url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
|---|---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
cases a3_right
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
a2_right : Sum.inr q_0 ∈ xs
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right : x.start_state = p_0 ∧ List.map Sum.inr x.stop_state_list = xs
⊢ ∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
|
case intro
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
a2_right : Sum.inr q_0 ∈ xs
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
left✝ : x.start_state = p_0
right✝ : List.map Sum.inr x.stop_state_list = xs
⊢ ∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
a2_right : Sum.inr q_0 ∈ xs
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right : x.start_state = p_0 ∧ List.map Sum.inr x.stop_state_list = xs
⊢ ∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
simp only [← a3_right_right] at a2_right
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
a2_right : Sum.inr q_0 ∈ xs
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a3_right_right : List.map Sum.inr x.stop_state_list = xs
⊢ ∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a3_right_right : List.map Sum.inr x.stop_state_list = xs
a2_right : Sum.inr q_0 ∈ List.map Sum.inr x.stop_state_list
⊢ ∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
a2_right : Sum.inr q_0 ∈ xs
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a3_right_right : List.map Sum.inr x.stop_state_list = xs
⊢ ∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
clear a3_right_right
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a3_right_right : List.map Sum.inr x.stop_state_list = xs
a2_right : Sum.inr q_0 ∈ List.map Sum.inr x.stop_state_list
⊢ ∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : Sum.inr q_0 ∈ List.map Sum.inr x.stop_state_list
⊢ ∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a3_right_right : List.map Sum.inr x.stop_state_list = xs
a2_right : Sum.inr q_0 ∈ List.map Sum.inr x.stop_state_list
⊢ ∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
simp at a2_right
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : Sum.inr q_0 ∈ List.map Sum.inr x.stop_state_list
⊢ ∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ ∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : Sum.inr q_0 ∈ List.map Sum.inr x.stop_state_list
⊢ ∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
apply Exists.intro x.stop_state_list
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ ∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ { start_state := p_0, stop_state_list := x.stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ x.stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ ∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
simp only [← a3_right_left]
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ { start_state := p_0, stop_state_list := x.stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ x.stop_state_list
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ { start_state := x.start_state, stop_state_list := x.stop_state_list } ∈ M_1.epsilon_arrow_list ∧
q_0 ∈ x.stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ { start_state := p_0, stop_state_list := x.stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ x.stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
constructor
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ { start_state := x.start_state, stop_state_list := x.stop_state_list } ∈ M_1.epsilon_arrow_list ∧
q_0 ∈ x.stop_state_list
|
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ { start_state := x.start_state, stop_state_list := x.stop_state_list } ∈ M_1.epsilon_arrow_list
case right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ q_0 ∈ x.stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ { start_state := x.start_state, stop_state_list := x.stop_state_list } ∈ M_1.epsilon_arrow_list ∧
q_0 ∈ x.stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
exact a3_left
|
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ { start_state := x.start_state, stop_state_list := x.stop_state_list } ∈ M_1.epsilon_arrow_list
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ { start_state := x.start_state, stop_state_list := x.stop_state_list } ∈ M_1.epsilon_arrow_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
exact a2_right
|
case right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ q_0 ∈ x.stop_state_list
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List (σ_0 ⊕ σ_1)
x : EpsilonArrow σ_1
a3_left : x ∈ M_1.epsilon_arrow_list
a3_right_left : x.start_state = p_0
a2_right : q_0 ∈ x.stop_state_list
⊢ q_0 ∈ x.stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
intro a1
|
case mpr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list) →
∃ stop_state_list,
(∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = stop_state_list) ∧
Sum.inr q_0 ∈ stop_state_list
|
case mpr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
a1 :
∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
⊢ ∃ stop_state_list,
(∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = stop_state_list) ∧
Sum.inr q_0 ∈ stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list) →
∃ stop_state_list,
(∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = stop_state_list) ∧
Sum.inr q_0 ∈ stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
cases a1
|
case mpr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
a1 :
∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
⊢ ∃ stop_state_list,
(∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = stop_state_list) ∧
Sum.inr q_0 ∈ stop_state_list
|
case mpr.intro
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
w✝ : List σ_1
h✝ : { start_state := p_0, stop_state_list := w✝ } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ w✝
⊢ ∃ stop_state_list,
(∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = stop_state_list) ∧
Sum.inr q_0 ∈ stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
a1 :
∃ stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ stop_state_list
⊢ ∃ stop_state_list,
(∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = stop_state_list) ∧
Sum.inr q_0 ∈ stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
cases a2
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2 : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ xs
⊢ ∃ stop_state_list,
(∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = stop_state_list) ∧
Sum.inr q_0 ∈ stop_state_list
|
case intro
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
left✝ : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
right✝ : q_0 ∈ xs
⊢ ∃ stop_state_list,
(∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = stop_state_list) ∧
Sum.inr q_0 ∈ stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2 : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list ∧ q_0 ∈ xs
⊢ ∃ stop_state_list,
(∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = stop_state_list) ∧
Sum.inr q_0 ∈ stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
apply Exists.intro (xs.map Sum.inr)
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ ∃ stop_state_list,
(∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = stop_state_list) ∧
Sum.inr q_0 ∈ stop_state_list
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ (∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = List.map Sum.inr xs) ∧
Sum.inr q_0 ∈ List.map Sum.inr xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ ∃ stop_state_list,
(∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = stop_state_list) ∧
Sum.inr q_0 ∈ stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
constructor
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ (∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = List.map Sum.inr xs) ∧
Sum.inr q_0 ∈ List.map Sum.inr xs
|
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ ∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = List.map Sum.inr xs
