 1 simp simp only [List.map_eq_map_iff] intro x _ simp only [Function.updateITE] simp only [eq_comm] split_ifs case _ c1 => simp simp only [if_pos c1] case _ c1 => simp simp only [if_neg c1]
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (pred_var_ h1_X h1_xs) ↔ Holds D I V E (pred_var_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (pred_var_ h1_X h1_xs) ↔ Holds D I V E (pred_var_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case eq_ h1_x h1_y h1_v h1_t => simp only [Holds] simp only [Function.updateITE] simp only [eq_comm] congr! 1 <;> { split_ifs <;> rfl }
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (eq_ h1_x h1_y) ↔ Holds D I V E (eq_ (if h1_v = h1_x then h1_t else h1_x) (if h1_v = h1_y then h1_t else h1_y))
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (eq_ h1_x h1_y) ↔ Holds D I V E (eq_ (if h1_v = h1_x then h1_t else h1_x) (if h1_v = h1_y then h1_t else h1_y)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case true_ _ _ | false_ _ _ => simp only [Holds]
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula v✝ t✝ : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E false_ ↔ Holds D I V E false_
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula v✝ t✝ : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E false_ ↔ Holds D I V E false_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case not_ h1_phi h1_v h1_t h1_phi' _ h1_ih => simp only [Holds] congr! 1 apply h1_ih
D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi.not_ ↔ Holds D I V E h1_phi'.not_
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi.not_ ↔ Holds D I V E h1_phi'.not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case forall_not_free_in h1_x h1_phi h1_v h1_t h1_1 | exists_not_free_in h1_x h1_phi h1_v h1_t h1_1 => simp only [isFreeIn] at h1_1 simp at h1_1 simp only [Holds] first | apply forall_congr' | apply exists_congr intro d apply Holds_coincide_Var intro x a1 simp only [Function.updateITE] split_ifs case _ c1 => rfl case _ c1 c2 => subst c2 tauto case _ c1 c2 => rfl
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_1 : ¬isFreeIn h1_v (exists_ h1_x h1_phi) V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_1 : ¬isFreeIn h1_v (exists_ h1_x h1_phi) V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case forall_free_in h1_x h1_phi h1_v h1_t h1_phi' h1_1 h1_2 _ h1_ih | exists_free_in h1_x h1_phi h1_v h1_t h1_phi' h1_1 h1_2 _ h1_ih => simp only [isFreeIn] at h1_1 simp only [Holds] first | apply forall_congr' | apply exists_congr intro d specialize h1_ih (Function.updateITE V h1_x d) simp only [← h1_ih] apply Holds_coincide_Var intro x _ simp only [Function.updateITE] simp only [eq_comm] split_ifs case _ c1 c2 c3 => subst c2 cases h1_1 case intro h1_1_left h1_1_right => contradiction case _ | _ | _ => rfl
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : isFreeIn h1_v (exists_ h1_x h1_phi) h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi')
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : isFreeIn h1_v (exists_ h1_x h1_phi) h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi') TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [Holds]
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (pred_var_ h1_X h1_xs) ↔ Holds D I V E (pred_var_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ I.pred_var_ h1_X (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) ↔ I.pred_var_ h1_X (List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (pred_var_ h1_X h1_xs) ↔ Holds D I V E (pred_var_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
congr! 1
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ I.pred_var_ h1_X (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) ↔ I.pred_var_ h1_X (List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))
case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ I.pred_var_ h1_X (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) ↔ I.pred_var_ h1_X (List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp
case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)
case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [List.map_eq_map_iff]
case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs
case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ ∀ x ∈ h1_xs, Function.updateITE V h1_v (V h1_t) x = (V ∘ fun x => if h1_v = x then h1_t else x) x
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
intro x _
case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ ∀ x ∈ h1_xs, Function.updateITE V h1_v (V h1_t) x = (V ∘ fun x => if h1_v = x then h1_t else x) x
case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs ⊢ Function.updateITE V h1_v (V h1_t) x = (V ∘ fun x => if h1_v = x then h1_t else x) x
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ ∀ x ∈ h1_xs, Function.updateITE V h1_v (V h1_t) x = (V ∘ fun x => if h1_v = x then h1_t else x) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [Function.updateITE]
case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs ⊢ Function.updateITE V h1_v (V h1_t) x = (V ∘ fun x => if h1_v = x then h1_t else x) x
case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs ⊢ (if x = h1_v then V h1_t else V x) = (V ∘ fun x => if h1_v = x then h1_t else x) x
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs ⊢ Function.updateITE V h1_v (V h1_t) x = (V ∘ fun x => if h1_v = x then h1_t else x) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [eq_comm]
case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs ⊢ (if x = h1_v then V h1_t else V x) = (V ∘ fun x => if h1_v = x then h1_t else x) x
case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs ⊢ (if h1_v = x then V h1_t else V x) = (V ∘ fun x => if h1_v = x then h1_t else x) x
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs ⊢ (if x = h1_v then V h1_t else V x) = (V ∘ fun x => if h1_v = x then h1_t else x) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
split_ifs
case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs ⊢ (if h1_v = x then V h1_t else V x) = (V ∘ fun x => if h1_v = x then h1_t else x) x
