file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Std/Data/Array/Init/Lemmas.lean
Array.toListAppend_eq
[ { "state_after": "no goals", "state_before": "α : Type u_1\narr : Array α\nl : List α\n⊢ toListAppend arr l = arr.data ++ l", "tactic": "simp [toListAppend, foldr_eq_foldr_data]" } ]
[ 93, 43 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 92, 9 ]
Mathlib/Data/Rat/Cast.lean
Rat.cast_mul_of_ne_zero
[ { "state_after": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\n⊢ ↑(mk' n₁ d₁ * mk' n₂ d₂) = ↑(mk' n₁ d₁) * ↑(mk' n₂ d₂)", "state_before": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\n⊢ ↑(mk' n₁ d₁ * mk' n₂ d₂) = ↑(mk' n₁ d₁) * ↑(mk' n₂ d₂)", "tactic": "have d₁0' : (d₁ : ℤ) ≠ 0 :=\n Int.coe_nat_ne_zero.2 fun e => by rw [e] at d₁0 ; exact d₁0 Nat.cast_zero" }, { "state_after": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\nd₂0' : ↑d₂ ≠ 0\n⊢ ↑(mk' n₁ d₁ * mk' n₂ d₂) = ↑(mk' n₁ d₁) * ↑(mk' n₂ d₂)", "state_before": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\n⊢ ↑(mk' n₁ d₁ * mk' n₂ d₂) = ↑(mk' n₁ d₁) * ↑(mk' n₂ d₂)", "tactic": "have d₂0' : (d₂ : ℤ) ≠ 0 :=\n Int.coe_nat_ne_zero.2 fun e => by rw [e] at d₂0 ; exact d₂0 Nat.cast_zero" }, { "state_after": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\nd₂0' : ↑d₂ ≠ 0\n⊢ ↑(n₁ * n₂ /. (↑d₁ * ↑d₂)) = ↑(n₁ /. ↑d₁) * ↑(n₂ /. ↑d₂)", "state_before": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\nd₂0' : ↑d₂ ≠ 0\n⊢ ↑(mk' n₁ d₁ * mk' n₂ d₂) = ↑(mk' n₁ d₁) * ↑(mk' n₂ d₂)", "tactic": "rw [num_den', num_den', mul_def' d₁0' d₂0']" }, { "state_after": "no goals", "state_before": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\nd₂0' : ↑d₂ ≠ 0\n⊢ ↑n₁ * (↑n₂ * (↑d₂)⁻¹ * (↑d₁)⁻¹) = ↑n₁ * ((↑d₁)⁻¹ * (↑n₂ * (↑d₂)⁻¹))", "tactic": "rw [(d₁.commute_cast (_ : α)).inv_right₀.eq]" }, { "state_after": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑0 ≠ 0\nd₂0 : ↑d₂ ≠ 0\ne : d₁ = 0\n⊢ False", "state_before": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\ne : d₁ = 0\n⊢ False", "tactic": "rw [e] at d₁0" }, { "state_after": "no goals", "state_before": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑0 ≠ 0\nd₂0 : ↑d₂ ≠ 0\ne : d₁ = 0\n⊢ False", "tactic": "exact d₁0 Nat.cast_zero" }, { "state_after": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑0 ≠ 0\nd₁0' : ↑d₁ ≠ 0\ne : d₂ = 0\n⊢ False", "state_before": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\ne : d₂ = 0\n⊢ False", "tactic": "rw [e] at d₂0" }, { "state_after": "no goals", "state_before": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑0 ≠ 0\nd₁0' : ↑d₁ ≠ 0\ne : d₂ = 0\n⊢ False", "tactic": "exact d₂0 Nat.cast_zero" }, { "state_after": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\nd₂0' : ↑d₂ ≠ 0\nthis : ↑n₁ * (↑n₂ * (↑d₂)⁻¹ * (↑d₁)⁻¹) = ↑n₁ * ((↑d₁)⁻¹ * (↑n₂ * (↑d₂)⁻¹))\n⊢ ↑(n₁ * n₂) / ↑(↑d₁ * ↑d₂) = ↑n₁ / ↑↑d₁ * (↑n₂ / ↑↑d₂)\n\ncase b0\nF : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\nd₂0' : ↑d₂ ≠ 0\nthis : ↑n₁ * (↑n₂ * (↑d₂)⁻¹ * (↑d₁)⁻¹) = ↑n₁ * ((↑d₁)⁻¹ * (↑n₂ * (↑d₂)⁻¹))\n⊢ ↑↑d₂ ≠ 0\n\ncase b0\nF : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\nd₂0' : ↑d₂ ≠ 0\nthis : ↑n₁ * (↑n₂ * (↑d₂)⁻¹ * (↑d₁)⁻¹) = ↑n₁ * ((↑d₁)⁻¹ * (↑n₂ * (↑d₂)⁻¹))\n⊢ ↑↑d₁ ≠ 0\n\ncase b0\nF : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\nd₂0' : ↑d₂ ≠ 0\nthis : ↑n₁ * (↑n₂ * (↑d₂)⁻¹ * (↑d₁)⁻¹) = ↑n₁ * ((↑d₁)⁻¹ * (↑n₂ * (↑d₂)⁻¹))\n⊢ ↑(↑d₁ * ↑d₂) ≠ 0", "state_before": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\nd₂0' : ↑d₂ ≠ 0\nthis : ↑n₁ * (↑n₂ * (↑d₂)⁻¹ * (↑d₁)⁻¹) = ↑n₁ * ((↑d₁)⁻¹ * (↑n₂ * (↑d₂)⁻¹))\n⊢ ↑(n₁ * n₂ /. (↑d₁ * ↑d₂)) = ↑(n₁ /. ↑d₁) * ↑(n₂ /. ↑d₂)", "tactic": "rw [cast_mk_of_ne_zero, cast_mk_of_ne_zero, cast_mk_of_ne_zero]" }, { "state_after": "no goals", "state_before": "case b0\nF : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\nd₂0' : ↑d₂ ≠ 0\nthis : ↑n₁ * (↑n₂ * (↑d₂)⁻¹ * (↑d₁)⁻¹) = ↑n₁ * ((↑d₁)⁻¹ * (↑n₂ * (↑d₂)⁻¹))\n⊢ ↑↑d₂ ≠ 0\n\ncase b0\nF : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\nd₂0' : ↑d₂ ≠ 0\nthis : ↑n₁ * (↑n₂ * (↑d₂)⁻¹ * (↑d₁)⁻¹) = ↑n₁ * ((↑d₁)⁻¹ * (↑n₂ * (↑d₂)⁻¹))\n⊢ ↑↑d₁ ≠ 0\n\ncase b0\nF : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\nd₂0' : ↑d₂ ≠ 0\nthis : ↑n₁ * (↑n₂ * (↑d₂)⁻¹ * (↑d₁)⁻¹) = ↑n₁ * ((↑d₁)⁻¹ * (↑n₂ * (↑d₂)⁻¹))\n⊢ ↑(↑d₁ * ↑d₂) ≠ 0", "tactic": "all_goals simp [d₁0, d₂0]" }, { "state_after": "no goals", "state_before": "F : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\nd₂0' : ↑d₂ ≠ 0\nthis : ↑n₁ * (↑n₂ * (↑d₂)⁻¹ * (↑d₁)⁻¹) = ↑n₁ * ((↑d₁)⁻¹ * (↑n₂ * (↑d₂)⁻¹))\n⊢ ↑(n₁ * n₂) / ↑(↑d₁ * ↑d₂) = ↑n₁ / ↑↑d₁ * (↑n₂ / ↑↑d₂)", "tactic": "simpa [division_def, mul_inv_rev, d₁0, d₂0, mul_assoc]" }, { "state_after": "no goals", "state_before": "case b0\nF : Type ?u.23959\nι : Type ?u.23962\nα : Type u_1\nβ : Type ?u.23968\ninst✝ : DivisionRing α\nn₁ : ℤ\nd₁ : ℕ\nh₁ : d₁ ≠ 0\nc₁ : Nat.coprime (Int.natAbs n₁) d₁\nn₂ : ℤ\nd₂ : ℕ\nh₂ : d₂ ≠ 0\nc₂ : Nat.coprime (Int.natAbs n₂) d₂\nd₁0 : ↑d₁ ≠ 0\nd₂0 : ↑d₂ ≠ 0\nd₁0' : ↑d₁ ≠ 0\nd₂0' : ↑d₂ ≠ 0\nthis : ↑n₁ * (↑n₂ * (↑d₂)⁻¹ * (↑d₁)⁻¹) = ↑n₁ * ((↑d₁)⁻¹ * (↑n₂ * (↑d₂)⁻¹))\n⊢ ↑(↑d₁ * ↑d₂) ≠ 0", "tactic": "simp [d₁0, d₂0]" } ]
[ 150, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 138, 1 ]
Mathlib/Analysis/Calculus/BumpFunctionInner.lean
ContDiffBump.nonneg'
[]
[ 396, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 396, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.row_mul_col_apply
[]
[ 2729, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2727, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Real.lean
cauchySeq_of_summable_dist
[]
[ 72, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.bddAbove_range
[ { "state_after": "case intro\nα β ι : Type u\nf : ι → Cardinal\ni : ι\n⊢ f i ≤ ?m.80685 f", "state_before": "α β ι : Type u\nf : ι → Cardinal\n⊢ ?m.80685 f ∈ upperBounds (range f)", "tactic": "rintro a ⟨i, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro\nα β ι : Type u\nf : ι → Cardinal\ni : ι\n⊢ f i ≤ ?m.80685 f", "tactic": "exact le_sum.{v,u} f i" } ]
[ 943, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 939, 1 ]
Mathlib/Data/Set/Pointwise/SMul.lean
Set.vsub_subset_iff
[]
[ 677, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 676, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.one_add_omega
[ { "state_after": "α : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ 1 + ω ≤ ω", "state_before": "α : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ 1 + ω = ω", "tactic": "refine' le_antisymm _ (le_add_left _ _)" }, { "state_after": "α : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ type (Sum.Lex EmptyRelation fun x x_1 => x < x_1) ≤ type fun x x_1 => x < x_1", "state_before": "α : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ 1 + ω ≤ ω", "tactic": "rw [omega, ← lift_one.{_, 0}, ← lift_add, lift_le, ← type_unit, ← type_sum_lex]" }, { "state_after": "case refine'_1\nα : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ Unit ⊕ ℕ → ℕ\n\ncase refine'_2\nα : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ ∀ (a b : Unit ⊕ ℕ), Sum.Lex EmptyRelation (fun x x_1 => x < x_1) a b → ?refine'_1 a < ?refine'_1 b", "state_before": "α : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ type (Sum.Lex EmptyRelation fun x x_1 => x < x_1) ≤ type fun x x_1 => x < x_1", "tactic": "refine' ⟨RelEmbedding.collapse (RelEmbedding.ofMonotone _ _)⟩" }, { "state_after": "case refine'_1.inl\nα : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ Unit → ℕ\n\ncase refine'_1.inr\nα : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ ℕ → ℕ", "state_before": "case refine'_1\nα : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ Unit ⊕ ℕ → ℕ", "tactic": "apply Sum.rec" }, { "state_after": "case refine'_1.inr\nα : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ ℕ → ℕ", "state_before": "case refine'_1.inl\nα : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ Unit → ℕ\n\ncase refine'_1.inr\nα : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ ℕ → ℕ", "tactic": "exact fun _ => 0" }, { "state_after": "no goals", "state_before": "case refine'_1.inr\nα : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ ℕ → ℕ", "tactic": "exact Nat.succ" }, { "state_after": "case refine'_2\nα : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na b : Unit ⊕ ℕ\n⊢ Sum.Lex EmptyRelation (fun x x_1 => x < x_1) a b → Sum.rec (fun x => 0) Nat.succ a < Sum.rec (fun x => 0) Nat.succ b", "state_before": "case refine'_2\nα : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ ∀ (a b : Unit ⊕ ℕ),\n Sum.Lex EmptyRelation (fun x x_1 => x < x_1) a b → Sum.rec (fun x => 0) Nat.succ a < Sum.rec (fun x => 0) Nat.succ b", "tactic": "intro a b" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type ?u.134018\nβ : Type ?u.134021\nγ : Type ?u.134024\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na b : Unit ⊕ ℕ\n⊢ Sum.Lex EmptyRelation (fun x x_1 => x < x_1) a b → Sum.rec (fun x => 0) Nat.succ a < Sum.rec (fun x => 0) Nat.succ b", "tactic": "cases a <;> cases b <;> intro H <;> cases' H with _ _ H _ _ H <;>\n [exact H.elim; exact Nat.succ_pos _; exact Nat.succ_lt_succ H]" } ]
[ 627, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 618, 1 ]
Mathlib/RingTheory/FinitePresentation.lean
Algebra.FinitePresentation.polynomial
[]
[ 124, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 122, 1 ]
Mathlib/LinearAlgebra/Matrix/SesquilinearForm.lean
LinearMap.SeparatingLeft.toMatrix₂'
[]
[ 725, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 723, 1 ]
Mathlib/LinearAlgebra/Dual.lean
LinearMap.dualMap_bijective_iff
[ { "state_after": "no goals", "state_before": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\n⊢ Function.Bijective ↑(dualMap f) ↔ Function.Bijective ↑f", "tactic": "simp_rw [Function.Bijective, dualMap_surjective_iff, dualMap_injective_iff, and_comm]" } ]
[ 1515, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1513, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.degree_add_le_of_degree_le
[]
[ 643, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 641, 1 ]
Mathlib/Data/Set/Pointwise/Interval.lean
Set.image_neg_Ioi
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\n⊢ Neg.neg '' Ioi a = Iio (-a)", "tactic": "simp" } ]
[ 297, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 297, 1 ]
Mathlib/Order/Lattice.lean
Monotone.of_map_sup
[]
[ 1114, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1112, 1 ]
Mathlib/MeasureTheory/Integral/IntegrableOn.lean
MeasureTheory.IntegrableOn.mono
[]
[ 127, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 126, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/ZeroMorphisms.lean