case right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ Sum.inr q_0 ∈ List.map Sum.inr xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ (∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = List.map Sum.inr xs) ∧
Sum.inr q_0 ∈ List.map Sum.inr xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
apply Exists.intro { start_state := p_0, stop_state_list := xs }
|
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ ∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = List.map Sum.inr xs
|
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list ∧
{ start_state := p_0, stop_state_list := xs }.start_state = p_0 ∧
List.map Sum.inr { start_state := p_0, stop_state_list := xs }.stop_state_list = List.map Sum.inr xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ ∃ a ∈ M_1.epsilon_arrow_list, a.start_state = p_0 ∧ List.map Sum.inr a.stop_state_list = List.map Sum.inr xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
simp
|
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list ∧
{ start_state := p_0, stop_state_list := xs }.start_state = p_0 ∧
List.map Sum.inr { start_state := p_0, stop_state_list := xs }.stop_state_list = List.map Sum.inr xs
|
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list ∧
{ start_state := p_0, stop_state_list := xs }.start_state = p_0 ∧
List.map Sum.inr { start_state := p_0, stop_state_list := xs }.stop_state_list = List.map Sum.inr xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
exact a2_left
|
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
simp
|
case right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ Sum.inr q_0 ∈ List.map Sum.inr xs
|
case right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ q_0 ∈ xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ Sum.inr q_0 ∈ List.map Sum.inr xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
exact a2_right
|
case right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ q_0 ∈ xs
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 q_0 : σ_1
xs : List σ_1
a2_left : { start_state := p_0, stop_state_list := xs } ∈ M_1.epsilon_arrow_list
a2_right : q_0 ∈ xs
⊢ q_0 ∈ xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
constructor
|
case right.right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun state => state ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) =
fun p =>
match p with
| Sum.inl p' => p' ∈ M_0.starting_state_list
| Sum.inr p' => p' ∈ M_1.starting_state_list) ∧
(fun state => state ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) =
fun p =>
match p with
| Sum.inl p' => p' ∈ M_0.accepting_state_list
| Sum.inr p' => p' ∈ M_1.accepting_state_list
|
case right.right.left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ (fun state => state ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) = fun p =>
match p with
| Sum.inl p' => p' ∈ M_0.starting_state_list
| Sum.inr p' => p' ∈ M_1.starting_state_list
case right.right.right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ (fun state => state ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) =
fun p =>
match p with
| Sum.inl p' => p' ∈ M_0.accepting_state_list
| Sum.inr p' => p' ∈ M_1.accepting_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right.right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun state => state ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) =
fun p =>
match p with
| Sum.inl p' => p' ∈ M_0.starting_state_list
| Sum.inr p' => p' ∈ M_1.starting_state_list) ∧
(fun state => state ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) =
fun p =>
match p with
| Sum.inl p' => p' ∈ M_0.accepting_state_list
| Sum.inr p' => p' ∈ M_1.accepting_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
funext p
|
case right.right.left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ (fun state => state ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) = fun p =>
match p with
| Sum.inl p' => p' ∈ M_0.starting_state_list
| Sum.inr p' => p' ∈ M_1.starting_state_list
|
case right.right.left.h
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p : σ_0 ⊕ σ_1
⊢ (p ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) =
match p with
| Sum.inl p' => p' ∈ M_0.starting_state_list
| Sum.inr p' => p' ∈ M_1.starting_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right.right.left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ (fun state => state ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) = fun p =>
match p with
| Sum.inl p' => p' ∈ M_0.starting_state_list
| Sum.inr p' => p' ∈ M_1.starting_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
cases p
|
case right.right.left.h
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p : σ_0 ⊕ σ_1
⊢ (p ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) =
match p with
| Sum.inl p' => p' ∈ M_0.starting_state_list
| Sum.inr p' => p' ∈ M_1.starting_state_list
|
case right.right.left.h.inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
val✝ : σ_0
⊢ (Sum.inl val✝ ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) =
match Sum.inl val✝ with
| Sum.inl p' => p' ∈ M_0.starting_state_list
| Sum.inr p' => p' ∈ M_1.starting_state_list
case right.right.left.h.inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
val✝ : σ_1
⊢ (Sum.inr val✝ ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) =
match Sum.inr val✝ with
| Sum.inl p' => p' ∈ M_0.starting_state_list
| Sum.inr p' => p' ∈ M_1.starting_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right.right.left.h
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p : σ_0 ⊕ σ_1
⊢ (p ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) =
match p with
| Sum.inl p' => p' ∈ M_0.starting_state_list
| Sum.inr p' => p' ∈ M_1.starting_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
simp
|
case right.right.left.h.inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
val✝ : σ_0
⊢ (Sum.inl val✝ ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) =
match Sum.inl val✝ with
| Sum.inl p' => p' ∈ M_0.starting_state_list
| Sum.inr p' => p' ∈ M_1.starting_state_list
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right.right.left.h.inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
val✝ : σ_0
⊢ (Sum.inl val✝ ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) =
match Sum.inl val✝ with
| Sum.inl p' => p' ∈ M_0.starting_state_list
| Sum.inr p' => p' ∈ M_1.starting_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
simp
|
case right.right.left.h.inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
val✝ : σ_1
⊢ (Sum.inr val✝ ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) =
match Sum.inr val✝ with
| Sum.inl p' => p' ∈ M_0.starting_state_list
| Sum.inr p' => p' ∈ M_1.starting_state_list
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right.right.left.h.inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
val✝ : σ_1
⊢ (Sum.inr val✝ ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) =
match Sum.inr val✝ with
| Sum.inl p' => p' ∈ M_0.starting_state_list
| Sum.inr p' => p' ∈ M_1.starting_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
funext p
|
case right.right.right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ (fun state => state ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) =
fun p =>
match p with
| Sum.inl p' => p' ∈ M_0.accepting_state_list
| Sum.inr p' => p' ∈ M_1.accepting_state_list
|
case right.right.right.h
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p : σ_0 ⊕ σ_1
⊢ (p ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) =
match p with
| Sum.inl p' => p' ∈ M_0.accepting_state_list
| Sum.inr p' => p' ∈ M_1.accepting_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right.right.right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ (fun state => state ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) =
fun p =>
match p with
| Sum.inl p' => p' ∈ M_0.accepting_state_list
| Sum.inr p' => p' ∈ M_1.accepting_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
cases p
|
case right.right.right.h
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p : σ_0 ⊕ σ_1
⊢ (p ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) =
