machine_learning_courses / bayesiantests.py
prhbrt's picture
Upload bayesiantests.py
4e5beba verified
import numpy as np
import numpy.matlib
LEFT, ROPE, RIGHT = range(3)
def correlated_ttest_MC(x, rope, runs=1, nsamples=50000):
"""
See correlated_ttest module for explanations
"""
if x.ndim == 2:
x = x[:, 1] - x[:, 0]
diff=x
n = len(diff)
nfolds = n / runs
x = np.mean(diff)
# Nadeau's and Bengio's corrected variance
var = np.var(diff, ddof=1) * (1 / n + 1 / (nfolds - 1))
if var == 0:
return int(x < rope), int(-rope <= x <= rope), int(rope < x)
return x+np.sqrt(var)*np.random.standard_t( n - 1, nsamples)
## Correlated t-test
def correlated_ttest(x, rope, runs=1, verbose=False, names=('C1', 'C2')):
import scipy.stats as stats
"""
Compute correlated t-test
The function uses the Bayesian interpretation of the p-value and returns
the probabilities the difference are below `-rope`, within `[-rope, rope]`
and above the `rope`. For details, see `A Bayesian approach for comparing
cross-validated algorithms on multiple data sets
<http://link.springer.com/article/10.1007%2Fs10994-015-5486-z>`_,
G. Corani and A. Benavoli, Mach Learning 2015.
|
The test assumes that the classifiers were evaluated using cross
validation. The number of folds is determined from the length of the vector
of differences, as `len(diff) / runs`. The variance includes a correction
for underestimation of variance due to overlapping training sets, as
described in `Inference for the Generalization Error
<http://link.springer.com/article/10.1023%2FA%3A1024068626366>`_,
C. Nadeau and Y. Bengio, Mach Learning 2003.)
|
Args:
x (array): a vector of differences or a 2d array with pairs of scores.
rope (float): the width of the rope
runs (int): number of repetitions of cross validation (default: 1)
return: probablities (tuple) that differences are below -rope, within rope or
above rope
"""
if x.ndim == 2:
x = x[:, 1] - x[:, 0]
diff=x
n = len(diff)
nfolds = n / runs
x = np.mean(diff)
# Nadeau's and Bengio's corrected variance
var = np.var(diff, ddof=1) * (1 / n + 1 / (nfolds - 1))
if var == 0:
return int(x < rope), int(-rope <= x <= rope), int(rope < x)
pr = 1-stats.t.cdf(rope, n - 1, x, np.sqrt(var))
pl = stats.t.cdf(-rope, n - 1, x, np.sqrt(var))
pe=1-pl-pr
if verbose:
print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'.
format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr))
return pl, pe, pr
## SIGN TEST
def signtest_MC(x, rope, prior_strength=1, prior_place=ROPE, nsamples=50000):
"""
Args:
x (array): a vector of differences or a 2d array with pairs of scores.
rope (float): the width of the rope
prior_strength (float): prior strength (default: 1)
prior_place (LEFT, ROPE or RIGHT): the region to which the prior is
assigned (default: ROPE)
nsamples (int): the number of Monte Carlo samples
Returns:
2-d array with rows corresponding to samples and columns to
probabilities `[p_left, p_rope, p_right]`
"""
if prior_strength < 0:
raise ValueError('Prior strength must be nonegative')
if nsamples < 0:
raise ValueError('Number of samples must be a positive integer')
if rope < 0:
raise ValueError('Rope must be a positive number')
if x.ndim == 2:
x = x[:, 1] - x[:, 0]
nleft = sum(x < -rope)
nright = sum(x > rope)
nrope = len(x) - nleft - nright
alpha = np.array([nleft, nrope, nright], dtype=float)
alpha += 0.0001 # for numerical stability
alpha[prior_place] += prior_strength
return np.random.dirichlet(alpha, nsamples)
def signtest(x, rope, prior_strength=1, prior_place=ROPE, nsamples=50000,
verbose=False, names=('C1', 'C2')):
"""
Args:
x (array): a vector of differences or a 2d array with pairs of scores.
rope (float): the width of the rope
prior_strength (float): prior strength (default: 1)
prior_place (LEFT, ROPE or RIGHT): the region to which the prior is
assigned (default: ROPE)
nsamples (int): the number of Monte Carlo samples
verbose (bool): report the computed probabilities
names (pair of str): the names of the two classifiers
Returns:
p_left, p_rope, p_right
"""
samples = signtest_MC(x, rope, prior_strength, prior_place, nsamples)
winners = np.argmax(samples, axis=1)
pl, pe, pr = np.bincount(winners, minlength=3) / len(winners)
if verbose:
print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'.
