file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Data/Vector.lean
Vector.cons_head_tail
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nφ : Type w\nn : ℕ\nh : List.length [] = succ n\n⊢ cons (head { val := [], property := h }) (tail { val := [], property := h }) = { val := [], property := h }", "tactic": "contradiction" } ]
[ 84, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 82, 1 ]
Mathlib/Data/Num/Lemmas.lean
PosNum.cast_sub'
[ { "state_after": "α : Type u_1\ninst✝ : AddGroupWithOne α\na : PosNum\n⊢ ↑(↑a - 1) = ↑a - ↑1", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na : PosNum\n⊢ ↑(sub' a 1) = ↑a - ↑1", "tactic": "rw [sub'_one, Num.cast_toZNum, ← Num.cast_to_nat, pred'_to_nat, ← Nat.sub_one]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na : PosNum\n⊢ ↑(↑a - 1) = ↑a - ↑1", "tactic": "simp [PosNum.cast_pos]" }, { "state_after": "α : Type u_1\ninst✝ : AddGroupWithOne α\nb : PosNum\n⊢ ↑(↑b - 1) = ↑b - ↑1", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\nb : PosNum\n⊢ ↑(sub' 1 b) = ↑1 - ↑b", "tactic": "rw [one_sub', Num.cast_toZNumNeg, ← neg_sub, neg_inj, ← Num.cast_to_nat, pred'_to_nat,\n ← Nat.sub_one]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\nb : PosNum\n⊢ ↑(↑b - 1) = ↑b - ↑1", "tactic": "simp [PosNum.cast_pos]" }, { "state_after": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ _root_.bit0 (↑a - ↑b) = ↑(bit0 a) - ↑(bit0 b)", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ ↑(sub' (bit0 a) (bit0 b)) = ↑(bit0 a) - ↑(bit0 b)", "tactic": "rw [sub', ZNum.cast_bit0, cast_sub' a b]" }, { "state_after": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\nthis : ↑(↑a + -↑b + (↑a + -↑b)) = ↑a + ↑a + (-↑b + -↑b)\n⊢ _root_.bit0 (↑a - ↑b) = ↑(bit0 a) - ↑(bit0 b)", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ _root_.bit0 (↑a - ↑b) = ↑(bit0 a) - ↑(bit0 b)", "tactic": "have : ((a + -b + (a + -b) : ℤ) : α) = a + a + (-b + -b) := by simp [add_left_comm]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\nthis : ↑(↑a + -↑b + (↑a + -↑b)) = ↑a + ↑a + (-↑b + -↑b)\n⊢ _root_.bit0 (↑a - ↑b) = ↑(bit0 a) - ↑(bit0 b)", "tactic": "simpa [_root_.bit0, sub_eq_add_neg] using this" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ ↑(↑a + -↑b + (↑a + -↑b)) = ↑a + ↑a + (-↑b + -↑b)", "tactic": "simp [add_left_comm]" }, { "state_after": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ _root_.bit0 (↑a - ↑b) - 1 = ↑(bit0 a) - ↑(bit1 b)", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ ↑(sub' (bit0 a) (bit1 b)) = ↑(bit0 a) - ↑(bit1 b)", "tactic": "rw [sub', ZNum.cast_bitm1, cast_sub' a b]" }, { "state_after": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\nthis : ↑(-↑b + (↑a + (-↑b + -1))) = ↑(↑a + -1 + (-↑b + -↑b))\n⊢ _root_.bit0 (↑a - ↑b) - 1 = ↑(bit0 a) - ↑(bit1 b)", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ _root_.bit0 (↑a - ↑b) - 1 = ↑(bit0 a) - ↑(bit1 b)", "tactic": "have : ((-b + (a + (-b + -1)) : ℤ) : α) = (a + -1 + (-b + -b) : ℤ) := by\n simp [add_comm, add_left_comm]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\nthis : ↑(-↑b + (↑a + (-↑b + -1))) = ↑(↑a + -1 + (-↑b + -↑b))\n⊢ _root_.bit0 (↑a - ↑b) - 1 = ↑(bit0 a) - ↑(bit1 b)", "tactic": "simpa [_root_.bit1, _root_.bit0, sub_eq_add_neg] using this" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ ↑(-↑b + (↑a + (-↑b + -1))) = ↑(↑a + -1 + (-↑b + -↑b))", "tactic": "simp [add_comm, add_left_comm]" }, { "state_after": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ _root_.bit1 (↑a - ↑b) = ↑(bit1 a) - ↑(bit0 b)", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ ↑(sub' (bit1 a) (bit0 b)) = ↑(bit1 a) - ↑(bit0 b)", "tactic": "rw [sub', ZNum.cast_bit1, cast_sub' a b]" }, { "state_after": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\nthis : ↑(-↑b + (↑a + (-↑b + 1))) = ↑(↑a + 1 + (-↑b + -↑b))\n⊢ _root_.bit1 (↑a - ↑b) = ↑(bit1 a) - ↑(bit0 b)", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ _root_.bit1 (↑a - ↑b) = ↑(bit1 a) - ↑(bit0 b)", "tactic": "have : ((-b + (a + (-b + 1)) : ℤ) : α) = (a + 1 + (-b + -b) : ℤ) := by\n simp [add_comm, add_left_comm]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\nthis : ↑(-↑b + (↑a + (-↑b + 1))) = ↑(↑a + 1 + (-↑b + -↑b))\n⊢ _root_.bit1 (↑a - ↑b) = ↑(bit1 a) - ↑(bit0 b)", "tactic": "simpa [_root_.bit1, _root_.bit0, sub_eq_add_neg] using this" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ ↑(-↑b + (↑a + (-↑b + 1))) = ↑(↑a + 1 + (-↑b + -↑b))", "tactic": "simp [add_comm, add_left_comm]" }, { "state_after": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ _root_.bit0 (↑a - ↑b) = ↑(bit1 a) - ↑(bit1 b)", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ ↑(sub' (bit1 a) (bit1 b)) = ↑(bit1 a) - ↑(bit1 b)", "tactic": "rw [sub', ZNum.cast_bit0, cast_sub' a b]" }, { "state_after": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\nthis : ↑(-↑b + (↑a + -↑b)) = ↑a + (-↑b + -↑b)\n⊢ _root_.bit0 (↑a - ↑b) = ↑(bit1 a) - ↑(bit1 b)", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ _root_.bit0 (↑a - ↑b) = ↑(bit1 a) - ↑(bit1 b)", "tactic": "have : ((-b + (a + -b) : ℤ) : α) = a + (-b + -b) := by simp [add_left_comm]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\nthis : ↑(-↑b + (↑a + -↑b)) = ↑a + (-↑b + -↑b)\n⊢ _root_.bit0 (↑a - ↑b) = ↑(bit1 a) - ↑(bit1 b)", "tactic": "simpa [_root_.bit1, _root_.bit0, sub_eq_add_neg] using this" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\na b : PosNum\n⊢ ↑(-↑b + (↑a + -↑b)) = ↑a + (-↑b + -↑b)", "tactic": "simp [add_left_comm]" } ]
[ 1213, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1188, 1 ]
Mathlib/Algebra/Group/Defs.lean
inv_mul_cancel_right
[ { "state_after": "no goals", "state_before": "G : Type u_1\ninst✝ : Group G\na✝ b✝ c a b : G\n⊢ a * b⁻¹ * b = a", "tactic": "rw [mul_assoc, mul_left_inv, mul_one]" } ]
[ 1125, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1124, 1 ]
Mathlib/Data/Real/Hyperreal.lean
Hyperreal.infiniteNeg_mul_infiniteNeg
[]
[ 869, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 867, 1 ]
Mathlib/RingTheory/GradedAlgebra/HomogeneousLocalization.lean
HomogeneousLocalization.NumDenSameDeg.deg_zero
[]
[ 147, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 146, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.iUnion_ite
[]
[ 633, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 631, 1 ]
Mathlib/LinearAlgebra/SesquilinearForm.lean
LinearMap.IsRefl.ker_eq_bot_iff_ker_flip_eq_bot
[ { "state_after": "R : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.124036\nR₃ : Type ?u.124039\nM : Type ?u.124042\nM₁ : Type u_3\nM₂ : Type ?u.124048\nMₗ₁ : Type ?u.124051\nMₗ₁' : Type ?u.124054\nMₗ₂ : Type ?u.124057\nMₗ₂' : Type ?u.124060\nK : Type ?u.124063\nK₁ : Type ?u.124066\nK₂ : Type ?u.124069\nV : Type ?u.124072\nV₁ : Type ?u.124075\nV₂ : Type ?u.124078\nn : Type ?u.124081\ninst✝³ : CommSemiring R\ninst✝² : CommSemiring R₁\ninst✝¹ : AddCommMonoid M₁\ninst✝ : Module R₁ M₁\nI₁ I₂ : R₁ →+* R\nB : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\nH✝ H : IsRefl B\nh : ker (flip B) = ⊥\n⊢ ker B = ⊥", "state_before": "R : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.124036\nR₃ : Type ?u.124039\nM : Type ?u.124042\nM₁ : Type u_3\nM₂ : Type ?u.124048\nMₗ₁ : Type ?u.124051\nMₗ₁' : Type ?u.124054\nMₗ₂ : Type ?u.124057\nMₗ₂' : Type ?u.124060\nK : Type ?u.124063\nK₁ : Type ?u.124066\nK₂ : Type ?u.124069\nV : Type ?u.124072\nV₁ : Type ?u.124075\nV₂ : Type ?u.124078\nn : Type ?u.124081\ninst✝³ : CommSemiring R\ninst✝² : CommSemiring R₁\ninst✝¹ : AddCommMonoid M₁\ninst✝ : Module R₁ M₁\nI₁ I₂ : R₁ →+* R\nB : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\nH✝ H : IsRefl B\n⊢ ker B = ⊥ ↔ ker (flip B) = ⊥", "tactic": "refine' ⟨ker_flip_eq_bot H, fun h ↦ _⟩" }, { "state_after": "no goals", "state_before": "R : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.124036\nR₃ : Type ?u.124039\nM : Type ?u.124042\nM₁ : Type u_3\nM₂ : Type ?u.124048\nMₗ₁ : Type ?u.124051\nMₗ₁' : Type ?u.124054\nMₗ₂ : Type ?u.124057\nMₗ₂' : Type ?u.124060\nK : Type ?u.124063\nK₁ : Type ?u.124066\nK₂ : Type ?u.124069\nV : Type ?u.124072\nV₁ : Type ?u.124075\nV₂ : Type ?u.124078\nn : Type ?u.124081\ninst✝³ : CommSemiring R\ninst✝² : CommSemiring R₁\ninst✝¹ : AddCommMonoid M₁\ninst✝ : Module R₁ M₁\nI₁ I₂ : R₁ →+* R\nB : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\nH✝ H : IsRefl B\nh : ker (flip B) = ⊥\n⊢ ker B = ⊥", "tactic": "exact (congr_arg _ B.flip_flip.symm).trans (ker_flip_eq_bot (flip_isRefl_iff.mpr H) h)" } ]
[ 205, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 202, 1 ]
Mathlib/Data/Stream/Init.lean
Stream'.head_zip
[]
[ 213, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 212, 1 ]
Mathlib/Order/Lattice.lean
right_eq_sup
[]
[ 195, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 194, 1 ]
Mathlib/Data/Nat/Choose/Central.lean
Nat.succ_mul_centralBinom_succ
[ { "state_after": "no goals", "state_before": "n : ℕ\n⊢ choose (2 * n + 2) (n + 1) * (n + 1) = choose (2 * n + 1) n * (2 * n + 2)", "tactic": "rw [choose_succ_right_eq, choose_mul_succ_eq]" }, { "state_after": "no goals", "state_before": "n : ℕ\n⊢ choose (2 * n + 1) n * (2 * n + 2) = 2 * (choose (2 * n + 1) n * (n + 1))", "tactic": "ring" }, { "state_after": "no goals", "state_before": "n : ℕ\n⊢ 2 * (choose (2 * n + 1) n * (n + 1)) = 2 * (choose (2 * n + 1) n * (2 * n + 1 - n))", "tactic": "rw [two_mul n, add_assoc,\n Nat.add_sub_cancel_left]" }, { "state_after": "no goals", "state_before": "n : ℕ\n⊢ 2 * (choose (2 * n + 1) n * (2 * n + 1 - n)) = 2 * (choose (2 * n) n * (2 * n + 1))", "tactic": "rw [choose_mul_succ_eq]" }, { "state_after": "no goals", "state_before": "n : ℕ\n⊢ 2 * (choose (2 * n) n * (2 * n + 1)) = 2 * (2 * n + 1) * choose (2 * n) n", "tactic": "rw [mul_assoc, mul_comm (2 * n + 1)]" } ]
[ 83, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 74, 1 ]