match p with
| Sum.inl p' => p' ∈ M_0.accepting_state_list
| Sum.inr p' => p' ∈ M_1.accepting_state_list
|
case right.right.right.h.inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
val✝ : σ_0
⊢ (Sum.inl val✝ ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) =
match Sum.inl val✝ with
| Sum.inl p' => p' ∈ M_0.accepting_state_list
| Sum.inr p' => p' ∈ M_1.accepting_state_list
case right.right.right.h.inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
val✝ : σ_1
⊢ (Sum.inr val✝ ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) =
match Sum.inr val✝ with
| Sum.inl p' => p' ∈ M_0.accepting_state_list
| Sum.inr p' => p' ∈ M_1.accepting_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right.right.right.h
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p : σ_0 ⊕ σ_1
⊢ (p ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) =
match p with
| Sum.inl p' => p' ∈ M_0.accepting_state_list
| Sum.inr p' => p' ∈ M_1.accepting_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
simp
|
case right.right.right.h.inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
val✝ : σ_0
⊢ (Sum.inl val✝ ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) =
match Sum.inl val✝ with
| Sum.inl p' => p' ∈ M_0.accepting_state_list
| Sum.inr p' => p' ∈ M_1.accepting_state_list
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right.right.right.h.inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
val✝ : σ_0
⊢ (Sum.inl val✝ ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) =
match Sum.inl val✝ with
| Sum.inl p' => p' ∈ M_0.accepting_state_list
| Sum.inr p' => p' ∈ M_1.accepting_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_union_EpsilonNFA_toAbstract
|
[312, 1]
|
[506, 17]
|
simp
|
case right.right.right.h.inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
val✝ : σ_1
⊢ (Sum.inr val✝ ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) =
match Sum.inr val✝ with
| Sum.inl p' => p' ∈ M_0.accepting_state_list
| Sum.inr p' => p' ∈ M_1.accepting_state_list
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right.right.right.h.inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
val✝ : σ_1
⊢ (Sum.inr val✝ ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) =
match Sum.inr val✝ with
| Sum.inl p' => p' ∈ M_0.accepting_state_list
| Sum.inr p' => p' ∈ M_1.accepting_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp only [match_concat_EpsilonNFA]
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ (match_concat_EpsilonNFA α σ_0 σ_1 M_0 M_1).toAbstract =
match_concat_AbstractEpsilonNFA α σ_0 σ_1 M_0.toAbstract M_1.toAbstract
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ {
symbol_arrow_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list,
epsilon_arrow_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).accepting_state_list,
starting_state_list := (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).starting_state_list,
accepting_state_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list }.toAbstract =
match_concat_AbstractEpsilonNFA α σ_0 σ_1 M_0.toAbstract M_1.toAbstract
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ (match_concat_EpsilonNFA α σ_0 σ_1 M_0 M_1).toAbstract =
match_concat_AbstractEpsilonNFA α σ_0 σ_1 M_0.toAbstract M_1.toAbstract
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp only [EpsilonNFA.toAbstract]
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ {
symbol_arrow_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list,
epsilon_arrow_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).accepting_state_list,
starting_state_list := (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).starting_state_list,
accepting_state_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list }.toAbstract =
match_concat_AbstractEpsilonNFA α σ_0 σ_1 M_0.toAbstract M_1.toAbstract
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ {
symbol := fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list,
epsilon := fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list,
start := fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).starting_state_list,
accepting := fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list } =
match_concat_AbstractEpsilonNFA α σ_0 σ_1
{
symbol := fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
M_0.symbol_arrow_list ∧
stop_state ∈ stop_state_list,
epsilon := fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧
stop_state ∈ stop_state_list,
start := fun state => state ∈ M_0.starting_state_list,
accepting := fun state => state ∈ M_0.accepting_state_list }
{
symbol := fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
M_1.symbol_arrow_list ∧
stop_state ∈ stop_state_list,
epsilon := fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧
stop_state ∈ stop_state_list,
start := fun state => state ∈ M_1.starting_state_list,
accepting := fun state => state ∈ M_1.accepting_state_list }
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ {
symbol_arrow_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list,
epsilon_arrow_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).accepting_state_list,
starting_state_list := (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).starting_state_list,
accepting_state_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list }.toAbstract =
match_concat_AbstractEpsilonNFA α σ_0 σ_1 M_0.toAbstract M_1.toAbstract
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp only [match_concat_AbstractEpsilonNFA]
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ {
symbol := fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list,
epsilon := fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list,
start := fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).starting_state_list,
accepting := fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list } =
match_concat_AbstractEpsilonNFA α σ_0 σ_1
{
symbol := fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
M_0.symbol_arrow_list ∧
stop_state ∈ stop_state_list,
epsilon := fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧
stop_state ∈ stop_state_list,
start := fun state => state ∈ M_0.starting_state_list,
accepting := fun state => state ∈ M_0.accepting_state_list }
{
symbol := fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
M_1.symbol_arrow_list ∧
stop_state ∈ stop_state_list,
epsilon := fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧
stop_state ∈ stop_state_list,
start := fun state => state ∈ M_1.starting_state_list,
accepting := fun state => state ∈ M_1.accepting_state_list }
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ {
symbol := fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list,
epsilon := fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list,
start := fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).starting_state_list,
accepting := fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list } =
{
symbol := fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False,
epsilon := fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False,
start := fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False,
accepting := fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False }
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ {
symbol := fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list,
epsilon := fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list,
start := fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).starting_state_list,
accepting := fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list } =
match_concat_AbstractEpsilonNFA α σ_0 σ_1
{
symbol := fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
M_0.symbol_arrow_list ∧
stop_state ∈ stop_state_list,
epsilon := fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧
stop_state ∈ stop_state_list,
start := fun state => state ∈ M_0.starting_state_list,
accepting := fun state => state ∈ M_0.accepting_state_list }
{
symbol := fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
M_1.symbol_arrow_list ∧
