|
|
import numpy as np |
|
|
import numpy.matlib |
|
|
|
|
|
LEFT, ROPE, RIGHT = range(3) |
|
|
|
|
|
def correlated_ttest_MC(x, rope, runs=1, nsamples=50000): |
|
|
""" |
|
|
See correlated_ttest module for explanations |
|
|
""" |
|
|
if x.ndim == 2: |
|
|
x = x[:, 1] - x[:, 0] |
|
|
diff=x |
|
|
n = len(diff) |
|
|
nfolds = n / runs |
|
|
x = np.mean(diff) |
|
|
|
|
|
var = np.var(diff, ddof=1) * (1 / n + 1 / (nfolds - 1)) |
|
|
if var == 0: |
|
|
return int(x < rope), int(-rope <= x <= rope), int(rope < x) |
|
|
|
|
|
return x+np.sqrt(var)*np.random.standard_t( n - 1, nsamples) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def correlated_ttest(x, rope, runs=1, verbose=False, names=('C1', 'C2')): |
|
|
import scipy.stats as stats |
|
|
""" |
|
|
Compute correlated t-test |
|
|
|
|
|
The function uses the Bayesian interpretation of the p-value and returns |
|
|
the probabilities the difference are below `-rope`, within `[-rope, rope]` |
|
|
and above the `rope`. For details, see `A Bayesian approach for comparing |
|
|
cross-validated algorithms on multiple data sets |
|
|
<http://link.springer.com/article/10.1007%2Fs10994-015-5486-z>`_, |
|
|
G. Corani and A. Benavoli, Mach Learning 2015. |
|
|
|
|
|
| |
|
|
The test assumes that the classifiers were evaluated using cross |
|
|
validation. The number of folds is determined from the length of the vector |
|
|
of differences, as `len(diff) / runs`. The variance includes a correction |
|
|
for underestimation of variance due to overlapping training sets, as |
|
|
described in `Inference for the Generalization Error |
|
|
<http://link.springer.com/article/10.1023%2FA%3A1024068626366>`_, |
|
|
C. Nadeau and Y. Bengio, Mach Learning 2003.) |
|
|
|
|
|
| |
|
|
Args: |
|
|
x (array): a vector of differences or a 2d array with pairs of scores. |
|
|
rope (float): the width of the rope |
|
|
runs (int): number of repetitions of cross validation (default: 1) |
|
|
return: probablities (tuple) that differences are below -rope, within rope or |
|
|
above rope |
|
|
""" |
|
|
if x.ndim == 2: |
|
|
x = x[:, 1] - x[:, 0] |
|
|
diff=x |
|
|
n = len(diff) |
|
|
nfolds = n / runs |
|
|
x = np.mean(diff) |
|
|
|
|
|
var = np.var(diff, ddof=1) * (1 / n + 1 / (nfolds - 1)) |
|
|
if var == 0: |
|
|
return int(x < rope), int(-rope <= x <= rope), int(rope < x) |
|
|
pr = 1-stats.t.cdf(rope, n - 1, x, np.sqrt(var)) |
|
|
pl = stats.t.cdf(-rope, n - 1, x, np.sqrt(var)) |
|
|
pe=1-pl-pr |
|
|
if verbose: |
|
|
print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'. |
|
|
format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr)) |
|
|
return pl, pe, pr |
|
|
|
|
|
|
|
|
def signtest_MC(x, rope, prior_strength=1, prior_place=ROPE, nsamples=50000): |
|
|
""" |
|
|
Args: |
|
|
x (array): a vector of differences or a 2d array with pairs of scores. |
|
|
rope (float): the width of the rope |
|
|
prior_strength (float): prior strength (default: 1) |
|
|
prior_place (LEFT, ROPE or RIGHT): the region to which the prior is |
|
|
assigned (default: ROPE) |
|
|
nsamples (int): the number of Monte Carlo samples |
|
|
|
|
|
Returns: |
|
|
2-d array with rows corresponding to samples and columns to |
|
|
probabilities `[p_left, p_rope, p_right]` |
|
|
""" |
|
|