Mathlib/Algebra/Module/LinearMap.lean
image_smul_setₛₗ
[ { "state_after": "case h₁\nR : Type u_2\nR₁ : Type ?u.144905\nR₂ : Type ?u.144908\nR₃ : Type ?u.144911\nk : Type ?u.144914\nS : Type u_3\nS₃ : Type ?u.144920\nT : Type ?u.144923\nM : Type u_4\nM₁ : Type ?u.144929\nM₂ : Type ?u.144932\nM₃ : Type u_5\nN₁ : Type ?u.144938\nN₂ : Type ?u.144941\nN₃ : Type ?u.144944\nι : Type ?u.144947\ninst✝¹² : Semiring R\ninst✝¹¹ : Semiring S\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : AddCommMonoid M₁\ninst✝⁸ : AddCommMonoid M₂\ninst✝⁷ : AddCommMonoid M₃\ninst✝⁶ : AddCommMonoid N₁\ninst✝⁵ : AddCommMonoid N₂\ninst✝⁴ : AddCommMonoid N₃\ninst✝³ : Module R M\ninst✝² : Module R M₂\ninst✝¹ : Module S M₃\nσ : R →+* S\nfₗ gₗ : M →ₗ[R] M₂\nf g : M →ₛₗ[σ] M₃\nF : Type u_1\nh : F\ninst✝ : SemilinearMapClass F σ M M₃\nc : R\ns : Set M\n⊢ ↑h '' (c • s) ⊆ ↑σ c • ↑h '' s\n\ncase h₂\nR : Type u_2\nR₁ : Type ?u.144905\nR₂ : Type ?u.144908\nR₃ : Type ?u.144911\nk : Type ?u.144914\nS : Type u_3\nS₃ : Type ?u.144920\nT : Type ?u.144923\nM : Type u_4\nM₁ : Type ?u.144929\nM₂ : Type ?u.144932\nM₃ : Type u_5\nN₁ : Type ?u.144938\nN₂ : Type ?u.144941\nN₃ : Type ?u.144944\nι : Type ?u.144947\ninst✝¹² : Semiring R\ninst✝¹¹ : Semiring S\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : AddCommMonoid M₁\ninst✝⁸ : AddCommMonoid M₂\ninst✝⁷ : AddCommMonoid M₃\ninst✝⁶ : AddCommMonoid N₁\ninst✝⁵ : AddCommMonoid N₂\ninst✝⁴ : AddCommMonoid N₃\ninst✝³ : Module R M\ninst✝² : Module R M₂\ninst✝¹ : Module S M₃\nσ : R →+* S\nfₗ gₗ : M →ₗ[R] M₂\nf g : M →ₛₗ[σ] M₃\nF : Type u_1\nh : F\ninst✝ : SemilinearMapClass F σ M M₃\nc : R\ns : Set M\n⊢ ↑σ c • ↑h '' s ⊆ ↑h '' (c • s)", "state_before": "R : Type u_2\nR₁ : Type ?u.144905\nR₂ : Type ?u.144908\nR₃ : Type ?u.144911\nk : Type ?u.144914\nS : Type u_3\nS₃ : Type ?u.144920\nT : Type ?u.144923\nM : Type u_4\nM₁ : Type ?u.144929\nM₂ : Type ?u.144932\nM₃ : Type u_5\nN₁ : Type ?u.144938\nN₂ : Type ?u.144941\nN₃ : Type ?u.144944\nι : Type ?u.144947\ninst✝¹² : Semiring R\ninst✝¹¹ : Semiring S\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : AddCommMonoid M₁\ninst✝⁸ : AddCommMonoid M₂\ninst✝⁷ : AddCommMonoid M₃\ninst✝⁶ : AddCommMonoid N₁\ninst✝⁵ : AddCommMonoid N₂\ninst✝⁴ : AddCommMonoid N₃\ninst✝³ : Module R M\ninst✝² : Module R M₂\ninst✝¹ : Module S M₃\nσ : R →+* S\nfₗ gₗ : M →ₗ[R] M₂\nf g : M →ₛₗ[σ] M₃\nF : Type u_1\nh : F\ninst✝ : SemilinearMapClass F σ M M₃\nc : R\ns : Set M\n⊢ ↑h '' (c • s) = ↑σ c • ↑h '' s", "tactic": "apply Set.Subset.antisymm" }, { "state_after": "case h₁.intro.intro.intro.intro\nR : Type u_2\nR₁ : Type ?u.144905\nR₂ : Type ?u.144908\nR₃ : Type ?u.144911\nk : Type ?u.144914\nS : Type u_3\nS₃ : Type ?u.144920\nT : Type ?u.144923\nM : Type u_4\nM₁ : Type ?u.144929\nM₂ : Type ?u.144932\nM₃ : Type u_5\nN₁ : Type ?u.144938\nN₂ : Type ?u.144941\nN₃ : Type ?u.144944\nι : Type ?u.144947\ninst✝¹² : Semiring R\ninst✝¹¹ : Semiring S\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : AddCommMonoid M₁\ninst✝⁸ : AddCommMonoid M₂\ninst✝⁷ : AddCommMonoid M₃\ninst✝⁶ : AddCommMonoid N₁\ninst✝⁵ : AddCommMonoid N₂\ninst✝⁴ : AddCommMonoid N₃\ninst✝³ : Module R M\ninst✝² : Module R M₂\ninst✝¹ : Module S M₃\nσ : R →+* S\nfₗ gₗ : M →ₗ[R] M₂\nf g : M →ₛₗ[σ] M₃\nF : Type u_1\nh : F\ninst✝ : SemilinearMapClass F σ M M₃\nc : R\ns : Set M\nz : M\nzs : z ∈ s\n⊢ ↑h ((fun x => c • x) z) ∈ ↑σ c • ↑h '' s", "state_before": "case h₁\nR : Type u_2\nR₁ : Type ?u.144905\nR₂ : Type ?u.144908\nR₃ : Type ?u.144911\nk : Type ?u.144914\nS : Type u_3\nS₃ : Type ?u.144920\nT : Type ?u.144923\nM : Type u_4\nM₁ : Type ?u.144929\nM₂ : Type ?u.144932\nM₃ : Type u_5\nN₁ : Type ?u.144938\nN₂ : Type ?u.144941\nN₃ : Type ?u.144944\nι : Type ?u.144947\ninst✝¹² : Semiring R\ninst✝¹¹ : Semiring S\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : AddCommMonoid M₁\ninst✝⁸ : AddCommMonoid M₂\ninst✝⁷ : AddCommMonoid M₃\ninst✝⁶ : AddCommMonoid N₁\ninst✝⁵ : AddCommMonoid N₂\ninst✝⁴ : AddCommMonoid N₃\ninst✝³ : Module R M\ninst✝² : Module R M₂\ninst✝¹ : Module S M₃\nσ : R →+* S\nfₗ gₗ : M →ₗ[R] M₂\nf g : M →ₛₗ[σ] M₃\nF : Type u_1\nh : F\ninst✝ : SemilinearMapClass F σ M M₃\nc : R\ns : Set M\n⊢ ↑h '' (c • s) ⊆ ↑σ c • ↑h '' s", "tactic": "rintro x ⟨y, ⟨z, zs, rfl⟩, rfl⟩" }, { "state_after": "no goals", "state_before": "case h₁.intro.intro.intro.intro\nR : Type u_2\nR₁ : Type ?u.144905\nR₂ : Type ?u.144908\nR₃ : Type ?u.144911\nk : Type ?u.144914\nS : Type u_3\nS₃ : Type ?u.144920\nT : Type ?u.144923\nM : Type u_4\nM₁ : Type ?u.144929\nM₂ : Type ?u.144932\nM₃ : Type u_5\nN₁ : Type ?u.144938\nN₂ : Type ?u.144941\nN₃ : Type ?u.144944\nι : Type ?u.144947\ninst✝¹² : Semiring R\ninst✝¹¹ : Semiring S\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : AddCommMonoid M₁\ninst✝⁸ : AddCommMonoid M₂\ninst✝⁷ : AddCommMonoid M₃\ninst✝⁶ : AddCommMonoid N₁\ninst✝⁵ : AddCommMonoid N₂\ninst✝⁴ : AddCommMonoid N₃\ninst✝³ : Module R M\ninst✝² : Module R M₂\ninst✝¹ : Module S M₃\nσ : R →+* S\nfₗ gₗ : M →ₗ[R] M₂\nf g : M →ₛₗ[σ] M₃\nF : Type u_1\nh : F\ninst✝ : SemilinearMapClass F σ M M₃\nc : R\ns : Set M\nz : M\nzs : z ∈ s\n⊢ ↑h ((fun x => c • x) z) ∈ ↑σ c • ↑h '' s", "tactic": "exact ⟨h z, Set.mem_image_of_mem _ zs, (map_smulₛₗ _ _ _).symm⟩" }, { "state_after": "case h₂.intro.intro.intro.intro\nR : Type u_2\nR₁ : Type ?u.144905\nR₂ : Type ?u.144908\nR₃ : Type ?u.144911\nk : Type ?u.144914\nS : Type u_3\nS₃ : Type ?u.144920\nT : Type ?u.144923\nM : Type u_4\nM₁ : Type ?u.144929\nM₂ : Type ?u.144932\nM₃ : Type u_5\nN₁ : Type ?u.144938\nN₂ : Type ?u.144941\nN₃ : Type ?u.144944\nι : Type ?u.144947\ninst✝¹² : Semiring R\ninst✝¹¹ : Semiring S\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : AddCommMonoid M₁\ninst✝⁸ : AddCommMonoid M₂\ninst✝⁷ : AddCommMonoid M₃\ninst✝⁶ : AddCommMonoid N₁\ninst✝⁵ : AddCommMonoid N₂\ninst✝⁴ : AddCommMonoid N₃\ninst✝³ : Module R M\ninst✝² : Module R M₂\ninst✝¹ : Module S M₃\nσ : R →+* S\nfₗ gₗ : M →ₗ[R] M₂\nf g : M →ₛₗ[σ] M₃\nF : Type u_1\nh : F\ninst✝ : SemilinearMapClass F σ M M₃\nc : R\ns : Set M\nz : M\nhz : z ∈ s\n⊢ (fun x => ↑σ c • x) (↑h z) ∈ ↑h '' (c • s)", "state_before": "case h₂\nR : Type u_2\nR₁ : Type ?u.144905\nR₂ : Type ?u.144908\nR₃ : Type ?u.144911\nk : Type ?u.144914\nS : Type u_3\nS₃ : Type ?u.144920\nT : Type ?u.144923\nM : Type u_4\nM₁ : Type ?u.144929\nM₂ : Type ?u.144932\nM₃ : Type u_5\nN₁ : Type ?u.144938\nN₂ : Type ?u.144941\nN₃ : Type ?u.144944\nι : Type ?u.144947\ninst✝¹² : Semiring R\ninst✝¹¹ : Semiring S\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : AddCommMonoid M₁\ninst✝⁸ : AddCommMonoid M₂\ninst✝⁷ : AddCommMonoid M₃\ninst✝⁶ : AddCommMonoid N₁\ninst✝⁵ : AddCommMonoid N₂\ninst✝⁴ : AddCommMonoid N₃\ninst✝³ : Module R M\ninst✝² : Module R M₂\ninst✝¹ : Module S M₃\nσ : R →+* S\nfₗ gₗ : M →ₗ[R] M₂\nf g : M →ₛₗ[σ] M₃\nF : Type u_1\nh : F\ninst✝ : SemilinearMapClass F σ M M₃\nc : R\ns : Set M\n⊢ ↑σ c • ↑h '' s ⊆ ↑h '' (c • s)", "tactic": "rintro x ⟨y, ⟨z, hz, rfl⟩, rfl⟩" }, { "state_after": "no goals", "state_before": "case h₂.intro.intro.intro.intro\nR : Type u_2\nR₁ : Type ?u.144905\nR₂ : Type ?u.144908\nR₃ : Type ?u.144911\nk : Type ?u.144914\nS : Type u_3\nS₃ : Type ?u.144920\nT : Type ?u.144923\nM : Type u_4\nM₁ : Type ?u.144929\nM₂ : Type ?u.144932\nM₃ : Type u_5\nN₁ : Type ?u.144938\nN₂ : Type ?u.144941\nN₃ : Type ?u.144944\nι : Type ?u.144947\ninst✝¹² : Semiring R\ninst✝¹¹ : Semiring S\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : AddCommMonoid M₁\ninst✝⁸ : AddCommMonoid M₂\ninst✝⁷ : AddCommMonoid M₃\ninst✝⁶ : AddCommMonoid N₁\ninst✝⁵ : AddCommMonoid N₂\ninst✝⁴ : AddCommMonoid N₃\ninst✝³ : Module R M\ninst✝² : Module R M₂\ninst✝¹ : Module S M₃\nσ : R →+* S\nfₗ gₗ : M →ₗ[R] M₂\nf g : M →ₛₗ[σ] M₃\nF : Type u_1\nh : F\ninst✝ : SemilinearMapClass F σ M M₃\nc : R\ns : Set M\nz : M\nhz : z ∈ s\n⊢ (fun x => ↑σ c • x) (↑h z) ∈ ↑h '' (c • s)", "tactic": "exact (Set.mem_image _ _ _).2 ⟨c • z, Set.smul_mem_smul_set hz, map_smulₛₗ _ _ _⟩" } ]
[ 367, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 361, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.piecewise_mem_Icc
[]
[ 2585, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2583, 1 ]
Mathlib/Data/Nat/Cast/Basic.lean
toDual_natCast
[]
[ 354, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 353, 1 ]
Mathlib/Tactic/NormNum/GCD.lean
Tactic.NormNum.nat_gcd_helper_dvd_left
[]
[ 31, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 30, 1 ]
Mathlib/Analysis/Complex/CauchyIntegral.lean
Complex.two_pi_I_inv_smul_circleIntegral_sub_inv_smul_of_differentiable_on_off_countable
[ { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w)⁻¹ • f z) = f w", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w)⁻¹ • f z) = f w", "tactic": "have hR : 0 < R := dist_nonneg.trans_lt hw" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\n⊢ w ∈ closure (ball c R \\ s)", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w)⁻¹ • f z) = f w", "tactic": "suffices w ∈ closure (ball c R \\ s) by\n lift R to ℝ≥0 using hR.le\n have A : ContinuousAt (fun w => (2 * π * I : ℂ)⁻¹ • ∮ z in C(c, R), (z - w)⁻¹ • f z) w := by\n have := hasFPowerSeriesOn_cauchy_integral\n ((hc.mono sphere_subset_closedBall).circleIntegrable R.coe_nonneg) hR\n refine' this.continuousOn.continuousAt (EMetric.isOpen_ball.mem_nhds _)\n rwa [Metric.emetric_ball_nnreal]\n have B : ContinuousAt f w := hc.continuousAt (closedBall_mem_nhds_of_mem hw)\n refine' tendsto_nhds_unique_of_frequently_eq A B ((mem_closure_iff_frequently.1 this).mono _)\n intro z hz\n rw [circleIntegral_sub_inv_smul_of_differentiable_on_off_countable_aux hs hz hc hd,\n inv_smul_smul₀]\n simp [Real.pi_ne_zero, I_ne_zero]" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\n⊢ Set.Nonempty (t ∩ (ball c R \\ s))", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\n⊢ w ∈ closure (ball c R \\ s)", "tactic": "refine' mem_closure_iff_nhds.2 fun t ht => _" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\n⊢ Set.Nonempty (t ∩ (ball c R \\ s))", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\n⊢ Set.Nonempty (t ∩ (ball c R \\ s))", "tactic": "set g : ℝ → ℂ := fun x => w + ofReal x" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\nthis : Tendsto g (𝓝 0) (𝓝 w)\n⊢ Set.Nonempty (t ∩ (ball c R \\ s))", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\n⊢ Set.Nonempty (t ∩ (ball c R \\ s))", "tactic": "have : Tendsto g (𝓝 0) (𝓝 w) :=\n (continuous_const.add continuous_ofReal).tendsto' 0 w (add_zero _)" }, { "state_after": "case intro.intro.intro\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\nthis : Tendsto g (𝓝 0) (𝓝 w)\nl u : ℝ\nhlu₀ : 0 ∈ Ioo l u\nhlu_sub : Ioo l u ⊆ g ⁻¹' (t ∩ ball c R)\n⊢ Set.Nonempty (t ∩ (ball c R \\ s))", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\nthis : Tendsto g (𝓝 0) (𝓝 w)\n⊢ Set.Nonempty (t ∩ (ball c R \\ s))", "tactic": "rcases mem_nhds_iff_exists_Ioo_subset.1 (this <| inter_mem ht <| isOpen_ball.mem_nhds hw) with\n ⟨l, u, hlu₀, hlu_sub⟩" }, { "state_after": "case intro.intro.intro.intro\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\nthis : Tendsto g (𝓝 0) (𝓝 w)\nl u : ℝ\nhlu₀ : 0 ∈ Ioo l u\nhlu_sub : Ioo l u ⊆ g ⁻¹' (t ∩ ball c R)\nx : ℝ\nhx : x ∈ Ioo l u \\ g ⁻¹' s\n⊢ Set.Nonempty (t ∩ (ball c R \\ s))", "state_before": "case intro.intro.intro\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\nthis : Tendsto g (𝓝 0) (𝓝 w)\nl u : ℝ\nhlu₀ : 0 ∈ Ioo l u\nhlu_sub : Ioo l u ⊆ g ⁻¹' (t ∩ ball c R)\n⊢ Set.Nonempty (t ∩ (ball c R \\ s))", "tactic": "obtain ⟨x, hx⟩ : (Ioo l u \\ g ⁻¹' s).Nonempty := by\n refine' nonempty_diff.2 fun hsub => _\n have : (Ioo l u).Countable :=\n (hs.preimage ((add_right_injective w).comp ofReal_injective)).mono hsub\n rw [← Cardinal.le_aleph0_iff_set_countable, Cardinal.mk_Ioo_real (hlu₀.1.trans hlu₀.2)] at this\n exact this.not_lt Cardinal.aleph0_lt_continuum" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\nthis : Tendsto g (𝓝 0) (𝓝 w)\nl u : ℝ\nhlu₀ : 0 ∈ Ioo l u\nhlu_sub : Ioo l u ⊆ g ⁻¹' (t ∩ ball c R)\nx : ℝ\nhx : x ∈ Ioo l u \\ g ⁻¹' s\n⊢ Set.Nonempty (t ∩ (ball c R \\ s))", "tactic": "exact ⟨g x, (hlu_sub hx.1).1, (hlu_sub hx.1).2, hx.2⟩" }, { "state_after": "case intro\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis : w ∈ closure (ball c ↑R \\ s)\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) = f w", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nthis : w ∈ closure (ball c R \\ s)\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w)⁻¹ • f z) = f w", "tactic": "lift R to ℝ≥0 using hR.le" }, { "state_after": "case intro\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis : w ∈ closure (ball c ↑R \\ s)\nA : ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) = f w", "state_before": "case intro\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis : w ∈ closure (ball c ↑R \\ s)\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) = f w", "tactic": "have A : ContinuousAt (fun w => (2 * π * I : ℂ)⁻¹ • ∮ z in C(c, R), (z - w)⁻¹ • f z) w := by\n have := hasFPowerSeriesOn_cauchy_integral\n ((hc.mono sphere_subset_closedBall).circleIntegrable R.coe_nonneg) hR\n refine' this.continuousOn.continuousAt (EMetric.isOpen_ball.mem_nhds _)\n rwa [Metric.emetric_ball_nnreal]" }, { "state_after": "case intro\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis : w ∈ closure (ball c ↑R \\ s)\nA : ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w\nB : ContinuousAt f w\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) = f w", "state_before": "case intro\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis : w ∈ closure (ball c ↑R \\ s)\nA : ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) = f w", "tactic": "have B : ContinuousAt f w := hc.continuousAt (closedBall_mem_nhds_of_mem hw)" }, { "state_after": "case intro\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis : w ∈ closure (ball c ↑R \\ s)\nA : ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w\nB : ContinuousAt f w\n⊢ ∀ (x : ℂ), x ∈ ball c ↑R \\ s → ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - x)⁻¹ • f z) = f x", "state_before": "case intro\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis : w ∈ closure (ball c ↑R \\ s)\nA : ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w\nB : ContinuousAt f w\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) = f w", "tactic": "refine' tendsto_nhds_unique_of_frequently_eq A B ((mem_closure_iff_frequently.1 this).mono _)" }, { "state_after": "case intro\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis : w ∈ closure (ball c ↑R \\ s)\nA : ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w\nB : ContinuousAt f w\nz : ℂ\nhz : z ∈ ball c ↑R \\ s\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z_1 : ℂ) in C(c, ↑R), (z_1 - z)⁻¹ • f z_1) = f z", "state_before": "case intro\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis : w ∈ closure (ball c ↑R \\ s)\nA : ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w\nB : ContinuousAt f w\n⊢ ∀ (x : ℂ), x ∈ ball c ↑R \\ s → ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - x)⁻¹ • f z) = f x", "tactic": "intro z hz" }, { "state_after": "case intro.hc\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis : w ∈ closure (ball c ↑R \\ s)\nA : ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w\nB : ContinuousAt f w\nz : ℂ\nhz : z ∈ ball c ↑R \\ s\n⊢ 2 * ↑π * I ≠ 0", "state_before": "case intro\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis : w ∈ closure (ball c ↑R \\ s)\nA : ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w\nB : ContinuousAt f w\nz : ℂ\nhz : z ∈ ball c ↑R \\ s\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z_1 : ℂ) in C(c, ↑R), (z_1 - z)⁻¹ • f z_1) = f z", "tactic": "rw [circleIntegral_sub_inv_smul_of_differentiable_on_off_countable_aux hs hz hc hd,\n inv_smul_smul₀]" }, { "state_after": "no goals", "state_before": "case intro.hc\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis : w ∈ closure (ball c ↑R \\ s)\nA : ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w\nB : ContinuousAt f w\nz : ℂ\nhz : z ∈ ball c ↑R \\ s\n⊢ 2 * ↑π * I ≠ 0", "tactic": "simp [Real.pi_ne_zero, I_ne_zero]" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis✝ : w ∈ closure (ball c ↑R \\ s)\nthis :\n HasFPowerSeriesOnBall (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) (cauchyPowerSeries f c ↑R) c\n ↑R\n⊢ ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis : w ∈ closure (ball c ↑R \\ s)\n⊢ ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w", "tactic": "have := hasFPowerSeriesOn_cauchy_integral\n ((hc.mono sphere_subset_closedBall).circleIntegrable R.coe_nonneg) hR" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis✝ : w ∈ closure (ball c ↑R \\ s)\nthis :\n HasFPowerSeriesOnBall (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) (cauchyPowerSeries f c ↑R) c\n ↑R\n⊢ w ∈ EMetric.ball c ↑R", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis✝ : w ∈ closure (ball c ↑R \\ s)\nthis :\n HasFPowerSeriesOnBall (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) (cauchyPowerSeries f c ↑R) c\n ↑R\n⊢ ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w", "tactic": "refine' this.continuousOn.continuousAt (EMetric.isOpen_ball.mem_nhds _)" }, { "state_after": "no goals", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nR : ℝ≥0\nhw : w ∈ ball c ↑R\nhc : ContinuousOn f (closedBall c ↑R)\nhd : ∀ (x : ℂ), x ∈ ball c ↑R \\ s → DifferentiableAt ℂ f x\nhR : 0 < ↑R\nthis✝ : w ∈ closure (ball c ↑R \\ s)\nthis :\n HasFPowerSeriesOnBall (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) (cauchyPowerSeries f c ↑R) c\n ↑R\n⊢ w ∈ EMetric.ball c ↑R", "tactic": "rwa [Metric.emetric_ball_nnreal]" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\nthis : Tendsto g (𝓝 0) (𝓝 w)\nl u : ℝ\nhlu₀ : 0 ∈ Ioo l u\nhlu_sub : Ioo l u ⊆ g ⁻¹' (t ∩ ball c R)\nhsub : Ioo l u ⊆ g ⁻¹' s\n⊢ False", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\nthis : Tendsto g (𝓝 0) (𝓝 w)\nl u : ℝ\nhlu₀ : 0 ∈ Ioo l u\nhlu_sub : Ioo l u ⊆ g ⁻¹' (t ∩ ball c R)\n⊢ Set.Nonempty (Ioo l u \\ g ⁻¹' s)", "tactic": "refine' nonempty_diff.2 fun hsub => _" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\nthis✝ : Tendsto g (𝓝 0) (𝓝 w)\nl u : ℝ\nhlu₀ : 0 ∈ Ioo l u\nhlu_sub : Ioo l u ⊆ g ⁻¹' (t ∩ ball c R)\nhsub : Ioo l u ⊆ g ⁻¹' s\nthis : Set.Countable (Ioo l u)\n⊢ False", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\nthis : Tendsto g (𝓝 0) (𝓝 w)\nl u : ℝ\nhlu₀ : 0 ∈ Ioo l u\nhlu_sub : Ioo l u ⊆ g ⁻¹' (t ∩ ball c R)\nhsub : Ioo l u ⊆ g ⁻¹' s\n⊢ False", "tactic": "have : (Ioo l u).Countable :=\n (hs.preimage ((add_right_injective w).comp ofReal_injective)).mono hsub" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\nthis✝ : Tendsto g (𝓝 0) (𝓝 w)\nl u : ℝ\nhlu₀ : 0 ∈ Ioo l u\nhlu_sub : Ioo l u ⊆ g ⁻¹' (t ∩ ball c R)\nhsub : Ioo l u ⊆ g ⁻¹' s\nthis : Cardinal.continuum ≤ Cardinal.aleph0\n⊢ False", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\nthis✝ : Tendsto g (𝓝 0) (𝓝 w)\nl u : ℝ\nhlu₀ : 0 ∈ Ioo l u\nhlu_sub : Ioo l u ⊆ g ⁻¹' (t ∩ ball c R)\nhsub : Ioo l u ⊆ g ⁻¹' s\nthis : Set.Countable (Ioo l u)\n⊢ False", "tactic": "rw [← Cardinal.le_aleph0_iff_set_countable, Cardinal.mk_Ioo_real (hlu₀.1.trans hlu₀.2)] at this" }, { "state_after": "no goals", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nR : ℝ\nc w : ℂ\nf : ℂ → E\ns : Set ℂ\nhs : Set.Countable s\nhw : w ∈ ball c R\nhc : ContinuousOn f (closedBall c R)\nhd : ∀ (x : ℂ), x ∈ ball c R \\ s → DifferentiableAt ℂ f x\nhR : 0 < R\nt : Set ℂ\nht : t ∈ 𝓝 w\ng : ℝ → ℂ := fun x => w + ↑ofReal x\nthis✝ : Tendsto g (𝓝 0) (𝓝 w)\nl u : ℝ\nhlu₀ : 0 ∈ Ioo l u\nhlu_sub : Ioo l u ⊆ g ⁻¹' (t ∩ ball c R)\nhsub : Ioo l u ⊆ g ⁻¹' s\nthis : Cardinal.continuum ≤ Cardinal.aleph0\n⊢ False", "tactic": "exact this.not_lt Cardinal.aleph0_lt_continuum" } ]
