file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Data/Multiset/Basic.lean
Multiset.induction_on'
[]
[ 441, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 435, 1 ]
Mathlib/Data/ULift.lean
ULift.up_bijective
[]
[ 109, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Mathlib/SetTheory/Ordinal/FixedPoint.lean
Ordinal.fp_bfamily_unbounded
[ { "state_after": "o : Ordinal\nf : (b : Ordinal) → b < o → Ordinal → Ordinal\nH : ∀ (i : Ordinal) (hi : i < o), IsNormal (f i hi)\na : Ordinal\n⊢ ∀ (i : Ordinal) (j : i < o), nfpBFamily o f a ∈ fixedPoints (f i j)", "state_before": "o : Ordinal\nf : (b : Ordinal) → b < o → Ordinal → Ordinal\nH : ∀ (i : Ordinal) (hi : i < o), IsNormal (f i hi)\na : Ordinal\n⊢ nfpBFamily o f a ∈ ⋂ (i : Ordinal) (hi : i < o), fixedPoints (f i hi)", "tactic": "rw [Set.mem_iInter₂]" }, { "state_after": "no goals", "state_before": "o : Ordinal\nf : (b : Ordinal) → b < o → Ordinal → Ordinal\nH : ∀ (i : Ordinal) (hi : i < o), IsNormal (f i hi)\na : Ordinal\n⊢ ∀ (i : Ordinal) (j : i < o), nfpBFamily o f a ∈ fixedPoints (f i j)", "tactic": "exact fun i hi => nfpBFamily_fp (H i hi) _" } ]
[ 349, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 345, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Prod.lean
fderivWithin_fst
[]
[ 225, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 223, 1 ]
Mathlib/Order/Filter/Archimedean.lean
Filter.Tendsto.atBot_zsmul_neg_const
[ { "state_after": "no goals", "state_before": "α : Type u_2\nR : Type u_1\nl : Filter α\nf✝ : α → R\nr : R\ninst✝¹ : LinearOrderedAddCommGroup R\ninst✝ : Archimedean R\nf : α → ℤ\nhr : r < 0\nhf : Tendsto f l atBot\n⊢ Tendsto (fun x => f x • r) l atTop", "tactic": "simpa using hf.atBot_zsmul_const (neg_pos.2 hr)" } ]
[ 250, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 249, 1 ]
Mathlib/Algebra/Star/Subalgebra.lean
StarSubalgebra.eq_top_iff
[ { "state_after": "F : Type ?u.755056\nR : Type u_1\nA : Type u_2\nB : Type ?u.755065\ninst✝⁹ : CommSemiring R\ninst✝⁸ : StarRing R\ninst✝⁷ : Semiring A\ninst✝⁶ : Algebra R A\ninst✝⁵ : StarRing A\ninst✝⁴ : StarModule R A\ninst✝³ : Semiring B\ninst✝² : Algebra R B\ninst✝¹ : StarRing B\ninst✝ : StarModule R B\nS : StarSubalgebra R A\nh : S = ⊤\nx : A\n⊢ x ∈ ⊤", "state_before": "F : Type ?u.755056\nR : Type u_1\nA : Type u_2\nB : Type ?u.755065\ninst✝⁹ : CommSemiring R\ninst✝⁸ : StarRing R\ninst✝⁷ : Semiring A\ninst✝⁶ : Algebra R A\ninst✝⁵ : StarRing A\ninst✝⁴ : StarModule R A\ninst✝³ : Semiring B\ninst✝² : Algebra R B\ninst✝¹ : StarRing B\ninst✝ : StarModule R B\nS : StarSubalgebra R A\nh : S = ⊤\nx : A\n⊢ x ∈ S", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "F : Type ?u.755056\nR : Type u_1\nA : Type u_2\nB : Type ?u.755065\ninst✝⁹ : CommSemiring R\ninst✝⁸ : StarRing R\ninst✝⁷ : Semiring A\ninst✝⁶ : Algebra R A\ninst✝⁵ : StarRing A\ninst✝⁴ : StarModule R A\ninst✝³ : Semiring B\ninst✝² : Algebra R B\ninst✝¹ : StarRing B\ninst✝ : StarModule R B\nS : StarSubalgebra R A\nh : S = ⊤\nx : A\n⊢ x ∈ ⊤", "tactic": "exact mem_top" }, { "state_after": "case h\nF : Type ?u.755056\nR : Type u_1\nA : Type u_2\nB : Type ?u.755065\ninst✝⁹ : CommSemiring R\ninst✝⁸ : StarRing R\ninst✝⁷ : Semiring A\ninst✝⁶ : Algebra R A\ninst✝⁵ : StarRing A\ninst✝⁴ : StarModule R A\ninst✝³ : Semiring B\ninst✝² : Algebra R B\ninst✝¹ : StarRing B\ninst✝ : StarModule R B\nS : StarSubalgebra R A\nh : ∀ (x : A), x ∈ S\nx : A\n⊢ x ∈ S ↔ x ∈ ⊤", "state_before": "F : Type ?u.755056\nR : Type u_1\nA : Type u_2\nB : Type ?u.755065\ninst✝⁹ : CommSemiring R\ninst✝⁸ : StarRing R\ninst✝⁷ : Semiring A\ninst✝⁶ : Algebra R A\ninst✝⁵ : StarRing A\ninst✝⁴ : StarModule R A\ninst✝³ : Semiring B\ninst✝² : Algebra R B\ninst✝¹ : StarRing B\ninst✝ : StarModule R B\nS : StarSubalgebra R A\nh : ∀ (x : A), x ∈ S\n⊢ S = ⊤", "tactic": "ext x" }, { "state_after": "no goals", "state_before": "case h\nF : Type ?u.755056\nR : Type u_1\nA : Type u_2\nB : Type ?u.755065\ninst✝⁹ : CommSemiring R\ninst✝⁸ : StarRing R\ninst✝⁷ : Semiring A\ninst✝⁶ : Algebra R A\ninst✝⁵ : StarRing A\ninst✝⁴ : StarModule R A\ninst✝³ : Semiring B\ninst✝² : Algebra R B\ninst✝¹ : StarRing B\ninst✝ : StarModule R B\nS : StarSubalgebra R A\nh : ∀ (x : A), x ∈ S\nx : A\n⊢ x ∈ S ↔ x ∈ ⊤", "tactic": "exact ⟨fun _ => mem_top, fun _ => h x⟩" } ]
[ 715, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 713, 1 ]
Mathlib/LinearAlgebra/Dfinsupp.lean
Dfinsupp.mapRange.linearEquiv_refl
[]
[ 242, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 240, 1 ]
Mathlib/Tactic/Abel.lean
Mathlib.Tactic.Abel.term_atomg
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddCommGroup α\nx : α\n⊢ x = termg 1 x 0", "tactic": "simp [termg]" } ]
[ 236, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_fract_left'
[ { "state_after": "α : Type u_1\nβ : Type ?u.22476\nγ : Type ?u.22479\ninst✝⁴ : LinearOrderedRing α\ninst✝³ : FloorRing α\ninst✝² : TopologicalSpace α\ninst✝¹ : OrderClosedTopology α\ninst✝ : TopologicalAddGroup α\nn : ℤ\n⊢ Tendsto fract (𝓝[Iio ↑n] ↑n) (𝓝 (↑n - (↑n - 1)))", "state_before": "α : Type u_1\nβ : Type ?u.22476\nγ : Type ?u.22479\ninst✝⁴ : LinearOrderedRing α\ninst✝³ : FloorRing α\ninst✝² : TopologicalSpace α\ninst✝¹ : OrderClosedTopology α\ninst✝ : TopologicalAddGroup α\nn : ℤ\n⊢ Tendsto fract (𝓝[Iio ↑n] ↑n) (𝓝 1)", "tactic": "rw [← sub_sub_cancel (n : α) 1]" }, { "state_after": "α : Type u_1\nβ : Type ?u.22476\nγ : Type ?u.22479\ninst✝⁴ : LinearOrderedRing α\ninst✝³ : FloorRing α\ninst✝² : TopologicalSpace α\ninst✝¹ : OrderClosedTopology α\ninst✝ : TopologicalAddGroup α\nn : ℤ\n⊢ Tendsto (fun x => ↑⌊x⌋) (𝓝[Iio ↑n] ↑n) (𝓝 (↑n - 1))", "state_before": "α : Type u_1\nβ : Type ?u.22476\nγ : Type ?u.22479\ninst✝⁴ : LinearOrderedRing α\ninst✝³ : FloorRing α\ninst✝² : TopologicalSpace α\ninst✝¹ : OrderClosedTopology α\ninst✝ : TopologicalAddGroup α\nn : ℤ\n⊢ Tendsto fract (𝓝[Iio ↑n] ↑n) (𝓝 (↑n - (↑n - 1)))", "tactic": "refine (tendsto_id.mono_left nhdsWithin_le_nhds).sub ?_" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.22476\nγ : Type ?u.22479\ninst✝⁴ : LinearOrderedRing α\ninst✝³ : FloorRing α\ninst✝² : TopologicalSpace α\ninst✝¹ : OrderClosedTopology α\ninst✝ : TopologicalAddGroup α\nn : ℤ\n⊢ Tendsto (fun x => ↑⌊x⌋) (𝓝[Iio ↑n] ↑n) (𝓝 (↑n - 1))", "tactic": "exact tendsto_floor_left' n" } ]
[ 171, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 167, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.inter_smul_union_subset_union
[]
[ 1407, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1406, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/InverseDeriv.lean
Real.hasDerivWithinAt_arccos_Iic
[]
[ 161, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 159, 1 ]
Mathlib/Data/Matrix/Block.lean
Matrix.blockDiagonal_apply_ne
[]
[ 371, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 369, 1 ]
Mathlib/Order/CompleteLattice.lean
iSup_true
[]
[ 1300, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1299, 1 ]
Mathlib/Data/Nat/ModEq.lean
Nat.modEq_and_modEq_iff_modEq_mul
[ { "state_after": "m✝ n✝ a✝ b✝ c d a b m n : ℕ\nhmn : coprime m n\nh : m ∣ Int.natAbs (↑b - ↑a) ∧ n ∣ Int.natAbs (↑b - ↑a)\n⊢ a ≡ b [MOD m * n]", "state_before": "m✝ n✝ a✝ b✝ c d a b m n : ℕ\nhmn : coprime m n\nh : a ≡ b [MOD m] ∧ a ≡ b [MOD n]\n⊢ a ≡ b [MOD m * n]", "tactic": "rw [Nat.modEq_iff_dvd, Nat.modEq_iff_dvd, ← Int.dvd_natAbs, Int.coe_nat_dvd, ← Int.dvd_natAbs,\n Int.coe_nat_dvd] at h" }, { "state_after": "m✝ n✝ a✝ b✝ c d a b m n : ℕ\nhmn : coprime m n\nh : m ∣ Int.natAbs (↑b - ↑a) ∧ n ∣ Int.natAbs (↑b - ↑a)\n⊢ m * n ∣ Int.natAbs (↑b - ↑a)", "state_before": "m✝ n✝ a✝ b✝ c d a b m n : ℕ\nhmn : coprime m n\nh : m ∣ Int.natAbs (↑b - ↑a) ∧ n ∣ Int.natAbs (↑b - ↑a)\n⊢ a ≡ b [MOD m * n]", "tactic": "rw [Nat.modEq_iff_dvd, ← Int.dvd_natAbs, Int.coe_nat_dvd]" }, { "state_after": "no goals", "state_before": "m✝ n✝ a✝ b✝ c d a b m n : ℕ\nhmn : coprime m n\nh : m ∣ Int.natAbs (↑b - ↑a) ∧ n ∣ Int.natAbs (↑b - ↑a)\n⊢ m * n ∣ Int.natAbs (↑b - ↑a)", "tactic": "exact hmn.mul_dvd_of_dvd_of_dvd h.1 h.2" } ]
[ 388, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 381, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Basic.lean
summable_iff_of_summable_sub
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.406920\nδ : Type ?u.406923\ninst✝² : AddCommGroup α\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalAddGroup α\nf g : β → α\na a₁ a₂ : α\nhfg : Summable fun b => f b - g b\nhf : Summable f\n⊢ Summable fun b => g b - f b", "tactic": "simpa only [neg_sub] using hfg.neg" } ]
[ 835, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 833, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.mem_singleton
[]
[ 682, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 681, 1 ]
Mathlib/Algebra/Associated.lean
dvd_dvd_iff_associated
[]
[ 564, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 563, 1 ]
Mathlib/Order/WellFoundedSet.lean
Finset.isPwo_bUnion
[]
[ 606, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 604, 1 ]
Mathlib/Algebra/CharP/Basic.lean
frobenius_nat_cast
[]
[ 406, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 405, 1 ]
Mathlib/Data/Real/Basic.lean
Real.of_near
[]
[ 671, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 665, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Diagonal.lean
CategoryTheory.Limits.pullbackDiagonalMapIso_hom_fst