stop_state ∈ stop_state_list,
epsilon := fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧
stop_state ∈ stop_state_list,
start := fun state => state ∈ M_1.starting_state_list,
accepting := fun state => state ∈ M_1.accepting_state_list }
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp only [AbstractEpsilonNFA.mk.injEq]
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ {
symbol := fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list,
epsilon := fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list,
start := fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).starting_state_list,
accepting := fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list } =
{
symbol := fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False,
epsilon := fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False,
start := fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False,
accepting := fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False }
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False) ∧
((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).starting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ {
symbol := fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list,
epsilon := fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list,
start := fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).starting_state_list,
accepting := fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list } =
{
symbol := fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False,
epsilon := fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False,
start := fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False,
accepting := fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False }
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp only [EpsilonNFA.wrapLeft]
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False) ∧
((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).starting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.map Sum.inl M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False) ∧
((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.map Sum.inl M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.map Sum.inl M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.map Sum.inl M_0)).starting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False) ∧
((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapLeft σ_1 M_0)).starting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp only [EpsilonNFA.wrapRight]
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.map Sum.inl M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False) ∧
((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.map Sum.inl M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.map Sum.inl M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.map Sum.inl M_0)).starting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inl M_0)).symbol_arrow_list ++
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inr M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False) ∧
((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inl M_0)).epsilon_arrow_list ++
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inr M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := (EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inr M_1)).starting_state_list })
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inl M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ (EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inl M_0)).starting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ (EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inr M_1)).accepting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.map Sum.inl M_0)).symbol_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False) ∧
((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.map Sum.inl M_0)).epsilon_arrow_list ++
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list :=
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).starting_state_list })
(EpsilonNFA.wrapRight ℕ (EpsilonNFA.map Sum.inl M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.map Sum.inl M_0)).starting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ (EpsilonNFA.wrapRight ℕ (EpsilonNFA.wrapRight σ_0 M_1)).accepting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp only [EpsilonNFA.map]
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inl M_0)).symbol_arrow_list ++
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inr M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False) ∧
((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inl M_0)).epsilon_arrow_list ++
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inr M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := (EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inr M_1)).starting_state_list })
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inl M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ (EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inl M_0)).starting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ (EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inr M_1)).accepting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False) ∧
((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inl M_0)).symbol_arrow_list ++
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inr M_1)).symbol_arrow_list ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False) ∧
((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inl M_0)).epsilon_arrow_list ++
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inr M_1)).epsilon_arrow_list ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := (EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inr M_1)).starting_state_list })
(EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inl M_0)).accepting_state_list ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ (EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inl M_0)).starting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ (EpsilonNFA.map Sum.inr (EpsilonNFA.map Sum.inr M_1)).accepting_state_list) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
constructor
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False) ∧
((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
|
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ (fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
case right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False) ∧
((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
funext p c q
|
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ (fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
case left.h.h.h
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p : ℕ ⊕ σ_0 ⊕ σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := p, symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
case left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ (fun start_state symbol stop_state =>
∃ stop_state_list,
{ start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
stop_state ∈ stop_state_list) =
fun p c q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
cases p
|
case left.h.h.h
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p : ℕ ⊕ σ_0 ⊕ σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := p, symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
case left.h.h.h.inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
val✝ : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inl val✝, symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inl val✝, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
case left.h.h.h.inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
val✝ : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr val✝, symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr val✝, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
case left.h.h.h
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p : ℕ ⊕ σ_0 ⊕ σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := p, symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ p_0 =>
