file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Order/Hom/CompleteLattice.lean
sSupHom.copy_eq
[]
[ 285, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 284, 1 ]
Mathlib/CategoryTheory/Over.lean
CategoryTheory.Under.UnderMorphism.ext
[ { "state_after": "T : Type u₁\ninst✝ : Category T\nX✝ X : T\nU V : Under X\nf g : U ⟶ V\nleft✝ : U.left ⟶ V.left\nb : U.right ⟶ V.right\nw✝ : (Functor.fromPUnit X).map left✝ ≫ V.hom = U.hom ≫ (𝟭 T).map b\nh : (CommaMorphism.mk left✝ b).right = g.right\n⊢ CommaMorphism.mk left✝ b = g", "state_before": "T : Type u₁\ninst✝ : Category T\nX✝ X : T\nU V : Under X\nf g : U ⟶ V\nh : f.right = g.right\n⊢ f = g", "tactic": "let ⟨_,b,_⟩ := f" }, { "state_after": "T : Type u₁\ninst✝ : Category T\nX✝ X : T\nU V : Under X\nf g : U ⟶ V\nleft✝¹ : U.left ⟶ V.left\nb : U.right ⟶ V.right\nw✝¹ : (Functor.fromPUnit X).map left✝¹ ≫ V.hom = U.hom ≫ (𝟭 T).map b\nleft✝ : U.left ⟶ V.left\ne : U.right ⟶ V.right\nw✝ : (Functor.fromPUnit X).map left✝ ≫ V.hom = U.hom ≫ (𝟭 T).map e\nh : (CommaMorphism.mk left✝¹ b).right = (CommaMorphism.mk left✝ e).right\n⊢ CommaMorphism.mk left✝¹ b = CommaMorphism.mk left✝ e", "state_before": "T : Type u₁\ninst✝ : Category T\nX✝ X : T\nU V : Under X\nf g : U ⟶ V\nleft✝ : U.left ⟶ V.left\nb : U.right ⟶ V.right\nw✝ : (Functor.fromPUnit X).map left✝ ≫ V.hom = U.hom ≫ (𝟭 T).map b\nh : (CommaMorphism.mk left✝ b).right = g.right\n⊢ CommaMorphism.mk left✝ b = g", "tactic": "let ⟨_,e,_⟩ := g" }, { "state_after": "case e_left\nT : Type u₁\ninst✝ : Category T\nX✝ X : T\nU V : Under X\nf g : U ⟶ V\nleft✝¹ : U.left ⟶ V.left\nb : U.right ⟶ V.right\nw✝¹ : (Functor.fromPUnit X).map left✝¹ ≫ V.hom = U.hom ≫ (𝟭 T).map b\nleft✝ : U.left ⟶ V.left\ne : U.right ⟶ V.right\nw✝ : (Functor.fromPUnit X).map left✝ ≫ V.hom = U.hom ≫ (𝟭 T).map e\nh : (CommaMorphism.mk left✝¹ b).right = (CommaMorphism.mk left✝ e).right\n⊢ left✝¹ = left✝", "state_before": "T : Type u₁\ninst✝ : Category T\nX✝ X : T\nU V : Under X\nf g : U ⟶ V\nleft✝¹ : U.left ⟶ V.left\nb : U.right ⟶ V.right\nw✝¹ : (Functor.fromPUnit X).map left✝¹ ≫ V.hom = U.hom ≫ (𝟭 T).map b\nleft✝ : U.left ⟶ V.left\ne : U.right ⟶ V.right\nw✝ : (Functor.fromPUnit X).map left✝ ≫ V.hom = U.hom ≫ (𝟭 T).map e\nh : (CommaMorphism.mk left✝¹ b).right = (CommaMorphism.mk left✝ e).right\n⊢ CommaMorphism.mk left✝¹ b = CommaMorphism.mk left✝ e", "tactic": "congr" }, { "state_after": "no goals", "state_before": "case e_left\nT : Type u₁\ninst✝ : Category T\nX✝ X : T\nU V : Under X\nf g : U ⟶ V\nleft✝¹ : U.left ⟶ V.left\nb : U.right ⟶ V.right\nw✝¹ : (Functor.fromPUnit X).map left✝¹ ≫ V.hom = U.hom ≫ (𝟭 T).map b\nleft✝ : U.left ⟶ V.left\ne : U.right ⟶ V.right\nw✝ : (Functor.fromPUnit X).map left✝ ≫ V.hom = U.hom ≫ (𝟭 T).map e\nh : (CommaMorphism.mk left✝¹ b).right = (CommaMorphism.mk left✝ e).right\n⊢ left✝¹ = left✝", "tactic": "simp only [eq_iff_true_of_subsingleton]" } ]
[ 332, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 329, 1 ]
Mathlib/Data/Nat/Cast/Basic.lean
Sum.elim_natCast_natCast
[]
[ 335, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 333, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.sameCycle_one
[ { "state_after": "no goals", "state_before": "ι : Type ?u.31727\nα : Type u_1\nβ : Type ?u.31733\nf g : Perm α\np : α → Prop\nx y z : α\n⊢ SameCycle 1 x y ↔ x = y", "tactic": "simp [SameCycle]" } ]
[ 107, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 107, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.lt_div
[ { "state_after": "no goals", "state_before": "α : Type ?u.232451\nβ : Type ?u.232454\nγ : Type ?u.232457\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na b c : Ordinal\nh : c ≠ 0\n⊢ a < b / c ↔ c * succ a ≤ b", "tactic": "rw [← not_le, div_le h, not_lt]" } ]
[ 902, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 901, 1 ]
Mathlib/Combinatorics/Additive/PluenneckeRuzsa.lean
Finset.card_pow_div_pow_le'
[ { "state_after": "α : Type u_1\ninst✝¹ : CommGroup α\ninst✝ : DecidableEq α\nA B✝ C : Finset α\nhA : Finset.Nonempty A\nB : Finset α\nm n : ℕ\n⊢ ↑(card (B⁻¹ ^ m / B⁻¹ ^ n)) ≤ (↑(card (A * B⁻¹)) / ↑(card A)) ^ (m + n) * ↑(card A)", "state_before": "α : Type u_1\ninst✝¹ : CommGroup α\ninst✝ : DecidableEq α\nA B✝ C : Finset α\nhA : Finset.Nonempty A\nB : Finset α\nm n : ℕ\n⊢ ↑(card (B ^ m / B ^ n)) ≤ (↑(card (A / B)) / ↑(card A)) ^ (m + n) * ↑(card A)", "tactic": "rw [← card_inv, inv_div', ← inv_pow, ← inv_pow, div_eq_mul_inv A]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : CommGroup α\ninst✝ : DecidableEq α\nA B✝ C : Finset α\nhA : Finset.Nonempty A\nB : Finset α\nm n : ℕ\n⊢ ↑(card (B⁻¹ ^ m / B⁻¹ ^ n)) ≤ (↑(card (A * B⁻¹)) / ↑(card A)) ^ (m + n) * ↑(card A)", "tactic": "exact card_pow_div_pow_le hA _ _ _" } ]
[ 244, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 241, 1 ]
Std/Data/List/Basic.lean
List.eraseIdx_eq_eraseIdxTR
[ { "state_after": "case h.h.h\nα : Type u_1\nl : List α\nn : Nat\n⊢ eraseIdx l n = eraseIdxTR l n", "state_before": "⊢ @eraseIdx = @eraseIdxTR", "tactic": "funext α l n" }, { "state_after": "case h.h.h\nα : Type u_1\nl : List α\nn : Nat\n⊢ eraseIdx l n = eraseIdxTR.go l l n #[]", "state_before": "case h.h.h\nα : Type u_1\nl : List α\nn : Nat\n⊢ eraseIdx l n = eraseIdxTR l n", "tactic": "simp [eraseIdxTR]" }, { "state_after": "case h.h.h\nα : Type u_1\nl : List α\nn : Nat\n⊢ ∀ (xs : List α) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n", "state_before": "case h.h.h\nα : Type u_1\nl : List α\nn : Nat\n⊢ eraseIdx l n = eraseIdxTR.go l l n #[]", "tactic": "suffices ∀ xs acc, l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ xs.eraseIdx n from\n (this l #[] (by simp)).symm" }, { "state_after": "case h.h.h\nα : Type u_1\nl : List α\nn : Nat\nxs : List α\n⊢ ∀ (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n", "state_before": "case h.h.h\nα : Type u_1\nl : List α\nn : Nat\n⊢ ∀ (xs : List α) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n", "tactic": "intro xs" }, { "state_after": "no goals", "state_before": "case h.h.h\nα : Type u_1\nl : List α\nn : Nat\nxs : List α\n⊢ ∀ (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n", "tactic": "induction xs generalizing n with intro acc h\n| nil => simp [eraseIdx, eraseIdxTR.go, h]\n| cons x xs IH =>\nmatch n with\n| 0 => simp [eraseIdx, eraseIdxTR.go]\n| n+1 =>\nsimp [eraseIdx, eraseIdxTR.go]\nrw [IH]; simp; simp; exact h" }, { "state_after": "no goals", "state_before": "α : Type u_1\nl : List α\nn : Nat\nthis : ∀ (xs : List α) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n\n⊢ l = #[].data ++ l", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case h.h.h.nil\nα : Type u_1\nl : List α\nn : Nat\nacc : Array α\nh : l = acc.data ++ []\n⊢ eraseIdxTR.go l [] n acc = acc.data ++ eraseIdx [] n", "tactic": "simp [eraseIdx, eraseIdxTR.go, h]" }, { "state_after": "no goals", "state_before": "case h.h.h.cons\nα : Type u_1\nl : List α\nx : α\nxs : List α\nIH : ∀ (n : Nat) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n\nn : Nat\nacc : Array α\nh : l = acc.data ++ x :: xs\n⊢ eraseIdxTR.go l (x :: xs) n acc = acc.data ++ eraseIdx (x :: xs) n", "tactic": "match n with\n| 0 => simp [eraseIdx, eraseIdxTR.go]\n| n+1 =>\n simp [eraseIdx, eraseIdxTR.go]\n rw [IH]; simp; simp; exact h" }, { "state_after": "no goals", "state_before": "α : Type u_1\nl : List α\nx : α\nxs : List α\nIH : ∀ (n : Nat) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n\nn : Nat\nacc : Array α\nh : l = acc.data ++ x :: xs\n⊢ eraseIdxTR.go l (x :: xs) 0 acc = acc.data ++ eraseIdx (x :: xs) 0", "tactic": "simp [eraseIdx, eraseIdxTR.go]" }, { "state_after": "α : Type u_1\nl : List α\nx : α\nxs : List α\nIH : ∀ (n : Nat) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n\nn✝ : Nat\nacc : Array α\nh : l = acc.data ++ x :: xs\nn : Nat\n⊢ eraseIdxTR.go l xs n (Array.push acc x) = acc.data ++ x :: eraseIdx xs n", "state_before": "α : Type u_1\nl : List α\nx : α\nxs : List α\nIH : ∀ (n : Nat) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n\nn✝ : Nat\nacc : Array α\nh : l = acc.data ++ x :: xs\nn : Nat\n⊢ eraseIdxTR.go l (x :: xs) (n + 1) acc = acc.data ++ eraseIdx (x :: xs) (n + 1)", "tactic": "simp [eraseIdx, eraseIdxTR.go]" }, { "state_after": "α : Type u_1\nl : List α\nx : α\nxs : List α\nIH : ∀ (n : Nat) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n\nn✝ : Nat\nacc : Array α\nh : l = acc.data ++ x :: xs\nn : Nat\n⊢ (Array.push acc x).data ++ eraseIdx xs n = acc.data ++ x :: eraseIdx xs n\n\ncase a\nα : Type u_1\nl : List α\nx : α\nxs : List α\nIH : ∀ (n : Nat) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n\nn✝ : Nat\nacc : Array α\nh : l = acc.data ++ x :: xs\nn : Nat\n⊢ l = (Array.push acc x).data ++ xs", "state_before": "α : Type u_1\nl : List α\nx : α\nxs : List α\nIH : ∀ (n : Nat) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n\nn✝ : Nat\nacc : Array α\nh : l = acc.data ++ x :: xs\nn : Nat\n⊢ eraseIdxTR.go l xs n (Array.push acc x) = acc.data ++ x :: eraseIdx xs n", "tactic": "rw [IH]" }, { "state_after": "case a\nα : Type u_1\nl : List α\nx : α\nxs : List α\nIH : ∀ (n : Nat) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n\nn✝ : Nat\nacc : Array α\nh : l = acc.data ++ x :: xs\nn : Nat\n⊢ l = (Array.push acc x).data ++ xs", "state_before": "α : Type u_1\nl : List α\nx : α\nxs : List α\nIH : ∀ (n : Nat) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n\nn✝ : Nat\nacc : Array α\nh : l = acc.data ++ x :: xs\nn : Nat\n⊢ (Array.push acc x).data ++ eraseIdx xs n = acc.data ++ x :: eraseIdx xs n\n\ncase a\nα : Type u_1\nl : List α\nx : α\nxs : List α\nIH : ∀ (n : Nat) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n\nn✝ : Nat\nacc : Array α\nh : l = acc.data ++ x :: xs\nn : Nat\n⊢ l = (Array.push acc x).data ++ xs", "tactic": "simp" }, { "state_after": "case a\nα : Type u_1\nl : List α\nx : α\nxs : List α\nIH : ∀ (n : Nat) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n\nn✝ : Nat\nacc : Array α\nh : l = acc.data ++ x :: xs\nn : Nat\n⊢ l = acc.data ++ x :: xs", "state_before": "case a\nα : Type u_1\nl : List α\nx : α\nxs : List α\nIH : ∀ (n : Nat) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n\nn✝ : Nat\nacc : Array α\nh : l = acc.data ++ x :: xs\nn : Nat\n⊢ l = (Array.push acc x).data ++ xs", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case a\nα : Type u_1\nl : List α\nx : α\nxs : List α\nIH : ∀ (n : Nat) (acc : Array α), l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ eraseIdx xs n\nn✝ : Nat\nacc : Array α\nh : l = acc.data ++ x :: xs\nn : Nat\n⊢ l = acc.data ++ x :: xs", "tactic": "exact h" } ]
[ 72, 35 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 61, 10 ]
Mathlib/RingTheory/Localization/Basic.lean
IsLocalization.mk'_spec'_mk
[]
[ 279, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 277, 1 ]
Mathlib/CategoryTheory/Limits/Preserves/Shapes/Pullbacks.lean
CategoryTheory.Limits.hasPullback_of_preservesPullback
[]
[ 109, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Mathlib/Algebra/Lie/Submodule.lean
LieIdeal.incl_coe
[]
[ 1121, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1120, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.image_mem_of_mem_comap
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.259120\nι : Sort x\nf✝ f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nm : α → β\nm' : β → γ\ns : Set α\nt : Set β\nf : Filter α\nc : β → α\nh : range c ∈ f\nW : Set β\nW_in : W ∈ comap c f\n⊢ c '' W ∈ map c (comap c f)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.259120\nι : Sort x\nf✝ f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nm : α → β\nm' : β → γ\ns : Set α\nt : Set β\nf : Filter α\nc : β → α\nh : range c ∈ f\nW : Set β\nW_in : W ∈ comap c f\n⊢ c '' W ∈ f", "tactic": "rw [← map_comap_of_mem h]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.259120\nι : Sort x\nf✝ f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nm : α → β\nm' : β → γ\ns : Set α\nt : Set β\nf : Filter α\nc : β → α\nh : range c ∈ f\nW : Set β\nW_in : W ∈ comap c f\n⊢ c '' W ∈ map c (comap c f)", "tactic": "exact image_mem_map W_in" } ]
[ 2289, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2286, 1 ]
Mathlib/AlgebraicGeometry/SheafedSpace.lean
AlgebraicGeometry.SheafedSpace.id_c_app
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝ : Category C\nX : SheafedSpace C\nU : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ\n⊢ X.presheaf.obj U = ((𝟙 X).base _* X.presheaf).obj U", "tactic": "aesop_cat" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝ : Category C\nX : SheafedSpace C\nU : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ\n⊢ (𝟙 X).c.app U =\n eqToHom (_ : X.presheaf.obj U = X.presheaf.obj ((Functor.op (Opens.map (𝟙 ↑X.toPresheafedSpace))).obj U))", "tactic": "aesop_cat" } ]
[ 133, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]
Mathlib/Data/Complex/Basic.lean
Complex.conj_bit0
[ { "state_after": "no goals", "state_before": "z : ℂ\n⊢ (↑(starRingEnd ℂ) (bit0 z)).re = (bit0 (↑(starRingEnd ℂ) z)).re ∧\n (↑(starRingEnd ℂ) (bit0 z)).im = (bit0 (↑(starRingEnd ℂ) z)).im", "tactic": "simp [bit0]" } ]
[ 530, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 529, 1 ]
Mathlib/Algebra/Hom/Units.lean
IsUnit.mul_eq_one_iff_inv_eq
[]
[ 362, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 361, 11 ]
Mathlib/Topology/UniformSpace/Completion.lean
UniformSpace.Completion.ext
[]
[ 521, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 519, 1 ]
Mathlib/Analysis/Convex/Between.lean
Wbtw.left_mem_affineSpan_of_right_ne
[]
[ 749, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 747, 1 ]
