file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Order/Filter/Basic.lean
Filter.EventuallyLE.mul_le_mul'
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.213025\nι : Sort x\ninst✝³ : Mul β\ninst✝² : Preorder β\ninst✝¹ : CovariantClass β β (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ninst✝ : CovariantClass β β (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\nl : Filter α\nf₁ f₂ g₁ g₂ : α → β\nhf : f₁ ≤ᶠ[l] f₂\nhg : g₁ ≤ᶠ[l] g₂\n⊢ f₁ * g₁ ≤ᶠ[l] f₂ * g₂", "tactic": "filter_upwards [hf, hg] with x hfx hgx using _root_.mul_le_mul' hfx hgx" } ]
[ 1762, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1759, 1 ]
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
ContinuousLinearMap.adjoint_inner_right
[]
[ 130, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 1 ]
Mathlib/GroupTheory/FreeAbelianGroup.lean
FreeAbelianGroup.seq_zero
[]
[ 303, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 302, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Add.lean
HasFDerivWithinAt.add
[]
[ 138, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 136, 8 ]
Mathlib/Algebra/Order/LatticeGroup.lean
LatticeOrderedCommGroup.pos_le_one_iff
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝¹ : Lattice α\ninst✝ : CommGroup α\na : α\n⊢ a⁺ ≤ 1 ↔ a ≤ 1", "tactic": "rw [m_pos_part_def, sup_le_iff, and_iff_left le_rfl]" } ]
[ 214, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 213, 1 ]
Mathlib/Data/Set/Pointwise/Basic.lean
Set.coe_singletonMonoidHom
[]
[ 917, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 916, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.sub_lt_self
[ { "state_after": "a b : Nat\nh₀ : 0 < a\nh₁ : a ≤ b\n⊢ 0 < b", "state_before": "a b : Nat\nh₀ : 0 < a\nh₁ : a ≤ b\n⊢ b - a < b", "tactic": "apply sub_lt _ h₀" }, { "state_after": "no goals", "state_before": "a b : Nat\nh₀ : 0 < a\nh₁ : a ≤ b\n⊢ 0 < b", "tactic": "apply Nat.lt_of_lt_of_le h₀ h₁" } ]
[ 452, 33 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 450, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.eq_right_or_mem_Ioo_of_mem_Ioc
[]
[ 944, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 943, 1 ]
Mathlib/Data/Finset/Interval.lean
Finset.Ico_eq_filter_ssubsets
[]
[ 57, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 56, 1 ]
Mathlib/Data/Real/Sqrt.lean
Real.sqrt_le_sqrt_iff
[ { "state_after": "no goals", "state_before": "x y : ℝ\nhy : 0 ≤ y\n⊢ sqrt x ≤ sqrt y ↔ x ≤ y", "tactic": "rw [sqrt, sqrt, NNReal.coe_le_coe, NNReal.sqrt_le_sqrt_iff, Real.toNNReal_le_toNNReal_iff hy]" } ]
[ 263, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 262, 1 ]
Mathlib/Geometry/Manifold/ChartedSpace.lean
StructureGroupoid.le_iff
[]
[ 216, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 215, 1 ]
Mathlib/CategoryTheory/Extensive.lean
CategoryTheory.IsInitial.isVanKampenColimit
[ { "state_after": "J : Type v'\ninst✝² : Category J\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasStrictInitialObjects C\nX : C\nh : IsInitial X\nF' : Discrete PEmpty ⥤ C\nc' : Cocone F'\nα : F' ⟶ Functor.empty C\nf : c'.pt ⟶ (asEmptyCocone X).pt\nhf : α ≫ (asEmptyCocone X).ι = c'.ι ≫ (Functor.const (Discrete PEmpty)).map f\nhα : NatTrans.Equifibered α\n⊢ Nonempty (IsColimit c') ↔ ∀ (j : Discrete PEmpty), IsPullback (c'.ι.app j) (α.app j) f ((asEmptyCocone X).ι.app j)", "state_before": "J : Type v'\ninst✝² : Category J\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasStrictInitialObjects C\nX : C\nh : IsInitial X\n⊢ IsVanKampenColimit (asEmptyCocone X)", "tactic": "intro F' c' α f hf hα" }, { "state_after": "J : Type v'\ninst✝² : Category J\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasStrictInitialObjects C\nX : C\nh : IsInitial X\nF' : Discrete PEmpty ⥤ C\nc' : Cocone F'\nα : F' ⟶ Functor.empty C\nf : c'.pt ⟶ (asEmptyCocone X).pt\nhf : α ≫ (asEmptyCocone X).ι = c'.ι ≫ (Functor.const (Discrete PEmpty)).map f\nhα : NatTrans.Equifibered α\nthis : F' = Functor.empty C\n⊢ Nonempty (IsColimit c') ↔ ∀ (j : Discrete PEmpty), IsPullback (c'.ι.app j) (α.app j) f ((asEmptyCocone X).ι.app j)", "state_before": "J : Type v'\ninst✝² : Category J\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasStrictInitialObjects C\nX : C\nh : IsInitial X\nF' : Discrete PEmpty ⥤ C\nc' : Cocone F'\nα : F' ⟶ Functor.empty C\nf : c'.pt ⟶ (asEmptyCocone X).pt\nhf : α ≫ (asEmptyCocone X).ι = c'.ι ≫ (Functor.const (Discrete PEmpty)).map f\nhα : NatTrans.Equifibered α\n⊢ Nonempty (IsColimit c') ↔ ∀ (j : Discrete PEmpty), IsPullback (c'.ι.app j) (α.app j) f ((asEmptyCocone X).ι.app j)", "tactic": "have : F' = Functor.empty C := by apply Functor.hext <;> rintro ⟨⟨⟩⟩" }, { "state_after": "J : Type v'\ninst✝² : Category J\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasStrictInitialObjects C\nX : C\nh : IsInitial X\nc' : Cocone (Functor.empty C)\nα : Functor.empty C ⟶ Functor.empty C\nf : c'.pt ⟶ (asEmptyCocone X).pt\nhf : α ≫ (asEmptyCocone X).ι = c'.ι ≫ (Functor.const (Discrete PEmpty)).map f\nhα : NatTrans.Equifibered α\n⊢ Nonempty (IsColimit c') ↔ ∀ (j : Discrete PEmpty), IsPullback (c'.ι.app j) (α.app j) f ((asEmptyCocone X).ι.app j)", "state_before": "J : Type v'\ninst✝² : Category J\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasStrictInitialObjects C\nX : C\nh : IsInitial X\nF' : Discrete PEmpty ⥤ C\nc' : Cocone F'\nα : F' ⟶ Functor.empty C\nf : c'.pt ⟶ (asEmptyCocone X).pt\nhf : α ≫ (asEmptyCocone X).ι = c'.ι ≫ (Functor.const (Discrete PEmpty)).map f\nhα : NatTrans.Equifibered α\nthis : F' = Functor.empty C\n⊢ Nonempty (IsColimit c') ↔ ∀ (j : Discrete PEmpty), IsPullback (c'.ι.app j) (α.app j) f ((asEmptyCocone X).ι.app j)", "tactic": "subst this" }, { "state_after": "J : Type v'\ninst✝² : Category J\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasStrictInitialObjects C\nX : C\nh : IsInitial X\nc' : Cocone (Functor.empty C)\nα : Functor.empty C ⟶ Functor.empty C\nf : c'.pt ⟶ (asEmptyCocone X).pt\nhf : α ≫ (asEmptyCocone X).ι = c'.ι ≫ (Functor.const (Discrete PEmpty)).map f\nhα : NatTrans.Equifibered α\nthis : IsIso f\n⊢ Nonempty (IsColimit c') ↔ ∀ (j : Discrete PEmpty), IsPullback (c'.ι.app j) (α.app j) f ((asEmptyCocone X).ι.app j)", "state_before": "J : Type v'\ninst✝² : Category J\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasStrictInitialObjects C\nX : C\nh : IsInitial X\nc' : Cocone (Functor.empty C)\nα : Functor.empty C ⟶ Functor.empty C\nf : c'.pt ⟶ (asEmptyCocone X).pt\nhf : α ≫ (asEmptyCocone X).ι = c'.ι ≫ (Functor.const (Discrete PEmpty)).map f\nhα : NatTrans.Equifibered α\n⊢ Nonempty (IsColimit c') ↔ ∀ (j : Discrete PEmpty), IsPullback (c'.ι.app j) (α.app j) f ((asEmptyCocone X).ι.app j)", "tactic": "haveI := h.isIso_to f" }, { "state_after": "no goals", "state_before": "J : Type v'\ninst✝² : Category J\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasStrictInitialObjects C\nX : C\nh : IsInitial X\nc' : Cocone (Functor.empty C)\nα : Functor.empty C ⟶ Functor.empty C\nf : c'.pt ⟶ (asEmptyCocone X).pt\nhf : α ≫ (asEmptyCocone X).ι = c'.ι ≫ (Functor.const (Discrete PEmpty)).map f\nhα : NatTrans.Equifibered α\nthis : IsIso f\n⊢ Nonempty (IsColimit c') ↔ ∀ (j : Discrete PEmpty), IsPullback (c'.ι.app j) (α.app j) f ((asEmptyCocone X).ι.app j)", "tactic": "refine' ⟨by rintro _ ⟨⟨⟩⟩,\n fun _ => ⟨IsColimit.ofIsoColimit h (Cocones.ext (asIso f).symm <| by rintro ⟨⟨⟩⟩)⟩⟩" }, { "state_after": "no goals", "state_before": "J : Type v'\ninst✝² : Category J\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasStrictInitialObjects C\nX : C\nh : IsInitial X\nF' : Discrete PEmpty ⥤ C\nc' : Cocone F'\nα : F' ⟶ Functor.empty C\nf : c'.pt ⟶ (asEmptyCocone X).pt\nhf : α ≫ (asEmptyCocone X).ι = c'.ι ≫ (Functor.const (Discrete PEmpty)).map f\nhα : NatTrans.Equifibered α\n⊢ F' = Functor.empty C", "tactic": "apply Functor.hext <;> rintro ⟨⟨⟩⟩" }, { "state_after": "no goals", "state_before": "J : Type v'\ninst✝² : Category J\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasStrictInitialObjects C\nX : C\nh : IsInitial X\nc' : Cocone (Functor.empty C)\nα : Functor.empty C ⟶ Functor.empty C\nf : c'.pt ⟶ (asEmptyCocone X).pt\nhf : α ≫ (asEmptyCocone X).ι = c'.ι ≫ (Functor.const (Discrete PEmpty)).map f\nhα : NatTrans.Equifibered α\nthis : IsIso f\n⊢ Nonempty (IsColimit c') → ∀ (j : Discrete PEmpty), IsPullback (c'.ι.app j) (α.app j) f ((asEmptyCocone X).ι.app j)", "tactic": "rintro _ ⟨⟨⟩⟩" }, { "state_after": "no goals", "state_before": "J : Type v'\ninst✝² : Category J\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasStrictInitialObjects C\nX : C\nh : IsInitial X\nc' : Cocone (Functor.empty C)\nα : Functor.empty C ⟶ Functor.empty C\nf : c'.pt ⟶ (asEmptyCocone X).pt\nhf : α ≫ (asEmptyCocone X).ι = c'.ι ≫ (Functor.const (Discrete PEmpty)).map f\nhα : NatTrans.Equifibered α\nthis : IsIso f\nx✝ : ∀ (j : Discrete PEmpty), IsPullback (c'.ι.app j) (α.app j) f ((asEmptyCocone X).ι.app j)\n⊢ ∀ (j : Discrete PEmpty), (asEmptyCocone X).ι.app j ≫ (asIso f).symm.hom = c'.ι.app j", "tactic": "rintro ⟨⟨⟩⟩" } ]