[ { "state_after": "C : Type u_2\ninst✝² : Category C\nX Y Z : C\ninst✝¹ : HasPullbacks C\nU V₁ V₂ : C\nf : X ⟶ Y\ni : U ⟶ Y\ni₁ : V₁ ⟶ pullback f i\ni₂ : V₂ ⟶ pullback f i\ninst✝ : HasPullback i₁ i₂\n⊢ (Iso.mk (lift (snd ≫ fst) (snd ≫ snd) (_ : (snd ≫ fst) ≫ i₁ = (snd ≫ snd) ≫ i₂))\n (lift (fst ≫ i₁ ≫ fst)\n (map i₁ i₂ (i₁ ≫ snd) (i₂ ≫ snd) (𝟙 V₁) (𝟙 V₂) snd (_ : i₁ ≫ snd = 𝟙 V₁ ≫ i₁ ≫ snd)\n (_ : i₂ ≫ snd = 𝟙 V₂ ≫ i₂ ≫ snd))\n (_ :\n (fst ≫ i₁ ≫ fst) ≫ diagonal f =\n map i₁ i₂ (i₁ ≫ snd) (i₂ ≫ snd) (𝟙 V₁) (𝟙 V₂) snd (_ : i₁ ≫ snd = 𝟙 V₁ ≫ i₁ ≫ snd)\n (_ : i₂ ≫ snd = 𝟙 V₂ ≫ i₂ ≫ snd) ≫\n map (i₁ ≫ snd) (i₂ ≫ snd) f f (i₁ ≫ fst) (i₂ ≫ fst) i (_ : (i₁ ≫ snd) ≫ i = (i₁ ≫ fst) ≫ f)\n (_ : (i₂ ≫ snd) ≫ i = (i₂ ≫ fst) ≫ f)))).hom ≫\n fst =\n snd ≫ fst", "state_before": "C : Type u_2\ninst✝² : Category C\nX Y Z : C\ninst✝¹ : HasPullbacks C\nU V₁ V₂ : C\nf : X ⟶ Y\ni : U ⟶ Y\ni₁ : V₁ ⟶ pullback f i\ni₂ : V₂ ⟶ pullback f i\ninst✝ : HasPullback i₁ i₂\n⊢ (pullbackDiagonalMapIso f i i₁ i₂).hom ≫ fst = snd ≫ fst", "tactic": "delta pullbackDiagonalMapIso" }, { "state_after": "no goals", "state_before": "C : Type u_2\ninst✝² : Category C\nX Y Z : C\ninst✝¹ : HasPullbacks C\nU V₁ V₂ : C\nf : X ⟶ Y\ni : U ⟶ Y\ni₁ : V₁ ⟶ pullback f i\ni₂ : V₂ ⟶ pullback f i\ninst✝ : HasPullback i₁ i₂\n⊢ (Iso.mk (lift (snd ≫ fst) (snd ≫ snd) (_ : (snd ≫ fst) ≫ i₁ = (snd ≫ snd) ≫ i₂))\n (lift (fst ≫ i₁ ≫ fst)\n (map i₁ i₂ (i₁ ≫ snd) (i₂ ≫ snd) (𝟙 V₁) (𝟙 V₂) snd (_ : i₁ ≫ snd = 𝟙 V₁ ≫ i₁ ≫ snd)\n (_ : i₂ ≫ snd = 𝟙 V₂ ≫ i₂ ≫ snd))\n (_ :\n (fst ≫ i₁ ≫ fst) ≫ diagonal f =\n map i₁ i₂ (i₁ ≫ snd) (i₂ ≫ snd) (𝟙 V₁) (𝟙 V₂) snd (_ : i₁ ≫ snd = 𝟙 V₁ ≫ i₁ ≫ snd)\n (_ : i₂ ≫ snd = 𝟙 V₂ ≫ i₂ ≫ snd) ≫\n map (i₁ ≫ snd) (i₂ ≫ snd) f f (i₁ ≫ fst) (i₂ ≫ fst) i (_ : (i₁ ≫ snd) ≫ i = (i₁ ≫ fst) ≫ f)\n (_ : (i₂ ≫ snd) ≫ i = (i₂ ≫ fst) ≫ f)))).hom ≫\n fst =\n snd ≫ fst", "tactic": "simp" } ]
[ 158, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/RingTheory/Ideal/QuotientOperations.lean
Ideal.mk_ker
[ { "state_after": "case h\nR : Type u\nS : Type v\nF : Type w\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nI : Ideal R\nx✝ : R\n⊢ x✝ ∈ RingHom.ker (Quotient.mk I) ↔ x✝ ∈ I", "state_before": "R : Type u\nS : Type v\nF : Type w\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nI : Ideal R\n⊢ RingHom.ker (Quotient.mk I) = I", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nR : Type u\nS : Type v\nF : Type w\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nI : Ideal R\nx✝ : R\n⊢ x✝ ∈ RingHom.ker (Quotient.mk I) ↔ x✝ ∈ I", "tactic": "rw [RingHom.ker, mem_comap, @Submodule.mem_bot _ _ _ _ Semiring.toModule _,\n Quotient.eq_zero_iff_mem]" } ]
[ 106, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 103, 1 ]
Mathlib/Combinatorics/Derangements/Basic.lean
mem_derangements_iff_fixedPoints_eq_empty
[]
[ 44, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 42, 1 ]
Mathlib/Analysis/Calculus/MeanValue.lean
strictMono_of_deriv_pos
[]
[ 908, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 905, 1 ]
Mathlib/Order/FixedPoints.lean
OrderHom.lfp_lfp
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : CompleteLattice α\ninst✝ : CompleteLattice β\nf : β →o α\ng : α →o β\nh : α →o α →o α\na : α := ↑lfp (comp lfp h)\n⊢ ↑lfp (comp lfp h) = ↑lfp (onDiag h)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : CompleteLattice α\ninst✝ : CompleteLattice β\nf : β →o α\ng : α →o β\nh : α →o α →o α\n⊢ ↑lfp (comp lfp h) = ↑lfp (onDiag h)", "tactic": "let a := lfp (lfp.comp h)" }, { "state_after": "case refine'_1\nα : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : CompleteLattice α\ninst✝ : CompleteLattice β\nf : β →o α\ng : α →o β\nh : α →o α →o α\na : α := ↑lfp (comp lfp h)\n⊢ ↑(comp lfp h) (↑lfp (onDiag h)) ≤ ↑lfp (onDiag h)\n\ncase refine'_2\nα : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : CompleteLattice α\ninst✝ : CompleteLattice β\nf : β →o α\ng : α →o β\nh : α →o α →o α\na : α := ↑lfp (comp lfp h)\n⊢ ↑(onDiag h) (↑lfp (comp lfp h)) = ↑lfp (comp lfp h)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : CompleteLattice α\ninst✝ : CompleteLattice β\nf : β →o α\ng : α →o β\nh : α →o α →o α\na : α := ↑lfp (comp lfp h)\n⊢ ↑lfp (comp lfp h) = ↑lfp (onDiag h)", "tactic": "refine' (lfp_le _ _).antisymm (lfp_le _ (Eq.le _))" }, { "state_after": "case refine'_2\nα : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : CompleteLattice α\ninst✝ : CompleteLattice β\nf : β →o α\ng : α →o β\nh : α →o α →o α\na : α := ↑lfp (comp lfp h)\nha : (↑lfp ∘ ↑h) a = a\n⊢ ↑(onDiag h) (↑lfp (comp lfp h)) = ↑lfp (comp lfp h)", "state_before": "case refine'_2\nα : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : CompleteLattice α\ninst✝ : CompleteLattice β\nf : β →o α\ng : α →o β\nh : α →o α →o α\na : α := ↑lfp (comp lfp h)\n⊢ ↑(onDiag h) (↑lfp (comp lfp h)) = ↑lfp (comp lfp h)", "tactic": "have ha : (lfp ∘ h) a = a := (lfp.comp h).map_lfp" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : CompleteLattice α\ninst✝ : CompleteLattice β\nf : β →o α\ng : α →o β\nh : α →o α →o α\na : α := ↑lfp (comp lfp h)\nha : (↑lfp ∘ ↑h) a = a\n⊢ ↑(onDiag h) (↑lfp (comp lfp h)) = ↑lfp (comp lfp h)", "tactic": "calc\n h a a = h a (lfp (h a)) := congr_arg (h a) ha.symm\n _ = lfp (h a) := (h a).map_lfp\n _ = a := ha" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : CompleteLattice α\ninst✝ : CompleteLattice β\nf : β →o α\ng : α →o β\nh : α →o α →o α\na : α := ↑lfp (comp lfp h)\n⊢ ↑(comp lfp h) (↑lfp (onDiag h)) ≤ ↑lfp (onDiag h)", "tactic": "exact lfp_le _ h.onDiag.map_lfp.le" } ]
[ 177, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 169, 1 ]
Mathlib/Order/Chain.lean
Flag.chain_le
[]
[ 333, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 332, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.insert_ne_self
[]
[ 1108, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1107, 1 ]
Mathlib/Data/Int/ModEq.lean
Dvd.dvd.modEq_zero_int
[]
[ 90, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 1 ]
Mathlib/Probability/Independence/Basic.lean
ProbabilityTheory.iIndepFun.indepFun
[]
[ 304, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 301, 1 ]
Mathlib/Order/Hom/Lattice.lean
LatticeHom.coe_comp_sup_hom
[]
[ 1124, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1122, 1 ]
Mathlib/Topology/Order/Basic.lean
Ioc_mem_nhdsWithin_Iio'
[]
[ 484, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 483, 1 ]
Mathlib/GroupTheory/Subgroup/Basic.lean
Subgroup.inf_subgroupOf_right
[]
[ 1676, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1675, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.isLittleO_norm_right
[ { "state_after": "α : Type u_1\nβ : Type ?u.121013\nE : Type u_2\nF : Type ?u.121019\nG : Type ?u.121022\nE' : Type ?u.121025\nF' : Type u_3\nG' : Type ?u.121031\nE'' : Type ?u.121034\nF'' : Type ?u.121037\nG'' : Type ?u.121040\nR : Type ?u.121043\nR' : Type ?u.121046\n𝕜 : Type ?u.121049\n𝕜' : Type ?u.121052\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nu v : α → ℝ\n⊢ (∀ ⦃c : ℝ⦄, 0 < c → IsBigOWith c l f fun x => ‖g' x‖) ↔ ∀ ⦃c : ℝ⦄, 0 < c → IsBigOWith c l f g'", "state_before": "α : Type u_1\nβ : Type ?u.121013\nE : Type u_2\nF : Type ?u.121019\nG : Type ?u.121022\nE' : Type ?u.121025\nF' : Type u_3\nG' : Type ?u.121031\nE'' : Type ?u.121034\nF'' : Type ?u.121037\nG'' : Type ?u.121040\nR : Type ?u.121043\nR' : Type ?u.121046\n𝕜 : Type ?u.121049\n𝕜' : Type ?u.121052\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nu v : α → ℝ\n⊢ (f =o[l] fun x => ‖g' x‖) ↔ f =o[l] g'", "tactic": "simp only [IsLittleO_def]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.121013\nE : Type u_2\nF : Type ?u.121019\nG : Type ?u.121022\nE' : Type ?u.121025\nF' : Type u_3\nG' : Type ?u.121031\nE'' : Type ?u.121034\nF'' : Type ?u.121037\nG'' : Type ?u.121040\nR : Type ?u.121043\nR' : Type ?u.121046\n𝕜 : Type ?u.121049\n𝕜' : Type ?u.121052\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nu v : α → ℝ\n⊢ (∀ ⦃c : ℝ⦄, 0 < c → IsBigOWith c l f fun x => ‖g' x‖) ↔ ∀ ⦃c : ℝ⦄, 0 < c → IsBigOWith c l f g'", "tactic": "exact forall₂_congr fun _ _ => isBigOWith_norm_right" } ]
[ 735, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 733, 1 ]
Mathlib/Logic/Basic.lean
BAll.imp_right
[]
[ 1047, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1046, 1 ]
Mathlib/MeasureTheory/Constructions/Pi.lean
MeasureTheory.Measure.tprod_nil
[]
[ 239, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 238, 1 ]
Mathlib/Data/List/Sort.lean
List.orderedInsert_count
[ { "state_after": "α : Type uu\nr : α → α → Prop\ninst✝¹ : DecidableRel r\ninst✝ : DecidableEq α\nL : List α\na b : α\n⊢ (if a = b then Nat.succ (count a L) else count a L) = count a L + if a = b then 1 else 0", "state_before": "α : Type uu\nr : α → α → Prop\ninst✝¹ : DecidableRel r\ninst✝ : DecidableEq α\nL : List α\na b : α\n⊢ count a (orderedInsert r b L) = count a L + if a = b then 1 else 0", "tactic": "rw [(L.perm_orderedInsert r b).count_eq, count_cons]" }, { "state_after": "no goals", "state_before": "α : Type uu\nr : α → α → Prop\ninst✝¹ : DecidableRel r\ninst✝ : DecidableEq α\nL : List α\na b : α\n⊢ (if a = b then Nat.succ (count a L) else count a L) = count a L + if a = b then 1 else 0", "tactic": "split_ifs <;> simp only [Nat.succ_eq_add_one, add_zero]" } ]
[ 240, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 237, 1 ]
Mathlib/SetTheory/Ordinal/FixedPoint.lean
Ordinal.IsNormal.le_iff_deriv
[ { "state_after": "f✝ : Ordinal → Ordinal\nf : Ordinal → Ordinal\nH : IsNormal f\na : Ordinal\n⊢ f a ≤ a ↔ ∃ o, derivFamily (fun x => f) o = a", "state_before": "f✝ : Ordinal → Ordinal\nf : Ordinal → Ordinal\nH : IsNormal f\na : Ordinal\n⊢ f a ≤ a ↔ ∃ o, deriv f o = a", "tactic": "unfold deriv" }, { "state_after": "f✝ : Ordinal → Ordinal\nf : Ordinal → Ordinal\nH : IsNormal f\na : Ordinal\n⊢ f a ≤ a ↔ Unit → f a ≤ a", "state_before": "f✝ : Ordinal → Ordinal\nf : Ordinal → Ordinal\nH : IsNormal f\na : Ordinal\n⊢ f a ≤ a ↔ ∃ o, derivFamily (fun x => f) o = a", "tactic": "rw [← le_iff_derivFamily fun _ : Unit => H]" }, { "state_after": "no goals", "state_before": "f✝ : Ordinal → Ordinal\nf : Ordinal → Ordinal\nH : IsNormal f\na : Ordinal\n⊢ f a ≤ a ↔ Unit → f a ≤ a", "tactic": "exact ⟨fun h _ => h, fun h => h Unit.unit⟩" } ]
[ 545, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 542, 1 ]
Mathlib/Analysis/NormedSpace/OperatorNorm.lean
ContinuousLinearMap.norm_smulRightL
[]
[ 1886, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1885, 1 ]
Mathlib/Data/PFun.lean
PFun.lift_injective
[]
[ 157, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 156, 1 ]
Mathlib/Analysis/Convex/Side.lean
AffineSubspace.wOppSide_iff_exists_left
[ { "state_after": "case mp\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\n⊢ WOppSide s x y → x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)\n\ncase mpr\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\n⊢ (x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) → WOppSide s x y", "state_before": "R : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\n⊢ WOppSide s x y ↔ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)", "tactic": "constructor" }, { "state_after": "case mp.intro.intro.intro.intro.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nh0 : x -ᵥ p₁' = 0\n⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)\n\ncase mp.intro.intro.intro.intro.inr.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nh0 : p₂' -ᵥ y = 0\n⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)\n\ncase mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nr₁ r₂ : R\nhr₁ : 0 < r₁\nhr₂ : 0 < r₂\nhr : r₁ • (x -ᵥ p₁') = r₂ • (p₂' -ᵥ y)\n⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)", "state_before": "case mp\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\n⊢ WOppSide s x y → x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)", "tactic": "rintro ⟨p₁', hp₁', p₂', hp₂', h0 | h0 | ⟨r₁, r₂, hr₁, hr₂, hr⟩⟩" }, { "state_after": "case mp.intro.intro.intro.intro.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nh0 : x = p₁'\n⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)", "state_before": "case mp.intro.intro.intro.intro.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nh0 : x -ᵥ p₁' = 0\n⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)", "tactic": "rw [vsub_eq_zero_iff_eq] at h0" }, { "state_after": "case mp.intro.intro.intro.intro.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nh0 : x = p₁'\n⊢ p₁' ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (p₁' -ᵥ p₁) (p₂ -ᵥ y)", "state_before": "case mp.intro.intro.intro.intro.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nh0 : x = p₁'\n⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)", "tactic": "rw [h0]" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.intro.intro.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nh0 : x = p₁'\n⊢ p₁' ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (p₁' -ᵥ p₁) (p₂ -ᵥ y)", "tactic": "exact Or.inl hp₁'" }, { "state_after": "case mp.intro.intro.intro.intro.inr.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nh0 : p₂' -ᵥ y = 0\n⊢ SameRay R (x -ᵥ p₁) (p₂' -ᵥ y)", "state_before": "case mp.intro.intro.intro.intro.inr.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nh0 : p₂' -ᵥ y = 0\n⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)", "tactic": "refine' Or.inr ⟨p₂', hp₂', _⟩" }, { "state_after": "case mp.intro.intro.intro.intro.inr.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nh0 : p₂' -ᵥ y = 0\n⊢ SameRay R (x -ᵥ p₁) 0", "state_before": "case mp.intro.intro.intro.intro.inr.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nh0 : p₂' -ᵥ y = 0\n⊢ SameRay R (x -ᵥ p₁) (p₂' -ᵥ y)", "tactic": "rw [h0]" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.intro.intro.inr.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nh0 : p₂' -ᵥ y = 0\n⊢ SameRay R (x -ᵥ p₁) 0", "tactic": "exact SameRay.zero_right _" }, { "state_after": "case mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nr₁ r₂ : R\nhr₁ : 0 < r₁\nhr₂ : 0 < r₂\nhr : r₁ • (x -ᵥ p₁') = r₂ • (p₂' -ᵥ y)\n⊢ r₁ • (x -ᵥ p₁) = r₂ • ((-r₁ / r₂) • (p₁ -ᵥ p₁') +ᵥ p₂' -ᵥ y)", "state_before": "case mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nr₁ r₂ : R\nhr₁ : 0 < r₁\nhr₂ : 0 < r₂\nhr : r₁ • (x -ᵥ p₁') = r₂ • (p₂' -ᵥ y)\n⊢ x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)", "tactic": "refine' Or.inr ⟨(-r₁ / r₂) • (p₁ -ᵥ p₁') +ᵥ p₂', s.smul_vsub_vadd_mem _ h hp₁' hp₂',\n Or.inr (Or.inr ⟨r₁, r₂, hr₁, hr₂, _⟩)⟩" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\np₁' : P\nhp₁' : p₁' ∈ s\np₂' : P\nhp₂' : p₂' ∈ s\nr₁ r₂ : R\nhr₁ : 0 < r₁\nhr₂ : 0 < r₂\nhr : r₁ • (x -ᵥ p₁') = r₂ • (p₂' -ᵥ y)\n⊢ r₁ • (x -ᵥ p₁) = r₂ • ((-r₁ / r₂) • (p₁ -ᵥ p₁') +ᵥ p₂' -ᵥ y)", "tactic": "rw [vadd_vsub_assoc, smul_add, ← hr, smul_smul, neg_div, mul_neg,\n mul_div_cancel' _ hr₂.ne.symm, neg_smul, neg_add_eq_sub, ← smul_sub,\n vsub_sub_vsub_cancel_right]" }, { "state_after": "case mpr.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\nh' : x ∈ s\n⊢ WOppSide s x y\n\ncase mpr.inr.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\nh₁ : P\nh₂ : h₁ ∈ s\nh₃ : SameRay R (x -ᵥ p₁) (h₁ -ᵥ y)\n⊢ WOppSide s x y", "state_before": "case mpr\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\n⊢ (x ∈ s ∨ ∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)) → WOppSide s x y", "tactic": "rintro (h' | ⟨h₁, h₂, h₃⟩)" }, { "state_after": "no goals", "state_before": "case mpr.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\nh' : x ∈ s\n⊢ WOppSide s x y", "tactic": "exact wOppSide_of_left_mem y h'" }, { "state_after": "no goals", "state_before": "case mpr.inr.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.254312\nP : Type u_3\nP' : Type ?u.254318\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nh : p₁ ∈ s\nh₁ : P\nh₂ : h₁ ∈ s\nh₃ : SameRay R (x -ᵥ p₁) (h₁ -ᵥ y)\n⊢ WOppSide s x y", "tactic": "exact ⟨p₁, h, h₁, h₂, h₃⟩" } ]
[ 493, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 476, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.Integrable.toL1_coeFn
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.1309276\nδ : Type ?u.1309279\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : { x // x ∈ Lp β 1 }\nhf : Integrable ↑↑f\n⊢ toL1 (↑↑f) hf = f", "tactic": "simp [Integrable.toL1]" } ]
[ 1355, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1354, 1 ]
Mathlib/Data/Finsupp/Pointwise.lean
Finsupp.mul_apply
[]
[ 52, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 51, 1 ]
Mathlib/Geometry/Manifold/SmoothManifoldWithCorners.lean
continuousAt_extChartAt
[]
[ 1095, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1094, 1 ]
Mathlib/Algebra/GroupPower/Lemmas.lean
one_add_mul_le_pow
[]
[ 759, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 758, 1 ]
Mathlib/Algebra/BigOperators/Finprod.lean
finprod_eq_mulIndicator_apply
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.171403\nι : Type ?u.171406\nG : Type ?u.171409\nM : Type u_2\nN : Type ?u.171415\ninst✝¹ : CommMonoid M\ninst✝ : CommMonoid N\ns : Set α\nf : α → M\na : α\n⊢ (∏ᶠ (_ : a ∈ s), f a) = mulIndicator s f a", "tactic": "classical convert finprod_eq_if (M := M) (p := a ∈ s) (x := f a)" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.171403\nι : Type ?u.171406\nG : Type ?u.171409\nM : Type u_2\nN : Type ?u.171415\ninst✝¹ : CommMonoid M\ninst✝ : CommMonoid N\ns : Set α\nf : α → M\na : α\n⊢ (∏ᶠ (_ : a ∈ s), f a) = mulIndicator s f a", "tactic": "convert finprod_eq_if (M := M) (p := a ∈ s) (x := f a)" } ]
[ 365, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 363, 1 ]
Mathlib/Data/Real/CauSeq.lean
CauSeq.pos_add_limZero
[ { "state_after": "case intro\nα : Type u_1\ninst✝ : LinearOrderedField α\nf g : CauSeq α abs\nF : α\nF0 : F > 0\nhF : ∃ i, ∀ (j : ℕ), j ≥ i → F ≤ ↑f j\nH : LimZero g\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → F ≤ ↑f j ∧ abs (↑g j) < F / 2\nj : ℕ\nij : j ≥ i\nh₁ : F ≤ ↑f j\nh₂ : abs (↑g j) < F / 2\n⊢ F / 2 ≤ ↑(f + g) j", "state_before": "α : Type u_1\ninst✝ : LinearOrderedField α\nf g : CauSeq α abs\nF : α\nF0 : F > 0\nhF : ∃ i, ∀ (j : ℕ), j ≥ i → F ≤ ↑f j\nH : LimZero g\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → F ≤ ↑f j ∧ abs (↑g j) < F / 2\nj : ℕ\nij : j ≥ i\n⊢ F / 2 ≤ ↑(f + g) j", "tactic": "cases' h j ij with h₁ h₂" }, { "state_after": "case intro\nα : Type u_1\ninst✝ : LinearOrderedField α\nf g : CauSeq α abs\nF : α\nF0 : F > 0\nhF : ∃ i, ∀ (j : ℕ), j ≥ i → F ≤ ↑f j\nH : LimZero g\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → F ≤ ↑f j ∧ abs (↑g j) < F / 2\nj : ℕ\nij : j ≥ i\nh₁ : F ≤ ↑f j\nh₂ : abs (↑g j) < F / 2\nthis : F + -(F / 2) ≤ ↑f j + ↑g j\n⊢ F / 2 ≤ ↑(f + g) j", "state_before": "case intro\nα : Type u_1\ninst✝ : LinearOrderedField α\nf g : CauSeq α abs\nF : α\nF0 : F > 0\nhF : ∃ i, ∀ (j : ℕ), j ≥ i → F ≤ ↑f j\nH : LimZero g\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → F ≤ ↑f j ∧ abs (↑g j) < F / 2\nj : ℕ\nij : j ≥ i\nh₁ : F ≤ ↑f j\nh₂ : abs (↑g j) < F / 2\n⊢ F / 2 ≤ ↑(f + g) j", "tactic": "have := add_le_add h₁ (le_of_lt (abs_lt.1 h₂).1)" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u_1\ninst✝ : LinearOrderedField α\nf g : CauSeq α abs\nF : α\nF0 : F > 0\nhF : ∃ i, ∀ (j : ℕ), j ≥ i → F ≤ ↑f j\nH : LimZero g\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → F ≤ ↑f j ∧ abs (↑g j) < F / 2\nj : ℕ\nij : j ≥ i\nh₁ : F ≤ ↑f j\nh₂ : abs (↑g j) < F / 2\nthis : F + -(F / 2) ≤ ↑f j + ↑g j\n⊢ F / 2 ≤ ↑(f + g) j", "tactic": "rwa [← sub_eq_add_neg, sub_self_div_two] at this" } ]
[ 691, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 685, 1 ]
Mathlib/Algebra/Module/Injective.lean
Module.injective_iff_injective_object
[]
[ 89, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 85, 1 ]
Mathlib/Data/List/Basic.lean
List.exists_mem_cons_of_exists
[]
[ 293, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 291, 1 ]
Mathlib/Init/CcLemmas.lean
imp_eq_true_of_eq
[]
[ 70, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 69, 1 ]
Mathlib/Combinatorics/SimpleGraph/Regularity/Energy.lean
Finpartition.energy_le_one
[ { "state_after": "α : Type u_1\ninst✝¹ : DecidableEq α\ns : Finset α\nP : Finpartition s\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\n⊢ ↑(card P.parts * card P.parts - card P.parts) ≤ ↑(card P.parts ^ 2)", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ns : Finset α\nP : Finpartition s\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\n⊢ ↑(card (offDiag P.parts)) ≤ 1 * ↑(card P.parts ^ 2)", "tactic": "rw [offDiag_card, one_mul]" }, { "state_after": "α : Type u_1\ninst✝¹ : DecidableEq α\ns : Finset α\nP : Finpartition s\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\n⊢ card P.parts * card P.parts - card P.parts ≤ card P.parts ^ 2", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ns : Finset α\nP : Finpartition s\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\n⊢ ↑(card P.parts * card P.parts - card P.parts) ≤ ↑(card P.parts ^ 2)", "tactic": "norm_cast" }, { "state_after": "α : Type u_1\ninst✝¹ : DecidableEq α\ns : Finset α\nP : Finpartition s\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\n⊢ card P.parts * card P.parts - card P.parts ≤ card P.parts * card P.parts", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ns : Finset α\nP : Finpartition s\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\n⊢ card P.parts * card P.parts - card P.parts ≤ card P.parts ^ 2", "tactic": "rw [sq]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ns : Finset α\nP : Finpartition s\nG : SimpleGraph α\ninst✝ : DecidableRel G.Adj\n⊢ card P.parts * card P.parts - card P.parts ≤ card P.parts * card P.parts", "tactic": "exact tsub_le_self" } ]
[ 61, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 50, 1 ]
Mathlib/Data/Polynomial/AlgebraMap.lean
Polynomial.aeval_endomorphism
[ { "state_after": "R : Type u\nS : Type v\nT : Type w\nA : Type z\nA' : Type ?u.2133490\nB' : Type ?u.2133493\na b : R\nn : ℕ\ninst✝⁴ : CommSemiring A'\ninst✝³ : Semiring B'\nM : Type u_1\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\nv : M\np : R[X]\n⊢ ↑(sum p fun e a => ↑(algebraMap R (M →ₗ[R] M)) a * f ^ e) v = sum p fun n b => b • ↑(f ^ n) v", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\nA' : Type ?u.2133490\nB' : Type ?u.2133493\na b : R\nn : ℕ\ninst✝⁴ : CommSemiring A'\ninst✝³ : Semiring B'\nM : Type u_1\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\nv : M\np : R[X]\n⊢ ↑(↑(aeval f) p) v = sum p fun n b => b • ↑(f ^ n) v", "tactic": "rw [aeval_def, eval₂_eq_sum]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\nA' : Type ?u.2133490\nB' : Type ?u.2133493\na b : R\nn : ℕ\ninst✝⁴ : CommSemiring A'\ninst✝³ : Semiring B'\nM : Type u_1\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\nv : M\np : R[X]\n⊢ ↑(sum p fun e a => ↑(algebraMap R (M →ₗ[R] M)) a * f ^ e) v = sum p fun n b => b • ↑(f ^ n) v", "tactic": "exact (LinearMap.applyₗ v).map_sum" } ]
[ 516, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 513, 1 ]
Mathlib/Data/Set/Basic.lean
Set.eq_empty_of_isEmpty
[]
[ 593, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 592, 1 ]
Mathlib/RingTheory/Ideal/Operations.lean
Ideal.mul_mem_mul_rev
[]
[ 452, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 451, 1 ]
Mathlib/LinearAlgebra/Span.lean
Submodule.map_span_le
[ { "state_after": "R : Type u_1\nR₂ : Type u_2\nK : Type ?u.11034\nM : Type u_3\nM₂ : Type u_4\nV : Type ?u.11043\nS : Type ?u.11046\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\nx : M\np p' : Submodule R M\ninst✝³ : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝² : AddCommMonoid M₂\ninst✝¹ : Module R₂ M₂\ns✝ t : Set M\ninst✝ : RingHomSurjective σ₁₂\nf : M →ₛₗ[σ₁₂] M₂\ns : Set M\nN : Submodule R₂ M₂\n⊢ s ⊆ ↑f ⁻¹' ↑N ↔ ∀ (m : M), m ∈ s → ↑f m ∈ N", "state_before": "R : Type u_1\nR₂ : Type u_2\nK : Type ?u.11034\nM : Type u_3\nM₂ : Type u_4\nV : Type ?u.11043\nS : Type ?u.11046\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\nx : M\np p' : Submodule R M\ninst✝³ : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝² : AddCommMonoid M₂\ninst✝¹ : Module R₂ M₂\ns✝ t : Set M\ninst✝ : RingHomSurjective σ₁₂\nf : M →ₛₗ[σ₁₂] M₂\ns : Set M\nN : Submodule R₂ M₂\n⊢ map f (span R s) ≤ N ↔ ∀ (m : M), m ∈ s → ↑f m ∈ N", "tactic": "rw [f.map_span, span_le, Set.image_subset_iff]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nR₂ : Type u_2\nK : Type ?u.11034\nM : Type u_3\nM₂ : Type u_4\nV : Type ?u.11043\nS : Type ?u.11046\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\nx : M\np p' : Submodule R M\ninst✝³ : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝² : AddCommMonoid M₂\ninst✝¹ : Module R₂ M₂\ns✝ t : Set M\ninst✝ : RingHomSurjective σ₁₂\nf : M →ₛₗ[σ₁₂] M₂\ns : Set M\nN : Submodule R₂ M₂\n⊢ s ⊆ ↑f ⁻¹' ↑N ↔ ∀ (m : M), m ∈ s → ↑f m ∈ N", "tactic": "exact Iff.rfl" } ]
[ 111, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Std/Data/Int/DivMod.lean
Int.ediv_eq_zero_of_lt
[]
[ 139, 87 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 137, 1 ]
Mathlib/Probability/ProbabilityMassFunction/Constructions.lean
Pmf.filter_apply_eq_zero_of_not_mem
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.162293\nγ : Type ?u.162296\np : Pmf α\ns : Set α\nh : ∃ a, a ∈ s ∧ a ∈ support p\na : α\nha : ¬a ∈ s\n⊢ ↑(filter p s h) a = 0", "tactic": "rw [filter_apply, Set.indicator_apply_eq_zero.mpr fun ha' => absurd ha' ha, MulZeroClass.zero_mul]" } ]
[ 280, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 279, 1 ]
Mathlib/Analysis/Calculus/Deriv/Polynomial.lean
Polynomial.hasStrictDerivAt_aeval
[ { "state_after": "no goals", "state_before": "𝕜 : Type u\ninst✝⁶ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nE : Type w\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx✝ : 𝕜\ns t : Set 𝕜\nL L₁ L₂ : Filter 𝕜\nR : Type u_1\ninst✝¹ : CommSemiring R\ninst✝ : Algebra R 𝕜\np : 𝕜[X]\nq : R[X]\nx : 𝕜\n⊢ HasStrictDerivAt (fun x => ↑(aeval x) q) (↑(aeval x) (↑derivative q)) x", "tactic": "simpa only [aeval_def, eval₂_eq_eval_map, derivative_map] using\n (q.map (algebraMap R 𝕜)).hasStrictDerivAt x" } ]
[ 80, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 77, 11 ]
Mathlib/RingTheory/WittVector/Basic.lean
WittVector.ghostFun_pow
[ { "state_after": "no goals", "state_before": "p : ℕ\nR : Type u_1\nS : Type ?u.815357\nT : Type ?u.815360\nhp : Fact (Nat.Prime p)\ninst✝² : CommRing R\ninst✝¹ : CommRing S\ninst✝ : CommRing T\nα : Type ?u.815375\nβ : Type ?u.815378\nx y : 𝕎 R\nm : ℕ\n⊢ WittVector.ghostFun (x ^ m) = WittVector.ghostFun x ^ m", "tactic": "ghost_fun_tac X 0 ^ m, ![x.coeff]" } ]
[ 226, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 9 ]
Mathlib/Order/SymmDiff.lean
ofDual_symmDiff
[]
[ 235, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 234, 1 ]
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.le_prod_nonempty_of_submultiplicative
[ { "state_after": "no goals", "state_before": "ι : Type ?u.154312\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.154321\ninst✝¹ : CommMonoid α\ninst✝ : OrderedCommMonoid β\nf : α → β\nh_mul : ∀ (a b : α), f (a * b) ≤ f a * f b\ns : Multiset α\nhs_nonempty : s ≠ ∅\n⊢ ∀ (a b : α), (fun x => True) a → (fun x => True) b → f (a * b) ≤ f a * f b", "tactic": "simp [h_mul]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.154312\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.154321\ninst✝¹ : CommMonoid α\ninst✝ : OrderedCommMonoid β\nf : α → β\nh_mul : ∀ (a b : α), f (a * b) ≤ f a * f b\ns : Multiset α\nhs_nonempty : s ≠ ∅\n⊢ ∀ (a b : α), (fun x => True) a → (fun x => True) b → (fun x => True) (a * b)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "ι : Type ?u.154312\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.154321\ninst✝¹ : CommMonoid α\ninst✝ : OrderedCommMonoid β\nf : α → β\nh_mul : ∀ (a b : α), f (a * b) ≤ f a * f b\ns : Multiset α\nhs_nonempty : s ≠ ∅\n⊢ ∀ (a : α), a ∈ s → (fun x => True) a", "tactic": "simp" } ]
[ 513, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 509, 1 ]
Mathlib/Algebra/Order/Ring/Defs.lean
Monotone.mul_const_of_nonpos
[]
[ 430, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 429, 1 ]
Mathlib/Data/Set/Intervals/OrdConnected.lean
Set.ordConnected_Ioi
[]
[ 146, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]
Mathlib/Data/Set/Basic.lean
Set.Nonempty.inr
[]
[ 503, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 502, 1 ]
Mathlib/Analysis/Analytic/Basic.lean
ContinuousLinearMap.comp_hasFPowerSeriesOnBall
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g✝ : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\ng : F →L[𝕜] G\nh : HasFPowerSeriesOnBall f p x r\ny✝ : E\nhy : y✝ ∈ EMetric.ball 0 r\n⊢ HasSum (fun n => ↑(compFormalMultilinearSeries g p n) fun x => y✝) ((↑g ∘ f) (x + y✝))", "tactic": "simpa only [ContinuousLinearMap.compFormalMultilinearSeries_apply,\n ContinuousLinearMap.compContinuousMultilinearMap_coe, Function.comp_apply] using\n g.hasSum (h.hasSum hy)" } ]
[ 632, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 624, 1 ]
Mathlib/GroupTheory/GroupAction/Group.lean
IsUnit.smul_sub_iff_sub_inv_smul
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝⁵ : Group α\ninst✝⁴ : Monoid β\ninst✝³ : AddGroup β\ninst✝² : DistribMulAction α β\ninst✝¹ : IsScalarTower α β β\ninst✝ : SMulCommClass α β β\nr : α\na : β\n⊢ IsUnit (r • 1 - a) ↔ IsUnit (1 - r⁻¹ • a)", "tactic": "rw [← isUnit_smul_iff r (1 - r⁻¹ • a), smul_sub, smul_inv_smul]" } ]
[ 412, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 410, 1 ]
Mathlib/RingTheory/Polynomial/Pochhammer.lean
pochhammer_zero
[]
[ 54, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/LinearAlgebra/Vandermonde.lean
Matrix.vandermonde_mul_vandermonde_transpose
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn : ℕ\nv w : Fin n → R\ni j : Fin n\n⊢ (vandermonde v ⬝ (vandermonde w)ᵀ) i j = ∑ k : Fin n, (v i * w j) ^ ↑k", "tactic": "simp only [vandermonde_apply, Matrix.mul_apply, Matrix.transpose_apply, mul_pow]" } ]
[ 70, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 68, 1 ]
Mathlib/Geometry/Manifold/LocalInvariantProperties.lean
StructureGroupoid.HasGroupoid.comp
[ { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\n⊢ LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f' ∈ G₁", "state_before": "H✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H✝\nf f' : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\n⊢ ∀ {e e' : LocalHomeomorph H₃ H₁}, e ∈ atlas H₁ H₃ → e' ∈ atlas H₁ H₃ → LocalHomeomorph.symm e ≫ₕ e' ∈ G₁", "tactic": "rintro _ _ ⟨e, f, he, hf, rfl⟩ ⟨e', f', he', hf', rfl⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\n⊢ ∀ (x : H₁),\n x ∈ (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f').toLocalEquiv.source →\n ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f') s ∈ G₁", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\n⊢ LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f' ∈ G₁", "tactic": "apply G₁.locality" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx : x ∈ (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f').toLocalEquiv.source\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f') s ∈ G₁", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\n⊢ ∀ (x : H₁),\n x ∈ (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f').toLocalEquiv.source →\n ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f') s ∈ G₁", "tactic": "intro x hx" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f') s ∈ G₁", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx : x ∈ (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f').toLocalEquiv.source\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f') s ∈ G₁", "tactic": "simp only [mfld_simps] at hx" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f') s ∈ G₁", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f') s ∈ G₁", "tactic": "have hxs : x ∈ f.symm ⁻¹' (e.symm ≫ₕ e').source := by simp only [hx, mfld_simps]" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f') s ∈ G₁", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f') s ∈ G₁", "tactic": "have hxs' : x ∈ f.target ∩ f.symm ⁻¹' ((e.symm ≫ₕ e').source ∩ e.symm ≫ₕ e' ⁻¹' f'.source) :=\n by simp only [hx, mfld_simps]" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ :\n EqOn (↑f' ∘ ↑(LocalHomeomorph.symm e ≫ₕ e') ∘ ↑(LocalHomeomorph.symm f)) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\nhφ_dom : x ∈ φ.source\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f') s ∈ G₁", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f') s ∈ G₁", "tactic": "obtain ⟨φ, hφG₁, hφ, hφ_dom⟩ := LocalInvariantProp.liftPropOn_indep_chart\n (isLocalStructomorphWithinAt_localInvariantProp G₁) (G₁.subset_maximalAtlas hf)\n (G₁.subset_maximalAtlas hf') (H _ (G₂.compatible he he')) hxs' hxs" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f') s ∈ G₁", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ :\n EqOn (↑f' ∘ ↑(LocalHomeomorph.symm e ≫ₕ e') ∘ ↑(LocalHomeomorph.symm f)) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\nhφ_dom : x ∈ φ.source\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f') s ∈ G₁", "tactic": "simp_rw [← LocalHomeomorph.coe_trans, LocalHomeomorph.trans_assoc] at hφ" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f') s ∈ G₁", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm (e ≫ₕ f) ≫ₕ e' ≫ₕ f') s ∈ G₁", "tactic": "simp_rw [LocalHomeomorph.trans_symm_eq_symm_trans_symm, LocalHomeomorph.trans_assoc]" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\nhs : IsOpen (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f') s ∈ G₁", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f') s ∈ G₁", "tactic": "have hs : IsOpen (f.symm ≫ₕ e.symm ≫ₕ e' ≫ₕ f').source :=\n (f.symm ≫ₕ e.symm ≫ₕ e' ≫ₕ f').open_source" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\nhs : IsOpen (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source\n⊢ x ∈ (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source ∩ φ.source\n\ncase intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\nhs : IsOpen (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source\n⊢ LocalHomeomorph.restr (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')\n ((LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source ∩ φ.source) ∈\n G₁", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\nhs : IsOpen (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source\n⊢ ∃ s, IsOpen s ∧ x ∈ s ∧ LocalHomeomorph.restr (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f') s ∈ G₁", "tactic": "refine' ⟨_, hs.inter φ.open_source, _, _⟩" }, { "state_after": "no goals", "state_before": "H✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\n⊢ x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source", "tactic": "simp only [hx, mfld_simps]" }, { "state_after": "no goals", "state_before": "H✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\n⊢ x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)", "tactic": "simp only [hx, mfld_simps]" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\nhs : IsOpen (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source\n⊢ x ∈ (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source ∩ φ.source", "tactic": "simp only [hx, hφ_dom, mfld_simps]" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\nhs : IsOpen (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source\n⊢ LocalHomeomorph.restr (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')\n ((LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source ∩ φ.source) ≈\n LocalHomeomorph.restr φ (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\nhs : IsOpen (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source\n⊢ LocalHomeomorph.restr (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')\n ((LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source ∩ φ.source) ∈\n G₁", "tactic": "refine' G₁.eq_on_source (closedUnderRestriction' hφG₁ hs) _" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\nhs : IsOpen (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source\n⊢ LocalHomeomorph.restr (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f') φ.source ≈\n LocalHomeomorph.restr φ (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\nhs : IsOpen (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source\n⊢ LocalHomeomorph.restr (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')\n ((LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source ∩ φ.source) ≈\n LocalHomeomorph.restr φ (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source", "tactic": "rw [LocalHomeomorph.restr_source_inter]" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\nhs : IsOpen (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source\n⊢ (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source ∩ φ.source ⊆\n ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\nhs : IsOpen (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source\n⊢ LocalHomeomorph.restr (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f') φ.source ≈\n LocalHomeomorph.restr φ (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source", "tactic": "refine' LocalHomeomorph.Set.EqOn.restr_eqOn_source (hφ.mono _)" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2\nH✝ : Type ?u.72128\nM : Type ?u.72131\nH' : Type ?u.72134\nM' : Type ?u.72137\nX : Type ?u.72140\ninst✝¹⁴ : TopologicalSpace H✝\ninst✝¹³ : TopologicalSpace M\ninst✝¹² : ChartedSpace H✝ M\ninst✝¹¹ : TopologicalSpace H'\ninst✝¹⁰ : TopologicalSpace M'\ninst✝⁹ : ChartedSpace H' M'\ninst✝⁸ : TopologicalSpace X\nG : StructureGroupoid H✝\nG' : StructureGroupoid H'\ne✝ e'✝ : LocalHomeomorph M H✝\nf✝ f'✝ : LocalHomeomorph M' H'\nP : (H✝ → H') → Set H✝ → H✝ → Prop\ng g' : M → M'\ns t : Set M\nx✝¹ : M\nQ : (H✝ → H✝) → Set H✝ → H✝ → Prop\nH₁ : Type u_2\ninst✝⁷ : TopologicalSpace H₁\nH₂ : Type u_1\ninst✝⁶ : TopologicalSpace H₂\nH₃ : Type u_3\ninst✝⁵ : TopologicalSpace H₃\ninst✝⁴ : ChartedSpace H₁ H₂\ninst✝³ : ChartedSpace H₂ H₃\nG₁ : StructureGroupoid H₁\ninst✝² : HasGroupoid H₂ G₁\ninst✝¹ : ClosedUnderRestriction G₁\nG₂ : StructureGroupoid H₂\ninst✝ : HasGroupoid H₃ G₂\nH : ∀ (e : LocalHomeomorph H₂ H₂), e ∈ G₂ → LiftPropOn (IsLocalStructomorphWithinAt G₁) (↑e) e.source\nx✝ : ChartedSpace H₁ H₃ := ChartedSpace.comp H₁ H₂ H₃\ne : LocalHomeomorph H₃ H₂\nf : LocalHomeomorph H₂ H₁\nhe : e ∈ atlas H₂ H₃\nhf : f ∈ atlas H₁ H₂\ne' : LocalHomeomorph H₃ H₂\nf' : LocalHomeomorph H₂ H₁\nhe' : e' ∈ atlas H₂ H₃\nhf' : f' ∈ atlas H₁ H₂\nx : H₁\nhx :\n (x ∈ f.target ∧ ↑(LocalHomeomorph.symm f) x ∈ e.target) ∧\n ↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x) ∈ e'.source ∧\n ↑e' (↑(LocalHomeomorph.symm e) (↑(LocalHomeomorph.symm f) x)) ∈ f'.source\nhxs : x ∈ ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source\nhxs' :\n x ∈\n f.target ∩\n ↑(LocalHomeomorph.symm f) ⁻¹'\n ((LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm e ≫ₕ e') ⁻¹' f'.source)\nφ : LocalHomeomorph H₁ H₁\nhφG₁ : φ ∈ G₁\nhφ_dom : x ∈ φ.source\nhφ :\n EqOn (↑(LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f')) (↑φ.toLocalEquiv)\n (↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source)\nhs : IsOpen (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source\n⊢ (LocalHomeomorph.symm f ≫ₕ LocalHomeomorph.symm e ≫ₕ e' ≫ₕ f').toLocalEquiv.source ∩ φ.source ⊆\n ↑(LocalHomeomorph.symm f) ⁻¹' (LocalHomeomorph.symm e ≫ₕ e').toLocalEquiv.source ∩ φ.source", "tactic": "mfld_set_tac" } ]
[ 682, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 658, 1 ]
Mathlib/Order/UpperLower/Basic.lean
UpperSet.mem_inf_iff
[]
[ 587, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 586, 1 ]
Mathlib/Data/Setoid/Partition.lean
IndexedPartition.out_proj
[]
[ 456, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 455, 1 ]
Mathlib/Topology/Homotopy/Basic.lean
ContinuousMap.HomotopyRel.fst_eq_snd
[]
[ 601, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 600, 1 ]
Mathlib/LinearAlgebra/Ray.lean
SameRay.sameRay_pos_smul_left
[]
[ 151, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 150, 1 ]
Mathlib/RingTheory/PowerBasis.lean
PowerBasis.mem_span_pow
[ { "state_after": "R : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\n⊢ (∃ f, degree f < ↑d ∧ y = ↑(aeval x) f) ↔ ∃ f, natDegree f < d ∧ y = ↑(aeval x) f", "state_before": "R : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\n⊢ y ∈ Submodule.span R (Set.range fun i => x ^ ↑i) ↔ ∃ f, natDegree f < d ∧ y = ↑(aeval x) f", "tactic": "rw [mem_span_pow']" }, { "state_after": "case mpr.intro.intro\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\nf : R[X]\nh : natDegree f < d\nhy : y = ↑(aeval x) f\n⊢ ∃ f, degree f < ↑d ∧ y = ↑(aeval x) f", "state_before": "case mpr\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\n⊢ (∃ f, natDegree f < d ∧ y = ↑(aeval x) f) → ∃ f, degree f < ↑d ∧ y = ↑(aeval x) f", "tactic": "rintro ⟨f, h, hy⟩" }, { "state_after": "case mpr.intro.intro\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\nf : R[X]\nh : natDegree f < d\nhy : y = ↑(aeval x) f\n⊢ degree f < ↑d", "state_before": "case mpr.intro.intro\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\nf : R[X]\nh : natDegree f < d\nhy : y = ↑(aeval x) f\n⊢ ∃ f, degree f < ↑d ∧ y = ↑(aeval x) f", "tactic": "refine' ⟨f, _, hy⟩" }, { "state_after": "case pos\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\nf : R[X]\nh : natDegree f < d\nhy : y = ↑(aeval x) f\nhf : f = 0\n⊢ degree f < ↑d\n\ncase neg\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\nf : R[X]\nh : natDegree f < d\nhy : y = ↑(aeval x) f\nhf : ¬f = 0\n⊢ degree f < ↑d", "state_before": "case mpr.intro.intro\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\nf : R[X]\nh : natDegree f < d\nhy : y = ↑(aeval x) f\n⊢ degree f < ↑d", "tactic": "by_cases hf : f = 0" }, { "state_after": "case neg\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : Algebra A B\nK : Type ?u.28630\ninst✝¹ : Field K\nx y : S\nd : ℕ\nf : R[X]\ninst✝ : IsDomain B\nhd : d ≠ 0\nh : natDegree f < d\nhy : y = ↑(aeval x) f\nhf : ¬f = 0\n⊢ ↑(natDegree f) < ↑d", "state_before": "case neg\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\nf : R[X]\nh : natDegree f < d\nhy : y = ↑(aeval x) f\nhf : ¬f = 0\n⊢ degree f < ↑d", "tactic": "simp_all only [degree_eq_natDegree hf]" }, { "state_after": "case pos\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\nf : R[X]\nhy : y = ↑(aeval x) f\nhf : f = 0\nh : 0 < d\n⊢ ⊥ < ↑d", "state_before": "case pos\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\nf : R[X]\nh : natDegree f < d\nhy : y = ↑(aeval x) f\nhf : f = 0\n⊢ degree f < ↑d", "tactic": "simp only [hf, natDegree_zero, degree_zero] at h⊢" }, { "state_after": "no goals", "state_before": "case pos\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\nf : R[X]\nhy : y = ↑(aeval x) f\nhf : f = 0\nh : 0 < d\n⊢ ⊥ < ↑d", "tactic": "first | exact lt_of_le_of_ne (Nat.zero_le d) hd.symm | exact WithBot.bot_lt_coe d" }, { "state_after": "case pos\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\nf : R[X]\nhy : y = ↑(aeval x) f\nhf : f = 0\nh : 0 < d\n⊢ ⊥ < ↑d", "state_before": "case pos\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\nf : R[X]\nhy : y = ↑(aeval x) f\nhf : f = 0\nh : 0 < d\n⊢ ⊥ < ↑d", "tactic": "exact lt_of_le_of_ne (Nat.zero_le d) hd.symm" }, { "state_after": "no goals", "state_before": "case pos\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : IsDomain B\ninst✝¹ : Algebra A B\nK : Type ?u.28630\ninst✝ : Field K\nx y : S\nd : ℕ\nhd : d ≠ 0\nf : R[X]\nhy : y = ↑(aeval x) f\nhf : f = 0\nh : 0 < d\n⊢ ⊥ < ↑d", "tactic": "exact WithBot.bot_lt_coe d" }, { "state_after": "no goals", "state_before": "case neg\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : Algebra A B\nK : Type ?u.28630\ninst✝¹ : Field K\nx y : S\nd : ℕ\nf : R[X]\ninst✝ : IsDomain B\nhd : d ≠ 0\nh : natDegree f < d\nhy : y = ↑(aeval x) f\nhf : ¬f = 0\n⊢ ↑(natDegree f) < ↑d", "tactic": "first | exact WithBot.coe_lt_coe.1 h | exact WithBot.coe_lt_coe.2 h" }, { "state_after": "case neg\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : Algebra A B\nK : Type ?u.28630\ninst✝¹ : Field K\nx y : S\nd : ℕ\nf : R[X]\ninst✝ : IsDomain B\nhd : d ≠ 0\nh : natDegree f < d\nhy : y = ↑(aeval x) f\nhf : ¬f = 0\n⊢ ↑(natDegree f) < ↑d", "state_before": "case neg\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : Algebra A B\nK : Type ?u.28630\ninst✝¹ : Field K\nx y : S\nd : ℕ\nf : R[X]\ninst✝ : IsDomain B\nhd : d ≠ 0\nh : natDegree f < d\nhy : y = ↑(aeval x) f\nhf : ¬f = 0\n⊢ ↑(natDegree f) < ↑d", "tactic": "exact WithBot.coe_lt_coe.1 h" }, { "state_after": "no goals", "state_before": "case neg\nR : Type u_2\nS : Type u_1\nT : Type ?u.27902\ninst✝⁷ : CommRing R\ninst✝⁶ : Ring S\ninst✝⁵ : Algebra R S\nA : Type ?u.28205\nB : Type ?u.28208\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : Algebra A B\nK : Type ?u.28630\ninst✝¹ : Field K\nx y : S\nd : ℕ\nf : R[X]\ninst✝ : IsDomain B\nhd : d ≠ 0\nh : natDegree f < d\nhy : y = ↑(aeval x) f\nhf : ¬f = 0\n⊢ ↑(natDegree f) < ↑d", "tactic": "exact WithBot.coe_lt_coe.2 h" } ]
[ 119, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.Valid.size_eq
[]
[ 1113, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1111, 1 ]
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
MeasureTheory.Measure.haar.prehaar_empty
[ { "state_after": "no goals", "state_before": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : TopologicalSpace G\nK₀ : PositiveCompacts G\nU : Set G\n⊢ prehaar (↑K₀) U ⊥ = 0", "tactic": "rw [prehaar, Compacts.coe_bot, index_empty, Nat.cast_zero, zero_div]" } ]
[ 126, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 125, 1 ]
Mathlib/Algebra/GroupPower/Lemmas.lean
multiplesAddHom_symm_apply
[]
[ 1004, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1002, 1 ]
Mathlib/Data/Nat/Basic.lean
Nat.lt_succ_iff_lt_or_eq
[]
[ 363, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 362, 1 ]
Mathlib/CategoryTheory/NatIso.lean
CategoryTheory.NatIso.cancel_natIso_hom_right
[ { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\nF G : C ⥤ D\nα : F ≅ G\nX : D\nY : C\nf f' : X ⟶ F.obj Y\n⊢ f ≫ α.hom.app Y = f' ≫ α.hom.app Y ↔ f = f'", "tactic": "simp only [cancel_mono, refl]" } ]
[ 142, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 141, 1 ]
Mathlib/RingTheory/GradedAlgebra/Basic.lean
DirectSum.coe_decompose_mul_of_right_mem
[ { "state_after": "case intro\nι : Type u_1\nR : Type ?u.386108\nA : Type u_2\nσ : Type u_3\ninst✝⁹ : Semiring A\ninst✝⁸ : DecidableEq ι\ninst✝⁷ : CanonicallyOrderedAddMonoid ι\ninst✝⁶ : SetLike σ A\ninst✝⁵ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝⁴ : GradedRing 𝒜\na : A\nn✝ i : ι\ninst✝³ : Sub ι\ninst✝² : OrderedSub ι\ninst✝¹ : ContravariantClass ι ι (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\nn : ι\ninst✝ : Decidable (i ≤ n)\nb : { x // x ∈ 𝒜 i }\n⊢ ↑(↑(↑(decompose 𝒜) (a * ↑b)) n) = if i ≤ n then ↑(↑(↑(decompose 𝒜) a) (n - i)) * ↑b else 0", "state_before": "ι : Type u_1\nR : Type ?u.386108\nA : Type u_2\nσ : Type u_3\ninst✝⁹ : Semiring A\ninst✝⁸ : DecidableEq ι\ninst✝⁷ : CanonicallyOrderedAddMonoid ι\ninst✝⁶ : SetLike σ A\ninst✝⁵ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝⁴ : GradedRing 𝒜\na b : A\nn✝ i : ι\ninst✝³ : Sub ι\ninst✝² : OrderedSub ι\ninst✝¹ : ContravariantClass ι ι (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\nn : ι\ninst✝ : Decidable (i ≤ n)\nb_mem : b ∈ 𝒜 i\n⊢ ↑(↑(↑(decompose 𝒜) (a * b)) n) = if i ≤ n then ↑(↑(↑(decompose 𝒜) a) (n - i)) * b else 0", "tactic": "lift b to 𝒜 i using b_mem" }, { "state_after": "no goals", "state_before": "case intro\nι : Type u_1\nR : Type ?u.386108\nA : Type u_2\nσ : Type u_3\ninst✝⁹ : Semiring A\ninst✝⁸ : DecidableEq ι\ninst✝⁷ : CanonicallyOrderedAddMonoid ι\ninst✝⁶ : SetLike σ A\ninst✝⁵ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝⁴ : GradedRing 𝒜\na : A\nn✝ i : ι\ninst✝³ : Sub ι\ninst✝² : OrderedSub ι\ninst✝¹ : ContravariantClass ι ι (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\nn : ι\ninst✝ : Decidable (i ≤ n)\nb : { x // x ∈ 𝒜 i }\n⊢ ↑(↑(↑(decompose 𝒜) (a * ↑b)) n) = if i ≤ n then ↑(↑(↑(decompose 𝒜) a) (n - i)) * ↑b else 0", "tactic": "rw [decompose_mul, decompose_coe, coe_mul_of_apply]" } ]
[ 336, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 333, 1 ]
Mathlib/Algebra/GradedMonoid.lean
SetLike.coe_list_dProd
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nR : Type u_2\nα : Type u_4\nS : Type u_3\ninst✝³ : SetLike S R\ninst✝² : Monoid R\ninst✝¹ : AddMonoid ι\nA : ι → S\ninst✝ : GradedMonoid A\nfι : α → ι\nfA : (a : α) → { x // x ∈ A (fι a) }\nl : List α\n⊢ ↑(List.dProd l fι fA) = List.prod (List.map (fun a => ↑(fA a)) l)", "tactic": "match l with\n| [] =>\n rw [List.dProd_nil, coe_gOne, List.map_nil, List.prod_nil]\n| head::tail =>\n rw [List.dProd_cons, coe_gMul, List.map_cons, List.prod_cons,\n SetLike.coe_list_dProd _ _ _ tail]" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nR : Type u_2\nα : Type u_4\nS : Type u_3\ninst✝³ : SetLike S R\ninst✝² : Monoid R\ninst✝¹ : AddMonoid ι\nA : ι → S\ninst✝ : GradedMonoid A\nfι : α → ι\nfA : (a : α) → { x // x ∈ A (fι a) }\nl : List α\n⊢ ↑(List.dProd [] fι fA) = List.prod (List.map (fun a => ↑(fA a)) [])", "tactic": "rw [List.dProd_nil, coe_gOne, List.map_nil, List.prod_nil]" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nR : Type u_2\nα : Type u_4\nS : Type u_3\ninst✝³ : SetLike S R\ninst✝² : Monoid R\ninst✝¹ : AddMonoid ι\nA : ι → S\ninst✝ : GradedMonoid A\nfι : α → ι\nfA : (a : α) → { x // x ∈ A (fι a) }\nl : List α\nhead : α\ntail : List α\n⊢ ↑(List.dProd (head :: tail) fι fA) = List.prod (List.map (fun a => ↑(fA a)) (head :: tail))", "tactic": "rw [List.dProd_cons, coe_gMul, List.map_cons, List.prod_cons,\n SetLike.coe_list_dProd _ _ _ tail]" } ]
[ 658, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 650, 1 ]
Mathlib/CategoryTheory/Yoneda.lean
CategoryTheory.yonedaEquiv_naturality
[ { "state_after": "C : Type u₁\ninst✝ : Category C\nX Y : C\nF : Cᵒᵖ ⥤ Type v₁\nf : yoneda.obj X ⟶ F\ng : Y ⟶ X\n⊢ (f.app X.op ≫ F.map g.op) (𝟙 X) = f.app Y.op (𝟙 Y ≫ g)", "state_before": "C : Type u₁\ninst✝ : Category C\nX Y : C\nF : Cᵒᵖ ⥤ Type v₁\nf : yoneda.obj X ⟶ F\ng : Y ⟶ X\n⊢ F.map g.op (↑yonedaEquiv f) = ↑yonedaEquiv (yoneda.map g ≫ f)", "tactic": "change (f.app (op X) ≫ F.map g.op) (𝟙 X) = f.app (op Y) (𝟙 Y ≫ g)" }, { "state_after": "C : Type u₁\ninst✝ : Category C\nX Y : C\nF : Cᵒᵖ ⥤ Type v₁\nf : yoneda.obj X ⟶ F\ng : Y ⟶ X\n⊢ ((yoneda.obj X).map g.op ≫ f.app Y.op) (𝟙 X) = f.app Y.op (𝟙 Y ≫ g)", "state_before": "C : Type u₁\ninst✝ : Category C\nX Y : C\nF : Cᵒᵖ ⥤ Type v₁\nf : yoneda.obj X ⟶ F\ng : Y ⟶ X\n⊢ (f.app X.op ≫ F.map g.op) (𝟙 X) = f.app Y.op (𝟙 Y ≫ g)", "tactic": "rw [← f.naturality]" }, { "state_after": "C : Type u₁\ninst✝ : Category C\nX Y : C\nF : Cᵒᵖ ⥤ Type v₁\nf : yoneda.obj X ⟶ F\ng : Y ⟶ X\n⊢ f.app Y.op (g ≫ 𝟙 X) = f.app Y.op (𝟙 Y ≫ g)", "state_before": "C : Type u₁\ninst✝ : Category C\nX Y : C\nF : Cᵒᵖ ⥤ Type v₁\nf : yoneda.obj X ⟶ F\ng : Y ⟶ X\n⊢ ((yoneda.obj X).map g.op ≫ f.app Y.op) (𝟙 X) = f.app Y.op (𝟙 Y ≫ g)", "tactic": "dsimp" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝ : Category C\nX Y : C\nF : Cᵒᵖ ⥤ Type v₁\nf : yoneda.obj X ⟶ F\ng : Y ⟶ X\n⊢ f.app Y.op (g ≫ 𝟙 X) = f.app Y.op (𝟙 Y ≫ g)", "tactic": "simp" } ]
[ 402, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 397, 1 ]
Std/Data/Nat/Gcd.lean
Nat.coprime.gcd_both
[]
[ 347, 31 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 346, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
MvPowerSeries.inv_eq_iff_mul_eq_one
[ { "state_after": "no goals", "state_before": "σ : Type u_1\nR : Type ?u.1927198\nk : Type u_2\ninst✝ : Field k\nφ ψ : MvPowerSeries σ k\nh : ↑(constantCoeff σ k) ψ ≠ 0\n⊢ ψ⁻¹ = φ ↔ φ * ψ = 1", "tactic": "rw [eq_comm, MvPowerSeries.eq_inv_iff_mul_eq_one h]" } ]
[ 1005, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1004, 11 ]
Mathlib/RingTheory/Noetherian.lean
isNoetherian_of_le
[]
[ 121, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 119, 1 ]
Mathlib/Analysis/MeanInequalities.lean
NNReal.inner_le_Lp_mul_Lq_tsum
[ { "state_after": "ι : Type u\ns : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\nH₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)\nbdd : BddAbove (Set.range fun s => ∑ i in s, f i * g i)\n⊢ (Summable fun i => f i * g i) ∧\n (∑' (i : ι), f i * g i) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)", "state_before": "ι : Type u\ns : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\nH₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)\n⊢ (Summable fun i => f i * g i) ∧\n (∑' (i : ι), f i * g i) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)", "tactic": "have bdd : BddAbove (Set.range fun s => ∑ i in s, f i * g i) := by\n refine' ⟨(∑' i, f i ^ p) ^ (1 / p) * (∑' i, g i ^ q) ^ (1 / q), _⟩\n rintro a ⟨s, rfl⟩\n exact H₁ s" }, { "state_after": "ι : Type u\ns : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\nH₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)\nbdd : BddAbove (Set.range fun s => ∑ i in s, f i * g i)\nH₂ : Summable fun i => f i * g i\n⊢ (Summable fun i => f i * g i) ∧\n (∑' (i : ι), f i * g i) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)", "state_before": "ι : Type u\ns : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\nH₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)\nbdd : BddAbove (Set.range fun s => ∑ i in s, f i * g i)\n⊢ (Summable fun i => f i * g i) ∧\n (∑' (i : ι), f i * g i) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)", "tactic": "have H₂ : Summable _ := (hasSum_of_isLUB _ (isLUB_ciSup bdd)).summable" }, { "state_after": "no goals", "state_before": "ι : Type u\ns : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\nH₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)\nbdd : BddAbove (Set.range fun s => ∑ i in s, f i * g i)\nH₂ : Summable fun i => f i * g i\n⊢ (Summable fun i => f i * g i) ∧\n (∑' (i : ι), f i * g i) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)", "tactic": "exact ⟨H₂, tsum_le_of_sum_le H₂ H₁⟩" }, { "state_after": "ι : Type u\ns✝ : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\ns : Finset ι\n⊢ ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)", "state_before": "ι : Type u\ns : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\n⊢ ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)", "tactic": "intro s" }, { "state_after": "case refine'_1\nι : Type u\ns✝ : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\ns : Finset ι\n⊢ (∑ i in s, f i ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p)\n\ncase refine'_2\nι : Type u\ns✝ : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\ns : Finset ι\n⊢ (∑ i in s, g i ^ q) ^ (1 / q) ≤ (∑' (i : ι), g i ^ q) ^ (1 / q)", "state_before": "ι : Type u\ns✝ : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\ns : Finset ι\n⊢ ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)", "tactic": "refine' le_trans (inner_le_Lp_mul_Lq s f g hpq) (mul_le_mul _ _ bot_le bot_le)" }, { "state_after": "case refine'_1\nι : Type u\ns✝ : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\ns : Finset ι\n⊢ ∑ i in s, f i ^ p ≤ ∑' (i : ι), f i ^ p", "state_before": "case refine'_1\nι : Type u\ns✝ : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\ns : Finset ι\n⊢ (∑ i in s, f i ^ p) ^ (1 / p) ≤ (∑' (i : ι), f i ^ p) ^ (1 / p)", "tactic": "rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr hpq.pos)]" }, { "state_after": "no goals", "state_before": "case refine'_1\nι : Type u\ns✝ : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\ns : Finset ι\n⊢ ∑ i in s, f i ^ p ≤ ∑' (i : ι), f i ^ p", "tactic": "exact sum_le_tsum _ (fun _ _ => zero_le _) hf" }, { "state_after": "case refine'_2\nι : Type u\ns✝ : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\ns : Finset ι\n⊢ ∑ i in s, g i ^ q ≤ ∑' (i : ι), g i ^ q", "state_before": "case refine'_2\nι : Type u\ns✝ : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\ns : Finset ι\n⊢ (∑ i in s, g i ^ q) ^ (1 / q) ≤ (∑' (i : ι), g i ^ q) ^ (1 / q)", "tactic": "rw [NNReal.rpow_le_rpow_iff (one_div_pos.mpr hpq.symm.pos)]" }, { "state_after": "no goals", "state_before": "case refine'_2\nι : Type u\ns✝ : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\ns : Finset ι\n⊢ ∑ i in s, g i ^ q ≤ ∑' (i : ι), g i ^ q", "tactic": "exact sum_le_tsum _ (fun _ _ => zero_le _) hg" }, { "state_after": "ι : Type u\ns : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\nH₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)\n⊢ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) ∈\n upperBounds (Set.range fun s => ∑ i in s, f i * g i)", "state_before": "ι : Type u\ns : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\nH₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)\n⊢ BddAbove (Set.range fun s => ∑ i in s, f i * g i)", "tactic": "refine' ⟨(∑' i, f i ^ p) ^ (1 / p) * (∑' i, g i ^ q) ^ (1 / q), _⟩" }, { "state_after": "case intro\nι : Type u\ns✝ : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\nH₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)\ns : Finset ι\n⊢ (fun s => ∑ i in s, f i * g i) s ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)", "state_before": "ι : Type u\ns : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\nH₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)\n⊢ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) ∈\n upperBounds (Set.range fun s => ∑ i in s, f i * g i)", "tactic": "rintro a ⟨s, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro\nι : Type u\ns✝ : Finset ι\nf g : ι → ℝ≥0\np q : ℝ\nhpq : Real.IsConjugateExponent p q\nhf : Summable fun i => f i ^ p\nhg : Summable fun i => g i ^ q\nH₁ : ∀ (s : Finset ι), ∑ i in s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)\ns : Finset ι\n⊢ (fun s => ∑ i in s, f i * g i) s ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)", "tactic": "exact H₁ s" } ]
[ 401, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 384, 1 ]
Std/Data/Int/Lemmas.lean
Int.le_add_of_neg_le_sub_left
[]
[ 1015, 63 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1014, 11 ]
Mathlib/Algebra/Order/Group/Defs.lean
le_inv_mul_iff_mul_le
[ { "state_after": "α : Type u\ninst✝² : Group α\ninst✝¹ : LE α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na b c d : α\n⊢ a * b ≤ a * (a⁻¹ * c) ↔ a * b ≤ c", "state_before": "α : Type u\ninst✝² : Group α\ninst✝¹ : LE α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na b c d : α\n⊢ b ≤ a⁻¹ * c ↔ a * b ≤ c", "tactic": "rw [← mul_le_mul_iff_left a]" }, { "state_after": "no goals", "state_before": "α : Type u\ninst✝² : Group α\ninst✝¹ : LE α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na b c d : α\n⊢ a * b ≤ a * (a⁻¹ * c) ↔ a * b ≤ c", "tactic": "simp" } ]
[ 118, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 116, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.le_natDegree_of_coe_le_degree
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.736582\nhdeg : ↑n ≤ degree p\n⊢ ↑n ≤ ↑(natDegree p)", "tactic": "rwa [degree_eq_natDegree <| ne_zero_of_coe_le_degree hdeg] at hdeg" } ]
[ 1131, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1128, 1 ]
Std/Data/RBMap/Lemmas.lean
Std.RBNode.Ordered.toList_sorted
[]
[ 411, 16 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 410, 1 ]
Mathlib/Order/WithBot.lean
WithBot.recBotCoe_coe
[]
[ 112, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 110, 1 ]
Mathlib/Topology/Perfect.lean
IsClosed.exists_nat_bool_injection_of_not_countable
[ { "state_after": "α : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : PolishSpace α\nC : Set α\nhC : IsClosed C\nhunc : ¬Set.Countable C\nthis : UpgradedPolishSpace α := upgradePolishSpace α\n⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Function.Injective f", "state_before": "α : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : PolishSpace α\nC : Set α\nhC : IsClosed C\nhunc : ¬Set.Countable C\n⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Function.Injective f", "tactic": "letI := upgradePolishSpace α" }, { "state_after": "case intro.intro.intro\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : PolishSpace α\nC : Set α\nhC : IsClosed C\nhunc : ¬Set.Countable C\nthis : UpgradedPolishSpace α := upgradePolishSpace α\nD : Set α\nhD : Perfect D\nDnonempty : Set.Nonempty D\nhDC : D ⊆ C\n⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Function.Injective f", "state_before": "α : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : PolishSpace α\nC : Set α\nhC : IsClosed C\nhunc : ¬Set.Countable C\nthis : UpgradedPolishSpace α := upgradePolishSpace α\n⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Function.Injective f", "tactic": "obtain ⟨D, hD, Dnonempty, hDC⟩ := exists_perfect_nonempty_of_isClosed_of_not_countable hC hunc" }, { "state_after": "case intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : PolishSpace α\nC : Set α\nhC : IsClosed C\nhunc : ¬Set.Countable C\nthis : UpgradedPolishSpace α := upgradePolishSpace α\nD : Set α\nhD : Perfect D\nDnonempty : Set.Nonempty D\nhDC : D ⊆ C\nf : (ℕ → Bool) → α\nhfD : range f ⊆ D\nhf : Continuous f ∧ Function.Injective f\n⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Function.Injective f", "state_before": "case intro.intro.intro\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : PolishSpace α\nC : Set α\nhC : IsClosed C\nhunc : ¬Set.Countable C\nthis : UpgradedPolishSpace α := upgradePolishSpace α\nD : Set α\nhD : Perfect D\nDnonempty : Set.Nonempty D\nhDC : D ⊆ C\n⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Function.Injective f", "tactic": "obtain ⟨f, hfD, hf⟩ := hD.exists_nat_bool_injection Dnonempty" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : PolishSpace α\nC : Set α\nhC : IsClosed C\nhunc : ¬Set.Countable C\nthis : UpgradedPolishSpace α := upgradePolishSpace α\nD : Set α\nhD : Perfect D\nDnonempty : Set.Nonempty D\nhDC : D ⊆ C\nf : (ℕ → Bool) → α\nhfD : range f ⊆ D\nhf : Continuous f ∧ Function.Injective f\n⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Function.Injective f", "tactic": "exact ⟨f, hfD.trans hDC, hf⟩" } ]
[ 330, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 324, 1 ]
Mathlib/Probability/ProbabilityMassFunction/Uniform.lean
Pmf.support_uniformOfFinset
[ { "state_after": "α : Type u_1\nβ : Type ?u.5502\nγ : Type ?u.5505\ns : Finset α\nhs : Finset.Nonempty s\na✝ a : α\nha : a ∈ s\n⊢ ∀ (x : α), x ∈ support (uniformOfFinset s (_ : ∃ x, x ∈ s)) ↔ x ∈ ↑s", "state_before": "α : Type u_1\nβ : Type ?u.5502\nγ : Type ?u.5505\ns : Finset α\nhs : Finset.Nonempty s\na : α\n⊢ ∀ (x : α), x ∈ support (uniformOfFinset s hs) ↔ x ∈ ↑s", "tactic": "let ⟨a, ha⟩ := hs" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.5502\nγ : Type ?u.5505\ns : Finset α\nhs : Finset.Nonempty s\na✝ a : α\nha : a ∈ s\n⊢ ∀ (x : α), x ∈ support (uniformOfFinset s (_ : ∃ x, x ∈ s)) ↔ x ∈ ↑s", "tactic": "simp [mem_support_iff, Finset.ne_empty_of_mem ha]" } ]
[ 71, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 67, 1 ]
Mathlib/Data/Nat/GCD/Basic.lean
Nat.coprime_add_mul_left_left
[ { "state_after": "no goals", "state_before": "m n k : ℕ\n⊢ coprime (m + n * k) n ↔ coprime m n", "tactic": "rw [coprime, coprime, gcd_add_mul_left_left]" } ]
[ 179, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 178, 1 ]
Mathlib/Algebra/Order/Ring/Lemmas.lean
Right.neg_of_mul_neg_left
[]
[ 588, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 587, 1 ]
Mathlib/MeasureTheory/Integral/IntegrableOn.lean
ContinuousOn.aestronglyMeasurable
[ { "state_after": "α : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\n⊢ AEStronglyMeasurable f (Measure.restrict μ s)", "state_before": "α : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\n⊢ AEStronglyMeasurable f (Measure.restrict μ s)", "tactic": "borelize β" }, { "state_after": "α : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\n⊢ IsSeparable (f '' s)", "state_before": "α : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\n⊢ AEStronglyMeasurable f (Measure.restrict μ s)", "tactic": "refine'\n aestronglyMeasurable_iff_aemeasurable_separable.2\n ⟨hf.aemeasurable hs, f '' s, _,\n mem_of_superset (self_mem_ae_restrict hs) (subset_preimage_image _ _)⟩" }, { "state_after": "case inl\nα : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\nh✝ : SecondCountableTopology α\n⊢ IsSeparable (f '' s)\n\ncase inr\nα : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\nh✝ : SecondCountableTopology β\n⊢ IsSeparable (f '' s)", "state_before": "α : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\n⊢ IsSeparable (f '' s)", "tactic": "cases h.out" }, { "state_after": "case inl\nα : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\nh✝ : SecondCountableTopology α\nf' : ↑s → β := Set.restrict s f\n⊢ IsSeparable (f '' s)", "state_before": "case inl\nα : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\nh✝ : SecondCountableTopology α\n⊢ IsSeparable (f '' s)", "tactic": "let f' : s → β := s.restrict f" }, { "state_after": "case inl\nα : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\nh✝ : SecondCountableTopology α\nf' : ↑s → β := Set.restrict s f\nA : Continuous f'\n⊢ IsSeparable (f '' s)", "state_before": "case inl\nα : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\nh✝ : SecondCountableTopology α\nf' : ↑s → β := Set.restrict s f\n⊢ IsSeparable (f '' s)", "tactic": "have A : Continuous f' := continuousOn_iff_continuous_restrict.1 hf" }, { "state_after": "case inl\nα : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\nh✝ : SecondCountableTopology α\nf' : ↑s → β := Set.restrict s f\nA : Continuous f'\nB : IsSeparable univ\n⊢ IsSeparable (f '' s)", "state_before": "case inl\nα : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\nh✝ : SecondCountableTopology α\nf' : ↑s → β := Set.restrict s f\nA : Continuous f'\n⊢ IsSeparable (f '' s)", "tactic": "have B : IsSeparable (univ : Set s) := isSeparable_of_separableSpace _" }, { "state_after": "case h.e'_3\nα : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\nh✝ : SecondCountableTopology α\nf' : ↑s → β := Set.restrict s f\nA : Continuous f'\nB : IsSeparable univ\n⊢ f '' s = f' '' univ", "state_before": "case inl\nα : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\nh✝ : SecondCountableTopology α\nf' : ↑s → β := Set.restrict s f\nA : Continuous f'\nB : IsSeparable univ\n⊢ IsSeparable (f '' s)", "tactic": "convert IsSeparable.image B A using 1" }, { "state_after": "case h.e'_3.h\nα : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\nh✝ : SecondCountableTopology α\nf' : ↑s → β := Set.restrict s f\nA : Continuous f'\nB : IsSeparable univ\nx : β\n⊢ x ∈ f '' s ↔ x ∈ f' '' univ", "state_before": "case h.e'_3\nα : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\nh✝ : SecondCountableTopology α\nf' : ↑s → β := Set.restrict s f\nA : Continuous f'\nB : IsSeparable univ\n⊢ f '' s = f' '' univ", "tactic": "ext x" }, { "state_after": "no goals", "state_before": "case h.e'_3.h\nα : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\nh✝ : SecondCountableTopology α\nf' : ↑s → β := Set.restrict s f\nA : Continuous f'\nB : IsSeparable univ\nx : β\n⊢ x ∈ f '' s ↔ x ∈ f' '' univ", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case inr\nα : Type u_1\nβ : Type u_2\nE : Type ?u.1903104\nF : Type ?u.1903107\ninst✝⁵ : MeasurableSpace α\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\nh : SecondCountableTopologyEither α β\ninst✝¹ : OpensMeasurableSpace α\ninst✝ : PseudoMetrizableSpace β\nf : α → β\ns : Set α\nμ : MeasureTheory.Measure α\nhf : ContinuousOn f s\nhs : MeasurableSet s\nthis✝¹ : MeasurableSpace β := borel β\nthis✝ : BorelSpace β\nh✝ : SecondCountableTopology β\n⊢ IsSeparable (f '' s)", "tactic": "exact isSeparable_of_separableSpace _" } ]
[ 537, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 521, 1 ]
Mathlib/Data/Dfinsupp/Order.lean
Dfinsupp.subset_support_tsub
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nα : ι → Type u_2\ninst✝⁴ : (i : ι) → CanonicallyOrderedAddMonoid (α i)\ninst✝³ : (i : ι) → Sub (α i)\ninst✝² : ∀ (i : ι), OrderedSub (α i)\nf g : Π₀ (i : ι), α i\ni : ι\na b : α i\ninst✝¹ : DecidableEq ι\ninst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)\n⊢ support f \\ support g ⊆ support (f - g)", "tactic": "simp (config := { contextual := true }) [subset_iff]" } ]
[ 244, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 243, 1 ]
Std/Data/AssocList.lean
Std.AssocList.erase_toList
[]
[ 183, 72 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 182, 9 ]
Mathlib/RingTheory/GradedAlgebra/Basic.lean
GradedRing.proj_apply
[]
[ 117, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Mathlib/RingTheory/HahnSeries.lean
HahnSeries.order_le_of_coeff_ne_zero
[]
[ 242, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 239, 1 ]
Mathlib/Topology/Algebra/Order/Field.lean
eventually_nhdsWithin_pos_mul_left
[ { "state_after": "𝕜 : Type u_1\nα : Type ?u.57235\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : TopologicalSpace 𝕜\ninst✝ : OrderTopology 𝕜\nl : Filter α\nf g : α → 𝕜\nx : 𝕜\nhx : 0 < x\np : 𝕜 → Prop\nh : ∀ᶠ (ε : 𝕜) in 𝓝[Ioi 0] 0, p ε\n⊢ ∀ᶠ (ε : 𝕜) in comap (fun x_1 => x * x_1) (𝓝[Ioi 0] 0), p (x * ε)", "state_before": "𝕜 : Type u_1\nα : Type ?u.57235\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : TopologicalSpace 𝕜\ninst✝ : OrderTopology 𝕜\nl : Filter α\nf g : α → 𝕜\nx : 𝕜\nhx : 0 < x\np : 𝕜 → Prop\nh : ∀ᶠ (ε : 𝕜) in 𝓝[Ioi 0] 0, p ε\n⊢ ∀ᶠ (ε : 𝕜) in 𝓝[Ioi 0] 0, p (x * ε)", "tactic": "rw [← nhdsWithin_pos_comap_mul_left hx]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nα : Type ?u.57235\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : TopologicalSpace 𝕜\ninst✝ : OrderTopology 𝕜\nl : Filter α\nf g : α → 𝕜\nx : 𝕜\nhx : 0 < x\np : 𝕜 → Prop\nh : ∀ᶠ (ε : 𝕜) in 𝓝[Ioi 0] 0, p ε\n⊢ ∀ᶠ (ε : 𝕜) in comap (fun x_1 => x * x_1) (𝓝[Ioi 0] 0), p (x * ε)", "tactic": "exact h.comap fun ε => x * ε" } ]
[ 238, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 235, 1 ]