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inl p_0, symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inl p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inl p_0, symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inl p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ p_0 =>
cases p_0
case _ p_0 =>
cases q
case _ q_0 =>
simp
intro xs x a1 a2 a3 a4
simp only [← a4]
simp
case _ q_0 =>
cases q_0
case _ q_0 =>
simp
sorry
case _ q_0 =>
simp
intro xs x a1 a2 a3 a4
simp only [← a4]
simp
case _ p_0 =>
cases q
case _ q_0 =>
simp
intro xs x a1 a2 a3 a4
simp only [← a4]
simp
case _ q_0 =>
cases q_0
case _ q_0 =>
simp
intro xs x a1 a2 a3 a4
simp only [← a4]
simp
case _ q_0 =>
simp
sorry
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr p_0, symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr p_0, symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inl p_0, symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inl p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inl p_0, symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inl p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
cases p_0
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr p_0, symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
case inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
val✝ : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl val✝), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inl val✝), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
case inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
val✝ : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr val✝), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inr val✝), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr p_0, symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ p_0 =>
cases q
case _ q_0 =>
simp
intro xs x a1 a2 a3 a4
simp only [← a4]
simp
case _ q_0 =>
cases q_0
case _ q_0 =>
simp
sorry
case _ q_0 =>
simp
intro xs x a1 a2 a3 a4
simp only [← a4]
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ p_0 =>
cases q
case _ q_0 =>
simp
intro xs x a1 a2 a3 a4
simp only [← a4]
simp
case _ q_0 =>
cases q_0
case _ q_0 =>
simp
intro xs x a1 a2 a3 a4
simp only [← a4]
simp
case _ q_0 =>
simp
sorry
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
cases q
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
case inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
val✝ : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inl val✝ ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inl val✝) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
case inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
val✝ : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr val✝ ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr val✝) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ q_0 =>
simp
intro xs x a1 a2 a3 a4
simp only [← a4]
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inl q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inl q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ q_0 =>
cases q_0
case _ q_0 =>
simp
sorry
case _ q_0 =>
simp
intro xs x a1 a2 a3 a4
simp only [← a4]
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inl q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : ℕ
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
∀ x_1 ∈ M_0.symbol_arrow_list,
x_1.start_state = p_0 → x_1.symbol = c → List.map (Sum.inr ∘ Sum.inl) x_1.stop_state_list = x → Sum.inl q_0 ∉ x
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inl q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
intro xs x a1 a2 a3 a4
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : ℕ
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
∀ x_1 ∈ M_0.symbol_arrow_list,
x_1.start_state = p_0 → x_1.symbol = c → List.map (Sum.inr ∘ Sum.inl) x_1.stop_state_list = x → Sum.inl q_0 ∉ x
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_0
a1 : x ∈ M_0.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : ℕ
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
∀ x_1 ∈ M_0.symbol_arrow_list,
x_1.start_state = p_0 → x_1.symbol = c → List.map (Sum.inr ∘ Sum.inl) x_1.stop_state_list = x → Sum.inl q_0 ∉ x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp only [← a4]
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_0
a1 : x ∈ M_0.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_0
a1 : x ∈ M_0.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_0
a1 : x ∈ M_0.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_0
a1 : x ∈ M_0.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_0
a1 : x ∈ M_0.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
cases q_0
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
case inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 val✝ : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inl val✝) ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inl val✝)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
case inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
val✝ : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inr val✝) ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inr val✝)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ q_0 =>
simp
sorry
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 q_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inl q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inl q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 q_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inl q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inl q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ q_0 =>
simp
intro xs x a1 a2 a3 a4
simp only [← a4]
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inr q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inr q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inr q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inr q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 q_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inl q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inl q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 q_0 : σ_0
⊢ (∃ stop_state_list,
(∃ a ∈ M_0.symbol_arrow_list,
a.start_state = p_0 ∧ a.symbol = c ∧ List.map (Sum.inr ∘ Sum.inl) a.stop_state_list = stop_state_list) ∧
Sum.inr (Sum.inl q_0) ∈ stop_state_list) ↔
∃ stop_state_list,
{ start_state := p_0, symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q_0 ∈ stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 q_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inl q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inl q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
sorry
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 q_0 : σ_0
⊢ (∃ stop_state_list,
(∃ a ∈ M_0.symbol_arrow_list,
a.start_state = p_0 ∧ a.symbol = c ∧ List.map (Sum.inr ∘ Sum.inl) a.stop_state_list = stop_state_list) ∧
Sum.inr (Sum.inl q_0) ∈ stop_state_list) ↔
∃ stop_state_list,
{ start_state := p_0, symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q_0 ∈ stop_state_list
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 q_0 : σ_0
⊢ (∃ stop_state_list,
(∃ a ∈ M_0.symbol_arrow_list,
a.start_state = p_0 ∧ a.symbol = c ∧ List.map (Sum.inr ∘ Sum.inl) a.stop_state_list = stop_state_list) ∧
Sum.inr (Sum.inl q_0) ∈ stop_state_list) ↔
∃ stop_state_list,
{ start_state := p_0, symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q_0 ∈ stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inr q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inr q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_1
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
∀ x_1 ∈ M_0.symbol_arrow_list,
x_1.start_state = p_0 →
x_1.symbol = c → List.map (Sum.inr ∘ Sum.inl) x_1.stop_state_list = x → Sum.inr (Sum.inr q_0) ∉ x
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inr q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inr q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
