url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
obtain s1 := Sub.Var.All.Rec.Fresh.substitution_theorem D I V E (Function.updateListITE id zs xs) c H
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (V ∘ Function.updateListITE id zs xs) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Function.updateListITE_comp] at s1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (V ∘ Function.updateListITE id zs xs) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE (V ∘ id) zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (V ∘ Function.updateListITE id zs xs) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp at s1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE (V ∘ id) zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE (V ∘ id) zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [s1]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply Holds_coincide_Var
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ βˆ€ (v : VarName), isFreeIn v ((Ο„ X xs.length).get β‹―).2 β†’ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
intro v a1
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ βˆ€ (v : VarName), isFreeIn v ((Ο„ X xs.length).get β‹―).2 β†’ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ βˆ€ (v : VarName), isFreeIn v ((Ο„ X xs.length).get β‹―).2 β†’ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
by_cases c3 : v ∈ zs
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply Function.updateListITE_mem_eq_len V' V v zs (List.map V xs) c3
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ zs.length = (List.map V xs).length
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ zs.length = (List.map V xs).length
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ zs.length = xs.length
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ zs.length = (List.map V xs).length TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [← c2]
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ zs.length = xs.length
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ zs.length = xs.length TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Function.updateListITE_not_mem V v zs (List.map V xs) c3]
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = V v
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Function.updateListITE_not_mem V' v zs (List.map V xs) c3]
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = V v
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ V' v = V v
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = V v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply h2
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ V' v = V v
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ v βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ V' v = V v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
intro contra
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ v βˆ‰ binders
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs contra : v ∈ binders ⊒ False
Please generate a tactic in lean4 to solve the state. STATE: case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ v βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [isFreeIn_iff_mem_freeVarSet] at a1
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs contra : v ∈ binders ⊒ False
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet ⊒ False
Please generate a tactic in lean4 to solve the state. STATE: case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs contra : v ∈ binders ⊒ False TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Finset.eq_empty_iff_forall_not_mem] at h1
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet ⊒ False
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False
Please generate a tactic in lean4 to solve the state. STATE: case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet ⊒ False TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [c1] at h1
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : True then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False
Please generate a tactic in lean4 to solve the state. STATE: case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [← c2] at h1
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : True then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : True then True β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False
Please generate a tactic in lean4 to solve the state. STATE: case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : True then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp at h1
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : True then True β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : βˆ€ x ∈ binders, x ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet β†’ x ∈ ((Ο„ X xs.length).get β‹―).1 ⊒ False
Please generate a tactic in lean4 to solve the state. STATE: case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : True then True β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
specialize h1 v contra a1
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : βˆ€ x ∈ binders, x ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet β†’ x ∈ ((Ο„ X xs.length).get β‹―).1 ⊒ False