if prior_strength < 0: |
|
|
raise ValueError('Prior strength must be nonegative') |
|
|
if nsamples < 0: |
|
|
raise ValueError('Number of samples must be a positive integer') |
|
|
if rope < 0: |
|
|
raise ValueError('Rope must be a positive number') |
|
|
|
|
|
if x.ndim == 2: |
|
|
x = x[:, 1] - x[:, 0] |
|
|
nleft = sum(x < -rope) |
|
|
nright = sum(x > rope) |
|
|
nrope = len(x) - nleft - nright |
|
|
alpha = np.array([nleft, nrope, nright], dtype=float) |
|
|
alpha += 0.0001 |
|
|
alpha[prior_place] += prior_strength |
|
|
return np.random.dirichlet(alpha, nsamples) |
|
|
|
|
|
def signtest(x, rope, prior_strength=1, prior_place=ROPE, nsamples=50000, |
|
|
verbose=False, names=('C1', 'C2')): |
|
|
""" |
|
|
Args: |
|
|
x (array): a vector of differences or a 2d array with pairs of scores. |
|
|
rope (float): the width of the rope |
|
|
prior_strength (float): prior strength (default: 1) |
|
|
prior_place (LEFT, ROPE or RIGHT): the region to which the prior is |
|
|
assigned (default: ROPE) |
|
|
nsamples (int): the number of Monte Carlo samples |
|
|
verbose (bool): report the computed probabilities |
|
|
names (pair of str): the names of the two classifiers |
|
|
|
|
|
Returns: |
|
|
p_left, p_rope, p_right |
|
|
""" |
|
|
samples = signtest_MC(x, rope, prior_strength, prior_place, nsamples) |
|
|
|
|
|
winners = np.argmax(samples, axis=1) |
|
|
pl, pe, pr = np.bincount(winners, minlength=3) / len(winners) |
|
|
if verbose: |
|
|
print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'. |
|
|
format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr)) |
|
|
return pl, pe, pr |
|
|
|
|
|
|
|
|
def heaviside(X): |
|
|
Y = np.zeros(X.shape); |
|
|
Y[np.where(X > 0)] = 1; |
|
|
Y[np.where(X == 0)] = 0.5; |
|
|
return Y |
|
|
|
|
|
def signrank_MC(x, rope, prior_strength=0.6, prior_place=ROPE, nsamples=50000): |
|
|
""" |
|
|
Args: |
|
|
x (array): a vector of differences or a 2d array with pairs of scores. |
|
|
rope (float): the width of the rope |
|
|
prior_strength (float): prior strength (default: 0.6) |
|
|
prior_place (LEFT, ROPE or RIGHT): the region to which the prior is |
|
|
assigned (default: ROPE) |
|
|
nsamples (int): the number of Monte Carlo samples |
|
|
|
|
|
Returns: |
|
|
2-d array with rows corresponding to samples and columns to |
|
|
probabilities `[p_left, p_rope, p_right]` |
|
|
""" |
|
|
if x.ndim == 2: |
|
|
zm = x[:, 1] - x[:, 0] |
|
|
else: |
|
|
zm = x |
|
|
nm=len(zm) |
|
|
if prior_place==ROPE: |
|
|
z0=[0] |
|
|
if prior_place==LEFT: |
|
|
z0=[-float('inf')] |
|
|
if prior_place==RIGHT: |
|
|
z0=[float('inf')] |
|
|
z=np.concatenate((zm,z0)) |
|
|
n=len(z) |
|
|
z=np.transpose(np.asmatrix(z)) |
|
|
X=np.matlib.repmat(z,1,n) |
|
|
Y=np.matlib.repmat(-np.transpose(z)+2*rope,n,1) |
|
|
Aright = heaviside(X-Y) |
|
|
X=np.matlib.repmat(-z,1,n) |
|
|
Y=np.matlib.repmat(np.transpose(z)+2*rope,n,1) |
|
|
Aleft = heaviside(X-Y) |
|
|
alpha=np.concatenate((np.ones(nm),[prior_strength]),axis=0) |
|
|
samples=np.zeros((nsamples,3), dtype=float) |
|
|
for i in range(0,nsamples): |
|
|
data = np.random.dirichlet(alpha, 1) |
|
|
samples[i,2]=numpy.inner(np.dot(data,Aright),data) |
|
|
samples[i,0]=numpy.inner(np.dot(data,Aleft),data) |
|
|
samples[i,1]=1-samples[i,0]-samples[i,2] |