case pos D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs h✝ : h1_v = x ⊢ V h1_t = (V ∘ fun x => if h1_v = x then h1_t else x) x case neg D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs h✝ : ¬h1_v = x ⊢ V x = (V ∘ fun x => if h1_v = x then h1_t else x) x
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_4 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs ⊢ (if h1_v = x then V h1_t else V x) = (V ∘ fun x => if h1_v = x then h1_t else x) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case _ c1 => simp simp only [if_pos c1]
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs c1 : h1_v = x ⊢ V h1_t = (V ∘ fun x => if h1_v = x then h1_t else x) x
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs c1 : h1_v = x ⊢ V h1_t = (V ∘ fun x => if h1_v = x then h1_t else x) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case _ c1 => simp simp only [if_neg c1]
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs c1 : ¬h1_v = x ⊢ V x = (V ∘ fun x => if h1_v = x then h1_t else x) x
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs c1 : ¬h1_v = x ⊢ V x = (V ∘ fun x => if h1_v = x then h1_t else x) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs c1 : h1_v = x ⊢ V h1_t = (V ∘ fun x => if h1_v = x then h1_t else x) x
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs c1 : h1_v = x ⊢ V h1_t = V (if h1_v = x then h1_t else x)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs c1 : h1_v = x ⊢ V h1_t = (V ∘ fun x => if h1_v = x then h1_t else x) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [if_pos c1]
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs c1 : h1_v = x ⊢ V h1_t = V (if h1_v = x then h1_t else x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs c1 : h1_v = x ⊢ V h1_t = V (if h1_v = x then h1_t else x) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs c1 : ¬h1_v = x ⊢ V x = (V ∘ fun x => if h1_v = x then h1_t else x) x
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs c1 : ¬h1_v = x ⊢ V x = V (if h1_v = x then h1_t else x)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs c1 : ¬h1_v = x ⊢ V x = (V ∘ fun x => if h1_v = x then h1_t else x) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [if_neg c1]
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs c1 : ¬h1_v = x ⊢ V x = V (if h1_v = x then h1_t else x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : PredName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D x : VarName a✝ : x ∈ h1_xs c1 : ¬h1_v = x ⊢ V x = V (if h1_v = x then h1_t else x) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [Holds]
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (eq_ h1_x h1_y) ↔ Holds D I V E (eq_ (if h1_v = h1_x then h1_t else h1_x) (if h1_v = h1_y then h1_t else h1_y))
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ Function.updateITE V h1_v (V h1_t) h1_x = Function.updateITE V h1_v (V h1_t) h1_y ↔ V (if h1_v = h1_x then h1_t else h1_x) = V (if h1_v = h1_y then h1_t else h1_y)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (eq_ h1_x h1_y) ↔ Holds D I V E (eq_ (if h1_v = h1_x then h1_t else h1_x) (if h1_v = h1_y then h1_t else h1_y)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [Function.updateITE]
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ Function.updateITE V h1_v (V h1_t) h1_x = Function.updateITE V h1_v (V h1_t) h1_y ↔ V (if h1_v = h1_x then h1_t else h1_x) = V (if h1_v = h1_y then h1_t else h1_y)
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ ((if h1_x = h1_v then V h1_t else V h1_x) = if h1_y = h1_v then V h1_t else V h1_y) ↔ V (if h1_v = h1_x then h1_t else h1_x) = V (if h1_v = h1_y then h1_t else h1_y)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ Function.updateITE V h1_v (V h1_t) h1_x = Function.updateITE V h1_v (V h1_t) h1_y ↔ V (if h1_v = h1_x then h1_t else h1_x) = V (if h1_v = h1_y then h1_t else h1_y) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [eq_comm]
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ ((if h1_x = h1_v then V h1_t else V h1_x) = if h1_y = h1_v then V h1_t else V h1_y) ↔ V (if h1_v = h1_x then h1_t else h1_x) = V (if h1_v = h1_y then h1_t else h1_y)
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ ((if h1_x = h1_v then V h1_t else V h1_x) = if h1_y = h1_v then V h1_t else V h1_y) ↔ V (if h1_x = h1_v then h1_t else h1_x) = V (if h1_y = h1_v then h1_t else h1_y)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ ((if h1_x = h1_v then V h1_t else V h1_x) = if h1_y = h1_v then V h1_t else V h1_y) ↔ V (if h1_v = h1_x then h1_t else h1_x) = V (if h1_v = h1_y then h1_t else h1_y) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
congr! 1 <;> { split_ifs <;> rfl }
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ ((if h1_x = h1_v then V h1_t else V h1_x) = if h1_y = h1_v then V h1_t else V h1_y) ↔ V (if h1_x = h1_v then h1_t else h1_x) = V (if h1_y = h1_v then h1_t else h1_y)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ ((if h1_x = h1_v then V h1_t else V h1_x) = if h1_y = h1_v then V h1_t else V h1_y) ↔ V (if h1_x = h1_v then h1_t else h1_x) = V (if h1_y = h1_v then h1_t else h1_y) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
split_ifs <;> rfl
case a.h.e'_3 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ (if h1_y = h1_v then V h1_t else V h1_y) = V (if h1_y = h1_v then h1_t else h1_y)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_3 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x h1_y h1_v h1_t : VarName V : VarAssignment D ⊢ (if h1_y = h1_v then V h1_t else V h1_y) = V (if h1_y = h1_v then h1_t else h1_y) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [Holds]
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula v✝ t✝ : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E false_ ↔ Holds D I V E false_
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula v✝ t✝ : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V v✝ (V t✝)) E false_ ↔ Holds D I V E false_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [Holds]
D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi.not_ ↔ Holds D I V E h1_phi'.not_
D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ ¬Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ ¬Holds D I V E h1_phi'