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : v ∈ ((Ο„ X xs.length).get β‹―).1 ⊒ False
Please generate a tactic in lean4 to solve the state. STATE: case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : βˆ€ x ∈ binders, x ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet β†’ x ∈ ((Ο„ X xs.length).get β‹―).1 ⊒ False TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
contradiction
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : v ∈ ((Ο„ X xs.length).get β‹―).1 ⊒ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : v ∈ ((Ο„ X xs.length).get β‹―).1 ⊒ False TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : Β¬xs.length = ((Ο„ X xs.length).get β‹―).1.length ⊒ I.pred_var_ X (List.map V xs) ↔ Holds D I V E (pred_var_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : Β¬xs.length = ((Ο„ X xs.length).get β‹―).1.length ⊒ I.pred_var_ X (List.map V xs) ↔ Holds D I V E (pred_var_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : Β¬(Ο„ X xs.length).isSome = true ⊒ I.pred_var_ X (List.map V xs) ↔ Holds D I V E (pred_var_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : Β¬(Ο„ X xs.length).isSome = true ⊒ I.pred_var_ X (List.map V xs) ↔ Holds D I V E (pred_var_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (replace c Ο„ (eq_ x y))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (eq_ x y)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (replace c Ο„ (eq_ x y)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (eq_ x y)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (eq_ x y) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E false_ ↔ Holds D I V E (replace c Ο„ false_)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E false_ ↔ Holds D I V E false_
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E false_ ↔ Holds D I V E (replace c Ο„ false_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E false_ ↔ Holds D I V E false_
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E false_ ↔ Holds D I V E false_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi.not_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace c Ο„ phi.not_)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace c Ο„ phi.not_)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi.not_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace c Ο„ phi.not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace c Ο„ phi.not_)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace c Ο„ phi).not_
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace c Ο„ phi.not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace c Ο„ phi).not_
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Β¬Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Β¬Holds D I V E (replace c Ο„ phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace c Ο„ phi).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Β¬Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Β¬Holds D I V E (replace c Ο„ phi)
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Β¬Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Β¬Holds D I V E (replace c Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
exact phi_ih V binders h1 h2
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (phi.iff_ psi) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace c Ο„ (phi.iff_ psi))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace c Ο„ (phi.iff_ psi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (phi.iff_ psi) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace c Ο„ (phi.iff_ psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace c Ο„ (phi.iff_ psi))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E ((replace c Ο„ phi).iff_ (replace c Ο„ psi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace c Ο„ (phi.iff_ psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E ((replace c Ο„ phi).iff_ (replace c Ο„ psi))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace c Ο„ phi) ↔ Holds D I V E (replace c Ο„ psi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E ((replace c Ο„ phi).iff_ (replace c Ο„ psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
cases h1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace c Ο„ phi) ↔ Holds D I V E (replace c Ο„ psi))
case intro D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x left✝ : admitsAux Ο„ binders phi right✝ : admitsAux Ο„ binders psi ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace c Ο„ phi) ↔ Holds D I V E (replace c Ο„ psi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace c Ο„ phi) ↔ Holds D I V E (replace c Ο„ psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace c Ο„ phi) ↔ Holds D I V E (replace c Ο„ psi))
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi) case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace c Ο„ phi) ↔ Holds D I V E (replace c Ο„ psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
exact phi_ih V binders h1_left h2
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
exact psi_ih V binders h1_right h2