CategoryTheory.Limits.IsZero.iff_isSplitEpi_eq_zero
[ { "state_after": "C : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsSplitEpi f\n⊢ 𝟙 Y = 0 ↔ f = 0", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsSplitEpi f\n⊢ IsZero Y ↔ f = 0", "tactic": "rw [iff_id_eq_zero]" }, { "state_after": "case mp\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsSplitEpi f\n⊢ 𝟙 Y = 0 → f = 0\n\ncase mpr\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsSplitEpi f\n⊢ f = 0 → 𝟙 Y = 0", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsSplitEpi f\n⊢ 𝟙 Y = 0 ↔ f = 0", "tactic": "constructor" }, { "state_after": "case mp\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsSplitEpi f\nh : 𝟙 Y = 0\n⊢ f = 0", "state_before": "case mp\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsSplitEpi f\n⊢ 𝟙 Y = 0 → f = 0", "tactic": "intro h" }, { "state_after": "no goals", "state_before": "case mp\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsSplitEpi f\nh : 𝟙 Y = 0\n⊢ f = 0", "tactic": "rw [← Category.comp_id f, h, comp_zero]" }, { "state_after": "case mpr\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsSplitEpi f\nh : f = 0\n⊢ 𝟙 Y = 0", "state_before": "case mpr\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsSplitEpi f\n⊢ f = 0 → 𝟙 Y = 0", "tactic": "intro h" }, { "state_after": "case mpr\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsSplitEpi f\nh : f = 0\n⊢ section_ f ≫ f = 0", "state_before": "case mpr\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsSplitEpi f\nh : f = 0\n⊢ 𝟙 Y = 0", "tactic": "rw [← IsSplitEpi.id f]" }, { "state_after": "no goals", "state_before": "case mpr\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : IsSplitEpi f\nh : f = 0\n⊢ section_ f ≫ f = 0", "tactic": "simp [h]" } ]
[ 232, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/Data/Real/CauSeq.lean
CauSeq.sup_limZero
[ { "state_after": "α : Type u_1\ninst✝ : LinearOrderedField α\nf g : CauSeq α abs\nhf : LimZero f\nhg : LimZero g\nε : α\nε0 : ε > 0\ni : ℕ\nH : ∀ (j : ℕ), j ≥ i → abs (↑f j) < ε ∧ abs (↑g j) < ε\nj : ℕ\nij : j ≥ i\nH₁ : abs (↑f j) < ε\nH₂ : abs (↑g j) < ε\n⊢ abs (↑(f ⊔ g) j) < ε", "state_before": "α : Type u_1\ninst✝ : LinearOrderedField α\nf g : CauSeq α abs\nhf : LimZero f\nhg : LimZero g\nε : α\nε0 : ε > 0\ni : ℕ\nH : ∀ (j : ℕ), j ≥ i → abs (↑f j) < ε ∧ abs (↑g j) < ε\nj : ℕ\nij : j ≥ i\n⊢ abs (↑(f ⊔ g) j) < ε", "tactic": "let ⟨H₁, H₂⟩ := H _ ij" }, { "state_after": "α : Type u_1\ninst✝ : LinearOrderedField α\nf g : CauSeq α abs\nhf : LimZero f\nhg : LimZero g\nε : α\nε0 : ε > 0\ni : ℕ\nH : ∀ (j : ℕ), j ≥ i → abs (↑f j) < ε ∧ abs (↑g j) < ε\nj : ℕ\nij : j ≥ i\nH₁ : -ε < ↑f j ∧ ↑f j < ε\nH₂ : -ε < ↑g j ∧ ↑g j < ε\n⊢ -ε < ↑(f ⊔ g) j ∧ ↑(f ⊔ g) j < ε", "state_before": "α : Type u_1\ninst✝ : LinearOrderedField α\nf g : CauSeq α abs\nhf : LimZero f\nhg : LimZero g\nε : α\nε0 : ε > 0\ni : ℕ\nH : ∀ (j : ℕ), j ≥ i → abs (↑f j) < ε ∧ abs (↑g j) < ε\nj : ℕ\nij : j ≥ i\nH₁ : abs (↑f j) < ε\nH₂ : abs (↑g j) < ε\n⊢ abs (↑(f ⊔ g) j) < ε", "tactic": "rw [abs_lt] at H₁ H₂⊢" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrderedField α\nf g : CauSeq α abs\nhf : LimZero f\nhg : LimZero g\nε : α\nε0 : ε > 0\ni : ℕ\nH : ∀ (j : ℕ), j ≥ i → abs (↑f j) < ε ∧ abs (↑g j) < ε\nj : ℕ\nij : j ≥ i\nH₁ : -ε < ↑f j ∧ ↑f j < ε\nH₂ : -ε < ↑g j ∧ ↑g j < ε\n⊢ -ε < ↑(f ⊔ g) j ∧ ↑(f ⊔ g) j < ε", "tactic": "exact ⟨lt_sup_iff.mpr (Or.inl H₁.1), sup_lt_iff.mpr ⟨H₁.2, H₂.2⟩⟩" } ]
[ 853, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 848, 1 ]
Mathlib/Order/Partition/Finpartition.lean
Finpartition.card_parts_le_card
[ { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\ns t : Finset α\nP✝ P : Finpartition s\n⊢ card P.parts ≤ card ⊥.parts", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\ns t : Finset α\nP✝ P : Finpartition s\n⊢ card P.parts ≤ card s", "tactic": "rw [← card_bot s]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\ns t : Finset α\nP✝ P : Finpartition s\n⊢ card P.parts ≤ card ⊥.parts", "tactic": "exact card_mono bot_le" } ]
[ 518, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 516, 1 ]
Mathlib/Algebra/Category/ModuleCat/Adjunctions.lean
ModuleCat.Free.associativity
[ { "state_after": "R : Type u\ninst✝ : CommRing R\nX Y Z : Type u\n⊢ ((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫ (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom =\n (α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom", "state_before": "R : Type u\ninst✝ : CommRing R\nX Y Z : Type u\n⊢ ((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫ (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom =\n (α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom", "tactic": "intros" }, { "state_after": "case H\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\n⊢ LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫ (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom) =\n LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)", "state_before": "R : Type u\ninst✝ : CommRing R\nX Y Z : Type u\n⊢ ((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫ (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom =\n (α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom", "tactic": "apply TensorProduct.ext" }, { "state_after": "case H.H\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\n⊢ LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫ (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)) =\n LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom))", "state_before": "case H\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\n⊢ LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫ (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom) =\n LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)", "tactic": "apply TensorProduct.ext" }, { "state_after": "case H.H.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\n⊢ ∀ (a : X),\n LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle a) =\n LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle a)", "state_before": "case H.H\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\n⊢ LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫ (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)) =\n LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom))", "tactic": "apply Finsupp.lhom_ext'" }, { "state_after": "case H.H.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\n⊢ LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫ (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x) =\n LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x)", "state_before": "case H.H.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\n⊢ ∀ (a : X),\n LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle a) =\n LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle a)", "tactic": "intro x" }, { "state_after": "case H.H.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\n⊢ ↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1 =\n ↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1", "state_before": "case H.H.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\n⊢ LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫ (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x) =\n LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x)", "tactic": "apply LinearMap.ext_ring" }, { "state_after": "case H.H.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\n⊢ ∀ (a : Y),\n LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle a) =\n LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle a)", "state_before": "case H.H.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\n⊢ ↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1 =\n ↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1", "tactic": "apply Finsupp.lhom_ext'" }, { "state_after": "case H.H.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\n⊢ LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y) =\n LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y)", "state_before": "case H.H.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\n⊢ ∀ (a : Y),\n LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle a) =\n LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle a)", "tactic": "intro y" }, { "state_after": "case H.H.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\n⊢ ↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1 =\n ↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1", "state_before": "case H.H.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\n⊢ LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y) =\n LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y)", "tactic": "apply LinearMap.ext_ring" }, { "state_after": "case H.H.h.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\n⊢ ∀ (a : Z),\n LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle a) =\n LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle a)", "state_before": "case H.H.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\n⊢ ↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1 =\n ↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1", "tactic": "apply Finsupp.lhom_ext'" }, { "state_after": "case H.H.h.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\nz : Z\n⊢ LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z) =\n LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z)", "state_before": "case H.H.h.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\n⊢ ∀ (a : Z),\n LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle a) =\n LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle a)", "tactic": "intro z" }, { "state_after": "case H.H.h.h.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\nz : Z\n⊢ ↑(LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z))\n 1 =\n ↑(LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z))\n 1", "state_before": "case H.H.h.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\nz : Z\n⊢ LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z) =\n LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z)", "tactic": "apply LinearMap.ext_ring" }, { "state_after": "case H.H.h.h.h.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\nz : Z\n⊢ ∀ (a : X ⊗ Y ⊗ Z),\n ↑(↑(LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂\n (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z))\n 1)\n a =\n ↑(↑(LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂\n (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z))\n 1)\n a", "state_before": "case H.H.h.h.