Mathlib/Data/Sym/Basic.lean
Sym.coe_replicate
[]
[ 285, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 284, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
ContinuousAt.norm'
[]
[ 1218, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1217, 1 ]
Mathlib/Data/Real/CauSeqCompletion.lean
CauSeq.lt_lim
[]
[ 458, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 457, 1 ]
Mathlib/Analysis/NormedSpace/FiniteDimension.lean
continuousOn_clm_apply
[ { "state_after": "𝕜 : Type u\ninst✝¹² : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type w\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\nX : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : FiniteDimensional 𝕜 E\nf : X → E →L[𝕜] F\ns : Set X\nh : ∀ (y : E), ContinuousOn (fun x => ↑(f x) y) s\n⊢ ContinuousOn f s", "state_before": "𝕜 : Type u\ninst✝¹² : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type w\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\nX : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : FiniteDimensional 𝕜 E\nf : X → E →L[𝕜] F\ns : Set X\n⊢ ContinuousOn f s ↔ ∀ (y : E), ContinuousOn (fun x => ↑(f x) y) s", "tactic": "refine' ⟨fun h y => (ContinuousLinearMap.apply 𝕜 F y).continuous.comp_continuousOn h, fun h => _⟩" }, { "state_after": "𝕜 : Type u\ninst✝¹² : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type w\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\nX : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : FiniteDimensional 𝕜 E\nf : X → E →L[𝕜] F\ns : Set X\nh : ∀ (y : E), ContinuousOn (fun x => ↑(f x) y) s\nd : ℕ := finrank 𝕜 E\n⊢ ContinuousOn f s", "state_before": "𝕜 : Type u\ninst✝¹² : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type w\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\nX : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : FiniteDimensional 𝕜 E\nf : X → E →L[𝕜] F\ns : Set X\nh : ∀ (y : E), ContinuousOn (fun x => ↑(f x) y) s\n⊢ ContinuousOn f s", "tactic": "let d := finrank 𝕜 E" }, { "state_after": "𝕜 : Type u\ninst✝¹² : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type w\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\nX : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : FiniteDimensional 𝕜 E\nf : X → E →L[𝕜] F\ns : Set X\nh : ∀ (y : E), ContinuousOn (fun x => ↑(f x) y) s\nd : ℕ := finrank 𝕜 E\nhd : d = finrank 𝕜 (Fin d → 𝕜)\n⊢ ContinuousOn f s", "state_before": "𝕜 : Type u\ninst✝¹² : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type w\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\nX : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : FiniteDimensional 𝕜 E\nf : X → E →L[𝕜] F\ns : Set X\nh : ∀ (y : E), ContinuousOn (fun x => ↑(f x) y) s\nd : ℕ := finrank 𝕜 E\n⊢ ContinuousOn f s", "tactic": "have hd : d = finrank 𝕜 (Fin d → 𝕜) := (finrank_fin_fun 𝕜).symm" }, { "state_after": "𝕜 : Type u\ninst✝¹² : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type w\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\nX : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : FiniteDimensional 𝕜 E\nf : X → E →L[𝕜] F\ns : Set X\nh : ∀ (y : E), ContinuousOn (fun x => ↑(f x) y) s\nd : ℕ := finrank 𝕜 E\nhd : d = finrank 𝕜 (Fin d → 𝕜)\ne₁ : E ≃L[𝕜] Fin d → 𝕜 := ContinuousLinearEquiv.ofFinrankEq hd\n⊢ ContinuousOn f s", "state_before": "𝕜 : Type u\ninst✝¹² : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type w\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\nX : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : FiniteDimensional 𝕜 E\nf : X → E →L[𝕜] F\ns : Set X\nh : ∀ (y : E), ContinuousOn (fun x => ↑(f x) y) s\nd : ℕ := finrank 𝕜 E\nhd : d = finrank 𝕜 (Fin d → 𝕜)\n⊢ ContinuousOn f s", "tactic": "let e₁ : E ≃L[𝕜] Fin d → 𝕜 := ContinuousLinearEquiv.ofFinrankEq hd" }, { "state_after": "𝕜 : Type u\ninst✝¹² : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type w\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\nX : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : FiniteDimensional 𝕜 E\nf : X → E →L[𝕜] F\ns : Set X\nh : ∀ (y : E), ContinuousOn (fun x => ↑(f x) y) s\nd : ℕ := finrank 𝕜 E\nhd : d = finrank 𝕜 (Fin d → 𝕜)\ne₁ : E ≃L[𝕜] Fin d → 𝕜 := ContinuousLinearEquiv.ofFinrankEq hd\ne₂ : (E →L[𝕜] F) ≃L[𝕜] Fin d → F :=\n ContinuousLinearEquiv.trans (ContinuousLinearEquiv.arrowCongr e₁ 1) (ContinuousLinearEquiv.piRing (Fin d))\n⊢ ContinuousOn f s", "state_before": "𝕜 : Type u\ninst✝¹² : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type w\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\nX : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : FiniteDimensional 𝕜 E\nf : X → E →L[𝕜] F\ns : Set X\nh : ∀ (y : E), ContinuousOn (fun x => ↑(f x) y) s\nd : ℕ := finrank 𝕜 E\nhd : d = finrank 𝕜 (Fin d → 𝕜)\ne₁ : E ≃L[𝕜] Fin d → 𝕜 := ContinuousLinearEquiv.ofFinrankEq hd\n⊢ ContinuousOn f s", "tactic": "let e₂ : (E →L[𝕜] F) ≃L[𝕜] Fin d → F :=\n (e₁.arrowCongr (1 : F ≃L[𝕜] F)).trans (ContinuousLinearEquiv.piRing (Fin d))" }, { "state_after": "𝕜 : Type u\ninst✝¹² : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type w\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\nX : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : FiniteDimensional 𝕜 E\nf : X → E →L[𝕜] F\ns : Set X\nh : ∀ (y : E), ContinuousOn (fun x => ↑(f x) y) s\nd : ℕ := finrank 𝕜 E\nhd : d = finrank 𝕜 (Fin d → 𝕜)\ne₁ : E ≃L[𝕜] Fin d → 𝕜 := ContinuousLinearEquiv.ofFinrankEq hd\ne₂ : (E →L[𝕜] F) ≃L[𝕜] Fin d → F :=\n ContinuousLinearEquiv.trans (ContinuousLinearEquiv.arrowCongr e₁ 1) (ContinuousLinearEquiv.piRing (Fin d))\n⊢ ContinuousOn ((↑(ContinuousLinearEquiv.symm e₂) ∘ ↑e₂) ∘ f) s", "state_before": "𝕜 : Type u\ninst✝¹² : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type w\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\nX : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : FiniteDimensional 𝕜 E\nf : X → E →L[𝕜] F\ns : Set X\nh : ∀ (y : E), ContinuousOn (fun x => ↑(f x) y) s\nd : ℕ := finrank 𝕜 E\nhd : d = finrank 𝕜 (Fin d → 𝕜)\ne₁ : E ≃L[𝕜] Fin d → 𝕜 := ContinuousLinearEquiv.ofFinrankEq hd\ne₂ : (E →L[𝕜] F) ≃L[𝕜] Fin d → F :=\n ContinuousLinearEquiv.trans (ContinuousLinearEquiv.arrowCongr e₁ 1) (ContinuousLinearEquiv.piRing (Fin d))\n⊢ ContinuousOn f s", "tactic": "rw [← Function.comp.left_id f, ← e₂.symm_comp_self]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u\ninst✝¹² : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type w\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nF' : Type x\ninst✝⁷ : AddCommGroup F'\ninst✝⁶ : Module 𝕜 F'\ninst✝⁵ : TopologicalSpace F'\ninst✝⁴ : TopologicalAddGroup F'\ninst✝³ : ContinuousSMul 𝕜 F'\ninst✝² : CompleteSpace 𝕜\nX : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : FiniteDimensional 𝕜 E\nf : X → E →L[𝕜] F\ns : Set X\nh : ∀ (y : E), ContinuousOn (fun x => ↑(f x) y) s\nd : ℕ := finrank 𝕜 E\nhd : d = finrank 𝕜 (Fin d → 𝕜)\ne₁ : E ≃L[𝕜] Fin d → 𝕜 := ContinuousLinearEquiv.ofFinrankEq hd\ne₂ : (E →L[𝕜] F) ≃L[𝕜] Fin d → F :=\n ContinuousLinearEquiv.trans (ContinuousLinearEquiv.arrowCongr e₁ 1) (ContinuousLinearEquiv.piRing (Fin d))\n⊢ ContinuousOn ((↑(ContinuousLinearEquiv.symm e₂) ∘ ↑e₂) ∘ f) s", "tactic": "exact e₂.symm.continuous.comp_continuousOn (continuousOn_pi.mpr fun i => h _)" } ]
[ 585, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 576, 1 ]
Mathlib/GroupTheory/PresentedGroup.lean
PresentedGroup.toGroup.of
[]
[ 84, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 83, 1 ]
Mathlib/Topology/Order/Basic.lean
Monotone.map_csInf_of_continuousAt
[]
[ 2813, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2811, 1 ]
Mathlib/Data/Multiset/Nodup.lean
Multiset.Nodup.not_mem_erase
[]
[ 187, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 186, 1 ]
Mathlib/Data/Real/Hyperreal.lean
Hyperreal.IsSt.inv
[ { "state_after": "x : ℝ*\nhi : ¬Infinitesimal x\nhr : IsSt x 0\n⊢ False", "state_before": "x : ℝ*\nr : ℝ\nhi : ¬Infinitesimal x\nhr : IsSt x r\n⊢ r ≠ 0", "tactic": "rintro rfl" }, { "state_after": "no goals", "state_before": "x : ℝ*\nhi : ¬Infinitesimal x\nhr : IsSt x 0\n⊢ False", "tactic": "exact hi hr" } ]
[ 789, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 788, 1 ]
Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean
Matrix.isUnit_det_of_invertible
[]
[ 209, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 1 ]
Mathlib/Algebra/RingQuot.lean
RingQuot.Rel.smul
[ { "state_after": "no goals", "state_before": "R : Type u₁\ninst✝³ : Semiring R\nS : Type u₂\ninst✝² : CommSemiring S\nA : Type u₃\ninst✝¹ : Semiring A\ninst✝ : Algebra S A\nr : A → A → Prop\nk : S\na b : A\nh : Rel r a b\n⊢ Rel r (k • a) (k • b)", "tactic": "simp only [Algebra.smul_def, Rel.mul_right h]" } ]
[ 85, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 84, 1 ]
Mathlib/GroupTheory/Sylow.lean
Sylow.normalizer_normalizer
[ { "state_after": "G : Type u\nα : Type v\nβ : Type w\ninst✝² : Group G\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Finite (Sylow p G)\nP : Sylow p G\nthis :\n Normal (normalizer ↑(Sylow.subtype P (_ : ↑P ≤ normalizer (normalizer ↑P)))) →\n Normal ↑(Sylow.subtype P (_ : ↑P ≤ normalizer (normalizer ↑P)))\n⊢ normalizer (normalizer ↑P) = normalizer ↑P", "state_before": "G : Type u\nα : Type v\nβ : Type w\ninst✝² : Group G\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Finite (Sylow p G)\nP : Sylow p G\n⊢ normalizer (normalizer ↑P) = normalizer ↑P", "tactic": "have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer))" }, { "state_after": "G : Type u\nα : Type v\nβ : Type w\ninst✝² : Group G\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Finite (Sylow p G)\nP : Sylow p G\nthis : True → subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P)) = ⊤\n⊢ normalizer (normalizer ↑P) = normalizer ↑P", "state_before": "G : Type u\nα : Type v\nβ : Type w\ninst✝² : Group G\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Finite (Sylow p G)\nP : Sylow p G\nthis :\n Normal (normalizer ↑(Sylow.subtype P (_ : ↑P ≤ normalizer (normalizer ↑P)))) →\n Normal ↑(Sylow.subtype P (_ : ↑P ≤ normalizer (normalizer ↑P)))\n⊢ normalizer (normalizer ↑P) = normalizer ↑P", "tactic": "simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ←\n subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this" }, { "state_after": "G : Type u\nα : Type v\nβ : Type w\ninst✝² : Group G\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Finite (Sylow p G)\nP : Sylow p G\nthis : True → subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P)) = ⊤\n⊢ Subgroup.map (Subgroup.subtype (normalizer (normalizer ↑P)))\n (subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P))) =\n normalizer ↑P", "state_before": "G : Type u\nα : Type v\nβ : Type w\ninst✝² : Group G\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Finite (Sylow p G)\nP : Sylow p G\nthis : True → subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P)) = ⊤\n⊢ normalizer (normalizer ↑P) = normalizer ↑P", "tactic": "rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map,\n ← this trivial]" }, { "state_after": "no goals", "state_before": "G : Type u\nα : Type v\nβ : Type w\ninst✝² : Group G\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Finite (Sylow p G)\nP : Sylow p G\nthis : True → subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P)) = ⊤\n⊢ Subgroup.map (Subgroup.subtype (normalizer (normalizer ↑P)))\n (subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P))) =\n normalizer ↑P", "tactic": "exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _)))" } ]
[ 738, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 731, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Icc_self
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.30276\ninst✝ : PartialOrder α\na✝ b c a : α\n⊢ ∀ (x : α), x ∈ Icc a a ↔ x ∈ {a}", "tactic": "simp [Icc, le_antisymm_iff, and_comm]" } ]
[ 760, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 759, 1 ]
Mathlib/Data/Polynomial/AlgebraMap.lean
Polynomial.eval₂_int_castRingHom_X
[]
[ 148, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 146, 1 ]
Mathlib/Topology/UniformSpace/Completion.lean
UniformSpace.Completion.denseRange_coe₂
[]
[ 485, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 483, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
IsGLB.ciInf_eq
[]
[ 559, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 558, 1 ]
Mathlib/Topology/UniformSpace/Cauchy.lean
SequentiallyComplete.setSeq_mem
[]
[ 657, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 656, 1 ]
Mathlib/Analysis/Convex/Function.lean
ConcaveOn.translate_left
[]
[ 304, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 302, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.set_walk_length_toFinset_eq
[ { "state_after": "case a\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nn : ℕ\nu v : V\np : Walk G u v\n⊢ p ∈ Set.toFinset {p | Walk.length p = n} ↔ p ∈ finsetWalkLength G n u v", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nn : ℕ\nu v : V\n⊢ Set.toFinset {p | Walk.length p = n} = finsetWalkLength G n u v", "tactic": "ext p" }, { "state_after": "no goals", "state_before": "case a\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nn : ℕ\nu v : V\np : Walk G u v\n⊢ p ∈ Set.toFinset {p | Walk.length p = n} ↔ p ∈ finsetWalkLength G n u v", "tactic": "simp [← coe_finsetWalkLength_eq]" } ]
[ 2383, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2380, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
LinearIsometryEquiv.mul_def
[]
[ 891, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 890, 1 ]
Mathlib/Data/Pi/Algebra.lean
Function.extend_one