[ 120, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 113, 1 ]
Mathlib/Analysis/NormedSpace/ContinuousAffineMap.lean
ContinuousAffineMap.norm_image_zero_le
[]
[ 181, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 180, 1 ]
Mathlib/Algebra/Algebra/Subalgebra/Basic.lean
Subalgebra.nsmul_mem
[]
[ 149, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 148, 11 ]
Mathlib/Data/Finset/Basic.lean
Finset.union_distrib_right
[]
[ 1753, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1752, 1 ]
Mathlib/Algebra/Module/Opposites.lean
MulOpposite.opLinearEquiv_symm_toAddEquiv
[]
[ 72, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Mathlib/RingTheory/SimpleModule.lean
LinearMap.isCoatom_ker_of_surjective
[ { "state_after": "R : Type u_1\ninst✝⁵ : Ring R\nM : Type u_3\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\nm : Submodule R M\nN : Type u_2\ninst✝² : AddCommGroup N\ninst✝¹ : Module R N\ninst✝ : IsSimpleModule R N\nf : M →ₗ[R] N\nhf : Function.Surjective ↑f\n⊢ IsSimpleModule R (M ⧸ ker f)", "state_before": "R : Type u_1\ninst✝⁵ : Ring R\nM : Type u_3\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\nm : Submodule R M\nN : Type u_2\ninst✝² : AddCommGroup N\ninst✝¹ : Module R N\ninst✝ : IsSimpleModule R N\nf : M →ₗ[R] N\nhf : Function.Surjective ↑f\n⊢ IsCoatom (ker f)", "tactic": "rw [← isSimpleModule_iff_isCoatom]" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝⁵ : Ring R\nM : Type u_3\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\nm : Submodule R M\nN : Type u_2\ninst✝² : AddCommGroup N\ninst✝¹ : Module R N\ninst✝ : IsSimpleModule R N\nf : M →ₗ[R] N\nhf : Function.Surjective ↑f\n⊢ IsSimpleModule R (M ⧸ ker f)", "tactic": "exact IsSimpleModule.congr (f.quotKerEquivOfSurjective hf)" } ]
[ 171, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/CategoryTheory/Filtered.lean
CategoryTheory.IsFiltered.tulip
[ { "state_after": "case intro.intro.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsFilteredOrEmpty C\nj₁ j₂ j₃ k₁ k₂ l : C\nf₁ : j₁ ⟶ k₁\nf₂ : j₂ ⟶ k₁\nf₃ : j₂ ⟶ k₂\nf₄ : j₃ ⟶ k₂\ng₁ : j₁ ⟶ l\ng₂ : j₃ ⟶ l\nl' : C\nk₁l : k₁ ⟶ l'\nk₂l : k₂ ⟶ l'\nhl : f₂ ≫ k₁l = f₃ ≫ k₂l\n⊢ ∃ s α β γ, f₁ ≫ α = g₁ ≫ β ∧ f₂ ≫ α = f₃ ≫ γ ∧ f₄ ≫ γ = g₂ ≫ β", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : IsFilteredOrEmpty C\nj₁ j₂ j₃ k₁ k₂ l : C\nf₁ : j₁ ⟶ k₁\nf₂ : j₂ ⟶ k₁\nf₃ : j₂ ⟶ k₂\nf₄ : j₃ ⟶ k₂\ng₁ : j₁ ⟶ l\ng₂ : j₃ ⟶ l\n⊢ ∃ s α β γ, f₁ ≫ α = g₁ ≫ β ∧ f₂ ≫ α = f₃ ≫ γ ∧ f₄ ≫ γ = g₂ ≫ β", "tactic": "obtain ⟨l', k₁l, k₂l, hl⟩ := span f₂ f₃" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsFilteredOrEmpty C\nj₁ j₂ j₃ k₁ k₂ l : C\nf₁ : j₁ ⟶ k₁\nf₂ : j₂ ⟶ k₁\nf₃ : j₂ ⟶ k₂\nf₄ : j₃ ⟶ k₂\ng₁ : j₁ ⟶ l\ng₂ : j₃ ⟶ l\nl' : C\nk₁l : k₁ ⟶ l'\nk₂l : k₂ ⟶ l'\nhl : f₂ ≫ k₁l = f₃ ≫ k₂l\ns : C\nls : l ⟶ s\nl's : l' ⟶ s\nhs₁ : g₁ ≫ ls = (f₁ ≫ k₁l) ≫ l's\nhs₂ : g₂ ≫ ls = (f₄ ≫ k₂l) ≫ l's\n⊢ ∃ s α β γ, f₁ ≫ α = g₁ ≫ β ∧ f₂ ≫ α = f₃ ≫ γ ∧ f₄ ≫ γ = g₂ ≫ β", "state_before": "case intro.intro.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsFilteredOrEmpty C\nj₁ j₂ j₃ k₁ k₂ l : C\nf₁ : j₁ ⟶ k₁\nf₂ : j₂ ⟶ k₁\nf₃ : j₂ ⟶ k₂\nf₄ : j₃ ⟶ k₂\ng₁ : j₁ ⟶ l\ng₂ : j₃ ⟶ l\nl' : C\nk₁l : k₁ ⟶ l'\nk₂l : k₂ ⟶ l'\nhl : f₂ ≫ k₁l = f₃ ≫ k₂l\n⊢ ∃ s α β γ, f₁ ≫ α = g₁ ≫ β ∧ f₂ ≫ α = f₃ ≫ γ ∧ f₄ ≫ γ = g₂ ≫ β", "tactic": "obtain ⟨s, ls, l's, hs₁, hs₂⟩ := bowtie g₁ (f₁ ≫ k₁l) g₂ (f₄ ≫ k₂l)" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsFilteredOrEmpty C\nj₁ j₂ j₃ k₁ k₂ l : C\nf₁ : j₁ ⟶ k₁\nf₂ : j₂ ⟶ k₁\nf₃ : j₂ ⟶ k₂\nf₄ : j₃ ⟶ k₂\ng₁ : j₁ ⟶ l\ng₂ : j₃ ⟶ l\nl' : C\nk₁l : k₁ ⟶ l'\nk₂l : k₂ ⟶ l'\nhl : f₂ ≫ k₁l = f₃ ≫ k₂l\ns : C\nls : l ⟶ s\nl's : l' ⟶ s\nhs₁ : g₁ ≫ ls = (f₁ ≫ k₁l) ≫ l's\nhs₂ : g₂ ≫ ls = (f₄ ≫ k₂l) ≫ l's\n⊢ ∃ s α β γ, f₁ ≫ α = g₁ ≫ β ∧ f₂ ≫ α = f₃ ≫ γ ∧ f₄ ≫ γ = g₂ ≫ β", "tactic": "refine' ⟨s, k₁l ≫ l's, ls, k₂l ≫ l's, _, by simp only [←Category.assoc, hl], _⟩ <;>\n simp only [hs₁, hs₂, Category.assoc]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : IsFilteredOrEmpty C\nj₁ j₂ j₃ k₁ k₂ l : C\nf₁ : j₁ ⟶ k₁\nf₂ : j₂ ⟶ k₁\nf₃ : j₂ ⟶ k₂\nf₄ : j₃ ⟶ k₂\ng₁ : j₁ ⟶ l\ng₂ : j₃ ⟶ l\nl' : C\nk₁l : k₁ ⟶ l'\nk₂l : k₂ ⟶ l'\nhl : f₂ ≫ k₁l = f₃ ≫ k₂l\ns : C\nls : l ⟶ s\nl's : l' ⟶ s\nhs₁ : g₁ ≫ ls = (f₁ ≫ k₁l) ≫ l's\nhs₂ : g₂ ≫ ls = (f₄ ≫ k₂l) ≫ l's\n⊢ f₂ ≫ k₁l ≫ l's = f₃ ≫ k₂l ≫ l's", "tactic": "simp only [←Category.assoc, hl]" } ]
[ 459, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 452, 1 ]
Mathlib/Data/Seq/Computation.lean
Computation.get_eq_of_promises
[]
[ 499, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 498, 1 ]
Mathlib/GroupTheory/Perm/Sign.lean
Equiv.Perm.sign_prodCongrRight
[ { "state_after": "case intro.intro\nα : Type u\nβ : Type v\ninst✝³ : DecidableEq α\ninst✝² : Fintype α\ninst✝¹ : DecidableEq β\ninst✝ : Fintype β\nσ : α → Perm β\nl : List α\nhl : List.Nodup l\nmem_l : ∀ (x : α), x ∈ l\n⊢ ↑sign (prodCongrRight σ) = ∏ k : α, ↑sign (σ k)", "state_before": "α : Type u\nβ : Type v\ninst✝³ : DecidableEq α\ninst✝² : Fintype α\ninst✝¹ : DecidableEq β\ninst✝ : Fintype β\nσ : α → Perm β\n⊢ ↑sign (prodCongrRight σ) = ∏ k : α, ↑sign (σ k)", "tactic": "obtain ⟨l, hl, mem_l⟩ := Finite.exists_univ_list α" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\ninst✝³ : DecidableEq α\ninst✝² : Fintype α\ninst✝¹ : DecidableEq β\ninst✝ : Fintype β\nσ : α → Perm β\nl : List α\nhl : List.Nodup l\nmem_l : ∀ (x : α), x ∈ l\nl_to_finset : List.toFinset l = univ\n⊢ ↑sign (prodCongrRight σ) = ∏ k : α, ↑sign (σ k)", "state_before": "case intro.intro\nα : Type u\nβ : Type v\ninst✝³ : DecidableEq α\ninst✝² : Fintype α\ninst✝¹ : DecidableEq β\ninst✝ : Fintype β\nσ : α → Perm β\nl : List α\nhl : List.Nodup l\nmem_l : ∀ (x : α), x ∈ l\n⊢ ↑sign (prodCongrRight σ) = ∏ k : α, ↑sign (σ k)", "tactic": "have l_to_finset : l.toFinset = Finset.univ := by\n apply eq_top_iff.mpr\n intro b _\n exact List.mem_toFinset.mpr (mem_l b)" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\ninst✝³ : DecidableEq α\ninst✝² : Fintype α\ninst✝¹ : DecidableEq β\ninst✝ : Fintype β\nσ : α → Perm β\nl : List α\nhl : List.Nodup l\nmem_l : ∀ (x : α), x ∈ l\nl_to_finset : List.toFinset l = univ\n⊢ List.prod (List.map (↑sign ∘ fun a => prodExtendRight a (σ a)) l) = List.prod (List.map (fun k => ↑sign (σ k)) l)", "state_before": "case intro.intro\nα : Type u\nβ : Type v\ninst✝³ : DecidableEq α\ninst✝² : Fintype α\ninst✝¹ : DecidableEq β\ninst✝ : Fintype β\nσ : α → Perm β\nl : List α\nhl : List.Nodup l\nmem_l : ∀ (x : α), x ∈ l\nl_to_finset : List.toFinset l = univ\n⊢ ↑sign (prodCongrRight σ) = ∏ k : α, ↑sign (σ k)", "tactic": "rw [← prod_prodExtendRight σ hl mem_l, sign.map_list_prod, List.map_map, ← l_to_finset,\n List.prod_toFinset _ hl]" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u\nβ : Type v\ninst✝³ : DecidableEq α\ninst✝² : Fintype α\ninst✝¹ : DecidableEq β\ninst✝ : Fintype β\nσ : α → Perm β\nl : List α\nhl : List.Nodup l\nmem_l : ∀ (x : α), x ∈ l\nl_to_finset : List.toFinset l = univ\n⊢ List.prod (List.map (↑sign ∘ fun a => prodExtendRight a (σ a)) l) = List.prod (List.map (fun k => ↑sign (σ k)) l)", "tactic": "simp_rw [← fun a => sign_prodExtendRight a (σ a), Function.comp]" }, { "state_after": "α : Type u\nβ : Type v\ninst✝³ : DecidableEq α\ninst✝² : Fintype α\ninst✝¹ : DecidableEq β\ninst✝ : Fintype β\nσ : α → Perm β\nl : List α\nhl : List.Nodup l\nmem_l : ∀ (x : α), x ∈ l\n⊢ ⊤ ≤ List.toFinset l", "state_before": "α : Type u\nβ : Type v\ninst✝³ : DecidableEq α\ninst✝² : Fintype α\ninst✝¹ : DecidableEq β\ninst✝ : Fintype β\nσ : α → Perm β\nl : List α\nhl : List.Nodup l\nmem_l : ∀ (x : α), x ∈ l\n⊢ List.toFinset l = univ", "tactic": "apply eq_top_iff.mpr" }, { "state_after": "α : Type u\nβ : Type v\ninst✝³ : DecidableEq α\ninst✝² : Fintype α\ninst✝¹ : DecidableEq β\ninst✝ : Fintype β\nσ : α → Perm β\nl : List α\nhl : List.Nodup l\nmem_l : ∀ (x : α), x ∈ l\nb : α\na✝ : b ∈ ⊤\n⊢ b ∈ List.toFinset l", "state_before": "α : Type u\nβ : Type v\ninst✝³ : DecidableEq α\ninst✝² : Fintype α\ninst✝¹ : DecidableEq β\ninst✝ : Fintype β\nσ : α → Perm β\nl : List α\nhl : List.Nodup l\nmem_l : ∀ (x : α), x ∈ l\n⊢ ⊤ ≤ List.toFinset l", "tactic": "intro b _" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\ninst✝³ : DecidableEq α\ninst✝² : Fintype α\ninst✝¹ : DecidableEq β\ninst✝ : Fintype β\nσ : α → Perm β\nl : List α\nhl : List.Nodup l\nmem_l : ∀ (x : α), x ∈ l\nb : α\na✝ : b ∈ ⊤\n⊢ b ∈ List.toFinset l", "tactic": "exact List.mem_toFinset.mpr (mem_l b)" } ]
[ 756, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 748, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.diag_apply
[]
[ 613, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 612, 1 ]
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.equivFunOnFintype_symm_coe
[]
[ 626, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 625, 1 ]
Mathlib/Order/SymmDiff.lean
bihimp_right_injective
[]
[ 669, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 668, 1 ]
Mathlib/CategoryTheory/Subobject/MonoOver.lean
CategoryTheory.MonoOver.lift_obj_arrow
[]
[ 189, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 186, 1 ]