case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (exists_ x phi) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace c Ο„ (exists_ x phi))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace c Ο„ (exists_ x phi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (exists_ x phi) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace c Ο„ (exists_ x phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace c Ο„ (exists_ x phi))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (exists_ x (replace c Ο„ phi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace c Ο„ (exists_ x phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (exists_ x (replace c Ο„ phi))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E (replace c Ο„ phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (exists_ x (replace c Ο„ phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
first | apply forall_congr' | apply exists_congr
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E (replace c Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ βˆ€ (a : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace c Ο„ phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E (replace c Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
intro d
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ βˆ€ (a : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace c Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi ↔ Holds D I (Function.updateITE V x d) E (replace c Ο„ phi)
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ βˆ€ (a : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace c Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply phi_ih (Function.updateITE V x d) (binders βˆͺ {x}) h1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi ↔ Holds D I (Function.updateITE V x d) E (replace c Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D ⊒ βˆ€ x_1 βˆ‰ binders βˆͺ {x}, V' x_1 = Function.updateITE V x d x_1
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi ↔ Holds D I (Function.updateITE V x d) E (replace c Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
intro v a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D ⊒ βˆ€ x_1 βˆ‰ binders βˆͺ {x}, V' x_1 = Function.updateITE V x d x_1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ V' v = Function.updateITE V x d v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D ⊒ βˆ€ x_1 βˆ‰ binders βˆͺ {x}, V' x_1 = Function.updateITE V x d x_1 TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Function.updateITE]
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ V' v = Function.updateITE V x d v
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ V' v = if v = x then d else V v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ V' v = Function.updateITE V x d v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp at a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ V' v = if v = x then d else V v
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ V' v = if v = x then d else V v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ V' v = if v = x then d else V v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
push_neg at a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ V' v = if v = x then d else V v
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders ∧ v β‰  x ⊒ V' v = if v = x then d else V v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ V' v = if v = x then d else V v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
cases a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders ∧ v β‰  x ⊒ V' v = if v = x then d else V v
case h.intro D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName left✝ : v βˆ‰ binders right✝ : v β‰  x ⊒ V' v = if v = x then d else V v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders ∧ v β‰  x ⊒ V' v = if v = x then d else V v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
case h.intro a1_left a1_right => simp only [if_neg a1_right] exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V' v = if v = x then d else V v
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V' v = if v = x then d else V v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply forall_congr'
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (βˆ€ (d : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆ€ (d : D), Holds D I (Function.updateITE V x d) E (replace c Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ βˆ€ (a : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace c Ο„ phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (βˆ€ (d : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆ€ (d : D), Holds D I (Function.updateITE V x d) E (replace c Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply exists_congr
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E (replace c Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ βˆ€ (a : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace c Ο„ phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E (replace c Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [if_neg a1_right]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V' v = if v = x then d else V v
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V' v = V v
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V' v = if v = x then d else V v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V' v = V v
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V' v = V v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