format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr))
return pl, pe, pr
## SIGNEDRANK
def heaviside(X):
Y = np.zeros(X.shape);
Y[np.where(X > 0)] = 1;
Y[np.where(X == 0)] = 0.5;
return Y #1 * (x > 0)
def signrank_MC(x, rope, prior_strength=0.6, prior_place=ROPE, nsamples=50000):
"""
Args:
x (array): a vector of differences or a 2d array with pairs of scores.
rope (float): the width of the rope
prior_strength (float): prior strength (default: 0.6)
prior_place (LEFT, ROPE or RIGHT): the region to which the prior is
assigned (default: ROPE)
nsamples (int): the number of Monte Carlo samples
Returns:
2-d array with rows corresponding to samples and columns to
probabilities `[p_left, p_rope, p_right]`
"""
if x.ndim == 2:
zm = x[:, 1] - x[:, 0]
else:
zm = x
nm=len(zm)
if prior_place==ROPE:
z0=[0]
if prior_place==LEFT:
z0=[-float('inf')]
if prior_place==RIGHT:
z0=[float('inf')]
z=np.concatenate((zm,z0))
n=len(z)
z=np.transpose(np.asmatrix(z))
X=np.matlib.repmat(z,1,n)
Y=np.matlib.repmat(-np.transpose(z)+2*rope,n,1)
Aright = heaviside(X-Y)
X=np.matlib.repmat(-z,1,n)
Y=np.matlib.repmat(np.transpose(z)+2*rope,n,1)
Aleft = heaviside(X-Y)
alpha=np.concatenate((np.ones(nm),[prior_strength]),axis=0)
samples=np.zeros((nsamples,3), dtype=float)
for i in range(0,nsamples):
data = np.random.dirichlet(alpha, 1)
samples[i,2]=numpy.inner(np.dot(data,Aright),data)
samples[i,0]=numpy.inner(np.dot(data,Aleft),data)
samples[i,1]=1-samples[i,0]-samples[i,2]
return samples
def signrank(x, rope, prior_strength=0.6, prior_place=ROPE, nsamples=50000,
verbose=False, names=('C1', 'C2')):
"""
Args:
x (array): a vector of differences or a 2d array with pairs of scores.
rope (float): the width of the rope
prior_strength (float): prior strength (default: 0.6)
prior_place (LEFT, ROPE or RIGHT): the region to which the prior is
assigned (default: ROPE)
nsamples (int): the number of Monte Carlo samples
verbose (bool): report the computed probabilities
names (pair of str): the names of the two classifiers
Returns:
p_left, p_rope, p_right
"""
samples = signrank_MC(x, rope, prior_strength, prior_place, nsamples)
winners = np.argmax(samples, axis=1)
pl, pe, pr = np.bincount(winners, minlength=3) / len(winners)
if verbose:
print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'.
format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr))
return pl, pe, pr
def hierarchical(diff, rope, rho, upperAlpha=2, lowerAlpha =1, lowerBeta = 0.01, upperBeta = 0.1,std_upper_bound=1000, verbose=False, names=('C1', 'C2') ):
# upperAlpha, lowerAlpha, upperBeta, lowerBeta, are the upper and lower bound for alpha and beta, which are the parameters of
#the Gamma distribution used as a prior for the degress of freedom.
#std_upper_bound is a constant which multiplies the sample standard deviation, to set the upper limit of the prior on the
#standard deviation. Posterior inferences are insensitive to this value as this is large enough, such as 100 or 1000.
samples=hierarchical_MC(diff, rope, rho, upperAlpha, lowerAlpha, lowerBeta, upperBeta, std_upper_bound,names )
winners = np.argmax(samples, axis=1)
pl, pe, pr = np.bincount(winners, minlength=3) / len(winners)
if verbose:
print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'.
format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr))
return pl, pe, pr
def hierarchical_MC(diff, rope, rho, upperAlpha=2, lowerAlpha =1, lowerBeta = 0.01, upperBeta = 0.1, std_upper_bound=1000, names=('C1', 'C2') ):
# upperAlpha, lowerAlpha, upperBeta, lowerBeta, are the upper and lower bound for alpha and beta, which are the parameters of
#the Gamma distribution used as a prior for the degress of freedom.