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi.not_ ↔ Holds D I V E h1_phi'.not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
congr! 1
D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ ¬Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ ¬Holds D I V E h1_phi'
case a.h.e'_1.a D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi'
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ ¬Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ ¬Holds D I V E h1_phi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
apply h1_ih
case a.h.e'_1.a D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi'
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_1.a D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [Holds]
D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi h1_psi : Formula h1_v h1_t : VarName h1_phi' h1_psi' : Formula a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' a✝ : IsSub h1_psi h1_v h1_t h1_psi' h1_ih_1 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' h1_ih_2 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi ↔ Holds D I V E h1_psi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (h1_phi.iff_ h1_psi) ↔ Holds D I V E (h1_phi'.iff_ h1_psi')
D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi h1_psi : Formula h1_v h1_t : VarName h1_phi' h1_psi' : Formula a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' a✝ : IsSub h1_psi h1_v h1_t h1_psi' h1_ih_1 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' h1_ih_2 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi ↔ Holds D I V E h1_psi' V : VarAssignment D ⊢ (Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi) ↔ (Holds D I V E h1_phi' ↔ Holds D I V E h1_psi')
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi h1_psi : Formula h1_v h1_t : VarName h1_phi' h1_psi' : Formula a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' a✝ : IsSub h1_psi h1_v h1_t h1_psi' h1_ih_1 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' h1_ih_2 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi ↔ Holds D I V E h1_psi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (h1_phi.iff_ h1_psi) ↔ Holds D I V E (h1_phi'.iff_ h1_psi') TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
congr! 1
D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi h1_psi : Formula h1_v h1_t : VarName h1_phi' h1_psi' : Formula a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' a✝ : IsSub h1_psi h1_v h1_t h1_psi' h1_ih_1 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' h1_ih_2 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi ↔ Holds D I V E h1_psi' V : VarAssignment D ⊢ (Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi) ↔ (Holds D I V E h1_phi' ↔ Holds D I V E h1_psi')
case a.h.e'_1.a D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi h1_psi : Formula h1_v h1_t : VarName h1_phi' h1_psi' : Formula a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' a✝ : IsSub h1_psi h1_v h1_t h1_psi' h1_ih_1 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' h1_ih_2 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi ↔ Holds D I V E h1_psi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' case a.h.e'_2.a D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi h1_psi : Formula h1_v h1_t : VarName h1_phi' h1_psi' : Formula a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' a✝ : IsSub h1_psi h1_v h1_t h1_psi' h1_ih_1 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' h1_ih_2 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi ↔ Holds D I V E h1_psi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi ↔ Holds D I V E h1_psi'
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi h1_psi : Formula h1_v h1_t : VarName h1_phi' h1_psi' : Formula a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' a✝ : IsSub h1_psi h1_v h1_t h1_psi' h1_ih_1 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' h1_ih_2 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi ↔ Holds D I V E h1_psi' V : VarAssignment D ⊢ (Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi) ↔ (Holds D I V E h1_phi' ↔ Holds D I V E h1_psi') TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
apply h1_ih_1
case a.h.e'_1.a D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi h1_psi : Formula h1_v h1_t : VarName h1_phi' h1_psi' : Formula a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' a✝ : IsSub h1_psi h1_v h1_t h1_psi' h1_ih_1 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' h1_ih_2 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi ↔ Holds D I V E h1_psi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi'
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_1.a D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi h1_psi : Formula h1_v h1_t : VarName h1_phi' h1_psi' : Formula a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' a✝ : IsSub h1_psi h1_v h1_t h1_psi' h1_ih_1 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' h1_ih_2 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi ↔ Holds D I V E h1_psi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
apply h1_ih_2
case a.h.e'_2.a D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi h1_psi : Formula h1_v h1_t : VarName h1_phi' h1_psi' : Formula a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' a✝ : IsSub h1_psi h1_v h1_t h1_psi' h1_ih_1 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' h1_ih_2 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi ↔ Holds D I V E h1_psi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi ↔ Holds D I V E h1_psi'
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_2.a D : Type I : Interpretation D E : Env v t : VarName F F' h1_phi h1_psi : Formula h1_v h1_t : VarName h1_phi' h1_psi' : Formula a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' a✝ : IsSub h1_psi h1_v h1_t h1_psi' h1_ih_1 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' h1_ih_2 : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi ↔ Holds D I V E h1_psi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_psi ↔ Holds D I V E h1_psi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [isFreeIn] at h1_1
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_1 : ¬isFreeIn h1_v (exists_ h1_x h1_phi) V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi)