[ 494, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 463, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Basic.lean
DifferentiableOn.hasFDerivAt
[]
[ 526, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 524, 1 ]
Mathlib/RingTheory/Ideal/Operations.lean
Submodule.smul_assoc
[]
[ 221, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 211, 11 ]
Mathlib/Data/Complex/Basic.lean
Complex.AbsTheory.mul_self_abs
[]
[ 908, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 907, 9 ]
Mathlib/Order/MinMax.lean
max_eq_right_iff
[]
[ 152, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 151, 1 ]
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
intervalIntegral.intervalIntegral_eq_integral_uIoc
[ { "state_after": "case inl\nι : Type ?u.10052960\n𝕜 : Type ?u.10052963\nE : Type u_1\nF : Type ?u.10052969\nA : Type ?u.10052972\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\na✝ b✝ : ℝ\nf✝ g : ℝ → E\nμ✝ : MeasureTheory.Measure ℝ\nf : ℝ → E\na b : ℝ\nμ : MeasureTheory.Measure ℝ\nh : a ≤ b\n⊢ (∫ (x : ℝ) in a..b, f x ∂μ) = 1 • ∫ (x : ℝ) in Ι a b, f x ∂μ\n\ncase inr\nι : Type ?u.10052960\n𝕜 : Type ?u.10052963\nE : Type u_1\nF : Type ?u.10052969\nA : Type ?u.10052972\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\na✝ b✝ : ℝ\nf✝ g : ℝ → E\nμ✝ : MeasureTheory.Measure ℝ\nf : ℝ → E\na b : ℝ\nμ : MeasureTheory.Measure ℝ\nh : ¬a ≤ b\n⊢ (∫ (x : ℝ) in a..b, f x ∂μ) = -1 • ∫ (x : ℝ) in Ι a b, f x ∂μ", "state_before": "ι : Type ?u.10052960\n𝕜 : Type ?u.10052963\nE : Type u_1\nF : Type ?u.10052969\nA : Type ?u.10052972\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\na✝ b✝ : ℝ\nf✝ g : ℝ → E\nμ✝ : MeasureTheory.Measure ℝ\nf : ℝ → E\na b : ℝ\nμ : MeasureTheory.Measure ℝ\n⊢ (∫ (x : ℝ) in a..b, f x ∂μ) = (if a ≤ b then 1 else -1) • ∫ (x : ℝ) in Ι a b, f x ∂μ", "tactic": "split_ifs with h" }, { "state_after": "no goals", "state_before": "case inl\nι : Type ?u.10052960\n𝕜 : Type ?u.10052963\nE : Type u_1\nF : Type ?u.10052969\nA : Type ?u.10052972\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\na✝ b✝ : ℝ\nf✝ g : ℝ → E\nμ✝ : MeasureTheory.Measure ℝ\nf : ℝ → E\na b : ℝ\nμ : MeasureTheory.Measure ℝ\nh : a ≤ b\n⊢ (∫ (x : ℝ) in a..b, f x ∂μ) = 1 • ∫ (x : ℝ) in Ι a b, f x ∂μ", "tactic": "simp only [integral_of_le h, uIoc_of_le h, one_smul]" }, { "state_after": "no goals", "state_before": "case inr\nι : Type ?u.10052960\n𝕜 : Type ?u.10052963\nE : Type u_1\nF : Type ?u.10052969\nA : Type ?u.10052972\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\na✝ b✝ : ℝ\nf✝ g : ℝ → E\nμ✝ : MeasureTheory.Measure ℝ\nf : ℝ → E\na b : ℝ\nμ : MeasureTheory.Measure ℝ\nh : ¬a ≤ b\n⊢ (∫ (x : ℝ) in a..b, f x ∂μ) = -1 • ∫ (x : ℝ) in Ι a b, f x ∂μ", "tactic": "simp only [integral_of_ge (not_le.1 h).le, uIoc_of_lt (not_le.1 h), neg_one_smul]" } ]
[ 488, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 484, 1 ]
Mathlib/Order/UpperLower/Basic.lean
UpperSet.mem_mk
[]
[ 441, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 440, 1 ]
Mathlib/Data/PFun.lean
PFun.comp_apply
[]
[ 583, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 582, 1 ]
Mathlib/Analysis/InnerProductSpace/Positive.lean
ContinuousLinearMap.IsPositive.adjoint_conj
[ { "state_after": "case h.e'_7.h.e'_24.h.e'_24\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁶ : IsROrC 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace 𝕜 E\ninst✝² : InnerProductSpace 𝕜 F\ninst✝¹ : CompleteSpace E\ninst✝ : CompleteSpace F\nT : E →L[𝕜] E\nhT : IsPositive T\nS : F →L[𝕜] E\n⊢ S = ↑adjoint (↑adjoint S)", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁶ : IsROrC 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace 𝕜 E\ninst✝² : InnerProductSpace 𝕜 F\ninst✝¹ : CompleteSpace E\ninst✝ : CompleteSpace F\nT : E →L[𝕜] E\nhT : IsPositive T\nS : F →L[𝕜] E\n⊢ IsPositive (comp (↑adjoint S) (comp T S))", "tactic": "convert hT.conj_adjoint (S†)" }, { "state_after": "no goals", "state_before": "case h.e'_7.h.e'_24.h.e'_24\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁶ : IsROrC 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace 𝕜 E\ninst✝² : InnerProductSpace 𝕜 F\ninst✝¹ : CompleteSpace E\ninst✝ : CompleteSpace F\nT : E →L[𝕜] E\nhT : IsPositive T\nS : F →L[𝕜] E\n⊢ S = ↑adjoint (↑adjoint S)", "tactic": "rw [adjoint_adjoint]" } ]
[ 104, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 101, 1 ]
Mathlib/Order/Hom/Lattice.lean
SupBotHom.symm_dual_id
[]
[ 1463, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1462, 1 ]
Mathlib/GroupTheory/Submonoid/Basic.lean
Submonoid.closure_union
[]
[ 530, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 529, 1 ]
Mathlib/Algebra/GCDMonoid/Basic.lean
lcm_dvd_lcm_mul_right
[]
[ 853, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 852, 1 ]
Mathlib/ModelTheory/Basic.lean
FirstOrder.Language.card_functions_sum
[ { "state_after": "no goals", "state_before": "L : Language\nL' : Language\ni : ℕ\n⊢ (#Functions (Language.sum L L') i) = lift (#Functions L i) + lift (#Functions L' i)", "tactic": "simp [Language.sum]" } ]
[ 256, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 253, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
Subsemiring.prod_mono_left
[]
[ 1066, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1065, 1 ]
Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean
MeasureTheory.stronglyMeasurable_const
[]
[ 162, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 160, 1 ]
Mathlib/SetTheory/Ordinal/Basic.lean
InitialSeg.ordinal_type_le
[]
[ 367, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 365, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
MvPolynomial.coe_eq_zero_iff
[ { "state_after": "no goals", "state_before": "σ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nφ ψ : MvPolynomial σ R\n⊢ ↑φ = 0 ↔ φ = 0", "tactic": "rw [← coe_zero, coe_inj]" } ]
[ 1150, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1150, 1 ]
Mathlib/Algebra/Module/Equiv.lean
LinearEquiv.eq_symm_apply
[]
[ 411, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 410, 1 ]
Mathlib/Order/Hom/Basic.lean
codisjoint_map_orderIso_iff
[]
[ 1233, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1230, 1 ]
Mathlib/Algebra/Order/UpperLower.lean
IsUpperSet.mul_right
[ { "state_after": "α : Type u_1\ninst✝ : OrderedCommGroup α\ns t : Set α\na : α\nhs : IsUpperSet s\n⊢ IsUpperSet (t * s)", "state_before": "α : Type u_1\ninst✝ : OrderedCommGroup α\ns t : Set α\na : α\nhs : IsUpperSet s\n⊢ IsUpperSet (s * t)", "tactic": "rw [mul_comm]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : OrderedCommGroup α\ns t : Set α\na : α\nhs : IsUpperSet s\n⊢ IsUpperSet (t * s)", "tactic": "exact hs.mul_left" } ]
[ 77, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/Data/Nat/Order/Basic.lean
Nat.lt_of_lt_pred
[]
[ 258, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 257, 1 ]
Mathlib/Order/Antichain.lean
IsAntichain.insert
[]
[ 110, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 11 ]
Mathlib/RingTheory/Localization/Basic.lean
IsLocalization.mk'_eq_iff_eq_mul
[]
[ 291, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 289, 1 ]
Mathlib/Order/Monotone/Union.lean
StrictAntiOn.union
[]
[ 69, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 67, 11 ]
Mathlib/Data/Sign.lean
SignType.coe_one
[]
[ 265, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 264, 1 ]
Mathlib/Algebra/CharP/Basic.lean
ringChar.of_eq
[]
[ 226, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/Topology/Homeomorph.lean
Homeomorph.quotientMap
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.58426\nδ : Type ?u.58429\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nh : α ≃ₜ β\n⊢ QuotientMap (↑h ∘ ↑(Homeomorph.symm h))", "tactic": "simp only [self_comp_symm, QuotientMap.id]" } ]
[ 238, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 11 ]
Mathlib/Order/Hom/Lattice.lean
LatticeHom.ext
[]
[ 1059, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1058, 1 ]
Mathlib/Order/RelIso/Basic.lean
RelEmbedding.isStrictTotalOrder
[]
[ 388, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 386, 11 ]
Mathlib/Order/Heyting/Basic.lean
inf_himp
[ { "state_after": "no goals", "state_before": "ι : Type ?u.28319\nα : Type u_1\nβ : Type ?u.28325\ninst✝ : GeneralizedHeytingAlgebra α\na✝ b✝ c d a b : α\n⊢ a ⊓ (a ⇨ b) ≤ b", "tactic": "rw [inf_comm, ← le_himp_iff]" } ]
[ 356, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 355, 1 ]
Mathlib/Algebra/Polynomial/GroupRingAction.lean
prodXSubSmul.coeff
[ { "state_after": "no goals", "state_before": "M : Type ?u.109284\ninst✝⁴ : Monoid M\nG : Type u_2\ninst✝³ : Group G\ninst✝² : Fintype G\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : MulSemiringAction G R\nx : R\ng : G\nn : ℕ\n⊢ g • Polynomial.coeff (prodXSubSmul G R x) n = Polynomial.coeff (prodXSubSmul G R x) n", "tactic": "rw [← Polynomial.coeff_smul, prodXSubSmul.smul]" } ]
[ 123, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 121, 1 ]
Mathlib/Algebra/TrivSqZeroExt.lean
TrivSqZeroExt.snd_sum
[]
[ 304, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 302, 1 ]
Mathlib/LinearAlgebra/Finrank.lean
FiniteDimensional.finrank_self
[ { "state_after": "no goals", "state_before": "K : Type u\nV : Type v\ninst✝⁵ : Ring K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nV₂ : Type v'\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : StrongRankCondition K\n⊢ Module.rank K K = ↑1", "tactic": "simp" } ]
[ 144, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/Data/Finset/Sups.lean
Finset.mem_sups
[]
[ 63, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 63, 1 ]
Mathlib/GroupTheory/PGroup.lean