#std_upper_bound is a constant which multiplies the sample standard deviation, to set the upper limit of the prior on the
#standard deviation. Posterior inferences are insensitive to this value as this is large enough, such as 100 or 1000.
import scipy.stats as stats
import pystan
#data rescaling, to have homogenous scale among all dsets
stdX = np.mean(np.std(diff,1)) #we scale all the data by the mean of the standard deviation of data sets
x = diff/stdX
rope=rope/stdX
#to avoid numerical problems with zero variance
for i in range(0,len(x)):
if np.std(x[i,:])==0:
x[i,:]=x[i,:]+np.random.normal(0,np.min(1/1000000000,np.abs(np.mean(x[i,:])/100000000)))
#This is the Hierarchical model written in Stan
hierarchical_code = """
/*Hierarchical Bayesian model for the analysis of competing cross-validated classifiers on multiple data sets.
*/
data {
real deltaLow;
real deltaHi;
//bounds of the sigma of the higher-level distribution
real std0Low;
real std0Hi;
//bounds on the domain of the sigma of each data set
real stdLow;
real stdHi;
//number of results for each data set. Typically 100 (10 runs of 10-folds cv)
int<lower=2> Nsamples;
//number of data sets.
int<lower=1> q;
//difference of accuracy between the two classifier, on each fold of each data set.
matrix[q,Nsamples] x;
//correlation (1/(number of folds))
real rho;
real upperAlpha;
real lowerAlpha;
real upperBeta;
real lowerBeta;
}
transformed data {
//vector of 1s appearing in the likelihood
vector[Nsamples] H;
//vector of 0s: the mean of the mvn noise
vector[Nsamples] zeroMeanVec;
/* M is the correlation matrix of the mvn noise.
invM is its inverse, detM its determinant */
matrix[Nsamples,Nsamples] invM;
real detM;
//The determinant of M is analytically known
detM <- (1+(Nsamples-1)*rho)*(1-rho)^(Nsamples-1);
//build H and invM. They do not depend on the data.
for (j in 1:Nsamples){
zeroMeanVec[j]<-0;
H[j]<-1;
for (i in 1:Nsamples){
if (j==i)
invM[j,i]<- (1 + (Nsamples-2)*rho)*pow((1-rho),Nsamples-2);
else
invM[j,i]<- -rho * pow((1-rho),Nsamples-2);
}
}
/*at this point invM contains the adjugate of M.
we divide it by det(M) to obtain the inverse of M.*/
invM <-invM/detM;
}
parameters {
//mean of the hyperprior from which we sample the delta_i
real<lower=deltaLow,upper=deltaHi> delta0;
//std of the hyperprior from which we sample the delta_i
real<lower=std0Low,upper=std0Hi> std0;
//delta_i of each data set: vector of lenght q.
vector[q] delta;
//sigma of each data set: : vector of lenght q.
vector<lower=stdLow,upper=stdHi>[q] sigma;
/* the domain of (nu - 1) starts from 0
and can be given a gamma prior*/
real<lower=0> nuMinusOne;
//parameters of the Gamma prior on nuMinusOne
real<lower=lowerAlpha,upper=upperAlpha> gammaAlpha;
real<lower=lowerBeta, upper=upperBeta> gammaBeta;
}
transformed parameters {
//degrees of freedom
real<lower=1> nu ;
/*difference between the data (x matrix) and
the vector of the q means.*/
matrix[q,Nsamples] diff;
vector[q] diagQuad;
/*vector of length q:
1 over the variance of each data set*/
vector[q] oneOverSigma2;
vector[q] logDetSigma;
vector[q] logLik;
//degrees of freedom
nu <- nuMinusOne + 1 ;
//1 over the variance of each data set
oneOverSigma2 <- rep_vector(1, q) ./ sigma;
oneOverSigma2 <- oneOverSigma2 ./ sigma;
/*the data (x) minus a matrix done as follows:
the delta vector (of lenght q) pasted side by side Nsamples times*/
diff <- x - rep_matrix(delta,Nsamples);
//efficient matrix computation of the likelihood.
diagQuad <- diagonal (quad_form (invM,diff'));
logDetSigma <- 2*Nsamples*log(sigma) + log(detM) ;
logLik <- -0.5 * logDetSigma - 0.5*Nsamples*log(6.283);
logLik <- logLik - 0.5 * oneOverSigma2 .* diagQuad;
}
model {
/*mu0 and std0 are not explicitly sampled here.