[ { "state_after": "no goals", "state_before": "I : Type u\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nf✝ : I → Type v₁\ng : I → Type v₂\nh : I → Type v₃\nx y : (i : I) → f✝ i\ni : I\ninst✝ : One γ\nf : α → β\nx✝ : β\n⊢ extend f 1 1 x✝ = OfNat.ofNat 1 x✝", "tactic": "apply ite_self" } ]
[ 363, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 362, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
PowerSeries.isUnit_constantCoeff
[]
[ 1642, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1641, 1 ]
Mathlib/Algebra/Order/Field/Power.lean
zpow_lt_iff_lt
[]
[ 82, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.two_nsmul_eq_iff
[ { "state_after": "no goals", "state_before": "ψ θ : Angle\n⊢ 2 • ψ = 2 • θ ↔ ψ = θ ∨ ψ = θ + ↑π", "tactic": "simp_rw [← coe_nat_zsmul, Nat.cast_ofNat, two_zsmul_eq_iff]" } ]
[ 195, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 194, 1 ]
Mathlib/RingTheory/Coprime/Basic.lean
isCoprime_group_smul_right
[]
[ 237, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.card_one
[]
[ 146, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]
Mathlib/LinearAlgebra/Dual.lean
Submodule.dualAnnihilator_top
[ { "state_after": "R : Type u\nM : Type v\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nW : Submodule R M\n⊢ dualAnnihilator ⊤ ≤ ⊥", "state_before": "R : Type u\nM : Type v\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nW : Submodule R M\n⊢ dualAnnihilator ⊤ = ⊥", "tactic": "rw [eq_bot_iff]" }, { "state_after": "R : Type u\nM : Type v\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nW : Submodule R M\nv : Module.Dual R M\n⊢ v ∈ dualAnnihilator ⊤ → v ∈ ⊥", "state_before": "R : Type u\nM : Type v\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nW : Submodule R M\n⊢ dualAnnihilator ⊤ ≤ ⊥", "tactic": "intro v" }, { "state_after": "R : Type u\nM : Type v\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nW : Submodule R M\nv : Module.Dual R M\n⊢ (∀ (w : M), ↑v w = 0) → v = 0", "state_before": "R : Type u\nM : Type v\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nW : Submodule R M\nv : Module.Dual R M\n⊢ v ∈ dualAnnihilator ⊤ → v ∈ ⊥", "tactic": "simp_rw [mem_dualAnnihilator, mem_bot, mem_top, forall_true_left]" }, { "state_after": "no goals", "state_before": "R : Type u\nM : Type v\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nW : Submodule R M\nv : Module.Dual R M\n⊢ (∀ (w : M), ↑v w = 0) → v = 0", "tactic": "exact fun h => LinearMap.ext h" } ]
[ 861, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 857, 1 ]
Mathlib/Data/Fintype/Card.lean
Fintype.false
[]
[ 934, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 933, 11 ]
Mathlib/Data/Nat/Sqrt.lean
Nat.sqrt_isSqrt
[ { "state_after": "no goals", "state_before": "n : ℕ\n⊢ Nat.IsSqrt 0 (sqrt 0)", "tactic": "simp [IsSqrt]" }, { "state_after": "no goals", "state_before": "n : ℕ\n⊢ Nat.IsSqrt 1 (sqrt 1)", "tactic": "simp [IsSqrt]" }, { "state_after": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ Nat.IsSqrt (n + 2) (sqrt (n + 2))", "state_before": "n✝ n : ℕ\n⊢ Nat.IsSqrt (n + 2) (sqrt (n + 2))", "tactic": "have h : ¬ (n + 2) ≤ 1 := by simp" }, { "state_after": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ sqrt.iter (n + 2) ((n + 2) / 2) * sqrt.iter (n + 2) ((n + 2) / 2) ≤ n + 2 ∧\n n + 2 < (sqrt.iter (n + 2) ((n + 2) / 2) + 1) * (sqrt.iter (n + 2) ((n + 2) / 2) + 1)", "state_before": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ Nat.IsSqrt (n + 2) (sqrt (n + 2))", "tactic": "simp only [IsSqrt, sqrt, h, ite_false]" }, { "state_after": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ n + 2 < ((n + 2) / 2 + 1) * ((n + 2) / 2 + 1)", "state_before": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ sqrt.iter (n + 2) ((n + 2) / 2) * sqrt.iter (n + 2) ((n + 2) / 2) ≤ n + 2 ∧\n n + 2 < (sqrt.iter (n + 2) ((n + 2) / 2) + 1) * (sqrt.iter (n + 2) ((n + 2) / 2) + 1)", "tactic": "refine ⟨sqrt.iter_sq_le _ _, sqrt.lt_iter_succ_sq _ _ ?_⟩" }, { "state_after": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ n + 2 < (n + 2) / 2 * ((n + 2) / 2) + (n + 2) / 2 + (n + 2) / 2 + 1", "state_before": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ n + 2 < ((n + 2) / 2 + 1) * ((n + 2) / 2 + 1)", "tactic": "simp only [mul_add, add_mul, one_mul, mul_one, ← add_assoc]" }, { "state_after": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ n + 2 ≤ (n + 2) / 2 * ((n + 2) / 2) + (n + 2) / 2 * 2", "state_before": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ n + 2 < (n + 2) / 2 * ((n + 2) / 2) + (n + 2) / 2 + (n + 2) / 2 + 1", "tactic": "rw [lt_add_one_iff, add_assoc, ← mul_two]" }, { "state_after": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ (n + 2) / 2 * 2 + (n + 2) % 2 ≤ (n + 2) / 2 * ((n + 2) / 2) + (n + 2) / 2 * 2", "state_before": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ n + 2 ≤ (n + 2) / 2 * ((n + 2) / 2) + (n + 2) / 2 * 2", "tactic": "refine le_trans (div_add_mod' (n + 2) 2).ge ?_" }, { "state_after": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ n % 2 ≤ (n + 2) / 2 * ((n + 2) / 2)", "state_before": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ (n + 2) / 2 * 2 + (n + 2) % 2 ≤ (n + 2) / 2 * ((n + 2) / 2) + (n + 2) / 2 * 2", "tactic": "rw [add_comm, add_le_add_iff_right, add_mod_right]" }, { "state_after": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ n % 2 ≤ n / 2 * (n / 2) + n / 2 + n / 2 + 1", "state_before": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ n % 2 ≤ (n + 2) / 2 * ((n + 2) / 2)", "tactic": "simp only [zero_lt_two, add_div_right, succ_mul_succ_eq]" }, { "state_after": "case refine_1\nn✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ n % 2 ≤ 1\n\ncase refine_2\nn✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ 1 ≤ n / 2 * (n / 2) + n / 2 + n / 2 + 1", "state_before": "n✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ n % 2 ≤ n / 2 * (n / 2) + n / 2 + n / 2 + 1", "tactic": "refine le_trans (b := 1) ?_ ?_" }, { "state_after": "no goals", "state_before": "n✝ n : ℕ\n⊢ ¬n + 2 ≤ 1", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case refine_1\nn✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ n % 2 ≤ 1", "tactic": "exact (lt_succ.1 $ mod_lt n zero_lt_two)" }, { "state_after": "case refine_2\nn✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ 0 ≤ n / 2 * (n / 2) + n / 2 + n / 2", "state_before": "case refine_2\nn✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ 1 ≤ n / 2 * (n / 2) + n / 2 + n / 2 + 1", "tactic": "simp only [le_add_iff_nonneg_left]" }, { "state_after": "no goals", "state_before": "case refine_2\nn✝ n : ℕ\nh : ¬n + 2 ≤ 1\n⊢ 0 ≤ n / 2 * (n / 2) + n / 2 + n / 2", "tactic": "exact zero_le _" } ]
[ 65, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 50, 9 ]
Mathlib/Topology/Separation.lean
not_preirreducible_nontrivial_t2
[]
[ 1454, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1452, 1 ]
Mathlib/Algebra/AddTorsor.lean
Equiv.coe_constVAdd
[]
[ 412, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 411, 1 ]
Mathlib/Algebra/Order/Sub/Defs.lean
AddLECancellable.le_tsub_of_add_le_left
[]
[ 212, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 211, 11 ]
Mathlib/Algebra/IndicatorFunction.lean
Set.inter_indicator_mul
[ { "state_after": "α : Type u_1\nβ : Type ?u.124894\nι : Type ?u.124897\nM : Type u_2\nN : Type ?u.124903\ninst✝ : MulZeroClass M\ns t : Set α\nf✝ g✝ : α → M\na : α\nt1 t2 : Set α\nf g : α → M\nx : α\n⊢ indicator t1 (indicator t2 fun x => f x * g x) x = indicator t1 f x * indicator t2 g x", "state_before": "α : Type u_1\nβ : Type ?u.124894\nι : Type ?u.124897\nM : Type u_2\nN : Type ?u.124903\ninst✝ : MulZeroClass M\ns t : Set α\nf✝ g✝ : α → M\na : α\nt1 t2 : Set α\nf g : α → M\nx : α\n⊢ indicator (t1 ∩ t2) (fun x => f x * g x) x = indicator t1 f x * indicator t2 g x", "tactic": "rw [← Set.indicator_indicator]" }, { "state_after": "α : Type u_1\nβ : Type ?u.124894\nι : Type ?u.124897\nM : Type u_2\nN : Type ?u.124903\ninst✝ : MulZeroClass M\ns t : Set α\nf✝ g✝ : α → M\na : α\nt1 t2 : Set α\nf g : α → M\nx : α\n⊢ (if x ∈ t1 then if x ∈ t2 then f x * g x else 0 else 0) = (if x ∈ t1 then f x else 0) * if x ∈ t2 then g x else 0", "state_before": "α : Type u_1\nβ : Type ?u.124894\nι : Type ?u.124897\nM : Type u_2\nN : Type ?u.124903\ninst✝ : MulZeroClass M\ns t : Set α\nf✝ g✝ : α → M\na : α\nt1 t2 : Set α\nf g : α → M\nx : α\n⊢ indicator t1 (indicator t2 fun x => f x * g x) x = indicator t1 f x * indicator t2 g x", "tactic": "simp_rw [indicator]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.124894\nι : Type ?u.124897\nM : Type u_2\nN : Type ?u.124903\ninst✝ : MulZeroClass M\ns t : Set α\nf✝ g✝ : α → M\na : α\nt1 t2 : Set α\nf g : α → M\nx : α\n⊢ (if x ∈ t1 then if x ∈ t2 then f x * g x else 0 else 0) = (if x ∈ t1 then f x else 0) * if x ∈ t2 then g x else 0", "tactic": "split_ifs <;> simp" } ]
[ 707, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 703, 1 ]
Mathlib/Analysis/SpecialFunctions/Complex/Circle.lean
expMapCircle_two_pi
[]
[ 102, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 101, 1 ]
Mathlib/GroupTheory/Schreier.lean
Subgroup.closure_mul_image_eq_top'
[ { "state_after": "G : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\nR✝ S✝ : Set G\ninst✝ : DecidableEq G\nR S : Finset G\nhR : ↑R ∈ rightTransversals ↑H\nhR1 : 1 ∈ R\nhS : closure ↑S = ⊤\n⊢ closure ((fun g => { val := g * (↑(toFun hR g))⁻¹, property := (_ : g * (↑(toFun hR g))⁻¹ ∈ H) }) '' (↑R * ↑S)) = ⊤", "state_before": "G : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\nR✝ S✝ : Set G\ninst✝ : DecidableEq G\nR S : Finset G\nhR : ↑R ∈ rightTransversals ↑H\nhR1 : 1 ∈ R\nhS : closure ↑S = ⊤\n⊢ closure\n ↑(Finset.image (fun g => { val := g * (↑(toFun hR g))⁻¹, property := (_ : g * (↑(toFun hR g))⁻¹ ∈ H) }) (R * S)) =\n ⊤", "tactic": "rw [Finset.coe_image, Finset.coe_mul]" }, { "state_after": "no goals", "state_before": "G : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\nR✝ S✝ : Set G\ninst✝ : DecidableEq G\nR S : Finset G\nhR : ↑R ∈ rightTransversals ↑H\nhR1 : 1 ∈ R\nhS : closure ↑S = ⊤\n⊢ closure ((fun g => { val := g * (↑(toFun hR g))⁻¹, property := (_ : g * (↑(toFun hR g))⁻¹ ∈ H) }) '' (↑R * ↑S)) = ⊤", "tactic": "exact closure_mul_image_eq_top hR hR1 hS" } ]
[ 103, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 98, 1 ]
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearEquiv.symm_preimage_preimage
[]
[ 2127, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2125, 11 ]
Mathlib/Algebra/Algebra/Subalgebra/Basic.lean
Subalgebra.mem_toSubmodule
[]
[ 344, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 344, 1 ]
Mathlib/GroupTheory/Coset.lean
one_leftCoset
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : Monoid α\ns : Set α\n⊢ ∀ (x : α), x ∈ 1 *l s ↔ x ∈ s", "tactic": "simp [leftCoset]" } ]
[ 152, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 151, 1 ]
Mathlib/GroupTheory/Perm/Support.lean
Equiv.Perm.support_pow_le
[]
[ 350, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 349, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Bilinear.lean
IsBoundedBilinearMap.differentiableAt
[]
[ 99, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 97, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Prod.lean
fderiv.snd
[]
[ 321, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 319, 1 ]
Mathlib/Data/Set/Basic.lean
Set.sup_eq_union
[]
[ 113, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/CategoryTheory/Limits/Preserves/Shapes/Pullbacks.lean
CategoryTheory.Limits.PreservesPullback.iso_hom_snd
[ { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nG : C ⥤ D\nW X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nh : W ⟶ X\nk : W ⟶ Y\ncomm : h ≫ f = k ≫ g\ninst✝² : PreservesLimit (cospan f g) G\ninst✝¹ : HasPullback f g\ninst✝ : HasPullback (G.map f) (G.map g)\n⊢ (iso G f g).hom ≫ pullback.snd = G.map pullback.snd", "tactic": "simp [PreservesPullback.iso]" } ]
[ 129, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/ZeroObjects.lean
CategoryTheory.Limits.isZero_zero
[]
[ 206, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
Mathlib/Order/Hom/Bounded.lean
TopHom.top_apply
[]
[ 320, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 319, 1 ]
Mathlib/CategoryTheory/Preadditive/Basic.lean
CategoryTheory.Preadditive.coforkOfCokernelCofork_π
[]
[ 376, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 374, 1 ]
Mathlib/Data/List/Pairwise.lean
List.Pairwise.forall_of_forall_of_flip