intro xs x a1 a2 a3 a4
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_1
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
∀ x_1 ∈ M_0.symbol_arrow_list,
x_1.start_state = p_0 →
x_1.symbol = c → List.map (Sum.inr ∘ Sum.inl) x_1.stop_state_list = x → Sum.inr (Sum.inr q_0) ∉ x
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_1
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_0
a1 : x ∈ M_0.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inr (Sum.inr q_0) ∉ xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_1
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
∀ x_1 ∈ M_0.symbol_arrow_list,
x_1.start_state = p_0 →
x_1.symbol = c → List.map (Sum.inr ∘ Sum.inl) x_1.stop_state_list = x → Sum.inr (Sum.inr q_0) ∉ x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp only [← a4]
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_1
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_0
a1 : x ∈ M_0.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inr (Sum.inr q_0) ∉ xs
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_1
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_0
a1 : x ∈ M_0.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inr (Sum.inr q_0) ∉ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_1
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_0
a1 : x ∈ M_0.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inr (Sum.inr q_0) ∉ xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_1
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_0
a1 : x ∈ M_0.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inr (Sum.inr q_0) ∉ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_0
q_0 : σ_1
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_0
a1 : x ∈ M_0.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inr (Sum.inr q_0) ∉ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
cases q
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
case inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
val✝ : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inl val✝ ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inl val✝) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
case inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
val✝ : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr val✝ ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr val✝) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ q_0 =>
simp
intro xs x a1 a2 a3 a4
simp only [← a4]
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inl q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inl q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ q_0 =>
cases q_0
case _ q_0 =>
simp
intro xs x a1 a2 a3 a4
simp only [← a4]
simp
case _ q_0 =>
simp
sorry
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inl q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : ℕ
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
∀ x_1 ∈ M_1.symbol_arrow_list,
x_1.start_state = p_0 → x_1.symbol = c → List.map (Sum.inr ∘ Sum.inr) x_1.stop_state_list = x → Sum.inl q_0 ∉ x
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inl q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
intro xs x a1 a2 a3 a4
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : ℕ
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
∀ x_1 ∈ M_1.symbol_arrow_list,
x_1.start_state = p_0 → x_1.symbol = c → List.map (Sum.inr ∘ Sum.inr) x_1.stop_state_list = x → Sum.inl q_0 ∉ x
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_1
a1 : x ∈ M_1.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inr) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : ℕ
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
∀ x_1 ∈ M_1.symbol_arrow_list,
x_1.start_state = p_0 → x_1.symbol = c → List.map (Sum.inr ∘ Sum.inr) x_1.stop_state_list = x → Sum.inl q_0 ∉ x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp only [← a4]
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_1
a1 : x ∈ M_1.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inr) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_1
a1 : x ∈ M_1.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inr) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ List.map (Sum.inr ∘ Sum.inr) x.stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_1
a1 : x ∈ M_1.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inr) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_1
a1 : x ∈ M_1.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inr) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ List.map (Sum.inr ∘ Sum.inr) x.stop_state_list
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_1
a1 : x ∈ M_1.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inr) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ List.map (Sum.inr ∘ Sum.inr) x.stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
cases q_0
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
case inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
val✝ : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inl val✝) ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inl val✝)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
case inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 val✝ : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inr val✝) ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inr val✝)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ q_0 =>
simp
intro xs x a1 a2 a3 a4
simp only [← a4]
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inl q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inl q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inl q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inl q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ q_0 =>
simp
sorry
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 q_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inr q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inr q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 q_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inr q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inr q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inl q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inl q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
∀ x_1 ∈ M_1.symbol_arrow_list,
x_1.start_state = p_0 →
x_1.symbol = c → List.map (Sum.inr ∘ Sum.inr) x_1.stop_state_list = x → Sum.inr (Sum.inl q_0) ∉ x
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inl q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inl q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
intro xs x a1 a2 a3 a4
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
∀ x_1 ∈ M_1.symbol_arrow_list,
x_1.start_state = p_0 →
x_1.symbol = c → List.map (Sum.inr ∘ Sum.inr) x_1.stop_state_list = x → Sum.inr (Sum.inl q_0) ∉ x
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_1
a1 : x ∈ M_1.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inr) x.stop_state_list = xs
⊢ Sum.inr (Sum.inl q_0) ∉ xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
∀ x_1 ∈ M_1.symbol_arrow_list,
x_1.start_state = p_0 →
x_1.symbol = c → List.map (Sum.inr ∘ Sum.inr) x_1.stop_state_list = x → Sum.inr (Sum.inl q_0) ∉ x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp only [← a4]
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_1
a1 : x ∈ M_1.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inr) x.stop_state_list = xs
⊢ Sum.inr (Sum.inl q_0) ∉ xs
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_1
a1 : x ∈ M_1.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inr) x.stop_state_list = xs
⊢ Sum.inr (Sum.inl q_0) ∉ List.map (Sum.inr ∘ Sum.inr) x.stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_1
a1 : x ∈ M_1.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inr) x.stop_state_list = xs
⊢ Sum.inr (Sum.inl q_0) ∉ xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_1
a1 : x ∈ M_1.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inr) x.stop_state_list = xs