Mathlib/Topology/UniformSpace/UniformConvergenceTopology.lean
UniformOnFun.tendsto_iff_tendstoUniformlyOn
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.103872\nι : Type u_3\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\nF : ι → α →ᵤ[𝔖] β\nf : α →ᵤ[𝔖] β\n⊢ (∀ (i : Set α), Tendsto F p (𝓝 f)) ↔ ∀ (s : Set α), s ∈ 𝔖 → TendstoUniformlyOn F f p s", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.103872\nι : Type u_3\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\nF : ι → α →ᵤ[𝔖] β\nf : α →ᵤ[𝔖] β\n⊢ Tendsto F p (𝓝 f) ↔ ∀ (s : Set α), s ∈ 𝔖 → TendstoUniformlyOn F f p s", "tactic": "rw [UniformOnFun.topologicalSpace_eq, nhds_iInf, tendsto_iInf]" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.103872\nι : Type u_3\ns✝ s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\nF : ι → α →ᵤ[𝔖] β\nf : α →ᵤ[𝔖] β\ns : Set α\n⊢ Tendsto F p (𝓝 f) ↔ s ∈ 𝔖 → TendstoUniformlyOn F f p s", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.103872\nι : Type u_3\ns s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\nF : ι → α →ᵤ[𝔖] β\nf : α →ᵤ[𝔖] β\n⊢ (∀ (i : Set α), Tendsto F p (𝓝 f)) ↔ ∀ (s : Set α), s ∈ 𝔖 → TendstoUniformlyOn F f p s", "tactic": "refine' forall_congr' fun s => _" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.103872\nι : Type u_3\ns✝ s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\nF : ι → α →ᵤ[𝔖] β\nf : α →ᵤ[𝔖] β\ns : Set α\n⊢ s ∈ 𝔖 → Tendsto F p (𝓝 f) ↔ s ∈ 𝔖 → TendstoUniformlyOn F f p s", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.103872\nι : Type u_3\ns✝ s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\nF : ι → α →ᵤ[𝔖] β\nf : α →ᵤ[𝔖] β\ns : Set α\n⊢ Tendsto F p (𝓝 f) ↔ s ∈ 𝔖 → TendstoUniformlyOn F f p s", "tactic": "rw [nhds_iInf, tendsto_iInf]" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.103872\nι : Type u_3\ns✝ s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\nF : ι → α →ᵤ[𝔖] β\nf : α →ᵤ[𝔖] β\ns : Set α\nhs : s ∈ 𝔖\n⊢ Tendsto F p (𝓝 f) ↔ TendstoUniformlyOn F f p s", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.103872\nι : Type u_3\ns✝ s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\nF : ι → α →ᵤ[𝔖] β\nf : α →ᵤ[𝔖] β\ns : Set α\n⊢ s ∈ 𝔖 → Tendsto F p (𝓝 f) ↔ s ∈ 𝔖 → TendstoUniformlyOn F f p s", "tactic": "refine' forall_congr' fun hs => _" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.103872\nι : Type u_3\ns✝ s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\nF : ι → α →ᵤ[𝔖] β\nf : α →ᵤ[𝔖] β\ns : Set α\nhs : s ∈ 𝔖\n⊢ TendstoUniformly ((restrict s ∘ ↑UniformFun.toFun) ∘ F) ((restrict s ∘ ↑UniformFun.toFun) f) p ↔\n TendstoUniformly (fun i x => F i ↑x) (f ∘ Subtype.val) p", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.103872\nι : Type u_3\ns✝ s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\nF : ι → α →ᵤ[𝔖] β\nf : α →ᵤ[𝔖] β\ns : Set α\nhs : s ∈ 𝔖\n⊢ Tendsto F p (𝓝 f) ↔ TendstoUniformlyOn F f p s", "tactic": "rw [nhds_induced (T := _), tendsto_comap_iff, tendstoUniformlyOn_iff_tendstoUniformly_comp_coe,\n UniformFun.tendsto_iff_tendstoUniformly]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.103872\nι : Type u_3\ns✝ s' : Set α\nx : α\np : Filter ι\ng : ι → α\ninst✝ : UniformSpace β\n𝔖 : Set (Set α)\nF : ι → α →ᵤ[𝔖] β\nf : α →ᵤ[𝔖] β\ns : Set α\nhs : s ∈ 𝔖\n⊢ TendstoUniformly ((restrict s ∘ ↑UniformFun.toFun) ∘ F) ((restrict s ∘ ↑UniformFun.toFun) f) p ↔\n TendstoUniformly (fun i x => F i ↑x) (f ∘ Subtype.val) p", "tactic": "rfl" } ]
[ 879, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 871, 11 ]
Mathlib/LinearAlgebra/BilinearMap.lean
LinearMap.mk₂'_apply
[]
[ 115, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 114, 1 ]
Mathlib/Topology/Algebra/Ring/Ideal.lean
Ideal.closure_eq_of_isClosed
[]
[ 43, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 42, 1 ]
Mathlib/Topology/LocalExtr.lean
IsLocalMaxOn.sub
[]
[ 437, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 435, 8 ]
Mathlib/Analysis/Normed/Group/Seminorm.lean
NonarchAddGroupSeminorm.toZeroHom_eq_coe
[ { "state_after": "no goals", "state_before": "ι : Type ?u.127014\nR : Type ?u.127017\nR' : Type ?u.127020\nE : Type u_1\nF : Type ?u.127026\nG : Type ?u.127029\ninst✝² : AddGroup E\ninst✝¹ : AddGroup F\ninst✝ : AddGroup G\np q : NonarchAddGroupSeminorm E\n⊢ ↑p.toZeroHom = ↑p", "tactic": "rfl" } ]
[ 526, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 525, 1 ]
src/lean/Init/Data/Nat/Basic.lean
Nat.succ_lt_succ
[]
[ 210, 15 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 209, 1 ]
Mathlib/Algebra/Group/Basic.lean
inv_eq_iff_mul_eq_one
[]
[ 687, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 686, 1 ]
Mathlib/Order/SuccPred/IntervalSucc.lean
Monotone.pairwise_disjoint_on_Ioo_succ
[]
[ 75, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/ArctanDeriv.lean
Real.differentiableAt_tan_of_mem_Ioo
[]
[ 84, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 82, 1 ]
Mathlib/Data/List/Basic.lean
List.nthLe_cons
[ { "state_after": "case inl\nι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ l : List α\na : α\nn : ℕ\nhl : n < length (a :: l)\nh : n = 0\n⊢ nthLe (a :: l) n hl = a\n\ncase inr\nι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ l : List α\na : α\nn : ℕ\nhl : n < length (a :: l)\nh : ¬n = 0\n⊢ nthLe (a :: l) n hl = nthLe l (n - 1) (_ : n - 1 < length l)", "state_before": "ι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ l : List α\na : α\nn : ℕ\nhl : n < length (a :: l)\n⊢ nthLe (a :: l) n hl = if hn : n = 0 then a else nthLe l (n - 1) (_ : n - 1 < length l)", "tactic": "split_ifs with h" }, { "state_after": "case inr.nil\nι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nn : ℕ\nh : ¬n = 0\nhl : n < length [a]\n⊢ nthLe [a] n hl = nthLe [] (n - 1) (_ : n - 1 < length [])\n\ncase inr.cons\nι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nn : ℕ\nh : ¬n = 0\nhead✝ : α\ntail✝ : List α\nhl : n < length (a :: head✝ :: tail✝)\n⊢ nthLe (a :: head✝ :: tail✝) n hl = nthLe (head✝ :: tail✝) (n - 1) (_ : n - 1 < length (head✝ :: tail✝))", "state_before": "case inr\nι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ l : List α\na : α\nn : ℕ\nhl : n < length (a :: l)\nh : ¬n = 0\n⊢ nthLe (a :: l) n hl = nthLe l (n - 1) (_ : n - 1 < length l)", "tactic": "cases l" }, { "state_after": "case inr.cons.zero\nι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na head✝ : α\ntail✝ : List α\nh : ¬zero = 0\nhl : zero < length (a :: head✝ :: tail✝)\n⊢ nthLe (a :: head✝ :: tail✝) zero hl = nthLe (head✝ :: tail✝) (zero - 1) (_ : zero - 1 < length (head✝ :: tail✝))\n\ncase inr.cons.succ\nι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na head✝ : α\ntail✝ : List α\nn✝ : ℕ\nh : ¬succ n✝ = 0\nhl : succ n✝ < length (a :: head✝ :: tail✝)\n⊢ nthLe (a :: head✝ :: tail✝) (succ n✝) hl =\n nthLe (head✝ :: tail✝) (succ n✝ - 1) (_ : succ n✝ - 1 < length (head✝ :: tail✝))", "state_before": "case inr.cons\nι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nn : ℕ\nh : ¬n = 0\nhead✝ : α\ntail✝ : List α\nhl : n < length (a :: head✝ :: tail✝)\n⊢ nthLe (a :: head✝ :: tail✝) n hl = nthLe (head✝ :: tail✝) (n - 1) (_ : n - 1 < length (head✝ :: tail✝))", "tactic": "cases n" }, { "state_after": "no goals", "state_before": "case inr.cons.succ\nι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na head✝ : α\ntail✝ : List α\nn✝ : ℕ\nh : ¬succ n✝ = 0\nhl : succ n✝ < length (a :: head✝ :: tail✝)\n⊢ nthLe (a :: head✝ :: tail✝) (succ n✝) hl =\n nthLe (head✝ :: tail✝) (succ n✝ - 1) (_ : succ n✝ - 1 < length (head✝ :: tail✝))", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case inl\nι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ l : List α\na : α\nn : ℕ\nhl : n < length (a :: l)\nh : n = 0\n⊢ nthLe (a :: l) n hl = a", "tactic": "simp [nthLe, h]" }, { "state_after": "case inr.nil\nι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nn : ℕ\nh : ¬n = 0\nhl✝ : n < length [a]\nhl : n = 0\n⊢ nthLe [a] n hl✝ = nthLe [] (n - 1) (_ : n - 1 < length [])", "state_before": "case inr.nil\nι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nn : ℕ\nh : ¬n = 0\nhl : n < length [a]\n⊢ nthLe [a] n hl = nthLe [] (n - 1) (_ : n - 1 < length [])", "tactic": "rw [length_singleton, lt_succ_iff, nonpos_iff_eq_zero] at hl" }, { "state_after": "no goals", "state_before": "case inr.nil\nι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nn : ℕ\nh : ¬n = 0\nhl✝ : n < length [a]\nhl : n = 0\n⊢ nthLe [a] n hl✝ = nthLe [] (n - 1) (_ : n - 1 < length [])", "tactic": "contradiction" }, { "state_after": "no goals", "state_before": "case inr.cons.zero\nι : Type ?u.48326\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na head✝ : α\ntail✝ : List α\nh : ¬zero = 0\nhl : zero < length (a :: head✝ :: tail✝)\n⊢ nthLe (a :: head✝ :: tail✝) zero hl = nthLe (head✝ :: tail✝) (zero - 1) (_ : zero - 1 < length (head✝ :: tail✝))", "tactic": "contradiction" } ]
[ 971, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 962, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.le_log2
[ { "state_after": "no goals", "state_before": "n k : Nat\nh : n ≠ 0\n⊢ 0 ≤ log2 n ↔ 2 ^ 0 ≤ n", "tactic": "simp [show 1 ≤ n from Nat.pos_of_ne_zero h]" }, { "state_after": "n k✝ : Nat\nh : n ≠ 0\nk : Nat\n⊢ (k + 1 ≤ if n ≥ 2 then log2 (n / 2) + 1 else 0) ↔ 2 ^ (k + 1) ≤ n", "state_before": "n k✝ : Nat\nh : n ≠ 0\nk : Nat\n⊢ k + 1 ≤ log2 n ↔ 2 ^ (k + 1) ≤ n", "tactic": "rw [log2]" }, { "state_after": "case inl\nn k✝ : Nat\nh : n ≠ 0\nk : Nat\nh✝ : n ≥ 2\n⊢ k + 1 ≤ log2 (n / 2) + 1 ↔ 2 ^ (k + 1) ≤ n\n\ncase inr\nn k✝ : Nat\nh : n ≠ 0\nk : Nat\nh✝ : ¬n ≥ 2\n⊢ k + 1 ≤ 0 ↔ 2 ^ (k + 1) ≤ n", "state_before": "n k✝ : Nat\nh : n ≠ 0\nk : Nat\n⊢ (k + 1 ≤ if n ≥ 2 then log2 (n / 2) + 1 else 0) ↔ 2 ^ (k + 1) ≤ n", "tactic": "split" }, { "state_after": "case inl\nn k✝ : Nat\nh : n ≠ 0\nk : Nat\nh✝ : n ≥ 2\nn0 : 0 < n / 2\n⊢ k + 1 ≤ log2 (n / 2) + 1 ↔ 2 ^ (k + 1) ≤ n", "state_before": "case inl\nn k✝ : Nat\nh : n ≠ 0\nk : Nat\nh✝ : n ≥ 2\n⊢ k + 1 ≤ log2 (n / 2) + 1 ↔ 2 ^ (k + 1) ≤ n", "tactic": "have n0 : 0 < n / 2 := (Nat.le_div_iff_mul_le (by decide)).2 ‹_›" }, { "state_after": "no goals", "state_before": "case inl\nn k✝ : Nat\nh : n ≠ 0\nk : Nat\nh✝ : n ≥ 2\nn0 : 0 < n / 2\n⊢ k + 1 ≤ log2 (n / 2) + 1 ↔ 2 ^ (k + 1) ≤ n", "tactic": "simp [Nat.add_le_add_iff_le_right, le_log2 (Nat.ne_of_gt n0), le_div_iff_mul_le, Nat.pow_succ]" }, { "state_after": "no goals", "state_before": "n k✝ : Nat\nh : n ≠ 0\nk : Nat\nh✝ : n ≥ 2\n⊢ 0 < 2", "tactic": "decide" }, { "state_after": "case inr\nn k✝ : Nat\nh : n ≠ 0\nk : Nat\nh✝ : ¬n ≥ 2\n⊢ ¬2 ^ (k + 1) ≤ n", "state_before": "case inr\nn k✝ : Nat\nh : n ≠ 0\nk : Nat\nh✝ : ¬n ≥ 2\n⊢ k + 1 ≤ 0 ↔ 2 ^ (k + 1) ≤ n", "tactic": "simp only [le_zero_eq, succ_ne_zero, false_iff]" }, { "state_after": "case inr\nn k✝ : Nat\nh : n ≠ 0\nk : Nat\nh✝ : ¬n ≥ 2\n⊢ 2 ≤ 2 ^ (k + 1)", "state_before": "case inr\nn k✝ : Nat\nh : n ≠ 0\nk : Nat\nh✝ : ¬n ≥ 2\n⊢ ¬2 ^ (k + 1) ≤ n", "tactic": "refine mt (Nat.le_trans ?_) ‹_›" }, { "state_after": "no goals", "state_before": "case inr\nn k✝ : Nat\nh : n ≠ 0\nk : Nat\nh✝ : ¬n ≥ 2\n⊢ 2 ≤ 2 ^ (k + 1)", "tactic": "exact Nat.pow_le_pow_of_le_right (Nat.succ_pos 1) (Nat.le_add_left 1 k)" } ]
[ 820, 78 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 811, 1 ]
Mathlib/FieldTheory/IsAlgClosed/Spectrum.lean
spectrum.exists_mem_of_not_isUnit_aeval_prod
[ { "state_after": "R : Type u\nA : Type v\ninst✝³ : CommRing R\ninst✝² : Ring A\ninst✝¹ : Algebra R A\ninst✝ : IsDomain R\np : R[X]\na : A\nh : ¬IsUnit (List.prod (List.map (↑(aeval a)) (Multiset.toList (Multiset.map (fun x => X - ↑C x) (roots p)))))\n⊢ ∃ k, k ∈ σ a ∧ eval k p = 0", "state_before": "R : Type u\nA : Type v\ninst✝³ : CommRing R\ninst✝² : Ring A\ninst✝¹ : Algebra R A\ninst✝ : IsDomain R\np : R[X]\na : A\nh : ¬IsUnit (↑(aeval a) (Multiset.prod (Multiset.map (fun x => X - ↑C x) (roots p))))\n⊢ ∃ k, k ∈ σ a ∧ eval k p = 0", "tactic": "rw [← Multiset.prod_toList, AlgHom.map_list_prod] at h" }, { "state_after": "R : Type u\nA : Type v\ninst✝³ : CommRing R\ninst✝² : Ring A\ninst✝¹ : Algebra R A\ninst✝ : IsDomain R\np : R[X]\na : A\nh :\n ¬∀ (m : (fun x => A) (List.prod (Multiset.toList (Multiset.map (fun x => X - ↑C x) (roots p))))),\n m ∈ List.map (↑(aeval a)) (Multiset.toList (Multiset.map (fun x => X - ↑C x) (roots p))) → IsUnit m\n⊢ ∃ k, k ∈ σ a ∧ eval k p = 0", "state_before": "R : Type u\nA : Type v\ninst✝³ : CommRing R\ninst✝² : Ring A\ninst✝¹ : Algebra R A\ninst✝ : IsDomain R\np : R[X]\na : A\nh : ¬IsUnit (List.prod (List.map (↑(aeval a)) (Multiset.toList (Multiset.map (fun x => X - ↑C x) (roots p)))))\n⊢ ∃ k, k ∈ σ a ∧ eval k p = 0", "tactic": "replace h := mt List.prod_isUnit h" }, { "state_after": "R : Type u\nA : Type v\ninst✝³ : CommRing R\ninst✝² : Ring A\ninst✝¹ : Algebra R A\ninst✝ : IsDomain R\np : R[X]\na : A\nh : ∃ a_1, a_1 ∈ roots p ∧ ¬IsUnit (a - ↑↑ₐ a_1)\n⊢ ∃ k, k ∈ σ a ∧ eval k p = 0", "state_before": "R : Type u\nA : Type v\ninst✝³ : CommRing R\ninst✝² : Ring A\ninst✝¹ : Algebra R A\ninst✝ : IsDomain R\np : R[X]\na : A\nh :\n ¬∀ (m : (fun x => A) (List.prod (Multiset.toList (Multiset.map (fun x => X - ↑C x) (roots p))))),\n m ∈ List.map (↑(aeval a)) (Multiset.toList (Multiset.map (fun x => X - ↑C x) (roots p))) → IsUnit m\n⊢ ∃ k, k ∈ σ a ∧ eval k p = 0", "tactic": "simp only [not_forall, exists_prop, aeval_C, Multiset.mem_toList, List.mem_map, aeval_X,\n exists_exists_and_eq_and, Multiset.mem_map, AlgHom.map_sub] at h" }, { "state_after": "case intro.intro\nR : Type u\nA : Type v\ninst✝³ : CommRing R\ninst✝² : Ring A\ninst✝¹ : Algebra R A\ninst✝ : IsDomain R\np : R[X]\na : A\nr : R\nr_mem : r ∈ roots p\nr_nu : ¬IsUnit (a - ↑↑ₐ r)\n⊢ ∃ k, k ∈ σ a ∧ eval k p = 0", "state_before": "R : Type u\nA : Type v\ninst✝³ : CommRing R\ninst✝² : Ring A\ninst✝¹ : Algebra R A\ninst✝ : IsDomain R\np : R[X]\na : A\nh : ∃ a_1, a_1 ∈ roots p ∧ ¬IsUnit (a - ↑↑ₐ a_1)\n⊢ ∃ k, k ∈ σ a ∧ eval k p = 0", "tactic": "rcases h with ⟨r, r_mem, r_nu⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nR : Type u\nA : Type v\ninst✝³ : CommRing R\ninst✝² : Ring A\ninst✝¹ : Algebra R A\ninst✝ : IsDomain R\np : R[X]\na : A\nr : R\nr_mem : r ∈ roots p\nr_nu : ¬IsUnit (a - ↑↑ₐ r)\n⊢ ∃ k, k ∈ σ a ∧ eval k p = 0", "tactic": "exact ⟨r, by rwa [mem_iff, ← IsUnit.sub_iff], (mem_roots'.1 r_mem).2⟩" }, { "state_after": "no goals", "state_before": "R : Type u\nA : Type v\ninst✝³ : CommRing R\ninst✝² : Ring A\ninst✝¹ : Algebra R A\ninst✝ : IsDomain R\np : R[X]\na : A\nr : R\nr_mem : r ∈ roots p\nr_nu : ¬IsUnit (a - ↑↑ₐ r)\n⊢ r ∈ σ a", "tactic": "rwa [mem_iff, ← IsUnit.sub_iff]" } ]
[ 69, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 61, 1 ]
Mathlib/Topology/SubsetProperties.lean
isIrreducible_singleton
[]
[ 1715, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1714, 1 ]
Mathlib/Data/Nat/Hyperoperation.lean
hyperoperation_ge_two_eq_self
[ { "state_after": "case zero\nm : ℕ\n⊢ hyperoperation (Nat.zero + 2) m 1 = m\n\ncase succ\nm nn : ℕ\nnih : hyperoperation (nn + 2) m 1 = m\n⊢ hyperoperation (Nat.succ nn + 2) m 1 = m", "state_before": "n m : ℕ\n⊢ hyperoperation (n + 2) m 1 = m", "tactic": "induction' n with nn nih" }, { "state_after": "case zero\nm : ℕ\n⊢ (fun x x_1 => x * x_1) m 1 = m", "state_before": "case zero\nm : ℕ\n⊢ hyperoperation (Nat.zero + 2) m 1 = m", "tactic": "rw [hyperoperation_two]" }, { "state_after": "no goals", "state_before": "case zero\nm : ℕ\n⊢ (fun x x_1 => x * x_1) m 1 = m", "tactic": "ring" }, { "state_after": "no goals", "state_before": "case succ\nm nn : ℕ\nnih : hyperoperation (nn + 2) m 1 = m\n⊢ hyperoperation (Nat.succ nn + 2) m 1 = m", "tactic": "rw [hyperoperation_recursion, hyperoperation_ge_three_eq_one, nih]" } ]
[ 100, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/Data/FinEnum.lean
FinEnum.mem_toList
[ { "state_after": "α : Type u\nβ : α → Type v\ninst✝ : FinEnum α\nx : α\n⊢ ∃ a, ↑Equiv.symm a = x", "state_before": "α : Type u\nβ : α → Type v\ninst✝ : FinEnum α\nx : α\n⊢ x ∈ toList α", "tactic": "simp [toList]" }, { "state_after": "α : Type u\nβ : α → Type v\ninst✝ : FinEnum α\nx : α\n⊢ ↑Equiv.symm (↑Equiv x) = x", "state_before": "α : Type u\nβ : α → Type v\ninst✝ : FinEnum α\nx : α\n⊢ ∃ a, ↑Equiv.symm a = x", "tactic": "exists Equiv x" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : α → Type v\ninst✝ : FinEnum α\nx : α\n⊢ ↑Equiv.symm (↑Equiv x) = x", "tactic": "simp" } ]
[ 77, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 76, 1 ]
Mathlib/Data/List/Duplicate.lean
List.Duplicate.ne_singleton
[ { "state_after": "case cons_mem\nα : Type u_1\nl : List α\nx y : α\nl' : List α\nh : x ∈ l'\n⊢ x :: l' ≠ [y]\n\ncase cons_duplicate\nα : Type u_1\nl : List α\nx y z : α\nl' : List α\nh : x ∈+ l'\na_ih✝ : l' ≠ [y]\n⊢ z :: l' ≠ [y]", "state_before": "α : Type u_1\nl : List α\nx : α\nh : x ∈+ l\ny : α\n⊢ l ≠ [y]", "tactic": "induction' h with l' h z l' h _" }, { "state_after": "no goals", "state_before": "case cons_mem\nα : Type u_1\nl : List α\nx y : α\nl' : List α\nh : x ∈ l'\n⊢ x :: l' ≠ [y]", "tactic": "simp [ne_nil_of_mem h]" }, { "state_after": "no goals", "state_before": "case cons_duplicate\nα : Type u_1\nl : List α\nx y z : α\nl' : List α\nh : x ∈+ l'\na_ih✝ : l' ≠ [y]\n⊢ z :: l' ≠ [y]", "tactic": "simp [ne_nil_of_mem h.mem]" } ]
[ 77, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 74, 1 ]
Mathlib/MeasureTheory/Integral/SetToL1.lean
MeasureTheory.L1.SimpleFunc.setToL1S_mono_left
[]
[ 836, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 834, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/BinaryProducts.lean
CategoryTheory.Limits.coprodComparison_inv_natural
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝⁷ : Category C\nX Y : C\nD : Type u₂\ninst✝⁶ : Category D\nF : C ⥤ D\nA A' B B' : C\ninst✝⁵ : HasBinaryCoproduct A B\ninst✝⁴ : HasBinaryCoproduct A' B'\ninst✝³ : HasBinaryCoproduct (F.obj A) (F.obj B)\ninst✝² : HasBinaryCoproduct (F.obj A') (F.obj B')\nf : A ⟶ A'\ng : B ⟶ B'\ninst✝¹ : IsIso (coprodComparison F A B)\ninst✝ : IsIso (coprodComparison F A' B')\n⊢ inv (coprodComparison F A B) ≫ coprod.map (F.map f) (F.map g) =\n F.map (coprod.map f g) ≫ inv (coprodComparison F A' B')", "tactic": "rw [IsIso.eq_comp_inv, Category.assoc, IsIso.inv_comp_eq, coprodComparison_natural]" } ]
[ 1388, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1384, 1 ]
Mathlib/NumberTheory/Padics/PadicNumbers.lean
Padic.coe_sub
[]
[ 556, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 555, 1 ]
Mathlib/Data/List/AList.lean
AList.insertRec_insert_mk
[]
[ 394, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 390, 1 ]
Mathlib/Algebra/Lie/Abelian.lean
LieModule.maxTrivEquiv_of_equiv_symm_eq_symm
[]
[ 211, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 209, 1 ]
Mathlib/NumberTheory/ModularForms/CongruenceSubgroups.lean
Gamma1_in_Gamma0
[ { "state_after": "N✝ N : ℕ\nx : SL(2, ℤ)\nHA : x ∈ Gamma1 N\n⊢ x ∈ Gamma0 N", "state_before": "N✝ N : ℕ\n⊢ Gamma1 N ≤ Gamma0 N", "tactic": "intro x HA" }, { "state_after": "N✝ N : ℕ\nx : SL(2, ℤ)\nHA : ↑(↑x 0 0) = 1 ∧ ↑(↑x 1 1) = 1 ∧ ↑(↑x 1 0) = 0\n⊢ ↑(↑x 1 0) = 0", "state_before": "N✝ N : ℕ\nx : SL(2, ℤ)\nHA : x ∈ Gamma1 N\n⊢ x ∈ Gamma0 N", "tactic": "simp only [Gamma0_mem, Gamma1_mem, coe_matrix_coe, Int.coe_castRingHom, map_apply] at *" }, { "state_after": "no goals", "state_before": "N✝ N : ℕ\nx : SL(2, ℤ)\nHA : ↑(↑x 0 0) = 1 ∧ ↑(↑x 1 1) = 1 ∧ ↑(↑x 1 0) = 0\n⊢ ↑(↑x 1 0) = 0", "tactic": "exact HA.2.2" } ]
[ 203, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 200, 1 ]
Mathlib/Analysis/Convex/Function.lean
ConvexOn.sub
[]
[ 888, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 887, 1 ]
Mathlib/AlgebraicGeometry/StructureSheaf.lean
AlgebraicGeometry.StructureSheaf.to_global_factors
[ { "state_after": "R : Type u\ninst✝ : CommRing R\n⊢ toOpen R ⊤ =\n (CommRingCat.ofHom (algebraMap R (Localization.Away 1)) ≫ toBasicOpen R 1) ≫\n (structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op", "state_before": "R : Type u\ninst✝ : CommRing R\n⊢ toOpen R ⊤ =\n CommRingCat.ofHom (algebraMap R (Localization.Away 1)) ≫\n toBasicOpen R 1 ≫ (structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op", "tactic": "rw [← Category.assoc]" }, { "state_after": "R : Type u\ninst✝ : CommRing R\n⊢ toOpen R ⊤ =\n CommRingCat.ofHom (RingHom.comp (toBasicOpen R 1) (algebraMap R (Localization.Away 1))) ≫\n (structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op", "state_before": "R : Type u\ninst✝ : CommRing R\n⊢ toOpen R ⊤ =\n (CommRingCat.ofHom (algebraMap R (Localization.Away 1)) ≫ toBasicOpen R 1) ≫\n (structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op", "tactic": "change toOpen R ⊤ =\n (CommRingCat.ofHom <| (toBasicOpen R 1).comp (algebraMap R (Localization.Away 1))) ≫\n (structureSheaf R).1.map (eqToHom _).op" }, { "state_after": "R : Type u\ninst✝ : CommRing R\n⊢ toOpen R ⊤ =\n RingHom.comp (toBasicOpen R 1) (algebraMap R (Localization.Away 1)) ≫\n (structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op", "state_before": "R : Type u\ninst✝ : CommRing R\n⊢ toOpen R ⊤ =\n CommRingCat.ofHom (RingHom.comp (toBasicOpen R 1) (algebraMap R (Localization.Away 1))) ≫\n (structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op", "tactic": "unfold CommRingCat.ofHom" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝ : CommRing R\n⊢ toOpen R ⊤ =\n RingHom.comp (toBasicOpen R 1) (algebraMap R (Localization.Away 1)) ≫\n (structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op", "tactic": "rw [localization_toBasicOpen R, toOpen_res]" } ]
[ 996, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 986, 1 ]
Mathlib/Order/Lattice.lean
ofDual_inf
[]
[ 953, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 952, 1 ]
Mathlib/Algebra/Star/Subalgebra.lean
StarSubalgebra.map_le_iff_le_comap
[]
[ 245, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 243, 1 ]
Mathlib/Data/Seq/Seq.lean
Stream'.Seq.get?_cons_zero
[]
[ 94, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 93, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Finset.lean
Finset.Nonempty.cSup_mem
[ { "state_after": "α : Type u_1\nβ : Type ?u.8944\nγ : Type ?u.8947\ninst✝ : ConditionallyCompleteLinearOrder α\ns✝ t : Set α\na b : α\ns : Finset α\nh : Finset.Nonempty s\n⊢ max' s h ∈ s", "state_before": "α : Type u_1\nβ : Type ?u.8944\nγ : Type ?u.8947\ninst✝ : ConditionallyCompleteLinearOrder α\ns✝ t : Set α\na b : α\ns : Finset α\nh : Finset.Nonempty s\n⊢ sSup ↑s ∈ s", "tactic": "rw [h.cSup_eq_max']" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.8944\nγ : Type ?u.8947\ninst✝ : ConditionallyCompleteLinearOrder α\ns✝ t : Set α\na b : α\ns : Finset α\nh : Finset.Nonempty s\n⊢ max' s h ∈ s", "tactic": "exact s.max'_mem _" } ]
[ 54, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 52, 1 ]
Mathlib/Order/CompleteLattice.lean
biSup_prod
[ { "state_after": "α : Type u_3\nβ : Type u_1\nβ₂ : Type ?u.166426\nγ : Type u_2\nι : Sort ?u.166432\nι' : Sort ?u.166435\nκ : ι → Sort ?u.166440\nκ' : ι' → Sort ?u.166445\ninst✝ : CompleteLattice α\nf✝ g s✝ t✝ : ι → α\na b : α\nf : β × γ → α\ns : Set β\nt : Set γ\n⊢ (⨆ (i : β) (j : γ) (_ : i ∈ s) (_ : j ∈ t), f (i, j)) = ⨆ (a : β) (_ : a ∈ s) (b : γ) (_ : b ∈ t), f (a, b)", "state_before": "α : Type u_3\nβ : Type u_1\nβ₂ : Type ?u.166426\nγ : Type u_2\nι : Sort ?u.166432\nι' : Sort ?u.166435\nκ : ι → Sort ?u.166440\nκ' : ι' → Sort ?u.166445\ninst✝ : CompleteLattice α\nf✝ g s✝ t✝ : ι → α\na b : α\nf : β × γ → α\ns : Set β\nt : Set γ\n⊢ (⨆ (x : β × γ) (_ : x ∈ s ×ˢ t), f x) = ⨆ (a : β) (_ : a ∈ s) (b : γ) (_ : b ∈ t), f (a, b)", "tactic": "simp_rw [iSup_prod, mem_prod, iSup_and]" }, { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type u_1\nβ₂ : Type ?u.166426\nγ : Type u_2\nι : Sort ?u.166432\nι' : Sort ?u.166435\nκ : ι → Sort ?u.166440\nκ' : ι' → Sort ?u.166445\ninst✝ : CompleteLattice α\nf✝ g s✝ t✝ : ι → α\na b : α\nf : β × γ → α\ns : Set β\nt : Set γ\n⊢ (⨆ (i : β) (j : γ) (_ : i ∈ s) (_ : j ∈ t), f (i, j)) = ⨆ (a : β) (_ : a ∈ s) (b : γ) (_ : b ∈ t), f (a, b)", "tactic": "exact iSup_congr fun _ => iSup_comm" } ]
[ 1559, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1556, 1 ]
Mathlib/Algebra/Order/Group/Abs.lean
abs_pos
[ { "state_after": "case inl\nα : Type u_1\ninst✝² : AddGroup α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\na b c : α\nha : a < 0\n⊢ 0 < abs a ↔ a ≠ 0\n\ncase inr.inl\nα : Type u_1\ninst✝² : AddGroup α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\nb c : α\n⊢ 0 < abs 0 ↔ 0 ≠ 0\n\ncase inr.inr\nα : Type u_1\ninst✝² : AddGroup α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\na b c : α\nha : 0 < a\n⊢ 0 < abs a ↔ a ≠ 0", "state_before": "α : Type u_1\ninst✝² : AddGroup α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\na b c : α\n⊢ 0 < abs a ↔ a ≠ 0", "tactic": "rcases lt_trichotomy a 0 with (ha | rfl | ha)" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\ninst✝² : AddGroup α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\na b c : α\nha : a < 0\n⊢ 0 < abs a ↔ a ≠ 0", "tactic": "simp [abs_of_neg ha, neg_pos, ha.ne, ha]" }, { "state_after": "no goals", "state_before": "case inr.inl\nα : Type u_1\ninst✝² : AddGroup α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\nb c : α\n⊢ 0 < abs 0 ↔ 0 ≠ 0", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case inr.inr\nα : Type u_1\ninst✝² : AddGroup α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\na b c : α\nha : 0 < a\n⊢ 0 < abs a ↔ a ≠ 0", "tactic": "simp [abs_of_pos ha, ha, ha.ne.symm]" } ]
[ 140, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 136, 1 ]
Mathlib/Analysis/NormedSpace/Exponential.lean
expSeries_hasSum_exp_of_mem_ball
[]
[ 231, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 228, 1 ]
Mathlib/Combinatorics/HalesJewett.lean
Combinatorics.Line.map_apply
[ { "state_after": "α : Type u_1\nα' : Type u_2\nι : Type u_3\nf : α → α'\nl : Line α ι\nx : α\n⊢ (fun i => f (Option.getD (idxFun l i) x)) = f ∘ fun i => Option.getD (idxFun l i) x", "state_before": "α : Type u_1\nα' : Type u_2\nι : Type u_3\nf : α → α'\nl : Line α ι\nx : α\n⊢ (fun x i => Option.getD (idxFun (map f l) i) x) (f x) = f ∘ (fun x i => Option.getD (idxFun l i) x) x", "tactic": "simp only [Line.apply, Line.map, Option.getD_map]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nα' : Type u_2\nι : Type u_3\nf : α → α'\nl : Line α ι\nx : α\n⊢ (fun i => f (Option.getD (idxFun l i) x)) = f ∘ fun i => Option.getD (idxFun l i) x", "tactic": "rfl" } ]
[ 196, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 194, 1 ]
Mathlib/Algebra/Ring/BooleanRing.lean
BooleanRing.le_sup_inf
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.18933\nγ : Type ?u.18936\ninst✝² : BooleanRing α\ninst✝¹ : BooleanRing β\ninst✝ : BooleanRing γ\na b c : α\n⊢ (a + b + a * b) * (a + c + a * c) + (a + b * c + a * (b * c)) +\n (a + b + a * b) * (a + c + a * c) * (a + b * c + a * (b * c)) =\n a + b * c + a * (b * c)", "tactic": "rw [le_sup_inf_aux, add_self, mul_self, zero_add]" } ]
[ 240, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 238, 1 ]
Mathlib/Data/Option/NAry.lean
Option.map₂_some_some
[]
[ 54, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 54, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.map_algebraMap
[ { "state_after": "l : Type ?u.584026\nm : Type ?u.584029\nn : Type u_2\no : Type ?u.584035\nm' : o → Type ?u.584040\nn' : o → Type ?u.584045\nR : Type u_1\nS : Type ?u.584051\nα : Type v\nβ : Type w\nγ : Type ?u.584058\ninst✝⁶ : Fintype n\ninst✝⁵ : DecidableEq n\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring α\ninst✝² : Semiring β\ninst✝¹ : Algebra R α\ninst✝ : Algebra R β\nr : R\nf : α → β\nhf : f 0 = 0\nhf₂ : f (↑(algebraMap R α) r) = ↑(algebraMap R β) r\n⊢ (diagonal fun m => f (↑(algebraMap R (n → α)) r m)) = diagonal (↑(algebraMap R (n → β)) r)", "state_before": "l : Type ?u.584026\nm : Type ?u.584029\nn : Type u_2\no : Type ?u.584035\nm' : o → Type ?u.584040\nn' : o → Type ?u.584045\nR : Type u_1\nS : Type ?u.584051\nα : Type v\nβ : Type w\nγ : Type ?u.584058\ninst✝⁶ : Fintype n\ninst✝⁵ : DecidableEq n\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring α\ninst✝² : Semiring β\ninst✝¹ : Algebra R α\ninst✝ : Algebra R β\nr : R\nf : α → β\nhf : f 0 = 0\nhf₂ : f (↑(algebraMap R α) r) = ↑(algebraMap R β) r\n⊢ map (↑(algebraMap R (Matrix n n α)) r) f = ↑(algebraMap R (Matrix n n β)) r", "tactic": "rw [algebraMap_eq_diagonal, algebraMap_eq_diagonal, diagonal_map hf]" }, { "state_after": "l : Type ?u.584026\nm : Type ?u.584029\nn : Type u_2\no : Type ?u.584035\nm' : o → Type ?u.584040\nn' : o → Type ?u.584045\nR : Type u_1\nS : Type ?u.584051\nα : Type v\nβ : Type w\nγ : Type ?u.584058\ninst✝⁶ : Fintype n\ninst✝⁵ : DecidableEq n\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring α\ninst✝² : Semiring β\ninst✝¹ : Algebra R α\ninst✝ : Algebra R β\nr : R\nf : α → β\nhf : f 0 = 0\nhf₂ : f (↑(algebraMap R α) r) = ↑(algebraMap R β) r\n⊢ n → f (↑(algebraMap R α) r) = ↑(algebraMap R β) r", "state_before": "l : Type ?u.584026\nm : Type ?u.584029\nn : Type u_2\no : Type ?u.584035\nm' : o → Type ?u.584040\nn' : o → Type ?u.584045\nR : Type u_1\nS : Type ?u.584051\nα : Type v\nβ : Type w\nγ : Type ?u.584058\ninst✝⁶ : Fintype n\ninst✝⁵ : DecidableEq n\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring α\ninst✝² : Semiring β\ninst✝¹ : Algebra R α\ninst✝ : Algebra R β\nr : R\nf : α → β\nhf : f 0 = 0\nhf₂ : f (↑(algebraMap R α) r) = ↑(algebraMap R β) r\n⊢ (diagonal fun m => f (↑(algebraMap R (n → α)) r m)) = diagonal (↑(algebraMap R (n → β)) r)", "tactic": "simp only [Pi.algebraMap_apply, diagonal_eq_diagonal_iff]" }, { "state_after": "l : Type ?u.584026\nm : Type ?u.584029\nn : Type u_2\no : Type ?u.584035\nm' : o → Type ?u.584040\nn' : o → Type ?u.584045\nR : Type u_1\nS : Type ?u.584051\nα : Type v\nβ : Type w\nγ : Type ?u.584058\ninst✝⁶ : Fintype n\ninst✝⁵ : DecidableEq n\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring α\ninst✝² : Semiring β\ninst✝¹ : Algebra R α\ninst✝ : Algebra R β\nr : R\nf : α → β\nhf : f 0 = 0\nhf₂ : f (↑(algebraMap R α) r) = ↑(algebraMap R β) r\ni✝ : n\n⊢ f (↑(algebraMap R α) r) = ↑(algebraMap R β) r", "state_before": "l : Type ?u.584026\nm : Type ?u.584029\nn : Type u_2\no : Type ?u.584035\nm' : o → Type ?u.584040\nn' : o → Type ?u.584045\nR : Type u_1\nS : Type ?u.584051\nα : Type v\nβ : Type w\nγ : Type ?u.584058\ninst✝⁶ : Fintype n\ninst✝⁵ : DecidableEq n\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring α\ninst✝² : Semiring β\ninst✝¹ : Algebra R α\ninst✝ : Algebra R β\nr : R\nf : α → β\nhf : f 0 = 0\nhf₂ : f (↑(algebraMap R α) r) = ↑(algebraMap R β) r\n⊢ n → f (↑(algebraMap R α) r) = ↑(algebraMap R β) r", "tactic": "intro" }, { "state_after": "no goals", "state_before": "l : Type ?u.584026\nm : Type ?u.584029\nn : Type u_2\no : Type ?u.584035\nm' : o → Type ?u.584040\nn' : o → Type ?u.584045\nR : Type u_1\nS : Type ?u.584051\nα : Type v\nβ : Type w\nγ : Type ?u.584058\ninst✝⁶ : Fintype n\ninst✝⁵ : DecidableEq n\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring α\ninst✝² : Semiring β\ninst✝¹ : Algebra R α\ninst✝ : Algebra R β\nr : R\nf : α → β\nhf : f 0 = 0\nhf₂ : f (↑(algebraMap R α) r) = ↑(algebraMap R β) r\ni✝ : n\n⊢ f (↑(algebraMap R α) r) = ↑(algebraMap R β) r", "tactic": "rw [hf₂]" } ]
[ 1346, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1334, 1 ]
Mathlib/Analysis/Calculus/Deriv/Comp.lean
derivWithin.scomp
[]
[ 115, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/Data/Set/Image.lean
Set.preimage_inter_range
[]
[ 842, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 841, 1 ]
Mathlib/Data/MvPolynomial/Basic.lean
MvPolynomial.eval₂Hom_map_hom
[]
[ 1334, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1332, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.coe_clamp
[]
[ 2496, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2495, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.lt_of_lt_of_equiv
[]
[ 841, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 840, 1 ]
Mathlib/Data/Finset/LocallyFinite.lean
Finset.uIcc_injective_left
[ { "state_after": "no goals", "state_before": "ι : Type ?u.193752\nα : Type u_1\ninst✝¹ : DistribLattice α\ninst✝ : LocallyFiniteOrder α\na✝ a₁ a₂ b b₁ b₂ c x a : α\n⊢ Injective (uIcc a)", "tactic": "simpa only [uIcc_comm] using uIcc_injective_right a" } ]
[ 982, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 981, 1 ]
Mathlib/Data/Polynomial/Coeff.lean
Polynomial.coeff_mul_X_pow'
[ { "state_after": "case inl\nR : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝ q r p : R[X]\nn d : ℕ\nh : n ≤ d\n⊢ coeff (p * X ^ n) d = coeff p (d - n)\n\ncase inr\nR : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝ q r p : R[X]\nn d : ℕ\nh : ¬n ≤ d\n⊢ coeff (p * X ^ n) d = 0", "state_before": "R : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝ q r p : R[X]\nn d : ℕ\n⊢ coeff (p * X ^ n) d = if n ≤ d then coeff p (d - n) else 0", "tactic": "split_ifs with h" }, { "state_after": "no goals", "state_before": "case inl\nR : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝ q r p : R[X]\nn d : ℕ\nh : n ≤ d\n⊢ coeff (p * X ^ n) d = coeff p (d - n)", "tactic": "rw [← tsub_add_cancel_of_le h, coeff_mul_X_pow, add_tsub_cancel_right]" }, { "state_after": "case inr\nR : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝ q r p : R[X]\nn d : ℕ\nh : ¬n ≤ d\nx : ℕ × ℕ\nhx : x ∈ Nat.antidiagonal d\n⊢ coeff p x.fst * coeff (X ^ n) x.snd = 0", "state_before": "case inr\nR : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝ q r p : R[X]\nn d : ℕ\nh : ¬n ≤ d\n⊢ coeff (p * X ^ n) d = 0", "tactic": "refine' (coeff_mul _ _ _).trans (Finset.sum_eq_zero fun x hx => _)" }, { "state_after": "case inr.hnc\nR : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝ q r p : R[X]\nn d : ℕ\nh : ¬n ≤ d\nx : ℕ × ℕ\nhx : x ∈ Nat.antidiagonal d\n⊢ ¬x.snd = n", "state_before": "case inr\nR : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝ q r p : R[X]\nn d : ℕ\nh : ¬n ≤ d\nx : ℕ × ℕ\nhx : x ∈ Nat.antidiagonal d\n⊢ coeff p x.fst * coeff (X ^ n) x.snd = 0", "tactic": "rw [coeff_X_pow, if_neg, mul_zero]" }, { "state_after": "no goals", "state_before": "case inr.hnc\nR : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝ q r p : R[X]\nn d : ℕ\nh : ¬n ≤ d\nx : ℕ × ℕ\nhx : x ∈ Nat.antidiagonal d\n⊢ ¬x.snd = n", "tactic": "exact ((le_of_add_le_right (Finset.Nat.mem_antidiagonal.mp hx).le).trans_lt <| not_le.mp h).ne" } ]
[ 255, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 249, 1 ]
Mathlib/GroupTheory/Submonoid/Operations.lean
Submonoid.bot_or_nontrivial
[ { "state_after": "no goals", "state_before": "M : Type u_1\nN : Type ?u.166126\nP : Type ?u.166129\ninst✝³ : MulOneClass M\ninst✝² : MulOneClass N\ninst✝¹ : MulOneClass P\nS✝ : Submonoid M\nA : Type ?u.166150\ninst✝ : SetLike A M\nhA : SubmonoidClass A M\nS' : A\nS : Submonoid M\n⊢ S = ⊥ ∨ Nontrivial { x // x ∈ S }", "tactic": "simp only [eq_bot_iff_forall, nontrivial_iff_exists_ne_one, ← not_forall, ← not_imp, Classical.em]" } ]
[ 1380, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1379, 1 ]
Mathlib/Algebra/Hom/GroupInstances.lean
AddMonoidHom.coe_mul
[]
[ 317, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 316, 1 ]
Mathlib/Algebra/Associated.lean
associated_one_iff_isUnit
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.150247\nγ : Type ?u.150250\nδ : Type ?u.150253\ninst✝ : Monoid α\na : α\nx✝ : IsUnit a\nc : αˣ\nh : ↑c = a\n⊢ 1 * ↑c = a", "tactic": "simp [h]" } ]
[ 433, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 428, 1 ]
Mathlib/Algebra/Order/Group/MinMax.lean
min_div_div_left'
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrderedCommGroup α\na✝ b✝ c✝ a b c : α\n⊢ min (a / b) (a / c) = a / max b c", "tactic": "simp only [div_eq_mul_inv, min_mul_mul_left, min_inv_inv']" } ]
[ 68, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 67, 1 ]
Mathlib/Logic/Function/Basic.lean
Function.const_injective
[]
[ 55, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/Algebra/Module/LocalizedModule.lean
IsLocalizedModule.mk'_add
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝⁷ : CommRing R\nS : Submonoid R\nM : Type u_3\nM' : Type u_2\nM'' : Type ?u.847575\ninst✝⁶ : AddCommMonoid M\ninst✝⁵ : AddCommMonoid M'\ninst✝⁴ : AddCommMonoid M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\nf : M →ₗ[R] M'\ng : M →ₗ[R] M''\ninst✝ : IsLocalizedModule S f\nm₁ m₂ : M\ns : { x // x ∈ S }\n⊢ mk' f (m₁ + m₂) s = mk' f m₁ s + mk' f m₂ s", "tactic": "rw [mk'_add_mk', ← smul_add, mk'_cancel_left]" } ]
[ 973, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 972, 1 ]
Mathlib/Algebra/Order/Monoid/WithTop.lean
WithTop.untop_one
[]
[ 53, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 52, 1 ]
Mathlib/Order/SuccPred/Basic.lean
Order.succ_ne_succ_iff
[]
[ 487, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 486, 1 ]
Mathlib/Topology/Algebra/Group/Basic.lean
IsClosed.rightCoset
[]
[ 146, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]
Std/Data/RBMap/Alter.lean
Std.RBNode.Path.insertNew_eq_insert
[]
[ 70, 41 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 68, 1 ]
Mathlib/RingTheory/Finiteness.lean
Module.Finite.equiv
[]
[ 612, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 611, 1 ]
Mathlib/Topology/Sets/Compacts.lean
TopologicalSpace.CompactOpens.coe_compl
[]
[ 569, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 568, 1 ]
Mathlib/LinearAlgebra/Dimension.lean
Submodule.rank_sup_add_rank_inf_eq
[ { "state_after": "no goals", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1002876\ninst✝¹⁰ : DivisionRing K\ninst✝⁹ : AddCommGroup V\ninst✝⁸ : Module K V\ninst✝⁷ : AddCommGroup V'\ninst✝⁶ : Module K V'\ninst✝⁵ : AddCommGroup V₁\ninst✝⁴ : Module K V₁\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : AddCommGroup V₃\ninst✝ : Module K V₃\ns t : Submodule K V\n⊢ ⊤ ≤ LinearMap.range (ofLe (_ : s ≤ s ⊔ t)) ⊔ LinearMap.range (ofLe (_ : t ≤ s ⊔ t))", "tactic": "rw [← map_le_map_iff' (ker_subtype <| s ⊔ t), Submodule.map_sup, Submodule.map_top, ←\n LinearMap.range_comp, ← LinearMap.range_comp, subtype_comp_ofLe, subtype_comp_ofLe,\n range_subtype, range_subtype, range_subtype]" }, { "state_after": "case h.mk.a\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1002876\ninst✝¹⁰ : DivisionRing K\ninst✝⁹ : AddCommGroup V\ninst✝⁸ : Module K V\ninst✝⁷ : AddCommGroup V'\ninst✝⁶ : Module K V'\ninst✝⁵ : AddCommGroup V₁\ninst✝⁴ : Module K V₁\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : AddCommGroup V₃\ninst✝ : Module K V₃\ns t : Submodule K V\nx : V\nhx : x ∈ s ⊓ t\n⊢ ↑(↑(LinearMap.comp (ofLe (_ : s ≤ s ⊔ t)) (ofLe (_ : s ⊓ t ≤ s))) { val := x, property := hx }) =\n ↑(↑(LinearMap.comp (ofLe (_ : t ≤ s ⊔ t)) (ofLe (_ : s ⊓ t ≤ t))) { val := x, property := hx })", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1002876\ninst✝¹⁰ : DivisionRing K\ninst✝⁹ : AddCommGroup V\ninst✝⁸ : Module K V\ninst✝⁷ : AddCommGroup V'\ninst✝⁶ : Module K V'\ninst✝⁵ : AddCommGroup V₁\ninst✝⁴ : Module K V₁\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : AddCommGroup V₃\ninst✝ : Module K V₃\ns t : Submodule K V\n⊢ LinearMap.comp (ofLe (_ : s ≤ s ⊔ t)) (ofLe (_ : s ⊓ t ≤ s)) =\n LinearMap.comp (ofLe (_ : t ≤ s ⊔ t)) (ofLe (_ : s ⊓ t ≤ t))", "tactic": "ext ⟨x, hx⟩" }, { "state_after": "no goals", "state_before": "case h.mk.a\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1002876\ninst✝¹⁰ : DivisionRing K\ninst✝⁹ : AddCommGroup V\ninst✝⁸ : Module K V\ninst✝⁷ : AddCommGroup V'\ninst✝⁶ : Module K V'\ninst✝⁵ : AddCommGroup V₁\ninst✝⁴ : Module K V₁\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : AddCommGroup V₃\ninst✝ : Module K V₃\ns t : Submodule K V\nx : V\nhx : x ∈ s ⊓ t\n⊢ ↑(↑(LinearMap.comp (ofLe (_ : s ≤ s ⊔ t)) (ofLe (_ : s ⊓ t ≤ s))) { val := x, property := hx }) =\n ↑(↑(LinearMap.comp (ofLe (_ : t ≤ s ⊔ t)) (ofLe (_ : s ⊓ t ≤ t))) { val := x, property := hx })", "tactic": "rfl" }, { "state_after": "case mk.mk\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1002876\ninst✝¹⁰ : DivisionRing K\ninst✝⁹ : AddCommGroup V\ninst✝⁸ : Module K V\ninst✝⁷ : AddCommGroup V'\ninst✝⁶ : Module K V'\ninst✝⁵ : AddCommGroup V₁\ninst✝⁴ : Module K V₁\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : AddCommGroup V₃\ninst✝ : Module K V₃\ns t : Submodule K V\nb₁ : V\nhb₁ : b₁ ∈ s\nb₂ : V\nhb₂ : b₂ ∈ t\neq : ↑(ofLe (_ : s ≤ s ⊔ t)) { val := b₁, property := hb₁ } = ↑(ofLe (_ : t ≤ s ⊔ t)) { val := b₂, property := hb₂ }\n⊢ ∃ c,\n ↑(ofLe (_ : s ⊓ t ≤ s)) c = { val := b₁, property := hb₁ } ∧\n ↑(ofLe (_ : s ⊓ t ≤ t)) c = { val := b₂, property := hb₂ }", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1002876\ninst✝¹⁰ : DivisionRing K\ninst✝⁹ : AddCommGroup V\ninst✝⁸ : Module K V\ninst✝⁷ : AddCommGroup V'\ninst✝⁶ : Module K V'\ninst✝⁵ : AddCommGroup V₁\ninst✝⁴ : Module K V₁\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : AddCommGroup V₃\ninst✝ : Module K V₃\ns t : Submodule K V\n⊢ ∀ (d : { x // x ∈ s }) (e : { x // x ∈ t }),\n ↑(ofLe (_ : s ≤ s ⊔ t)) d = ↑(ofLe (_ : t ≤ s ⊔ t)) e →\n ∃ c, ↑(ofLe (_ : s ⊓ t ≤ s)) c = d ∧ ↑(ofLe (_ : s ⊓ t ≤ t)) c = e", "tactic": "rintro ⟨b₁, hb₁⟩ ⟨b₂, hb₂⟩ eq" }, { "state_after": "case mk.mk\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1002876\ninst✝¹⁰ : DivisionRing K\ninst✝⁹ : AddCommGroup V\ninst✝⁸ : Module K V\ninst✝⁷ : AddCommGroup V'\ninst✝⁶ : Module K V'\ninst✝⁵ : AddCommGroup V₁\ninst✝⁴ : Module K V₁\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : AddCommGroup V₃\ninst✝ : Module K V₃\ns t : Submodule K V\nb₁ : V\nhb₁ : b₁ ∈ s\nhb₂ : b₁ ∈ t\neq : ↑(ofLe (_ : s ≤ s ⊔ t)) { val := b₁, property := hb₁ } = ↑(ofLe (_ : t ≤ s ⊔ t)) { val := b₁, property := hb₂ }\n⊢ ∃ c,\n ↑(ofLe (_ : s ⊓ t ≤ s)) c = { val := b₁, property := hb₁ } ∧\n ↑(ofLe (_ : s ⊓ t ≤ t)) c = { val := b₁, property := hb₂ }", "state_before": "case mk.mk\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1002876\ninst✝¹⁰ : DivisionRing K\ninst✝⁹ : AddCommGroup V\ninst✝⁸ : Module K V\ninst✝⁷ : AddCommGroup V'\ninst✝⁶ : Module K V'\ninst✝⁵ : AddCommGroup V₁\ninst✝⁴ : Module K V₁\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : AddCommGroup V₃\ninst✝ : Module K V₃\ns t : Submodule K V\nb₁ : V\nhb₁ : b₁ ∈ s\nb₂ : V\nhb₂ : b₂ ∈ t\neq : ↑(ofLe (_ : s ≤ s ⊔ t)) { val := b₁, property := hb₁ } = ↑(ofLe (_ : t ≤ s ⊔ t)) { val := b₂, property := hb₂ }\n⊢ ∃ c,\n ↑(ofLe (_ : s ⊓ t ≤ s)) c = { val := b₁, property := hb₁ } ∧\n ↑(ofLe (_ : s ⊓ t ≤ t)) c = { val := b₂, property := hb₂ }", "tactic": "obtain rfl : b₁ = b₂ := congr_arg Subtype.val eq" }, { "state_after": "no goals", "state_before": "case mk.mk\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1002876\ninst✝¹⁰ : DivisionRing K\ninst✝⁹ : AddCommGroup V\ninst✝⁸ : Module K V\ninst✝⁷ : AddCommGroup V'\ninst✝⁶ : Module K V'\ninst✝⁵ : AddCommGroup V₁\ninst✝⁴ : Module K V₁\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : AddCommGroup V₃\ninst✝ : Module K V₃\ns t : Submodule K V\nb₁ : V\nhb₁ : b₁ ∈ s\nhb₂ : b₁ ∈ t\neq : ↑(ofLe (_ : s ≤ s ⊔ t)) { val := b₁, property := hb₁ } = ↑(ofLe (_ : t ≤ s ⊔ t)) { val := b₁, property := hb₂ }\n⊢ ∃ c,\n ↑(ofLe (_ : s ⊓ t ≤ s)) c = { val := b₁, property := hb₁ } ∧\n ↑(ofLe (_ : s ⊓ t ≤ t)) c = { val := b₁, property := hb₂ }", "tactic": "exact ⟨⟨b₁, hb₁, hb₂⟩, rfl, rfl⟩" } ]
[ 1152, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1140, 1 ]
Mathlib/Analysis/Normed/Field/UnitBall.lean
coe_one_unitSphere
[]
[ 161, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 160, 1 ]
Mathlib/Algebra/Hom/GroupInstances.lean
MonoidHom.compr₂_apply
[]
[ 279, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 277, 1 ]
Mathlib/Algebra/Order/Positive/Ring.lean
Positive.val_one
[]
[ 130, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 1 ]
Mathlib/Analysis/InnerProductSpace/EuclideanDist.lean
Euclidean.isCompact_closedBall
[ { "state_after": "E : Type u_1\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : TopologicalAddGroup E\ninst✝³ : T2Space E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ninst✝ : FiniteDimensional ℝ E\nx : E\nr : ℝ\n⊢ IsCompact (↑(ContinuousLinearEquiv.symm toEuclidean) '' Metric.closedBall (↑toEuclidean x) r)", "state_before": "E : Type u_1\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : TopologicalAddGroup E\ninst✝³ : T2Space E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ninst✝ : FiniteDimensional ℝ E\nx : E\nr : ℝ\n⊢ IsCompact (closedBall x r)", "tactic": "rw [closedBall_eq_image]" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : TopologicalAddGroup E\ninst✝³ : T2Space E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ninst✝ : FiniteDimensional ℝ E\nx : E\nr : ℝ\n⊢ IsCompact (↑(ContinuousLinearEquiv.symm toEuclidean) '' Metric.closedBall (↑toEuclidean x) r)", "tactic": "exact (isCompact_closedBall _ _).image toEuclidean.symm.continuous" } ]
[ 92, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 90, 8 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
inner_map_complex
[ { "state_after": "no goals", "state_before": "𝕜 : Type ?u.4079769\nE : Type ?u.4079772\nF : Type ?u.4079775\ninst✝⁶ : IsROrC 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : InnerProductSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nG : Type u_1\ninst✝¹ : NormedAddCommGroup G\ninst✝ : InnerProductSpace ℝ G\nf : G ≃ₗᵢ[ℝ] ℂ\nx y : G\n⊢ inner x y = (↑(starRingEnd ℂ) (↑f x) * ↑f y).re", "tactic": "rw [← Complex.inner, f.inner_map_map]" } ]
[ 2241, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2240, 1 ]
Mathlib/Algebra/IsPrimePow.lean
IsPrimePow.one_lt
[]
[ 128, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/RingTheory/FractionalIdeal.lean
FractionalIdeal.coe_mk
[]
[ 187, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 185, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
LinearIsometryEquiv.contDiff
[]
[ 168, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 167, 1 ]
Mathlib/Algebra/Order/Ring/Lemmas.lean
lt_of_mul_lt_of_one_le_of_nonneg_left
[]
[ 915, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 913, 1 ]
Mathlib/Data/Real/EReal.lean
EReal.coe_nonpos
[]
[ 393, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 392, 11 ]
Mathlib/Data/Nat/Choose/Basic.lean
Nat.choose_le_succ_of_lt_half_left
[ { "state_after": "r n : ℕ\nh : r < n / 2\n⊢ choose n r * (n - r) ≤ choose n (r + 1) * (n - r)", "state_before": "r n : ℕ\nh : r < n / 2\n⊢ choose n r ≤ choose n (r + 1)", "tactic": "refine' le_of_mul_le_mul_right _ (lt_tsub_iff_left.mpr (lt_of_lt_of_le h (n.div_le_self 2)))" }, { "state_after": "r n : ℕ\nh : r < n / 2\n⊢ choose n (r + 1) * (r + 1) ≤ choose n (r + 1) * (n - r)", "state_before": "r n : ℕ\nh : r < n / 2\n⊢ choose n r * (n - r) ≤ choose n (r + 1) * (n - r)", "tactic": "rw [← choose_succ_right_eq]" }, { "state_after": "case h\nr n : ℕ\nh : r < n / 2\n⊢ r + 1 ≤ n - r", "state_before": "r n : ℕ\nh : r < n / 2\n⊢ choose n (r + 1) * (r + 1) ≤ choose n (r + 1) * (n - r)", "tactic": "apply Nat.mul_le_mul_left" }, { "state_after": "case h\nr n : ℕ\nh : r < n / 2\n⊢ r * 2 < n", "state_before": "case h\nr n : ℕ\nh : r < n / 2\n⊢ r + 1 ≤ n - r", "tactic": "rw [← Nat.lt_iff_add_one_le, lt_tsub_iff_left, ← mul_two]" }, { "state_after": "no goals", "state_before": "case h\nr n : ℕ\nh : r < n / 2\n⊢ r * 2 < n", "tactic": "exact lt_of_lt_of_le (mul_lt_mul_of_pos_right h zero_lt_two) (n.div_mul_le_self 2)" } ]
[ 286, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 280, 1 ]
Mathlib/GroupTheory/Sylow.lean
card_sylow_modEq_one
[ { "state_after": "p : ℕ\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Fintype (Sylow p G)\nP : Sylow p G\n⊢ card (Sylow p G) ≡ 1 [MOD p]", "state_before": "p : ℕ\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Fintype (Sylow p G)\n⊢ card (Sylow p G) ≡ 1 [MOD p]", "tactic": "refine' Sylow.nonempty.elim fun P : Sylow p G => _" }, { "state_after": "p : ℕ\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Fintype (Sylow p G)\nP : Sylow p G\nthis : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}\n⊢ card (Sylow p G) ≡ 1 [MOD p]", "state_before": "p : ℕ\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Fintype (Sylow p G)\nP : Sylow p G\n⊢ card (Sylow p G) ≡ 1 [MOD p]", "tactic": "have : fixedPoints P.1 (Sylow p G) = {P} :=\n Set.ext fun Q : Sylow p G =>\n calc\n Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff\n _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩\n _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm" }, { "state_after": "p : ℕ\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Fintype (Sylow p G)\nP : Sylow p G\nthis : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}\nfin : Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G))\n⊢ card (Sylow p G) ≡ 1 [MOD p]", "state_before": "p : ℕ\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Fintype (Sylow p G)\nP : Sylow p G\nthis : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}\n⊢ card (Sylow p G) ≡ 1 [MOD p]", "tactic": "have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by\n rw [this]\n infer_instance" }, { "state_after": "p : ℕ\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Fintype (Sylow p G)\nP : Sylow p G\nthis✝ : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}\nfin : Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G))\nthis : card ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) = 1\n⊢ card (Sylow p G) ≡ 1 [MOD p]", "state_before": "p : ℕ\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Fintype (Sylow p G)\nP : Sylow p G\nthis : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}\nfin : Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G))\n⊢ card (Sylow p G) ≡ 1 [MOD p]", "tactic": "have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this]" }, { "state_after": "no goals", "state_before": "p : ℕ\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Fintype (Sylow p G)\nP : Sylow p G\nthis✝ : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}\nfin : Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G))\nthis : card ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) = 1\n⊢ card (Sylow p G) ≡ 1 [MOD p]", "tactic": "exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this])" }, { "state_after": "p : ℕ\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Fintype (Sylow p G)\nP : Sylow p G\nthis : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}\n⊢ Fintype ↑{P}", "state_before": "p : ℕ\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Fintype (Sylow p G)\nP : Sylow p G\nthis : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}\n⊢ Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G))", "tactic": "rw [this]" }, { "state_after": "no goals", "state_before": "p : ℕ\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Fintype (Sylow p G)\nP : Sylow p G\nthis : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}\n⊢ Fintype ↑{P}", "tactic": "infer_instance" }, { "state_after": "no goals", "state_before": "p : ℕ\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Fintype (Sylow p G)\nP : Sylow p G\nthis : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}\nfin : Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G))\n⊢ card ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) = 1", "tactic": "simp [this]" }, { "state_after": "no goals", "state_before": "p : ℕ\nG : Type u_1\ninst✝² : Group G\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : Fintype (Sylow p G)\nP : Sylow p G\nthis✝ : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}\nfin : Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G))\nthis : card ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) = 1\n⊢ card ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) ≡ 1 [MOD p]", "tactic": "rw [this]" } ]
[ 341, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 327, 1 ]
Mathlib/Data/Int/Cast/Lemmas.lean
Pi.coe_int
[]
[ 361, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 360, 1 ]
Mathlib/CategoryTheory/ConcreteCategory/Basic.lean
CategoryTheory.coe_comp
[]
[ 136, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 135, 1 ]
Std/Data/Int/Lemmas.lean
Int.ofNat_mul_negSucc
[]
[ 373, 91 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 373, 9 ]
Mathlib/Analysis/Calculus/Series.lean
iteratedFDeriv_tsum_apply
[ { "state_after": "no goals", "state_before": "α : Type u_4\nβ : Type ?u.117040\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nk : ℕ\nhk : ↑k ≤ N\nx : E\n⊢ iteratedFDeriv 𝕜 k (fun y => ∑' (n : α), f n y) x = ∑' (n : α), iteratedFDeriv 𝕜 k (f n) x", "tactic": "rw [iteratedFDeriv_tsum hf hv h'f hk]" } ]
[ 225, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 220, 1 ]
Mathlib/Analysis/Convex/Cone/Dual.lean
pointed_innerDualCone
[ { "state_after": "no goals", "state_before": "𝕜 : Type ?u.9011\nE : Type ?u.9014\nF : Type ?u.9017\nG : Type ?u.9020\nH : Type u_1\ninst✝¹ : NormedAddCommGroup H\ninst✝ : InnerProductSpace ℝ H\ns t : Set H\nx : H\nx✝ : x ∈ s\n⊢ 0 ≤ inner x 0", "tactic": "rw [inner_zero_right]" } ]
[ 85, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 85, 1 ]
Mathlib/Data/Dfinsupp/NeLocus.lean
Dfinsupp.neLocus_self_add_right
[ { "state_after": "no goals", "state_before": "α : Type u_1\nN : α → Type u_2\ninst✝² : DecidableEq α\ninst✝¹ : (a : α) → DecidableEq (N a)\ninst✝ : (a : α) → AddGroup (N a)\nf f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a\n⊢ neLocus f (f + g) = support g", "tactic": "rw [← neLocus_zero_left, ← @neLocus_add_left α N _ _ _ f 0 g, add_zero]" } ]
[ 164, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 163, 1 ]
Mathlib/Order/BoundedOrder.lean
exists_le_and_iff_exists
[]
[ 615, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 613, 1 ]
Mathlib/NumberTheory/ArithmeticFunction.lean
Nat.ArithmeticFunction.pmul_apply
[]
[ 513, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 512, 1 ]
Mathlib/AlgebraicTopology/AlternatingFaceMapComplex.lean
AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq
[ { "state_after": "no goals", "state_before": "C : Type u_2\ninst✝¹ : Category C\ninst✝ : Preadditive C\nX✝ Y X : SimplicialObject C\nn : ℕ\n⊢ HomologicalComplex.d (obj X) (n + 1) n = ∑ i : Fin (n + 2), (-1) ^ ↑i • SimplicialObject.δ X i", "tactic": "apply ChainComplex.of_d" } ]
[ 141, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 139, 1 ]