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\nz : Z\n⊢ ↑(LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z))\n 1 =\n ↑(LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z))\n 1", "tactic": "apply Finsupp.ext" }, { "state_after": "case H.H.h.h.h.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\nz : Z\na : X ⊗ Y ⊗ Z\n⊢ ↑(↑(LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z))\n 1)\n a =\n ↑(↑(LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z))\n 1)\n a", "state_before": "case H.H.h.h.h.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\nz : Z\n⊢ ∀ (a : X ⊗ Y ⊗ Z),\n ↑(↑(LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂\n (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z))\n 1)\n a =\n ↑(↑(LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂\n (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z))\n 1)\n a", "tactic": "intro a" }, { "state_after": "case H.H.h.h.h.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\nz : Z\na : X ⊗ Y ⊗ Z\n⊢ ↑(Finsupp.mapDomain (α_ X Y Z).hom\n (↑(finsuppTensorFinsupp' R (X ⊗ Y) Z)\n (↑(finsuppTensorFinsupp' R X Y) (Finsupp.single x 1 ⊗ₜ[R] Finsupp.single y 1) ⊗ₜ[R] Finsupp.single z 1)))\n a =\n ↑(↑(finsuppTensorFinsupp' R X (Y ⊗ Z))\n (Finsupp.single x 1 ⊗ₜ[R] ↑(finsuppTensorFinsupp' R Y Z) (Finsupp.single y 1 ⊗ₜ[R] Finsupp.single z 1)))\n a", "state_before": "case H.H.h.h.h.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\nz : Z\na : X ⊗ Y ⊗ Z\n⊢ ↑(↑(LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n (((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫\n (μ R (X ⊗ Y) Z).hom ≫ map (free R).toPrefunctor.obj (α_ X Y Z).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z))\n 1)\n a =\n ↑(↑(LinearMap.comp\n (↑(LinearMap.comp\n (↑(LinearMap.comp\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X) ↑((free R).obj Y))\n (LinearMap.compr₂ (TensorProduct.mk R ↑((free R).obj X ⊗ (free R).obj Y) ↑((free R).obj Z))\n ((α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫\n (𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom)))\n (Finsupp.lsingle x))\n 1)\n (Finsupp.lsingle y))\n 1)\n (Finsupp.lsingle z))\n 1)\n a", "tactic": "change Finsupp.mapDomain (α_ X Y Z).hom (finsuppTensorFinsupp' R (X ⊗ Y) Z\n (finsuppTensorFinsupp' R X Y\n (Finsupp.single x 1 ⊗ₜ[R] Finsupp.single y 1) ⊗ₜ[R] Finsupp.single z 1)) a =\n finsuppTensorFinsupp' R X (Y ⊗ Z)\n (Finsupp.single x 1 ⊗ₜ[R]\n finsuppTensorFinsupp' R Y Z (Finsupp.single y 1 ⊗ₜ[R] Finsupp.single z 1)) a" }, { "state_after": "no goals", "state_before": "case H.H.h.h.h.h.h.h.h\nR : Type u\ninst✝ : CommRing R\nX Y Z : Type u\nx : X\ny : Y\nz : Z\na : X ⊗ Y ⊗ Z\n⊢ ↑(Finsupp.mapDomain (α_ X Y Z).hom\n (↑(finsuppTensorFinsupp' R (X ⊗ Y) Z)\n (↑(finsuppTensorFinsupp' R X Y) (Finsupp.single x 1 ⊗ₜ[R] Finsupp.single y 1) ⊗ₜ[R] Finsupp.single z 1)))\n a =\n ↑(↑(finsuppTensorFinsupp' R X (Y ⊗ Z))\n (Finsupp.single x 1 ⊗ₜ[R] ↑(finsuppTensorFinsupp' R Y Z) (Finsupp.single y 1 ⊗ₜ[R] Finsupp.single z 1)))\n a", "tactic": "simp_rw [finsuppTensorFinsupp'_single_tmul_single, Finsupp.mapDomain_single, mul_one,\n CategoryTheory.associator_hom_apply]" } ]
[ 182, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/RingTheory/RootsOfUnity/Basic.lean
IsPrimitiveRoot.eq_pow_of_pow_eq_one
[ { "state_after": "case intro\nM : Type ?u.3458904\nN : Type ?u.3458907\nG : Type ?u.3458910\nR : Type u_1\nS : Type ?u.3458916\nF : Type ?u.3458919\ninst✝⁴ : CommMonoid M\ninst✝³ : CommMonoid N\ninst✝² : DivisionCommMonoid G\nk✝ l : ℕ\ninst✝¹ : CommRing R\nζ✝ : Rˣ\nh✝ : IsPrimitiveRoot ζ✝ k✝\ninst✝ : IsDomain R\nk : ℕ\nξ : R\nhξ : ξ ^ k = 1\nh0 : 0 < k\nζ : Rˣ\nh : IsPrimitiveRoot (↑ζ) k\n⊢ ∃ i, i < k ∧ ↑ζ ^ i = ξ", "state_before": "M : Type ?u.3458904\nN : Type ?u.3458907\nG : Type ?u.3458910\nR : Type u_1\nS : Type ?u.3458916\nF : Type ?u.3458919\ninst✝⁴ : CommMonoid M\ninst✝³ : CommMonoid N\ninst✝² : DivisionCommMonoid G\nk✝ l : ℕ\ninst✝¹ : CommRing R\nζ✝ : Rˣ\nh✝ : IsPrimitiveRoot ζ✝ k✝\ninst✝ : IsDomain R\nk : ℕ\nζ ξ : R\nh : IsPrimitiveRoot ζ k\nhξ : ξ ^ k = 1\nh0 : 0 < k\n⊢ ∃ i, i < k ∧ ζ ^ i = ξ", "tactic": "lift ζ to Rˣ using h.isUnit h0" }, { "state_after": "case intro.intro\nM : Type ?u.3458904\nN : Type ?u.3458907\nG : Type ?u.3458910\nR : Type u_1\nS : Type ?u.3458916\nF : Type ?u.3458919\ninst✝⁴ : CommMonoid M\ninst✝³ : CommMonoid N\ninst✝² : DivisionCommMonoid G\nk✝ l : ℕ\ninst✝¹ : CommRing R\nζ✝ : Rˣ\nh✝ : IsPrimitiveRoot ζ✝ k✝\ninst✝ : IsDomain R\nk : ℕ\nh0 : 0 < k\nζ : Rˣ\nh : IsPrimitiveRoot (↑ζ) k\nξ : Rˣ\nhξ : ↑ξ ^ k = 1\n⊢ ∃ i, i < k ∧ ↑ζ ^ i = ↑ξ", "state_before": "case intro\nM : Type ?u.3458904\nN : Type ?u.3458907\nG : Type ?u.3458910\nR : Type u_1\nS : Type ?u.3458916\nF : Type ?u.3458919\ninst✝⁴ : CommMonoid M\ninst✝³ : CommMonoid N\ninst✝² : DivisionCommMonoid G\nk✝ l : ℕ\ninst✝¹ : CommRing R\nζ✝ : Rˣ\nh✝ : IsPrimitiveRoot ζ✝ k✝\ninst✝ : IsDomain R\nk : ℕ\nξ : R\nhξ : ξ ^ k = 1\nh0 : 0 < k\nζ : Rˣ\nh : IsPrimitiveRoot (↑ζ) k\n⊢ ∃ i, i < k ∧ ↑ζ ^ i = ξ", "tactic": "lift ξ to Rˣ using isUnit_ofPowEqOne hξ h0.ne'" }, { "state_after": "case intro.intro.intro\nM : Type ?u.3458904\nN : Type ?u.3458907\nG : Type ?u.3458910\nR : Type u_1\nS : Type ?u.3458916\nF : Type ?u.3458919\ninst✝⁴ : CommMonoid M\ninst✝³ : CommMonoid N\ninst✝² : DivisionCommMonoid G\nk✝ l : ℕ\ninst✝¹ : CommRing R\nζ✝ : Rˣ\nh✝ : IsPrimitiveRoot ζ✝ k✝\ninst✝ : IsDomain R\nζ ξ : Rˣ\nk : ℕ+\nh : IsPrimitiveRoot ↑ζ ↑k\nhξ : ↑ξ ^ ↑k = 1\n⊢ ∃ i, i < ↑k ∧ ↑ζ ^ i = ↑ξ", "state_before": "case intro.intro\nM : Type ?u.3458904\nN : Type ?u.3458907\nG : Type ?u.3458910\nR : Type u_1\nS : Type ?u.3458916\nF : Type ?u.3458919\ninst✝⁴ : CommMonoid M\ninst✝³ : CommMonoid N\ninst✝² : DivisionCommMonoid G\nk✝ l : ℕ\ninst✝¹ : CommRing R\nζ✝ : Rˣ\nh✝ : IsPrimitiveRoot ζ✝ k✝\ninst✝ : IsDomain R\nk : ℕ\nh0 : 0 < k\nζ : Rˣ\nh : IsPrimitiveRoot (↑ζ) k\nξ : Rˣ\nhξ : ↑ξ ^ k = 1\n⊢ ∃ i, i < k ∧ ↑ζ ^ i = ↑ξ", "tactic": "lift k to ℕ+ using h0" }, { "state_after": "case intro.intro.intro\nM : Type ?u.3458904\nN : Type ?u.3458907\nG : Type ?u.3458910\nR : Type u_1\nS : Type ?u.3458916\nF : Type ?u.3458919\ninst✝⁴ : CommMonoid M\ninst✝³ : CommMonoid N\ninst✝² : DivisionCommMonoid G\nk✝ l : ℕ\ninst✝¹ : CommRing R\nζ✝ : Rˣ\nh✝ : IsPrimitiveRoot ζ✝ k✝\ninst✝ : IsDomain R\nζ ξ : Rˣ\nk : ℕ+\nh : IsPrimitiveRoot ↑ζ ↑k\nhξ : ↑ξ ^ ↑k = 1\n⊢ ∃ i, i < ↑k ∧ ζ ^ i = ξ", "state_before": "case intro.intro.intro\nM : Type ?u.3458904\nN : Type ?u.3458907\nG : Type ?u.3458910\nR : Type u_1\nS : Type ?u.3458916\nF : Type ?u.3458919\ninst✝⁴ : CommMonoid M\ninst✝³ : CommMonoid N\ninst✝² : DivisionCommMonoid G\nk✝ l : ℕ\ninst✝¹ : CommRing R\nζ✝ : Rˣ\nh✝ : IsPrimitiveRoot ζ✝ k✝\ninst✝ : IsDomain R\nζ ξ : Rˣ\nk : ℕ+\nh : IsPrimitiveRoot ↑ζ ↑k\nhξ : ↑ξ ^ ↑k = 1\n⊢ ∃ i, i < ↑k ∧ ↑ζ ^ i = ↑ξ", "tactic": "simp only [← Units.val_pow_eq_pow_val, ← Units.ext_iff]" }, { "state_after": "case intro.intro.intro\nM : Type ?u.3458904\nN : Type ?u.3458907\nG : Type ?u.3458910\nR : Type u_1\nS : Type ?u.3458916\nF : Type ?u.3458919\ninst✝⁴ : CommMonoid M\ninst✝³ : CommMonoid N\ninst✝² : DivisionCommMonoid G\nk✝ l : ℕ\ninst✝¹ : CommRing R\nζ✝ : Rˣ\nh✝ : IsPrimitiveRoot ζ✝ k✝\ninst✝ : IsDomain R\nζ ξ : Rˣ\nk : ℕ+\nh : IsPrimitiveRoot ζ ↑k\nhξ : ↑ξ ^ ↑k = 1\n⊢ ∃ i, i < ↑k ∧ ζ ^ i = ξ", "state_before": "case intro.intro.intro\nM : Type ?u.3458904\nN : Type ?u.3458907\nG : Type ?u.3458910\nR : Type u_1\nS : Type ?u.3458916\nF : Type ?u.3458919\ninst✝⁴ : CommMonoid M\ninst✝³ : CommMonoid N\ninst✝² : DivisionCommMonoid G\nk✝ l : ℕ\ninst✝¹ : CommRing R\nζ✝ : Rˣ\nh✝ : IsPrimitiveRoot ζ✝ k✝\ninst✝ : IsDomain R\nζ ξ : Rˣ\nk : ℕ+\nh : IsPrimitiveRoot ↑ζ ↑k\nhξ : ↑ξ ^ ↑k = 1\n⊢ ∃ i, i < ↑k ∧ ζ ^ i = ξ", "tactic": "rw [coe_units_iff] at h" }, { "state_after": "case intro.intro.intro\nM : Type ?u.3458904\nN : Type ?u.3458907\nG : Type ?u.3458910\nR : Type u_1\nS : Type ?u.3458916\nF : Type ?u.3458919\ninst✝⁴ : CommMonoid M\ninst✝³ : CommMonoid N\ninst✝² : DivisionCommMonoid G\nk✝ l : ℕ\ninst✝¹ : CommRing R\nζ✝ : Rˣ\nh✝ : IsPrimitiveRoot ζ✝ k✝\ninst✝ : IsDomain R\nζ ξ : Rˣ\nk : ℕ+\nh : IsPrimitiveRoot ζ ↑k\nhξ : ↑ξ ^ ↑k = 1\n⊢ ξ ∈ rootsOfUnity k R", "state_before": "case intro.intro.intro\nM : Type ?u.3458904\nN : Type ?u.3458907\nG : Type ?u.3458910\nR : Type u_1\nS : Type ?u.3458916\nF : Type ?u.3458919\ninst✝⁴ : CommMonoid M\ninst✝³ : CommMonoid N\ninst✝² : DivisionCommMonoid G\nk✝ l : ℕ\ninst✝¹ : CommRing R\nζ✝ : Rˣ\nh✝ : IsPrimitiveRoot ζ✝ k✝\ninst✝ : IsDomain R\nζ ξ : Rˣ\nk : ℕ+\nh : IsPrimitiveRoot ζ ↑k\nhξ : ↑ξ ^ ↑k = 1\n⊢ ∃ i, i < ↑k ∧ ζ ^ i = ξ", "tactic": "apply h.eq_pow_of_mem_rootsOfUnity" }, { "state_after": "no goals", "state_before": "case intro.intro.intro\nM : Type ?u.3458904\nN : Type ?u.3458907\nG : Type ?u.3458910\nR : Type u_1\nS : Type ?u.3458916\nF : Type ?u.3458919\ninst✝⁴ : CommMonoid M\ninst✝³ : CommMonoid N\ninst✝² : DivisionCommMonoid G\nk✝ l : ℕ\ninst✝¹ : CommRing R\nζ✝ : Rˣ\nh✝ : IsPrimitiveRoot ζ✝ k✝\ninst✝ : IsDomain R\nζ ξ : Rˣ\nk : ℕ+\nh : IsPrimitiveRoot ζ ↑k\nhξ : ↑ξ ^ ↑k = 1\n⊢ ξ ∈ rootsOfUnity k R", "tactic": "rw [mem_rootsOfUnity, Units.ext_iff, Units.val_pow_eq_pow_val, hξ, Units.val_one]" } ]
[ 778, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 770, 1 ]
Mathlib/MeasureTheory/Measure/OuterMeasure.lean
MeasureTheory.OuterMeasure.sInf_apply
[ { "state_after": "no goals", "state_before": "α : Type u_1\nm : Set (OuterMeasure α)\ns : Set α\nh : Set.Nonempty m\n⊢ ↑(sInf m) s = ⨅ (t : ℕ → Set α) (_ : s ⊆ iUnion t), ∑' (n : ℕ), ⨅ (μ : OuterMeasure α) (_ : μ ∈ m), ↑μ (t n)", "tactic": "simp_rw [sInf_eq_boundedBy_sInfGen, boundedBy_apply, iSup_sInfGen_nonempty h]" } ]
[ 1175, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1172, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.tan_add_pi
[]
[ 805, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 804, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/BinaryProducts.lean
CategoryTheory.Limits.WalkingPair.swap_apply_left
[]
[ 66, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Mathlib/NumberTheory/Padics/PadicIntegers.lean
PadicInt.valuation_p
[ { "state_after": "no goals", "state_before": "p : ℕ\nhp : Fact (Nat.Prime p)\n⊢ valuation ↑p = 1", "tactic": "simp [valuation]" } ]
[ 394, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 394, 1 ]
Mathlib/Data/Nat/Bitwise.lean
Nat.land'_comm
[]
[ 181, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 180, 1 ]
Mathlib/Data/Real/NNReal.lean
Set.OrdConnected.preimage_real_toNNReal
[]
[ 1042, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1041, 1 ]
Mathlib/Data/Finset/Sups.lean
Finset.infs_assoc
[]