⊢ Sum.inr (Sum.inl q_0) ∉ List.map (Sum.inr ∘ Sum.inr) x.stop_state_list
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 : σ_1
q_0 : σ_0
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : SymbolArrow α σ_1
a1 : x ∈ M_1.symbol_arrow_list
a2 : x.start_state = p_0
a3 : x.symbol = c
a4 : List.map (Sum.inr ∘ Sum.inr) x.stop_state_list = xs
⊢ Sum.inr (Sum.inl q_0) ∉ List.map (Sum.inr ∘ Sum.inr) x.stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 q_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inr q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inr q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 q_0 : σ_1
⊢ (∃ stop_state_list,
(∃ a ∈ M_1.symbol_arrow_list,
a.start_state = p_0 ∧ a.symbol = c ∧ List.map (Sum.inr ∘ Sum.inr) a.stop_state_list = stop_state_list) ∧
Sum.inr (Sum.inr q_0) ∈ stop_state_list) ↔
∃ stop_state_list,
{ start_state := p_0, symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q_0 ∈ stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 q_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), symbol := c, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.symbol_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state, symbol := arrow.symbol,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.symbol_arrow_list) ∧
Sum.inr (Sum.inr q_0) ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inr q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧
q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q' ∈ stop_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
sorry
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 q_0 : σ_1
⊢ (∃ stop_state_list,
(∃ a ∈ M_1.symbol_arrow_list,
a.start_state = p_0 ∧ a.symbol = c ∧ List.map (Sum.inr ∘ Sum.inr) a.stop_state_list = stop_state_list) ∧
Sum.inr (Sum.inr q_0) ∈ stop_state_list) ↔
∃ stop_state_list,
{ start_state := p_0, symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q_0 ∈ stop_state_list
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
c : α
p_0 q_0 : σ_1
⊢ (∃ stop_state_list,
(∃ a ∈ M_1.symbol_arrow_list,
a.start_state = p_0 ∧ a.symbol = c ∧ List.map (Sum.inr ∘ Sum.inr) a.stop_state_list = stop_state_list) ∧
Sum.inr (Sum.inr q_0) ∈ stop_state_list) ↔
∃ stop_state_list,
{ start_state := p_0, symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧
q_0 ∈ stop_state_list
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
constructor
|
case right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
|
case right.left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ (fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
case right.right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun state => state ∈ List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ ((fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False) ∧
((fun state => state ∈ List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' ∈ M_0.starting_state_list
| x => False) ∧
(fun state => state ∈ List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' ∈ M_1.accepting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
funext p q
|
case right.left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ (fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
case right.left.h.h
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p q : ℕ ⊕ σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := p, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right.left
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
⊢ (fun start_state stop_state =>
∃ stop_state_list,
{ start_state := start_state, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
stop_state ∈ stop_state_list) =
fun p q =>
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
cases p
|
case right.left.h.h
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p q : ℕ ⊕ σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := p, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
case right.left.h.h.inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
val✝ : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inl val✝, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inl val✝, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
case right.left.h.h.inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
val✝ : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr val✝, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inr val✝, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right.left.h.h
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p q : ℕ ⊕ σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := p, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (p, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ p_0 =>
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inl p_0, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inl p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inl p_0, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inl p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ p_0 =>
cases p_0
case _ p_0 =>
cases q
case _ q_0 =>
simp
intro xs a1
cases a1
case _ left =>
cases left
case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [← a2_right_right]
simp
case _ right =>
cases right
case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [← a2_right_right]
simp
case _ q_0 =>
cases q_0
case _ q_0 =>
simp
sorry
case _ q_0 =>
simp
sorry
case _ p_0 =>
cases q
case _ q_0 =>
simp
intro xs x a1 a2 a3
simp only [← a3]
simp
case _ q_0 =>
cases q_0
case _ q_0 =>
simp
intro xs x a1 a2 a3
simp only [← a3]
simp
case _ q_0 =>
simp
sorry
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr p_0, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inr p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr p_0, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inr p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inl p_0, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inl p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inl p_0, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inl p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
cases p_0
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr p_0, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inr p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
case inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
val✝ : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl val✝), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inl val✝), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
case inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
val✝ : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr val✝), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inr val✝), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr p_0, stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inr p_0, q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ p_0 =>
cases q
case _ q_0 =>
simp
intro xs a1
cases a1
case _ left =>
cases left
case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [← a2_right_right]
simp
case _ right =>
cases right
case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [← a2_right_right]
simp
case _ q_0 =>
cases q_0
case _ q_0 =>
simp
sorry
case _ q_0 =>
simp
sorry
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ p_0 =>
cases q
case _ q_0 =>
simp
intro xs x a1 a2 a3
simp only [← a3]
simp
case _ q_0 =>
cases q_0
case _ q_0 =>
simp
intro xs x a1 a2 a3
simp only [← a3]
simp
case _ q_0 =>
simp
sorry
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inr p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
cases q
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
case inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
val✝ : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
Sum.inl val✝ ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inl val✝) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
case inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
val✝ : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