cases E
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (def_ X xs) ↔ Holds D I V E (replace c Ο„ (def_ X xs))
case nil D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) [] H else I.pred_var_ X ds else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace c Ο„ (def_ X xs)) case cons D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x head✝ : Definition tail✝ : List Definition ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (head✝ :: tail✝) H else I.pred_var_ X ds else I.pred_var_ X ds } V (head✝ :: tail✝) (def_ X xs) ↔ Holds D I V (head✝ :: tail✝) (replace c Ο„ (def_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (def_ X xs) ↔ Holds D I V E (replace c Ο„ (def_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
case nil => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) [] H else I.pred_var_ X ds else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace c Ο„ (def_ X xs))
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) [] H else I.pred_var_ X ds else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace c Ο„ (def_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) [] H else I.pred_var_ X ds else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace c Ο„ (def_ X xs))
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) [] ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) [] H else I.pred_var_ X ds else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace c Ο„ (def_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) [] ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) [] ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H else I.pred_var_ X ds else I.pred_var_ X ds } V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (replace c Ο„ (def_ X xs))
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H else I.pred_var_ X ds else I.pred_var_ X ds } V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (replace c Ο„ (def_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (def_ X xs)
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
split_ifs
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)
case pos D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition h✝ : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q case neg D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition h✝ : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V tl (def_ X xs) ↔ Holds D I V tl (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply Holds_coincide_PredVar
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
case h1 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds }.pred_const_ = I.pred_const_ case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length hd.q β†’ ({ nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds }.pred_var_ P ds ↔ I.pred_var_ P ds)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp
case h1 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds }.pred_const_ = I.pred_const_
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds }.pred_const_ = I.pred_const_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [predVarOccursIn_iff_mem_predVarSet]
case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length hd.q β†’ ({ nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds }.pred_var_ P ds ↔ I.pred_var_ P ds)
case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), (P, ds.length) ∈ hd.q.predVarSet β†’ ((if h : (Ο„ P ds.length).isSome = true then if ds.length = ((Ο„ P ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ P ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ P ds.length).get β‹―).2 else I.pred_var_ P ds else I.pred_var_ P ds) ↔ I.pred_var_ P ds)
Please generate a tactic in lean4 to solve the state. STATE: case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length hd.q β†’ ({ nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds }.pred_var_ P ds ↔ I.pred_var_ P ds) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [hd.h2]
case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), (P, ds.length) ∈ hd.q.predVarSet β†’ ((if h : (Ο„ P ds.length).isSome = true then if ds.length = ((Ο„ P ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ P ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ P ds.length).get β‹―).2 else I.pred_var_ P ds else I.pred_var_ P ds) ↔ I.pred_var_ P ds)
case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), (P, ds.length) ∈ βˆ… β†’ ((if h : (Ο„ P ds.length).isSome = true then if ds.length = ((Ο„ P ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ P ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ P ds.length).get β‹―).2 else I.pred_var_ P ds else I.pred_var_ P ds) ↔ I.pred_var_ P ds)
Please generate a tactic in lean4 to solve the state. STATE: case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), (P, ds.length) ∈ hd.q.predVarSet β†’ ((if h : (Ο„ P ds.length).isSome = true then if ds.length = ((Ο„ P ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ P ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ P ds.length).get β‹―).2 else I.pred_var_ P ds else I.pred_var_ P ds) ↔ I.pred_var_ P ds) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp
case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), (P, ds.length) ∈ βˆ… β†’ ((if h : (Ο„ P ds.length).isSome = true then if ds.length = ((Ο„ P ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ P ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ P ds.length).get β‹―).2 else I.pred_var_ P ds else I.pred_var_ P ds) ↔ I.pred_var_ P ds)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), (P, ds.length) ∈ βˆ… β†’ ((if h : (Ο„ P ds.length).isSome = true then if ds.length = ((Ο„ P ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ P ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ P ds.length).get β‹―).2 else I.pred_var_ P ds else I.pred_var_ P ds) ↔ I.pred_var_ P ds) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply Holds_coincide_PredVar
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V tl (def_ X xs) ↔ Holds D I V tl (def_ X xs)
case h1 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds }.pred_const_ = I.pred_const_ case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ X xs) β†’ ({ nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds }.pred_var_ P ds ↔ I.pred_var_ P ds)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V tl (def_ X xs) ↔ Holds D I V tl (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp
case h1 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds }.pred_const_ = I.pred_const_
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds }.pred_const_ = I.pred_const_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [predVarOccursIn]
case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ X xs) β†’ ({ nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds }.pred_var_ P ds ↔ I.pred_var_ P ds)
case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P : PredName) (ds : List D), False β†’ ((if h : (Ο„ P ds.length).isSome = true then if ds.length = ((Ο„ P ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ P ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ P ds.length).get β‹―).2 else I.pred_var_ P ds else I.pred_var_ P ds) ↔ I.pred_var_ P ds)
Please generate a tactic in lean4 to solve the state. STATE: case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ X xs) β†’ ({ nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds }.pred_var_ P ds ↔ I.pred_var_ P ds) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp
case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P : PredName) (ds : List D), False β†’ ((if h : (Ο„ P ds.length).isSome = true then if ds.length = ((Ο„ P ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ P ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ P ds.length).get β‹―).2 else I.pred_var_ P ds else I.pred_var_ P ds) ↔ I.pred_var_ P ds)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P : PredName) (ds : List D), False β†’ ((if h : (Ο„ P ds.length).isSome = true then if ds.length = ((Ο„ P ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ P ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ P ds.length).get β‹―).2 else I.pred_var_ P ds else I.pred_var_ P ds) ↔ I.pred_var_ P ds) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
ext cs
α : Type R : RegExp α ⊒ RegExp.languageOf α R.closure = RegExp.languageOf α (RegExp.epsilon.union (R.concat R.closure))
case h Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ cs ∈ RegExp.languageOf Ξ± R.closure ↔ cs ∈ RegExp.languageOf Ξ± (RegExp.epsilon.union (R.concat R.closure))
Please generate a tactic in lean4 to solve the state. STATE: α : Type R : RegExp α ⊒ RegExp.languageOf α R.closure = RegExp.languageOf α (RegExp.epsilon.union (R.concat R.closure)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
simp only [RegExp.languageOf]
case h Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ cs ∈ RegExp.languageOf Ξ± R.closure ↔ cs ∈ RegExp.languageOf Ξ± (RegExp.epsilon.union (R.concat R.closure))
case h Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ cs ∈ {l | βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = l} ↔ cs ∈ {[]} βˆͺ {x | βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ s ∈ {l | βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = l}, r ++ s = x}
Please generate a tactic in lean4 to solve the state. STATE: case h Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ cs ∈ RegExp.languageOf Ξ± R.closure ↔ cs ∈ RegExp.languageOf Ξ± (RegExp.epsilon.union (R.concat R.closure)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
simp
case h Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ cs ∈ {l | βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = l} ↔ cs ∈ {[]} βˆͺ {x | βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ s ∈ {l | βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = l}, r ++ s = x}
case h Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ (βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs) ↔ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs
Please generate a tactic in lean4 to solve the state. STATE: case h Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ cs ∈ {l | βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = l} ↔ cs ∈ {[]} βˆͺ {x | βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ s ∈ {l | βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = l}, r ++ s = x} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
constructor