[ 374, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 373, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.frequently_bot
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.169823\nι : Sort x\np : α → Prop\n⊢ ¬∃ᶠ (x : α) in ⊥, p x", "tactic": "simp" } ]
[ 1386, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1386, 1 ]
Mathlib/Analysis/Calculus/Deriv/Basic.lean
HasDerivAt.continuousOn
[]
[ 728, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 727, 11 ]
Mathlib/Data/Finset/Slice.lean
Finset.subset_powersetLen_univ_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nι : Sort ?u.3644\nκ : ι → Sort ?u.3649\ninst✝ : Fintype α\n𝒜 : Finset (Finset α)\ns : Finset α\nr : ℕ\nA : Finset α\n⊢ A ∈ 𝒜 → A ∈ powersetLen r univ ↔ A ∈ ↑𝒜 → card A = r", "tactic": "rw [mem_powerset_len_univ_iff, mem_coe]" } ]
[ 110, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 109, 1 ]
Mathlib/Analysis/Calculus/LHopital.lean
deriv.lhopital_zero_atBot_on_Iio
[ { "state_after": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf✝ : DifferentiableOn ℝ f (Iio a)\nhg' : ∀ (x : ℝ), x ∈ Iio a → deriv g x ≠ 0\nhfbot : Tendsto f atBot (𝓝 0)\nhgbot : Tendsto g atBot (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l\nhdf : ∀ (x : ℝ), x ∈ Iio a → DifferentiableAt ℝ f x\n⊢ Tendsto (fun x => f x / g x) atBot l", "state_before": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf : DifferentiableOn ℝ f (Iio a)\nhg' : ∀ (x : ℝ), x ∈ Iio a → deriv g x ≠ 0\nhfbot : Tendsto f atBot (𝓝 0)\nhgbot : Tendsto g atBot (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l\n⊢ Tendsto (fun x => f x / g x) atBot l", "tactic": "have hdf : ∀ x ∈ Iio a, DifferentiableAt ℝ f x := fun x hx =>\n (hdf x hx).differentiableAt (Iio_mem_nhds hx)" }, { "state_after": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf✝ : DifferentiableOn ℝ f (Iio a)\nhg' : ∀ (x : ℝ), x ∈ Iio a → deriv g x ≠ 0\nhfbot : Tendsto f atBot (𝓝 0)\nhgbot : Tendsto g atBot (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l\nhdf : ∀ (x : ℝ), x ∈ Iio a → DifferentiableAt ℝ f x\nhdg : ∀ (x : ℝ), x ∈ Iio a → DifferentiableAt ℝ g x\n⊢ Tendsto (fun x => f x / g x) atBot l", "state_before": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf✝ : DifferentiableOn ℝ f (Iio a)\nhg' : ∀ (x : ℝ), x ∈ Iio a → deriv g x ≠ 0\nhfbot : Tendsto f atBot (𝓝 0)\nhgbot : Tendsto g atBot (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l\nhdf : ∀ (x : ℝ), x ∈ Iio a → DifferentiableAt ℝ f x\n⊢ Tendsto (fun x => f x / g x) atBot l", "tactic": "have hdg : ∀ x ∈ Iio a, DifferentiableAt ℝ g x := fun x hx =>\n by_contradiction fun h => hg' x hx (deriv_zero_of_not_differentiableAt h)" }, { "state_after": "no goals", "state_before": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf✝ : DifferentiableOn ℝ f (Iio a)\nhg' : ∀ (x : ℝ), x ∈ Iio a → deriv g x ≠ 0\nhfbot : Tendsto f atBot (𝓝 0)\nhgbot : Tendsto g atBot (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) atBot l\nhdf : ∀ (x : ℝ), x ∈ Iio a → DifferentiableAt ℝ f x\nhdg : ∀ (x : ℝ), x ∈ Iio a → DifferentiableAt ℝ g x\n⊢ Tendsto (fun x => f x / g x) atBot l", "tactic": "exact HasDerivAt.lhopital_zero_atBot_on_Iio (fun x hx => (hdf x hx).hasDerivAt)\n (fun x hx => (hdg x hx).hasDerivAt) hg' hfbot hgbot hdiv" } ]
[ 269, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 260, 1 ]
Mathlib/GroupTheory/Subsemigroup/Basic.lean
Subsemigroup.closure_induction
[]
[ 359, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 357, 1 ]
Mathlib/Algebra/Star/Order.lean
star_mul_self_nonneg
[]
[ 157, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 156, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
Real.logb_neg_of_base_lt_one
[]
[ 302, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 301, 1 ]
Mathlib/Data/Set/Basic.lean
Set.inter_self
[]
[ 912, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 911, 1 ]
Mathlib/Analysis/Convex/Cone/Basic.lean
Submodule.toConvexCone_bot
[]
[ 533, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 532, 1 ]
Mathlib/LinearAlgebra/Matrix/SpecialLinearGroup.lean
Matrix.SpecialLinearGroup.det_ne_zero
[ { "state_after": "n : Type u\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nR : Type v\ninst✝¹ : CommRing R\nA B : SpecialLinearGroup n R\ninst✝ : Nontrivial R\ng : SpecialLinearGroup n R\n⊢ 1 ≠ 0", "state_before": "n : Type u\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nR : Type v\ninst✝¹ : CommRing R\nA B : SpecialLinearGroup n R\ninst✝ : Nontrivial R\ng : SpecialLinearGroup n R\n⊢ det ↑g ≠ 0", "tactic": "rw [g.det_coe]" }, { "state_after": "no goals", "state_before": "n : Type u\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nR : Type v\ninst✝¹ : CommRing R\nA B : SpecialLinearGroup n R\ninst✝ : Nontrivial R\ng : SpecialLinearGroup n R\n⊢ 1 ≠ 0", "tactic": "norm_num" } ]
[ 166, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 164, 1 ]
Mathlib/Order/JordanHolder.lean
CompositionSeries.bot_eraseTop
[]
[ 411, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 410, 1 ]
Mathlib/GroupTheory/OrderOfElement.lean
inf_eq_bot_of_coprime
[ { "state_after": "G✝ : Type u\nA : Type v\nx✝ y : G✝\na b : A\nn m : ℕ\ninst✝⁵ : Group G✝\ninst✝⁴ : AddGroup A\ninst✝³ : Fintype G✝\nG : Type u_1\ninst✝² : Group G\nH K : Subgroup G\ninst✝¹ : Fintype { x // x ∈ H }\ninst✝ : Fintype { x // x ∈ K }\nh : coprime (Fintype.card { x // x ∈ H }) (Fintype.card { x // x ∈ K })\nx : G\nhx : x ∈ H ⊓ K\n⊢ x = 1", "state_before": "G✝ : Type u\nA : Type v\nx y : G✝\na b : A\nn m : ℕ\ninst✝⁵ : Group G✝\ninst✝⁴ : AddGroup A\ninst✝³ : Fintype G✝\nG : Type u_1\ninst✝² : Group G\nH K : Subgroup G\ninst✝¹ : Fintype { x // x ∈ H }\ninst✝ : Fintype { x // x ∈ K }\nh : coprime (Fintype.card { x // x ∈ H }) (Fintype.card { x // x ∈ K })\n⊢ H ⊓ K = ⊥", "tactic": "refine' (H ⊓ K).eq_bot_iff_forall.mpr fun x hx => _" }, { "state_after": "G✝ : Type u\nA : Type v\nx✝ y : G✝\na b : A\nn m : ℕ\ninst✝⁵ : Group G✝\ninst✝⁴ : AddGroup A\ninst✝³ : Fintype G✝\nG : Type u_1\ninst✝² : Group G\nH K : Subgroup G\ninst✝¹ : Fintype { x // x ∈ H }\ninst✝ : Fintype { x // x ∈ K }\nh : coprime (Fintype.card { x // x ∈ H }) (Fintype.card { x // x ∈ K })\nx : G\nhx : x ∈ H ⊓ K\n⊢ orderOf x ∣ Fintype.card { x // x ∈ H } ∧ orderOf x ∣ Fintype.card { x // x ∈ K }", "state_before": "G✝ : Type u\nA : Type v\nx✝ y : G✝\na b : A\nn m : ℕ\ninst✝⁵ : Group G✝\ninst✝⁴ : AddGroup A\ninst✝³ : Fintype G✝\nG : Type u_1\ninst✝² : Group G\nH K : Subgroup G\ninst✝¹ : Fintype { x // x ∈ H }\ninst✝ : Fintype { x // x ∈ K }\nh : coprime (Fintype.card { x // x ∈ H }) (Fintype.card { x // x ∈ K })\nx : G\nhx : x ∈ H ⊓ K\n⊢ x = 1", "tactic": "rw [← orderOf_eq_one_iff, ← Nat.dvd_one, ← h.gcd_eq_one, Nat.dvd_gcd_iff]" } ]
[ 1004, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 998, 1 ]
Mathlib/Data/Set/Finite.lean
Set.Finite.finite_subsets
[ { "state_after": "no goals", "state_before": "α✝ : Type u\nβ : Type v\nι : Sort w\nγ : Type x\nα : Type u\na : Set α\nh : Set.Finite a\ns : Set α\n⊢ s ∈ Finset.map Finset.coeEmb.toEmbedding (Finset.powerset (Finite.toFinset h)) ↔ s ∈ {b | b ⊆ a}", "tactic": "simpa [← @exists_finite_iff_finset α fun t => t ⊆ a ∧ t = s, Finite.subset_toFinset, ←\n and_assoc, Finset.coeEmb] using h.subset" } ]
[ 1000, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 997, 1 ]
Mathlib/Topology/Instances/AddCircle.lean
AddCircle.coe_image_Ioc_eq
[ { "state_after": "𝕜 : Type u_1\nB : Type ?u.105763\ninst✝³ : LinearOrderedAddCommGroup 𝕜\ninst✝² : TopologicalSpace 𝕜\ninst✝¹ : OrderTopology 𝕜\np : 𝕜\nhp : Fact (0 < p)\na : 𝕜\ninst✝ : Archimedean 𝕜\n⊢ (range fun x => ↑↑x) = univ", "state_before": "𝕜 : Type u_1\nB : Type ?u.105763\ninst✝³ : LinearOrderedAddCommGroup 𝕜\ninst✝² : TopologicalSpace 𝕜\ninst✝¹ : OrderTopology 𝕜\np : 𝕜\nhp : Fact (0 < p)\na : 𝕜\ninst✝ : Archimedean 𝕜\n⊢ QuotientAddGroup.mk '' Ioc a (a + p) = univ", "tactic": "rw [image_eq_range]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nB : Type ?u.105763\ninst✝³ : LinearOrderedAddCommGroup 𝕜\ninst✝² : TopologicalSpace 𝕜\ninst✝¹ : OrderTopology 𝕜\np : 𝕜\nhp : Fact (0 < p)\na : 𝕜\ninst✝ : Archimedean 𝕜\n⊢ (range fun x => ↑↑x) = univ", "tactic": "exact (equivIoc p a).symm.range_eq_univ" } ]
[ 308, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 306, 1 ]
Mathlib/CategoryTheory/Functor/EpiMono.lean
CategoryTheory.Functor.mono_map_iff_mono
[ { "state_after": "case mp\nC : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\nhF₁ : PreservesMonomorphisms F\nhF₂ : ReflectsMonomorphisms F\n⊢ Mono (F.map f) → Mono f\n\ncase mpr\nC : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\nhF₁ : PreservesMonomorphisms F\nhF₂ : ReflectsMonomorphisms F\n⊢ Mono f → Mono (F.map f)", "state_before": "C : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\nhF₁ : PreservesMonomorphisms F\nhF₂ : ReflectsMonomorphisms F\n⊢ Mono (F.map f) ↔ Mono f", "tactic": "constructor" }, { "state_after": "no goals", "state_before": "case mp\nC : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\nhF₁ : PreservesMonomorphisms F\nhF₂ : ReflectsMonomorphisms F\n⊢ Mono (F.map f) → Mono f", "tactic": "exact F.mono_of_mono_map" }, { "state_after": "case mpr\nC : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\nhF₁ : PreservesMonomorphisms F\nhF₂ : ReflectsMonomorphisms F\nh : Mono f\n⊢ Mono (F.map f)", "state_before": "case mpr\nC : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\nhF₁ : PreservesMonomorphisms F\nhF₂ : ReflectsMonomorphisms F\n⊢ Mono f → Mono (F.map f)", "tactic": "intro h" }, { "state_after": "no goals", "state_before": "case mpr\nC : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\nhF₁ : PreservesMonomorphisms F\nhF₂ : ReflectsMonomorphisms F\nh : Mono f\n⊢ Mono (F.map f)", "tactic": "exact F.map_mono f" } ]
[ 293, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 288, 1 ]
Mathlib/NumberTheory/LegendreSymbol/MulCharacter.lean
MulChar.inv_apply_eq_inv
[]
[ 339, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 338, 1 ]
Mathlib/FieldTheory/Finiteness.lean
IsNoetherian.finite_basis_index
[]
[ 71, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 69, 1 ]
Mathlib/CategoryTheory/EssentiallySmall.lean
CategoryTheory.essentiallySmall_iff_of_thin
[ { "state_after": "no goals", "state_before": "C✝ : Type u\ninst✝² : Category C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : Quiver.IsThin C\n⊢ EssentiallySmall C ↔ Small (Skeleton C)", "tactic": "simp [essentiallySmall_iff, CategoryTheory.locallySmall_of_thin]" } ]
[ 238, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/Algebra/Group/WithOne/Basic.lean
WithOne.map_map
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝² : Mul α\ninst✝¹ : Mul β\ninst✝ : Mul γ\nf : α →ₙ* β\ng : β →ₙ* γ\nx : WithOne α\n⊢ ↑(map g) (↑(map f) x) = ↑(map (MulHom.comp g f)) x", "tactic": "induction x using WithOne.cases_on <;> rfl" } ]
[ 124, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/RingTheory/Multiplicity.lean
multiplicity.neg
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : Ring α\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\na b : α\n⊢ (multiplicity a (-b)).Dom ↔ (multiplicity a b).Dom", "tactic": "simp only [multiplicity, PartENat.find, dvd_neg]" }, { "state_after": "α : Type u_1\ninst✝¹ : Ring α\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\na b : α\nh₁ : (multiplicity a (-b)).Dom\nh₂ : (multiplicity a b).Dom\n⊢ multiplicity a (-b) = ↑(Part.get (multiplicity a b) h₂)", "state_before": "α : Type u_1\ninst✝¹ : Ring α\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\na b : α\nh₁ : (multiplicity a (-b)).Dom\nh₂ : (multiplicity a b).Dom\n⊢ ↑(Part.get (multiplicity a (-b)) h₁) = ↑(Part.get (multiplicity a b) h₂)", "tactic": "rw [PartENat.natCast_get]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : Ring α\ninst✝ : DecidableRel fun x x_1 => x ∣ x_1\na b : α\nh₁ : (multiplicity a (-b)).Dom\nh₂ : (multiplicity a b).Dom\n⊢ multiplicity a (-b) = ↑(Part.get (multiplicity a b) h₂)", "tactic": "exact Eq.symm\n (unique (pow_multiplicity_dvd _).neg_right\n (mt dvd_neg.1 (is_greatest' _ (lt_succ_self _))))" } ]
[ 428, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 422, 11 ]
Mathlib/Order/Circular.lean
btw_refl_right
[]
[ 311, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 310, 1 ]
Mathlib/RingTheory/Ideal/LocalRing.lean
LocalRing.ResidueField.lift_comp_residue
[]
[ 397, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 395, 1 ]
Mathlib/Data/Set/Pointwise/SMul.lean
Set.Nonempty.of_vsub_right
[]
[ 645, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 644, 1 ]
Mathlib/Data/Finset/Card.lean
Finset.card_congr
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\ns t✝ : Finset α\nf✝ : α → β\nn : ℕ\nt : Finset β\nf : (a : α) → a ∈ s → β\nh₁ : ∀ (a : α) (ha : a ∈ s), f a ha ∈ t\nh₂ : ∀ (a b : α) (ha : a ∈ s) (hb : b ∈ s), f a ha = f b hb → a = b\nh₃ : ∀ (b : β), b ∈ t → ∃ a ha, f a ha = b\n⊢ card s = card t", "tactic": "classical calc\n s.card = s.attach.card := card_attach.symm\n _ = (s.attach.image fun a : { a // a ∈ s } => f a.1 a.2).card :=\n Eq.symm ((card_image_of_injective _) fun a b h => Subtype.eq <| h₂ _ _ _ _ h)\n _ = t.card :=\n congr_arg card\n (Finset.ext fun b =>\n ⟨fun h =>\n let ⟨a, _, ha₂⟩ := mem_image.1 h\n ha₂ ▸ h₁ _ _,\n fun h =>\n let ⟨a, ha₁, ha₂⟩ := h₃ b h\n mem_image.2 ⟨⟨a, ha₁⟩, by simp [ha₂]⟩⟩)" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\ns t✝ : Finset α\nf✝ : α → β\nn : ℕ\nt : Finset β\nf : (a : α) → a ∈ s → β\nh₁ : ∀ (a : α) (ha : a ∈ s), f a ha ∈ t\nh₂ : ∀ (a b : α) (ha : a ∈ s) (hb : b ∈ s), f a ha = f b hb → a = b\nh₃ : ∀ (b : β), b ∈ t → ∃ a ha, f a ha = b\n⊢ card s = card t", "tactic": "calc\ns.card = s.attach.card := card_attach.symm\n_ = (s.attach.image fun a : { a // a ∈ s } => f a.1 a.2).card :=\nEq.symm ((card_image_of_injective _) fun a b h => Subtype.eq <| h₂ _ _ _ _ h)\n_ = t.card :=\ncongr_arg card\n(Finset.ext fun b =>\n⟨fun h =>\n let ⟨a, _, ha₂⟩ := mem_image.1 h\n ha₂ ▸ h₁ _ _,\n fun h =>\n let ⟨a, ha₁, ha₂⟩ := h₃ b h\n mem_image.2 ⟨⟨a, ha₁⟩, by simp [ha₂]⟩⟩)" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\ns t✝ : Finset α\nf✝ : α → β\nn : ℕ\nt : Finset β\nf : (a : α) → a ∈ s → β\nh₁ : ∀ (a : α) (ha : a ∈ s), f a ha ∈ t\nh₂ : ∀ (a b : α) (ha : a ∈ s) (hb : b ∈ s), f a ha = f b hb → a = b\nh₃ : ∀ (b : β), b ∈ t → ∃ a ha, f a ha = b\nb : β\nh : b ∈ t\na : α\nha₁ : a ∈ s\nha₂ : f a ha₁ = b\n⊢ { val := a, property := ha₁ } ∈ attach s ∧\n f ↑{ val := a, property := ha₁ } (_ : ↑{ val := a, property := ha₁ } ∈ s) = b", "tactic": "simp [ha₂]" } ]
[ 327, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 312, 1 ]
Mathlib/Topology/Algebra/Module/Multilinear.lean
ContinuousMultilinearMap.sum_apply
[]
[ 226, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 224, 1 ]
Mathlib/CategoryTheory/Limits/HasLimits.lean
CategoryTheory.Limits.limit.isoLimitCone_hom_π
[ { "state_after": "J : Type u₁\ninst✝³ : Category J\nK : Type u₂\ninst✝² : Category K\nC : Type u\ninst✝¹ : Category C\nF✝ F : J ⥤ C\ninst✝ : HasLimit F\nt : LimitCone F\nj : J\n⊢ IsLimit.lift t.isLimit (cone F) ≫ t.cone.π.app j = π F j", "state_before": "J : Type u₁\ninst✝³ : Category J\nK : Type u₂\ninst✝² : Category K\nC : Type u\ninst✝¹ : Category C\nF✝ F : J ⥤ C\ninst✝ : HasLimit F\nt : LimitCone F\nj : J\n⊢ (isoLimitCone t).hom ≫ t.cone.π.app j = π F j", "tactic": "dsimp [limit.isoLimitCone, IsLimit.conePointUniqueUpToIso]" }, { "state_after": "no goals", "state_before": "J : Type u₁\ninst✝³ : Category J\nK : Type u₂\ninst✝² : Category K\nC : Type u\ninst✝¹ : Category C\nF✝ F : J ⥤ C\ninst✝ : HasLimit F\nt : LimitCone F\nj : J\n⊢ IsLimit.lift t.isLimit (cone F) ≫ t.cone.π.app j = π F j", "tactic": "aesop_cat" } ]
[ 257, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 254, 1 ]
Mathlib/Data/List/Basic.lean
List.head?_append
[ { "state_after": "case nil\nι : Type ?u.42760\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ t : List α\nx : α\nh : x ∈ head? []\n⊢ x ∈ head? ([] ++ t)\n\ncase cons\nι : Type ?u.42760\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ t : List α\nx head✝ : α\ntail✝ : List α\nh : x ∈ head? (head✝ :: tail✝)\n⊢ x ∈ head? (head✝ :: tail✝ ++ t)", "state_before": "ι : Type ?u.42760\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ s t : List α\nx : α\nh : x ∈ head? s\n⊢ x ∈ head? (s ++ t)", "tactic": "cases s" }, { "state_after": "case cons\nι : Type ?u.42760\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ t : List α\nx head✝ : α\ntail✝ : List α\nh : x ∈ head? (head✝ :: tail✝)\n⊢ x ∈ head? (head✝ :: tail✝ ++ t)", "state_before": "case nil\nι : Type ?u.42760\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ t : List α\nx : α\nh : x ∈ head? []\n⊢ x ∈ head? ([] ++ t)\n\ncase cons\nι : Type ?u.42760\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ t : List α\nx head✝ : α\ntail✝ : List α\nh : x ∈ head? (head✝ :: tail✝)\n⊢ x ∈ head? (head✝ :: tail✝ ++ t)", "tactic": "contradiction" }, { "state_after": "no goals", "state_before": "case cons\nι : Type ?u.42760\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ t : List α\nx head✝ : α\ntail✝ : List α\nh : x ∈ head? (head✝ :: tail✝)\n⊢ x ∈ head? (head✝ :: tail✝ ++ t)", "tactic": "exact h" } ]
[ 898, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 897, 1 ]
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
Real.rpow_one
[ { "state_after": "no goals", "state_before": "x : ℝ\n⊢ x ^ 1 = x", "tactic": "simp [rpow_def]" } ]
[ 129, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 1 ]
Mathlib/GroupTheory/Coset.lean
QuotientGroup.rightRel_r_eq_rightCosetEquivalence
[ { "state_after": "case h.h.a\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx✝¹ x✝ : α\n⊢ Setoid.r x✝¹ x✝ ↔ RightCosetEquivalence (↑s) x✝¹ x✝", "state_before": "α : Type u_1\ninst✝ : Group α\ns : Subgroup α\n⊢ Setoid.r = RightCosetEquivalence ↑s", "tactic": "ext" }, { "state_after": "case h.h.a\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx✝¹ x✝ : α\n⊢ (fun x y => y * x⁻¹ ∈ s) x✝¹ x✝ ↔ RightCosetEquivalence (↑s) x✝¹ x✝", "state_before": "case h.h.a\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx✝¹ x✝ : α\n⊢ Setoid.r x✝¹ x✝ ↔ RightCosetEquivalence (↑s) x✝¹ x✝", "tactic": "rw [rightRel_eq]" }, { "state_after": "no goals", "state_before": "case h.h.a\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx✝¹ x✝ : α\n⊢ (fun x y => y * x⁻¹ ∈ s) x✝¹ x✝ ↔ RightCosetEquivalence (↑s) x✝¹ x✝", "tactic": "exact (rightCoset_eq_iff s).symm" } ]
[ 399, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 395, 1 ]
Mathlib/Algebra/Order/SMul.lean
smul_nonpos_of_nonneg_of_nonpos
[]
[ 111, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 110, 1 ]
Mathlib/Init/Data/Nat/Bitwise.lean
Nat.ldiff'_bit
[]
[ 483, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 482, 1 ]
Mathlib/Order/Hom/Basic.lean
OrderEmbedding.isWellOrder
[]
[ 682, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 681, 11 ]
Mathlib/CategoryTheory/Sites/Sieves.lean
CategoryTheory.Sieve.pullback_top
[]
[ 469, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 468, 1 ]
Mathlib/Data/Matrix/Block.lean
Matrix.blockDiag'_sub
[]
[ 906, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 904, 1 ]
Mathlib/Order/Filter/Cofinite.lean
Set.Finite.eventually_cofinite_nmem
[]
[ 81, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 1 ]
Mathlib/SetTheory/Cardinal/Cofinality.lean
Ordinal.nfp_lt_ord
[ { "state_after": "no goals", "state_before": "α : Type ?u.35734\nr : α → α → Prop\nf : Ordinal → Ordinal\nc : Ordinal\nhc : ℵ₀ < cof c\nhf : ∀ (i : Ordinal), i < c → f i < c\na : Ordinal\n⊢ Cardinal.lift (#Unit) < cof c", "tactic": "simpa using Cardinal.one_lt_aleph0.trans hc" } ]
[ 411, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 409, 1 ]
Mathlib/Algebra/GradedMonoid.lean
GradedMonoid.GMonoid.gnpowRec_zero
[]
[ 162, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/Order/Filter/AtTopBot.lean
Filter.tendsto_neg_atTop_iff
[]
[ 859, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 858, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.inv_map_iInf
[]
[ 516, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 515, 1 ]
Mathlib/Order/Heyting/Basic.lean
himp_le_himp
[]
[ 423, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 422, 1 ]
Mathlib/Analysis/NormedSpace/ConformalLinearMap.lean
IsConformalMap.injective
[ { "state_after": "case intro.intro.intro\nR : Type u_1\nM : Type ?u.238550\nN : Type u_3\nG : Type ?u.238556\nM' : Type u_2\ninst✝⁸ : NormedField R\ninst✝⁷ : SeminormedAddCommGroup M\ninst✝⁶ : SeminormedAddCommGroup N\ninst✝⁵ : SeminormedAddCommGroup G\ninst✝⁴ : NormedSpace R M\ninst✝³ : NormedSpace R N\ninst✝² : NormedSpace R G\ninst✝¹ : NormedAddCommGroup M'\ninst✝ : NormedSpace R M'\nf : M →L[R] N\ng : N →L[R] G\nc✝ c : R\nhc : c ≠ 0\nli : M' →ₗᵢ[R] N\n⊢ Injective ↑(c • toContinuousLinearMap li)", "state_before": "R : Type u_1\nM : Type ?u.238550\nN : Type u_3\nG : Type ?u.238556\nM' : Type u_2\ninst✝⁸ : NormedField R\ninst✝⁷ : SeminormedAddCommGroup M\ninst✝⁶ : SeminormedAddCommGroup N\ninst✝⁵ : SeminormedAddCommGroup G\ninst✝⁴ : NormedSpace R M\ninst✝³ : NormedSpace R N\ninst✝² : NormedSpace R G\ninst✝¹ : NormedAddCommGroup M'\ninst✝ : NormedSpace R M'\nf✝ : M →L[R] N\ng : N →L[R] G\nc : R\nf : M' →L[R] N\nh : IsConformalMap f\n⊢ Injective ↑f", "tactic": "rcases h with ⟨c, hc, li, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro\nR : Type u_1\nM : Type ?u.238550\nN : Type u_3\nG : Type ?u.238556\nM' : Type u_2\ninst✝⁸ : NormedField R\ninst✝⁷ : SeminormedAddCommGroup M\ninst✝⁶ : SeminormedAddCommGroup N\ninst✝⁵ : SeminormedAddCommGroup G\ninst✝⁴ : NormedSpace R M\ninst✝³ : NormedSpace R N\ninst✝² : NormedSpace R G\ninst✝¹ : NormedAddCommGroup M'\ninst✝ : NormedSpace R M'\nf : M →L[R] N\ng : N →L[R] G\nc✝ c : R\nhc : c ≠ 0\nli : M' →ₗᵢ[R] N\n⊢ Injective ↑(c • toContinuousLinearMap li)", "tactic": "exact (smul_right_injective _ hc).comp li.injective" } ]
[ 97, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 11 ]
Mathlib/RingTheory/IsTensorProduct.lean
IsBaseChange.equiv_tmul
[]
[ 255, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 254, 1 ]
Mathlib/NumberTheory/Padics/Hensel.lean
newton_seq_succ_dist
[ { "state_after": "no goals", "state_before": "p : ℕ\ninst✝ : Fact (Nat.Prime p)\nF : Polynomial ℤ_[p]\na : ℤ_[p]\nhnorm : ‖Polynomial.eval a F‖ < ‖Polynomial.eval a (↑Polynomial.derivative F)‖ ^ 2\nhnsol : Polynomial.eval a F ≠ 0\nn : ℕ\n⊢ ‖Polynomial.eval (newton_seq n) F‖ / ‖Polynomial.eval (newton_seq n) (↑Polynomial.derivative F)‖ =\n ‖Polynomial.eval (newton_seq n) F‖ / ‖Polynomial.eval a (↑Polynomial.derivative F)‖", "tactic": "rw [newton_seq_deriv_norm]" } ]
[ 276, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 267, 9 ]
Mathlib/GroupTheory/PGroup.lean
IsPGroup.comap_of_injective
[]
[ 307, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 305, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.two_zsmul_eq_zero_iff
[ { "state_after": "no goals", "state_before": "θ : Angle\n⊢ 2 • θ = 0 ↔ θ = 0 ∨ θ = ↑π", "tactic": "simp_rw [two_zsmul, ← two_nsmul, two_nsmul_eq_zero_iff]" } ]
[ 207, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 206, 1 ]
Mathlib/Data/Int/Order/Lemmas.lean
Int.natAbs_lt_iff_mul_self_lt
[ { "state_after": "a✝ b✝ : ℤ\nn : ℕ\na b : ℤ\n⊢ natAbs a < natAbs b ↔ ↑(natAbs a) < ↑(natAbs b)", "state_before": "a✝ b✝ : ℤ\nn : ℕ\na b : ℤ\n⊢ natAbs a < natAbs b ↔ a * a < b * b", "tactic": "rw [← abs_lt_iff_mul_self_lt, abs_eq_natAbs, abs_eq_natAbs]" }, { "state_after": "no goals", "state_before": "a✝ b✝ : ℤ\nn : ℕ\na b : ℤ\n⊢ natAbs a < natAbs b ↔ ↑(natAbs a) < ↑(natAbs b)", "tactic": "exact Int.ofNat_lt.symm" } ]
[ 42, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 40, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.castLT_mk
[]
[ 1008, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1007, 1 ]
Mathlib/Data/PFunctor/Univariate/Basic.lean
PFunctor.fst_map
[ { "state_after": "case mk\nP : PFunctor\nα✝ β✝ α β : Type u\nf : α → β\nfst✝ : P.A\nsnd✝ : B P fst✝ → α\n⊢ (f <$> { fst := fst✝, snd := snd✝ }).fst = { fst := fst✝, snd := snd✝ }.fst", "state_before": "P : PFunctor\nα✝ β✝ α β : Type u\nx : Obj P α\nf : α → β\n⊢ (f <$> x).fst = x.fst", "tactic": "cases x" }, { "state_after": "no goals", "state_before": "case mk\nP : PFunctor\nα✝ β✝ α β : Type u\nf : α → β\nfst✝ : P.A\nsnd✝ : B P fst✝ → α\n⊢ (f <$> { fst := fst✝, snd := snd✝ }).fst = { fst := fst✝, snd := snd✝ }.fst", "tactic": "rfl" } ]
[ 143, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/Analysis/Normed/Group/HomCompletion.lean
NormedAddGroupHom.completion_comp
[ { "state_after": "case H\nG : Type u_1\ninst✝² : SeminormedAddCommGroup G\nH : Type u_2\ninst✝¹ : SeminormedAddCommGroup H\nK : Type u_3\ninst✝ : SeminormedAddCommGroup K\nf : NormedAddGroupHom G H\ng : NormedAddGroupHom H K\nx : Completion G\n⊢ ↑(NormedAddGroupHom.comp (completion g) (completion f)) x = ↑(completion (NormedAddGroupHom.comp g f)) x", "state_before": "G : Type u_1\ninst✝² : SeminormedAddCommGroup G\nH : Type u_2\ninst✝¹ : SeminormedAddCommGroup H\nK : Type u_3\ninst✝ : SeminormedAddCommGroup K\nf : NormedAddGroupHom G H\ng : NormedAddGroupHom H K\n⊢ NormedAddGroupHom.comp (completion g) (completion f) = completion (NormedAddGroupHom.comp g f)", "tactic": "ext x" }, { "state_after": "case H\nG : Type u_1\ninst✝² : SeminormedAddCommGroup G\nH : Type u_2\ninst✝¹ : SeminormedAddCommGroup H\nK : Type u_3\ninst✝ : SeminormedAddCommGroup K\nf : NormedAddGroupHom G H\ng : NormedAddGroupHom H K\nx : Completion G\n⊢ Completion.map (↑g ∘ ↑f) x = Completion.map (↑(NormedAddGroupHom.comp g f)) x", "state_before": "case H\nG : Type u_1\ninst✝² : SeminormedAddCommGroup G\nH : Type u_2\ninst✝¹ : SeminormedAddCommGroup H\nK : Type u_3\ninst✝ : SeminormedAddCommGroup K\nf : NormedAddGroupHom G H\ng : NormedAddGroupHom H K\nx : Completion G\n⊢ ↑(NormedAddGroupHom.comp (completion g) (completion f)) x = ↑(completion (NormedAddGroupHom.comp g f)) x", "tactic": "rw [NormedAddGroupHom.coe_comp, NormedAddGroupHom.completion_def,\n NormedAddGroupHom.completion_coe_to_fun, NormedAddGroupHom.completion_coe_to_fun,\n Completion.map_comp g.uniformContinuous f.uniformContinuous]" }, { "state_after": "no goals", "state_before": "case H\nG : Type u_1\ninst✝² : SeminormedAddCommGroup G\nH : Type u_2\ninst✝¹ : SeminormedAddCommGroup H\nK : Type u_3\ninst✝ : SeminormedAddCommGroup K\nf : NormedAddGroupHom G H\ng : NormedAddGroupHom H K\nx : Completion G\n⊢ Completion.map (↑g ∘ ↑f) x = Completion.map (↑(NormedAddGroupHom.comp g f)) x", "tactic": "rfl" } ]
[ 116, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 110, 1 ]
Mathlib/Algebra/Order/Sub/Canonical.lean
lt_of_tsub_lt_tsub_right_of_le
[ { "state_after": "α : Type u_1\ninst✝⁵ : AddCommSemigroup α\ninst✝⁴ : PartialOrder α\ninst✝³ : ExistsAddOfLE α\ninst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\ninst✝¹ : Sub α\ninst✝ : OrderedSub α\na b c d : α\nh : c ≤ b\nh2 : a - c < b - c\n⊢ a ≠ b", "state_before": "α : Type u_1\ninst✝⁵ : AddCommSemigroup α\ninst✝⁴ : PartialOrder α\ninst✝³ : ExistsAddOfLE α\ninst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\ninst✝¹ : Sub α\ninst✝ : OrderedSub α\na b c d : α\nh : c ≤ b\nh2 : a - c < b - c\n⊢ a < b", "tactic": "refine' ((tsub_le_tsub_iff_right h).mp h2.le).lt_of_ne _" }, { "state_after": "α : Type u_1\ninst✝⁵ : AddCommSemigroup α\ninst✝⁴ : PartialOrder α\ninst✝³ : ExistsAddOfLE α\ninst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\ninst✝¹ : Sub α\ninst✝ : OrderedSub α\na c d : α\nh : c ≤ a\nh2 : a - c < a - c\n⊢ False", "state_before": "α : Type u_1\ninst✝⁵ : AddCommSemigroup α\ninst✝⁴ : PartialOrder α\ninst✝³ : ExistsAddOfLE α\ninst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\ninst✝¹ : Sub α\ninst✝ : OrderedSub α\na b c d : α\nh : c ≤ b\nh2 : a - c < b - c\n⊢ a ≠ b", "tactic": "rintro rfl" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝⁵ : AddCommSemigroup α\ninst✝⁴ : PartialOrder α\ninst✝³ : ExistsAddOfLE α\ninst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\ninst✝¹ : Sub α\ninst✝ : OrderedSub α\na c d : α\nh : c ≤ a\nh2 : a - c < a - c\n⊢ False", "tactic": "exact h2.false" } ]
[ 62, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 59, 1 ]
Mathlib/MeasureTheory/Lattice.lean
AEMeasurable.sup_const
[]
[ 133, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]
Mathlib/GroupTheory/Perm/Sign.lean
Equiv.Perm.sign_extendDomain
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\ninst✝⁴ : DecidableEq α\ninst✝³ : Fintype α\ninst✝² : DecidableEq β\ninst✝¹ : Fintype β\ne : Perm α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\n⊢ ↑sign (extendDomain e f) = ↑sign e", "tactic": "simp only [Equiv.Perm.extendDomain, sign_subtypeCongr, sign_permCongr, sign_refl, mul_one]" } ]
[ 794, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 792, 1 ]
Mathlib/Analysis/Convex/Extreme.lean
mem_extremePoints_iff_extreme_singleton
[ { "state_after": "𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.5166\nι : Type ?u.5169\nπ : ι → Type ?u.5174\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx : E\n⊢ x ∈ extremePoints 𝕜 A → IsExtreme 𝕜 A {x}", "state_before": "𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.5166\nι : Type ?u.5169\nπ : ι → Type ?u.5174\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx : E\n⊢ x ∈ extremePoints 𝕜 A ↔ IsExtreme 𝕜 A {x}", "tactic": "refine' ⟨_, fun hx ↦ ⟨singleton_subset_iff.1 hx.1, fun x₁ hx₁ x₂ hx₂ ↦ hx.2 hx₁ hx₂ rfl⟩⟩" }, { "state_after": "case intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.5166\nι : Type ?u.5169\nπ : ι → Type ?u.5174\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx : E\nhxA : x ∈ A\nhAx : ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x\n⊢ IsExtreme 𝕜 A {x}", "state_before": "𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.5166\nι : Type ?u.5169\nπ : ι → Type ?u.5174\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx : E\n⊢ x ∈ extremePoints 𝕜 A → IsExtreme 𝕜 A {x}", "tactic": "rintro ⟨hxA, hAx⟩" }, { "state_after": "case intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.5166\nι : Type ?u.5169\nπ : ι → Type ?u.5174\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx : E\nhxA : x ∈ A\nhAx : ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x\n⊢ ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → ∀ ⦃x_1 : E⦄, x_1 ∈ {x} → x_1 ∈ openSegment 𝕜 x₁ x₂ → x₁ ∈ {x} ∧ x₂ ∈ {x}", "state_before": "case intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.5166\nι : Type ?u.5169\nπ : ι → Type ?u.5174\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx : E\nhxA : x ∈ A\nhAx : ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x\n⊢ IsExtreme 𝕜 A {x}", "tactic": "use singleton_subset_iff.2 hxA" }, { "state_after": "case intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.5166\nι : Type ?u.5169\nπ : ι → Type ?u.5174\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx₁ : E\nhx₁A : x₁ ∈ A\nx₂ : E\nhx₂A : x₂ ∈ A\ny : E\nhxA : y ∈ A\nhAx : ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → y ∈ openSegment 𝕜 x₁ x₂ → x₁ = y ∧ x₂ = y\n⊢ y ∈ openSegment 𝕜 x₁ x₂ → x₁ ∈ {y} ∧ x₂ ∈ {y}", "state_before": "case intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.5166\nι : Type ?u.5169\nπ : ι → Type ?u.5174\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx : E\nhxA : x ∈ A\nhAx : ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → x ∈ openSegment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x\n⊢ ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → ∀ ⦃x_1 : E⦄, x_1 ∈ {x} → x_1 ∈ openSegment 𝕜 x₁ x₂ → x₁ ∈ {x} ∧ x₂ ∈ {x}", "tactic": "rintro x₁ hx₁A x₂ hx₂A y (rfl : y = x)" }, { "state_after": "no goals", "state_before": "case intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.5166\nι : Type ?u.5169\nπ : ι → Type ?u.5174\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx₁ : E\nhx₁A : x₁ ∈ A\nx₂ : E\nhx₂A : x₂ ∈ A\ny : E\nhxA : y ∈ A\nhAx : ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → y ∈ openSegment 𝕜 x₁ x₂ → x₁ = y ∧ x₂ = y\n⊢ y ∈ openSegment 𝕜 x₁ x₂ → x₁ ∈ {y} ∧ x₂ ∈ {y}", "tactic": "exact hAx hx₁A hx₂A" } ]
[ 148, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/MeasureTheory/Function/LpOrder.lean
MeasureTheory.Memℒp.sup
[]
[ 73, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Mathlib/Data/Polynomial/IntegralNormalization.lean
Polynomial.integralNormalization_support
[ { "state_after": "R : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝ : Semiring R\nf : R[X]\na✝ : ℕ\n⊢ a✝ ∈ support (integralNormalization f) → a✝ ∈ support f", "state_before": "R : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝ : Semiring R\nf : R[X]\n⊢ support (integralNormalization f) ⊆ support f", "tactic": "intro" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝ : Semiring R\nf : R[X]\na✝ : ℕ\n⊢ a✝ ∈ support (integralNormalization f) → a✝ ∈ support f", "tactic": "simp (config := { contextual := true }) [integralNormalization, coeff_monomial, mem_support_iff]" } ]
[ 62, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 59, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
nnnorm_prod_le
[ { "state_after": "𝓕 : Type ?u.1102940\n𝕜 : Type ?u.1102943\nα : Type ?u.1102946\nι : Type u_1\nκ : Type ?u.1102952\nE : Type u_2\nF : Type ?u.1102958\nG : Type ?u.1102961\ninst✝¹ : SeminormedCommGroup E\ninst✝ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ns : Finset ι\nf : ι → E\n⊢ ‖∏ a in s, f a‖ ≤ ∑ x in s, ‖f x‖", "state_before": "𝓕 : Type ?u.1102940\n𝕜 : Type ?u.1102943\nα : Type ?u.1102946\nι : Type u_1\nκ : Type ?u.1102952\nE : Type u_2\nF : Type ?u.1102958\nG : Type ?u.1102961\ninst✝¹ : SeminormedCommGroup E\ninst✝ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ns : Finset ι\nf : ι → E\n⊢ ↑‖∏ a in s, f a‖₊ ≤ ↑(∑ a in s, ‖f a‖₊)", "tactic": "push_cast" }, { "state_after": "no goals", "state_before": "𝓕 : Type ?u.1102940\n𝕜 : Type ?u.1102943\nα : Type ?u.1102946\nι : Type u_1\nκ : Type ?u.1102952\nE : Type u_2\nF : Type ?u.1102958\nG : Type ?u.1102961\ninst✝¹ : SeminormedCommGroup E\ninst✝ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ns : Finset ι\nf : ι → E\n⊢ ‖∏ a in s, f a‖ ≤ ∑ x in s, ‖f x‖", "tactic": "exact norm_prod_le _ _" } ]
[ 1690, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1687, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Icc_subset_Ioo
[]
[ 472, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 471, 1 ]
Mathlib/Algebra/Group/Basic.lean
self_eq_mul_right
[]
[ 190, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 189, 1 ]
Mathlib/Data/Sym/Sym2.lean
Sym2.map_pair_eq
[]
[ 266, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 265, 1 ]
Mathlib/LinearAlgebra/Matrix/SesquilinearForm.lean
Matrix.toLinearMapₛₗ₂'_symm
[]
[ 241, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 239, 1 ]
Mathlib/Data/Rat/Order.lean
Rat.num_pos_iff_pos
[ { "state_after": "no goals", "state_before": "a✝ b c a : ℚ\n⊢ a.num ≤ 0 ↔ a ≤ 0", "tactic": "simpa [(by cases a; rfl : (-a).num = -a.num)] using @num_nonneg_iff_zero_le (-a)" }, { "state_after": "case mk'\na b c : ℚ\nnum✝ : ℤ\nden✝ : ℕ\nden_nz✝ : den✝ ≠ 0\nreduced✝ : Nat.coprime (Int.natAbs num✝) den✝\n⊢ (-mk' num✝ den✝).num = -(mk' num✝ den✝).num", "state_before": "a✝ b c a : ℚ\n⊢ (-a).num = -a.num", "tactic": "cases a" }, { "state_after": "no goals", "state_before": "case mk'\na b c : ℚ\nnum✝ : ℤ\nden✝ : ℕ\nden_nz✝ : den✝ ≠ 0\nreduced✝ : Nat.coprime (Int.natAbs num✝) den✝\n⊢ (-mk' num✝ den✝).num = -(mk' num✝ den✝).num", "tactic": "rfl" } ]
[ 285, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 283, 1 ]
Mathlib/GroupTheory/Coset.lean
QuotientGroup.induction_on
[]
[ 479, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 478, 1 ]
Mathlib/Algebra/Group/Basic.lean
eq_one_div_of_mul_eq_one_left
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.21993\nG : Type ?u.21996\ninst✝ : DivisionMonoid α\na b c : α\nh : b * a = 1\n⊢ b = 1 / a", "tactic": "rw [eq_inv_of_mul_eq_one_left h, one_div]" } ]
[ 379, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 378, 1 ]
Mathlib/Data/Finsupp/Defs.lean
Finsupp.mapRange_sub'
[]
[ 1267, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1264, 1 ]
Mathlib/Algebra/Group/WithOne/Defs.lean
WithZero.coe_pow
[]
[ 268, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 266, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
dist_self_div_left
[ { "state_after": "no goals", "state_before": "𝓕 : Type ?u.640919\n𝕜 : Type ?u.640922\nα : Type ?u.640925\nι : Type ?u.640928\nκ : Type ?u.640931\nE : Type u_1\nF : Type ?u.640937\nG : Type ?u.640940\ninst✝¹ : SeminormedCommGroup E\ninst✝ : SeminormedCommGroup F\na✝ a₁ a₂ b✝ b₁ b₂ : E\nr r₁ r₂ : ℝ\na b : E\n⊢ dist (a / b) a = ‖b‖", "tactic": "rw [dist_comm, dist_self_div_right]" } ]
[ 1423, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1422, 1 ]
Mathlib/Combinatorics/Composition.lean
Composition.eq_ones_iff_le_length
[ { "state_after": "no goals", "state_before": "n : ℕ\nc✝ c : Composition n\n⊢ c = ones n ↔ n ≤ length c", "tactic": "simp [eq_ones_iff_length, le_antisymm_iff, c.length_le]" } ]
[ 566, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 565, 1 ]
Mathlib/GroupTheory/Subgroup/Basic.lean
Subgroup.coe_inf
[]
[ 970, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 969, 1 ]
Mathlib/Data/Complex/Basic.lean
Complex.im_sq_le_normSq
[]
[ 668, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 667, 1 ]
Mathlib/Algebra/Module/Injective.lean
Module.Baer.ExtensionOfMaxAdjoin.extendIdealTo_wd
[ { "state_after": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr r' : R\neq1 : r • y = r' • y\n⊢ ↑(extendIdealTo i f h y) (r - r') = 0", "state_before": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr r' : R\neq1 : r • y = r' • y\n⊢ ↑(extendIdealTo i f h y) r = ↑(extendIdealTo i f h y) r'", "tactic": "rw [← sub_eq_zero, ← map_sub]" }, { "state_after": "case convert_2\nR : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr r' : R\neq1 : r • y = r' • y\n⊢ (r - r') • y = 0", "state_before": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr r' : R\neq1 : r • y = r' • y\n⊢ ↑(extendIdealTo i f h y) (r - r') = 0", "tactic": "convert ExtensionOfMaxAdjoin.extendIdealTo_wd' i f h (r - r') _" }, { "state_after": "no goals", "state_before": "case convert_2\nR : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr r' : R\neq1 : r • y = r' • y\n⊢ (r - r') • y = 0", "tactic": "rw [sub_smul, sub_eq_zero, eq1]" } ]
[ 349, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 344, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
AffineIndependent.affineIndependent_of_not_mem_span
[ { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\n⊢ AffineIndependent k p", "tactic": "intro s w hw hs" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "tactic": "let p' : { y // y ≠ i } → P := fun x => p x" }, { "state_after": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\n⊢ ∀ (i : ι), i ∈ s → w i = 0\n\ncase neg\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬(i ∈ s ∧ w i ≠ 0)\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "tactic": "by_cases his : i ∈ s ∧ w i ≠ 0" }, { "state_after": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\n⊢ p i ∈ affineSpan k (p '' {x | x ≠ i})", "state_before": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "tactic": "refine' False.elim (hi _)" }, { "state_after": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\n⊢ p i ∈ affineSpan k (p '' {x | x ≠ i})", "state_before": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\n⊢ p i ∈ affineSpan k (p '' {x | x ≠ i})", "tactic": "let wm : ι → k := -(w i)⁻¹ • w" }, { "state_after": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\n⊢ p i ∈ affineSpan k (p '' {x | x ≠ i})", "state_before": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\n⊢ p i ∈ affineSpan k (p '' {x | x ≠ i})", "tactic": "have hms : s.weightedVSub p wm = (0 : V) := by simp [hs]" }, { "state_after": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwm : ∑ i in s, wm i = 0\n⊢ p i ∈ affineSpan k (p '' {x | x ≠ i})", "state_before": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\n⊢ p i ∈ affineSpan k (p '' {x | x ≠ i})", "tactic": "have hwm : (∑ i in s, wm i) = 0 := by simp [← Finset.mul_sum, hw]" }, { "state_after": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwm : ∑ i in s, wm i = 0\nhwmi : wm i = -1\n⊢ p i ∈ affineSpan k (p '' {x | x ≠ i})", "state_before": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwm : ∑ i in s, wm i = 0\n⊢ p i ∈ affineSpan k (p '' {x | x ≠ i})", "tactic": "have hwmi : wm i = -1 := by simp [his.2]" }, { "state_after": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwm : ∑ i in s, wm i = 0\nhwmi : wm i = -1\nw' : { y // y ≠ i } → k := fun x => wm ↑x\n⊢ p i ∈ affineSpan k (p '' {x | x ≠ i})", "state_before": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwm : ∑ i in s, wm i = 0\nhwmi : wm i = -1\n⊢ p i ∈ affineSpan k (p '' {x | x ≠ i})", "tactic": "let w' : { y // y ≠ i } → k := fun x => wm x" }, { "state_after": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwm : ∑ i in s, wm i = 0\nhwmi : wm i = -1\nw' : { y // y ≠ i } → k := fun x => wm ↑x\nhw' : ∑ x in s', w' x = 1\n⊢ (↑(Finset.affineCombination k (Finset.subtype (fun x => x ≠ i) s) fun i_1 => p ↑i_1) fun i_1 => wm ↑i_1) ∈\n affineSpan k (Set.range (p ∘ Subtype.val))", "state_before": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwm : ∑ i in s, wm i = 0\nhwmi : wm i = -1\nw' : { y // y ≠ i } → k := fun x => wm ↑x\nhw' : ∑ x in s', w' x = 1\n⊢ p i ∈ affineSpan k (p '' {x | x ≠ i})", "tactic": "rw [← s.affineCombination_eq_of_weightedVSub_eq_zero_of_eq_neg_one hms his.1 hwmi, ←\n (Subtype.range_coe : _ = { x | x ≠ i }), ← Set.range_comp, ←\n s.affineCombination_subtype_eq_filter]" }, { "state_after": "no goals", "state_before": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwm : ∑ i in s, wm i = 0\nhwmi : wm i = -1\nw' : { y // y ≠ i } → k := fun x => wm ↑x\nhw' : ∑ x in s', w' x = 1\n⊢ (↑(Finset.affineCombination k (Finset.subtype (fun x => x ≠ i) s) fun i_1 => p ↑i_1) fun i_1 => wm ↑i_1) ∈\n affineSpan k (Set.range (p ∘ Subtype.val))", "tactic": "exact affineCombination_mem_affineSpan hw' p'" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\n⊢ ↑(Finset.weightedVSub s p) wm = 0", "tactic": "simp [hs]" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\n⊢ ∑ i in s, wm i = 0", "tactic": "simp [← Finset.mul_sum, hw]" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwm : ∑ i in s, wm i = 0\n⊢ wm i = -1", "tactic": "simp [his.2]" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwm : ∑ i in s, wm i = 0\nhwmi : wm i = -1\nw' : { y // y ≠ i } → k := fun x => wm ↑x\n⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwm : ∑ i in s, wm i = 0\nhwmi : wm i = -1\nw' : { y // y ≠ i } → k := fun x => wm ↑x\n⊢ ∑ x in s', w' x = 1", "tactic": "simp_rw [Finset.sum_subtype_eq_sum_filter]" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwmi : wm i = -1\nw' : { y // y ≠ i } → k := fun x => wm ↑x\nhwm :\n ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x +\n ∑ x in Finset.filter (fun x => x = i) s, (-(w i)⁻¹ • w) x =\n 0\n⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwm : ∑ x in Finset.filter (fun x => x ≠ i) s, wm x + ∑ x in Finset.filter (fun x => ¬x ≠ i) s, wm x = 0\nhwmi : wm i = -1\nw' : { y // y ≠ i } → k := fun x => wm ↑x\n⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1", "tactic": "simp_rw [Classical.not_not] at hwm" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwmi : wm i = -1\nw' : { y // y ≠ i } → k := fun x => wm ↑x\nhwm : ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x + ∑ x in if i ∈ s then {i} else ∅, (-(w i)⁻¹ • w) x = 0\n⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwmi : wm i = -1\nw' : { y // y ≠ i } → k := fun x => wm ↑x\nhwm :\n ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x +\n ∑ x in Finset.filter (fun x => x = i) s, (-(w i)⁻¹ • w) x =\n 0\n⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1", "tactic": "erw [Finset.filter_eq'] at hwm" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwmi : wm i = -1\nw' : { y // y ≠ i } → k := fun x => wm ↑x\nhwm : ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1\n⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwmi : wm i = -1\nw' : { y // y ≠ i } → k := fun x => wm ↑x\nhwm : ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x + ∑ x in if i ∈ s then {i} else ∅, (-(w i)⁻¹ • w) x = 0\n⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1", "tactic": "simp_rw [if_pos his.1, Finset.sum_singleton, hwmi, ← sub_eq_add_neg, sub_eq_zero] at hwm" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : i ∈ s ∧ w i ≠ 0\nwm : ι → k := -(w i)⁻¹ • w\nhms : ↑(Finset.weightedVSub s p) wm = 0\nhwmi : wm i = -1\nw' : { y // y ≠ i } → k := fun x => wm ↑x\nhwm : ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1\n⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1", "tactic": "exact hwm" }, { "state_after": "case neg\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "state_before": "case neg\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬(i ∈ s ∧ w i ≠ 0)\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "tactic": "rw [not_and_or, Classical.not_not] at his" }, { "state_after": "case neg\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "state_before": "case neg\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "tactic": "let w' : { y // y ≠ i } → k := fun x => w x" }, { "state_after": "case neg\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "state_before": "case neg\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "tactic": "have hw' : (∑ x in s', w' x) = 0 := by\n simp_rw [Finset.sum_subtype_eq_sum_filter]\n rw [Finset.sum_filter_of_ne, hw]\n rintro x hxs hwx rfl\n exact hwx (his.neg_resolve_left hxs)" }, { "state_after": "case neg\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\nhs' : ↑(Finset.weightedVSub s' p') w' = 0\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "state_before": "case neg\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "tactic": "have hs' : s'.weightedVSub p' w' = (0 : V) := by\n simp_rw [Finset.weightedVSub_subtype_eq_filter]\n rw [Finset.weightedVSub_filter_of_ne, hs]\n rintro x hxs hwx rfl\n exact hwx (his.neg_resolve_left hxs)" }, { "state_after": "case neg\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\nhs' : ↑(Finset.weightedVSub s' p') w' = 0\nj : ι\nhj : j ∈ s\n⊢ w j = 0", "state_before": "case neg\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\nhs' : ↑(Finset.weightedVSub s' p') w' = 0\n⊢ ∀ (i : ι), i ∈ s → w i = 0", "tactic": "intro j hj" }, { "state_after": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\nhs' : ↑(Finset.weightedVSub s' p') w' = 0\nj : ι\nhj : j ∈ s\nhji : j = i\n⊢ w j = 0\n\ncase neg\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\nhs' : ↑(Finset.weightedVSub s' p') w' = 0\nj : ι\nhj : j ∈ s\nhji : ¬j = i\n⊢ w j = 0", "state_before": "case neg\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\nhs' : ↑(Finset.weightedVSub s' p') w' = 0\nj : ι\nhj : j ∈ s\n⊢ w j = 0", "tactic": "by_cases hji : j = i" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\n⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, w x = 0", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\n⊢ ∑ x in s', w' x = 0", "tactic": "simp_rw [Finset.sum_subtype_eq_sum_filter]" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\n⊢ ∀ (x : ι), x ∈ s → w x ≠ 0 → x ≠ i", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\n⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, w x = 0", "tactic": "rw [Finset.sum_filter_of_ne, hw]" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\nx : ι\nhxs : x ∈ s\nhwx : w x ≠ 0\nha : AffineIndependent k fun x_1 => p ↑x_1\nhi : ¬p x ∈ affineSpan k (p '' {x_1 | x_1 ≠ x})\ns' : Finset { y // y ≠ x } := Finset.subtype (fun x_1 => x_1 ≠ x) s\np' : { y // y ≠ x } → P := fun x_1 => p ↑x_1\nhis : ¬x ∈ s ∨ w x = 0\nw' : { y // y ≠ x } → k := fun x_1 => w ↑x_1\n⊢ False", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\n⊢ ∀ (x : ι), x ∈ s → w x ≠ 0 → x ≠ i", "tactic": "rintro x hxs hwx rfl" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\nx : ι\nhxs : x ∈ s\nhwx : w x ≠ 0\nha : AffineIndependent k fun x_1 => p ↑x_1\nhi : ¬p x ∈ affineSpan k (p '' {x_1 | x_1 ≠ x})\ns' : Finset { y // y ≠ x } := Finset.subtype (fun x_1 => x_1 ≠ x) s\np' : { y // y ≠ x } → P := fun x_1 => p ↑x_1\nhis : ¬x ∈ s ∨ w x = 0\nw' : { y // y ≠ x } → k := fun x_1 => w ↑x_1\n⊢ False", "tactic": "exact hwx (his.neg_resolve_left hxs)" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\n⊢ ↑(Finset.weightedVSub (Finset.filter (fun x => x ≠ i) s) p) w = 0", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\n⊢ ↑(Finset.weightedVSub s' p') w' = 0", "tactic": "simp_rw [Finset.weightedVSub_subtype_eq_filter]" }, { "state_after": "case h\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\n⊢ ∀ (i_1 : ι), i_1 ∈ s → w i_1 ≠ 0 → i_1 ≠ i", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\n⊢ ↑(Finset.weightedVSub (Finset.filter (fun x => x ≠ i) s) p) w = 0", "tactic": "rw [Finset.weightedVSub_filter_of_ne, hs]" }, { "state_after": "case h\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\nx : ι\nhxs : x ∈ s\nhwx : w x ≠ 0\nha : AffineIndependent k fun x_1 => p ↑x_1\nhi : ¬p x ∈ affineSpan k (p '' {x_1 | x_1 ≠ x})\ns' : Finset { y // y ≠ x } := Finset.subtype (fun x_1 => x_1 ≠ x) s\np' : { y // y ≠ x } → P := fun x_1 => p ↑x_1\nhis : ¬x ∈ s ∨ w x = 0\nw' : { y // y ≠ x } → k := fun x_1 => w ↑x_1\nhw' : ∑ x in s', w' x = 0\n⊢ False", "state_before": "case h\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\n⊢ ∀ (i_1 : ι), i_1 ∈ s → w i_1 ≠ 0 → i_1 ≠ i", "tactic": "rintro x hxs hwx rfl" }, { "state_after": "no goals", "state_before": "case h\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\nx : ι\nhxs : x ∈ s\nhwx : w x ≠ 0\nha : AffineIndependent k fun x_1 => p ↑x_1\nhi : ¬p x ∈ affineSpan k (p '' {x_1 | x_1 ≠ x})\ns' : Finset { y // y ≠ x } := Finset.subtype (fun x_1 => x_1 ≠ x) s\np' : { y // y ≠ x } → P := fun x_1 => p ↑x_1\nhis : ¬x ∈ s ∨ w x = 0\nw' : { y // y ≠ x } → k := fun x_1 => w ↑x_1\nhw' : ∑ x in s', w' x = 0\n⊢ False", "tactic": "exact hwx (his.neg_resolve_left hxs)" }, { "state_after": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\nhs' : ↑(Finset.weightedVSub s' p') w' = 0\nj : ι\nhj : i ∈ s\nhji : j = i\n⊢ w j = 0", "state_before": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\nhs' : ↑(Finset.weightedVSub s' p') w' = 0\nj : ι\nhj : j ∈ s\nhji : j = i\n⊢ w j = 0", "tactic": "rw [hji] at hj" }, { "state_after": "no goals", "state_before": "case pos\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\nhs' : ↑(Finset.weightedVSub s' p') w' = 0\nj : ι\nhj : i ∈ s\nhji : j = i\n⊢ w j = 0", "tactic": "exact hji.symm ▸ his.neg_resolve_left hj" }, { "state_after": "no goals", "state_before": "case neg\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni : ι\nha : AffineIndependent k fun x => p ↑x\nhi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i})\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ns' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s\np' : { y // y ≠ i } → P := fun x => p ↑x\nhis : ¬i ∈ s ∨ w i = 0\nw' : { y // y ≠ i } → k := fun x => w ↑x\nhw' : ∑ x in s', w' x = 0\nhs' : ↑(Finset.weightedVSub s' p') w' = 0\nj : ι\nhj : j ∈ s\nhji : ¬j = i\n⊢ w j = 0", "tactic": "exact ha s' w' hw' hs' ⟨j, hji⟩ (Finset.mem_subtype.2 hj)" } ]
[ 675, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 633, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
MvPowerSeries.zero_inv
[ { "state_after": "no goals", "state_before": "σ : Type u_1\nR : Type ?u.1763981\nk : Type u_2\ninst✝ : Field k\n⊢ 0⁻¹ = 0", "tactic": "rw [inv_eq_zero, constantCoeff_zero]" } ]
[ 965, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 964, 1 ]
Mathlib/Order/OrdContinuous.lean
LeftOrdContinuous.map_ciSup
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝² : ConditionallyCompleteLattice α\ninst✝¹ : ConditionallyCompleteLattice β\ninst✝ : Nonempty ι\nf : α → β\nhf : LeftOrdContinuous f\ng : ι → α\nhg : BddAbove (range g)\n⊢ sSup (range (f ∘ g)) = sSup (range fun i => f (g i))", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝² : ConditionallyCompleteLattice α\ninst✝¹ : ConditionallyCompleteLattice β\ninst✝ : Nonempty ι\nf : α → β\nhf : LeftOrdContinuous f\ng : ι → α\nhg : BddAbove (range g)\n⊢ f (⨆ (i : ι), g i) = ⨆ (i : ι), f (g i)", "tactic": "simp only [iSup, hf.map_csSup (range_nonempty _) hg, ← range_comp]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝² : ConditionallyCompleteLattice α\ninst✝¹ : ConditionallyCompleteLattice β\ninst✝ : Nonempty ι\nf : α → β\nhf : LeftOrdContinuous f\ng : ι → α\nhg : BddAbove (range g)\n⊢ sSup (range (f ∘ g)) = sSup (range fun i => f (g i))", "tactic": "rfl" } ]
[ 157, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 154, 1 ]