Sum.inr val✝ ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr val✝) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
q : ℕ ⊕ σ_0 ⊕ σ_1
p_0 : σ_0
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
q ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ q_0 =>
simp
intro xs a1
cases a1
case _ left =>
cases left
case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [← a2_right_right]
simp
case _ right =>
cases right
case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [← a2_right_right]
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
Sum.inl q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
Sum.inl q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ q_0 =>
cases q_0
case _ q_0 =>
simp
sorry
case _ q_0 =>
simp
sorry
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
Sum.inr q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : σ_0 ⊕ σ_1
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
Sum.inr q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
Sum.inl q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
((∃ a ∈ M_0.epsilon_arrow_list, a.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) a.stop_state_list = x) ∨
∃ a ∈ M_0.accepting_state_list, a = p_0 ∧ List.map (Sum.inr ∘ Sum.inr) M_1.starting_state_list = x) →
Sum.inl q_0 ∉ x
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
⊢ (∃ stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } ∈
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) ∧
Sum.inl q_0 ∈ stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
∃ stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' ∈ M_0.accepting_state_list ∧ q' ∈ M_1.starting_state_list
| x => False
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
intro xs a1
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
((∃ a ∈ M_0.epsilon_arrow_list, a.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) a.stop_state_list = x) ∨
∃ a ∈ M_0.accepting_state_list, a = p_0 ∧ List.map (Sum.inr ∘ Sum.inr) M_1.starting_state_list = x) →
Sum.inl q_0 ∉ x
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
a1 :
(∃ a ∈ M_0.epsilon_arrow_list, a.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) a.stop_state_list = xs) ∨
∃ a ∈ M_0.accepting_state_list, a = p_0 ∧ List.map (Sum.inr ∘ Sum.inr) M_1.starting_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
⊢ ∀ (x : List (ℕ ⊕ σ_0 ⊕ σ_1)),
((∃ a ∈ M_0.epsilon_arrow_list, a.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) a.stop_state_list = x) ∨
∃ a ∈ M_0.accepting_state_list, a = p_0 ∧ List.map (Sum.inr ∘ Sum.inr) M_1.starting_state_list = x) →
Sum.inl q_0 ∉ x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
cases a1
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
a1 :
(∃ a ∈ M_0.epsilon_arrow_list, a.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) a.stop_state_list = xs) ∨
∃ a ∈ M_0.accepting_state_list, a = p_0 ∧ List.map (Sum.inr ∘ Sum.inr) M_1.starting_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
case inl
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
h✝ : ∃ a ∈ M_0.epsilon_arrow_list, a.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) a.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
case inr
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
h✝ : ∃ a ∈ M_0.accepting_state_list, a = p_0 ∧ List.map (Sum.inr ∘ Sum.inr) M_1.starting_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
a1 :
(∃ a ∈ M_0.epsilon_arrow_list, a.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) a.stop_state_list = xs) ∨
∃ a ∈ M_0.accepting_state_list, a = p_0 ∧ List.map (Sum.inr ∘ Sum.inr) M_1.starting_state_list = xs
⊢ Sum.inl q_0 ∉ xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ left =>
cases left
case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [← a2_right_right]
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
left : ∃ a ∈ M_0.epsilon_arrow_list, a.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) a.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
left : ∃ a ∈ M_0.epsilon_arrow_list, a.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) a.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ right =>
cases right
case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [← a2_right_right]
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
right : ∃ a ∈ M_0.accepting_state_list, a = p_0 ∧ List.map (Sum.inr ∘ Sum.inr) M_1.starting_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
right : ∃ a ∈ M_0.accepting_state_list, a = p_0 ∧ List.map (Sum.inr ∘ Sum.inr) M_1.starting_state_list = xs
⊢ Sum.inl q_0 ∉ xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
cases left
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
left : ∃ a ∈ M_0.epsilon_arrow_list, a.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) a.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
case intro
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
w✝ : EpsilonArrow σ_0
h✝ : w✝ ∈ M_0.epsilon_arrow_list ∧ w✝.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) w✝.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
left : ∃ a ∈ M_0.epsilon_arrow_list, a.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) a.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [← a2_right_right]
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
a2 : x ∈ M_0.epsilon_arrow_list ∧ x.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
a2 : x ∈ M_0.epsilon_arrow_list ∧ x.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
cases a2
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
a2 : x ∈ M_0.epsilon_arrow_list ∧ x.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
case intro
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
left✝ : x ∈ M_0.epsilon_arrow_list
right✝ : x.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
a2 : x ∈ M_0.epsilon_arrow_list ∧ x.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [← a2_right_right]
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
a2_left : x ∈ M_0.epsilon_arrow_list
a2_right : x.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
a2_left : x ∈ M_0.epsilon_arrow_list
a2_right : x.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
cases a2_right
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
a2_left : x ∈ M_0.epsilon_arrow_list
a2_right : x.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
case intro
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
a2_left : x ∈ M_0.epsilon_arrow_list
left✝ : x.start_state = p_0
right✝ : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
a2_left : x ∈ M_0.epsilon_arrow_list
a2_right : x.start_state = p_0 ∧ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
case _ a2_right_left a2_right_right =>
simp only [← a2_right_right]
simp
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
a2_left : x ∈ M_0.epsilon_arrow_list
a2_right_left : x.start_state = p_0
a2_right_right : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
a2_left : x ∈ M_0.epsilon_arrow_list
a2_right_left : x.start_state = p_0
a2_right_right : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Parsing/RegExpToEpsilonNFA.lean
|
match_concat_EpsilonNFA_toAbstract
|
[557, 1]
|
[690, 19]
|
simp only [← a2_right_right]
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
a2_left : x ∈ M_0.epsilon_arrow_list
a2_right_left : x.start_state = p_0
a2_right_right : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
|
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
a2_left : x ∈ M_0.epsilon_arrow_list
a2_right_left : x.start_state = p_0
a2_right_right : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ List.map (Sum.inr ∘ Sum.inl) x.stop_state_list
|
Please generate a tactic in lean4 to solve the state.
STATE:
α : Type
inst✝ : DecidableEq α
σ_0 σ_1 : Type
M_0 : EpsilonNFA α σ_0
M_1 : EpsilonNFA α σ_1
p_0 : σ_0
q_0 : ℕ
xs : List (ℕ ⊕ σ_0 ⊕ σ_1)
x : EpsilonArrow σ_0
a2_left : x ∈ M_0.epsilon_arrow_list
a2_right_left : x.start_state = p_0
a2_right_right : List.map (Sum.inr ∘ Sum.inl) x.stop_state_list = xs
⊢ Sum.inl q_0 ∉ xs
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.