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_1 : ¬(¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi) V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_1 : ¬isFreeIn h1_v (exists_ h1_x h1_phi) V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp at h1_1
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_1 : ¬(¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi) V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi)
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_1 : ¬(¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi) V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [Holds]
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi)
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi) ↔ ∃ d, Holds D I (Function.updateITE V h1_x d) E h1_phi
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
first | apply forall_congr' | apply exists_congr
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi) ↔ ∃ d, Holds D I (Function.updateITE V h1_x d) E h1_phi
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ ∀ (a : D), Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x a) E h1_phi ↔ Holds D I (Function.updateITE V h1_x a) E h1_phi
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi) ↔ ∃ d, Holds D I (Function.updateITE V h1_x d) E h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
intro d
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ ∀ (a : D), Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x a) E h1_phi ↔ Holds D I (Function.updateITE V h1_x a) E h1_phi
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D ⊢ Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ ∀ (a : D), Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x a) E h1_phi ↔ Holds D I (Function.updateITE V h1_x a) E h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
apply Holds_coincide_Var
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D ⊢ Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi
case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D ⊢ ∀ (v : VarName), isFreeIn v h1_phi → Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d v = Function.updateITE V h1_x d v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D ⊢ Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
intro x a1
case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D ⊢ ∀ (v : VarName), isFreeIn v h1_phi → Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d v = Function.updateITE V h1_x d v
case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi ⊢ Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d x = Function.updateITE V h1_x d x
Please generate a tactic in lean4 to solve the state. STATE: case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D ⊢ ∀ (v : VarName), isFreeIn v h1_phi → Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d v = Function.updateITE V h1_x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [Function.updateITE]
case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi ⊢ Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d x = Function.updateITE V h1_x d x
case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi ⊢ (if x = h1_x then d else if x = h1_v then V h1_t else V x) = if x = h1_x then d else V x
Please generate a tactic in lean4 to solve the state. STATE: case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi ⊢ Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d x = Function.updateITE V h1_x d x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
split_ifs
case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi ⊢ (if x = h1_x then d else if x = h1_v then V h1_t else V x) = if x = h1_x then d else V x
case pos D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi h✝ : x = h1_x ⊢ d = d case pos D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi h✝¹ : ¬x = h1_x h✝ : x = h1_v ⊢ V h1_t = V x case neg D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi h✝¹ : ¬x = h1_x h✝ : ¬x = h1_v ⊢ V x = V x
Please generate a tactic in lean4 to solve the state. STATE: case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi ⊢ (if x = h1_x then d else if x = h1_v then V h1_t else V x) = if x = h1_x then d else V x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case _ c1 => rfl
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi c1 : x = h1_x ⊢ d = d
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi c1 : x = h1_x ⊢ d = d TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case _ c1 c2 => subst c2 tauto
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi c1 : ¬x = h1_x c2 : x = h1_v ⊢ V h1_t = V x
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi c1 : ¬x = h1_x c2 : x = h1_v ⊢ V h1_t = V x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case _ c1 c2 => rfl
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi c1 : ¬x = h1_x c2 : ¬x = h1_v ⊢ V x = V x
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi c1 : ¬x = h1_x c2 : ¬x = h1_v ⊢ V x = V x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
apply forall_congr'
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ (∀ (d : D), Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi) ↔ ∀ (d : D), Holds D I (Function.updateITE V h1_x d) E h1_phi
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ ∀ (a : D), Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x a) E h1_phi ↔ Holds D I (Function.updateITE V h1_x a) E h1_phi
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ (∀ (d : D), Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi) ↔ ∀ (d : D), Holds D I (Function.updateITE V h1_x d) E h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
apply exists_congr
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi) ↔ ∃ d, Holds D I (Function.updateITE V h1_x d) E h1_phi
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ ∀ (a : D), Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x a) E h1_phi ↔ Holds D I (Function.updateITE V h1_x a) E h1_phi
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi) ↔ ∃ d, Holds D I (Function.updateITE V h1_x d) E h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
rfl
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi c1 : x = h1_x ⊢ d = d