[ { "state_after": "case nil\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na : α\nl : List α\nh₁✝ : ∀ (x : α), x ∈ l → R x x\nh₂✝ : Pairwise R l\nh₃✝ : Pairwise (flip R) l\nh₁ : ∀ (x : α), x ∈ [] → R x x\nh₂ : Pairwise R []\nh₃ : Pairwise (flip R) []\n⊢ ∀ ⦃x : α⦄, x ∈ [] → ∀ ⦃y : α⦄, y ∈ [] → R x y\n\ncase cons\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na✝ : α\nl✝ : List α\nh₁✝ : ∀ (x : α), x ∈ l✝ → R x x\nh₂✝ : Pairwise R l✝\nh₃✝ : Pairwise (flip R) l✝\na : α\nl : List α\nih : (∀ (x : α), x ∈ l → R x x) → Pairwise R l → Pairwise (flip R) l → ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y\nh₁ : ∀ (x : α), x ∈ a :: l → R x x\nh₂ : Pairwise R (a :: l)\nh₃ : Pairwise (flip R) (a :: l)\n⊢ ∀ ⦃x : α⦄, x ∈ a :: l → ∀ ⦃y : α⦄, y ∈ a :: l → R x y", "state_before": "α : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na : α\nl : List α\nh₁ : ∀ (x : α), x ∈ l → R x x\nh₂ : Pairwise R l\nh₃ : Pairwise (flip R) l\n⊢ ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y", "tactic": "induction' l with a l ih" }, { "state_after": "case cons\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na✝ : α\nl✝ : List α\nh₁✝ : ∀ (x : α), x ∈ l✝ → R x x\nh₂✝ : Pairwise R l✝\nh₃✝ : Pairwise (flip R) l✝\na : α\nl : List α\nih : (∀ (x : α), x ∈ l → R x x) → Pairwise R l → Pairwise (flip R) l → ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y\nh₁ : ∀ (x : α), x ∈ a :: l → R x x\nh₂ : (∀ (a' : α), a' ∈ l → R a a') ∧ Pairwise R l\nh₃ : (∀ (a' : α), a' ∈ l → flip R a a') ∧ Pairwise (flip R) l\n⊢ ∀ ⦃x : α⦄, x ∈ a :: l → ∀ ⦃y : α⦄, y ∈ a :: l → R x y", "state_before": "case cons\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na✝ : α\nl✝ : List α\nh₁✝ : ∀ (x : α), x ∈ l✝ → R x x\nh₂✝ : Pairwise R l✝\nh₃✝ : Pairwise (flip R) l✝\na : α\nl : List α\nih : (∀ (x : α), x ∈ l → R x x) → Pairwise R l → Pairwise (flip R) l → ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y\nh₁ : ∀ (x : α), x ∈ a :: l → R x x\nh₂ : Pairwise R (a :: l)\nh₃ : Pairwise (flip R) (a :: l)\n⊢ ∀ ⦃x : α⦄, x ∈ a :: l → ∀ ⦃y : α⦄, y ∈ a :: l → R x y", "tactic": "rw [pairwise_cons] at h₂ h₃" }, { "state_after": "case cons\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na✝ : α\nl✝ : List α\nh₁✝ : ∀ (x : α), x ∈ l✝ → R x x\nh₂✝ : Pairwise R l✝\nh₃✝ : Pairwise (flip R) l✝\na : α\nl : List α\nih : (∀ (x : α), x ∈ l → R x x) → Pairwise R l → Pairwise (flip R) l → ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y\nh₁ : ∀ (x : α), x ∈ a :: l → R x x\nh₂ : (∀ (a' : α), a' ∈ l → R a a') ∧ Pairwise R l\nh₃ : (∀ (a' : α), a' ∈ l → flip R a a') ∧ Pairwise (flip R) l\n⊢ ∀ ⦃x : α⦄, x = a ∨ x ∈ l → ∀ ⦃y : α⦄, y = a ∨ y ∈ l → R x y", "state_before": "case cons\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na✝ : α\nl✝ : List α\nh₁✝ : ∀ (x : α), x ∈ l✝ → R x x\nh₂✝ : Pairwise R l✝\nh₃✝ : Pairwise (flip R) l✝\na : α\nl : List α\nih : (∀ (x : α), x ∈ l → R x x) → Pairwise R l → Pairwise (flip R) l → ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y\nh₁ : ∀ (x : α), x ∈ a :: l → R x x\nh₂ : (∀ (a' : α), a' ∈ l → R a a') ∧ Pairwise R l\nh₃ : (∀ (a' : α), a' ∈ l → flip R a a') ∧ Pairwise (flip R) l\n⊢ ∀ ⦃x : α⦄, x ∈ a :: l → ∀ ⦃y : α⦄, y ∈ a :: l → R x y", "tactic": "simp only [mem_cons]" }, { "state_after": "case cons.inl.inl\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na : α\nl✝ : List α\nh₁✝ : ∀ (x : α), x ∈ l✝ → R x x\nh₂✝ : Pairwise R l✝\nh₃✝ : Pairwise (flip R) l✝\nl : List α\nih : (∀ (x : α), x ∈ l → R x x) → Pairwise R l → Pairwise (flip R) l → ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y\ny : α\nh₁ : ∀ (x : α), x ∈ y :: l → R x x\nh₂ : (∀ (a' : α), a' ∈ l → R y a') ∧ Pairwise R l\nh₃ : (∀ (a' : α), a' ∈ l → flip R y a') ∧ Pairwise (flip R) l\n⊢ R y y\n\ncase cons.inl.inr\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na : α\nl✝ : List α\nh₁✝ : ∀ (x : α), x ∈ l✝ → R x x\nh₂✝ : Pairwise R l✝\nh₃✝ : Pairwise (flip R) l✝\nl : List α\nih : (∀ (x : α), x ∈ l → R x x) → Pairwise R l → Pairwise (flip R) l → ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y\nx : α\nh₁ : ∀ (x_1 : α), x_1 ∈ x :: l → R x_1 x_1\nh₂ : (∀ (a' : α), a' ∈ l → R x a') ∧ Pairwise R l\nh₃ : (∀ (a' : α), a' ∈ l → flip R x a') ∧ Pairwise (flip R) l\ny : α\nhy : y ∈ l\n⊢ R x y\n\ncase cons.inr.inl\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na : α\nl✝ : List α\nh₁✝ : ∀ (x : α), x ∈ l✝ → R x x\nh₂✝ : Pairwise R l✝\nh₃✝ : Pairwise (flip R) l✝\nl : List α\nih : (∀ (x : α), x ∈ l → R x x) → Pairwise R l → Pairwise (flip R) l → ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y\nx : α\nhx : x ∈ l\ny : α\nh₁ : ∀ (x : α), x ∈ y :: l → R x x\nh₂ : (∀ (a' : α), a' ∈ l → R y a') ∧ Pairwise R l\nh₃ : (∀ (a' : α), a' ∈ l → flip R y a') ∧ Pairwise (flip R) l\n⊢ R x y\n\ncase cons.inr.inr\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na✝ : α\nl✝ : List α\nh₁✝ : ∀ (x : α), x ∈ l✝ → R x x\nh₂✝ : Pairwise R l✝\nh₃✝ : Pairwise (flip R) l✝\na : α\nl : List α\nih : (∀ (x : α), x ∈ l → R x x) → Pairwise R l → Pairwise (flip R) l → ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y\nh₁ : ∀ (x : α), x ∈ a :: l → R x x\nh₂ : (∀ (a' : α), a' ∈ l → R a a') ∧ Pairwise R l\nh₃ : (∀ (a' : α), a' ∈ l → flip R a a') ∧ Pairwise (flip R) l\nx : α\nhx : x ∈ l\ny : α\nhy : y ∈ l\n⊢ R x y", "state_before": "case cons\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na✝ : α\nl✝ : List α\nh₁✝ : ∀ (x : α), x ∈ l✝ → R x x\nh₂✝ : Pairwise R l✝\nh₃✝ : Pairwise (flip R) l✝\na : α\nl : List α\nih : (∀ (x : α), x ∈ l → R x x) → Pairwise R l → Pairwise (flip R) l → ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y\nh₁ : ∀ (x : α), x ∈ a :: l → R x x\nh₂ : (∀ (a' : α), a' ∈ l → R a a') ∧ Pairwise R l\nh₃ : (∀ (a' : α), a' ∈ l → flip R a a') ∧ Pairwise (flip R) l\n⊢ ∀ ⦃x : α⦄, x = a ∨ x ∈ l → ∀ ⦃y : α⦄, y = a ∨ y ∈ l → R x y", "tactic": "rintro x (rfl | hx) y (rfl | hy)" }, { "state_after": "no goals", "state_before": "case nil\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na : α\nl : List α\nh₁✝ : ∀ (x : α), x ∈ l → R x x\nh₂✝ : Pairwise R l\nh₃✝ : Pairwise (flip R) l\nh₁ : ∀ (x : α), x ∈ [] → R x x\nh₂ : Pairwise R []\nh₃ : Pairwise (flip R) []\n⊢ ∀ ⦃x : α⦄, x ∈ [] → ∀ ⦃y : α⦄, y ∈ [] → R x y", "tactic": "exact forall_mem_nil _" }, { "state_after": "no goals", "state_before": "case cons.inl.inl\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na : α\nl✝ : List α\nh₁✝ : ∀ (x : α), x ∈ l✝ → R x x\nh₂✝ : Pairwise R l✝\nh₃✝ : Pairwise (flip R) l✝\nl : List α\nih : (∀ (x : α), x ∈ l → R x x) → Pairwise R l → Pairwise (flip R) l → ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y\ny : α\nh₁ : ∀ (x : α), x ∈ y :: l → R x x\nh₂ : (∀ (a' : α), a' ∈ l → R y a') ∧ Pairwise R l\nh₃ : (∀ (a' : α), a' ∈ l → flip R y a') ∧ Pairwise (flip R) l\n⊢ R y y", "tactic": "exact h₁ _ (l.mem_cons_self _)" }, { "state_after": "no goals", "state_before": "case cons.inl.inr\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na : α\nl✝ : List α\nh₁✝ : ∀ (x : α), x ∈ l✝ → R x x\nh₂✝ : Pairwise R l✝\nh₃✝ : Pairwise (flip R) l✝\nl : List α\nih : (∀ (x : α), x ∈ l → R x x) → Pairwise R l → Pairwise (flip R) l → ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y\nx : α\nh₁ : ∀ (x_1 : α), x_1 ∈ x :: l → R x_1 x_1\nh₂ : (∀ (a' : α), a' ∈ l → R x a') ∧ Pairwise R l\nh₃ : (∀ (a' : α), a' ∈ l → flip R x a') ∧ Pairwise (flip R) l\ny : α\nhy : y ∈ l\n⊢ R x y", "tactic": "exact h₂.1 _ hy" }, { "state_after": "no goals", "state_before": "case cons.inr.inl\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na : α\nl✝ : List α\nh₁✝ : ∀ (x : α), x ∈ l✝ → R x x\nh₂✝ : Pairwise R l✝\nh₃✝ : Pairwise (flip R) l✝\nl : List α\nih : (∀ (x : α), x ∈ l → R x x) → Pairwise R l → Pairwise (flip R) l → ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y\nx : α\nhx : x ∈ l\ny : α\nh₁ : ∀ (x : α), x ∈ y :: l → R x x\nh₂ : (∀ (a' : α), a' ∈ l → R y a') ∧ Pairwise R l\nh₃ : (∀ (a' : α), a' ∈ l → flip R y a') ∧ Pairwise (flip R) l\n⊢ R x y", "tactic": "exact h₃.1 _ hx" }, { "state_after": "no goals", "state_before": "case cons.inr.inr\nα : Type u_1\nβ : Type ?u.5128\nR S T : α → α → Prop\na✝ : α\nl✝ : List α\nh₁✝ : ∀ (x : α), x ∈ l✝ → R x x\nh₂✝ : Pairwise R l✝\nh₃✝ : Pairwise (flip R) l✝\na : α\nl : List α\nih : (∀ (x : α), x ∈ l → R x x) → Pairwise R l → Pairwise (flip R) l → ∀ ⦃x : α⦄, x ∈ l → ∀ ⦃y : α⦄, y ∈ l → R x y\nh₁ : ∀ (x : α), x ∈ a :: l → R x x\nh₂ : (∀ (a' : α), a' ∈ l → R a a') ∧ Pairwise R l\nh₃ : (∀ (a' : α), a' ∈ l → flip R a a') ∧ Pairwise (flip R) l\nx : α\nhx : x ∈ l\ny : α\nhy : y ∈ l\n⊢ R x y", "tactic": "exact ih (fun x hx => h₁ _ <| mem_cons_of_mem _ hx) h₂.2 h₃.2 hx hy" } ]
[ 135, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 125, 1 ]
Mathlib/Topology/Sets/Opens.lean
TopologicalSpace.Opens.ne_bot_iff_nonempty
[ { "state_after": "no goals", "state_before": "ι : Type ?u.28417\nα : Type u_1\nβ : Type ?u.28423\nγ : Type ?u.28426\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nU : Opens α\n⊢ U ≠ ⊥ ↔ Set.Nonempty ↑U", "tactic": "rw [Ne.def, ← not_nonempty_iff_eq_bot, not_not]" } ]
[ 275, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 274, 1 ]
Mathlib/Analysis/NormedSpace/OperatorNorm.lean
ContinuousLinearEquiv.subsingleton_or_nnnorm_symm_pos
[]
[ 1981, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1979, 1 ]
Mathlib/GroupTheory/Commutator.lean
Subgroup.commutator_le_inf
[]
[ 169, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.ae_dirac_eq
[ { "state_after": "case a\nα : Type u_1\nβ : Type ?u.600866\nγ : Type ?u.600869\nδ : Type ?u.600872\nι : Type ?u.600875\nR : Type ?u.600878\nR' : Type ?u.600881\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\na : α\ns : Set α\n⊢ s ∈ ae (dirac a) ↔ s ∈ pure a", "state_before": "α : Type u_1\nβ : Type ?u.600866\nγ : Type ?u.600869\nδ : Type ?u.600872\nι : Type ?u.600875\nR : Type ?u.600878\nR' : Type ?u.600881\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\na : α\n⊢ ae (dirac a) = pure a", "tactic": "ext s" }, { "state_after": "no goals", "state_before": "case a\nα : Type u_1\nβ : Type ?u.600866\nγ : Type ?u.600869\nδ : Type ?u.600872\nι : Type ?u.600875\nR : Type ?u.600878\nR' : Type ?u.600881\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\na : α\ns : Set α\n⊢ s ∈ ae (dirac a) ↔ s ∈ pure a", "tactic": "simp [mem_ae_iff, imp_false]" } ]
[ 3017, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3015, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.Walk.isPath_iff_eq_nil
[ { "state_after": "no goals", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu : V\np : Walk G u u\n⊢ IsPath p ↔ p = nil", "tactic": "cases p <;> simp [IsPath.nil]" } ]
[ 980, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 979, 1 ]
Mathlib/Data/Finsupp/Defs.lean
Finsupp.support_mapRange
[]
[ 794, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 792, 1 ]
Mathlib/Logic/Equiv/Defs.lean
Equiv.arrowCongr_refl
[]
[ 530, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 529, 9 ]
Mathlib/RingTheory/FractionalIdeal.lean
FractionalIdeal.coeIdeal_eq_zero
[]
[ 1012, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1011, 1 ]
Mathlib/Data/Setoid/Partition.lean
Setoid.exists_of_mem_partition
[]
[ 241, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 238, 1 ]
Mathlib/MeasureTheory/Measure/OuterMeasure.lean
MeasureTheory.OuterMeasure.exists_mem_forall_mem_nhds_within_pos
[ { "state_after": "α : Type u_1\nβ : Type ?u.10003\nR : Type ?u.10006\nR' : Type ?u.10009\nms : Set (OuterMeasure α)\nm✝ : OuterMeasure α\ninst✝¹ : TopologicalSpace α\ninst✝ : SecondCountableTopology α\nm : OuterMeasure α\ns : Set α\nhs : ∀ (x : α), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ↑m t ≤ 0\n⊢ ↑m s = 0", "state_before": "α : Type u_1\nβ : Type ?u.10003\nR : Type ?u.10006\nR' : Type ?u.10009\nms : Set (OuterMeasure α)\nm✝ : OuterMeasure α\ninst✝¹ : TopologicalSpace α\ninst✝ : SecondCountableTopology α\nm : OuterMeasure α\ns : Set α\nhs : ↑m s ≠ 0\n⊢ ∃ x, x ∈ s ∧ ∀ (t : Set α), t ∈ 𝓝[s] x → 0 < ↑m t", "tactic": "contrapose! hs" }, { "state_after": "α : Type u_1\nβ : Type ?u.10003\nR : Type ?u.10006\nR' : Type ?u.10009\nms : Set (OuterMeasure α)\nm✝ : OuterMeasure α\ninst✝¹ : TopologicalSpace α\ninst✝ : SecondCountableTopology α\nm : OuterMeasure α\ns : Set α\nhs : ∀ (x : α), x ∈ s → ∃ t _h, ↑m t = 0\n⊢ ↑m s = 0", "state_before": "α : Type u_1\nβ : Type ?u.10003\nR : Type ?u.10006\nR' : Type ?u.10009\nms : Set (OuterMeasure α)\nm✝ : OuterMeasure α\ninst✝¹ : TopologicalSpace α\ninst✝ : SecondCountableTopology α\nm : OuterMeasure α\ns : Set α\nhs : ∀ (x : α), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ↑m t ≤ 0\n⊢ ↑m s = 0", "tactic": "simp only [nonpos_iff_eq_zero, ← exists_prop] at hs" }, { "state_after": "α : Type u_1\nβ : Type ?u.10003\nR : Type ?u.10006\nR' : Type ?u.10009\nms : Set (OuterMeasure α)\nm✝ : OuterMeasure α\ninst✝¹ : TopologicalSpace α\ninst✝ : SecondCountableTopology α\nm : OuterMeasure α\ns : Set α\nhs : ∀ (x : α), x ∈ s → ∃ t _h, ↑m t = 0\n⊢ ∀ (x : α), x ∈ s → ∃ u, u ∈ 𝓝[s] x ∧ ↑m u = 0", "state_before": "α : Type u_1\nβ : Type ?u.10003\nR : Type ?u.10006\nR' : Type ?u.10009\nms : Set (OuterMeasure α)\nm✝ : OuterMeasure α\ninst✝¹ : TopologicalSpace α\ninst✝ : SecondCountableTopology α\nm : OuterMeasure α\ns : Set α\nhs : ∀ (x : α), x ∈ s → ∃ t _h, ↑m t = 0\n⊢ ↑m s = 0", "tactic": "apply m.null_of_locally_null s" }, { "state_after": "α : Type u_1\nβ : Type ?u.10003\nR : Type ?u.10006\nR' : Type ?u.10009\nms : Set (OuterMeasure α)\nm✝ : OuterMeasure α\ninst✝¹ : TopologicalSpace α\ninst✝ : SecondCountableTopology α\nm : OuterMeasure α\ns : Set α\nhs : ∀ (x : α), x ∈ s → ∃ t _h, ↑m t = 0\nx : α\nhx : x ∈ s\n⊢ ∃ u, u ∈ 𝓝[s] x ∧ ↑m u = 0", "state_before": "α : Type u_1\nβ : Type ?u.10003\nR : Type ?u.10006\nR' : Type ?u.10009\nms : Set (OuterMeasure α)\nm✝ : OuterMeasure α\ninst✝¹ : TopologicalSpace α\ninst✝ : SecondCountableTopology α\nm : OuterMeasure α\ns : Set α\nhs : ∀ (x : α), x ∈ s → ∃ t _h, ↑m t = 0\n⊢ ∀ (x : α), x ∈ s → ∃ u, u ∈ 𝓝[s] x ∧ ↑m u = 0", "tactic": "intro x hx" }, { "state_after": "α : Type u_1\nβ : Type ?u.10003\nR : Type ?u.10006\nR' : Type ?u.10009\nms : Set (OuterMeasure α)\nm✝ : OuterMeasure α\ninst✝¹ : TopologicalSpace α\ninst✝ : SecondCountableTopology α\nm : OuterMeasure α\ns : Set α\nx : α\nhx : x ∈ s\nhs : ∃ t _h, ↑m t = 0\n⊢ ∃ u, u ∈ 𝓝[s] x ∧ ↑m u = 0", "state_before": "α : Type u_1\nβ : Type ?u.10003\nR : Type ?u.10006\nR' : Type ?u.10009\nms : Set (OuterMeasure α)\nm✝ : OuterMeasure α\ninst✝¹ : TopologicalSpace α\ninst✝ : SecondCountableTopology α\nm : OuterMeasure α\ns : Set α\nhs : ∀ (x : α), x ∈ s → ∃ t _h, ↑m t = 0\nx : α\nhx : x ∈ s\n⊢ ∃ u, u ∈ 𝓝[s] x ∧ ↑m u = 0", "tactic": "specialize hs x hx" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.10003\nR : Type ?u.10006\nR' : Type ?u.10009\nms : Set (OuterMeasure α)\nm✝ : OuterMeasure α\ninst✝¹ : TopologicalSpace α\ninst✝ : SecondCountableTopology α\nm : OuterMeasure α\ns : Set α\nx : α\nhx : x ∈ s\nhs : ∃ t _h, ↑m t = 0\n⊢ ∃ u, u ∈ 𝓝[s] x ∧ ↑m u = 0", "tactic": "exact Iff.mp bex_def hs" } ]