IsPGroup.orderOf_coprime
[]
[ 103, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 101, 1 ]
Mathlib/GroupTheory/Subsemigroup/Basic.lean
Subsemigroup.mk_le_mk
[]
[ 132, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]
Mathlib/Algebra/Regular/SMul.lean
IsSMulRegular.smul
[]
[ 72, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Algebra/Order/Rearrangement.lean
MonovaryOn.sum_smul_comp_perm_lt_sum_smul_iff
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝³ : LinearOrderedRing α\ninst✝² : LinearOrderedAddCommGroup β\ninst✝¹ : Module α β\ninst✝ : OrderedSMul α β\ns : Finset ι\nσ : Perm ι\nf : ι → α\ng : ι → β\nhfg : MonovaryOn f g ↑s\nhσ : {x | ↑σ x ≠ x} ⊆ ↑s\n⊢ ∑ i in s, f i • g (↑σ i) < ∑ i in s, f i • g i ↔ ¬MonovaryOn f (g ∘ ↑σ) ↑s", "tactic": "simp [← hfg.sum_smul_comp_perm_eq_sum_smul_iff hσ, lt_iff_le_and_ne,\n hfg.sum_smul_comp_perm_le_sum_smul hσ]" } ]
[ 149, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_node3R
[ { "state_after": "no goals", "state_before": "α : Type u_1\nl : Ordnode α\nx : α\nm : Ordnode α\ny : α\nr : Ordnode α\n⊢ dual (node3R l x m y r) = node3L (dual r) y (dual m) x (dual l)", "tactic": "simp [node3L, node3R, dual_node', add_comm]" } ]
[ 322, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 320, 1 ]
Std/Data/String/Lemmas.lean
String.Iterator.Valid.prev
[]
[ 644, 35 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 640, 1 ]
Mathlib/Topology/FiberBundle/Trivialization.lean
Pretrivialization.coe_coe
[]
[ 113, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/Combinatorics/Young/YoungDiagram.lean
YoungDiagram.coe_bot
[ { "state_after": "case refine'_1\n\n⊢ ↑⊥.cells ⊆ ∅\n\ncase refine'_2\n\n⊢ ∅ ⊆ ↑⊥.cells", "state_before": "⊢ ↑⊥.cells = ∅", "tactic": "refine' Set.eq_of_subset_of_subset _ _" }, { "state_after": "case refine'_1\nx : ℕ × ℕ\nh : x ∈ ↑⊥.cells\n⊢ x ∈ ∅\n\ncase refine'_2\n\n⊢ ∅ ⊆ ↑⊥.cells", "state_before": "case refine'_1\n\n⊢ ↑⊥.cells ⊆ ∅\n\ncase refine'_2\n\n⊢ ∅ ⊆ ↑⊥.cells", "tactic": "intros x h" }, { "state_after": "case refine'_2\n\n⊢ ∅ ⊆ ↑⊥.cells", "state_before": "case refine'_1\nx : ℕ × ℕ\nh : x ∈ ↑⊥.cells\n⊢ x ∈ ∅\n\ncase refine'_2\n\n⊢ ∅ ⊆ ↑⊥.cells", "tactic": "simp [mem_mk, Finset.coe_empty, Set.mem_empty_iff_false] at h" }, { "state_after": "no goals", "state_before": "case refine'_2\n\n⊢ ∅ ⊆ ↑⊥.cells", "tactic": "simp only [cells_bot, Finset.coe_empty, Set.empty_subset]" } ]
[ 182, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 178, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean
CategoryTheory.Limits.pullbackAssoc_inv_fst_snd
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝⁷ : Category C\nD : Type u₂\ninst✝⁶ : Category D\nW X Y Z X₁ X₂ X₃ Y₁ Y₂ : C\nf₁ : X₁ ⟶ Y₁\nf₂ : X₂ ⟶ Y₁\nf₃ : X₂ ⟶ Y₂\nf₄ : X₃ ⟶ Y₂\ninst✝⁵ : HasPullback f₁ f₂\ninst✝⁴ : HasPullback f₃ f₄\ninst✝³ : HasPullback (pullback.snd ≫ sorryAx (sorryAx C true ⟶ Y₂) true) f₄\ninst✝² : HasPullback f₁ (pullback.fst ≫ f₂)\ninst✝¹ : HasPullback (pullback.snd ≫ f₃) f₄\ninst✝ : HasPullback f₁ (pullback.fst ≫ f₂)\n⊢ (pullbackAssoc f₁ f₂ f₃ f₄).inv ≫ pullback.fst ≫ pullback.snd = pullback.snd ≫ pullback.fst", "tactic": "rw [Iso.inv_comp_eq, pullbackAssoc_hom_snd_fst]" } ]
[ 2441, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2438, 1 ]
Mathlib/Analysis/Analytic/Basic.lean
HasFPowerSeriesOnBall.tendstoLocallyUniformlyOn'
[ { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1014853\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\nhf : HasFPowerSeriesOnBall f p x r\nA : ContinuousOn (fun y => y - x) (EMetric.ball x r)\n⊢ TendstoLocallyUniformlyOn (fun n y => FormalMultilinearSeries.partialSum p n (y - x)) f atTop (EMetric.ball x r)", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1014853\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\nhf : HasFPowerSeriesOnBall f p x r\n⊢ TendstoLocallyUniformlyOn (fun n y => FormalMultilinearSeries.partialSum p n (y - x)) f atTop (EMetric.ball x r)", "tactic": "have A : ContinuousOn (fun y : E => y - x) (EMetric.ball (x : E) r) :=\n (continuous_id.sub continuous_const).continuousOn" }, { "state_after": "case h.e'_7\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1014853\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\nhf : HasFPowerSeriesOnBall f p x r\nA : ContinuousOn (fun y => y - x) (EMetric.ball x r)\n⊢ f = (fun y => f (x + y)) ∘ fun y => y - x\n\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1014853\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\nhf : HasFPowerSeriesOnBall f p x r\nA : ContinuousOn (fun y => y - x) (EMetric.ball x r)\n⊢ MapsTo (fun y => y - x) (EMetric.ball x r) (EMetric.ball 0 r)", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1014853\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\nhf : HasFPowerSeriesOnBall f p x r\nA : ContinuousOn (fun y => y - x) (EMetric.ball x r)\n⊢ TendstoLocallyUniformlyOn (fun n y => FormalMultilinearSeries.partialSum p n (y - x)) f atTop (EMetric.ball x r)", "tactic": "convert hf.tendstoLocallyUniformlyOn.comp (fun y : E => y - x) _ A using 1" }, { "state_after": "case h.e'_7.h\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1014853\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\nhf : HasFPowerSeriesOnBall f p x r\nA : ContinuousOn (fun y => y - x) (EMetric.ball x r)\nz : E\n⊢ f z = ((fun y => f (x + y)) ∘ fun y => y - x) z", "state_before": "case h.e'_7\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1014853\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\nhf : HasFPowerSeriesOnBall f p x r\nA : ContinuousOn (fun y => y - x) (EMetric.ball x r)\n⊢ f = (fun y => f (x + y)) ∘ fun y => y - x", "tactic": "ext z" }, { "state_after": "no goals", "state_before": "case h.e'_7.h\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1014853\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\nhf : HasFPowerSeriesOnBall f p x r\nA : ContinuousOn (fun y => y - x) (EMetric.ball x r)\nz : E\n⊢ f z = ((fun y => f (x + y)) ∘ fun y => y - x) z", "tactic": "simp" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1014853\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\nhf : HasFPowerSeriesOnBall f p x r\nA : ContinuousOn (fun y => y - x) (EMetric.ball x r)\nz : E\n⊢ z ∈ EMetric.ball x r → (fun y => y - x) z ∈ EMetric.ball 0 r", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1014853\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\nhf : HasFPowerSeriesOnBall f p x r\nA : ContinuousOn (fun y => y - x) (EMetric.ball x r)\n⊢ MapsTo (fun y => y - x) (EMetric.ball x r) (EMetric.ball 0 r)", "tactic": "intro z" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1014853\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\nhf : HasFPowerSeriesOnBall f p x r\nA : ContinuousOn (fun y => y - x) (EMetric.ball x r)\nz : E\n⊢ z ∈ EMetric.ball x r → (fun y => y - x) z ∈ EMetric.ball 0 r", "tactic": "simp [edist_eq_coe_nnnorm, edist_eq_coe_nnnorm_sub]" } ]
[ 864, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 855, 1 ]
Mathlib/Algebra/Order/Field/Basic.lean
one_le_div_iff
[ { "state_after": "case inl\nι : Type ?u.164600\nα : Type u_1\nβ : Type ?u.164606\ninst✝ : LinearOrderedField α\na b c d : α\nn : ℤ\nhb : b < 0\n⊢ 1 ≤ a / b ↔ 0 < b ∧ b ≤ a ∨ b < 0 ∧ a ≤ b\n\ncase inr.inl\nι : Type ?u.164600\nα : Type u_1\nβ : Type ?u.164606\ninst✝ : LinearOrderedField α\na c d : α\nn : ℤ\n⊢ 1 ≤ a / 0 ↔ 0 < 0 ∧ 0 ≤ a ∨ 0 < 0 ∧ a ≤ 0\n\ncase inr.inr\nι : Type ?u.164600\nα : Type u_1\nβ : Type ?u.164606\ninst✝ : LinearOrderedField α\na b c d : α\nn : ℤ\nhb : 0 < b\n⊢ 1 ≤ a / b ↔ 0 < b ∧ b ≤ a ∨ b < 0 ∧ a ≤ b", "state_before": "ι : Type ?u.164600\nα : Type u_1\nβ : Type ?u.164606\ninst✝ : LinearOrderedField α\na b c d : α\nn : ℤ\n⊢ 1 ≤ a / b ↔ 0 < b ∧ b ≤ a ∨ b < 0 ∧ a ≤ b", "tactic": "rcases lt_trichotomy b 0 with (hb | rfl | hb)" }, { "state_after": "no goals", "state_before": "case inl\nι : Type ?u.164600\nα : Type u_1\nβ : Type ?u.164606\ninst✝ : LinearOrderedField α\na b c d : α\nn : ℤ\nhb : b < 0\n⊢ 1 ≤ a / b ↔ 0 < b ∧ b ≤ a ∨ b < 0 ∧ a ≤ b", "tactic": "simp [hb, hb.not_lt, one_le_div_of_neg]" }, { "state_after": "no goals", "state_before": "case inr.inl\nι : Type ?u.164600\nα : Type u_1\nβ : Type ?u.164606\ninst✝ : LinearOrderedField α\na c d : α\nn : ℤ\n⊢ 1 ≤ a / 0 ↔ 0 < 0 ∧ 0 ≤ a ∨ 0 < 0 ∧ a ≤ 0", "tactic": "simp [lt_irrefl, zero_lt_one.not_le, zero_lt_one]" }, { "state_after": "no goals", "state_before": "case inr.inr\nι : Type ?u.164600\nα : Type u_1\nβ : Type ?u.164606\ninst✝ : LinearOrderedField α\na b c d : α\nn : ℤ\nhb : 0 < b\n⊢ 1 ≤ a / b ↔ 0 < b ∧ b ≤ a ∨ b < 0 ∧ a ≤ b", "tactic": "simp [hb, hb.not_lt, one_le_div]" } ]
[ 846, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 842, 1 ]
Mathlib/Data/IsROrC/Basic.lean
IsROrC.ofReal_neg
[]
[ 226, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/Data/Nat/Pow.lean
Nat.pow_lt_pow_of_lt_left
[]
[ 31, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 30, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.comap_inf
[]
[ 2184, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2184, 9 ]
Mathlib/Data/Set/Intervals/Disjoint.lean
IsGLB.biUnion_Ici_eq_Ioi