Stan automatically samples them: mu0 as uniform and std0 as
uniform over its domain (std0Low,std0Hi).*/
//sampling the degrees of freedom
nuMinusOne ~ gamma ( gammaAlpha, gammaBeta);
//vectorial sampling of the delta_i of each data set
delta ~ student_t(nu, delta0, std0);
//logLik is computed in the previous block
increment_log_prob(sum(logLik));
}
"""
datatable=x
std_within=np.mean(np.std(datatable,1))
Nsamples = len(datatable[0])
q= len(datatable)
if q>1:
std_among=np.std(np.mean(datatable,1))
else:
std_among=np.mean(np.std(datatable,1))
#Hierarchical data in Stan
hierachical_dat = {'x': datatable,
'deltaLow' : -np.max(np.abs(datatable)),
'deltaHi' : np.max(np.abs(datatable)),
'stdLow' : 0,
'stdHi' : std_within*std_upper_bound,
'std0Low' : 0,
'std0Hi' : std_among*std_upper_bound,
'Nsamples' : Nsamples,
'q' : q,
'rho' : rho,
'upperAlpha' : upperAlpha,
'lowerAlpha' : lowerAlpha,
'upperBeta' : upperBeta,
'lowerBeta' : lowerBeta}
#Call to Stan code
fit = pystan.stan(model_code=hierarchical_code, data=hierachical_dat,
iter=1000, chains=4)
la = fit.extract(permuted=True) # return a dictionary of arrays
mu = la['delta0']
stdh = la['std0']
nu = la['nu']
samples=np.zeros((len(mu),3), dtype=float)
for i in range(0,len(mu)):
samples[i,2]=1-stats.t.cdf(rope, nu[i], mu[i], stdh[i])
samples[i,0]=stats.t.cdf(-rope, nu[i], mu[i], stdh[i])
samples[i,1]=1-samples[i,0]-samples[i,2]
return samples
def plot_posterior(samples, names=('C1', 'C2')):
"""
Args:
x (array): a vector of differences or a 2d array with pairs of scores.
names (pair of str): the names of the two classifiers
Returns:
matplotlib.pyplot.figure
"""
return plot_simplex(samples, names)
def plot_simplex(points, names=('C1', 'C2')):
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
from matplotlib.pylab import rcParams
def _project(points):
from math import sqrt, sin, cos, pi
p1, p2, p3 = points.T / sqrt(3)
x = (p2 - p1) * cos(pi / 6) + 0.5
y = p3 - (p1 + p2) * sin(pi / 6) + 1 / (2 * sqrt(3))
return np.vstack((x, y)).T
vert0 = _project(np.array(
[[0.3333, 0.3333, 0.3333], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5]]))
fig = plt.figure()
fig.set_size_inches(8, 7)
nl, ne, nr = np.max(points, axis=0)
for i, n in enumerate((nl, ne, nr)):
if n < 0.001:
print("p{} is too small, switching to 2d plot".format(names[::-1] + ["rope"]))
coords = sorted(set(range(3)) - i)
return plot2d(points[:, coords], labels[coords])
# triangle
fig.gca().add_line(
Line2D([0, 0.5, 1.0, 0],
[0, np.sqrt(3) / 2, 0, 0], color='orange'))
# decision lines
for i in (1, 2, 3):
fig.gca().add_line(
Line2D([vert0[0, 0], vert0[i, 0]],
[vert0[0, 1], vert0[i, 1]], color='orange'))
# vertex labels
rcParams.update({'font.size': 16})
fig.gca().text(-0.08, -0.08, 'p({})'.format(names[0]), color='orange')
fig.gca().text(0.44, np.sqrt(3) / 2 + 0.05, 'p(rope)', color='orange')
fig.gca().text(1.00, -0.08, 'p({})'.format(names[1]), color='orange')
# project and draw points
tripts = _project(points[:, [0, 2, 1]])
plt.hexbin(tripts[:, 0], tripts[:, 1], mincnt=1, cmap=plt.cm.Blues_r)
# Leave some padding around the triangle for vertex labels
fig.gca().set_xlim(-0.2, 1.2)
fig.gca().set_ylim(-0.2, 1.2)
fig.gca().axis('off')
return fig