[ 176, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 169, 1 ]
Mathlib/Order/Compare.lean
Ordering.Compares.le_total
[]
[ 114, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/LinearAlgebra/Matrix/Basis.lean
Basis.toMatrix_apply
[]
[ 66, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Std/Data/List/Init/Lemmas.lean
List.forall_mem_cons
[]
[ 116, 65 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 113, 1 ]
Mathlib/Data/MvPolynomial/Division.lean
MvPolynomial.support_divMonomial
[]
[ 62, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 60, 1 ]
Mathlib/Algebra/Order/Group/Defs.lean
div_le_div_iff'
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝² : CommGroup α\ninst✝¹ : LE α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na b c d : α\n⊢ a / b ≤ c / d ↔ a * d ≤ c * b", "tactic": "simpa only [div_eq_mul_inv] using mul_inv_le_mul_inv_iff'" } ]
[ 805, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 804, 1 ]
Mathlib/LinearAlgebra/Quotient.lean
Submodule.Quotient.mk'_eq_mk'
[]
[ 68, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 66, 1 ]
Mathlib/CategoryTheory/Subobject/Limits.lean
CategoryTheory.Limits.kernelSubobjectMap_comp
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝⁴ : Category C\nX Y Z : C\ninst✝³ : HasZeroMorphisms C\nf : X ⟶ Y\ninst✝² : HasKernel f\nX' Y' : C\nf' : X' ⟶ Y'\ninst✝¹ : HasKernel f'\nX'' Y'' : C\nf'' : X'' ⟶ Y''\ninst✝ : HasKernel f''\nsq : Arrow.mk f ⟶ Arrow.mk f'\nsq' : Arrow.mk f' ⟶ Arrow.mk f''\n⊢ kernelSubobjectMap (sq ≫ sq') = kernelSubobjectMap sq ≫ kernelSubobjectMap sq'", "tactic": "aesop_cat" } ]
[ 174, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]
Mathlib/RingTheory/GradedAlgebra/HomogeneousIdeal.lean
Ideal.homogeneousCore_mono
[]
[ 192, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 191, 1 ]
Mathlib/Logic/Equiv/Set.lean
Equiv.image_preimage
[]
[ 94, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 93, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.map_smul_nnreal
[]
[ 1215, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1213, 11 ]
Mathlib/FieldTheory/Adjoin.lean
IntermediateField.Lifts.exists_max_three
[ { "state_after": "case intro.intro.intro\nF : Type u_3\nE : Type u_2\nK : Type u_1\ninst✝⁴ : Field F\ninst✝³ : Field E\ninst✝² : Field K\ninst✝¹ : Algebra F E\ninst✝ : Algebra F K\nS : Set E\nc : Set (Lifts F E K)\nx y z : Lifts F E K\nhc : IsChain (fun x x_1 => x ≤ x_1) c\nhx : x ∈ insert ⊥ c\nhy : y ∈ insert ⊥ c\nhz : z ∈ insert ⊥ c\nv : Lifts F E K\nhv : v ∈ insert ⊥ c\nhxv : x ≤ v\nhyv : y ≤ v\n⊢ ∃ w, w ∈ insert ⊥ c ∧ x ≤ w ∧ y ≤ w ∧ z ≤ w", "state_before": "F : Type u_3\nE : Type u_2\nK : Type u_1\ninst✝⁴ : Field F\ninst✝³ : Field E\ninst✝² : Field K\ninst✝¹ : Algebra F E\ninst✝ : Algebra F K\nS : Set E\nc : Set (Lifts F E K)\nx y z : Lifts F E K\nhc : IsChain (fun x x_1 => x ≤ x_1) c\nhx : x ∈ insert ⊥ c\nhy : y ∈ insert ⊥ c\nhz : z ∈ insert ⊥ c\n⊢ ∃ w, w ∈ insert ⊥ c ∧ x ≤ w ∧ y ≤ w ∧ z ≤ w", "tactic": "obtain ⟨v, hv, hxv, hyv⟩ := Lifts.exists_max_two hc hx hy" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nF : Type u_3\nE : Type u_2\nK : Type u_1\ninst✝⁴ : Field F\ninst✝³ : Field E\ninst✝² : Field K\ninst✝¹ : Algebra F E\ninst✝ : Algebra F K\nS : Set E\nc : Set (Lifts F E K)\nx y z : Lifts F E K\nhc : IsChain (fun x x_1 => x ≤ x_1) c\nhx : x ∈ insert ⊥ c\nhy : y ∈ insert ⊥ c\nhz : z ∈ insert ⊥ c\nv : Lifts F E K\nhv : v ∈ insert ⊥ c\nhxv : x ≤ v\nhyv : y ≤ v\nw : Lifts F E K\nhw : w ∈ insert ⊥ c\nhzw : z ≤ w\nhvw : v ≤ w\n⊢ ∃ w, w ∈ insert ⊥ c ∧ x ≤ w ∧ y ≤ w ∧ z ≤ w", "state_before": "case intro.intro.intro\nF : Type u_3\nE : Type u_2\nK : Type u_1\ninst✝⁴ : Field F\ninst✝³ : Field E\ninst✝² : Field K\ninst✝¹ : Algebra F E\ninst✝ : Algebra F K\nS : Set E\nc : Set (Lifts F E K)\nx y z : Lifts F E K\nhc : IsChain (fun x x_1 => x ≤ x_1) c\nhx : x ∈ insert ⊥ c\nhy : y ∈ insert ⊥ c\nhz : z ∈ insert ⊥ c\nv : Lifts F E K\nhv : v ∈ insert ⊥ c\nhxv : x ≤ v\nhyv : y ≤ v\n⊢ ∃ w, w ∈ insert ⊥ c ∧ x ≤ w ∧ y ≤ w ∧ z ≤ w", "tactic": "obtain ⟨w, hw, hzw, hvw⟩ := Lifts.exists_max_two hc hz hv" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro\nF : Type u_3\nE : Type u_2\nK : Type u_1\ninst✝⁴ : Field F\ninst✝³ : Field E\ninst✝² : Field K\ninst✝¹ : Algebra F E\ninst✝ : Algebra F K\nS : Set E\nc : Set (Lifts F E K)\nx y z : Lifts F E K\nhc : IsChain (fun x x_1 => x ≤ x_1) c\nhx : x ∈ insert ⊥ c\nhy : y ∈ insert ⊥ c\nhz : z ∈ insert ⊥ c\nv : Lifts F E K\nhv : v ∈ insert ⊥ c\nhxv : x ≤ v\nhyv : y ≤ v\nw : Lifts F E K\nhw : w ∈ insert ⊥ c\nhzw : z ≤ w\nhvw : v ≤ w\n⊢ ∃ w, w ∈ insert ⊥ c ∧ x ≤ w ∧ y ≤ w ∧ z ≤ w", "tactic": "exact ⟨w, hw, le_trans hxv hvw, le_trans hyv hvw, hzw⟩" } ]
[ 1022, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1016, 1 ]
Mathlib/Analysis/NormedSpace/WeakDual.lean
WeakDual.isCompact_closedBall
[]
[ 256, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 254, 1 ]
Mathlib/Algebra/Regular/Pow.lean
IsRightRegular.pow
[ { "state_after": "R : Type u_1\na b : R\ninst✝ : Monoid R\nn : ℕ\nrra : IsRightRegular a\n⊢ Function.Injective ((fun x => x * a)^[n])", "state_before": "R : Type u_1\na b : R\ninst✝ : Monoid R\nn : ℕ\nrra : IsRightRegular a\n⊢ IsRightRegular (a ^ n)", "tactic": "rw [IsRightRegular, ← mul_right_iterate]" }, { "state_after": "no goals", "state_before": "R : Type u_1\na b : R\ninst✝ : Monoid R\nn : ℕ\nrra : IsRightRegular a\n⊢ Function.Injective ((fun x => x * a)^[n])", "tactic": "exact rra.iterate n" } ]
[ 40, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 38, 1 ]
Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean
MeasureTheory.StronglyMeasurable.aemeasurable
[]
[ 366, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 363, 11 ]
Mathlib/Data/List/Basic.lean
List.length_eq_two
[]
[ 220, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 219, 1 ]
Mathlib/Algebra/CubicDiscriminant.lean
Cubic.degree_of_a_eq_zero'
[]
[ 318, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 317, 1 ]
Mathlib/Topology/MetricSpace/GromovHausdorffRealized.lean
GromovHausdorff.isCompact_candidatesB
[ { "state_after": "case refine'_1\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\n⊢ ∀ (f : (X ⊕ Y) × (X ⊕ Y) →ᵇ ℝ) (x : (X ⊕ Y) × (X ⊕ Y)),\n f ∈ GromovHausdorff.candidatesB X Y → ↑f x ∈ Icc 0 ↑(GromovHausdorff.maxVar X Y)\n\ncase refine'_2\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\n⊢ Equicontinuous fun x => ↑↑x", "state_before": "X : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\n⊢ IsCompact (GromovHausdorff.candidatesB X Y)", "tactic": "refine' arzela_ascoli₂\n (Icc 0 (maxVar X Y) : Set ℝ) isCompact_Icc (candidatesB X Y) closed_candidatesB _ _" }, { "state_after": "case refine'_1.mk\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf✝ : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\nf : (X ⊕ Y) × (X ⊕ Y) →ᵇ ℝ\nx1 x2 : X ⊕ Y\nhf : f ∈ GromovHausdorff.candidatesB X Y\n⊢ ↑f (x1, x2) ∈ Icc 0 ↑(GromovHausdorff.maxVar X Y)", "state_before": "case refine'_1\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\n⊢ ∀ (f : (X ⊕ Y) × (X ⊕ Y) →ᵇ ℝ) (x : (X ⊕ Y) × (X ⊕ Y)),\n f ∈ GromovHausdorff.candidatesB X Y → ↑f x ∈ Icc 0 ↑(GromovHausdorff.maxVar X Y)", "tactic": "rintro f ⟨x1, x2⟩ hf" }, { "state_after": "case refine'_1.mk\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf✝ : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\nf : (X ⊕ Y) × (X ⊕ Y) →ᵇ ℝ\nx1 x2 : X ⊕ Y\nhf : f ∈ GromovHausdorff.candidatesB X Y\n⊢ 0 ≤ ↑f (x1, x2) ∧ ↑f (x1, x2) ≤ ↑(GromovHausdorff.maxVar X Y)", "state_before": "case refine'_1.mk\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf✝ : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\nf : (X ⊕ Y) × (X ⊕ Y) →ᵇ ℝ\nx1 x2 : X ⊕ Y\nhf : f ∈ GromovHausdorff.candidatesB X Y\n⊢ ↑f (x1, x2) ∈ Icc 0 ↑(GromovHausdorff.maxVar X Y)", "tactic": "simp only [Set.mem_Icc]" }, { "state_after": "no goals", "state_before": "case refine'_1.mk\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf✝ : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\nf : (X ⊕ Y) × (X ⊕ Y) →ᵇ ℝ\nx1 x2 : X ⊕ Y\nhf : f ∈ GromovHausdorff.candidatesB X Y\n⊢ 0 ≤ ↑f (x1, x2) ∧ ↑f (x1, x2) ≤ ↑(GromovHausdorff.maxVar X Y)", "tactic": "exact ⟨candidates_nonneg hf, candidates_le_maxVar hf⟩" }, { "state_after": "case refine'_2.refine'_1\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\n⊢ Tendsto (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (𝓝 0) (𝓝 0)\n\ncase refine'_2.refine'_2\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\n⊢ ∀ (x y : (X ⊕ Y) × (X ⊕ Y)) (i : ↑(GromovHausdorff.candidatesB X Y)),\n dist (↑↑i x) (↑↑i y) ≤ (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (dist x y)", "state_before": "case refine'_2\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\n⊢ Equicontinuous fun x => ↑↑x", "tactic": "refine' equicontinuous_of_continuity_modulus (fun t => 2 * maxVar X Y * t) _ _ _" }, { "state_after": "case refine'_2.refine'_1\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\nthis : Tendsto (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (𝓝 0) (𝓝 (2 * ↑(GromovHausdorff.maxVar X Y) * 0))\n⊢ Tendsto (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (𝓝 0) (𝓝 0)", "state_before": "case refine'_2.refine'_1\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\n⊢ Tendsto (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (𝓝 0) (𝓝 0)", "tactic": "have : Tendsto (fun t : ℝ => 2 * (maxVar X Y : ℝ) * t) (𝓝 0) (𝓝 (2 * maxVar X Y * 0)) :=\n tendsto_const_nhds.mul tendsto_id" }, { "state_after": "no goals", "state_before": "case refine'_2.refine'_1\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\nthis : Tendsto (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (𝓝 0) (𝓝 (2 * ↑(GromovHausdorff.maxVar X Y) * 0))\n⊢ Tendsto (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (𝓝 0) (𝓝 0)", "tactic": "simpa using this" }, { "state_after": "case refine'_2.refine'_2.mk\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf✝ : GromovHausdorff.ProdSpaceFun X Y\nx✝ y✝ z t : X ⊕ Y\nx y : (X ⊕ Y) × (X ⊕ Y)\nf : (X ⊕ Y) × (X ⊕ Y) →ᵇ ℝ\nhf : f ∈ GromovHausdorff.candidatesB X Y\n⊢ dist (↑↑{ val := f, property := hf } x) (↑↑{ val := f, property := hf } y) ≤\n (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (dist x y)", "state_before": "case refine'_2.refine'_2\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf : GromovHausdorff.ProdSpaceFun X Y\nx y z t : X ⊕ Y\n⊢ ∀ (x y : (X ⊕ Y) × (X ⊕ Y)) (i : ↑(GromovHausdorff.candidatesB X Y)),\n dist (↑↑i x) (↑↑i y) ≤ (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (dist x y)", "tactic": "rintro x y ⟨f, hf⟩" }, { "state_after": "no goals", "state_before": "case refine'_2.refine'_2.mk\nX : Type u\nY : Type v\ninst✝⁵ : MetricSpace X\ninst✝⁴ : CompactSpace X\ninst✝³ : Nonempty X\ninst✝² : MetricSpace Y\ninst✝¹ : CompactSpace Y\ninst✝ : Nonempty Y\nf✝ : GromovHausdorff.ProdSpaceFun X Y\nx✝ y✝ z t : X ⊕ Y\nx y : (X ⊕ Y) × (X ⊕ Y)\nf : (X ⊕ Y) × (X ⊕ Y) →ᵇ ℝ\nhf : f ∈ GromovHausdorff.candidatesB X Y\n⊢ dist (↑↑{ val := f, property := hf } x) (↑↑{ val := f, property := hf } y) ≤\n (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (dist x y)", "tactic": "exact (candidates_lipschitz hf).dist_le_mul _ _" } ]
[ 282, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 271, 9 ]
Mathlib/CategoryTheory/Limits/Shapes/Products.lean
CategoryTheory.Limits.ι_comp_sigmaComparison
[]
[ 270, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 268, 1 ]
Mathlib/Logic/Equiv/Defs.lean
Equiv.self_trans_symm
[ { "state_after": "no goals", "state_before": "α : Sort u\nβ : Sort v\nγ : Sort w\ne : α ≃ β\n⊢ ∀ (x : α), ↑(e.trans e.symm) x = ↑(Equiv.refl α) x", "tactic": "simp" } ]
[ 353, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 353, 9 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.zero_sub
[ { "state_after": "α : Type ?u.131620\nβ : Type ?u.131623\nγ : Type ?u.131626\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na : Ordinal\n⊢ 0 - a ≤ 0", "state_before": "α : Type ?u.131620\nβ : Type ?u.131623\nγ : Type ?u.131626\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na : Ordinal\n⊢ 0 - a = 0", "tactic": "rw [← Ordinal.le_zero]" }, { "state_after": "no goals", "state_before": "α : Type ?u.131620\nβ : Type ?u.131623\nγ : Type ?u.131626\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na : Ordinal\n⊢ 0 - a ≤ 0", "tactic": "apply sub_le_self" } ]
[ 591, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 591, 1 ]
Mathlib/Analysis/Calculus/LHopital.lean
deriv.lhopital_zero_left_on_Ioo