[ { "state_after": "case refine'_1\nι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\na_glb : IsGLB s a\na_not_mem : ¬a ∈ s\nx : α\nhx : x ∈ s\n⊢ Ici x ⊆ Ioi a\n\ncase refine'_2\nι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\na_glb : IsGLB s a\na_not_mem : ¬a ∈ s\nx : α\nhx : x ∈ Ioi a\n⊢ x ∈ ⋃ (i : α) (_ : i ∈ s), Ici i", "state_before": "ι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\na_glb : IsGLB s a\na_not_mem : ¬a ∈ s\n⊢ (⋃ (x : α) (_ : x ∈ s), Ici x) = Ioi a", "tactic": "refine' (iUnion₂_subset fun x hx => _).antisymm fun x hx => _" }, { "state_after": "no goals", "state_before": "case refine'_1\nι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\na_glb : IsGLB s a\na_not_mem : ¬a ∈ s\nx : α\nhx : x ∈ s\n⊢ Ici x ⊆ Ioi a", "tactic": "exact Ici_subset_Ioi.mpr (lt_of_le_of_ne (a_glb.1 hx) fun h => (h ▸ a_not_mem) hx)" }, { "state_after": "case refine'_2.intro.intro.intro\nι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\na_glb : IsGLB s a\na_not_mem : ¬a ∈ s\nx : α\nhx : x ∈ Ioi a\ny : α\nhys : y ∈ s\nleft✝ : a ≤ y\nhyx : y < x\n⊢ x ∈ ⋃ (i : α) (_ : i ∈ s), Ici i", "state_before": "case refine'_2\nι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\na_glb : IsGLB s a\na_not_mem : ¬a ∈ s\nx : α\nhx : x ∈ Ioi a\n⊢ x ∈ ⋃ (i : α) (_ : i ∈ s), Ici i", "tactic": "rcases a_glb.exists_between hx with ⟨y, hys, _, hyx⟩" }, { "state_after": "case refine'_2.intro.intro.intro\nι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\na_glb : IsGLB s a\na_not_mem : ¬a ∈ s\nx : α\nhx : x ∈ Ioi a\ny : α\nhys : y ∈ s\nleft✝ : a ≤ y\nhyx : y < x\n⊢ ∃ i j, x ∈ Ici i", "state_before": "case refine'_2.intro.intro.intro\nι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\na_glb : IsGLB s a\na_not_mem : ¬a ∈ s\nx : α\nhx : x ∈ Ioi a\ny : α\nhys : y ∈ s\nleft✝ : a ≤ y\nhyx : y < x\n⊢ x ∈ ⋃ (i : α) (_ : i ∈ s), Ici i", "tactic": "apply mem_iUnion₂.mpr" }, { "state_after": "no goals", "state_before": "case refine'_2.intro.intro.intro\nι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\na_glb : IsGLB s a\na_not_mem : ¬a ∈ s\nx : α\nhx : x ∈ Ioi a\ny : α\nhys : y ∈ s\nleft✝ : a ≤ y\nhyx : y < x\n⊢ ∃ i j, x ∈ Ici i", "tactic": "refine' ⟨y, hys, hyx.le⟩" } ]
[ 210, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 204, 1 ]
Mathlib/Data/Complex/Basic.lean
Complex.eta
[]
[ 56, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 55, 1 ]
Std/Data/List/Lemmas.lean
List.mem_of_find?_eq_some
[ { "state_after": "case pos\nα✝ : Type u_1\np : α✝ → Bool\na b : α✝\nl : List α✝\nh : p b = true\nH : b = a\n⊢ a ∈ b :: l\n\ncase neg\nα✝ : Type u_1\np : α✝ → Bool\na b : α✝\nl : List α✝\nh : ¬p b = true\nH : find? p l = some a\n⊢ a ∈ b :: l", "state_before": "α✝ : Type u_1\np : α✝ → Bool\na b : α✝\nl : List α✝\nH : find? p (b :: l) = some a\n⊢ a ∈ b :: l", "tactic": "by_cases h : p b <;> simp [find?, h] at H" }, { "state_after": "no goals", "state_before": "case pos\nα✝ : Type u_1\np : α✝ → Bool\na b : α✝\nl : List α✝\nh : p b = true\nH : b = a\n⊢ a ∈ b :: l", "tactic": "exact H ▸ .head _" }, { "state_after": "no goals", "state_before": "case neg\nα✝ : Type u_1\np : α✝ → Bool\na b : α✝\nl : List α✝\nh : ¬p b = true\nH : find? p l = some a\n⊢ a ∈ b :: l", "tactic": "exact .tail _ (mem_of_find?_eq_some H)" } ]
[ 1272, 45 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1268, 9 ]
Mathlib/Algebra/GCDMonoid/Basic.lean
gcd_greatest_associated
[]
[ 676, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 672, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.familyOfBFamily'_enum
[ { "state_after": "no goals", "state_before": "α : Type ?u.271765\nβ : Type ?u.271768\nγ : Type ?u.271771\nr✝ : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nr : ι → ι → Prop\ninst✝ : IsWellOrder ι r\no : Ordinal\nho : type r = o\nf : (a : Ordinal) → a < o → α\ni : Ordinal\nhi : i < o\n⊢ i < type r", "tactic": "rwa [ho]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.271768\nγ : Type ?u.271771\nr✝ : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nr : ι → ι → Prop\ninst✝ : IsWellOrder ι r\no : Ordinal\nho : type r = o\nf : (a : Ordinal) → a < o → α\ni : Ordinal\nhi : i < o\n⊢ familyOfBFamily' r ho f (enum r i (_ : i < type r)) = f i hi", "tactic": "simp only [familyOfBFamily', typein_enum]" } ]
[ 1157, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1154, 1 ]
Mathlib/Data/List/Chain.lean
List.chain_iff_forall₂
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nR r : α → α → Prop\nl l₁ l₂ : List α\na✝ b a : α\n⊢ Chain R a [] ↔ [] = [] ∨ Forall₂ R (a :: dropLast []) []", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nR r : α → α → Prop\nl✝ l₁ l₂ : List α\na✝ b✝ a b : α\nl : List α\n⊢ Chain R a (b :: l) ↔ b :: l = [] ∨ Forall₂ R (a :: dropLast (b :: l)) (b :: l)", "tactic": "by_cases h : l = [] <;>\nsimp [@chain_iff_forall₂ b l, *]" } ]
[ 78, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/Tactic/PushNeg.lean
Mathlib.Tactic.PushNeg.not_ge_eq
[]
[ 31, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 31, 1 ]
Mathlib/Data/Finsupp/Defs.lean
Finsupp.mem_support_onFinset
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.175978\nγ : Type ?u.175981\nι : Type ?u.175984\nM : Type u_2\nM' : Type ?u.175990\nN : Type ?u.175993\nP : Type ?u.175996\nG : Type ?u.175999\nH : Type ?u.176002\nR : Type ?u.176005\nS : Type ?u.176008\ninst✝ : Zero M\ns : Finset α\nf : α → M\nhf : ∀ (a : α), f a ≠ 0 → a ∈ s\na : α\n⊢ a ∈ (onFinset s f hf).support ↔ f a ≠ 0", "tactic": "rw [Finsupp.mem_support_iff, Finsupp.onFinset_apply]" } ]
[ 713, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 711, 1 ]
Mathlib/Algebra/AddTorsor.lean
Prod.mk_vsub_mk
[]
[ 332, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 330, 1 ]
Mathlib/Algebra/GeomSum.lean
geom_sum₂_self
[ { "state_after": "no goals", "state_before": "α✝ : Type u\nα : Type u_1\ninst✝ : CommRing α\nx : α\nn : ℕ\n⊢ ∑ i in range n, x ^ i * x ^ (n - 1 - i) = ∑ i in range n, x ^ (i + (n - 1 - i))", "tactic": "simp_rw [← pow_add]" }, { "state_after": "no goals", "state_before": "α✝ : Type u\nα : Type u_1\ninst✝ : CommRing α\nx : α\nn : ℕ\n⊢ card (range n) • x ^ (n - 1) = ↑n * x ^ (n - 1)", "tactic": "rw [Finset.card_range, nsmul_eq_mul]" } ]
[ 156, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 146, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.sdiff_eq_self_iff_disjoint
[]
[ 2360, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2359, 1 ]
Mathlib/Order/Atoms.lean
isCoatomic_dual_iff_isAtomic
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.11708\ninst✝¹ : PartialOrder α\ninst✝ : OrderBot α\nh : IsCoatomic αᵒᵈ\nb : α\n⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b", "tactic": "apply h.eq_top_or_exists_le_coatom" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.11708\ninst✝¹ : PartialOrder α\ninst✝ : OrderBot α\nh : IsAtomic α\nb : αᵒᵈ\n⊢ b = ⊤ ∨ ∃ a, IsCoatom a ∧ b ≤ a", "tactic": "apply h.eq_bot_or_exists_atom_le" } ]
[ 257, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 255, 1 ]
Mathlib/Algebra/Ring/Prod.lean
false_of_nontrivial_of_product_domain
[ { "state_after": "α : Type ?u.54070\nβ : Type ?u.54073\nR✝ : Type ?u.54076\nR' : Type ?u.54079\nS✝ : Type ?u.54082\nS' : Type ?u.54085\nT : Type ?u.54088\nT' : Type ?u.54091\nR : Type u_1\nS : Type u_2\ninst✝⁴ : Ring R\ninst✝³ : Ring S\ninst✝² : IsDomain (R × S)\ninst✝¹ : Nontrivial R\ninst✝ : Nontrivial S\nthis : (0, 1) = 0 ∨ (1, 0) = 0\n⊢ False", "state_before": "α : Type ?u.54070\nβ : Type ?u.54073\nR✝ : Type ?u.54076\nR' : Type ?u.54079\nS✝ : Type ?u.54082\nS' : Type ?u.54085\nT : Type ?u.54088\nT' : Type ?u.54091\nR : Type u_1\nS : Type u_2\ninst✝⁴ : Ring R\ninst✝³ : Ring S\ninst✝² : IsDomain (R × S)\ninst✝¹ : Nontrivial R\ninst✝ : Nontrivial S\n⊢ False", "tactic": "have :=\n NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero (show ((0 : R), (1 : S)) * (1, 0) = 0 by simp)" }, { "state_after": "α : Type ?u.54070\nβ : Type ?u.54073\nR✝ : Type ?u.54076\nR' : Type ?u.54079\nS✝ : Type ?u.54082\nS' : Type ?u.54085\nT : Type ?u.54088\nT' : Type ?u.54091\nR : Type u_1\nS : Type u_2\ninst✝⁴ : Ring R\ninst✝³ : Ring S\ninst✝² : IsDomain (R × S)\ninst✝¹ : Nontrivial R\ninst✝ : Nontrivial S\nthis : 0 = 0 ∧ 1 = 0 ∨ 1 = 0 ∧ 0 = 0\n⊢ False", "state_before": "α : Type ?u.54070\nβ : Type ?u.54073\nR✝ : Type ?u.54076\nR' : Type ?u.54079\nS✝ : Type ?u.54082\nS' : Type ?u.54085\nT : Type ?u.54088\nT' : Type ?u.54091\nR : Type u_1\nS : Type u_2\ninst✝⁴ : Ring R\ninst✝³ : Ring S\ninst✝² : IsDomain (R × S)\ninst✝¹ : Nontrivial R\ninst✝ : Nontrivial S\nthis : (0, 1) = 0 ∨ (1, 0) = 0\n⊢ False", "tactic": "rw [Prod.mk_eq_zero, Prod.mk_eq_zero] at this" }, { "state_after": "case inl.intro\nα : Type ?u.54070\nβ : Type ?u.54073\nR✝ : Type ?u.54076\nR' : Type ?u.54079\nS✝ : Type ?u.54082\nS' : Type ?u.54085\nT : Type ?u.54088\nT' : Type ?u.54091\nR : Type u_1\nS : Type u_2\ninst✝⁴ : Ring R\ninst✝³ : Ring S\ninst✝² : IsDomain (R × S)\ninst✝¹ : Nontrivial R\ninst✝ : Nontrivial S\nleft✝ : 0 = 0\nh : 1 = 0\n⊢ False\n\ncase inr.intro\nα : Type ?u.54070\nβ : Type ?u.54073\nR✝ : Type ?u.54076\nR' : Type ?u.54079\nS✝ : Type ?u.54082\nS' : Type ?u.54085\nT : Type ?u.54088\nT' : Type ?u.54091\nR : Type u_1\nS : Type u_2\ninst✝⁴ : Ring R\ninst✝³ : Ring S\ninst✝² : IsDomain (R × S)\ninst✝¹ : Nontrivial R\ninst✝ : Nontrivial S\nh : 1 = 0\nright✝ : 0 = 0\n⊢ False", "state_before": "α : Type ?u.54070\nβ : Type ?u.54073\nR✝ : Type ?u.54076\nR' : Type ?u.54079\nS✝ : Type ?u.54082\nS' : Type ?u.54085\nT : Type ?u.54088\nT' : Type ?u.54091\nR : Type u_1\nS : Type u_2\ninst✝⁴ : Ring R\ninst✝³ : Ring S\ninst✝² : IsDomain (R × S)\ninst✝¹ : Nontrivial R\ninst✝ : Nontrivial S\nthis : 0 = 0 ∧ 1 = 0 ∨ 1 = 0 ∧ 0 = 0\n⊢ False", "tactic": "rcases this with (⟨_, h⟩ | ⟨h, _⟩)" }, { "state_after": "no goals", "state_before": "α : Type ?u.54070\nβ : Type ?u.54073\nR✝ : Type ?u.54076\nR' : Type ?u.54079\nS✝ : Type ?u.54082\nS' : Type ?u.54085\nT : Type ?u.54088\nT' : Type ?u.54091\nR : Type u_1\nS : Type u_2\ninst✝⁴ : Ring R\ninst✝³ : Ring S\ninst✝² : IsDomain (R × S)\ninst✝¹ : Nontrivial R\ninst✝ : Nontrivial S\n⊢ (0, 1) * (1, 0) = 0", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case inl.intro\nα : Type ?u.54070\nβ : Type ?u.54073\nR✝ : Type ?u.54076\nR' : Type ?u.54079\nS✝ : Type ?u.54082\nS' : Type ?u.54085\nT : Type ?u.54088\nT' : Type ?u.54091\nR : Type u_1\nS : Type u_2\ninst✝⁴ : Ring R\ninst✝³ : Ring S\ninst✝² : IsDomain (R × S)\ninst✝¹ : Nontrivial R\ninst✝ : Nontrivial S\nleft✝ : 0 = 0\nh : 1 = 0\n⊢ False", "tactic": "exact zero_ne_one h.symm" }, { "state_after": "no goals", "state_before": "case inr.intro\nα : Type ?u.54070\nβ : Type ?u.54073\nR✝ : Type ?u.54076\nR' : Type ?u.54079\nS✝ : Type ?u.54082\nS' : Type ?u.54085\nT : Type ?u.54088\nT' : Type ?u.54091\nR : Type u_1\nS : Type u_2\ninst✝⁴ : Ring R\ninst✝³ : Ring S\ninst✝² : IsDomain (R × S)\ninst✝¹ : Nontrivial R\ninst✝ : Nontrivial S\nh : 1 = 0\nright✝ : 0 = 0\n⊢ False", "tactic": "exact zero_ne_one h.symm" } ]
[ 344, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 337, 1 ]
Mathlib/Data/Set/Intervals/Group.lean
Set.sub_mem_Ico_iff_right
[]
[ 127, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 126, 1 ]
Mathlib/Order/Bounds/Basic.lean
mem_lowerBounds
[]
[ 91, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 90, 1 ]
Mathlib/Topology/Algebra/ConstMulAction.lean
Continuous.const_smul
[]
[ 112, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/Data/Quot.lean
Quotient.out_inj
[]
[ 406, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 405, 1 ]
Mathlib/Logic/Equiv/Basic.lean
Equiv.semiconj₂_conj
[ { "state_after": "no goals", "state_before": "α₁ : Type u_1\nβ₁ : Type u_2\ne : α₁ ≃ β₁\nf : α₁ → α₁ → α₁\nx y : α₁\n⊢ ↑e (f x y) = ↑(arrowCongr e (conj e)) f (↑e x) (↑e y)", "tactic": "simp [arrowCongr]" } ]
[ 1849, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1849, 1 ]
Mathlib/Deprecated/Subgroup.lean
Group.mclosure_inv_subset
[]
[ 623, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 621, 1 ]
Mathlib/LinearAlgebra/Quotient.lean
Submodule.Quotient.eq'
[]
[ 82, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 11 ]
Mathlib/Algebra/Lie/Basic.lean
lie_self
[]
[ 151, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 150, 1 ]
Mathlib/FieldTheory/Laurent.lean
RatFunc.laurent_X
[ { "state_after": "no goals", "state_before": "R : Type u\ninst✝ : CommRing R\nhdomain : IsDomain R\nr s : R\np q : R[X]\nf : RatFunc R\n⊢ ↑(laurent r) X = X + ↑C r", "tactic": "rw [← algebraMap_X, laurent_algebraMap, taylor_X, _root_.map_add, algebraMap_C]" } ]
[ 101, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 100, 1 ]
Mathlib/Order/SymmDiff.lean
symmDiff_symmDiff_right'
[ { "state_after": "case e_a\nι : Type ?u.91463\nα : Type u_1\nβ : Type ?u.91469\nπ : ι → Type ?u.91474\ninst✝ : BooleanAlgebra α\na b c d : α\n⊢ a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ b ⊓ cᶜ ⊓ aᶜ = a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ aᶜ ⊓ b ⊓ cᶜ\n\ncase e_a\nι : Type ?u.91463\nα : Type u_1\nβ : Type ?u.91469\nπ : ι → Type ?u.91474\ninst✝ : BooleanAlgebra α\na b c d : α\n⊢ c ⊓ bᶜ ⊓ aᶜ = aᶜ ⊓ bᶜ ⊓ c", "state_before": "ι : Type ?u.91463\nα : Type u_1\nβ : Type ?u.91469\nπ : ι → Type ?u.91474\ninst✝ : BooleanAlgebra α\na b c d : α\n⊢ a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ b ⊓ cᶜ ⊓ aᶜ ⊔ c ⊓ bᶜ ⊓ aᶜ = a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ aᶜ ⊓ b ⊓ cᶜ ⊔ aᶜ ⊓ bᶜ ⊓ c", "tactic": "congr 1" }, { "state_after": "case e_a.e_a\nι : Type ?u.91463\nα : Type u_1\nβ : Type ?u.91469\nπ : ι → Type ?u.91474\ninst✝ : BooleanAlgebra α\na b c d : α\n⊢ b ⊓ cᶜ ⊓ aᶜ = aᶜ ⊓ b ⊓ cᶜ", "state_before": "case e_a\nι : Type ?u.91463\nα : Type u_1\nβ : Type ?u.91469\nπ : ι → Type ?u.91474\ninst✝ : BooleanAlgebra α\na b c d : α\n⊢ a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ b ⊓ cᶜ ⊓ aᶜ = a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ aᶜ ⊓ b ⊓ cᶜ", "tactic": "congr 1" }, { "state_after": "no goals", "state_before": "case e_a.e_a\nι : Type ?u.91463\nα : Type u_1\nβ : Type ?u.91469\nπ : ι → Type ?u.91474\ninst✝ : BooleanAlgebra α\na b c d : α\n⊢ b ⊓ cᶜ ⊓ aᶜ = aᶜ ⊓ b ⊓ cᶜ", "tactic": "rw [inf_comm, inf_assoc]" }, { "state_after": "no goals", "state_before": "case e_a\nι : Type ?u.91463\nα : Type u_1\nβ : Type ?u.91469\nπ : ι → Type ?u.91474\ninst✝ : BooleanAlgebra α\na b c d : α\n⊢ c ⊓ bᶜ ⊓ aᶜ = aᶜ ⊓ bᶜ ⊓ c", "tactic": "apply inf_left_right_swap" } ]
[ 789, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 778, 1 ]
Mathlib/Topology/ContinuousFunction/Basic.lean
ContinuousMap.continuousAt
[]
[ 149, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 148, 11 ]
Mathlib/Topology/UniformSpace/UniformConvergence.lean
tendstoLocallyUniformlyOn_iff_filter
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\n⊢ TendstoLocallyUniformlyOn F f p s ↔\n ∀ (x : α),\n x ∈ s →\n ∀ (u : Set (β × β)),\n u ∈ 𝓤 β →\n ∃ pa,\n (∀ᶠ (x : ι) in p, pa x) ∧\n ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\n⊢ TendstoLocallyUniformlyOn F f p s ↔ ∀ (x : α), x ∈ s → TendstoUniformlyOnFilter F f p (𝓝[s] x)", "tactic": "simp only [TendstoUniformlyOnFilter, eventually_prod_iff]" }, { "state_after": "case mp\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\n⊢ TendstoLocallyUniformlyOn F f p s →\n ∀ (x : α),\n x ∈ s →\n ∀ (u : Set (β × β)),\n u ∈ 𝓤 β →\n ∃ pa,\n (∀ᶠ (x : ι) in p, pa x) ∧\n ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u\n\ncase mpr\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\n⊢ (∀ (x : α),\n x ∈ s →\n ∀ (u : Set (β × β)),\n u ∈ 𝓤 β →\n ∃ pa,\n (∀ᶠ (x : ι) in p, pa x) ∧\n ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u) →\n TendstoLocallyUniformlyOn F f p s", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\n⊢ TendstoLocallyUniformlyOn F f p s ↔\n ∀ (x : α),\n x ∈ s →\n ∀ (u : Set (β × β)),\n u ∈ 𝓤 β →\n ∃ pa,\n (∀ᶠ (x : ι) in p, pa x) ∧\n ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u", "tactic": "constructor" }, { "state_after": "case mp\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx✝ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nh : TendstoLocallyUniformlyOn F f p s\nx : α\nhx : x ∈ s\nu : Set (β × β)\nhu : u ∈ 𝓤 β\n⊢ ∃ pa,\n (∀ᶠ (x : ι) in p, pa x) ∧ ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u", "state_before": "case mp\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\n⊢ TendstoLocallyUniformlyOn F f p s →\n ∀ (x : α),\n x ∈ s →\n ∀ (u : Set (β × β)),\n u ∈ 𝓤 β →\n ∃ pa,\n (∀ᶠ (x : ι) in p, pa x) ∧\n ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u", "tactic": "rintro h x hx u hu" }, { "state_after": "case mp.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns✝ s' : Set α\nx✝ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nh : TendstoLocallyUniformlyOn F f p s✝\nx : α\nhx : x ∈ s✝\nu : Set (β × β)\nhu : u ∈ 𝓤 β\ns : Set α\nhs1 : s ∈ 𝓝[s✝] x\nhs2 : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ s → (f y, F n y) ∈ u\n⊢ ∃ pa,\n (∀ᶠ (x : ι) in p, pa x) ∧ ∃ pb, (∀ᶠ (y : α) in 𝓝[s✝] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u", "state_before": "case mp\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx✝ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nh : TendstoLocallyUniformlyOn F f p s\nx : α\nhx : x ∈ s\nu : Set (β × β)\nhu : u ∈ 𝓤 β\n⊢ ∃ pa,\n (∀ᶠ (x : ι) in p, pa x) ∧ ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u", "tactic": "obtain ⟨s, hs1, hs2⟩ := h u hu x hx" }, { "state_after": "no goals", "state_before": "case mp.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns✝ s' : Set α\nx✝ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nh : TendstoLocallyUniformlyOn F f p s✝\nx : α\nhx : x ∈ s✝\nu : Set (β × β)\nhu : u ∈ 𝓤 β\ns : Set α\nhs1 : s ∈ 𝓝[s✝] x\nhs2 : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ s → (f y, F n y) ∈ u\n⊢ ∃ pa,\n (∀ᶠ (x : ι) in p, pa x) ∧ ∃ pb, (∀ᶠ (y : α) in 𝓝[s✝] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u", "tactic": "exact ⟨_, hs2, _, eventually_of_mem hs1 fun x => id, fun hi y hy => hi y hy⟩" }, { "state_after": "case mpr\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx✝ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nh :\n ∀ (x : α),\n x ∈ s →\n ∀ (u : Set (β × β)),\n u ∈ 𝓤 β →\n ∃ pa,\n (∀ᶠ (x : ι) in p, pa x) ∧\n ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u\nu : Set (β × β)\nhu : u ∈ 𝓤 β\nx : α\nhx : x ∈ s\n⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u", "state_before": "case mpr\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\n⊢ (∀ (x : α),\n x ∈ s →\n ∀ (u : Set (β × β)),\n u ∈ 𝓤 β →\n ∃ pa,\n (∀ᶠ (x : ι) in p, pa x) ∧\n ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u) →\n TendstoLocallyUniformlyOn F f p s", "tactic": "rintro h u hu x hx" }, { "state_after": "case mpr.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx✝ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nh✝ :\n ∀ (x : α),\n x ∈ s →\n ∀ (u : Set (β × β)),\n u ∈ 𝓤 β →\n ∃ pa,\n (∀ᶠ (x : ι) in p, pa x) ∧\n ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u\nu : Set (β × β)\nhu : u ∈ 𝓤 β\nx : α\nhx : x ∈ s\npa : ι → Prop\nhpa : ∀ᶠ (x : ι) in p, pa x\npb : α → Prop\nhpb : ∀ᶠ (y : α) in 𝓝[s] x, pb y\nh : ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u\n⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u", "state_before": "case mpr\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx✝ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nh :\n ∀ (x : α),\n x ∈ s →\n ∀ (u : Set (β × β)),\n u ∈ 𝓤 β →\n ∃ pa,\n (∀ᶠ (x : ι) in p, pa x) ∧\n ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u\nu : Set (β × β)\nhu : u ∈ 𝓤 β\nx : α\nhx : x ∈ s\n⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u", "tactic": "obtain ⟨pa, hpa, pb, hpb, h⟩ := h x hx u hu" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx✝ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nh✝ :\n ∀ (x : α),\n x ∈ s →\n ∀ (u : Set (β × β)),\n u ∈ 𝓤 β →\n ∃ pa,\n (∀ᶠ (x : ι) in p, pa x) ∧\n ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u\nu : Set (β × β)\nhu : u ∈ 𝓤 β\nx : α\nhx : x ∈ s\npa : ι → Prop\nhpa : ∀ᶠ (x : ι) in p, pa x\npb : α → Prop\nhpb : ∀ᶠ (y : α) in 𝓝[s] x, pb y\nh : ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u\n⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u", "tactic": "refine' ⟨pb, hpb, eventually_of_mem hpa fun i hi y hy => h hi hy⟩" } ]
[ 765, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 756, 1 ]
Mathlib/Algebra/Order/UpperLower.lean
UpperSet.coe_one
[]
[ 149, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 148, 1 ]
Mathlib/Data/Set/Pointwise/Interval.lean
Set.preimage_const_mul_Ici
[]
[ 617, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 616, 1 ]
Mathlib/Topology/Instances/EReal.lean
EReal.mem_nhds_bot_iff
[ { "state_after": "no goals", "state_before": "α : Type ?u.16219\ninst✝ : TopologicalSpace α\ns : Set EReal\n⊢ (∃ i, True ∧ Iio ↑i ⊆ s) ↔ ∃ y, Iio ↑y ⊆ s", "tactic": "simp only [true_and]" } ]
[ 168, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 167, 1 ]
Mathlib/Data/Real/Irrational.lean
Irrational.nat_sub
[]
[ 316, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 315, 1 ]
Mathlib/Data/Set/Basic.lean
Set.inter_assoc
[]
[ 930, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 929, 1 ]
Mathlib/Computability/EpsilonNFA.lean
NFA.toεNFA_correct
[ { "state_after": "α : Type u\nσ σ' : Type v\nM✝ : εNFA α σ\nS : Set σ\nx : List α\ns : σ\na : α\nM : NFA α σ\n⊢ {x | ∃ S, S ∈ (toεNFA M).accept ∧ S ∈ evalFrom M (toεNFA M).start x} = accepts M", "state_before": "α : Type u\nσ σ' : Type v\nM✝ : εNFA α σ\nS : Set σ\nx : List α\ns : σ\na : α\nM : NFA α σ\n⊢ εNFA.accepts (toεNFA M) = accepts M", "tactic": "rw [εNFA.accepts, εNFA.eval, toεNFA_evalFrom_match]" }, { "state_after": "no goals", "state_before": "α : Type u\nσ σ' : Type v\nM✝ : εNFA α σ\nS : Set σ\nx : List α\ns : σ\na : α\nM : NFA α σ\n⊢ {x | ∃ S, S ∈ (toεNFA M).accept ∧ S ∈ evalFrom M (toεNFA M).start x} = accepts M", "tactic": "rfl" } ]
[ 212, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 210, 1 ]
Mathlib/Data/PFun.lean
PFun.preimage_union
[]
[ 451, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 450, 1 ]
Mathlib/Dynamics/Circle/RotationNumber/TranslationNumber.lean
CircleDeg1Lift.map_map_zero_lt
[]
[ 487, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 483, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.mex_lt_ord_succ_mk
[ { "state_after": "α : Type ?u.378408\nβ : Type ?u.378411\nγ : Type ?u.378414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : ord (succ (#ι)) ≤ mex f\n⊢ False", "state_before": "α : Type ?u.378408\nβ : Type ?u.378411\nγ : Type ?u.378414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\n⊢ mex f < ord (succ (#ι))", "tactic": "by_contra' h" }, { "state_after": "α : Type ?u.378408\nβ : Type ?u.378411\nγ : Type ?u.378414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : ord (succ (#ι)) ≤ mex f\n⊢ succ (#ι) ≤ (#ι)", "state_before": "α : Type ?u.378408\nβ : Type ?u.378411\nγ : Type ?u.378414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : ord (succ (#ι)) ≤ mex f\n⊢ False", "tactic": "apply (lt_succ (#ι)).not_le" }, { "state_after": "α : Type ?u.378408\nβ : Type ?u.378411\nγ : Type ?u.378414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : ord (succ (#ι)) ≤ mex f\nH : ∀ (a : (Quotient.out (ord (succ (#ι)))).α), ∃ i, f i = typein (fun x x_1 => x < x_1) a\n⊢ succ (#ι) ≤ (#ι)", "state_before": "α : Type ?u.378408\nβ : Type ?u.378411\nγ : Type ?u.378414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : ord (succ (#ι)) ≤ mex f\n⊢ succ (#ι) ≤ (#ι)", "tactic": "have H := fun a => exists_of_lt_mex ((typein_lt_self a).trans_le h)" }, { "state_after": "α : Type ?u.378408\nβ : Type ?u.378411\nγ : Type ?u.378414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : ord (succ (#ι)) ≤ mex f\nH : ∀ (a : (Quotient.out (ord (succ (#ι)))).α), ∃ i, f i = typein (fun x x_1 => x < x_1) a\ng : (Quotient.out (ord (succ (#ι)))).α → ι := fun a => choose (_ : ∃ i, f i = typein (fun x x_1 => x < x_1) a)\n⊢ succ (#ι) ≤ (#ι)", "state_before": "α : Type ?u.378408\nβ : Type ?u.378411\nγ : Type ?u.378414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : ord (succ (#ι)) ≤ mex f\nH : ∀ (a : (Quotient.out (ord (succ (#ι)))).α), ∃ i, f i = typein (fun x x_1 => x < x_1) a\n⊢ succ (#ι) ≤ (#ι)", "tactic": "let g : (succ (#ι)).ord.out.α → ι := fun a => Classical.choose (H a)" }, { "state_after": "case h.e'_3\nα : Type ?u.378408\nβ : Type ?u.378411\nγ : Type ?u.378414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : ord (succ (#ι)) ≤ mex f\nH : ∀ (a : (Quotient.out (ord (succ (#ι)))).α), ∃ i, f i = typein (fun x x_1 => x < x_1) a\ng : (Quotient.out (ord (succ (#ι)))).α → ι := fun a => choose (_ : ∃ i, f i = typein (fun x x_1 => x < x_1) a)\nhg : Injective g\n⊢ succ (#ι) = (#(Quotient.out (ord (succ (#ι)))).α)", "state_before": "α : Type ?u.378408\nβ : Type ?u.378411\nγ : Type ?u.378414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : ord (succ (#ι)) ≤ mex f\nH : ∀ (a : (Quotient.out (ord (succ (#ι)))).α), ∃ i, f i = typein (fun x x_1 => x < x_1) a\ng : (Quotient.out (ord (succ (#ι)))).α → ι := fun a => choose (_ : ∃ i, f i = typein (fun x x_1 => x < x_1) a)\nhg : Injective g\n⊢ succ (#ι) ≤ (#ι)", "tactic": "convert Cardinal.mk_le_of_injective hg" }, { "state_after": "no goals", "state_before": "case h.e'_3\nα : Type ?u.378408\nβ : Type ?u.378411\nγ : Type ?u.378414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : ord (succ (#ι)) ≤ mex f\nH : ∀ (a : (Quotient.out (ord (succ (#ι)))).α), ∃ i, f i = typein (fun x x_1 => x < x_1) a\ng : (Quotient.out (ord (succ (#ι)))).α → ι := fun a => choose (_ : ∃ i, f i = typein (fun x x_1 => x < x_1) a)\nhg : Injective g\n⊢ succ (#ι) = (#(Quotient.out (ord (succ (#ι)))).α)", "tactic": "rw [Cardinal.mk_ord_out (succ (#ι))]" }, { "state_after": "α : Type ?u.378408\nβ : Type ?u.378411\nγ : Type ?u.378414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : ord (succ (#ι)) ≤ mex f\nH : ∀ (a : (Quotient.out (ord (succ (#ι)))).α), ∃ i, f i = typein (fun x x_1 => x < x_1) a\ng : (Quotient.out (ord (succ (#ι)))).α → ι := fun a => choose (_ : ∃ i, f i = typein (fun x x_1 => x < x_1) a)\na b : (Quotient.out (ord (succ (#ι)))).α\nHf : ∀ (x : (Quotient.out (ord (succ (#ι)))).α), f (g x) = typein (fun x x_1 => x < x_1) x\nh' : f (g a) = f (g b)\n⊢ a = b", "state_before": "α : Type ?u.378408\nβ : Type ?u.378411\nγ : Type ?u.378414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : ord (succ (#ι)) ≤ mex f\nH : ∀ (a : (Quotient.out (ord (succ (#ι)))).α), ∃ i, f i = typein (fun x x_1 => x < x_1) a\ng : (Quotient.out (ord (succ (#ι)))).α → ι := fun a => choose (_ : ∃ i, f i = typein (fun x x_1 => x < x_1) a)\na b : (Quotient.out (ord (succ (#ι)))).α\nh' : g a = g b\nHf : ∀ (x : (Quotient.out (ord (succ (#ι)))).α), f (g x) = typein (fun x x_1 => x < x_1) x\n⊢ a = b", "tactic": "apply_fun f at h'" }, { "state_after": "no goals", "state_before": "α : Type ?u.378408\nβ : Type ?u.378411\nγ : Type ?u.378414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : ord (succ (#ι)) ≤ mex f\nH : ∀ (a : (Quotient.out (ord (succ (#ι)))).α), ∃ i, f i = typein (fun x x_1 => x < x_1) a\ng : (Quotient.out (ord (succ (#ι)))).α → ι := fun a => choose (_ : ∃ i, f i = typein (fun x x_1 => x < x_1) a)\na b : (Quotient.out (ord (succ (#ι)))).α\nHf : ∀ (x : (Quotient.out (ord (succ (#ι)))).α), f (g x) = typein (fun x x_1 => x < x_1) x\nh' : f (g a) = f (g b)\n⊢ a = b", "tactic": "rwa [Hf, Hf, typein_inj] at h'" } ]
[ 2059, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2046, 1 ]
Mathlib/Topology/GDelta.lean
isGδ_singleton
[ { "state_after": "case intro.intro\nα : Type u_1\nβ : Type ?u.12419\nγ : Type ?u.12422\nι : Type ?u.12425\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : FirstCountableTopology α\na : α\nU : ℕ → Set α\nhU : ∀ (i : ℕ), a ∈ U i ∧ IsOpen (U i)\nh_basis : HasAntitoneBasis (𝓝 a) fun i => U i\n⊢ IsGδ {a}", "state_before": "α : Type u_1\nβ : Type ?u.12419\nγ : Type ?u.12422\nι : Type ?u.12425\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : FirstCountableTopology α\na : α\n⊢ IsGδ {a}", "tactic": "rcases (nhds_basis_opens a).exists_antitone_subbasis with ⟨U, hU, h_basis⟩" }, { "state_after": "case intro.intro\nα : Type u_1\nβ : Type ?u.12419\nγ : Type ?u.12422\nι : Type ?u.12425\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : FirstCountableTopology α\na : α\nU : ℕ → Set α\nhU : ∀ (i : ℕ), a ∈ U i ∧ IsOpen (U i)\nh_basis : HasAntitoneBasis (𝓝 a) fun i => U i\n⊢ IsGδ (⋂ (i : ℕ) (_ : True), U i)", "state_before": "case intro.intro\nα : Type u_1\nβ : Type ?u.12419\nγ : Type ?u.12422\nι : Type ?u.12425\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : FirstCountableTopology α\na : α\nU : ℕ → Set α\nhU : ∀ (i : ℕ), a ∈ U i ∧ IsOpen (U i)\nh_basis : HasAntitoneBasis (𝓝 a) fun i => U i\n⊢ IsGδ {a}", "tactic": "rw [← biInter_basis_nhds h_basis.toHasBasis]" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u_1\nβ : Type ?u.12419\nγ : Type ?u.12422\nι : Type ?u.12425\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : FirstCountableTopology α\na : α\nU : ℕ → Set α\nhU : ∀ (i : ℕ), a ∈ U i ∧ IsOpen (U i)\nh_basis : HasAntitoneBasis (𝓝 a) fun i => U i\n⊢ IsGδ (⋂ (i : ℕ) (_ : True), U i)", "tactic": "exact isGδ_biInter (to_countable _) fun n _ => (hU n).2.isGδ" } ]
[ 166, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 163, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.sup_eq_of_range_eq
[]
[ 1333, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1331, 1 ]
Mathlib/Topology/ContinuousOn.lean
ContinuousWithinAt.mono
[]
[ 698, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 696, 1 ]
Mathlib/Data/Set/Intervals/Monoid.lean
Set.image_const_add_Ico
[ { "state_after": "no goals", "state_before": "M : Type u_1\ninst✝¹ : OrderedCancelAddCommMonoid M\ninst✝ : ExistsAddOfLE M\na b c d : M\n⊢ (fun x => a + x) '' Ico b c = Ico (a + b) (a + c)", "tactic": "simp only [add_comm a, image_add_const_Ico]" } ]
[ 132, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]