|
|
|
|
|
return samples |
|
|
|
|
|
def signrank(x, rope, prior_strength=0.6, prior_place=ROPE, nsamples=50000, |
|
|
verbose=False, names=('C1', 'C2')): |
|
|
""" |
|
|
Args: |
|
|
x (array): a vector of differences or a 2d array with pairs of scores. |
|
|
rope (float): the width of the rope |
|
|
prior_strength (float): prior strength (default: 0.6) |
|
|
prior_place (LEFT, ROPE or RIGHT): the region to which the prior is |
|
|
assigned (default: ROPE) |
|
|
nsamples (int): the number of Monte Carlo samples |
|
|
verbose (bool): report the computed probabilities |
|
|
names (pair of str): the names of the two classifiers |
|
|
|
|
|
Returns: |
|
|
p_left, p_rope, p_right |
|
|
""" |
|
|
samples = signrank_MC(x, rope, prior_strength, prior_place, nsamples) |
|
|
|
|
|
winners = np.argmax(samples, axis=1) |
|
|
pl, pe, pr = np.bincount(winners, minlength=3) / len(winners) |
|
|
if verbose: |
|
|
print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'. |
|
|
format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr)) |
|
|
return pl, pe, pr |
|
|
|
|
|
|
|
|
def hierarchical(diff, rope, rho, upperAlpha=2, lowerAlpha =1, lowerBeta = 0.01, upperBeta = 0.1,std_upper_bound=1000, verbose=False, names=('C1', 'C2') ): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
samples=hierarchical_MC(diff, rope, rho, upperAlpha, lowerAlpha, lowerBeta, upperBeta, std_upper_bound,names ) |
|
|
winners = np.argmax(samples, axis=1) |
|
|
pl, pe, pr = np.bincount(winners, minlength=3) / len(winners) |
|
|
if verbose: |
|
|
print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'. |
|
|
format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr)) |
|
|
return pl, pe, pr |
|
|
|
|
|
def hierarchical_MC(diff, rope, rho, upperAlpha=2, lowerAlpha =1, lowerBeta = 0.01, upperBeta = 0.1, std_upper_bound=1000, names=('C1', 'C2') ): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import scipy.stats as stats |
|
|
import pystan |
|
|
|
|
|
stdX = np.mean(np.std(diff,1)) |
|
|
x = diff/stdX |
|
|
rope=rope/stdX |
|
|
|
|
|
|
|
|
for i in range(0,len(x)): |
|
|
if np.std(x[i,:])==0: |
|
|
x[i,:]=x[i,:]+np.random.normal(0,np.min(1/1000000000,np.abs(np.mean(x[i,:])/100000000))) |
|
|
|
|
|
|
|
|
|
|
|
hierarchical_code = """ |
|
|
/*Hierarchical Bayesian model for the analysis of competing cross-validated classifiers on multiple data sets. |
|
|
*/ |
|
|
|
|
|
data { |
|
|
|
|
|
real deltaLow; |
|
|
real deltaHi; |
|
|
|
|
|
//bounds of the sigma of the higher-level distribution |
|
|
real std0Low; |
|
|
real std0Hi; |
|
|
|
|
|
//bounds on the domain of the sigma of each data set |
|
|
real stdLow; |
|
|
real stdHi; |
|
|
|
|
|
|
|
|
//number of results for each data set. Typically 100 (10 runs of 10-folds cv) |
|
|
int<lower=2> Nsamples; |
|
|
|
|
|
//number of data sets. |
|
|
int<lower=1> q; |
|
|
|
|
|
//difference of accuracy between the two classifier, on each fold of each data set. |
|
|
matrix[q,Nsamples] x; |
|
|
|
|
|
//correlation (1/(number of folds)) |
|
|
real rho; |
|
|
|
|
|
real upperAlpha; |
|
|
real lowerAlpha; |
|
|
real upperBeta; |
|
|
real lowerBeta; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
transformed data { |
|
|
|
|
|
//vector of 1s appearing in the likelihood |
|
|
vector[Nsamples] H; |
|
|
|
|
|
//vector of 0s: the mean of the mvn noise |
|
|
vector[Nsamples] zeroMeanVec; |
|
|
|
|
|
/* M is the correlation matrix of the mvn noise. |
|
|
invM is its inverse, detM its determinant */ |
|
|
matrix[Nsamples,Nsamples] invM; |
|
|
real detM; |
|
|
|
|
|
//The determinant of M is analytically known |
|
|
detM <- (1+(Nsamples-1)*rho)*(1-rho)^(Nsamples-1); |
|
|
|
|
|
//build H and invM. They do not depend on the data. |
|
|
for (j in 1:Nsamples){ |
|
|
zeroMeanVec[j]<-0; |
|
|
H[j]<-1; |
|
|
for (i in 1:Nsamples){ |
|
|
if (j==i) |
|
|
invM[j,i]<- (1 + (Nsamples-2)*rho)*pow((1-rho),Nsamples-2); |
|
|
else |
|
|
invM[j,i]<- -rho * pow((1-rho),Nsamples-2); |
|
|
} |
|
|
} |
|
|
/*at this point invM contains the adjugate of M. |
|
|
we divide it by det(M) to obtain the inverse of M.*/ |
|
|
invM <-invM/detM; |
|
|
} |
|
|
|
|
|
parameters { |
|
|
//mean of the hyperprior from which we sample the delta_i |
|
|
real<lower=deltaLow,upper=deltaHi> delta0; |
|
|
|
|
|
//std of the hyperprior from which we sample the delta_i |
|
|
real<lower=std0Low,upper=std0Hi> std0; |
|
|
|
|
|
//delta_i of each data set: vector of lenght q. |
|
|
vector[q] delta; |
|
|
|
|
|
//sigma of each data set: : vector of lenght q. |
|
|
vector<lower=stdLow,upper=stdHi>[q] sigma; |
|
|
|
|
|
/* the domain of (nu - 1) starts from 0 |
|
|
and can be given a gamma prior*/ |
|
|
real<lower=0> nuMinusOne; |
|
|
|
|
|
//parameters of the Gamma prior on nuMinusOne |
|
|
real<lower=lowerAlpha,upper=upperAlpha> gammaAlpha; |
|
|
real<lower=lowerBeta, upper=upperBeta> gammaBeta; |
|
|
|
|
|
} |
|
|
|
|
|
transformed parameters { |
|
|
//degrees of freedom |
|
|
real<lower=1> nu ; |
|
|
|
|
|
/*difference between the data (x matrix) and |
|
|
the vector of the q means.*/ |
|
|
matrix[q,Nsamples] diff; |
|
|
|
|
|
vector[q] diagQuad; |
|
|
|
|
|
/*vector of length q: |
|
|
1 over the variance of each data set*/ |
|
|
vector[q] oneOverSigma2; |
|
|
|
|
|
vector[q] logDetSigma; |
|
|
|
|
|
vector[q] logLik; |
|
|
|
|
|
//degrees of freedom |
|
|
nu <- nuMinusOne + 1 ; |
|
|
|
|
|
//1 over the variance of each data set |
|
|
oneOverSigma2 <- rep_vector(1, q) ./ sigma; |
|
|
oneOverSigma2 <- oneOverSigma2 ./ sigma; |
|
|
|
|
|
/*the data (x) minus a matrix done as follows: |
|
|
the delta vector (of lenght q) pasted side by side Nsamples times*/ |
|
|
diff <- x - rep_matrix(delta,Nsamples); |
|
|
|
|
|
//efficient matrix computation of the likelihood. |
|
|
diagQuad <- diagonal (quad_form (invM,diff')); |
|
|
logDetSigma <- 2*Nsamples*log(sigma) + log(detM) ; |
|
|
logLik <- -0.5 * logDetSigma - 0.5*Nsamples*log(6.283); |
|
|
logLik <- logLik - 0.5 * oneOverSigma2 .* diagQuad; |
|
|
|
|
|
} |
|
|
|
|
|
model { |
|
|
/*mu0 and std0 are not explicitly sampled here. |
|
|
Stan automatically samples them: mu0 as uniform and std0 as |
|
|
uniform over its domain (std0Low,std0Hi).*/ |
|
|
|
|
|
//sampling the degrees of freedom |
|
|
nuMinusOne ~ gamma ( gammaAlpha, gammaBeta); |
|
|
|
|
|
//vectorial sampling of the delta_i of each data set |
|
|
delta ~ student_t(nu, delta0, std0); |
|
|
|
|
|
//logLik is computed in the previous block |
|
|
increment_log_prob(sum(logLik)); |
|
|
} |
|
|
""" |
|
|
datatable=x |
|
|
std_within=np.mean(np.std(datatable,1)) |
|
|
|
|
|
Nsamples = len(datatable[0]) |
|
|
q= len(datatable) |
|
|
if q>1: |
|
|
std_among=np.std(np.mean(datatable,1)) |
|
|
else: |
|
|
std_among=np.mean(np.std(datatable,1)) |
|
|
|
|
|
|
|
|
hierachical_dat = {'x': datatable, |
|
|
'deltaLow' : -np.max(np.abs(datatable)), |
|
|
'deltaHi' : np.max(np.abs(datatable)), |
|
|
'stdLow' : 0, |
|
|
'stdHi' : std_within*std_upper_bound, |
|
|
'std0Low' : 0, |
|
|
'std0Hi' : std_among*std_upper_bound, |
|
|
'Nsamples' : Nsamples, |
|
|
'q' : q, |
|
|
'rho' : rho, |
|
|
'upperAlpha' : upperAlpha, |
|
|
'lowerAlpha' : lowerAlpha, |
|
|
'upperBeta' : upperBeta, |
|
|
'lowerBeta' : lowerBeta} |
|
|
|
|
|
|
|
|
fit = pystan.stan(model_code=hierarchical_code, data=hierachical_dat, |
|
|
iter=1000, chains=4) |
|
|
|
|
|
la = fit.extract(permuted=True) |
|
|
mu = la['delta0'] |
|
|
stdh = la['std0'] |
|
|
nu = la['nu'] |
|
|
|
|
|
samples=np.zeros((len(mu),3), dtype=float) |
|
|
for i in range(0,len(mu)): |
|
|
samples[i,2]=1-stats.t.cdf(rope, nu[i], mu[i], stdh[i]) |
|
|
samples[i,0]=stats.t.cdf(-rope, nu[i], mu[i], stdh[i]) |
|
|
samples[i,1]=1-samples[i,0]-samples[i,2] |
|
|
|
|
|
return samples |
|
|
|
|
|
def plot_posterior(samples, names=('C1', 'C2')): |
|
|
""" |
|
|
Args: |
|
|
x (array): a vector of differences or a 2d array with pairs of scores. |
|
|
names (pair of str): the names of the two classifiers |
|
|
|
|
|
Returns: |
|
|
matplotlib.pyplot.figure |
|
|
""" |
|
|
return plot_simplex(samples, names) |
|
|
|
|
|
|
|
|
def plot_simplex(points, names=('C1', 'C2')): |
|
|
import matplotlib.pyplot as plt |
|
|
from matplotlib.lines import Line2D |
|
|
from matplotlib.pylab import rcParams |
|
|
|
|
|
def _project(points): |
|
|
from math import sqrt, sin, cos, pi |
|
|
p1, p2, p3 = points.T / sqrt(3) |
|
|
x = (p2 - p1) * cos(pi / 6) + 0.5 |
|
|
y = p3 - (p1 + p2) * sin(pi / 6) + 1 / (2 * sqrt(3)) |
|
|
return np.vstack((x, y)).T |
|
|
|
|
|
vert0 = _project(np.array( |
|
|
[[0.3333, 0.3333, 0.3333], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5]])) |
|
|
|
|
|
fig = plt.figure() |
|
|
fig.set_size_inches(8, 7) |
|
|
|
|
|
nl, ne, nr = np.max(points, axis=0) |
|
|
for i, n in enumerate((nl, ne, nr)): |
|
|
if n < 0.001: |
|
|
print("p{} is too small, switching to 2d plot".format(names[::-1] + ["rope"])) |
|
|
coords = sorted(set(range(3)) - i) |
|
|
return plot2d(points[:, coords], labels[coords]) |
|
|
|
|
|
|
|
|
fig.gca().add_line( |
|
|
Line2D([0, 0.5, 1.0, 0], |
|
|
[0, np.sqrt(3) / 2, 0, 0], color='orange')) |
|
|
|
|
|
for i in (1, 2, 3): |
|
|
fig.gca().add_line( |
|
|
Line2D([vert0[0, 0], vert0[i, 0]], |
|
|
[vert0[0, 1], vert0[i, 1]], color='orange')) |
|
|
|
|
|
rcParams.update({'font.size': 16}) |
|
|
fig.gca().text(-0.08, -0.08, 'p({})'.format(names[0]), color='orange') |
|
|
fig.gca().text(0.44, np.sqrt(3) / 2 + 0.05, 'p(rope)', color='orange') |
|
|
fig.gca().text(1.00, -0.08, 'p({})'.format(names[1]), color='orange') |
|
|
|
|
|
|
|
|
tripts = _project(points[:, [0, 2, 1]]) |
|
|
plt.hexbin(tripts[:, 0], tripts[:, 1], mincnt=1, cmap=plt.cm.Blues_r) |
|
|
|
|
|
fig.gca().set_xlim(-0.2, 1.2) |
|
|
fig.gca().set_ylim(-0.2, 1.2) |
|
|
fig.gca().axis('off') |
|
|
return fig |
|
|
|