case h Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ (βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs) ↔ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs
case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ (βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs) β†’ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs case h.mpr Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ (cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs) β†’ βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs
Please generate a tactic in lean4 to solve the state. STATE: case h Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ (βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs) ↔ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
intro a1
case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ (βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs) β†’ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs
case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± a1 : βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs ⊒ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs
Please generate a tactic in lean4 to solve the state. STATE: case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ (βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs) β†’ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
apply Exists.elim a1
case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± a1 : βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs ⊒ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs
case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± a1 : βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs ⊒ βˆ€ (a : List (List Ξ±)), (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ a.join = cs β†’ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs
Please generate a tactic in lean4 to solve the state. STATE: case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± a1 : βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs ⊒ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
intro xs a2
case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± a1 : βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs ⊒ βˆ€ (a : List (List Ξ±)), (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ a.join = cs β†’ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs
case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± a1 : βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs xs : List (List Ξ±) a2 : (βˆ€ r ∈ xs, r ∈ RegExp.languageOf Ξ± R) ∧ xs.join = cs ⊒ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs
Please generate a tactic in lean4 to solve the state. STATE: case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± a1 : βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs ⊒ βˆ€ (a : List (List Ξ±)), (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ a.join = cs β†’ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
clear a1
case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± a1 : βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs xs : List (List Ξ±) a2 : (βˆ€ r ∈ xs, r ∈ RegExp.languageOf Ξ± R) ∧ xs.join = cs ⊒ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs
case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± xs : List (List Ξ±) a2 : (βˆ€ r ∈ xs, r ∈ RegExp.languageOf Ξ± R) ∧ xs.join = cs ⊒ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs
Please generate a tactic in lean4 to solve the state. STATE: case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± a1 : βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs xs : List (List Ξ±) a2 : (βˆ€ r ∈ xs, r ∈ RegExp.languageOf Ξ± R) ∧ xs.join = cs ⊒ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
cases a2
case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± xs : List (List Ξ±) a2 : (βˆ€ r ∈ xs, r ∈ RegExp.languageOf Ξ± R) ∧ xs.join = cs ⊒ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs
case h.mp.intro Ξ± : Type R : RegExp Ξ± cs : List Ξ± xs : List (List Ξ±) left✝ : βˆ€ r ∈ xs, r ∈ RegExp.languageOf Ξ± R right✝ : xs.join = cs ⊒ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs
Please generate a tactic in lean4 to solve the state. STATE: case h.mp Ξ± : Type R : RegExp Ξ± cs : List Ξ± xs : List (List Ξ±) a2 : (βˆ€ r ∈ xs, r ∈ RegExp.languageOf Ξ± R) ∧ xs.join = cs ⊒ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
case _ a2_left a2_right => simp only [← a2_right] cases xs case nil => left simp case cons hd tl => right simp at a2_left cases a2_left case _ a2_left_left a2_left_right => apply Exists.intro hd tauto
Ξ± : Type R : RegExp Ξ± cs : List Ξ± xs : List (List Ξ±) a2_left : βˆ€ r ∈ xs, r ∈ RegExp.languageOf Ξ± R a2_right : xs.join = cs ⊒ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type R : RegExp Ξ± cs : List Ξ± xs : List (List Ξ±) a2_left : βˆ€ r ∈ xs, r ∈ RegExp.languageOf Ξ± R a2_right : xs.join = cs ⊒ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
simp only [← a2_right]
Ξ± : Type R : RegExp Ξ± cs : List Ξ± xs : List (List Ξ±) a2_left : βˆ€ r ∈ xs, r ∈ RegExp.languageOf Ξ± R a2_right : xs.join = cs ⊒ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs
Ξ± : Type R : RegExp Ξ± cs : List Ξ± xs : List (List Ξ±) a2_left : βˆ€ r ∈ xs, r ∈ RegExp.languageOf Ξ± R a2_right : xs.join = cs ⊒ xs.join = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = xs.join
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type R : RegExp Ξ± cs : List Ξ± xs : List (List Ξ±) a2_left : βˆ€ r ∈ xs, r ∈ RegExp.languageOf Ξ± R a2_right : xs.join = cs ⊒ cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
cases xs
Ξ± : Type R : RegExp Ξ± cs : List Ξ± xs : List (List Ξ±) a2_left : βˆ€ r ∈ xs, r ∈ RegExp.languageOf Ξ± R a2_right : xs.join = cs ⊒ xs.join = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = xs.join
case nil Ξ± : Type R : RegExp Ξ± cs : List Ξ± a2_left : βˆ€ r ∈ [], r ∈ RegExp.languageOf Ξ± R a2_right : [].join = cs ⊒ [].join = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = [].join case cons Ξ± : Type R : RegExp Ξ± cs head✝ : List Ξ± tail✝ : List (List Ξ±) a2_left : βˆ€ r ∈ head✝ :: tail✝, r ∈ RegExp.languageOf Ξ± R a2_right : (head✝ :: tail✝).join = cs ⊒ (head✝ :: tail✝).join = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (head✝ :: tail✝).join
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type R : RegExp Ξ± cs : List Ξ± xs : List (List Ξ±) a2_left : βˆ€ r ∈ xs, r ∈ RegExp.languageOf Ξ± R a2_right : xs.join = cs ⊒ xs.join = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = xs.join TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
case nil => left simp
Ξ± : Type R : RegExp Ξ± cs : List Ξ± a2_left : βˆ€ r ∈ [], r ∈ RegExp.languageOf Ξ± R a2_right : [].join = cs ⊒ [].join = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = [].join
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type R : RegExp Ξ± cs : List Ξ± a2_left : βˆ€ r ∈ [], r ∈ RegExp.languageOf Ξ± R a2_right : [].join = cs ⊒ [].join = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = [].join TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
case cons hd tl => right simp at a2_left cases a2_left case _ a2_left_left a2_left_right => apply Exists.intro hd tauto
Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_left : βˆ€ r ∈ hd :: tl, r ∈ RegExp.languageOf Ξ± R a2_right : (hd :: tl).join = cs ⊒ (hd :: tl).join = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_left : βˆ€ r ∈ hd :: tl, r ∈ RegExp.languageOf Ξ± R a2_right : (hd :: tl).join = cs ⊒ (hd :: tl).join = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
left
Ξ± : Type R : RegExp Ξ± cs : List Ξ± a2_left : βˆ€ r ∈ [], r ∈ RegExp.languageOf Ξ± R a2_right : [].join = cs ⊒ [].join = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = [].join
case h Ξ± : Type R : RegExp Ξ± cs : List Ξ± a2_left : βˆ€ r ∈ [], r ∈ RegExp.languageOf Ξ± R a2_right : [].join = cs ⊒ [].join = []
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type R : RegExp Ξ± cs : List Ξ± a2_left : βˆ€ r ∈ [], r ∈ RegExp.languageOf Ξ± R a2_right : [].join = cs ⊒ [].join = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = [].join TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
simp
case h Ξ± : Type R : RegExp Ξ± cs : List Ξ± a2_left : βˆ€ r ∈ [], r ∈ RegExp.languageOf Ξ± R a2_right : [].join = cs ⊒ [].join = []
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h Ξ± : Type R : RegExp Ξ± cs : List Ξ± a2_left : βˆ€ r ∈ [], r ∈ RegExp.languageOf Ξ± R a2_right : [].join = cs ⊒ [].join = [] TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
right
Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_left : βˆ€ r ∈ hd :: tl, r ∈ RegExp.languageOf Ξ± R a2_right : (hd :: tl).join = cs ⊒ (hd :: tl).join = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join
case h Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_left : βˆ€ r ∈ hd :: tl, r ∈ RegExp.languageOf Ξ± R a2_right : (hd :: tl).join = cs ⊒ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_left : βˆ€ r ∈ hd :: tl, r ∈ RegExp.languageOf Ξ± R a2_right : (hd :: tl).join = cs ⊒ (hd :: tl).join = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
simp at a2_left
case h Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_left : βˆ€ r ∈ hd :: tl, r ∈ RegExp.languageOf Ξ± R a2_right : (hd :: tl).join = cs ⊒ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join
case h Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_right : (hd :: tl).join = cs a2_left : hd ∈ RegExp.languageOf Ξ± R ∧ βˆ€ a ∈ tl, a ∈ RegExp.languageOf Ξ± R ⊒ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join
Please generate a tactic in lean4 to solve the state. STATE: case h Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_left : βˆ€ r ∈ hd :: tl, r ∈ RegExp.languageOf Ξ± R a2_right : (hd :: tl).join = cs ⊒ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
cases a2_left
case h Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_right : (hd :: tl).join = cs a2_left : hd ∈ RegExp.languageOf Ξ± R ∧ βˆ€ a ∈ tl, a ∈ RegExp.languageOf Ξ± R ⊒ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join
case h.intro Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_right : (hd :: tl).join = cs left✝ : hd ∈ RegExp.languageOf Ξ± R right✝ : βˆ€ a ∈ tl, a ∈ RegExp.languageOf Ξ± R ⊒ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join
Please generate a tactic in lean4 to solve the state. STATE: case h Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_right : (hd :: tl).join = cs a2_left : hd ∈ RegExp.languageOf Ξ± R ∧ βˆ€ a ∈ tl, a ∈ RegExp.languageOf Ξ± R ⊒ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