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi c1 : x = h1_x ⊢ d = d TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
subst c2
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi c1 : ¬x = h1_x c2 : x = h1_v ⊢ V h1_t = V x
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_t : VarName V : VarAssignment D d : D x : VarName a1 : isFreeIn x h1_phi c1 : ¬x = h1_x h1_1 : ¬x = h1_x → ¬isFreeIn x h1_phi ⊢ V h1_t = V x
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi c1 : ¬x = h1_x c2 : x = h1_v ⊢ V h1_t = V x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
tauto
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_t : VarName V : VarAssignment D d : D x : VarName a1 : isFreeIn x h1_phi c1 : ¬x = h1_x h1_1 : ¬x = h1_x → ¬isFreeIn x h1_phi ⊢ V h1_t = V x
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_t : VarName V : VarAssignment D d : D x : VarName a1 : isFreeIn x h1_phi c1 : ¬x = h1_x h1_1 : ¬x = h1_x → ¬isFreeIn x h1_phi ⊢ V h1_t = V x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
rfl
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi c1 : ¬x = h1_x c2 : ¬x = h1_v ⊢ V x = V x
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName V : VarAssignment D h1_1 : ¬h1_v = h1_x → ¬isFreeIn h1_v h1_phi d : D x : VarName a1 : isFreeIn x h1_phi c1 : ¬x = h1_x c2 : ¬x = h1_v ⊢ V x = V x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [isFreeIn] at h1_1
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : isFreeIn h1_v (exists_ h1_x h1_phi) h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi')
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi')
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : isFreeIn h1_v (exists_ h1_x h1_phi) h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi') TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [Holds]
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi')
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi) ↔ ∃ d, Holds D I (Function.updateITE V h1_x d) E h1_phi'
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (exists_ h1_x h1_phi) ↔ Holds D I V E (exists_ h1_x h1_phi') TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
first | apply forall_congr' | apply exists_congr
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi) ↔ ∃ d, Holds D I (Function.updateITE V h1_x d) E h1_phi'
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ ∀ (a : D), Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x a) E h1_phi ↔ Holds D I (Function.updateITE V h1_x a) E h1_phi'
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi) ↔ ∃ d, Holds D I (Function.updateITE V h1_x d) E h1_phi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
intro d
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ ∀ (a : D), Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x a) E h1_phi ↔ Holds D I (Function.updateITE V h1_x a) E h1_phi'
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D d : D ⊢ Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi'
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ ∀ (a : D), Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x a) E h1_phi ↔ Holds D I (Function.updateITE V h1_x a) E h1_phi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
specialize h1_ih (Function.updateITE V h1_x d)
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D d : D ⊢ Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi'
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' ⊢ Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi'
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D d : D ⊢ Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [← h1_ih]
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' ⊢ Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi'
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' ⊢ Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi ↔ Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' ⊢ Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
apply Holds_coincide_Var
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' ⊢ Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi ↔ Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi
case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' ⊢ ∀ (v : VarName), isFreeIn v h1_phi → Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d v = Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t) v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' ⊢ Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi ↔ Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
intro x _
case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' ⊢ ∀ (v : VarName), isFreeIn v h1_phi → Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d v = Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t) v
case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi ⊢ Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d x = Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t) x
Please generate a tactic in lean4 to solve the state. STATE: case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' ⊢ ∀ (v : VarName), isFreeIn v h1_phi → Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d v = Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [Function.updateITE]
case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi ⊢ Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d x = Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t) x
case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi ⊢ (if x = h1_x then d else if x = h1_v then V h1_t else V x) = if x = h1_v then if h1_t = h1_x then d else V h1_t else if x = h1_x then d else V x
Please generate a tactic in lean4 to solve the state. STATE: case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi ⊢ Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d x = Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [eq_comm]
case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi ⊢ (if x = h1_x then d else if x = h1_v then V h1_t else V x) = if x = h1_v then if h1_t = h1_x then d else V h1_t else if x = h1_x then d else V x
case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi ⊢ (if h1_x = x then d else if h1_v = x then V h1_t else V x) = if h1_v = x then if h1_x = h1_t then d else V h1_t else if h1_x = x then d else V x
Please generate a tactic in lean4 to solve the state. STATE: case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi ⊢ (if x = h1_x then d else if x = h1_v then V h1_t else V x) = if x = h1_v then if h1_t = h1_x then d else V h1_t else if x = h1_x then d else V x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
split_ifs
case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi ⊢ (if h1_x = x then d else if h1_v = x then V h1_t else V x) = if h1_v = x then if h1_x = h1_t then d else V h1_t else if h1_x = x then d else V x
case pos D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi h✝¹ : h1_x = x h✝ : h1_v = x ⊢ d = V h1_t case neg D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi h✝¹ : h1_x = x h✝ : ¬h1_v = x ⊢ d = d case pos D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi h✝¹ : ¬h1_x = x h✝ : h1_v = x ⊢ V h1_t = V h1_t case neg D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi h✝¹ : ¬h1_x = x h✝ : ¬h1_v = x ⊢ V x = V x
Please generate a tactic in lean4 to solve the state. STATE: case h.h1 D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi ⊢ (if h1_x = x then d else if h1_v = x then V h1_t else V x) = if h1_v = x then if h1_x = h1_t then d else V h1_t else if h1_x = x then d else V x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case _ c1 c2 c3 => subst c2 cases h1_1 case intro h1_1_left h1_1_right => contradiction
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName c1 : isFreeIn x h1_phi c2 : h1_x = x c3 : h1_v = x ⊢ d = V h1_t
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName c1 : isFreeIn x h1_phi c2 : h1_x = x c3 : h1_v = x ⊢ d = V h1_t TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case _ | _ | _ => rfl
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi h✝¹ : ¬h1_x = x h✝ : ¬h1_v = x ⊢ V x = V x
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi h✝¹ : ¬h1_x = x h✝ : ¬h1_v = x ⊢ V x = V x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
apply forall_congr'
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ (∀ (d : D), Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi) ↔ ∀ (d : D), Holds D I (Function.updateITE V h1_x d) E h1_phi'
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ ∀ (a : D), Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x a) E h1_phi ↔ Holds D I (Function.updateITE V h1_x a) E h1_phi'
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ (∀ (d : D), Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi) ↔ ∀ (d : D), Holds D I (Function.updateITE V h1_x d) E h1_phi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
apply exists_congr
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi) ↔ ∃ d, Holds D I (Function.updateITE V h1_x d) E h1_phi'
case h D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ ∀ (a : D), Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x a) E h1_phi ↔ Holds D I (Function.updateITE V h1_x a) E h1_phi'
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' h1_ih : ∀ (V : VarAssignment D), Holds D I (Function.updateITE V h1_v (V h1_t)) E h1_phi ↔ Holds D I V E h1_phi' V : VarAssignment D ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V h1_v (V h1_t)) h1_x d) E h1_phi) ↔ ∃ d, Holds D I (Function.updateITE V h1_x d) E h1_phi' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
subst c2
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName c1 : isFreeIn x h1_phi c2 : h1_x = x c3 : h1_v = x ⊢ d = V h1_t
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' c1 : isFreeIn h1_x h1_phi c3 : h1_v = h1_x ⊢ d = V h1_t
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName c1 : isFreeIn x h1_phi c2 : h1_x = x c3 : h1_v = x ⊢ d = V h1_t TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
cases h1_1
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' c1 : isFreeIn h1_x h1_phi c3 : h1_v = h1_x ⊢ d = V h1_t
case intro D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' c1 : isFreeIn h1_x h1_phi c3 : h1_v = h1_x left✝ : ¬h1_v = h1_x right✝ : isFreeIn h1_v h1_phi ⊢ d = V h1_t
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' c1 : isFreeIn h1_x h1_phi c3 : h1_v = h1_x ⊢ d = V h1_t TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case intro h1_1_left h1_1_right => contradiction
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' c1 : isFreeIn h1_x h1_phi c3 : h1_v = h1_x h1_1_left : ¬h1_v = h1_x h1_1_right : isFreeIn h1_v h1_phi ⊢ d = V h1_t
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' c1 : isFreeIn h1_x h1_phi c3 : h1_v = h1_x h1_1_left : ¬h1_v = h1_x h1_1_right : isFreeIn h1_v h1_phi ⊢ d = V h1_t TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
contradiction
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' c1 : isFreeIn h1_x h1_phi c3 : h1_v = h1_x h1_1_left : ¬h1_v = h1_x h1_1_right : isFreeIn h1_v h1_phi ⊢ d = V h1_t
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_2 : ¬h1_x = h1_t a✝ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' c1 : isFreeIn h1_x h1_phi c3 : h1_v = h1_x h1_1_left : ¬h1_v = h1_x h1_1_right : isFreeIn h1_v h1_phi ⊢ d = V h1_t TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
rfl
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi h✝¹ : ¬h1_x = x h✝ : ¬h1_v = x ⊢ V x = V x
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_x : VarName h1_phi : Formula h1_v h1_t : VarName h1_phi' : Formula h1_1 : ¬h1_v = h1_x ∧ isFreeIn h1_v h1_phi h1_2 : ¬h1_x = h1_t a✝¹ : IsSub h1_phi h1_v h1_t h1_phi' V : VarAssignment D d : D h1_ih : Holds D I (Function.updateITE (Function.updateITE V h1_x d) h1_v (Function.updateITE V h1_x d h1_t)) E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) E h1_phi' x : VarName a✝ : isFreeIn x h1_phi h✝¹ : ¬h1_x = x h✝ : ¬h1_v = x ⊢ V x = V x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
induction E
D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (def_ h1_X h1_xs) ↔ Holds D I V E (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))
case nil D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) [] (def_ h1_X h1_xs) ↔ Holds D I V [] (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) case cons D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D head✝ : Definition tail✝ : List Definition tail_ih✝ : Holds D I (Function.updateITE V h1_v (V h1_t)) tail✝ (def_ h1_X h1_xs) ↔ Holds D I V tail✝ (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) (head✝ :: tail✝) (def_ h1_X h1_xs) ↔ Holds D I V (head✝ :: tail✝) (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D E : Env v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) E (def_ h1_X h1_xs) ↔ Holds D I V E (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case nil => simp only [Holds]
D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) [] (def_ h1_X h1_xs) ↔ Holds D I V [] (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) [] (def_ h1_X h1_xs) ↔ Holds D I V [] (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [Holds]
D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) [] (def_ h1_X h1_xs) ↔ Holds D I V [] (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) [] (def_ h1_X h1_xs) ↔ Holds D I V [] (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [Holds]
D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) (hd :: tl) (def_ h1_X h1_xs) ↔ Holds D I V (hd :: tl) (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))
D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) ⊢ (if h1_X = hd.name ∧ h1_xs.length = hd.args.length then Holds D I (Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs)) tl hd.q else Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs)) ↔ if h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))) tl hd.q else Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) (hd :: tl) (def_ h1_X h1_xs) ↔ Holds D I V (hd :: tl) (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
split_ifs
D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) ⊢ (if h1_X = hd.name ∧ h1_xs.length = hd.args.length then Holds D I (Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs)) tl hd.q else Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs)) ↔ if h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))) tl hd.q else Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))
case pos D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) h✝¹ : h1_X = hd.name ∧ h1_xs.length = hd.args.length h✝ : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length ⊢ Holds D I (Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))) tl hd.q case neg D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) h✝¹ : h1_X = hd.name ∧ h1_xs.length = hd.args.length h✝ : ¬(h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length) ⊢ Holds D I (Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs)) tl hd.q ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) case pos D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) h✝¹ : ¬(h1_X = hd.name ∧ h1_xs.length = hd.args.length) h✝ : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I (Function.updateListITE V hd.args (List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))) tl hd.q case neg D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) h✝¹ : ¬(h1_X = hd.name ∧ h1_xs.length = hd.args.length) h✝ : ¬(h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length) ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) ⊢ (if h1_X = hd.name ∧ h1_xs.length = hd.args.length then Holds D I (Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs)) tl hd.q else Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs)) ↔ if h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))) tl hd.q else Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case _ c1 c2 => simp only [List.length_map] at c2 contradiction
D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : ¬(h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length) ⊢ Holds D I (Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs)) tl hd.q ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : ¬(h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length) ⊢ Holds D I (Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs)) tl hd.q ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case _ c1 c2 => simp at c2 contradiction
D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : ¬(h1_X = hd.name ∧ h1_xs.length = hd.args.length) c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I (Function.updateListITE V hd.args (List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))) tl hd.q
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : ¬(h1_X = hd.name ∧ h1_xs.length = hd.args.length) c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I (Function.updateListITE V hd.args (List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))) tl hd.q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case _ c1 c2 => exact ih
D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : ¬(h1_X = hd.name ∧ h1_xs.length = hd.args.length) c2 : ¬(h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length) ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : ¬(h1_X = hd.name ∧ h1_xs.length = hd.args.length) c2 : ¬(h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length) ⊢ Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp
D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length ⊢ Holds D I (Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))) tl hd.q
D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length ⊢ Holds D I (Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs)) tl hd.q
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length ⊢ Holds D I (Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V (List.map (fun x => if h1_v = x then h1_t else x) h1_xs))) tl hd.q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
apply Holds_coincide_Var
D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length ⊢ Holds D I (Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs)) tl hd.q
case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length ⊢ ∀ (v : VarName), isFreeIn v hd.q → Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length ⊢ Holds D I (Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs)) tl hd.q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
intro v' a1
case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length ⊢ ∀ (v : VarName), isFreeIn v hd.q → Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v
case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length ⊢ ∀ (v : VarName), isFreeIn v hd.q → Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
have s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun (x : VarName) => if h1_v = x then h1_t else x) h1_xs
case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q ⊢ List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [List.map_eq_map_iff]
case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q ⊢ List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q ⊢ ∀ x ∈ h1_xs, Function.updateITE V h1_v (V h1_t) x = (V ∘ fun x => if h1_v = x then h1_t else x) x case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
Please generate a tactic in lean4 to solve the state. STATE: case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q ⊢ List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
intro x _
case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q ⊢ ∀ x ∈ h1_xs, Function.updateITE V h1_v (V h1_t) x = (V ∘ fun x => if h1_v = x then h1_t else x) x case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs ⊢ Function.updateITE V h1_v (V h1_t) x = (V ∘ fun x => if h1_v = x then h1_t else x) x case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
Please generate a tactic in lean4 to solve the state. STATE: case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q ⊢ ∀ x ∈ h1_xs, Function.updateITE V h1_v (V h1_t) x = (V ∘ fun x => if h1_v = x then h1_t else x) x case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [Function.updateITE]
case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs ⊢ Function.updateITE V h1_v (V h1_t) x = (V ∘ fun x => if h1_v = x then h1_t else x) x case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs ⊢ (if x = h1_v then V h1_t else V x) = (V ∘ fun x => if h1_v = x then h1_t else x) x case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
Please generate a tactic in lean4 to solve the state. STATE: case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs ⊢ Function.updateITE V h1_v (V h1_t) x = (V ∘ fun x => if h1_v = x then h1_t else x) x case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [eq_comm]
case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs ⊢ (if x = h1_v then V h1_t else V x) = (V ∘ fun x => if h1_v = x then h1_t else x) x case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs ⊢ (if h1_v = x then V h1_t else V x) = (V ∘ fun x => if h1_v = x then h1_t else x) x case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
Please generate a tactic in lean4 to solve the state. STATE: case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs ⊢ (if x = h1_v then V h1_t else V x) = (V ∘ fun x => if h1_v = x then h1_t else x) x case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp
case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs ⊢ (if h1_v = x then V h1_t else V x) = (V ∘ fun x => if h1_v = x then h1_t else x) x case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs ⊢ (if h1_v = x then V h1_t else V x) = V (if h1_v = x then h1_t else x) case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
Please generate a tactic in lean4 to solve the state. STATE: case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs ⊢ (if h1_v = x then V h1_t else V x) = (V ∘ fun x => if h1_v = x then h1_t else x) x case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
split_ifs
case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs ⊢ (if h1_v = x then V h1_t else V x) = V (if h1_v = x then h1_t else x) case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
case pos D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs h✝ : h1_v = x ⊢ V h1_t = V h1_t case neg D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs h✝ : ¬h1_v = x ⊢ V x = V x case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
Please generate a tactic in lean4 to solve the state. STATE: case s1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs ⊢ (if h1_v = x then V h1_t else V x) = V (if h1_v = x then h1_t else x) case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case _ c3 => simp only [if_pos c3]
D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs c3 : h1_v = x ⊢ V h1_t = V h1_t
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs c3 : h1_v = x ⊢ V h1_t = V h1_t TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
case _ c3 => simp only [if_neg c3]
D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs c3 : ¬h1_v = x ⊢ V x = V x
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q x : VarName a✝ : x ∈ h1_xs c3 : ¬h1_v = x ⊢ V x = V x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
simp only [s1]
case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (Function.updateITE V h1_v (V h1_t)) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v' TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.substitution_theorem
[298, 1]
[424, 17]
apply Function.updateListITE_mem_eq_len
case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v'
case h1.h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ v' ∈ hd.args case h1.h2 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ hd.args.length = (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs).length
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D v t : VarName F F' : Formula h1_X : DefName h1_xs : List VarName h1_v h1_t : VarName V : VarAssignment D hd : Definition tl : List Definition ih : Holds D I (Function.updateITE V h1_v (V h1_t)) tl (def_ h1_X h1_xs) ↔ Holds D I V tl (def_ h1_X (List.map (fun x => if h1_v = x then h1_t else x) h1_xs)) c1 : h1_X = hd.name ∧ h1_xs.length = hd.args.length c2 : h1_X = hd.name ∧ (List.map (fun x => if h1_v = x then h1_t else x) h1_xs).length = hd.args.length v' : VarName a1 : isFreeIn v' hd.q s1 : List.map (Function.updateITE V h1_v (V h1_t)) h1_xs = List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs ⊢ Function.updateListITE (Function.updateITE V h1_v (V h1_t)) hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v' = Function.updateListITE V hd.args (List.map (V ∘ fun x => if h1_v = x then h1_t else x) h1_xs) v' TACTIC: