file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Logic/Function/Basic.lean
Function.Injective2.right
[]
[ 935, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 934, 11 ]
Mathlib/Algebra/Periodic.lean
Function.Periodic.const_sub
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.87566\nf g : α → β\nc c₁ c₂ x✝ : α\ninst✝ : AddCommGroup α\nh : Periodic f c\na x : α\n⊢ (fun x => f (a - x)) (x + c) = (fun x => f (a - x)) x", "tactic": "simp only [← sub_sub, h.sub_eq]" } ]
[ 193, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 191, 1 ]
Mathlib/RingTheory/Subring/Basic.lean
Subring.closure_sUnion
[]
[ 1059, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1058, 1 ]
Mathlib/CategoryTheory/Monoidal/Free/Basic.lean
CategoryTheory.FreeMonoidalCategory.mk_ρ_hom
[]
[ 216, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 215, 1 ]
Mathlib/Algebra/Periodic.lean
Function.Antiperiodic.add_const
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.167848\nf g : α → β\nc c₁ c₂ x✝ : α\ninst✝¹ : AddCommSemigroup α\ninst✝ : Neg β\nh : Antiperiodic f c\na x : α\n⊢ (fun x => f (x + a)) (x + c) = -(fun x => f (x + a)) x", "tactic": "simpa only [add_right_comm] using h (x + a)" } ]
[ 441, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 439, 1 ]
Mathlib/Data/Polynomial/CancelLeads.lean
Polynomial.dvd_cancelLeads_of_dvd_of_dvd
[]
[ 86, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 85, 1 ]
Mathlib/Combinatorics/Partition.lean
Nat.Partition.ofComposition_surj
[ { "state_after": "case mk\nα : Type ?u.1285\nn : ℕ\nb : Multiset ℕ\nhb₁ : ∀ {i : ℕ}, i ∈ b → 0 < i\nhb₂ : sum b = n\n⊢ ∃ a, ofComposition n a = { parts := b, parts_pos := hb₁, parts_sum := hb₂ }", "state_before": "α : Type ?u.1285\nn : ℕ\n⊢ Function.Surjective (ofComposition n)", "tactic": "rintro ⟨b, hb₁, hb₂⟩" }, { "state_after": "case mk.intro\nα : Type ?u.1285\nn : ℕ\nb : List ℕ\nhb₁ : ∀ {i : ℕ}, i ∈ Quotient.mk (List.isSetoid ℕ) b → 0 < i\nhb₂ : sum (Quotient.mk (List.isSetoid ℕ) b) = n\n⊢ ∃ a, ofComposition n a = { parts := Quotient.mk (List.isSetoid ℕ) b, parts_pos := hb₁, parts_sum := hb₂ }", "state_before": "case mk\nα : Type ?u.1285\nn : ℕ\nb : Multiset ℕ\nhb₁ : ∀ {i : ℕ}, i ∈ b → 0 < i\nhb₂ : sum b = n\n⊢ ∃ a, ofComposition n a = { parts := b, parts_pos := hb₁, parts_sum := hb₂ }", "tactic": "rcases Quotient.exists_rep b with ⟨b, rfl⟩" }, { "state_after": "case mk.intro\nα : Type ?u.1285\nn : ℕ\nb : List ℕ\nhb₁ : ∀ {i : ℕ}, i ∈ Quotient.mk (List.isSetoid ℕ) b → 0 < i\nhb₂ : sum (Quotient.mk (List.isSetoid ℕ) b) = n\n⊢ List.sum b = n", "state_before": "case mk.intro\nα : Type ?u.1285\nn : ℕ\nb : List ℕ\nhb₁ : ∀ {i : ℕ}, i ∈ Quotient.mk (List.isSetoid ℕ) b → 0 < i\nhb₂ : sum (Quotient.mk (List.isSetoid ℕ) b) = n\n⊢ ∃ a, ofComposition n a = { parts := Quotient.mk (List.isSetoid ℕ) b, parts_pos := hb₁, parts_sum := hb₂ }", "tactic": "refine' ⟨⟨b, fun {i} hi => hb₁ hi, _⟩, Partition.ext _ _ rfl⟩" }, { "state_after": "no goals", "state_before": "case mk.intro\nα : Type ?u.1285\nn : ℕ\nb : List ℕ\nhb₁ : ∀ {i : ℕ}, i ∈ Quotient.mk (List.isSetoid ℕ) b → 0 < i\nhb₂ : sum (Quotient.mk (List.isSetoid ℕ) b) = n\n⊢ List.sum b = n", "tactic": "simpa using hb₂" } ]
[ 85, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Data/Real/Sqrt.lean
Real.neg_sqrt_lt_of_sq_lt
[]
[ 441, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 440, 1 ]
Mathlib/Probability/CondCount.lean
ProbabilityTheory.condCount_inter_self
[ { "state_after": "no goals", "state_before": "Ω : Type u_1\ninst✝¹ : MeasurableSpace Ω\ninst✝ : MeasurableSingletonClass Ω\ns t u : Set Ω\nhs : Set.Finite s\n⊢ ↑↑(condCount s) (s ∩ t) = ↑↑(condCount s) t", "tactic": "rw [condCount, cond_inter_self _ hs.measurableSet]" } ]
[ 103, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 102, 1 ]
Mathlib/Data/Set/Sups.lean
Set.iUnion_image_sup_right
[]
[ 183, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 182, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
LinearIsometry.isComplete_image_iff
[]
[ 249, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 247, 1 ]
Mathlib/NumberTheory/PellMatiyasevic.lean
Pell.n_lt_a_pow
[ { "state_after": "a : ℕ\na1 : 1 < a\nn : ℕ\nIH : n < a ^ n\n⊢ n + 1 < a ^ (n + 1)", "state_before": "a : ℕ\na1 : 1 < a\nn : ℕ\n⊢ n + 1 < a ^ (n + 1)", "tactic": "have IH := n_lt_a_pow n" }, { "state_after": "a : ℕ\na1 : 1 < a\nn : ℕ\nIH : n < a ^ n\nthis : a ^ n + a ^ n ≤ a ^ n * a\n⊢ n + 1 < a ^ (n + 1)", "state_before": "a : ℕ\na1 : 1 < a\nn : ℕ\nIH : n < a ^ n\n⊢ n + 1 < a ^ (n + 1)", "tactic": "have : a ^ n + a ^ n ≤ a ^ n * a := by\n rw [← mul_two]\n exact Nat.mul_le_mul_left _ a1" }, { "state_after": "a : ℕ\na1 : 1 < a\nn : ℕ\nIH : n < a ^ n\nthis : a ^ n + a ^ n ≤ a ^ n * a\n⊢ n + 1 < a ^ n * a", "state_before": "a : ℕ\na1 : 1 < a\nn : ℕ\nIH : n < a ^ n\nthis : a ^ n + a ^ n ≤ a ^ n * a\n⊢ n + 1 < a ^ (n + 1)", "tactic": "simp [_root_.pow_succ']" }, { "state_after": "a : ℕ\na1 : 1 < a\nn : ℕ\nIH : n < a ^ n\nthis : a ^ n + a ^ n ≤ a ^ n * a\n⊢ n + 1 < a ^ n + a ^ n", "state_before": "a : ℕ\na1 : 1 < a\nn : ℕ\nIH : n < a ^ n\nthis : a ^ n + a ^ n ≤ a ^ n * a\n⊢ n + 1 < a ^ n * a", "tactic": "refine' lt_of_lt_of_le _ this" }, { "state_after": "no goals", "state_before": "a : ℕ\na1 : 1 < a\nn : ℕ\nIH : n < a ^ n\nthis : a ^ n + a ^ n ≤ a ^ n * a\n⊢ n + 1 < a ^ n + a ^ n", "tactic": "exact add_lt_add_of_lt_of_le IH (lt_of_le_of_lt (Nat.zero_le _) IH)" }, { "state_after": "a : ℕ\na1 : 1 < a\nn : ℕ\nIH : n < a ^ n\n⊢ a ^ n * 2 ≤ a ^ n * a", "state_before": "a : ℕ\na1 : 1 < a\nn : ℕ\nIH : n < a ^ n\n⊢ a ^ n + a ^ n ≤ a ^ n * a", "tactic": "rw [← mul_two]" }, { "state_after": "no goals", "state_before": "a : ℕ\na1 : 1 < a\nn : ℕ\nIH : n < a ^ n\n⊢ a ^ n * 2 ≤ a ^ n * a", "tactic": "exact Nat.mul_le_mul_left _ a1" } ]
[ 279, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 270, 1 ]
Mathlib/Data/Polynomial/Basic.lean
Polynomial.monomial_pow
[ { "state_after": "case zero\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\nn : ℕ\nr : R\n⊢ ↑(monomial n) r ^ Nat.zero = ↑(monomial (n * Nat.zero)) (r ^ Nat.zero)\n\ncase succ\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\nn : ℕ\nr : R\nk : ℕ\nih : ↑(monomial n) r ^ k = ↑(monomial (n * k)) (r ^ k)\n⊢ ↑(monomial n) r ^ Nat.succ k = ↑(monomial (n * Nat.succ k)) (r ^ Nat.succ k)", "state_before": "R : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\nn : ℕ\nr : R\nk : ℕ\n⊢ ↑(monomial n) r ^ k = ↑(monomial (n * k)) (r ^ k)", "tactic": "induction' k with k ih" }, { "state_after": "no goals", "state_before": "case zero\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\nn : ℕ\nr : R\n⊢ ↑(monomial n) r ^ Nat.zero = ↑(monomial (n * Nat.zero)) (r ^ Nat.zero)", "tactic": "simp [pow_zero, monomial_zero_one]" }, { "state_after": "no goals", "state_before": "case succ\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\nn : ℕ\nr : R\nk : ℕ\nih : ↑(monomial n) r ^ k = ↑(monomial (n * k)) (r ^ k)\n⊢ ↑(monomial n) r ^ Nat.succ k = ↑(monomial (n * Nat.succ k)) (r ^ Nat.succ k)", "tactic": "simp [pow_succ, ih, monomial_mul_monomial, Nat.succ_eq_add_one, mul_add, add_comm]" } ]
[ 456, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 453, 1 ]
Mathlib/Analysis/Normed/Group/Hom.lean
NormedAddGroupHom.norm_eq_of_isometry
[]
[ 855, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 854, 1 ]
Mathlib/Data/Rat/NNRat.lean
NNRat.coe_div
[]
[ 145, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 144, 1 ]
Mathlib/Algebra/Ring/Prod.lean
RingHom.coe_prodMap
[]
[ 263, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 262, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Basic.lean
summable_int_of_summable_nat
[]
[ 1033, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1031, 1 ]
Mathlib/Order/WellFoundedSet.lean
Set.partiallyWellOrderedOn_union
[]
[ 270, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 267, 1 ]
Mathlib/Topology/Order/Basic.lean
comap_coe_Iio_nhdsWithin_Iio
[]
[ 2506, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2505, 1 ]
Mathlib/Data/Seq/Computation.lean
Computation.liftRel_pure_right
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nR : α → β → Prop\nca : Computation α\nb : β\n⊢ LiftRel R ca (pure b) ↔ ∃ a, a ∈ ca ∧ R a b", "tactic": "rw [LiftRel.swap, liftRel_pure_left]" } ]
[ 1188, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1187, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.biUnion_mono
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.517176\ninst✝ : DecidableEq β\ns s₁ s₂ : Finset α\nt t₁ t₂ : α → Finset β\nh : ∀ (a : α), a ∈ s → t₁ a ⊆ t₂ a\nthis : ∀ (b : β) (a : α), a ∈ s → b ∈ t₁ a → ∃ a, a ∈ s ∧ b ∈ t₂ a\n⊢ Finset.biUnion s t₁ ⊆ Finset.biUnion s t₂", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.517176\ninst✝ : DecidableEq β\ns s₁ s₂ : Finset α\nt t₁ t₂ : α → Finset β\nh : ∀ (a : α), a ∈ s → t₁ a ⊆ t₂ a\n⊢ Finset.biUnion s t₁ ⊆ Finset.biUnion s t₂", "tactic": "have : ∀ b a, a ∈ s → b ∈ t₁ a → ∃ a : α, a ∈ s ∧ b ∈ t₂ a := fun b a ha hb =>\n ⟨a, ha, Finset.mem_of_subset (h a ha) hb⟩" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.517176\ninst✝ : DecidableEq β\ns s₁ s₂ : Finset α\nt t₁ t₂ : α → Finset β\nh : ∀ (a : α), a ∈ s → t₁ a ⊆ t₂ a\nthis : ∀ (b : β) (a : α), a ∈ s → b ∈ t₁ a → ∃ a, a ∈ s ∧ b ∈ t₂ a\n⊢ Finset.biUnion s t₁ ⊆ Finset.biUnion s t₂", "tactic": "simpa only [subset_iff, mem_biUnion, exists_imp, and_imp, exists_prop]" } ]
[ 3609, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3606, 1 ]
Mathlib/Data/List/Pairwise.lean
List.pwFilter_cons_of_pos
[]
[ 363, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 361, 1 ]
Std/Data/Int/Lemmas.lean
Int.mul_lt_mul'
[]
[ 1194, 95 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1192, 11 ]
Mathlib/Data/Set/Basic.lean
Set.singleton_union
[]
[ 1326, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1325, 1 ]
Mathlib/Algebra/Order/Group/Defs.lean
inv_le_iff_one_le_mul'
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝² : Group α\ninst✝¹ : LE α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na b c d : α\n⊢ a * a⁻¹ ≤ a * b ↔ 1 ≤ a * b", "tactic": "rw [mul_inv_self]" } ]
[ 130, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.subset_one_iff_eq
[]
[ 134, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 133, 1 ]
Mathlib/Data/Polynomial/FieldDivision.lean
Polynomial.degree_add_div
[ { "state_after": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝ : Field R\np q : R[X]\nhq0 : q ≠ 0\nhpq : degree q ≤ degree p\nthis : degree (p % q) < degree (q * (p / q))\n⊢ degree q + degree (p / q) = degree p", "state_before": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝ : Field R\np q : R[X]\nhq0 : q ≠ 0\nhpq : degree q ≤ degree p\n⊢ degree q + degree (p / q) = degree p", "tactic": "have : degree (p % q) < degree (q * (p / q)) :=\n calc\n degree (p % q) < degree q := EuclideanDomain.mod_lt _ hq0\n _ ≤ _ := degree_le_mul_left _ (mt (div_eq_zero_iff hq0).1 (not_lt_of_ge hpq))" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝ : Field R\np q : R[X]\nhq0 : q ≠ 0\nhpq : degree q ≤ degree p\nthis : degree (p % q) < degree (q * (p / q))\n⊢ degree q + degree (p / q) = degree p", "tactic": "conv_rhs =>\n rw [← EuclideanDomain.div_add_mod p q, degree_add_eq_left_of_degree_lt this, degree_mul]" } ]
[ 260, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 252, 1 ]
Mathlib/MeasureTheory/Integral/CircleIntegral.lean
sum_cauchyPowerSeries_eq_integral
[]
[ 629, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 626, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_const_mul''
[ { "state_after": "α : Type u_1\nβ : Type ?u.935279\nγ : Type ?u.935282\nδ : Type ?u.935285\nm : MeasurableSpace α\nμ ν : Measure α\nr : ℝ≥0∞\nf : α → ℝ≥0∞\nhf : AEMeasurable f\nA : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk f hf a ∂μ\n⊢ (∫⁻ (a : α), r * f a ∂μ) = r * ∫⁻ (a : α), f a ∂μ", "state_before": "α : Type u_1\nβ : Type ?u.935279\nγ : Type ?u.935282\nδ : Type ?u.935285\nm : MeasurableSpace α\nμ ν : Measure α\nr : ℝ≥0∞\nf : α → ℝ≥0∞\nhf : AEMeasurable f\n⊢ (∫⁻ (a : α), r * f a ∂μ) = r * ∫⁻ (a : α), f a ∂μ", "tactic": "have A : (∫⁻ a, f a ∂μ) = ∫⁻ a, hf.mk f a ∂μ := lintegral_congr_ae hf.ae_eq_mk" }, { "state_after": "α : Type u_1\nβ : Type ?u.935279\nγ : Type ?u.935282\nδ : Type ?u.935285\nm : MeasurableSpace α\nμ ν : Measure α\nr : ℝ≥0∞\nf : α → ℝ≥0∞\nhf : AEMeasurable f\nA : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk f hf a ∂μ\nB : (∫⁻ (a : α), r * f a ∂μ) = ∫⁻ (a : α), r * AEMeasurable.mk f hf a ∂μ\n⊢ (∫⁻ (a : α), r * f a ∂μ) = r * ∫⁻ (a : α), f a ∂μ", "state_before": "α : Type u_1\nβ : Type ?u.935279\nγ : Type ?u.935282\nδ : Type ?u.935285\nm : MeasurableSpace α\nμ ν : Measure α\nr : ℝ≥0∞\nf : α → ℝ≥0∞\nhf : AEMeasurable f\nA : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk f hf a ∂μ\n⊢ (∫⁻ (a : α), r * f a ∂μ) = r * ∫⁻ (a : α), f a ∂μ", "tactic": "have B : (∫⁻ a, r * f a ∂μ) = ∫⁻ a, r * hf.mk f a ∂μ :=\n lintegral_congr_ae (EventuallyEq.fun_comp hf.ae_eq_mk _)" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.935279\nγ : Type ?u.935282\nδ : Type ?u.935285\nm : MeasurableSpace α\nμ ν : Measure α\nr : ℝ≥0∞\nf : α → ℝ≥0∞\nhf : AEMeasurable f\nA : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk f hf a ∂μ\nB : (∫⁻ (a : α), r * f a ∂μ) = ∫⁻ (a : α), r * AEMeasurable.mk f hf a ∂μ\n⊢ (∫⁻ (a : α), r * f a ∂μ) = r * ∫⁻ (a : α), f a ∂μ", "tactic": "rw [A, B, lintegral_const_mul _ hf.measurable_mk]" } ]
[ 704, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 699, 1 ]
Mathlib/MeasureTheory/Integral/Bochner.lean
MeasureTheory.integral_const
[ { "state_after": "case inl\nα : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ < ⊤\n⊢ (∫ (x : α), c ∂μ) = ENNReal.toReal (↑↑μ univ) • c\n\ncase inr\nα : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ = ⊤\n⊢ (∫ (x : α), c ∂μ) = ENNReal.toReal (↑↑μ univ) • c", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\n⊢ (∫ (x : α), c ∂μ) = ENNReal.toReal (↑↑μ univ) • c", "tactic": "cases' (@le_top _ _ _ (μ univ)).lt_or_eq with hμ hμ" }, { "state_after": "case inl\nα : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ < ⊤\nthis : IsFiniteMeasure μ\n⊢ (∫ (x : α), c ∂μ) = ENNReal.toReal (↑↑μ univ) • c", "state_before": "case inl\nα : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ < ⊤\n⊢ (∫ (x : α), c ∂μ) = ENNReal.toReal (↑↑μ univ) • c", "tactic": "haveI : IsFiniteMeasure μ := ⟨hμ⟩" }, { "state_after": "case inl\nα : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ < ⊤\nthis : IsFiniteMeasure μ\n⊢ (if hf : Integrable fun x => c then ↑L1.integralCLM (Integrable.toL1 (fun x => c) hf) else 0) =\n ENNReal.toReal (↑↑μ univ) • c", "state_before": "case inl\nα : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ < ⊤\nthis : IsFiniteMeasure μ\n⊢ (∫ (x : α), c ∂μ) = ENNReal.toReal (↑↑μ univ) • c", "tactic": "simp only [integral, L1.integral]" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ < ⊤\nthis : IsFiniteMeasure μ\n⊢ (if hf : Integrable fun x => c then ↑L1.integralCLM (Integrable.toL1 (fun x => c) hf) else 0) =\n ENNReal.toReal (↑↑μ univ) • c", "tactic": "exact setToFun_const (dominatedFinMeasAdditive_weightedSMul _) _" }, { "state_after": "case pos\nα : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ = ⊤\nhc : c = 0\n⊢ (∫ (x : α), c ∂μ) = ENNReal.toReal (↑↑μ univ) • c\n\ncase neg\nα : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ = ⊤\nhc : ¬c = 0\n⊢ (∫ (x : α), c ∂μ) = ENNReal.toReal (↑↑μ univ) • c", "state_before": "case inr\nα : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ = ⊤\n⊢ (∫ (x : α), c ∂μ) = ENNReal.toReal (↑↑μ univ) • c", "tactic": "by_cases hc : c = 0" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ = ⊤\nhc : c = 0\n⊢ (∫ (x : α), c ∂μ) = ENNReal.toReal (↑↑μ univ) • c", "tactic": "simp [hc, integral_zero]" }, { "state_after": "case neg\nα : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ = ⊤\nhc : ¬c = 0\nthis : ¬Integrable fun x => c\n⊢ (∫ (x : α), c ∂μ) = ENNReal.toReal (↑↑μ univ) • c", "state_before": "case neg\nα : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ = ⊤\nhc : ¬c = 0\n⊢ (∫ (x : α), c ∂μ) = ENNReal.toReal (↑↑μ univ) • c", "tactic": "have : ¬Integrable (fun _ : α => c) μ := by\n simp only [integrable_const_iff, not_or]\n exact ⟨hc, hμ.not_lt⟩" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ = ⊤\nhc : ¬c = 0\nthis : ¬Integrable fun x => c\n⊢ (∫ (x : α), c ∂μ) = ENNReal.toReal (↑↑μ univ) • c", "tactic": "simp [integral_undef, *]" }, { "state_after": "α : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ = ⊤\nhc : ¬c = 0\n⊢ ¬c = 0 ∧ ¬↑↑μ univ < ⊤", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ = ⊤\nhc : ¬c = 0\n⊢ ¬Integrable fun x => c", "tactic": "simp only [integrable_const_iff, not_or]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1256042\n𝕜 : Type ?u.1256045\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1258736\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nc : E\nhμ : ↑↑μ univ = ⊤\nhc : ¬c = 0\n⊢ ¬c = 0 ∧ ¬↑↑μ univ < ⊤", "tactic": "exact ⟨hc, hμ.not_lt⟩" } ]
[ 1371, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1361, 1 ]
Mathlib/Order/BoundedOrder.lean
lt_top_iff_ne_top
[]
[ 175, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 174, 1 ]
Mathlib/Data/Nat/ModEq.lean
Dvd.dvd.zero_modEq_nat
[]
[ 87, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 86, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
contDiff_one_iff_deriv
[]
[ 2156, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2155, 1 ]
Mathlib/Logic/Equiv/LocalEquiv.lean
LocalEquiv.copy_eq
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.23151\nδ : Type ?u.23154\ne✝ : LocalEquiv α β\ne' : LocalEquiv β γ\ne : LocalEquiv α β\n⊢ copy e ↑e (_ : ↑e = ↑e) ↑(LocalEquiv.symm e) (_ : ↑(LocalEquiv.symm e) = ↑(LocalEquiv.symm e)) e.source\n (_ : e.source = e.source) e.target (_ : e.target = e.target) =\n e", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.23151\nδ : Type ?u.23154\ne✝ : LocalEquiv α β\ne' : LocalEquiv β γ\ne : LocalEquiv α β\nf : α → β\nhf : ↑e = f\ng : β → α\nhg : ↑(LocalEquiv.symm e) = g\ns : Set α\nhs : e.source = s\nt : Set β\nht : e.target = t\n⊢ copy e f hf g hg s hs t ht = e", "tactic": "substs f g s t" }, { "state_after": "case mk\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.23151\nδ : Type ?u.23154\ne : LocalEquiv α β\ne' : LocalEquiv β γ\ntoFun✝ : α → β\ninvFun✝ : β → α\nsource✝ : Set α\ntarget✝ : Set β\nmap_source'✝ : ∀ ⦃x : α⦄, x ∈ source✝ → toFun✝ x ∈ target✝\nmap_target'✝ : ∀ ⦃x : β⦄, x ∈ target✝ → invFun✝ x ∈ source✝\nleft_inv'✝ : ∀ ⦃x : α⦄, x ∈ source✝ → invFun✝ (toFun✝ x) = x\nright_inv'✝ : ∀ ⦃x : β⦄, x ∈ target✝ → toFun✝ (invFun✝ x) = x\n⊢ copy\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }\n ↑{ toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }\n (_ :\n ↑{ toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ } =\n ↑{ toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ })\n ↑(LocalEquiv.symm\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ })\n (_ :\n ↑(LocalEquiv.symm\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }) =\n ↑(LocalEquiv.symm\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }))\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }.source\n (_ :\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }.source =\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }.source)\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }.target\n (_ :\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }.target =\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }.target) =\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.23151\nδ : Type ?u.23154\ne✝ : LocalEquiv α β\ne' : LocalEquiv β γ\ne : LocalEquiv α β\n⊢ copy e ↑e (_ : ↑e = ↑e) ↑(LocalEquiv.symm e) (_ : ↑(LocalEquiv.symm e) = ↑(LocalEquiv.symm e)) e.source\n (_ : e.source = e.source) e.target (_ : e.target = e.target) =\n e", "tactic": "cases e" }, { "state_after": "no goals", "state_before": "case mk\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.23151\nδ : Type ?u.23154\ne : LocalEquiv α β\ne' : LocalEquiv β γ\ntoFun✝ : α → β\ninvFun✝ : β → α\nsource✝ : Set α\ntarget✝ : Set β\nmap_source'✝ : ∀ ⦃x : α⦄, x ∈ source✝ → toFun✝ x ∈ target✝\nmap_target'✝ : ∀ ⦃x : β⦄, x ∈ target✝ → invFun✝ x ∈ source✝\nleft_inv'✝ : ∀ ⦃x : α⦄, x ∈ source✝ → invFun✝ (toFun✝ x) = x\nright_inv'✝ : ∀ ⦃x : β⦄, x ∈ target✝ → toFun✝ (invFun✝ x) = x\n⊢ copy\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }\n ↑{ toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }\n (_ :\n ↑{ toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ } =\n ↑{ toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ })\n ↑(LocalEquiv.symm\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ })\n (_ :\n ↑(LocalEquiv.symm\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }) =\n ↑(LocalEquiv.symm\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }))\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }.source\n (_ :\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }.source =\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }.source)\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }.target\n (_ :\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }.target =\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }.target) =\n { toFun := toFun✝, invFun := invFun✝, source := source✝, target := target✝, map_source' := map_source'✝,\n map_target' := map_target'✝, left_inv' := left_inv'✝, right_inv' := right_inv'✝ }", "tactic": "rfl" } ]
[ 308, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 303, 1 ]
Mathlib/Topology/Sets/Opens.lean
TopologicalSpace.Opens.mem_iSup
[ { "state_after": "ι✝ : Type ?u.22254\nα : Type u_2\nβ : Type ?u.22260\nγ : Type ?u.22263\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nι : Sort u_1\nx : α\ns : ι → Opens α\n⊢ x ∈ ↑(iSup s) ↔ ∃ i, x ∈ s i", "state_before": "ι✝ : Type ?u.22254\nα : Type u_2\nβ : Type ?u.22260\nγ : Type ?u.22263\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nι : Sort u_1\nx : α\ns : ι → Opens α\n⊢ x ∈ iSup s ↔ ∃ i, x ∈ s i", "tactic": "rw [← SetLike.mem_coe]" }, { "state_after": "no goals", "state_before": "ι✝ : Type ?u.22254\nα : Type u_2\nβ : Type ?u.22260\nγ : Type ?u.22263\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nι : Sort u_1\nx : α\ns : ι → Opens α\n⊢ x ∈ ↑(iSup s) ↔ ∃ i, x ∈ s i", "tactic": "simp" } ]
[ 248, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 246, 1 ]
Mathlib/RingTheory/UniqueFactorizationDomain.lean
Associates.factors_one
[ { "state_after": "case h\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\n⊢ FactorSet.prod (factors 1) = FactorSet.prod 0", "state_before": "α : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\n⊢ factors 1 = 0", "tactic": "apply eq_of_prod_eq_prod" }, { "state_after": "case h\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\n⊢ 1 = FactorSet.prod 0", "state_before": "case h\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\n⊢ FactorSet.prod (factors 1) = FactorSet.prod 0", "tactic": "rw [Associates.factors_prod]" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\n⊢ 1 = FactorSet.prod 0", "tactic": "exact Multiset.prod_zero" } ]
[ 1792, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1789, 1 ]
Mathlib/RingTheory/Ideal/Basic.lean
Ideal.span_zero
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\ninst✝ : Semiring α\nI : Ideal α\na b : α\n⊢ span 0 = ⊥", "tactic": "rw [← Set.singleton_zero, span_singleton_eq_bot]" } ]
[ 206, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 206, 1 ]
Mathlib/Analysis/Convex/Quasiconvex.lean
Antitone.quasilinearOn
[]
[ 229, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 228, 1 ]
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
Ordinal.CNF_zero
[]
[ 85, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 84, 1 ]
Mathlib/Order/WithBot.lean
WithBot.le_ofDual_iff
[]
[ 998, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 996, 1 ]
Mathlib/Algebra/Hom/Centroid.lean
CentroidHom.add_apply
[]
[ 330, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 329, 1 ]
Mathlib/Data/Set/Image.lean
Disjoint.of_image
[]
[ 1598, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1596, 1 ]
Mathlib/Computability/TuringMachine.lean
Turing.TM1to1.trTape_mk'
[ { "state_after": "no goals", "state_before": "Γ : Type u_1\ninst✝² : Inhabited Γ\nΛ : Type ?u.363898\ninst✝¹ : Inhabited Λ\nσ : Type ?u.363904\ninst✝ : Inhabited σ\nn : ℕ\nenc : Γ → Vector Bool n\ndec : Vector Bool n → Γ\nenc0 : enc default = Vector.replicate n false\nL R : ListBlank Γ\n⊢ trTape enc0 (Tape.mk' L R) = trTape' enc0 L R", "tactic": "simp only [trTape, Tape.mk'_left, Tape.mk'_right₀]" } ]
[ 1751, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1750, 1 ]
Mathlib/SetTheory/Cardinal/Cofinality.lean
Ordinal.cof_le_card
[ { "state_after": "α : Type ?u.21105\nr : α → α → Prop\no : Ordinal\n⊢ sInf {a | ∃ ι f, lsub f = o ∧ (#ι) = a} ≤ card o", "state_before": "α : Type ?u.21105\nr : α → α → Prop\no : Ordinal\n⊢ cof o ≤ card o", "tactic": "rw [cof_eq_sInf_lsub]" }, { "state_after": "no goals", "state_before": "α : Type ?u.21105\nr : α → α → Prop\no : Ordinal\n⊢ sInf {a | ∃ ι f, lsub f = o ∧ (#ι) = a} ≤ card o", "tactic": "exact csInf_le' card_mem_cof" } ]
[ 290, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 288, 1 ]
Mathlib/Order/OmegaCompletePartialOrder.lean
OmegaCompletePartialOrder.ContinuousHom.forall_forall_merge'
[ { "state_after": "no goals", "state_before": "α : Type u\nα' : Type ?u.68385\nβ : Type v\nβ' : Type ?u.68390\nγ : Type ?u.68393\nφ : Type ?u.68396\ninst✝⁵ : OmegaCompletePartialOrder α\ninst✝⁴ : OmegaCompletePartialOrder β\ninst✝³ : OmegaCompletePartialOrder γ\ninst✝² : OmegaCompletePartialOrder φ\ninst✝¹ : OmegaCompletePartialOrder α'\ninst✝ : OmegaCompletePartialOrder β'\nc₀ : Chain (α →𝒄 β)\nc₁ : Chain α\nz : β\n⊢ (∀ (j i : ℕ), ↑(↑c₀ i).toOrderHom (↑c₁ j) ≤ z) ↔ ∀ (i : ℕ), ↑(↑c₀ i).toOrderHom (↑c₁ i) ≤ z", "tactic": "rw [forall_swap, forall_forall_merge]" } ]
[ 784, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 782, 1 ]
Mathlib/LinearAlgebra/Determinant.lean
Matrix.det_comm
[ { "state_after": "no goals", "state_before": "R : Type ?u.18410\ninst✝¹⁰ : CommRing R\nM✝ : Type ?u.18416\ninst✝⁹ : AddCommGroup M✝\ninst✝⁸ : Module R M✝\nM' : Type ?u.19001\ninst✝⁷ : AddCommGroup M'\ninst✝⁶ : Module R M'\nι : Type ?u.19543\ninst✝⁵ : DecidableEq ι\ninst✝⁴ : Fintype ι\ne : Basis ι R M✝\nA : Type u_2\ninst✝³ : CommRing A\nm : Type ?u.20027\nn : Type u_1\ninst✝² : Fintype m\ninst✝¹ : Fintype n\ninst✝ : DecidableEq n\nM N : Matrix n n A\n⊢ det (M ⬝ N) = det (N ⬝ M)", "tactic": "rw [det_mul, det_mul, mul_comm]" } ]
[ 83, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 82, 1 ]
Mathlib/CategoryTheory/Iso.lean
CategoryTheory.Iso.cancel_iso_hom_left
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝ : Category C\nX✝ Y✝ Z✝ X Y Z : C\nf : X ≅ Y\ng g' : Y ⟶ Z\n⊢ f.hom ≫ g = f.hom ≫ g' ↔ g = g'", "tactic": "simp only [cancel_epi]" } ]
[ 538, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 536, 1 ]
Mathlib/Data/MvPolynomial/Basic.lean
MvPolynomial.smul_eval
[ { "state_after": "no goals", "state_before": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na a' a₁ a₂ : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np✝ q : MvPolynomial σ R\nf x : σ → R\np : MvPolynomial σ R\ns : R\n⊢ ↑(eval x) (s • p) = s * ↑(eval x) p", "tactic": "rw [smul_eq_C_mul, (eval x).map_mul, eval_C]" } ]
[ 1153, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1152, 1 ]
Mathlib/Analysis/Convex/Integral.lean
ConvexOn.set_average_mem_epigraph
[ { "state_after": "α : Type u_2\nE : Type u_1\nF : Type ?u.1095696\nm0 : MeasurableSpace α\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : CompleteSpace E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\nhg : ConvexOn ℝ s g\nhgc : ContinuousOn g s\nhsc : IsClosed s\nh0 : ↑↑μ t ≠ 0\nht : ↑↑μ t ≠ ⊤\nhfs : ∀ᵐ (x : α) ∂Measure.restrict μ t, f x ∈ s\nhfi : IntegrableOn f t\nhgi : IntegrableOn (g ∘ f) t\nthis : Fact (↑↑μ t < ⊤)\n⊢ (⨍ (x : α) in t, f x ∂μ, ⨍ (x : α) in t, g (f x) ∂μ) ∈ {p | p.fst ∈ s ∧ g p.fst ≤ p.snd}", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1095696\nm0 : MeasurableSpace α\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : CompleteSpace E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\nhg : ConvexOn ℝ s g\nhgc : ContinuousOn g s\nhsc : IsClosed s\nh0 : ↑↑μ t ≠ 0\nht : ↑↑μ t ≠ ⊤\nhfs : ∀ᵐ (x : α) ∂Measure.restrict μ t, f x ∈ s\nhfi : IntegrableOn f t\nhgi : IntegrableOn (g ∘ f) t\n⊢ (⨍ (x : α) in t, f x ∂μ, ⨍ (x : α) in t, g (f x) ∂μ) ∈ {p | p.fst ∈ s ∧ g p.fst ≤ p.snd}", "tactic": "haveI : Fact (μ t < ∞) := ⟨ht.lt_top⟩" }, { "state_after": "α : Type u_2\nE : Type u_1\nF : Type ?u.1095696\nm0 : MeasurableSpace α\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : CompleteSpace E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\nhg : ConvexOn ℝ s g\nhgc : ContinuousOn g s\nhsc : IsClosed s\nh0 : ↑↑μ t ≠ 0\nht : ↑↑μ t ≠ ⊤\nhfs : ∀ᵐ (x : α) ∂Measure.restrict μ t, f x ∈ s\nhfi : IntegrableOn f t\nhgi : IntegrableOn (g ∘ f) t\nthis : Fact (↑↑μ t < ⊤)\n⊢ Measure.restrict μ t ≠ 0", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1095696\nm0 : MeasurableSpace α\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : CompleteSpace E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\nhg : ConvexOn ℝ s g\nhgc : ContinuousOn g s\nhsc : IsClosed s\nh0 : ↑↑μ t ≠ 0\nht : ↑↑μ t ≠ ⊤\nhfs : ∀ᵐ (x : α) ∂Measure.restrict μ t, f x ∈ s\nhfi : IntegrableOn f t\nhgi : IntegrableOn (g ∘ f) t\nthis : Fact (↑↑μ t < ⊤)\n⊢ (⨍ (x : α) in t, f x ∂μ, ⨍ (x : α) in t, g (f x) ∂μ) ∈ {p | p.fst ∈ s ∧ g p.fst ≤ p.snd}", "tactic": "refine' hg.average_mem_epigraph hgc hsc _ hfs hfi hgi" }, { "state_after": "no goals", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1095696\nm0 : MeasurableSpace α\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : CompleteSpace E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\nhg : ConvexOn ℝ s g\nhgc : ContinuousOn g s\nhsc : IsClosed s\nh0 : ↑↑μ t ≠ 0\nht : ↑↑μ t ≠ ⊤\nhfs : ∀ᵐ (x : α) ∂Measure.restrict μ t, f x ∈ s\nhfi : IntegrableOn f t\nhgi : IntegrableOn (g ∘ f) t\nthis : Fact (↑↑μ t < ⊤)\n⊢ Measure.restrict μ t ≠ 0", "tactic": "rwa [Ne.def, restrict_eq_zero]" } ]
[ 167, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.mapRange.linearEquiv_symm
[]
[ 877, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 875, 1 ]
Std/Logic.lean
not_not_not
[]
[ 24, 69 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 24, 1 ]
Mathlib/Analysis/SpecialFunctions/Pow/Deriv.lean
HasFDerivWithinAt.cpow
[ { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf g : E → ℂ\nf' g' : E →L[ℂ] ℂ\nx : E\ns : Set E\nc : ℂ\nhf : HasFDerivWithinAt f f' s x\nhg : HasFDerivWithinAt g g' s x\nh0 : 0 < (f x).re ∨ (f x).im ≠ 0\n⊢ HasFDerivWithinAt (fun x => f x ^ g x) ((g x * f x ^ (g x - 1)) • f' + (f x ^ g x * Complex.log (f x)) • g') s x", "tactic": "convert\n (@Complex.hasFDerivAt_cpow ((fun x => (f x, g x)) x) h0).comp_hasFDerivWithinAt x (hf.prod hg)" } ]
[ 108, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 104, 1 ]
Mathlib/RingTheory/ChainOfDivisors.lean
map_prime_of_factor_orderIso
[ { "state_after": "M : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\n⊢ Irreducible ↑(↑d { val := p, property := (_ : p ∣ m) })", "state_before": "M : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\n⊢ Prime ↑(↑d { val := p, property := (_ : p ∣ m) })", "tactic": "rw [← irreducible_iff_prime]" }, { "state_after": "case refine'_1\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\n⊢ ↑(↑d { val := p, property := (_ : p ∣ m) }) ≠ ⊥\n\ncase refine'_2\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\n⊢ b = ⊥", "state_before": "M : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\n⊢ Irreducible ↑(↑d { val := p, property := (_ : p ∣ m) })", "tactic": "refine' (Associates.isAtom_iff <| ne_zero_of_dvd_ne_zero hn (d ⟨p, _⟩).prop).mp ⟨_, fun b hb => _⟩" }, { "state_after": "case refine'_1\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\n⊢ ¬p = 1", "state_before": "case refine'_1\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\n⊢ ↑(↑d { val := p, property := (_ : p ∣ m) }) ≠ ⊥", "tactic": "rw [Ne.def, ← Associates.isUnit_iff_eq_bot, Associates.isUnit_iff_eq_one,\n coe_factor_orderIso_map_eq_one_iff _ d]" }, { "state_after": "case refine'_1\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm : Associates M\nn : Associates N\nhn : n ≠ 0\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nhp : 1 ∈ normalizedFactors m\n⊢ False", "state_before": "case refine'_1\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\n⊢ ¬p = 1", "tactic": "rintro rfl" }, { "state_after": "no goals", "state_before": "case refine'_1\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm : Associates M\nn : Associates N\nhn : n ≠ 0\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nhp : 1 ∈ normalizedFactors m\n⊢ False", "tactic": "exact (prime_of_normalized_factor 1 hp).not_unit isUnit_one" }, { "state_after": "case refine'_2.intro\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhx : ↑d x = { val := b, property := (_ : b ≤ n) }\n⊢ b = ⊥", "state_before": "case refine'_2\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\n⊢ b = ⊥", "tactic": "obtain ⟨x, hx⟩ :=\n d.surjective ⟨b, le_trans (le_of_lt hb) (d ⟨p, dvd_of_mem_normalizedFactors hp⟩).prop⟩" }, { "state_after": "case refine'_2.intro\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhb : ↑(↑d x) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d x = { val := b, property := (_ : b ≤ n) }\n⊢ b = ⊥", "state_before": "case refine'_2.intro\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhx : ↑d x = { val := b, property := (_ : b ≤ n) }\n⊢ b = ⊥", "tactic": "rw [← Subtype.coe_mk b _, ← hx] at hb" }, { "state_after": "case refine'_2.intro\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhb : ↑(↑d x) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d x = { val := b, property := (_ : b ≤ n) }\nthis : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\n⊢ b = ⊥", "state_before": "case refine'_2.intro\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhb : ↑(↑d x) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d x = { val := b, property := (_ : b ≤ n) }\n⊢ b = ⊥", "tactic": "letI : OrderBot { l : Associates M // l ≤ m } := Subtype.orderBot bot_le" }, { "state_after": "case refine'_2.intro\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhb : ↑(↑d x) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d x = { val := b, property := (_ : b ≤ n) }\nthis✝ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\n⊢ b = ⊥", "state_before": "case refine'_2.intro\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhb : ↑(↑d x) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d x = { val := b, property := (_ : b ≤ n) }\nthis : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\n⊢ b = ⊥", "tactic": "letI : OrderBot { l : Associates N // l ≤ n } := Subtype.orderBot bot_le" }, { "state_after": "case refine'_2.intro\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhb : ↑(↑d x) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d x = { val := b, property := (_ : b ≤ n) }\nthis✝ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\n⊢ x = ⊥", "state_before": "case refine'_2.intro\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhb : ↑(↑d x) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d x = { val := b, property := (_ : b ≤ n) }\nthis✝ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\n⊢ b = ⊥", "tactic": "suffices x = ⊥ by\n rw [this, OrderIso.map_bot d] at hx\n refine' (Subtype.mk_eq_bot_iff _ _).mp hx.symm\n simp" }, { "state_after": "case refine'_2.intro.mk\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nthis✝ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\na : Associates M\nha : a ∈ Set.Iic m\nhb : ↑(↑d { val := a, property := ha }) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d { val := a, property := ha } = { val := b, property := (_ : b ≤ n) }\n⊢ { val := a, property := ha } = ⊥", "state_before": "case refine'_2.intro\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhb : ↑(↑d x) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d x = { val := b, property := (_ : b ≤ n) }\nthis✝ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\n⊢ x = ⊥", "tactic": "obtain ⟨a, ha⟩ := x" }, { "state_after": "case refine'_2.intro.mk\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nthis✝ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\na : Associates M\nha : a ∈ Set.Iic m\nhb : ↑(↑d { val := a, property := ha }) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d { val := a, property := ha } = { val := b, property := (_ : b ≤ n) }\n⊢ a = ⊥\n\ncase refine'_2.intro.mk.hbot\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nthis✝ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\na : Associates M\nha : a ∈ Set.Iic m\nhb : ↑(↑d { val := a, property := ha }) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d { val := a, property := ha } = { val := b, property := (_ : b ≤ n) }\n⊢ ⊥ ∈ Set.Iic m", "state_before": "case refine'_2.intro.mk\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nthis✝ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\na : Associates M\nha : a ∈ Set.Iic m\nhb : ↑(↑d { val := a, property := ha }) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d { val := a, property := ha } = { val := b, property := (_ : b ≤ n) }\n⊢ { val := a, property := ha } = ⊥", "tactic": "rw [Subtype.mk_eq_bot_iff]" }, { "state_after": "no goals", "state_before": "case refine'_2.intro.mk.hbot\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nthis✝ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\na : Associates M\nha : a ∈ Set.Iic m\nhb : ↑(↑d { val := a, property := ha }) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d { val := a, property := ha } = { val := b, property := (_ : b ≤ n) }\n⊢ ⊥ ∈ Set.Iic m", "tactic": "simp" }, { "state_after": "M : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhb : ↑(↑d x) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ⊥ = { val := b, property := (_ : b ≤ n) }\nthis✝¹ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis✝ : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\nthis : x = ⊥\n⊢ b = ⊥", "state_before": "M : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhb : ↑(↑d x) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d x = { val := b, property := (_ : b ≤ n) }\nthis✝¹ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis✝ : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\nthis : x = ⊥\n⊢ b = ⊥", "tactic": "rw [this, OrderIso.map_bot d] at hx" }, { "state_after": "M : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhb : ↑(↑d x) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ⊥ = { val := b, property := (_ : b ≤ n) }\nthis✝¹ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis✝ : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\nthis : x = ⊥\n⊢ ⊥ ∈ Set.Iic n", "state_before": "M : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhb : ↑(↑d x) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ⊥ = { val := b, property := (_ : b ≤ n) }\nthis✝¹ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis✝ : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\nthis : x = ⊥\n⊢ b = ⊥", "tactic": "refine' (Subtype.mk_eq_bot_iff _ _).mp hx.symm" }, { "state_after": "no goals", "state_before": "M : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nx : ↑(Set.Iic m)\nhb : ↑(↑d x) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ⊥ = { val := b, property := (_ : b ≤ n) }\nthis✝¹ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis✝ : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\nthis : x = ⊥\n⊢ ⊥ ∈ Set.Iic n", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case refine'_2.intro.mk\nM : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero M\nN : Type u_2\ninst✝³ : CancelCommMonoidWithZero N\ninst✝² : UniqueFactorizationMonoid N\ninst✝¹ : UniqueFactorizationMonoid M\ninst✝ : DecidableEq (Associates M)\nm p : Associates M\nn : Associates N\nhn : n ≠ 0\nhp : p ∈ normalizedFactors m\nd : ↑(Set.Iic m) ≃o ↑(Set.Iic n)\nb : Associates N\nhb✝ : b < ↑(↑d { val := p, property := (_ : p ∣ m) })\nthis✝ : OrderBot { l // l ≤ m } := Subtype.orderBot (_ : ⊥ ≤ m)\nthis : OrderBot { l // l ≤ n } := Subtype.orderBot (_ : ⊥ ≤ n)\na : Associates M\nha : a ∈ Set.Iic m\nhb : ↑(↑d { val := a, property := ha }) < ↑(↑d { val := p, property := (_ : p ∣ m) })\nhx : ↑d { val := a, property := ha } = { val := b, property := (_ : b ≤ n) }\n⊢ a = ⊥", "tactic": "exact\n ((Associates.isAtom_iff <| Prime.ne_zero <| prime_of_normalized_factor p hp).mpr <|\n irreducible_of_normalized_factor p hp).right\n a (Subtype.mk_lt_mk.mp <| d.lt_iff_lt.mp hb)" } ]
[ 311, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 287, 1 ]
Mathlib/LinearAlgebra/TensorProduct.lean
LinearMap.rTensor_add
[]
[ 1043, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1042, 1 ]
Std/Data/List/Lemmas.lean
List.head_eq_of_cons_eq
[]
[ 24, 81 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 24, 1 ]
Mathlib/Data/Set/Basic.lean
Set.antitoneOn_iff_antitone
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\na b : α\ns s₁ s₂ t t₁ t₂ u : Set α\ninst✝¹ : Preorder α\ninst✝ : Preorder β\nf : α → β\n⊢ AntitoneOn f s ↔ Antitone fun a => f ↑a", "tactic": "simp [Antitone, AntitoneOn]" } ]
[ 2658, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2656, 1 ]
Mathlib/Data/List/Sigma.lean
List.mem_dlookup_kunion
[ { "state_after": "case nil\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\nl₂ : List (Sigma β)\n⊢ b ∈ dlookup a (kunion [] l₂) ↔ b ∈ dlookup a [] ∨ ¬a ∈ keys [] ∧ b ∈ dlookup a l₂\n\ncase cons\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\nhead✝ : Sigma β\ntail✝ : List (Sigma β)\ntail_ih✝ :\n ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\n⊢ b ∈ dlookup a (kunion (head✝ :: tail✝) l₂) ↔\n b ∈ dlookup a (head✝ :: tail✝) ∨ ¬a ∈ keys (head✝ :: tail✝) ∧ b ∈ dlookup a l₂", "state_before": "α : Type u\nβ : α → Type v\nl l₁✝ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\nl₁ l₂ : List (Sigma β)\n⊢ b ∈ dlookup a (kunion l₁ l₂) ↔ b ∈ dlookup a l₁ ∨ ¬a ∈ keys l₁ ∧ b ∈ dlookup a l₂", "tactic": "induction l₁ generalizing l₂" }, { "state_after": "case cons\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\nhead✝ : Sigma β\ntail✝ : List (Sigma β)\ntail_ih✝ :\n ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\n⊢ b ∈ dlookup a (kunion (head✝ :: tail✝) l₂) ↔\n b ∈ dlookup a (head✝ :: tail✝) ∨ ¬a ∈ keys (head✝ :: tail✝) ∧ b ∈ dlookup a l₂", "state_before": "case nil\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\nl₂ : List (Sigma β)\n⊢ b ∈ dlookup a (kunion [] l₂) ↔ b ∈ dlookup a [] ∨ ¬a ∈ keys [] ∧ b ∈ dlookup a l₂\n\ncase cons\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\nhead✝ : Sigma β\ntail✝ : List (Sigma β)\ntail_ih✝ :\n ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\n⊢ b ∈ dlookup a (kunion (head✝ :: tail✝) l₂) ↔\n b ∈ dlookup a (head✝ :: tail✝) ∨ ¬a ∈ keys (head✝ :: tail✝) ∧ b ∈ dlookup a l₂", "tactic": "case nil => simp" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\nl₂ : List (Sigma β)\n⊢ b ∈ dlookup a (kunion [] l₂) ↔ b ∈ dlookup a [] ∨ ¬a ∈ keys [] ∧ b ∈ dlookup a l₂", "tactic": "simp" }, { "state_after": "case mk\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\na' : α\nsnd✝ : β a'\n⊢ b ∈ dlookup a (kunion ({ fst := a', snd := snd✝ } :: tail✝) l₂) ↔\n b ∈ dlookup a ({ fst := a', snd := snd✝ } :: tail✝) ∨\n ¬a ∈ keys ({ fst := a', snd := snd✝ } :: tail✝) ∧ b ∈ dlookup a l₂", "state_before": "α : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\ns : Sigma β\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\n⊢ b ∈ dlookup a (kunion (s :: tail✝) l₂) ↔ b ∈ dlookup a (s :: tail✝) ∨ ¬a ∈ keys (s :: tail✝) ∧ b ∈ dlookup a l₂", "tactic": "cases' s with a'" }, { "state_after": "case pos\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\na' : α\nsnd✝ : β a'\nh₁ : a = a'\n⊢ b ∈ dlookup a (kunion ({ fst := a', snd := snd✝ } :: tail✝) l₂) ↔\n b ∈ dlookup a ({ fst := a', snd := snd✝ } :: tail✝) ∨\n ¬a ∈ keys ({ fst := a', snd := snd✝ } :: tail✝) ∧ b ∈ dlookup a l₂\n\ncase neg\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\na' : α\nsnd✝ : β a'\nh₁ : ¬a = a'\n⊢ b ∈ dlookup a (kunion ({ fst := a', snd := snd✝ } :: tail✝) l₂) ↔\n b ∈ dlookup a ({ fst := a', snd := snd✝ } :: tail✝) ∨\n ¬a ∈ keys ({ fst := a', snd := snd✝ } :: tail✝) ∧ b ∈ dlookup a l₂", "state_before": "case mk\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\na' : α\nsnd✝ : β a'\n⊢ b ∈ dlookup a (kunion ({ fst := a', snd := snd✝ } :: tail✝) l₂) ↔\n b ∈ dlookup a ({ fst := a', snd := snd✝ } :: tail✝) ∨\n ¬a ∈ keys ({ fst := a', snd := snd✝ } :: tail✝) ∧ b ∈ dlookup a l₂", "tactic": "by_cases h₁ : a = a'" }, { "state_after": "case pos\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\nsnd✝ : β a\n⊢ b ∈ dlookup a (kunion ({ fst := a, snd := snd✝ } :: tail✝) l₂) ↔\n b ∈ dlookup a ({ fst := a, snd := snd✝ } :: tail✝) ∨\n ¬a ∈ keys ({ fst := a, snd := snd✝ } :: tail✝) ∧ b ∈ dlookup a l₂", "state_before": "case pos\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\na' : α\nsnd✝ : β a'\nh₁ : a = a'\n⊢ b ∈ dlookup a (kunion ({ fst := a', snd := snd✝ } :: tail✝) l₂) ↔\n b ∈ dlookup a ({ fst := a', snd := snd✝ } :: tail✝) ∨\n ¬a ∈ keys ({ fst := a', snd := snd✝ } :: tail✝) ∧ b ∈ dlookup a l₂", "tactic": "subst h₁" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\nsnd✝ : β a\n⊢ b ∈ dlookup a (kunion ({ fst := a, snd := snd✝ } :: tail✝) l₂) ↔\n b ∈ dlookup a ({ fst := a, snd := snd✝ } :: tail✝) ∨\n ¬a ∈ keys ({ fst := a, snd := snd✝ } :: tail✝) ∧ b ∈ dlookup a l₂", "tactic": "simp" }, { "state_after": "case neg\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\na' : α\nsnd✝ : β a'\nh₁ : ¬a = a'\nh₂ : b ∈ dlookup a (kunion tail✝ (kerase a' l₂)) ↔\n b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a (kerase a' l₂) :=\n ih\n⊢ b ∈ dlookup a (kunion ({ fst := a', snd := snd✝ } :: tail✝) l₂) ↔\n b ∈ dlookup a ({ fst := a', snd := snd✝ } :: tail✝) ∨\n ¬a ∈ keys ({ fst := a', snd := snd✝ } :: tail✝) ∧ b ∈ dlookup a l₂", "state_before": "case neg\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\na' : α\nsnd✝ : β a'\nh₁ : ¬a = a'\n⊢ b ∈ dlookup a (kunion ({ fst := a', snd := snd✝ } :: tail✝) l₂) ↔\n b ∈ dlookup a ({ fst := a', snd := snd✝ } :: tail✝) ∨\n ¬a ∈ keys ({ fst := a', snd := snd✝ } :: tail✝) ∧ b ∈ dlookup a l₂", "tactic": "let h₂ := @ih (kerase a' l₂)" }, { "state_after": "case neg\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\na' : α\nsnd✝ : β a'\nh₁ : ¬a = a'\nh₂ :\n dlookup a (kunion tail✝ (kerase a' l₂)) = some b ↔ dlookup a tail✝ = some b ∨ ¬a ∈ keys tail✝ ∧ dlookup a l₂ = some b\n⊢ b ∈ dlookup a (kunion ({ fst := a', snd := snd✝ } :: tail✝) l₂) ↔\n b ∈ dlookup a ({ fst := a', snd := snd✝ } :: tail✝) ∨\n ¬a ∈ keys ({ fst := a', snd := snd✝ } :: tail✝) ∧ b ∈ dlookup a l₂", "state_before": "case neg\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\na' : α\nsnd✝ : β a'\nh₁ : ¬a = a'\nh₂ : b ∈ dlookup a (kunion tail✝ (kerase a' l₂)) ↔\n b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a (kerase a' l₂) :=\n ih\n⊢ b ∈ dlookup a (kunion ({ fst := a', snd := snd✝ } :: tail✝) l₂) ↔\n b ∈ dlookup a ({ fst := a', snd := snd✝ } :: tail✝) ∨\n ¬a ∈ keys ({ fst := a', snd := snd✝ } :: tail✝) ∧ b ∈ dlookup a l₂", "tactic": "simp [h₁] at h₂" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nb : β a\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, b ∈ dlookup a (kunion tail✝ l₂) ↔ b ∈ dlookup a tail✝ ∨ ¬a ∈ keys tail✝ ∧ b ∈ dlookup a l₂\nl₂ : List (Sigma β)\na' : α\nsnd✝ : β a'\nh₁ : ¬a = a'\nh₂ :\n dlookup a (kunion tail✝ (kerase a' l₂)) = some b ↔ dlookup a tail✝ = some b ∨ ¬a ∈ keys tail✝ ∧ dlookup a l₂ = some b\n⊢ b ∈ dlookup a (kunion ({ fst := a', snd := snd✝ } :: tail✝) l₂) ↔\n b ∈ dlookup a ({ fst := a', snd := snd✝ } :: tail✝) ∨\n ¬a ∈ keys ({ fst := a', snd := snd✝ } :: tail✝) ∧ b ∈ dlookup a l₂", "tactic": "simp [h₁, h₂]" } ]
[ 778, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 767, 1 ]
Mathlib/Topology/UniformSpace/UniformConvergenceTopology.lean
UniformFun.postcomp_uniformInducing
[ { "state_after": "case comap_uniformity\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nι : Type ?u.40608\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : γ → β\nhf : UniformInducing f\n⊢ comap (fun x => ((↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) x.fst, (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) x.snd))\n (𝓤 (α →ᵤ β)) =\n 𝓤 (α →ᵤ γ)", "state_before": "α : Type u_3\nβ : Type u_2\nγ : Type u_1\nι : Type ?u.40608\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : γ → β\nhf : UniformInducing f\n⊢ UniformInducing (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun)", "tactic": "constructor" }, { "state_after": "case comap_uniformity\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nι : Type ?u.40608\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : γ → β\nhf : comap (Prod.map f f) (𝓤 β) = 𝓤 γ\n⊢ comap (fun x => ((↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) x.fst, (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) x.snd))\n (𝓤 (α →ᵤ β)) =\n 𝓤 (α →ᵤ γ)", "state_before": "case comap_uniformity\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nι : Type ?u.40608\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : γ → β\nhf : UniformInducing f\n⊢ comap (fun x => ((↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) x.fst, (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) x.snd))\n (𝓤 (α →ᵤ β)) =\n 𝓤 (α →ᵤ γ)", "tactic": "replace hf : (𝓤 β).comap (Prod.map f f) = _ := hf.comap_uniformity" }, { "state_after": "case comap_uniformity\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nι : Type ?u.40608\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : γ → β\nhf : 𝓤 γ = 𝓤 γ\n⊢ 𝓤 (α →ᵤ γ) = 𝓤 (α →ᵤ γ)", "state_before": "case comap_uniformity\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nι : Type ?u.40608\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : γ → β\nhf : comap (Prod.map f f) (𝓤 β) = 𝓤 γ\n⊢ comap (Prod.map (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun)) (𝓤 (α →ᵤ β)) = 𝓤 (α →ᵤ γ)", "tactic": "rw [← uniformity_comap] at hf⊢" }, { "state_after": "case comap_uniformity.h.e_2.h\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nι : Type ?u.40608\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : γ → β\nhf : 𝓤 γ = 𝓤 γ\n⊢ UniformSpace.comap (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) (uniformSpace α β) = uniformSpace α γ", "state_before": "case comap_uniformity\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nι : Type ?u.40608\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : γ → β\nhf : 𝓤 γ = 𝓤 γ\n⊢ 𝓤 (α →ᵤ γ) = 𝓤 (α →ᵤ γ)", "tactic": "congr" }, { "state_after": "case comap_uniformity.h.e_2.h\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nι : Type ?u.40608\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : γ → β\nhf : 𝓤 γ = 𝓤 γ\n⊢ UniformSpace.comap (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) (uniformSpace α β) =\n UniformSpace.comap (fun x => f ∘ x) (uniformSpace α β)", "state_before": "case comap_uniformity.h.e_2.h\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nι : Type ?u.40608\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : γ → β\nhf : 𝓤 γ = 𝓤 γ\n⊢ UniformSpace.comap (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) (uniformSpace α β) = uniformSpace α γ", "tactic": "rw [← uniformSpace_eq hf, UniformFun.comap_eq]" }, { "state_after": "no goals", "state_before": "case comap_uniformity.h.e_2.h\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nι : Type ?u.40608\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : γ → β\nhf : 𝓤 γ = 𝓤 γ\n⊢ UniformSpace.comap (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) (uniformSpace α β) =\n UniformSpace.comap (fun x => f ∘ x) (uniformSpace α β)", "tactic": "rfl" } ]
[ 440, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 431, 11 ]
Mathlib/Topology/Sets/Order.lean
ClopenUpperSet.coe_bot
[]
[ 106, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 105, 1 ]
Mathlib/Data/Real/Hyperreal.lean
Hyperreal.infinitePos_add_not_infiniteNeg
[ { "state_after": "x y : ℝ*\nhip : InfinitePos x\nhnin : ¬InfiniteNeg y\nr : ℝ\n⊢ ↑r < x + y", "state_before": "x y : ℝ*\n⊢ InfinitePos x → ¬InfiniteNeg y → InfinitePos (x + y)", "tactic": "intro hip hnin r" }, { "state_after": "case intro\nx y : ℝ*\nhip : InfinitePos x\nhnin : ¬InfiniteNeg y\nr r₂ : ℝ\nhr₂ : ¬y < ↑r₂\n⊢ ↑r < x + y", "state_before": "x y : ℝ*\nhip : InfinitePos x\nhnin : ¬InfiniteNeg y\nr : ℝ\n⊢ ↑r < x + y", "tactic": "cases' not_forall.mp hnin with r₂ hr₂" }, { "state_after": "case h.e'_3\nx y : ℝ*\nhip : InfinitePos x\nhnin : ¬InfiniteNeg y\nr r₂ : ℝ\nhr₂ : ¬y < ↑r₂\n⊢ ↑r = ↑(r + -r₂) + ↑r₂", "state_before": "case intro\nx y : ℝ*\nhip : InfinitePos x\nhnin : ¬InfiniteNeg y\nr r₂ : ℝ\nhr₂ : ¬y < ↑r₂\n⊢ ↑r < x + y", "tactic": "convert add_lt_add_of_lt_of_le (hip (r + -r₂)) (not_lt.mp hr₂) using 1" }, { "state_after": "no goals", "state_before": "case h.e'_3\nx y : ℝ*\nhip : InfinitePos x\nhnin : ¬InfiniteNeg y\nr r₂ : ℝ\nhr₂ : ¬y < ↑r₂\n⊢ ↑r = ↑(r + -r₂) + ↑r₂", "tactic": "simp" } ]
[ 543, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 538, 1 ]
Mathlib/LinearAlgebra/Dfinsupp.lean
Dfinsupp.mapRange.linearMap_comp
[ { "state_after": "no goals", "state_before": "ι : Type u_5\nR : Type u_1\nS : Type ?u.148536\nM : ι → Type ?u.148541\nN : Type ?u.148544\ndec_ι : DecidableEq ι\ninst✝¹⁰ : Semiring R\ninst✝⁹ : (i : ι) → AddCommMonoid (M i)\ninst✝⁸ : (i : ι) → Module R (M i)\ninst✝⁷ : AddCommMonoid N\ninst✝⁶ : Module R N\nβ : ι → Type u_4\nβ₁ : ι → Type u_2\nβ₂ : ι → Type u_3\ninst✝⁵ : (i : ι) → AddCommMonoid (β i)\ninst✝⁴ : (i : ι) → AddCommMonoid (β₁ i)\ninst✝³ : (i : ι) → AddCommMonoid (β₂ i)\ninst✝² : (i : ι) → Module R (β i)\ninst✝¹ : (i : ι) → Module R (β₁ i)\ninst✝ : (i : ι) → Module R (β₂ i)\nf : (i : ι) → β₁ i →ₗ[R] β₂ i\nf₂ : (i : ι) → β i →ₗ[R] β₁ i\n⊢ ∀ (i : ι), ((fun i x => ↑(f i) x) i ∘ (fun i x => ↑(f₂ i) x) i) 0 = 0", "tactic": "simp" } ]
[ 218, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 214, 1 ]
Mathlib/Data/Holor.lean
Holor.cprank_upper_bound
[]
[ 413, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 409, 1 ]
Mathlib/Algebra/Order/Group/Defs.lean
div_lt_comm
[]
[ 1002, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1001, 1 ]
Mathlib/GroupTheory/Perm/Basic.lean
Equiv.Perm.subtypePerm_mul
[]
[ 382, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 379, 1 ]
Mathlib/Data/Finset/NatAntidiagonal.lean
Finset.Nat.mem_antidiagonal
[ { "state_after": "no goals", "state_before": "n : ℕ\nx : ℕ × ℕ\n⊢ x ∈ antidiagonal n ↔ x.fst + x.snd = n", "tactic": "rw [antidiagonal, mem_def, Multiset.Nat.mem_antidiagonal]" } ]
[ 40, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 39, 1 ]
Mathlib/Data/Set/Equitable.lean
Finset.EquitableOn.le_add_one
[]
[ 124, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 122, 1 ]
Mathlib/LinearAlgebra/Dfinsupp.lean
Dfinsupp.lhom_ext'
[]
[ 76, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 74, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
PowerSeries.coeff_X_pow
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : Semiring R\nm n : ℕ\n⊢ ↑(coeff R m) (X ^ n) = if m = n then 1 else 0", "tactic": "rw [X_pow_eq, coeff_monomial]" } ]
[ 1457, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1456, 1 ]
Mathlib/Data/Rat/Cast.lean
Rat.cast_commute
[ { "state_after": "no goals", "state_before": "F : Type ?u.2807\nι : Type ?u.2810\nα : Type u_1\nβ : Type ?u.2816\ninst✝ : DivisionRing α\nr : ℚ\na : α\n⊢ Commute (↑r) a", "tactic": "simpa only [cast_def] using (r.1.cast_commute a).div_left (r.2.cast_commute a)" } ]
[ 70, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 69, 1 ]
Std/Data/List/Init/Lemmas.lean
List.foldr_reverse
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nl : List α\nf : α → β → β\nb : β\n⊢ foldl (fun y x => f x y) b (reverse (reverse l)) = foldl (fun x y => f y x) b l", "tactic": "simp" } ]
[ 190, 43 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 188, 9 ]
Mathlib/Data/Set/Basic.lean
Set.diff_inter
[]
[ 1955, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1954, 1 ]
Mathlib/FieldTheory/Adjoin.lean
IntermediateField.adjoin_one
[]
[ 692, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 691, 1 ]
Mathlib/Analysis/BoxIntegral/Partition/Basic.lean
BoxIntegral.Prepartition.restrict_self
[]
[ 522, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 521, 1 ]
Mathlib/Combinatorics/Quiver/Symmetric.lean
Quiver.Path.reverse_comp
[ { "state_after": "case nil\nU : Type ?u.5751\nV : Type u_1\nW : Type ?u.5757\ninst✝³ : Quiver U\ninst✝² : Quiver V\ninst✝¹ : Quiver W\ninst✝ : HasReverse V\na b c : V\np : Path a b\n⊢ reverse (comp p nil) = comp (reverse nil) (reverse p)\n\ncase cons\nU : Type ?u.5751\nV : Type u_1\nW : Type ?u.5757\ninst✝³ : Quiver U\ninst✝² : Quiver V\ninst✝¹ : Quiver W\ninst✝ : HasReverse V\na b c : V\np : Path a b\nb✝ c✝ : V\na✝¹ : Path b b✝\na✝ : b✝ ⟶ c✝\nh : reverse (comp p a✝¹) = comp (reverse a✝¹) (reverse p)\n⊢ reverse (comp p (cons a✝¹ a✝)) = comp (reverse (cons a✝¹ a✝)) (reverse p)", "state_before": "U : Type ?u.5751\nV : Type u_1\nW : Type ?u.5757\ninst✝³ : Quiver U\ninst✝² : Quiver V\ninst✝¹ : Quiver W\ninst✝ : HasReverse V\na b c : V\np : Path a b\nq : Path b c\n⊢ reverse (comp p q) = comp (reverse q) (reverse p)", "tactic": "induction' q with _ _ _ _ h" }, { "state_after": "no goals", "state_before": "case nil\nU : Type ?u.5751\nV : Type u_1\nW : Type ?u.5757\ninst✝³ : Quiver U\ninst✝² : Quiver V\ninst✝¹ : Quiver W\ninst✝ : HasReverse V\na b c : V\np : Path a b\n⊢ reverse (comp p nil) = comp (reverse nil) (reverse p)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case cons\nU : Type ?u.5751\nV : Type u_1\nW : Type ?u.5757\ninst✝³ : Quiver U\ninst✝² : Quiver V\ninst✝¹ : Quiver W\ninst✝ : HasReverse V\na b c : V\np : Path a b\nb✝ c✝ : V\na✝¹ : Path b b✝\na✝ : b✝ ⟶ c✝\nh : reverse (comp p a✝¹) = comp (reverse a✝¹) (reverse p)\n⊢ reverse (comp p (cons a✝¹ a✝)) = comp (reverse (cons a✝¹ a✝)) (reverse p)", "tactic": "simp [h]" } ]
[ 159, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/Order/Filter/AtTopBot.lean
Filter.tendsto_const_mul_atTop_iff_neg
[ { "state_after": "no goals", "state_before": "ι : Type ?u.239844\nι' : Type ?u.239847\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.239856\ninst✝¹ : LinearOrderedField α\nl : Filter β\nf : β → α\nr : α\ninst✝ : NeBot l\nh : Tendsto f l atBot\n⊢ Tendsto (fun x => r * f x) l atTop ↔ r < 0", "tactic": "simp [tendsto_const_mul_atTop_iff, h, h.not_tendsto disjoint_atBot_atTop]" } ]
[ 1152, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1150, 1 ]
Mathlib/CategoryTheory/Limits/Types.lean
CategoryTheory.Limits.Types.Colimit.ι_desc_apply'
[]
[ 334, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 332, 1 ]
Mathlib/Order/Heyting/Basic.lean
Pi.himp_def
[]
[ 162, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/Analysis/Quaternion.lean
Quaternion.coeComplex_imK
[]
[ 132, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]
Mathlib/Data/Finset/Image.lean
Finset.mem_range_iff_mem_finset_range_of_mod_eq
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.102484\nγ : Type ?u.102487\ninst✝¹ : DecidableEq β\nf✝ g : α → β\ns : Finset α\nt : Finset β\na✝ : α\nb c : β\ninst✝ : DecidableEq α\nf : ℤ → α\na : α\nn : ℕ\nhn : 0 < n\nh : ∀ (i : ℤ), f (i % ↑n) = f i\nthis : (∃ i, f (i % ↑n) = a) ↔ ∃ i, i < n ∧ f ↑i = a\n⊢ a ∈ Set.range f ↔ a ∈ image (fun i => f ↑i) (range n)", "tactic": "simpa [h]" }, { "state_after": "α : Type u_1\nβ : Type ?u.102484\nγ : Type ?u.102487\ninst✝¹ : DecidableEq β\nf✝ g : α → β\ns : Finset α\nt : Finset β\na✝ : α\nb c : β\ninst✝ : DecidableEq α\nf : ℤ → α\na : α\nn : ℕ\nhn : 0 < n\nh : ∀ (i : ℤ), f (i % ↑n) = f i\nhn' : 0 < ↑n\nx✝ : ∃ i, f (i % ↑n) = a\ni : ℤ\nhi : f (i % ↑n) = a\nthis : 0 ≤ i % ↑n\n⊢ i % ↑n < ↑n ∧ f (i % ↑n) = a", "state_before": "α : Type u_1\nβ : Type ?u.102484\nγ : Type ?u.102487\ninst✝¹ : DecidableEq β\nf✝ g : α → β\ns : Finset α\nt : Finset β\na✝ : α\nb c : β\ninst✝ : DecidableEq α\nf : ℤ → α\na : α\nn : ℕ\nhn : 0 < n\nh : ∀ (i : ℤ), f (i % ↑n) = f i\nhn' : 0 < ↑n\nx✝ : ∃ i, f (i % ↑n) = a\ni : ℤ\nhi : f (i % ↑n) = a\nthis : 0 ≤ i % ↑n\n⊢ Int.toNat (i % ↑n) < n ∧ f ↑(Int.toNat (i % ↑n)) = a", "tactic": "rw [← Int.ofNat_lt, Int.toNat_of_nonneg this]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.102484\nγ : Type ?u.102487\ninst✝¹ : DecidableEq β\nf✝ g : α → β\ns : Finset α\nt : Finset β\na✝ : α\nb c : β\ninst✝ : DecidableEq α\nf : ℤ → α\na : α\nn : ℕ\nhn : 0 < n\nh : ∀ (i : ℤ), f (i % ↑n) = f i\nhn' : 0 < ↑n\nx✝ : ∃ i, f (i % ↑n) = a\ni : ℤ\nhi : f (i % ↑n) = a\nthis : 0 ≤ i % ↑n\n⊢ i % ↑n < ↑n ∧ f (i % ↑n) = a", "tactic": "exact ⟨Int.emod_lt_of_pos i hn', hi⟩" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.102484\nγ : Type ?u.102487\ninst✝¹ : DecidableEq β\nf✝ g : α → β\ns : Finset α\nt : Finset β\na✝ : α\nb c : β\ninst✝ : DecidableEq α\nf : ℤ → α\na : α\nn : ℕ\nhn : 0 < n\nh : ∀ (i : ℤ), f (i % ↑n) = f i\nhn' : 0 < ↑n\nx✝ : ∃ i, i < n ∧ f ↑i = a\ni : ℕ\nhi : i < n\nha : f ↑i = a\n⊢ f (↑i % ↑n) = a", "tactic": "rw [Int.emod_eq_of_lt (Int.ofNat_zero_le _) (Int.ofNat_lt_ofNat_of_lt hi), ha]" } ]
[ 576, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 565, 1 ]
Mathlib/Analysis/NormedSpace/PiLp.lean
PiLp.edist_eq_of_L2
[ { "state_after": "no goals", "state_before": "p : ℝ≥0∞\n𝕜 : Type ?u.293461\n𝕜' : Type ?u.293464\nι : Type u_2\nα : ι → Type ?u.293472\nβ✝ : ι → Type ?u.293477\ninst✝² : Fintype ι\ninst✝¹ : Fact (1 ≤ p)\nβ : ι → Type u_1\ninst✝ : (i : ι) → SeminormedAddCommGroup (β i)\nx y : PiLp 2 β\n⊢ edist x y = (∑ i : ι, edist (x i) (y i) ^ 2) ^ (1 / 2)", "tactic": "simp [PiLp.edist_eq_sum]" } ]
[ 618, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 617, 1 ]
Mathlib/Algebra/Module/LocalizedModule.lean
LocalizedModule.lift_mk
[]
[ 657, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 654, 1 ]
Mathlib/CategoryTheory/Limits/Lattice.lean
CategoryTheory.Limits.CompleteLattice.pullback_eq_inf
[ { "state_after": "no goals", "state_before": "α : Type u\nJ : Type w\ninst✝³ : SmallCategory J\ninst✝² : FinCategory J\ninst✝¹ : SemilatticeInf α\ninst✝ : OrderTop α\nx y z : α\nf : x ⟶ z\ng : y ⟶ z\n⊢ limit (cospan f g) = Finset.inf Finset.univ (cospan f g).toPrefunctor.obj", "tactic": "rw [finite_limit_eq_finset_univ_inf]" }, { "state_after": "no goals", "state_before": "α : Type u\nJ : Type w\ninst✝³ : SmallCategory J\ninst✝² : FinCategory J\ninst✝¹ : SemilatticeInf α\ninst✝ : OrderTop α\nx y z : α\nf : x ⟶ z\ng : y ⟶ z\n⊢ z ⊓ (x ⊓ (y ⊓ ⊤)) = z ⊓ (x ⊓ y)", "tactic": "rw [inf_top_eq]" } ]
[ 165, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 158, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.count_apply_finite
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.373940\nγ : Type ?u.373943\nδ : Type ?u.373946\nι : Type ?u.373949\nR : Type ?u.373952\nR' : Type ?u.373955\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\ns : Set α\nhs : Set.Finite s\n⊢ ↑↑count s = ↑(Finset.card (Finite.toFinset hs))", "tactic": "rw [← count_apply_finset, Finite.coe_toFinset]" } ]
[ 2226, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2225, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.sUnion_insert
[]
[ 1140, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1139, 1 ]
Mathlib/Algebra/Lie/Submodule.lean
LieSubmodule.coe_injective
[]
[ 357, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 356, 1 ]
Mathlib/Data/Num/Lemmas.lean
PosNum.cast_le
[ { "state_after": "α : Type u_1\ninst✝ : LinearOrderedSemiring α\nm n : PosNum\n⊢ ¬↑n < ↑m ↔ m ≤ n", "state_before": "α : Type u_1\ninst✝ : LinearOrderedSemiring α\nm n : PosNum\n⊢ ↑m ≤ ↑n ↔ m ≤ n", "tactic": "rw [← not_lt]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrderedSemiring α\nm n : PosNum\n⊢ ¬↑n < ↑m ↔ m ≤ n", "tactic": "exact not_congr cast_lt" } ]
[ 707, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 706, 1 ]
Mathlib/GroupTheory/GroupAction/Group.lean
smul_eq_zero_iff_eq'
[]
[ 288, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 287, 1 ]
Mathlib/Order/Hom/Basic.lean
disjoint_map_orderIso_iff
[]
[ 1226, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1223, 1 ]
Mathlib/Dynamics/Flow.lean
isInvariant_iff_image
[ { "state_after": "no goals", "state_before": "τ : Type u_1\nα : Type u_2\nϕ : τ → α → α\ns : Set α\n⊢ IsInvariant ϕ s ↔ ∀ (t : τ), ϕ t '' s ⊆ s", "tactic": "simp_rw [IsInvariant, mapsTo']" } ]
[ 55, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 54, 1 ]
Mathlib/Data/List/Basic.lean
List.get_pmap
[ { "state_after": "case nil\nι : Type ?u.337556\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\np : α → Prop\nf : (a : α) → p a → β\nl : List α\nh✝ : ∀ (a : α), a ∈ l → p a\nn✝ : ℕ\nhn✝ : n✝ < length (pmap f l h✝)\nh : ∀ (a : α), a ∈ [] → p a\nn : ℕ\nhn : n < length (pmap f [] h)\n⊢ get (pmap f [] h) { val := n, isLt := hn } =\n f (get [] { val := n, isLt := (_ : n < length []) }) (_ : p (get [] { val := n, isLt := (_ : n < length []) }))\n\ncase cons\nι : Type ?u.337556\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\np : α → Prop\nf : (a : α) → p a → β\nl : List α\nh✝ : ∀ (a : α), a ∈ l → p a\nn✝ : ℕ\nhn✝ : n✝ < length (pmap f l h✝)\nhd : α\ntl : List α\nhl :\n ∀ (h : ∀ (a : α), a ∈ tl → p a) {n : ℕ} (hn : n < length (pmap f tl h)),\n get (pmap f tl h) { val := n, isLt := hn } =\n f (get tl { val := n, isLt := (_ : n < length tl) }) (_ : p (get tl { val := n, isLt := (_ : n < length tl) }))\nh : ∀ (a : α), a ∈ hd :: tl → p a\nn : ℕ\nhn : n < length (pmap f (hd :: tl) h)\n⊢ get (pmap f (hd :: tl) h) { val := n, isLt := hn } =\n f (get (hd :: tl) { val := n, isLt := (_ : n < length (hd :: tl)) })\n (_ : p (get (hd :: tl) { val := n, isLt := (_ : n < length (hd :: tl)) }))", "state_before": "ι : Type ?u.337556\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\np : α → Prop\nf : (a : α) → p a → β\nl : List α\nh : ∀ (a : α), a ∈ l → p a\nn : ℕ\nhn : n < length (pmap f l h)\n⊢ get (pmap f l h) { val := n, isLt := hn } =\n f (get l { val := n, isLt := (_ : n < length l) }) (_ : p (get l { val := n, isLt := (_ : n < length l) }))", "tactic": "induction' l with hd tl hl generalizing n" }, { "state_after": "case nil\nι : Type ?u.337556\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\np : α → Prop\nf : (a : α) → p a → β\nl : List α\nh✝ : ∀ (a : α), a ∈ l → p a\nn✝ : ℕ\nhn✝ : n✝ < length (pmap f l h✝)\nh : ∀ (a : α), a ∈ [] → p a\nn : ℕ\nhn : n < 0\n⊢ get (pmap f [] h) { val := n, isLt := hn } =\n f (get [] { val := n, isLt := (_ : n < length []) }) (_ : p (get [] { val := n, isLt := (_ : n < length []) }))", "state_before": "case nil\nι : Type ?u.337556\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\np : α → Prop\nf : (a : α) → p a → β\nl : List α\nh✝ : ∀ (a : α), a ∈ l → p a\nn✝ : ℕ\nhn✝ : n✝ < length (pmap f l h✝)\nh : ∀ (a : α), a ∈ [] → p a\nn : ℕ\nhn : n < length (pmap f [] h)\n⊢ get (pmap f [] h) { val := n, isLt := hn } =\n f (get [] { val := n, isLt := (_ : n < length []) }) (_ : p (get [] { val := n, isLt := (_ : n < length []) }))", "tactic": "simp only [length, pmap] at hn" }, { "state_after": "no goals", "state_before": "case nil\nι : Type ?u.337556\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\np : α → Prop\nf : (a : α) → p a → β\nl : List α\nh✝ : ∀ (a : α), a ∈ l → p a\nn✝ : ℕ\nhn✝ : n✝ < length (pmap f l h✝)\nh : ∀ (a : α), a ∈ [] → p a\nn : ℕ\nhn : n < 0\n⊢ get (pmap f [] h) { val := n, isLt := hn } =\n f (get [] { val := n, isLt := (_ : n < length []) }) (_ : p (get [] { val := n, isLt := (_ : n < length []) }))", "tactic": "exact absurd hn (not_lt_of_le n.zero_le)" }, { "state_after": "case cons.zero\nι : Type ?u.337556\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\np : α → Prop\nf : (a : α) → p a → β\nl : List α\nh✝ : ∀ (a : α), a ∈ l → p a\nn : ℕ\nhn✝ : n < length (pmap f l h✝)\nhd : α\ntl : List α\nhl :\n ∀ (h : ∀ (a : α), a ∈ tl → p a) {n : ℕ} (hn : n < length (pmap f tl h)),\n get (pmap f tl h) { val := n, isLt := hn } =\n f (get tl { val := n, isLt := (_ : n < length tl) }) (_ : p (get tl { val := n, isLt := (_ : n < length tl) }))\nh : ∀ (a : α), a ∈ hd :: tl → p a\nhn : zero < length (pmap f (hd :: tl) h)\n⊢ get (pmap f (hd :: tl) h) { val := zero, isLt := hn } =\n f (get (hd :: tl) { val := zero, isLt := (_ : zero < length (hd :: tl)) })\n (_ : p (get (hd :: tl) { val := zero, isLt := (_ : zero < length (hd :: tl)) }))\n\ncase cons.succ\nι : Type ?u.337556\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\np : α → Prop\nf : (a : α) → p a → β\nl : List α\nh✝ : ∀ (a : α), a ∈ l → p a\nn : ℕ\nhn✝ : n < length (pmap f l h✝)\nhd : α\ntl : List α\nhl :\n ∀ (h : ∀ (a : α), a ∈ tl → p a) {n : ℕ} (hn : n < length (pmap f tl h)),\n get (pmap f tl h) { val := n, isLt := hn } =\n f (get tl { val := n, isLt := (_ : n < length tl) }) (_ : p (get tl { val := n, isLt := (_ : n < length tl) }))\nh : ∀ (a : α), a ∈ hd :: tl → p a\nn✝ : ℕ\nhn : succ n✝ < length (pmap f (hd :: tl) h)\n⊢ get (pmap f (hd :: tl) h) { val := succ n✝, isLt := hn } =\n f (get (hd :: tl) { val := succ n✝, isLt := (_ : succ n✝ < length (hd :: tl)) })\n (_ : p (get (hd :: tl) { val := succ n✝, isLt := (_ : succ n✝ < length (hd :: tl)) }))", "state_before": "case cons\nι : Type ?u.337556\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\np : α → Prop\nf : (a : α) → p a → β\nl : List α\nh✝ : ∀ (a : α), a ∈ l → p a\nn✝ : ℕ\nhn✝ : n✝ < length (pmap f l h✝)\nhd : α\ntl : List α\nhl :\n ∀ (h : ∀ (a : α), a ∈ tl → p a) {n : ℕ} (hn : n < length (pmap f tl h)),\n get (pmap f tl h) { val := n, isLt := hn } =\n f (get tl { val := n, isLt := (_ : n < length tl) }) (_ : p (get tl { val := n, isLt := (_ : n < length tl) }))\nh : ∀ (a : α), a ∈ hd :: tl → p a\nn : ℕ\nhn : n < length (pmap f (hd :: tl) h)\n⊢ get (pmap f (hd :: tl) h) { val := n, isLt := hn } =\n f (get (hd :: tl) { val := n, isLt := (_ : n < length (hd :: tl)) })\n (_ : p (get (hd :: tl) { val := n, isLt := (_ : n < length (hd :: tl)) }))", "tactic": "cases n" }, { "state_after": "no goals", "state_before": "case cons.zero\nι : Type ?u.337556\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\np : α → Prop\nf : (a : α) → p a → β\nl : List α\nh✝ : ∀ (a : α), a ∈ l → p a\nn : ℕ\nhn✝ : n < length (pmap f l h✝)\nhd : α\ntl : List α\nhl :\n ∀ (h : ∀ (a : α), a ∈ tl → p a) {n : ℕ} (hn : n < length (pmap f tl h)),\n get (pmap f tl h) { val := n, isLt := hn } =\n f (get tl { val := n, isLt := (_ : n < length tl) }) (_ : p (get tl { val := n, isLt := (_ : n < length tl) }))\nh : ∀ (a : α), a ∈ hd :: tl → p a\nhn : zero < length (pmap f (hd :: tl) h)\n⊢ get (pmap f (hd :: tl) h) { val := zero, isLt := hn } =\n f (get (hd :: tl) { val := zero, isLt := (_ : zero < length (hd :: tl)) })\n (_ : p (get (hd :: tl) { val := zero, isLt := (_ : zero < length (hd :: tl)) }))", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case cons.succ\nι : Type ?u.337556\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\np : α → Prop\nf : (a : α) → p a → β\nl : List α\nh✝ : ∀ (a : α), a ∈ l → p a\nn : ℕ\nhn✝ : n < length (pmap f l h✝)\nhd : α\ntl : List α\nhl :\n ∀ (h : ∀ (a : α), a ∈ tl → p a) {n : ℕ} (hn : n < length (pmap f tl h)),\n get (pmap f tl h) { val := n, isLt := hn } =\n f (get tl { val := n, isLt := (_ : n < length tl) }) (_ : p (get tl { val := n, isLt := (_ : n < length tl) }))\nh : ∀ (a : α), a ∈ hd :: tl → p a\nn✝ : ℕ\nhn : succ n✝ < length (pmap f (hd :: tl) h)\n⊢ get (pmap f (hd :: tl) h) { val := succ n✝, isLt := hn } =\n f (get (hd :: tl) { val := succ n✝, isLt := (_ : succ n✝ < length (hd :: tl)) })\n (_ : p (get (hd :: tl) { val := succ n✝, isLt := (_ : succ n✝ < length (hd :: tl)) }))", "tactic": "simp [hl]" } ]
[ 3198, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3188, 1 ]
Mathlib/NumberTheory/Liouville/LiouvilleWith.lean
LiouvilleWith.nat_add_iff
[ { "state_after": "no goals", "state_before": "p q x y : ℝ\nr : ℚ\nm : ℤ\nn : ℕ\n⊢ LiouvilleWith p (↑n + x) ↔ LiouvilleWith p x", "tactic": "rw [add_comm, add_nat_iff]" } ]
[ 229, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 229, 1 ]
Mathlib/Topology/ContinuousOn.lean
eventually_nhds_nhdsWithin
[]
[ 49, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 47, 1 ]
Mathlib/Analysis/Asymptotics/SpecificAsymptotics.lean
Asymptotics.IsLittleO.sum_range
[ { "state_after": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\n⊢ (fun n => ∑ i in range n, f i) =o[atTop] fun n => ∑ i in range n, g i", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\n⊢ (fun n => ∑ i in range n, f i) =o[atTop] fun n => ∑ i in range n, g i", "tactic": "have A : ∀ i, ‖g i‖ = g i := fun i => Real.norm_of_nonneg (hg i)" }, { "state_after": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\n⊢ (fun n => ∑ i in range n, f i) =o[atTop] fun n => ∑ i in range n, g i", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\n⊢ (fun n => ∑ i in range n, f i) =o[atTop] fun n => ∑ i in range n, g i", "tactic": "have B : ∀ n, ‖∑ i in range n, g i‖ = ∑ i in range n, g i := fun n => by\n rwa [Real.norm_eq_abs, abs_sum_of_nonneg']" }, { "state_after": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\n⊢ ∀ (ε : ℝ), 0 < ε → ∀ᶠ (x : ℕ) in atTop, ‖∑ i in range x, f i‖ ≤ ε * ‖∑ i in range x, g i‖", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\n⊢ (fun n => ∑ i in range n, f i) =o[atTop] fun n => ∑ i in range n, g i", "tactic": "apply isLittleO_iff.2 fun ε εpos => _" }, { "state_after": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\n⊢ ∀ᶠ (x : ℕ) in atTop, ‖∑ i in range x, f i‖ ≤ ε * ‖∑ i in range x, g i‖", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\n⊢ ∀ (ε : ℝ), 0 < ε → ∀ᶠ (x : ℕ) in atTop, ‖∑ i in range x, f i‖ ≤ ε * ‖∑ i in range x, g i‖", "tactic": "intro ε εpos" }, { "state_after": "case intro\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\n⊢ ∀ᶠ (x : ℕ) in atTop, ‖∑ i in range x, f i‖ ≤ ε * ‖∑ i in range x, g i‖", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\n⊢ ∀ᶠ (x : ℕ) in atTop, ‖∑ i in range x, f i‖ ≤ ε * ‖∑ i in range x, g i‖", "tactic": "obtain ⟨N, hN⟩ : ∃ N : ℕ, ∀ b : ℕ, N ≤ b → ‖f b‖ ≤ ε / 2 * g b := by\n simpa only [A, eventually_atTop] using isLittleO_iff.mp h (half_pos εpos)" }, { "state_after": "case intro\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\n⊢ ∀ᶠ (x : ℕ) in atTop, ‖∑ i in range x, f i‖ ≤ ε * ‖∑ i in range x, g i‖", "state_before": "case intro\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\n⊢ ∀ᶠ (x : ℕ) in atTop, ‖∑ i in range x, f i‖ ≤ ε * ‖∑ i in range x, g i‖", "tactic": "have : (fun _ : ℕ => ∑ i in range N, f i) =o[atTop] fun n : ℕ => ∑ i in range n, g i := by\n apply isLittleO_const_left.2\n exact Or.inr (h'g.congr fun n => (B n).symm)" }, { "state_after": "case h\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ ‖∑ i in range n, f i‖ ≤ ε * ‖∑ i in range n, g i‖", "state_before": "case intro\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\n⊢ ∀ᶠ (x : ℕ) in atTop, ‖∑ i in range x, f i‖ ≤ ε * ‖∑ i in range x, g i‖", "tactic": "filter_upwards [isLittleO_iff.1 this (half_pos εpos), Ici_mem_atTop N] with n hn Nn" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nn : ℕ\n⊢ ‖∑ i in range n, g i‖ = ∑ i in range n, g i", "tactic": "rwa [Real.norm_eq_abs, abs_sum_of_nonneg']" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\n⊢ ∃ N, ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b", "tactic": "simpa only [A, eventually_atTop] using isLittleO_iff.mp h (half_pos εpos)" }, { "state_after": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\n⊢ ∑ i in range N, f i = 0 ∨ Tendsto (norm ∘ fun n => ∑ i in range n, g i) atTop atTop", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\n⊢ (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i", "tactic": "apply isLittleO_const_left.2" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\n⊢ ∑ i in range N, f i = 0 ∨ Tendsto (norm ∘ fun n => ∑ i in range n, g i) atTop atTop", "tactic": "exact Or.inr (h'g.congr fun n => (B n).symm)" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ ‖∑ i in range n, f i‖ = ‖∑ i in range N, f i + ∑ i in Ico N n, f i‖", "tactic": "rw [sum_range_add_sum_Ico _ Nn]" }, { "state_after": "case bc\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ ∑ i in Ico N n, ε / 2 * g i ≤ ∑ i in range n, ε / 2 * g i", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ ‖∑ i in range N, f i‖ + ∑ i in Ico N n, ε / 2 * g i ≤ ‖∑ i in range N, f i‖ + ∑ i in range n, ε / 2 * g i", "tactic": "gcongr" }, { "state_after": "case bc.h\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ Ico N n ⊆ range n\n\ncase bc.hf\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ ∀ (i : ℕ), i ∈ range n → ¬i ∈ Ico N n → 0 ≤ ε / 2 * g i", "state_before": "case bc\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ ∑ i in Ico N n, ε / 2 * g i ≤ ∑ i in range n, ε / 2 * g i", "tactic": "apply sum_le_sum_of_subset_of_nonneg" }, { "state_after": "case bc.h\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ Ico N n ⊆ Ico 0 n", "state_before": "case bc.h\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ Ico N n ⊆ range n", "tactic": "rw [range_eq_Ico]" }, { "state_after": "no goals", "state_before": "case bc.h\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ Ico N n ⊆ Ico 0 n", "tactic": "exact Ico_subset_Ico (zero_le _) le_rfl" }, { "state_after": "case bc.hf\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\ni : ℕ\na✝¹ : i ∈ range n\na✝ : ¬i ∈ Ico N n\n⊢ 0 ≤ ε / 2 * g i", "state_before": "case bc.hf\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ ∀ (i : ℕ), i ∈ range n → ¬i ∈ Ico N n → 0 ≤ ε / 2 * g i", "tactic": "intro i _ _" }, { "state_after": "no goals", "state_before": "case bc.hf\nα : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\ni : ℕ\na✝¹ : i ∈ range n\na✝ : ¬i ∈ Ico N n\n⊢ 0 ≤ ε / 2 * g i", "tactic": "exact mul_nonneg (half_pos εpos).le (hg i)" }, { "state_after": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ ‖∑ i in range N, f i‖ + ε / 2 * ∑ x in range n, g x ≤ ε / 2 * ‖∑ i in range n, g i‖ + ε / 2 * ∑ i in range n, g i", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ ‖∑ i in range N, f i‖ + ∑ i in range n, ε / 2 * g i ≤ ε / 2 * ‖∑ i in range n, g i‖ + ε / 2 * ∑ i in range n, g i", "tactic": "rw [← mul_sum]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ ‖∑ i in range N, f i‖ + ε / 2 * ∑ x in range n, g x ≤ ε / 2 * ‖∑ i in range n, g i‖ + ε / 2 * ∑ i in range n, g i", "tactic": "gcongr" }, { "state_after": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ ε / 2 * ∑ i in range n, g i + ε / 2 * ∑ i in range n, g i = ε * ∑ i in range n, g i", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ ε / 2 * ‖∑ i in range n, g i‖ + ε / 2 * ∑ i in range n, g i = ε * ‖∑ i in range n, g i‖", "tactic": "simp only [B]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : NormedAddCommGroup α\nf : ℕ → α\ng : ℕ → ℝ\nh : f =o[atTop] g\nhg : 0 ≤ g\nh'g : Tendsto (fun n => ∑ i in range n, g i) atTop atTop\nA : ∀ (i : ℕ), ‖g i‖ = g i\nB : ∀ (n : ℕ), ‖∑ i in range n, g i‖ = ∑ i in range n, g i\nε : ℝ\nεpos : 0 < ε\nN : ℕ\nhN : ∀ (b : ℕ), N ≤ b → ‖f b‖ ≤ ε / 2 * g b\nthis : (fun x => ∑ i in range N, f i) =o[atTop] fun n => ∑ i in range n, g i\nn : ℕ\nhn : ‖∑ i in range N, f i‖ ≤ ε / 2 * ‖∑ i in range n, g i‖\nNn : n ∈ Set.Ici N\n⊢ ε / 2 * ∑ i in range n, g i + ε / 2 * ∑ i in range n, g i = ε * ∑ i in range n, g i", "tactic": "ring" } ]
[ 139, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 109, 1 ]
Mathlib/Topology/UniformSpace/UniformEmbedding.lean
totallyBounded_preimage
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\n⊢ ∃ t_1, Set.Finite t_1 ∧ f ⁻¹' s ⊆ ⋃ (y : α) (_ : y ∈ t_1), {x | (x, y) ∈ t}", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ 𝓤 α\n⊢ ∃ t_1, Set.Finite t_1 ∧ f ⁻¹' s ⊆ ⋃ (y : α) (_ : y ∈ t_1), {x | (x, y) ∈ t}", "tactic": "rw [← hf.comap_uniformity] at ht" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\nt' : Set (β × β)\nht' : t' ∈ 𝓤 β\nts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t\n⊢ ∃ t_1, Set.Finite t_1 ∧ f ⁻¹' s ⊆ ⋃ (y : α) (_ : y ∈ t_1), {x | (x, y) ∈ t}", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\n⊢ ∃ t_1, Set.Finite t_1 ∧ f ⁻¹' s ⊆ ⋃ (y : α) (_ : y ∈ t_1), {x | (x, y) ∈ t}", "tactic": "rcases mem_comap.2 ht with ⟨t', ht', ts⟩" }, { "state_after": "case intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\nt' : Set (β × β)\nht' : t' ∈ 𝓤 β\nts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t\nc : Set β\ncs : c ⊆ f '' (f ⁻¹' s)\nhfc : Set.Finite c\nhct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'}\n⊢ ∃ t_1, Set.Finite t_1 ∧ f ⁻¹' s ⊆ ⋃ (y : α) (_ : y ∈ t_1), {x | (x, y) ∈ t}", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\nt' : Set (β × β)\nht' : t' ∈ 𝓤 β\nts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t\n⊢ ∃ t_1, Set.Finite t_1 ∧ f ⁻¹' s ⊆ ⋃ (y : α) (_ : y ∈ t_1), {x | (x, y) ∈ t}", "tactic": "rcases totallyBounded_iff_subset.1 (totallyBounded_subset (image_preimage_subset f s) hs) _ ht'\n with ⟨c, cs, hfc, hct⟩" }, { "state_after": "case intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\nt' : Set (β × β)\nht' : t' ∈ 𝓤 β\nts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t\nc : Set β\ncs : c ⊆ f '' (f ⁻¹' s)\nhfc : Set.Finite c\nhct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'}\nx : α\nh : x ∈ f ⁻¹' s\n⊢ x ∈ ⋃ (y : α) (_ : y ∈ f ⁻¹' c), {x | (x, y) ∈ t}", "state_before": "case intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\nt' : Set (β × β)\nht' : t' ∈ 𝓤 β\nts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t\nc : Set β\ncs : c ⊆ f '' (f ⁻¹' s)\nhfc : Set.Finite c\nhct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'}\n⊢ ∃ t_1, Set.Finite t_1 ∧ f ⁻¹' s ⊆ ⋃ (y : α) (_ : y ∈ t_1), {x | (x, y) ∈ t}", "tactic": "refine' ⟨f ⁻¹' c, hfc.preimage (hf.inj.injOn _), fun x h => _⟩" }, { "state_after": "case intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\nt' : Set (β × β)\nht' : t' ∈ 𝓤 β\nts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t\nc : Set β\ncs : c ⊆ f '' (f ⁻¹' s)\nhfc : Set.Finite c\nhct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'}\nx : α\nh : x ∈ f ⁻¹' s\nthis : f x ∈ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'}\n⊢ x ∈ ⋃ (y : α) (_ : y ∈ f ⁻¹' c), {x | (x, y) ∈ t}", "state_before": "case intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\nt' : Set (β × β)\nht' : t' ∈ 𝓤 β\nts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t\nc : Set β\ncs : c ⊆ f '' (f ⁻¹' s)\nhfc : Set.Finite c\nhct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'}\nx : α\nh : x ∈ f ⁻¹' s\n⊢ x ∈ ⋃ (y : α) (_ : y ∈ f ⁻¹' c), {x | (x, y) ∈ t}", "tactic": "have := hct (mem_image_of_mem f h)" }, { "state_after": "case intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\nt' : Set (β × β)\nht' : t' ∈ 𝓤 β\nts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t\nc : Set β\ncs : c ⊆ f '' (f ⁻¹' s)\nhfc : Set.Finite c\nhct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'}\nx : α\nh : x ∈ f ⁻¹' s\nthis : ∃ i, i ∈ c ∧ (f x, i) ∈ t'\n⊢ ∃ i, f i ∈ c ∧ (x, i) ∈ t", "state_before": "case intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\nt' : Set (β × β)\nht' : t' ∈ 𝓤 β\nts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t\nc : Set β\ncs : c ⊆ f '' (f ⁻¹' s)\nhfc : Set.Finite c\nhct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'}\nx : α\nh : x ∈ f ⁻¹' s\nthis : f x ∈ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'}\n⊢ x ∈ ⋃ (y : α) (_ : y ∈ f ⁻¹' c), {x | (x, y) ∈ t}", "tactic": "simp at this⊢" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\nt' : Set (β × β)\nht' : t' ∈ 𝓤 β\nts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t\nc : Set β\ncs : c ⊆ f '' (f ⁻¹' s)\nhfc : Set.Finite c\nhct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'}\nx : α\nh : x ∈ f ⁻¹' s\nz : β\nzc : z ∈ c\nzt : (f x, z) ∈ t'\n⊢ ∃ i, f i ∈ c ∧ (x, i) ∈ t", "state_before": "case intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\nt' : Set (β × β)\nht' : t' ∈ 𝓤 β\nts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t\nc : Set β\ncs : c ⊆ f '' (f ⁻¹' s)\nhfc : Set.Finite c\nhct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'}\nx : α\nh : x ∈ f ⁻¹' s\nthis : ∃ i, i ∈ c ∧ (f x, i) ∈ t'\n⊢ ∃ i, f i ∈ c ∧ (x, i) ∈ t", "tactic": "rcases this with ⟨z, zc, zt⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\nt' : Set (β × β)\nht' : t' ∈ 𝓤 β\nts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t\nc : Set β\ncs : c ⊆ f '' (f ⁻¹' s)\nhfc : Set.Finite c\nhct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'}\nx : α\nh : x ∈ f ⁻¹' s\ny : α\nzc : f y ∈ c\nzt : (f x, f y) ∈ t'\n⊢ ∃ i, f i ∈ c ∧ (x, i) ∈ t", "state_before": "case intro.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\nt' : Set (β × β)\nht' : t' ∈ 𝓤 β\nts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t\nc : Set β\ncs : c ⊆ f '' (f ⁻¹' s)\nhfc : Set.Finite c\nhct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'}\nx : α\nh : x ∈ f ⁻¹' s\nz : β\nzc : z ∈ c\nzt : (f x, z) ∈ t'\n⊢ ∃ i, f i ∈ c ∧ (x, i) ∈ t", "tactic": "rcases cs zc with ⟨y, -, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\nf : α → β\ns : Set β\nhf : UniformEmbedding f\nhs : TotallyBounded s\nt : Set (α × α)\nht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β)\nt' : Set (β × β)\nht' : t' ∈ 𝓤 β\nts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t\nc : Set β\ncs : c ⊆ f '' (f ⁻¹' s)\nhfc : Set.Finite c\nhct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'}\nx : α\nh : x ∈ f ⁻¹' s\ny : α\nzc : f y ∈ c\nzt : (f x, f y) ∈ t'\n⊢ ∃ i, f i ∈ c ∧ (x, i) ∈ t", "tactic": "exact ⟨y, zc, ts zt⟩" } ]
[ 396, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 386, 1 ]
Mathlib/Analysis/BoxIntegral/Partition/Split.lean
BoxIntegral.Prepartition.splitMany_empty
[]
[ 250, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 249, 1 ]
Mathlib/Data/Polynomial/Basic.lean
Polynomial.sum_smul_index
[ { "state_after": "case ofFinsupp\nR : Type u\na b✝ : R\nm n : ℕ\ninst✝¹ : Semiring R\np q : R[X]\nS : Type u_1\ninst✝ : AddCommMonoid S\nb : R\nf : ℕ → R → S\nhf : ∀ (i : ℕ), f i 0 = 0\ntoFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ sum (b • { toFinsupp := toFinsupp✝ }) f = sum { toFinsupp := toFinsupp✝ } fun n a => f n (b * a)", "state_before": "R : Type u\na b✝ : R\nm n : ℕ\ninst✝¹ : Semiring R\np✝ q : R[X]\nS : Type u_1\ninst✝ : AddCommMonoid S\np : R[X]\nb : R\nf : ℕ → R → S\nhf : ∀ (i : ℕ), f i 0 = 0\n⊢ sum (b • p) f = sum p fun n a => f n (b * a)", "tactic": "rcases p with ⟨⟩" }, { "state_after": "no goals", "state_before": "case ofFinsupp\nR : Type u\na b✝ : R\nm n : ℕ\ninst✝¹ : Semiring R\np q : R[X]\nS : Type u_1\ninst✝ : AddCommMonoid S\nb : R\nf : ℕ → R → S\nhf : ∀ (i : ℕ), f i 0 = 0\ntoFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ sum (b • { toFinsupp := toFinsupp✝ }) f = sum { toFinsupp := toFinsupp✝ } fun n a => f n (b * a)", "tactic": "simpa [sum, support, coeff] using Finsupp.sum_smul_index hf" } ]
[ 1005, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1002, 1 ]
Mathlib/Data/Part.lean
Part.right_dom_of_union_dom
[]
[ 850, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 850, 1 ]
Mathlib/Data/Rat/Defs.lean
Rat.coe_int_inj
[]
[ 545, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 544, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
eventually_ne_of_tendsto_norm_atTop'
[]
[ 1261, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1259, 1 ]
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearMap.ker_prod_ker_le_ker_coprod
[]
[ 1324, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1322, 1 ]