[ { "state_after": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf✝ : DifferentiableOn ℝ f (Ioo a b)\nhg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0\nhfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)\nhgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio b] b) l\nhdf : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x\n⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l", "state_before": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf : DifferentiableOn ℝ f (Ioo a b)\nhg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0\nhfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)\nhgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio b] b) l\n⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l", "tactic": "have hdf : ∀ x ∈ Ioo a b, DifferentiableAt ℝ f x := fun x hx =>\n (hdf x hx).differentiableAt (Ioo_mem_nhds hx.1 hx.2)" }, { "state_after": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf✝ : DifferentiableOn ℝ f (Ioo a b)\nhg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0\nhfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)\nhgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio b] b) l\nhdf : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x\nhdg : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ g x\n⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l", "state_before": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf✝ : DifferentiableOn ℝ f (Ioo a b)\nhg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0\nhfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)\nhgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio b] b) l\nhdf : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x\n⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l", "tactic": "have hdg : ∀ x ∈ Ioo a b, DifferentiableAt ℝ g x := fun x hx =>\n by_contradiction fun h => hg' x hx (deriv_zero_of_not_differentiableAt h)" }, { "state_after": "no goals", "state_before": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf✝ : DifferentiableOn ℝ f (Ioo a b)\nhg' : ∀ (x : ℝ), x ∈ Ioo a b → deriv g x ≠ 0\nhfb : Tendsto f (𝓝[Iio b] b) (𝓝 0)\nhgb : Tendsto g (𝓝[Iio b] b) (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[Iio b] b) l\nhdf : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x\nhdg : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ g x\n⊢ Tendsto (fun x => f x / g x) (𝓝[Iio b] b) l", "tactic": "exact HasDerivAt.lhopital_zero_left_on_Ioo hab (fun x hx => (hdf x hx).hasDerivAt)\n (fun x hx => (hdg x hx).hasDerivAt) hg' hfb hgb hdiv" } ]
[ 245, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 235, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.equiv_of_eq
[ { "state_after": "x : PGame\n⊢ x ≈ x", "state_before": "x y : PGame\nh : x = y\n⊢ x ≈ y", "tactic": "subst h" }, { "state_after": "no goals", "state_before": "x : PGame\n⊢ x ≈ x", "tactic": "rfl" } ]
[ 775, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 775, 1 ]
Mathlib/Combinatorics/SimpleGraph/AdjMatrix.lean
SimpleGraph.dotProduct_adjMatrix
[ { "state_after": "no goals", "state_before": "V : Type u_2\nα : Type u_1\nβ : Type ?u.37315\nG : SimpleGraph V\ninst✝² : DecidableRel G.Adj\ninst✝¹ : Fintype V\ninst✝ : NonAssocSemiring α\nv : V\nvec : V → α\n⊢ vec ⬝ᵥ adjMatrix α G v = ∑ u in neighborFinset G v, vec u", "tactic": "simp [neighborFinset_eq_filter, dotProduct, sum_filter, Finset.sum_apply]" } ]
[ 210, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 1 ]
Mathlib/Data/Polynomial/Lifts.lean
Polynomial.lifts_and_natDegree_eq_and_monic
[ { "state_after": "case inl\nR : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\np : S[X]\nhlifts : p ∈ lifts f\nhp : Monic p\nhR : Subsingleton S\n⊢ ∃ q, map f q = p ∧ natDegree q = natDegree p ∧ Monic q\n\ncase inr\nR : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\np : S[X]\nhlifts : p ∈ lifts f\nhp : Monic p\nhR : Nontrivial S\n⊢ ∃ q, map f q = p ∧ natDegree q = natDegree p ∧ Monic q", "state_before": "R : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\np : S[X]\nhlifts : p ∈ lifts f\nhp : Monic p\n⊢ ∃ q, map f q = p ∧ natDegree q = natDegree p ∧ Monic q", "tactic": "cases' subsingleton_or_nontrivial S with hR hR" }, { "state_after": "case inr.intro.intro.intro\nR : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\np : S[X]\nhlifts : p ∈ lifts f\nhp : Monic p\nhR : Nontrivial S\np' : R[X]\nh₁ : map f p' = p\nh₂ : degree p' = degree p\nh₃ : Monic p'\n⊢ ∃ q, map f q = p ∧ natDegree q = natDegree p ∧ Monic q", "state_before": "case inr\nR : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\np : S[X]\nhlifts : p ∈ lifts f\nhp : Monic p\nhR : Nontrivial S\n⊢ ∃ q, map f q = p ∧ natDegree q = natDegree p ∧ Monic q", "tactic": "obtain ⟨p', h₁, h₂, h₃⟩ := lifts_and_degree_eq_and_monic hlifts hp" }, { "state_after": "no goals", "state_before": "case inr.intro.intro.intro\nR : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\np : S[X]\nhlifts : p ∈ lifts f\nhp : Monic p\nhR : Nontrivial S\np' : R[X]\nh₁ : map f p' = p\nh₂ : degree p' = degree p\nh₃ : Monic p'\n⊢ ∃ q, map f q = p ∧ natDegree q = natDegree p ∧ Monic q", "tactic": "exact ⟨p', h₁, natDegree_eq_of_degree_eq h₂, h₃⟩" }, { "state_after": "case inl\nR : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\nhR : Subsingleton S\nhlifts : 1 ∈ lifts f\nhp : Monic 1\n⊢ ∃ q, map f q = 1 ∧ natDegree q = natDegree 1 ∧ Monic q", "state_before": "case inl\nR : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\np : S[X]\nhlifts : p ∈ lifts f\nhp : Monic p\nhR : Subsingleton S\n⊢ ∃ q, map f q = p ∧ natDegree q = natDegree p ∧ Monic q", "tactic": "obtain rfl : p = 1 := Subsingleton.elim _ _" }, { "state_after": "no goals", "state_before": "case inl\nR : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\nhR : Subsingleton S\nhlifts : 1 ∈ lifts f\nhp : Monic 1\n⊢ ∃ q, map f q = 1 ∧ natDegree q = natDegree 1 ∧ Monic q", "tactic": "refine' ⟨1, Subsingleton.elim _ _, by simp, by simp⟩" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\nhR : Subsingleton S\nhlifts : 1 ∈ lifts f\nhp : Monic 1\n⊢ natDegree 1 = natDegree 1", "tactic": "simp" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\nhR : Subsingleton S\nhlifts : 1 ∈ lifts f\nhp : Monic 1\n⊢ Monic 1", "tactic": "simp" } ]
[ 242, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/CategoryTheory/Monoidal/Rigid/Basic.lean
CategoryTheory.tensorRightHomEquiv_tensor_id_comp_evaluation
[ { "state_after": "C : Type u₁\ninst✝² : Category C\ninst✝¹ : MonoidalCategory C\nX Y : C\ninst✝ : HasRightDual X\nf : Y ⟶ Xᘁ\n⊢ (ρ_ Y).inv ≫ (𝟙 Y ⊗ η_ X Xᘁ) ≫ (α_ Y X Xᘁ).inv ≫ ((f ⊗ 𝟙 X) ≫ ε_ X Xᘁ ⊗ 𝟙 Xᘁ) = f ≫ (λ_ Xᘁ).inv", "state_before": "C : Type u₁\ninst✝² : Category C\ninst✝¹ : MonoidalCategory C\nX Y : C\ninst✝ : HasRightDual X\nf : Y ⟶ Xᘁ\n⊢ ↑(tensorRightHomEquiv Y X Xᘁ (𝟙_ C)) ((f ⊗ 𝟙 X) ≫ ε_ X Xᘁ) = f ≫ (λ_ Xᘁ).inv", "tactic": "dsimp [tensorRightHomEquiv]" }, { "state_after": "C : Type u₁\ninst✝² : Category C\ninst✝¹ : MonoidalCategory C\nX Y : C\ninst✝ : HasRightDual X\nf : Y ⟶ Xᘁ\n⊢ (ρ_ Y).inv ≫ (𝟙 Y ⊗ η_ X Xᘁ) ≫ (α_ Y X Xᘁ).inv ≫ ((f ⊗ 𝟙 X) ⊗ 𝟙 Xᘁ) ≫ (ε_ X Xᘁ ⊗ 𝟙 Xᘁ) = f ≫ (λ_ Xᘁ).inv", "state_before": "C : Type u₁\ninst✝² : Category C\ninst✝¹ : MonoidalCategory C\nX Y : C\ninst✝ : HasRightDual X\nf : Y ⟶ Xᘁ\n⊢ (ρ_ Y).inv ≫ (𝟙 Y ⊗ η_ X Xᘁ) ≫ (α_ Y X Xᘁ).inv ≫ ((f ⊗ 𝟙 X) ≫ ε_ X Xᘁ ⊗ 𝟙 Xᘁ) = f ≫ (λ_ Xᘁ).inv", "tactic": "rw [comp_tensor_id]" }, { "state_after": "C : Type u₁\ninst✝² : Category C\ninst✝¹ : MonoidalCategory C\nX Y : C\ninst✝ : HasRightDual X\nf : Y ⟶ Xᘁ\n⊢ (ρ_ Y).inv ≫ (𝟙 Y ⊗ η_ X Xᘁ) ≫ ((f ⊗ 𝟙 X ⊗ 𝟙 Xᘁ) ≫ (α_ Xᘁ X Xᘁ).inv) ≫ (ε_ X Xᘁ ⊗ 𝟙 Xᘁ) = f ≫ (λ_ Xᘁ).inv", "state_before": "C : Type u₁\ninst✝² : Category C\ninst✝¹ : MonoidalCategory C\nX Y : C\ninst✝ : HasRightDual X\nf : Y ⟶ Xᘁ\n⊢ (ρ_ Y).inv ≫ (𝟙 Y ⊗ η_ X Xᘁ) ≫ (α_ Y X Xᘁ).inv ≫ ((f ⊗ 𝟙 X) ⊗ 𝟙 Xᘁ) ≫ (ε_ X Xᘁ ⊗ 𝟙 Xᘁ) = f ≫ (λ_ Xᘁ).inv", "tactic": "slice_lhs 3 4 => rw [← associator_inv_naturality]" }, { "state_after": "C : Type u₁\ninst✝² : Category C\ninst✝¹ : MonoidalCategory C\nX Y : C\ninst✝ : HasRightDual X\nf : Y ⟶ Xᘁ\n⊢ (ρ_ Y).inv ≫ (((f ⊗ 𝟙 tensorUnit') ≫ (𝟙 Xᘁ ⊗ η_ X Xᘁ)) ≫ (α_ Xᘁ X Xᘁ).inv) ≫ (ε_ X Xᘁ ⊗ 𝟙 Xᘁ) = f ≫ (λ_ Xᘁ).inv", "state_before": "C : Type u₁\ninst✝² : Category C\ninst✝¹ : MonoidalCategory C\nX Y : C\ninst✝ : HasRightDual X\nf : Y ⟶ Xᘁ\n⊢ (ρ_ Y).inv ≫ (𝟙 Y ⊗ η_ X Xᘁ) ≫ ((f ⊗ 𝟙 X ⊗ 𝟙 Xᘁ) ≫ (α_ Xᘁ X Xᘁ).inv) ≫ (ε_ X Xᘁ ⊗ 𝟙 Xᘁ) = f ≫ (λ_ Xᘁ).inv", "tactic": "slice_lhs 2 3 => rw [tensor_id, id_tensor_comp_tensor_id, ← tensor_id_comp_id_tensor]" }, { "state_after": "C : Type u₁\ninst✝² : Category C\ninst✝¹ : MonoidalCategory C\nX Y : C\ninst✝ : HasRightDual X\nf : Y ⟶ Xᘁ\n⊢ (ρ_ Y).inv ≫ (f ⊗ 𝟙 tensorUnit') ≫ (ρ_ Xᘁ).hom ≫ (λ_ Xᘁ).inv = f ≫ (λ_ Xᘁ).inv", "state_before": "C : Type u₁\ninst✝² : Category C\ninst✝¹ : MonoidalCategory C\nX Y : C\ninst✝ : HasRightDual X\nf : Y ⟶ Xᘁ\n⊢ (ρ_ Y).inv ≫ (((f ⊗ 𝟙 tensorUnit') ≫ (𝟙 Xᘁ ⊗ η_ X Xᘁ)) ≫ (α_ Xᘁ X Xᘁ).inv) ≫ (ε_ X Xᘁ ⊗ 𝟙 Xᘁ) = f ≫ (λ_ Xᘁ).inv", "tactic": "slice_lhs 3 5 => rw [coevaluation_evaluation]" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝² : Category C\ninst✝¹ : MonoidalCategory C\nX Y : C\ninst✝ : HasRightDual X\nf : Y ⟶ Xᘁ\n⊢ (ρ_ Y).inv ≫ (f ⊗ 𝟙 tensorUnit') ≫ (ρ_ Xᘁ).hom ≫ (λ_ Xᘁ).inv = f ≫ (λ_ Xᘁ).inv", "tactic": "simp" } ]
[ 541, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 534, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.filter_cons
[ { "state_after": "case inl\nα : Type ?u.367165\nβ : Type ?u.367168\nγ : Type ?u.367171\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\na : α\ns : Finset α\nha : ¬a ∈ s\nh✝ : p a\n⊢ _root_.Disjoint {a} (filter p s)\n\ncase inr\nα : Type ?u.367165\nβ : Type ?u.367168\nγ : Type ?u.367171\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\na : α\ns : Finset α\nha : ¬a ∈ s\nh✝ : ¬p a\n⊢ _root_.Disjoint ∅ (filter p s)", "state_before": "α : Type ?u.367165\nβ : Type ?u.367168\nγ : Type ?u.367171\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\na : α\ns : Finset α\nha : ¬a ∈ s\n⊢ _root_.Disjoint (if p a then {a} else ∅) (filter p s)", "tactic": "split_ifs" }, { "state_after": "case inl\nα : Type ?u.367165\nβ : Type ?u.367168\nγ : Type ?u.367171\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\na : α\ns : Finset α\nha : ¬a ∈ s\nh✝ : p a\n⊢ ¬a ∈ filter p s", "state_before": "case inl\nα : Type ?u.367165\nβ : Type ?u.367168\nγ : Type ?u.367171\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\na : α\ns : Finset α\nha : ¬a ∈ s\nh✝ : p a\n⊢ _root_.Disjoint {a} (filter p s)", "tactic": "rw [disjoint_singleton_left]" }, { "state_after": "no goals", "state_before": "case inl\nα : Type ?u.367165\nβ : Type ?u.367168\nγ : Type ?u.367171\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\na : α\ns : Finset α\nha : ¬a ∈ s\nh✝ : p a\n⊢ ¬a ∈ filter p s", "tactic": "exact mem_filter.not.mpr <| mt And.left ha" }, { "state_after": "no goals", "state_before": "case inr\nα : Type ?u.367165\nβ : Type ?u.367168\nγ : Type ?u.367171\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\na : α\ns : Finset α\nha : ¬a ∈ s\nh✝ : ¬p a\n⊢ _root_.Disjoint ∅ (filter p s)", "tactic": "exact disjoint_empty_left _" }, { "state_after": "case inl\nα : Type u_1\nβ : Type ?u.367168\nγ : Type ?u.367171\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\na : α\ns : Finset α\nha : ¬a ∈ s\nh : p a\n⊢ filter p (cons a s ha) = disjUnion {a} (filter p s) (_ : _root_.Disjoint {a} (filter p s))\n\ncase inr\nα : Type u_1\nβ : Type ?u.367168\nγ : Type ?u.367171\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\na : α\ns : Finset α\nha : ¬a ∈ s\nh : ¬p a\n⊢ filter p (cons a s ha) = disjUnion ∅ (filter p s) (_ : _root_.Disjoint ∅ (filter p s))", "state_before": "α : Type u_1\nβ : Type ?u.367168\nγ : Type ?u.367171\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\na : α\ns : Finset α\nha : ¬a ∈ s\n⊢ filter p (cons a s ha) =\n disjUnion (if p a then {a} else ∅) (filter p s) (_ : _root_.Disjoint (if p a then {a} else ∅) (filter p s))", "tactic": "split_ifs with h" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\nβ : Type ?u.367168\nγ : Type ?u.367171\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\na : α\ns : Finset α\nha : ¬a ∈ s\nh : p a\n⊢ filter p (cons a s ha) = disjUnion {a} (filter p s) (_ : _root_.Disjoint {a} (filter p s))", "tactic": "rw [filter_cons_of_pos _ _ _ ha h, singleton_disjUnion]" }, { "state_after": "no goals", "state_before": "case inr\nα : Type u_1\nβ : Type ?u.367168\nγ : Type ?u.367171\np q : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\na : α\ns : Finset α\nha : ¬a ∈ s\nh : ¬p a\n⊢ filter p (cons a s ha) = disjUnion ∅ (filter p s) (_ : _root_.Disjoint ∅ (filter p s))", "tactic": "rw [filter_cons_of_neg _ _ _ ha h, empty_disjUnion]" } ]
[ 2807, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2797, 1 ]
Mathlib/Algebra/Invertible.lean
invOf_two_add_invOf_two
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝¹ : NonAssocSemiring α\ninst✝ : Invertible 2\n⊢ ⅟2 + ⅟2 = 1", "tactic": "rw [← two_mul, mul_invOf_self]" } ]
[ 270, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 269, 1 ]
Mathlib/Computability/TuringMachine.lean
Turing.TM2to1.tr_supports
[ { "state_after": "K : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nl' : Λ'\nh : l' ∈ trSupp M S\n⊢ ∀ (q : Stmt₂),\n TM2.SupportsStmt S q →\n (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "K : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nl' : Λ'\nh : l' ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "suffices ∀ (q) (_ : TM2.SupportsStmt S q) (_ : ∀ x ∈ trStmts₁ q, x ∈ trSupp M S),\n TM1.SupportsStmt (trSupp M S) (trNormal q) ∧\n ∀ l' ∈ trStmts₁ q, TM1.SupportsStmt (trSupp M S) (tr M l') by\n rcases Finset.mem_biUnion.1 h with ⟨l, lS, h⟩\n have :=\n this _ (ss.2 l lS) fun x hx ↦ Finset.mem_biUnion.2 ⟨_, lS, Finset.mem_insert_of_mem hx⟩\n rcases Finset.mem_insert.1 h with (rfl | h) <;> [exact this.1; exact this.2 _ h]" }, { "state_after": "K : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\n⊢ ∀ (q : Stmt₂),\n TM2.SupportsStmt S q →\n (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "K : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nl' : Λ'\nh : l' ∈ trSupp M S\n⊢ ∀ (q : Stmt₂),\n TM2.SupportsStmt S q →\n (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "clear h l'" }, { "state_after": "case refine'_1\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\n⊢ ∀ (k : K) (s : StAct k) (q : Stmt₂),\n (TM2.SupportsStmt S q →\n (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')) →\n TM2.SupportsStmt S (stRun s q) →\n (∀ (x : Λ'), x ∈ trStmts₁ (stRun s q) → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q) → TM1.SupportsStmt (trSupp M S) (tr M l')\n\ncase refine'_2\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\n⊢ ∀ (a : σ → σ) (q : Stmt₂),\n (TM2.SupportsStmt S q →\n (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')) →\n TM2.SupportsStmt S (TM2.Stmt.load a q) →\n (∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.load a q) → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.load a q)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.load a q) → TM1.SupportsStmt (trSupp M S) (tr M l')\n\ncase refine'_3\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\n⊢ ∀ (p : σ → Bool) (q₁ q₂ : Stmt₂),\n (TM2.SupportsStmt S q₁ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₁ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₁) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₁ → TM1.SupportsStmt (trSupp M S) (tr M l')) →\n (TM2.SupportsStmt S q₂ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₂ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₂) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₂ → TM1.SupportsStmt (trSupp M S) (tr M l')) →\n TM2.SupportsStmt S (TM2.Stmt.branch p q₁ q₂) →\n (∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.branch p q₁ q₂) → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p q₁ q₂)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p q₁ q₂) → TM1.SupportsStmt (trSupp M S) (tr M l')\n\ncase refine'_4\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\n⊢ ∀ (l : σ → Λ),\n TM2.SupportsStmt S (TM2.Stmt.goto l) →\n (∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.goto l) → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.goto l)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.goto l) → TM1.SupportsStmt (trSupp M S) (tr M l')\n\ncase refine'_5\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\n⊢ TM2.SupportsStmt S TM2.Stmt.halt →\n (∀ (x : Λ'), x ∈ trStmts₁ TM2.Stmt.halt → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal TM2.Stmt.halt) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ TM2.Stmt.halt → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "K : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\n⊢ ∀ (q : Stmt₂),\n TM2.SupportsStmt S q →\n (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "refine' stmtStRec _ _ _ _ _" }, { "state_after": "case intro.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nl' : Λ'\nh✝ : l' ∈ trSupp M S\nthis :\n ∀ (q : Stmt₂),\n TM2.SupportsStmt S q →\n (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ\nlS : l ∈ S\nh : l' ∈ insert (normal l) (trStmts₁ (M l))\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "K : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nl' : Λ'\nh : l' ∈ trSupp M S\nthis :\n ∀ (q : Stmt₂),\n TM2.SupportsStmt S q →\n (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "rcases Finset.mem_biUnion.1 h with ⟨l, lS, h⟩" }, { "state_after": "case intro.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nl' : Λ'\nh✝ : l' ∈ trSupp M S\nthis✝ :\n ∀ (q : Stmt₂),\n TM2.SupportsStmt S q →\n (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ\nlS : l ∈ S\nh : l' ∈ insert (normal l) (trStmts₁ (M l))\nthis :\n TM1.SupportsStmt (trSupp M S) (trNormal (M l)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (M l) → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case intro.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nl' : Λ'\nh✝ : l' ∈ trSupp M S\nthis :\n ∀ (q : Stmt₂),\n TM2.SupportsStmt S q →\n (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ\nlS : l ∈ S\nh : l' ∈ insert (normal l) (trStmts₁ (M l))\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "have :=\n this _ (ss.2 l lS) fun x hx ↦ Finset.mem_biUnion.2 ⟨_, lS, Finset.mem_insert_of_mem hx⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nl' : Λ'\nh✝ : l' ∈ trSupp M S\nthis✝ :\n ∀ (q : Stmt₂),\n TM2.SupportsStmt S q →\n (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ\nlS : l ∈ S\nh : l' ∈ insert (normal l) (trStmts₁ (M l))\nthis :\n TM1.SupportsStmt (trSupp M S) (trNormal (M l)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (M l) → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "rcases Finset.mem_insert.1 h with (rfl | h) <;> [exact this.1; exact this.2 _ h]" }, { "state_after": "case refine'_1\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (stRun s q✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ (stRun s q✝) → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_1\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\n⊢ ∀ (k : K) (s : StAct k) (q : Stmt₂),\n (TM2.SupportsStmt S q →\n (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')) →\n TM2.SupportsStmt S (stRun s q) →\n (∀ (x : Λ'), x ∈ trStmts₁ (stRun s q) → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "intro _ s _ IH ss' sub" }, { "state_after": "case refine'_1\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), x ∈ trStmts₁ (stRun s q✝) → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_1\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (stRun s q✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ (stRun s q✝) → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "rw [TM2to1.supports_run] at ss'" }, { "state_after": "case refine'_1\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_1\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), x ∈ trStmts₁ (stRun s q✝) → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "simp only [TM2to1.trStmts₁_run, Finset.mem_union, Finset.mem_insert, Finset.mem_singleton]\n at sub" }, { "state_after": "case refine'_1\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_1\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "have hgo := sub _ (Or.inl <| Or.inl rfl)" }, { "state_after": "case refine'_1\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_1\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "have hret := sub _ (Or.inl <| Or.inr rfl)" }, { "state_after": "case refine'_1.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_1\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "cases' IH ss' fun x hx ↦ sub x <| Or.inr hx with IH₁ IH₂" }, { "state_after": "case refine'_1.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ'\nh : l ∈ trStmts₁ (stRun s q✝)\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l)", "state_before": "case refine'_1.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "refine' ⟨by simp only [trNormal_run, TM1.SupportsStmt]; intros; exact hgo, fun l h ↦ _⟩" }, { "state_after": "case refine'_1.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ'\nh : l ∈ {go k✝ s q✝, ret q✝} ∪ trStmts₁ q✝\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l)", "state_before": "case refine'_1.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ'\nh : l ∈ trStmts₁ (stRun s q✝)\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l)", "tactic": "rw [trStmts₁_run] at h" }, { "state_after": "case refine'_1.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ'\nh : (l = go k✝ s q✝ ∨ l = ret q✝) ∨ l ∈ trStmts₁ q✝\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l)", "state_before": "case refine'_1.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ'\nh : l ∈ {go k✝ s q✝, ret q✝} ∪ trStmts₁ q✝\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l)", "tactic": "simp only [TM2to1.trStmts₁_run, Finset.mem_union, Finset.mem_insert, Finset.mem_singleton]\n at h" }, { "state_after": "case refine'_1.intro.inl.inl\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ TM1.SupportsStmt (trSupp M S) (tr M (go k✝ s q✝))\n\ncase refine'_1.intro.inl.inr\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ TM1.SupportsStmt (trSupp M S) (tr M (ret q✝))\n\ncase refine'_1.intro.inr\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ'\nh : l ∈ trStmts₁ q✝\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l)", "state_before": "case refine'_1.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ'\nh : (l = go k✝ s q✝ ∨ l = ret q✝) ∨ l ∈ trStmts₁ q✝\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l)", "tactic": "rcases h with (⟨rfl | rfl⟩ | h)" }, { "state_after": "K : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ Γ' → σ → go k✝ s q✝ ∈ trSupp M S", "state_before": "K : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝))", "tactic": "simp only [trNormal_run, TM1.SupportsStmt]" }, { "state_after": "K : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\na✝ : Γ'\nv✝ : σ\n⊢ go k✝ s q✝ ∈ trSupp M S", "state_before": "K : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ Γ' → σ → go k✝ s q✝ ∈ trSupp M S", "tactic": "intros" }, { "state_after": "no goals", "state_before": "K : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\na✝ : Γ'\nv✝ : σ\n⊢ go k✝ s q✝ ∈ trSupp M S", "tactic": "exact hgo" }, { "state_after": "case refine'_1.intro.inl.inl.push\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\na✝ : σ → Γ k✝\nsub : ∀ (x : Λ'), (x = go k✝ (StAct.push a✝) q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ (StAct.push a✝) q✝ ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (tr M (go k✝ (StAct.push a✝) q✝))\n\ncase refine'_1.intro.inl.inl.peek\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\na✝ : σ → Option (Γ k✝) → σ\nsub : ∀ (x : Λ'), (x = go k✝ (StAct.peek a✝) q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ (StAct.peek a✝) q✝ ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (tr M (go k✝ (StAct.peek a✝) q✝))\n\ncase refine'_1.intro.inl.inl.pop\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\na✝ : σ → Option (Γ k✝) → σ\nsub : ∀ (x : Λ'), (x = go k✝ (StAct.pop a✝) q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ (StAct.pop a✝) q✝ ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (tr M (go k✝ (StAct.pop a✝) q✝))", "state_before": "case refine'_1.intro.inl.inl\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ TM1.SupportsStmt (trSupp M S) (tr M (go k✝ s q✝))", "tactic": "cases s" }, { "state_after": "no goals", "state_before": "case refine'_1.intro.inl.inl.push\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\na✝ : σ → Γ k✝\nsub : ∀ (x : Λ'), (x = go k✝ (StAct.push a✝) q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ (StAct.push a✝) q✝ ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (tr M (go k✝ (StAct.push a✝) q✝))", "tactic": "exact ⟨fun _ _ ↦ hret, fun _ _ ↦ hgo⟩" }, { "state_after": "no goals", "state_before": "case refine'_1.intro.inl.inl.peek\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\na✝ : σ → Option (Γ k✝) → σ\nsub : ∀ (x : Λ'), (x = go k✝ (StAct.peek a✝) q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ (StAct.peek a✝) q✝ ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (tr M (go k✝ (StAct.peek a✝) q✝))", "tactic": "exact ⟨fun _ _ ↦ hret, fun _ _ ↦ hgo⟩" }, { "state_after": "no goals", "state_before": "case refine'_1.intro.inl.inl.pop\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\na✝ : σ → Option (Γ k✝) → σ\nsub : ∀ (x : Λ'), (x = go k✝ (StAct.pop a✝) q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ (StAct.pop a✝) q✝ ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (tr M (go k✝ (StAct.pop a✝) q✝))", "tactic": "exact ⟨⟨fun _ _ ↦ hret, fun _ _ ↦ hret⟩, fun _ _ ↦ hgo⟩" }, { "state_after": "case refine'_1.intro.inl.inr\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ match\n match ret q✝ with\n | normal q => trNormal (M q)\n | go k s q =>\n branch (fun a x => Option.isNone (Prod.snd a k)) (trStAct (goto fun x x => ret q) s)\n (move Dir.right (goto fun x x => go k s q))\n | ret q => branch (fun a x => a.fst) (trNormal q) (move Dir.left (goto fun x x => ret q)) with\n | move a q => TM1.SupportsStmt (trSupp M S) q\n | write a q => TM1.SupportsStmt (trSupp M S) q\n | load a q => TM1.SupportsStmt (trSupp M S) q\n | branch a q₁ q₂ => TM1.SupportsStmt (trSupp M S) q₁ ∧ TM1.SupportsStmt (trSupp M S) q₂\n | goto l => ∀ (a : Γ') (v : σ), l a v ∈ trSupp M S\n | halt => True", "state_before": "case refine'_1.intro.inl.inr\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ TM1.SupportsStmt (trSupp M S) (tr M (ret q✝))", "tactic": "unfold TM1.SupportsStmt TM2to1.tr" }, { "state_after": "no goals", "state_before": "case refine'_1.intro.inl.inr\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ match\n match ret q✝ with\n | normal q => trNormal (M q)\n | go k s q =>\n branch (fun a x => Option.isNone (Prod.snd a k)) (trStAct (goto fun x x => ret q) s)\n (move Dir.right (goto fun x x => go k s q))\n | ret q => branch (fun a x => a.fst) (trNormal q) (move Dir.left (goto fun x x => ret q)) with\n | move a q => TM1.SupportsStmt (trSupp M S) q\n | write a q => TM1.SupportsStmt (trSupp M S) q\n | load a q => TM1.SupportsStmt (trSupp M S) q\n | branch a q₁ q₂ => TM1.SupportsStmt (trSupp M S) q₁ ∧ TM1.SupportsStmt (trSupp M S) q₂\n | goto l => ∀ (a : Γ') (v : σ), l a v ∈ trSupp M S\n | halt => True", "tactic": "exact ⟨IH₁, fun _ _ ↦ hret⟩" }, { "state_after": "no goals", "state_before": "case refine'_1.intro.inr\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nk✝ : K\ns : StAct k✝\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S q✝\nsub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S\nhgo : go k✝ s q✝ ∈ trSupp M S\nhret : ret q✝ ∈ trSupp M S\nIH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝)\nIH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ'\nh : l ∈ trStmts₁ q✝\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l)", "tactic": "exact IH₂ _ h" }, { "state_after": "case refine'_2\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\na✝ : σ → σ\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.load a✝ q✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.load a✝ q✝) → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.load a✝ q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.load a✝ q✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_2\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\n⊢ ∀ (a : σ → σ) (q : Stmt₂),\n (TM2.SupportsStmt S q →\n (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')) →\n TM2.SupportsStmt S (TM2.Stmt.load a q) →\n (∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.load a q) → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.load a q)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.load a q) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "intro _ _ IH ss' sub" }, { "state_after": "case refine'_2\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\na✝ : σ → σ\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.load a✝ q✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.load a✝ q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_2\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\na✝ : σ → σ\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.load a✝ q✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.load a✝ q✝) → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.load a✝ q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.load a✝ q✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "unfold TM2to1.trStmts₁ at ss' sub⊢" }, { "state_after": "no goals", "state_before": "case refine'_2\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\na✝ : σ → σ\nq✝ : Stmt₂\nIH :\n TM2.SupportsStmt S q✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.load a✝ q✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.load a✝ q✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "exact IH ss' sub" }, { "state_after": "case refine'_3\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\np✝ : σ → Bool\nq₁✝ q₂✝ : Stmt₂\nIH₁ :\n TM2.SupportsStmt S q₁✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂ :\n TM2.SupportsStmt S q₂✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p✝ q₁✝ q₂✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_3\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\n⊢ ∀ (p : σ → Bool) (q₁ q₂ : Stmt₂),\n (TM2.SupportsStmt S q₁ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₁ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₁) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₁ → TM1.SupportsStmt (trSupp M S) (tr M l')) →\n (TM2.SupportsStmt S q₂ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₂ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₂) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₂ → TM1.SupportsStmt (trSupp M S) (tr M l')) →\n TM2.SupportsStmt S (TM2.Stmt.branch p q₁ q₂) →\n (∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.branch p q₁ q₂) → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p q₁ q₂)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p q₁ q₂) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "intro _ _ _ IH₁ IH₂ ss' sub" }, { "state_after": "case refine'_3\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\np✝ : σ → Bool\nq₁✝ q₂✝ : Stmt₂\nIH₁ :\n TM2.SupportsStmt S q₁✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂ :\n TM2.SupportsStmt S q₂✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p✝ q₁✝ q₂✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_3\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\np✝ : σ → Bool\nq₁✝ q₂✝ : Stmt₂\nIH₁ :\n TM2.SupportsStmt S q₁✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂ :\n TM2.SupportsStmt S q₂✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p✝ q₁✝ q₂✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "unfold TM2to1.trStmts₁ at sub" }, { "state_after": "case refine'_3.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\np✝ : σ → Bool\nq₁✝ q₂✝ : Stmt₂\nIH₁ :\n TM2.SupportsStmt S q₁✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂ :\n TM2.SupportsStmt S q₂✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S\nIH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝)\nIH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p✝ q₁✝ q₂✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_3\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\np✝ : σ → Bool\nq₁✝ q₂✝ : Stmt₂\nIH₁ :\n TM2.SupportsStmt S q₁✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂ :\n TM2.SupportsStmt S q₂✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p✝ q₁✝ q₂✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "cases' IH₁ ss'.1 fun x hx ↦ sub x <| Finset.mem_union_left _ hx with IH₁₁ IH₁₂" }, { "state_after": "case refine'_3.intro.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\np✝ : σ → Bool\nq₁✝ q₂✝ : Stmt₂\nIH₁ :\n TM2.SupportsStmt S q₁✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂ :\n TM2.SupportsStmt S q₂✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S\nIH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝)\nIH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₂✝)\nIH₂₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p✝ q₁✝ q₂✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_3.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\np✝ : σ → Bool\nq₁✝ q₂✝ : Stmt₂\nIH₁ :\n TM2.SupportsStmt S q₁✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂ :\n TM2.SupportsStmt S q₂✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S\nIH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝)\nIH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p✝ q₁✝ q₂✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "cases' IH₂ ss'.2 fun x hx ↦ sub x <| Finset.mem_union_right _ hx with IH₂₁ IH₂₂" }, { "state_after": "case refine'_3.intro.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\np✝ : σ → Bool\nq₁✝ q₂✝ : Stmt₂\nIH₁ :\n TM2.SupportsStmt S q₁✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂ :\n TM2.SupportsStmt S q₂✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S\nIH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝)\nIH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₂✝)\nIH₂₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ'\nh : l ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝)\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l)", "state_before": "case refine'_3.intro.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\np✝ : σ → Bool\nq₁✝ q₂✝ : Stmt₂\nIH₁ :\n TM2.SupportsStmt S q₁✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂ :\n TM2.SupportsStmt S q₂✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S\nIH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝)\nIH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₂✝)\nIH₂₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p✝ q₁✝ q₂✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "refine' ⟨⟨IH₁₁, IH₂₁⟩, fun l h ↦ _⟩" }, { "state_after": "case refine'_3.intro.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\np✝ : σ → Bool\nq₁✝ q₂✝ : Stmt₂\nIH₁ :\n TM2.SupportsStmt S q₁✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂ :\n TM2.SupportsStmt S q₂✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S\nIH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝)\nIH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₂✝)\nIH₂₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ'\nh : l ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l)", "state_before": "case refine'_3.intro.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\np✝ : σ → Bool\nq₁✝ q₂✝ : Stmt₂\nIH₁ :\n TM2.SupportsStmt S q₁✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂ :\n TM2.SupportsStmt S q₂✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S\nIH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝)\nIH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₂✝)\nIH₂₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ'\nh : l ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝)\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l)", "tactic": "rw [trStmts₁] at h" }, { "state_after": "no goals", "state_before": "case refine'_3.intro.intro\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\np✝ : σ → Bool\nq₁✝ q₂✝ : Stmt₂\nIH₁ :\n TM2.SupportsStmt S q₁✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂ :\n TM2.SupportsStmt S q₂✝ →\n (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝)\nsub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S\nIH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝)\nIH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nIH₂₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₂✝)\nIH₂₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l')\nl : Λ'\nh : l ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝\n⊢ TM1.SupportsStmt (trSupp M S) (tr M l)", "tactic": "rcases Finset.mem_union.1 h with (h | h) <;> [exact IH₁₂ _ h; exact IH₂₂ _ h]" }, { "state_after": "case refine'_4\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nl✝ : σ → Λ\nss' : TM2.SupportsStmt S (TM2.Stmt.goto l✝)\nx✝ : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.goto l✝) → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.goto l✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.goto l✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_4\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\n⊢ ∀ (l : σ → Λ),\n TM2.SupportsStmt S (TM2.Stmt.goto l) →\n (∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.goto l) → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.goto l)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.goto l) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "intro _ ss' _" }, { "state_after": "case refine'_4\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nl✝ : σ → Λ\nss' : TM2.SupportsStmt S (TM2.Stmt.goto l✝)\nx✝ : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.goto l✝) → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.goto l✝)) ∧\n ∀ (l' : Λ'), False → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_4\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nl✝ : σ → Λ\nss' : TM2.SupportsStmt S (TM2.Stmt.goto l✝)\nx✝ : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.goto l✝) → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.goto l✝)) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.goto l✝) → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "simp only [trStmts₁, Finset.not_mem_empty]" }, { "state_after": "case refine'_4\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nl✝ : σ → Λ\nss' : TM2.SupportsStmt S (TM2.Stmt.goto l✝)\nx✝ : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.goto l✝) → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.goto l✝))", "state_before": "case refine'_4\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nl✝ : σ → Λ\nss' : TM2.SupportsStmt S (TM2.Stmt.goto l✝)\nx✝ : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.goto l✝) → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.goto l✝)) ∧\n ∀ (l' : Λ'), False → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "refine' ⟨_, fun _ ↦ False.elim⟩" }, { "state_after": "no goals", "state_before": "case refine'_4\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nl✝ : σ → Λ\nss' : TM2.SupportsStmt S (TM2.Stmt.goto l✝)\nx✝ : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.goto l✝) → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.goto l✝))", "tactic": "exact fun _ v ↦ Finset.mem_biUnion.2 ⟨_, ss' v, Finset.mem_insert_self _ _⟩" }, { "state_after": "case refine'_5\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nx✝¹ : TM2.SupportsStmt S TM2.Stmt.halt\nx✝ : ∀ (x : Λ'), x ∈ trStmts₁ TM2.Stmt.halt → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal TM2.Stmt.halt) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ TM2.Stmt.halt → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_5\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\n⊢ TM2.SupportsStmt S TM2.Stmt.halt →\n (∀ (x : Λ'), x ∈ trStmts₁ TM2.Stmt.halt → x ∈ trSupp M S) →\n TM1.SupportsStmt (trSupp M S) (trNormal TM2.Stmt.halt) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ TM2.Stmt.halt → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "intro _ _" }, { "state_after": "case refine'_5\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nx✝¹ : TM2.SupportsStmt S TM2.Stmt.halt\nx✝ : ∀ (x : Λ'), x ∈ trStmts₁ TM2.Stmt.halt → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal TM2.Stmt.halt) ∧ ∀ (l' : Λ'), False → TM1.SupportsStmt (trSupp M S) (tr M l')", "state_before": "case refine'_5\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nx✝¹ : TM2.SupportsStmt S TM2.Stmt.halt\nx✝ : ∀ (x : Λ'), x ∈ trStmts₁ TM2.Stmt.halt → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal TM2.Stmt.halt) ∧\n ∀ (l' : Λ'), l' ∈ trStmts₁ TM2.Stmt.halt → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "simp only [trStmts₁, Finset.not_mem_empty]" }, { "state_after": "no goals", "state_before": "case refine'_5\nK : Type u_2\ninst✝² : DecidableEq K\nΓ : K → Type u_3\nΛ : Type u_1\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nS : Finset Λ\nss : TM2.Supports M S\nx✝¹ : TM2.SupportsStmt S TM2.Stmt.halt\nx✝ : ∀ (x : Λ'), x ∈ trStmts₁ TM2.Stmt.halt → x ∈ trSupp M S\n⊢ TM1.SupportsStmt (trSupp M S) (trNormal TM2.Stmt.halt) ∧ ∀ (l' : Λ'), False → TM1.SupportsStmt (trSupp M S) (tr M l')", "tactic": "exact ⟨trivial, fun _ ↦ False.elim⟩" } ]
[ 2817, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2772, 1 ]