case _ a2_left_left a2_left_right => apply Exists.intro hd tauto
Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_right : (hd :: tl).join = cs a2_left_left : hd ∈ RegExp.languageOf Ξ± R a2_left_right : βˆ€ a ∈ tl, a ∈ RegExp.languageOf Ξ± R ⊒ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_right : (hd :: tl).join = cs a2_left_left : hd ∈ RegExp.languageOf Ξ± R a2_left_right : βˆ€ a ∈ tl, a ∈ RegExp.languageOf Ξ± R ⊒ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
apply Exists.intro hd
Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_right : (hd :: tl).join = cs a2_left_left : hd ∈ RegExp.languageOf Ξ± R a2_left_right : βˆ€ a ∈ tl, a ∈ RegExp.languageOf Ξ± R ⊒ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join
Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_right : (hd :: tl).join = cs a2_left_left : hd ∈ RegExp.languageOf Ξ± R a2_left_right : βˆ€ a ∈ tl, a ∈ RegExp.languageOf Ξ± R ⊒ hd ∈ RegExp.languageOf Ξ± R ∧ βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ hd ++ a.join = (hd :: tl).join
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_right : (hd :: tl).join = cs a2_left_left : hd ∈ RegExp.languageOf Ξ± R a2_left_right : βˆ€ a ∈ tl, a ∈ RegExp.languageOf Ξ± R ⊒ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = (hd :: tl).join TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
tauto
Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_right : (hd :: tl).join = cs a2_left_left : hd ∈ RegExp.languageOf Ξ± R a2_left_right : βˆ€ a ∈ tl, a ∈ RegExp.languageOf Ξ± R ⊒ hd ∈ RegExp.languageOf Ξ± R ∧ βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ hd ++ a.join = (hd :: tl).join
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type R : RegExp Ξ± cs hd : List Ξ± tl : List (List Ξ±) a2_right : (hd :: tl).join = cs a2_left_left : hd ∈ RegExp.languageOf Ξ± R a2_left_right : βˆ€ a ∈ tl, a ∈ RegExp.languageOf Ξ± R ⊒ hd ∈ RegExp.languageOf Ξ± R ∧ βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ hd ++ a.join = (hd :: tl).join TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
intro a1
case h.mpr Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ (cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs) β†’ βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs
case h.mpr Ξ± : Type R : RegExp Ξ± cs : List Ξ± a1 : cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs ⊒ βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr Ξ± : Type R : RegExp Ξ± cs : List Ξ± ⊒ (cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs) β†’ βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
cases a1
case h.mpr Ξ± : Type R : RegExp Ξ± cs : List Ξ± a1 : cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs ⊒ βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs
case h.mpr.inl Ξ± : Type R : RegExp Ξ± cs : List Ξ± h✝ : cs = [] ⊒ βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs case h.mpr.inr Ξ± : Type R : RegExp Ξ± cs : List Ξ± h✝ : βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs ⊒ βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr Ξ± : Type R : RegExp Ξ± cs : List Ξ± a1 : cs = [] ∨ βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs ⊒ βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
case _ left => apply Exists.intro [] simp simp only [left]
Ξ± : Type R : RegExp Ξ± cs : List Ξ± left : cs = [] ⊒ βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type R : RegExp Ξ± cs : List Ξ± left : cs = [] ⊒ βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
case _ right => apply Exists.elim right intro xs a2 clear right cases a2 case _ a2_left a2_right => apply Exists.elim a2_right intro ys a3 clear a2_right cases a3 case _ a3_left a3_right => apply Exists.intro ([xs] ++ ys) simp tauto
Ξ± : Type R : RegExp Ξ± cs : List Ξ± right : βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs ⊒ βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type R : RegExp Ξ± cs : List Ξ± right : βˆƒ r ∈ RegExp.languageOf Ξ± R, βˆƒ a, (βˆ€ r ∈ a, r ∈ RegExp.languageOf Ξ± R) ∧ r ++ a.join = cs ⊒ βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
apply Exists.intro []
Ξ± : Type R : RegExp Ξ± cs : List Ξ± left : cs = [] ⊒ βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs
Ξ± : Type R : RegExp Ξ± cs : List Ξ± left : cs = [] ⊒ (βˆ€ r ∈ [], r ∈ RegExp.languageOf Ξ± R) ∧ [].join = cs
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type R : RegExp Ξ± cs : List Ξ± left : cs = [] ⊒ βˆƒ rs, (βˆ€ r ∈ rs, r ∈ RegExp.languageOf Ξ± R) ∧ rs.join = cs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
simp
Ξ± : Type R : RegExp Ξ± cs : List Ξ± left : cs = [] ⊒ (βˆ€ r ∈ [], r ∈ RegExp.languageOf Ξ± R) ∧ [].join = cs
α : Type R : RegExp α cs : List α left : cs = [] ⊒ [] = cs
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type R : RegExp Ξ± cs : List Ξ± left : cs = [] ⊒ (βˆ€ r ∈ [], r ∈ RegExp.languageOf Ξ± R) ∧ [].join = cs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExp.lean
equiv_language_of_closure
[36, 1]
[83, 18]
simp only [left]
α : Type R : RegExp α cs : List α left : cs = [] ⊒ [] = cs
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type R : RegExp α cs : List α left : cs = [] ⊒ [] = cs TACTIC: