file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Order/Antichain.lean
IsAntichain.isWeakAntichain
[]
[ 390, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 389, 11 ]
Mathlib/Algebra/Order/WithZero.lean
le_div_iff₀
[ { "state_after": "no goals", "state_before": "α : Type u_1\na b c d x y z : α\ninst✝ : LinearOrderedCommGroupWithZero α\nhc : c ≠ 0\n⊢ a ≤ b / c ↔ a * c ≤ b", "tactic": "rw [div_eq_mul_inv, le_mul_inv_iff₀ hc]" } ]
[ 249, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 248, 1 ]
Mathlib/Order/Interval.lean
Interval.coe_inj
[]
[ 354, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 353, 1 ]
Mathlib/RingTheory/GradedAlgebra/HomogeneousIdeal.lean
HomogeneousIdeal.homogeneousHull_toIdeal_eq_self
[]
[ 579, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 577, 1 ]
Mathlib/Algebra/Order/ToIntervalMod.lean
toIocDiv_eq_sub
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\n⊢ toIocDiv hp a b = toIocDiv hp 0 (b - a)", "tactic": "rw [toIocDiv_sub_eq_toIocDiv_add, zero_add]" } ]
[ 773, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 772, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
Finset.centroid_eq_of_inj_on_of_image_eq
[ { "state_after": "no goals", "state_before": "k : Type u_4\nV : Type u_5\nP : Type u_2\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_1\ns : Finset ι\nι₂ : Type u_3\ns₂ : Finset ι₂\np : ι → P\nhi : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → p i = p j → i = j\np₂ : ι₂ → P\nhi₂ : ∀ (i : ι₂), i ∈ s₂ → ∀ (j : ι₂), j ∈ s₂ → p₂ i = p₂ j → i = j\nhe : p '' ↑s = p₂ '' ↑s₂\n⊢ centroid k s p = centroid k s₂ p₂", "tactic": "classical rw [s.centroid_eq_centroid_image_of_inj_on k hi rfl,\n s₂.centroid_eq_centroid_image_of_inj_on k hi₂ he]" }, { "state_after": "no goals", "state_before": "k : Type u_4\nV : Type u_5\nP : Type u_2\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_1\ns : Finset ι\nι₂ : Type u_3\ns₂ : Finset ι₂\np : ι → P\nhi : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → p i = p j → i = j\np₂ : ι₂ → P\nhi₂ : ∀ (i : ι₂), i ∈ s₂ → ∀ (j : ι₂), j ∈ s₂ → p₂ i = p₂ j → i = j\nhe : p '' ↑s = p₂ '' ↑s₂\n⊢ centroid k s p = centroid k s₂ p₂", "tactic": "rw [s.centroid_eq_centroid_image_of_inj_on k hi rfl,\ns₂.centroid_eq_centroid_image_of_inj_on k hi₂ he]" } ]
[ 985, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 980, 1 ]
Mathlib/Analysis/InnerProductSpace/Dual.lean
InnerProductSpace.unique_continuousLinearMapOfBilin
[ { "state_after": "𝕜 : Type u_1\nE : Type u_2\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : CompleteSpace E\nB : E →L⋆[𝕜] E →L[𝕜] 𝕜\nv f : E\nis_lax_milgram : ∀ (w : E), inner f w = ↑(↑B v) w\n⊢ ∀ (v_1 : E), inner f v_1 = inner (↑B♯ v) v_1", "state_before": "𝕜 : Type u_1\nE : Type u_2\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : CompleteSpace E\nB : E →L⋆[𝕜] E →L[𝕜] 𝕜\nv f : E\nis_lax_milgram : ∀ (w : E), inner f w = ↑(↑B v) w\n⊢ f = ↑B♯ v", "tactic": "refine' ext_inner_right 𝕜 _" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : CompleteSpace E\nB : E →L⋆[𝕜] E →L[𝕜] 𝕜\nv f : E\nis_lax_milgram : ∀ (w : E), inner f w = ↑(↑B v) w\nw : E\n⊢ inner f w = inner (↑B♯ v) w", "state_before": "𝕜 : Type u_1\nE : Type u_2\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : CompleteSpace E\nB : E →L⋆[𝕜] E →L[𝕜] 𝕜\nv f : E\nis_lax_milgram : ∀ (w : E), inner f w = ↑(↑B v) w\n⊢ ∀ (v_1 : E), inner f v_1 = inner (↑B♯ v) v_1", "tactic": "intro w" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : CompleteSpace E\nB : E →L⋆[𝕜] E →L[𝕜] 𝕜\nv f : E\nis_lax_milgram : ∀ (w : E), inner f w = ↑(↑B v) w\nw : E\n⊢ inner f w = ↑(↑B v) w", "state_before": "𝕜 : Type u_1\nE : Type u_2\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : CompleteSpace E\nB : E →L⋆[𝕜] E →L[𝕜] 𝕜\nv f : E\nis_lax_milgram : ∀ (w : E), inner f w = ↑(↑B v) w\nw : E\n⊢ inner f w = inner (↑B♯ v) w", "tactic": "rw [continuousLinearMapOfBilin_apply]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : CompleteSpace E\nB : E →L⋆[𝕜] E →L[𝕜] 𝕜\nv f : E\nis_lax_milgram : ∀ (w : E), inner f w = ↑(↑B v) w\nw : E\n⊢ inner f w = ↑(↑B v) w", "tactic": "exact is_lax_milgram w" } ]
[ 188, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 183, 1 ]
Mathlib/Combinatorics/SimpleGraph/Clique.lean
SimpleGraph.cliqueSet_eq_empty_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nG H : SimpleGraph α\nn : ℕ\na b c : α\ns : Finset α\n⊢ cliqueSet G n = ∅ ↔ CliqueFree G n", "tactic": "simp_rw [CliqueFree, Set.eq_empty_iff_forall_not_mem, mem_cliqueSet_iff]" } ]
[ 254, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 253, 1 ]
Mathlib/RingTheory/Ideal/Basic.lean
Ideal.mem_span_singleton'
[]
[ 172, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]
Mathlib/Topology/UniformSpace/UniformConvergence.lean
TendstoUniformlyOnFilter.tendsto_at
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\nh : TendstoUniformlyOnFilter F f p p'\nhx : 𝓟 {x} ≤ p'\nu : Set (β × β)\nhu : u ∈ 𝓤 β\n⊢ (fun x_1 => (f x, F x_1 x)) ⁻¹' u ∈ p", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\nh : TendstoUniformlyOnFilter F f p p'\nhx : 𝓟 {x} ≤ p'\n⊢ Tendsto (fun n => F n x) p (𝓝 (f x))", "tactic": "refine' Uniform.tendsto_nhds_right.mpr fun u hu => mem_map.mpr _" }, { "state_after": "case h\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\nh : TendstoUniformlyOnFilter F f p p'\nhx : 𝓟 {x} ≤ p'\nu : Set (β × β)\nhu : u ∈ 𝓤 β\n⊢ ∀ (a : ι), (∀ᶠ (y : α) in p', (f y, F a y) ∈ u) → a ∈ (fun x_1 => (f x, F x_1 x)) ⁻¹' u", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\nh : TendstoUniformlyOnFilter F f p p'\nhx : 𝓟 {x} ≤ p'\nu : Set (β × β)\nhu : u ∈ 𝓤 β\n⊢ (fun x_1 => (f x, F x_1 x)) ⁻¹' u ∈ p", "tactic": "filter_upwards [(h u hu).curry]" }, { "state_after": "case h\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\nh✝ : TendstoUniformlyOnFilter F f p p'\nhx : 𝓟 {x} ≤ p'\nu : Set (β × β)\nhu : u ∈ 𝓤 β\ni : ι\nh : ∀ᶠ (y : α) in p', (f y, F i y) ∈ u\n⊢ i ∈ (fun x_1 => (f x, F x_1 x)) ⁻¹' u", "state_before": "case h\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\nh : TendstoUniformlyOnFilter F f p p'\nhx : 𝓟 {x} ≤ p'\nu : Set (β × β)\nhu : u ∈ 𝓤 β\n⊢ ∀ (a : ι), (∀ᶠ (y : α) in p', (f y, F a y) ∈ u) → a ∈ (fun x_1 => (f x, F x_1 x)) ⁻¹' u", "tactic": "intro i h" }, { "state_after": "no goals", "state_before": "case h\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\nh✝ : TendstoUniformlyOnFilter F f p p'\nhx : 𝓟 {x} ≤ p'\nu : Set (β × β)\nhu : u ∈ 𝓤 β\ni : ι\nh : ∀ᶠ (y : α) in p', (f y, F i y) ∈ u\n⊢ i ∈ (fun x_1 => (f x, F x_1 x)) ⁻¹' u", "tactic": "simpa using h.filter_mono hx" } ]
[ 173, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/GroupTheory/Subgroup/Pointwise.lean
Subgroup.inv_subset_closure
[ { "state_after": "α : Type ?u.649\nG : Type u_1\nA : Type ?u.655\nS✝ : Type ?u.658\ninst✝¹ : Group G\ninst✝ : AddGroup A\ns✝ S : Set G\ns : G\nhs : s ∈ S⁻¹\n⊢ s⁻¹ ∈ closure S", "state_before": "α : Type ?u.649\nG : Type u_1\nA : Type ?u.655\nS✝ : Type ?u.658\ninst✝¹ : Group G\ninst✝ : AddGroup A\ns✝ S : Set G\ns : G\nhs : s ∈ S⁻¹\n⊢ s ∈ ↑(closure S)", "tactic": "rw [SetLike.mem_coe, ← Subgroup.inv_mem_iff]" }, { "state_after": "no goals", "state_before": "α : Type ?u.649\nG : Type u_1\nA : Type ?u.655\nS✝ : Type ?u.658\ninst✝¹ : Group G\ninst✝ : AddGroup A\ns✝ S : Set G\ns : G\nhs : s ∈ S⁻¹\n⊢ s⁻¹ ∈ closure S", "tactic": "exact subset_closure (mem_inv.mp hs)" } ]
[ 52, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 50, 1 ]
Mathlib/Data/Nat/Cast/Defs.lean
Nat.cast_one
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : AddMonoidWithOne R\n⊢ ↑1 = 1", "tactic": "rw [cast_succ, Nat.cast_zero, zero_add]" } ]
[ 135, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 134, 1 ]
Mathlib/Topology/UniformSpace/Basic.lean
uniformContinuous_iInf_dom
[ { "state_after": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\nf : α → β\nu₁ : ι → UniformSpace α\nu₂ : UniformSpace β\ni : ι\nhf : UniformContinuous f\n⊢ Tendsto (fun x => (f x.fst, f x.snd)) (𝓤 α) (𝓤 β)", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\nf : α → β\nu₁ : ι → UniformSpace α\nu₂ : UniformSpace β\ni : ι\nhf : UniformContinuous f\n⊢ UniformContinuous f", "tactic": "delta UniformContinuous" }, { "state_after": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\nf : α → β\nu₁ : ι → UniformSpace α\nu₂ : UniformSpace β\ni : ι\nhf : UniformContinuous f\n⊢ Tendsto (fun x => (f x.fst, f x.snd)) (⨅ (i : ι), 𝓤 α) (𝓤 β)", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\nf : α → β\nu₁ : ι → UniformSpace α\nu₂ : UniformSpace β\ni : ι\nhf : UniformContinuous f\n⊢ Tendsto (fun x => (f x.fst, f x.snd)) (𝓤 α) (𝓤 β)", "tactic": "rw [iInf_uniformity]" }, { "state_after": "no goals", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\nf : α → β\nu₁ : ι → UniformSpace α\nu₂ : UniformSpace β\ni : ι\nhf : UniformContinuous f\n⊢ Tendsto (fun x => (f x.fst, f x.snd)) (⨅ (i : ι), 𝓤 α) (𝓤 β)", "tactic": "exact tendsto_iInf' i hf" } ]
[ 1415, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1411, 1 ]
Mathlib/Logic/Function/Basic.lean
Function.LeftInverse.cast_eq
[ { "state_after": "no goals", "state_before": "α : Sort u_1\nβ : Sort u_2\nγ : β → Sort v\nf : α → β\ng : β → α\nh : LeftInverse g f\nC : (a : α) → γ (f a)\na : α\n⊢ cast (_ : γ (f (g (f a))) = γ (f a)) (C (g (f a))) = C a", "tactic": "rw [cast_eq_iff_heq, h]" } ]
[ 1049, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1046, 1 ]
Mathlib/Order/Lattice.lean
Antitone.min
[]
[ 1185, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1182, 11 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.Integrable.congr
[]
[ 486, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 485, 1 ]
Mathlib/Topology/LocallyConstant/Algebra.lean
LocallyConstant.coe_mul
[]
[ 62, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 61, 1 ]
Mathlib/CategoryTheory/Bicategory/Free.lean
CategoryTheory.FreeBicategory.mk_right_unitor_inv
[]
[ 305, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 304, 1 ]
Mathlib/Order/Basic.lean
ge_of_eq
[]
[ 336, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 335, 1 ]
Mathlib/Algebra/Order/Ring/Defs.lean
mul_lt_mul'
[]
[ 526, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 525, 1 ]
Mathlib/Data/Nat/Order/Basic.lean
Nat.le_add_pred_of_pos
[ { "state_after": "m n✝ k l n i : ℕ\nhi : i ≠ 0\n⊢ n ≤ i + n - 1", "state_before": "m n✝ k l n i : ℕ\nhi : i ≠ 0\n⊢ n ≤ i + (n - 1)", "tactic": "refine le_trans ?_ add_tsub_le_assoc" }, { "state_after": "no goals", "state_before": "m n✝ k l n i : ℕ\nhi : i ≠ 0\n⊢ n ≤ i + n - 1", "tactic": "simp [add_comm, Nat.add_sub_assoc, one_le_iff_ne_zero.2 hi]" } ]
[ 327, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 325, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineMap.lean
AffineMap.lineMap_apply_one_sub
[ { "state_after": "k : Type u_2\nV1 : Type u_3\nP1 : Type u_1\nV2 : Type ?u.538087\nP2 : Type ?u.538090\nV3 : Type ?u.538093\nP3 : Type ?u.538096\nV4 : Type ?u.538099\nP4 : Type ?u.538102\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V1\ninst✝¹⁰ : Module k V1\ninst✝⁹ : AffineSpace V1 P1\ninst✝⁸ : AddCommGroup V2\ninst✝⁷ : Module k V2\ninst✝⁶ : AffineSpace V2 P2\ninst✝⁵ : AddCommGroup V3\ninst✝⁴ : Module k V3\ninst✝³ : AffineSpace V3 P3\ninst✝² : AddCommGroup V4\ninst✝¹ : Module k V4\ninst✝ : AffineSpace V4 P4\np₀ p₁ : P1\nc : k\n⊢ ↑(lineMap p₁ p₀) (↑(lineMap 1 0) (1 - c)) = ↑(lineMap p₁ p₀) c", "state_before": "k : Type u_2\nV1 : Type u_3\nP1 : Type u_1\nV2 : Type ?u.538087\nP2 : Type ?u.538090\nV3 : Type ?u.538093\nP3 : Type ?u.538096\nV4 : Type ?u.538099\nP4 : Type ?u.538102\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V1\ninst✝¹⁰ : Module k V1\ninst✝⁹ : AffineSpace V1 P1\ninst✝⁸ : AddCommGroup V2\ninst✝⁷ : Module k V2\ninst✝⁶ : AffineSpace V2 P2\ninst✝⁵ : AddCommGroup V3\ninst✝⁴ : Module k V3\ninst✝³ : AffineSpace V3 P3\ninst✝² : AddCommGroup V4\ninst✝¹ : Module k V4\ninst✝ : AffineSpace V4 P4\np₀ p₁ : P1\nc : k\n⊢ ↑(lineMap p₀ p₁) (1 - c) = ↑(lineMap p₁ p₀) c", "tactic": "rw [lineMap_symm p₀, comp_apply]" }, { "state_after": "case h.e_6.h\nk : Type u_2\nV1 : Type u_3\nP1 : Type u_1\nV2 : Type ?u.538087\nP2 : Type ?u.538090\nV3 : Type ?u.538093\nP3 : Type ?u.538096\nV4 : Type ?u.538099\nP4 : Type ?u.538102\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V1\ninst✝¹⁰ : Module k V1\ninst✝⁹ : AffineSpace V1 P1\ninst✝⁸ : AddCommGroup V2\ninst✝⁷ : Module k V2\ninst✝⁶ : AffineSpace V2 P2\ninst✝⁵ : AddCommGroup V3\ninst✝⁴ : Module k V3\ninst✝³ : AffineSpace V3 P3\ninst✝² : AddCommGroup V4\ninst✝¹ : Module k V4\ninst✝ : AffineSpace V4 P4\np₀ p₁ : P1\nc : k\n⊢ ↑(lineMap 1 0) (1 - c) = c", "state_before": "k : Type u_2\nV1 : Type u_3\nP1 : Type u_1\nV2 : Type ?u.538087\nP2 : Type ?u.538090\nV3 : Type ?u.538093\nP3 : Type ?u.538096\nV4 : Type ?u.538099\nP4 : Type ?u.538102\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V1\ninst✝¹⁰ : Module k V1\ninst✝⁹ : AffineSpace V1 P1\ninst✝⁸ : AddCommGroup V2\ninst✝⁷ : Module k V2\ninst✝⁶ : AffineSpace V2 P2\ninst✝⁵ : AddCommGroup V3\ninst✝⁴ : Module k V3\ninst✝³ : AffineSpace V3 P3\ninst✝² : AddCommGroup V4\ninst✝¹ : Module k V4\ninst✝ : AffineSpace V4 P4\np₀ p₁ : P1\nc : k\n⊢ ↑(lineMap p₁ p₀) (↑(lineMap 1 0) (1 - c)) = ↑(lineMap p₁ p₀) c", "tactic": "congr" }, { "state_after": "no goals", "state_before": "case h.e_6.h\nk : Type u_2\nV1 : Type u_3\nP1 : Type u_1\nV2 : Type ?u.538087\nP2 : Type ?u.538090\nV3 : Type ?u.538093\nP3 : Type ?u.538096\nV4 : Type ?u.538099\nP4 : Type ?u.538102\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V1\ninst✝¹⁰ : Module k V1\ninst✝⁹ : AffineSpace V1 P1\ninst✝⁸ : AddCommGroup V2\ninst✝⁷ : Module k V2\ninst✝⁶ : AffineSpace V2 P2\ninst✝⁵ : AddCommGroup V3\ninst✝⁴ : Module k V3\ninst✝³ : AffineSpace V3 P3\ninst✝² : AddCommGroup V4\ninst✝¹ : Module k V4\ninst✝ : AffineSpace V4 P4\np₀ p₁ : P1\nc : k\n⊢ ↑(lineMap 1 0) (1 - c) = c", "tactic": "simp [lineMap_apply]" } ]
[ 631, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 628, 1 ]
Mathlib/RingTheory/Localization/Submodule.lean
IsLocalization.isNoetherianRing
[ { "state_after": "R : Type u_1\ninst✝⁷ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁶ : CommRing S\ninst✝⁵ : Algebra R S\nP : Type ?u.117121\ninst✝⁴ : CommRing P\ng : R →+* P\nT : Submonoid P\nhy : M ≤ Submonoid.comap g T\nQ : Type ?u.117953\ninst✝³ : CommRing Q\ninst✝² : Algebra P Q\ninst✝¹ : IsLocalization T Q\ninst✝ : IsLocalization M S\nh : WellFounded fun x x_1 => x > x_1\n⊢ WellFounded fun x x_1 => x > x_1", "state_before": "R : Type u_1\ninst✝⁷ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁶ : CommRing S\ninst✝⁵ : Algebra R S\nP : Type ?u.117121\ninst✝⁴ : CommRing P\ng : R →+* P\nT : Submonoid P\nhy : M ≤ Submonoid.comap g T\nQ : Type ?u.117953\ninst✝³ : CommRing Q\ninst✝² : Algebra P Q\ninst✝¹ : IsLocalization T Q\ninst✝ : IsLocalization M S\nh : IsNoetherianRing R\n⊢ IsNoetherianRing S", "tactic": "rw [isNoetherianRing_iff, isNoetherian_iff_wellFounded] at h⊢" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝⁷ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁶ : CommRing S\ninst✝⁵ : Algebra R S\nP : Type ?u.117121\ninst✝⁴ : CommRing P\ng : R →+* P\nT : Submonoid P\nhy : M ≤ Submonoid.comap g T\nQ : Type ?u.117953\ninst✝³ : CommRing Q\ninst✝² : Algebra P Q\ninst✝¹ : IsLocalization T Q\ninst✝ : IsLocalization M S\nh : WellFounded fun x x_1 => x > x_1\n⊢ WellFounded fun x x_1 => x > x_1", "tactic": "exact OrderEmbedding.wellFounded (IsLocalization.orderEmbedding M S).dual h" } ]
[ 103, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 101, 1 ]
Mathlib/Data/Int/Sqrt.lean
Int.exists_mul_self
[ { "state_after": "no goals", "state_before": "x : ℤ\nx✝ : ∃ n, n * n = x\nn : ℤ\nhn : n * n = x\n⊢ sqrt x * sqrt x = x", "tactic": "rw [← hn, sqrt_eq, ← Int.ofNat_mul, natAbs_mul_self]" } ]
[ 36, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 35, 1 ]
Mathlib/CategoryTheory/Simple.lean
CategoryTheory.epi_of_nonzero_to_simple
[ { "state_after": "C : Type u\ninst✝⁴ : Category C\ninst✝³ : HasZeroMorphisms C\ninst✝² : HasEqualizers C\nX Y : C\ninst✝¹ : Simple Y\nf : X ⟶ Y\ninst✝ : HasImage f\nw : f ≠ 0\n⊢ Epi (factorThruImage f ≫ image.ι f)", "state_before": "C : Type u\ninst✝⁴ : Category C\ninst✝³ : HasZeroMorphisms C\ninst✝² : HasEqualizers C\nX Y : C\ninst✝¹ : Simple Y\nf : X ⟶ Y\ninst✝ : HasImage f\nw : f ≠ 0\n⊢ Epi f", "tactic": "rw [← image.fac f]" }, { "state_after": "C : Type u\ninst✝⁴ : Category C\ninst✝³ : HasZeroMorphisms C\ninst✝² : HasEqualizers C\nX Y : C\ninst✝¹ : Simple Y\nf : X ⟶ Y\ninst✝ : HasImage f\nw : f ≠ 0\nthis : IsIso (image.ι f)\n⊢ Epi (factorThruImage f ≫ image.ι f)", "state_before": "C : Type u\ninst✝⁴ : Category C\ninst✝³ : HasZeroMorphisms C\ninst✝² : HasEqualizers C\nX Y : C\ninst✝¹ : Simple Y\nf : X ⟶ Y\ninst✝ : HasImage f\nw : f ≠ 0\n⊢ Epi (factorThruImage f ≫ image.ι f)", "tactic": "haveI : IsIso (image.ι f) := isIso_of_mono_of_nonzero fun h => w (eq_zero_of_image_eq_zero h)" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝⁴ : Category C\ninst✝³ : HasZeroMorphisms C\ninst✝² : HasEqualizers C\nX Y : C\ninst✝¹ : Simple Y\nf : X ⟶ Y\ninst✝ : HasImage f\nw : f ≠ 0\nthis : IsIso (image.ι f)\n⊢ Epi (factorThruImage f ≫ image.ι f)", "tactic": "apply epi_comp" } ]
[ 104, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 100, 1 ]
Std/Data/Int/Lemmas.lean
Int.toNat_of_nonneg
[ { "state_after": "no goals", "state_before": "a : Int\nh : 0 ≤ a\n⊢ ↑(toNat a) = a", "tactic": "rw [toNat_eq_max, Int.max_eq_left h]" } ]
[ 1372, 39 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1371, 9 ]
Mathlib/Combinatorics/SimpleGraph/Regularity/Uniform.lean
SimpleGraph.isUniform_comm
[]
[ 79, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 1 ]
Mathlib/Algebra/Homology/QuasiIso.lean
quasiIso_of_comp_right
[]
[ 66, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]
Mathlib/Data/Real/EReal.lean
EReal.coe_ennreal_ne_coe_ennreal_iff
[]
[ 516, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 515, 1 ]
Mathlib/Analysis/LocallyConvex/BalancedCoreHull.lean
nhds_basis_closed_balanced
[ { "state_after": "𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.126319\ninst✝⁵ : NontriviallyNormedField 𝕜\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : TopologicalSpace E\ninst✝¹ : ContinuousSMul 𝕜 E\nU : Set E\ninst✝ : RegularSpace E\ns : Set E\nhs : s ∈ 𝓝 0 ∧ IsClosed s\n⊢ ∃ i', (i' ∈ 𝓝 0 ∧ IsClosed i' ∧ Balanced 𝕜 i') ∧ id i' ⊆ id s", "state_before": "𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.126319\ninst✝⁵ : NontriviallyNormedField 𝕜\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : TopologicalSpace E\ninst✝¹ : ContinuousSMul 𝕜 E\nU : Set E\ninst✝ : RegularSpace E\n⊢ HasBasis (𝓝 0) (fun s => s ∈ 𝓝 0 ∧ IsClosed s ∧ Balanced 𝕜 s) id", "tactic": "refine'\n (closed_nhds_basis 0).to_hasBasis (fun s hs => _) fun s hs => ⟨s, ⟨hs.1, hs.2.1⟩, rfl.subset⟩" }, { "state_after": "𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.126319\ninst✝⁵ : NontriviallyNormedField 𝕜\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : TopologicalSpace E\ninst✝¹ : ContinuousSMul 𝕜 E\nU : Set E\ninst✝ : RegularSpace E\ns : Set E\nhs : s ∈ 𝓝 0 ∧ IsClosed s\n⊢ IsClosed (balancedCore 𝕜 s) ∧ Balanced 𝕜 (balancedCore 𝕜 s)", "state_before": "𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.126319\ninst✝⁵ : NontriviallyNormedField 𝕜\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : TopologicalSpace E\ninst✝¹ : ContinuousSMul 𝕜 E\nU : Set E\ninst✝ : RegularSpace E\ns : Set E\nhs : s ∈ 𝓝 0 ∧ IsClosed s\n⊢ ∃ i', (i' ∈ 𝓝 0 ∧ IsClosed i' ∧ Balanced 𝕜 i') ∧ id i' ⊆ id s", "tactic": "refine' ⟨balancedCore 𝕜 s, ⟨balancedCore_mem_nhds_zero hs.1, _⟩, balancedCore_subset s⟩" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.126319\ninst✝⁵ : NontriviallyNormedField 𝕜\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : TopologicalSpace E\ninst✝¹ : ContinuousSMul 𝕜 E\nU : Set E\ninst✝ : RegularSpace E\ns : Set E\nhs : s ∈ 𝓝 0 ∧ IsClosed s\n⊢ IsClosed (balancedCore 𝕜 s) ∧ Balanced 𝕜 (balancedCore 𝕜 s)", "tactic": "exact ⟨hs.2.balancedCore, balancedCore_balanced s⟩" } ]
[ 279, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 274, 1 ]
Mathlib/Deprecated/Subring.lean
RingHom.isSubring_preimage
[]
[ 61, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Data/Real/CauSeq.lean
CauSeq.inf_eq_right
[ { "state_after": "case inl.intro.intro.intro\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nε : α\nε0 : 0 < ε\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → ε ≤ ↑(a - b) j\n⊢ a ⊓ b ≈ b\n\ncase inr\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nh : b ≈ a\n⊢ a ⊓ b ≈ b", "state_before": "α : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nh : b ≤ a\n⊢ a ⊓ b ≈ b", "tactic": "obtain ⟨ε, ε0 : _ < _, i, h⟩ | h := h" }, { "state_after": "case inl.intro.intro.intro\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nε : α\nε0 : 0 < ε\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → ε ≤ ↑(a - b) j\nε✝ : α\na✝ : ε✝ > 0\n⊢ ∃ i, ∀ (j : ℕ), j ≥ i → abs (↑(a ⊓ b - b) j) < ε✝", "state_before": "case inl.intro.intro.intro\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nε : α\nε0 : 0 < ε\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → ε ≤ ↑(a - b) j\n⊢ a ⊓ b ≈ b", "tactic": "intro _ _" }, { "state_after": "case inl.intro.intro.intro\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nε : α\nε0 : 0 < ε\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → ε ≤ ↑(a - b) j\nε✝ : α\na✝ : ε✝ > 0\nj : ℕ\nhj : j ≥ i\n⊢ abs (↑(a ⊓ b - b) j) < ε✝", "state_before": "case inl.intro.intro.intro\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nε : α\nε0 : 0 < ε\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → ε ≤ ↑(a - b) j\nε✝ : α\na✝ : ε✝ > 0\n⊢ ∃ i, ∀ (j : ℕ), j ≥ i → abs (↑(a ⊓ b - b) j) < ε✝", "tactic": "refine' ⟨i, fun j hj => _⟩" }, { "state_after": "case inl.intro.intro.intro\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nε : α\nε0 : 0 < ε\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → ε ≤ ↑(a - b) j\nε✝ : α\na✝ : ε✝ > 0\nj : ℕ\nhj : j ≥ i\n⊢ abs (↑a j ⊓ ↑b j - ↑b j) < ε✝", "state_before": "case inl.intro.intro.intro\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nε : α\nε0 : 0 < ε\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → ε ≤ ↑(a - b) j\nε✝ : α\na✝ : ε✝ > 0\nj : ℕ\nhj : j ≥ i\n⊢ abs (↑(a ⊓ b - b) j) < ε✝", "tactic": "dsimp" }, { "state_after": "case inl.intro.intro.intro\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nε : α\nε0 : 0 < ε\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → ε ≤ ↑(a - b) j\nε✝ : α\na✝ : ε✝ > 0\nj : ℕ\nhj : j ≥ i\n⊢ abs (min (↑a j - ↑b j) (↑b j - ↑b j)) < ε✝", "state_before": "case inl.intro.intro.intro\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nε : α\nε0 : 0 < ε\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → ε ≤ ↑(a - b) j\nε✝ : α\na✝ : ε✝ > 0\nj : ℕ\nhj : j ≥ i\n⊢ abs (↑a j ⊓ ↑b j - ↑b j) < ε✝", "tactic": "erw [← min_sub_sub_right]" }, { "state_after": "case inl.intro.intro.intro\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nε : α\nε0 : 0 < ε\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → ε ≤ ↑(a - b) j\nε✝ : α\na✝ : ε✝ > 0\nj : ℕ\nhj : j ≥ i\n⊢ 0 ≤ ↑a j - ↑b j", "state_before": "case inl.intro.intro.intro\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nε : α\nε0 : 0 < ε\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → ε ≤ ↑(a - b) j\nε✝ : α\na✝ : ε✝ > 0\nj : ℕ\nhj : j ≥ i\n⊢ abs (min (↑a j - ↑b j) (↑b j - ↑b j)) < ε✝", "tactic": "rwa [sub_self, min_eq_right, abs_zero]" }, { "state_after": "no goals", "state_before": "case inl.intro.intro.intro\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nε : α\nε0 : 0 < ε\ni : ℕ\nh : ∀ (j : ℕ), j ≥ i → ε ≤ ↑(a - b) j\nε✝ : α\na✝ : ε✝ > 0\nj : ℕ\nhj : j ≥ i\n⊢ 0 ≤ ↑a j - ↑b j", "tactic": "exact ε0.le.trans (h _ hj)" }, { "state_after": "case inr\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nh : b ≈ a\n⊢ b ⊓ b ≈ b", "state_before": "case inr\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nh : b ≈ a\n⊢ a ⊓ b ≈ b", "tactic": "refine' Setoid.trans (inf_equiv_inf (Setoid.symm h) (Setoid.refl _)) _" }, { "state_after": "no goals", "state_before": "case inr\nα : Type u_1\ninst✝ : LinearOrderedField α\na b : CauSeq α abs\nh : b ≈ a\n⊢ b ⊓ b ≈ b", "tactic": "rw [CauSeq.inf_idem]" } ]
[ 940, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 931, 11 ]
Mathlib/LinearAlgebra/Quotient.lean
Submodule.quot_hom_ext
[]
[ 315, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 313, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.IsCycleOn.pow_card_apply
[]
[ 894, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 892, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Deriv.lean
fderiv_csinh
[]
[ 551, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 549, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Comp.lean
fderivWithin.comp₃
[ { "state_after": "𝕜 : Type u_3\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_5\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_1\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type u_2\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type u_4\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf f₀ f₁ g✝ : E → F\nf' f₀' f₁' g'✝ e : E →L[𝕜] F\nx : E\ns t✝ : Set E\nL L₁ L₂ : Filter E\ng' : G → G'\ng : F → G\nt : Set F\nu : Set G\nhf : DifferentiableWithinAt 𝕜 f s x\nh2g : MapsTo g t u\nh2f : MapsTo f s t\nhxs : UniqueDiffWithinAt 𝕜 s x\nhg : DifferentiableWithinAt 𝕜 g t (f x)\nhg' : DifferentiableWithinAt 𝕜 g' u (g (f x))\n⊢ fderivWithin 𝕜 (g' ∘ g ∘ f) s x =\n ContinuousLinearMap.comp (fderivWithin 𝕜 g' u (g (f x)))\n (ContinuousLinearMap.comp (fderivWithin 𝕜 g t (f x)) (fderivWithin 𝕜 f s x))", "state_before": "𝕜 : Type u_3\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_5\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_1\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type u_2\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type u_4\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf f₀ f₁ g✝ : E → F\nf' f₀' f₁' g'✝ e : E →L[𝕜] F\nx : E\ns t✝ : Set E\nL L₁ L₂ : Filter E\ng' : G → G'\ng : F → G\nt : Set F\nu : Set G\ny : F\ny' : G\nhg' : DifferentiableWithinAt 𝕜 g' u y'\nhg : DifferentiableWithinAt 𝕜 g t y\nhf : DifferentiableWithinAt 𝕜 f s x\nh2g : MapsTo g t u\nh2f : MapsTo f s t\nh3g : g y = y'\nh3f : f x = y\nhxs : UniqueDiffWithinAt 𝕜 s x\n⊢ fderivWithin 𝕜 (g' ∘ g ∘ f) s x =\n ContinuousLinearMap.comp (fderivWithin 𝕜 g' u y')\n (ContinuousLinearMap.comp (fderivWithin 𝕜 g t y) (fderivWithin 𝕜 f s x))", "tactic": "substs h3g h3f" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_3\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_5\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_1\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type u_2\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type u_4\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf f₀ f₁ g✝ : E → F\nf' f₀' f₁' g'✝ e : E →L[𝕜] F\nx : E\ns t✝ : Set E\nL L₁ L₂ : Filter E\ng' : G → G'\ng : F → G\nt : Set F\nu : Set G\nhf : DifferentiableWithinAt 𝕜 f s x\nh2g : MapsTo g t u\nh2f : MapsTo f s t\nhxs : UniqueDiffWithinAt 𝕜 s x\nhg : DifferentiableWithinAt 𝕜 g t (f x)\nhg' : DifferentiableWithinAt 𝕜 g' u (g (f x))\n⊢ fderivWithin 𝕜 (g' ∘ g ∘ f) s x =\n ContinuousLinearMap.comp (fderivWithin 𝕜 g' u (g (f x)))\n (ContinuousLinearMap.comp (fderivWithin 𝕜 g t (f x)) (fderivWithin 𝕜 f s x))", "tactic": "exact (hg'.hasFDerivWithinAt.comp x (hg.hasFDerivWithinAt.comp x hf.hasFDerivWithinAt h2f) <|\n h2g.comp h2f).fderivWithin hxs" } ]
[ 167, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 159, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Basic.lean
Filter.EventuallyEq.fderiv
[]
[ 980, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 979, 11 ]
Std/Data/Int/DivMod.lean
Int.ofNat_dvd
[ { "state_after": "m n : Nat\nx✝ : ↑m ∣ ↑n\na : Int\nae : ↑n = ↑m * a\n⊢ m ∣ n", "state_before": "m n : Nat\n⊢ ↑m ∣ ↑n ↔ m ∣ n", "tactic": "refine ⟨fun ⟨a, ae⟩ => ?_, fun ⟨k, e⟩ => ⟨k, by rw [e, Int.ofNat_mul]⟩⟩" }, { "state_after": "no goals", "state_before": "m n : Nat\nx✝ : ↑m ∣ ↑n\na : Int\nae : ↑n = ↑m * a\n⊢ m ∣ n", "tactic": "match Int.le_total a 0 with\n| .inl h =>\n have := ae.symm ▸ Int.mul_nonpos_of_nonneg_of_nonpos (ofNat_zero_le _) h\n rw [Nat.le_antisymm (ofNat_le.1 this) (Nat.zero_le _)]\n apply Nat.dvd_zero\n| .inr h => match a, eq_ofNat_of_zero_le h with\n | _, ⟨k, rfl⟩ => exact ⟨k, Int.ofNat.inj ae⟩" }, { "state_after": "no goals", "state_before": "m n : Nat\nx✝ : m ∣ n\nk : Nat\ne : n = m * k\n⊢ ↑n = ↑m * ↑k", "tactic": "rw [e, Int.ofNat_mul]" }, { "state_after": "m n : Nat\nx✝ : ↑m ∣ ↑n\na : Int\nae : ↑n = ↑m * a\nh : a ≤ 0\nthis : ↑n ≤ 0\n⊢ m ∣ n", "state_before": "m n : Nat\nx✝ : ↑m ∣ ↑n\na : Int\nae : ↑n = ↑m * a\nh : a ≤ 0\n⊢ m ∣ n", "tactic": "have := ae.symm ▸ Int.mul_nonpos_of_nonneg_of_nonpos (ofNat_zero_le _) h" }, { "state_after": "m n : Nat\nx✝ : ↑m ∣ ↑n\na : Int\nae : ↑n = ↑m * a\nh : a ≤ 0\nthis : ↑n ≤ 0\n⊢ m ∣ 0", "state_before": "m n : Nat\nx✝ : ↑m ∣ ↑n\na : Int\nae : ↑n = ↑m * a\nh : a ≤ 0\nthis : ↑n ≤ 0\n⊢ m ∣ n", "tactic": "rw [Nat.le_antisymm (ofNat_le.1 this) (Nat.zero_le _)]" }, { "state_after": "no goals", "state_before": "m n : Nat\nx✝ : ↑m ∣ ↑n\na : Int\nae : ↑n = ↑m * a\nh : a ≤ 0\nthis : ↑n ≤ 0\n⊢ m ∣ 0", "tactic": "apply Nat.dvd_zero" }, { "state_after": "no goals", "state_before": "m n : Nat\nx✝ : ↑m ∣ ↑n\na : Int\nae : ↑n = ↑m * a\nh : 0 ≤ a\n⊢ m ∣ n", "tactic": "match a, eq_ofNat_of_zero_le h with\n| _, ⟨k, rfl⟩ => exact ⟨k, Int.ofNat.inj ae⟩" }, { "state_after": "no goals", "state_before": "m n : Nat\nx✝ : ↑m ∣ ↑n\na : Int\nk : Nat\nae : ↑n = ↑m * ↑k\nh : 0 ≤ ↑k\n⊢ m ∣ n", "tactic": "exact ⟨k, Int.ofNat.inj ae⟩" } ]
[ 642, 49 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 634, 14 ]
Mathlib/Algebra/AddTorsor.lean
eq_of_vsub_eq_zero
[ { "state_after": "no goals", "state_before": "G : Type u_1\nP : Type u_2\ninst✝ : AddGroup G\nT : AddTorsor G P\np1 p2 : P\nh : p1 -ᵥ p2 = 0\n⊢ p1 = p2", "tactic": "rw [← vsub_vadd p1 p2, h, zero_vadd]" } ]
[ 133, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 132, 1 ]
Mathlib/NumberTheory/Padics/Hensel.lean
newton_seq_norm_le
[]
[ 259, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 257, 9 ]
Mathlib/Algebra/EuclideanDomain/Defs.lean
EuclideanDomain.gcdB_zero_left
[ { "state_after": "R : Type u\ninst✝¹ : EuclideanDomain R\ninst✝ : DecidableEq R\ns : R\n⊢ (xgcd 0 s).snd = 1", "state_before": "R : Type u\ninst✝¹ : EuclideanDomain R\ninst✝ : DecidableEq R\ns : R\n⊢ gcdB 0 s = 1", "tactic": "unfold gcdB" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝¹ : EuclideanDomain R\ninst✝ : DecidableEq R\ns : R\n⊢ (xgcd 0 s).snd = 1", "tactic": "rw [xgcd, xgcd_zero_left]" } ]
[ 275, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 273, 1 ]
Mathlib/SetTheory/Ordinal/NaturalOps.lean
Ordinal.zero_nadd
[ { "state_after": "no goals", "state_before": "a b c : Ordinal\n⊢ 0 ♯ a = a", "tactic": "rw [nadd_comm, nadd_zero]" } ]
[ 294, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 294, 1 ]
Mathlib/Data/Polynomial/RingDivision.lean
Polynomial.units_coeff_zero_smul
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\na b : R\nn : ℕ\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\np✝ q : R[X]\nc : R[X]ˣ\np : R[X]\n⊢ coeff (↑c) 0 • p = ↑c * p", "tactic": "rw [← Polynomial.C_mul', ← Polynomial.eq_C_of_degree_eq_zero (degree_coe_units c)]" } ]
[ 845, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 844, 1 ]
Mathlib/Topology/Order.lean
nhds_sInf
[]
[ 666, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 664, 1 ]
Mathlib/LinearAlgebra/QuadraticForm/Basic.lean
QuadraticForm.toQuadraticForm_associated
[]
[ 814, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 813, 1 ]
Mathlib/Algebra/GCDMonoid/Multiset.lean
Multiset.dvd_lcm
[]
[ 72, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Std/Data/Int/DivMod.lean
Int.emod_eq_of_lt
[]
[ 358, 87 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 355, 1 ]
Mathlib/Analysis/Normed/Group/Quotient.lean
norm_mk_lt
[]
[ 198, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 196, 1 ]
Mathlib/GroupTheory/Subsemigroup/Operations.lean
Subsemigroup.monotone_comap
[]
[ 312, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 311, 1 ]
Mathlib/Computability/Primrec.lean
Primrec.nat_iff
[]
[ 237, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/Data/Complex/Exponential.lean
Real.neg_one_le_cos
[]
[ 1279, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1278, 1 ]
Mathlib/Algebra/BigOperators/Basic.lean
Finset.prod_subtype_of_mem
[ { "state_after": "ι : Type ?u.380694\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → β\np : α → Prop\ninst✝ : DecidablePred p\nh : ∀ (x : α), x ∈ s → p x\n⊢ ∀ (x : α), x ∈ s → p x", "state_before": "ι : Type ?u.380694\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → β\np : α → Prop\ninst✝ : DecidablePred p\nh : ∀ (x : α), x ∈ s → p x\n⊢ ∏ x in Finset.subtype p s, f ↑x = ∏ x in s, f x", "tactic": "rw [prod_subtype_eq_prod_filter, filter_true_of_mem]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.380694\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → β\np : α → Prop\ninst✝ : DecidablePred p\nh : ∀ (x : α), x ∈ s → p x\n⊢ ∀ (x : α), x ∈ s → p x", "tactic": "simpa using h" } ]
[ 881, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 878, 1 ]
Mathlib/RingTheory/Localization/Basic.lean
IsLocalization.isLocalization_iff_of_algEquiv
[]
[ 769, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 767, 1 ]
Mathlib/Algebra/BigOperators/Ring.lean
Finset.sum_mul_sum
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\ns s₁✝ s₂✝ : Finset α\na : α\nb : β\nf g : α → β\ninst✝ : NonUnitalNonAssocSemiring β\nι₁ : Type u_1\nι₂ : Type u_2\ns₁ : Finset ι₁\ns₂ : Finset ι₂\nf₁ : ι₁ → β\nf₂ : ι₂ → β\n⊢ ∀ (x : ι₁), x ∈ s₁ → f₁ x * ∑ x₂ in s₂, f₂ x₂ = ∑ y in s₂, f₁ (x, y).fst * f₂ (x, y).snd", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ns s₁✝ s₂✝ : Finset α\na : α\nb : β\nf g : α → β\ninst✝ : NonUnitalNonAssocSemiring β\nι₁ : Type u_1\nι₂ : Type u_2\ns₁ : Finset ι₁\ns₂ : Finset ι₂\nf₁ : ι₁ → β\nf₂ : ι₂ → β\n⊢ (∑ x₁ in s₁, f₁ x₁) * ∑ x₂ in s₂, f₂ x₂ = ∑ p in s₁ ×ˢ s₂, f₁ p.fst * f₂ p.snd", "tactic": "rw [sum_product, sum_mul, sum_congr rfl]" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\ns s₁✝ s₂✝ : Finset α\na : α\nb : β\nf g : α → β\ninst✝ : NonUnitalNonAssocSemiring β\nι₁ : Type u_1\nι₂ : Type u_2\ns₁ : Finset ι₁\ns₂ : Finset ι₂\nf₁ : ι₁ → β\nf₂ : ι₂ → β\nx✝ : ι₁\na✝ : x✝ ∈ s₁\n⊢ f₁ x✝ * ∑ x₂ in s₂, f₂ x₂ = ∑ y in s₂, f₁ (x✝, y).fst * f₂ (x✝, y).snd", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ns s₁✝ s₂✝ : Finset α\na : α\nb : β\nf g : α → β\ninst✝ : NonUnitalNonAssocSemiring β\nι₁ : Type u_1\nι₂ : Type u_2\ns₁ : Finset ι₁\ns₂ : Finset ι₂\nf₁ : ι₁ → β\nf₂ : ι₂ → β\n⊢ ∀ (x : ι₁), x ∈ s₁ → f₁ x * ∑ x₂ in s₂, f₂ x₂ = ∑ y in s₂, f₁ (x, y).fst * f₂ (x, y).snd", "tactic": "intros" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ns s₁✝ s₂✝ : Finset α\na : α\nb : β\nf g : α → β\ninst✝ : NonUnitalNonAssocSemiring β\nι₁ : Type u_1\nι₂ : Type u_2\ns₁ : Finset ι₁\ns₂ : Finset ι₂\nf₁ : ι₁ → β\nf₂ : ι₂ → β\nx✝ : ι₁\na✝ : x✝ ∈ s₁\n⊢ f₁ x✝ * ∑ x₂ in s₂, f₂ x₂ = ∑ y in s₂, f₁ (x✝, y).fst * f₂ (x✝, y).snd", "tactic": "rw [mul_sum]" } ]
[ 67, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 62, 1 ]
Mathlib/Data/List/Basic.lean
List.drop_left'
[ { "state_after": "ι : Type ?u.202919\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁✝ l₂✝ l₁ l₂ : List α\nn : ℕ\nh : length l₁ = n\n⊢ drop (length l₁) (l₁ ++ l₂) = l₂", "state_before": "ι : Type ?u.202919\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁✝ l₂✝ l₁ l₂ : List α\nn : ℕ\nh : length l₁ = n\n⊢ drop n (l₁ ++ l₂) = l₂", "tactic": "rw [← h]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.202919\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁✝ l₂✝ l₁ l₂ : List α\nn : ℕ\nh : length l₁ = n\n⊢ drop (length l₁) (l₁ ++ l₂) = l₂", "tactic": "apply drop_left" } ]
[ 2152, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2151, 1 ]
Mathlib/Deprecated/Submonoid.lean
isSubmonoid_iUnion_of_directed
[]
[ 121, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/NumberTheory/LucasLehmer.lean
LucasLehmer.X.coe_mul
[ { "state_after": "no goals", "state_before": "q : ℕ+\nn m : ℤ\n⊢ ↑(n * m) = ↑n * ↑m", "tactic": "ext <;> simp" } ]
[ 334, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 334, 1 ]
Mathlib/GroupTheory/FreeGroup.lean
FreeGroup.lift.mk
[]
[ 729, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 728, 1 ]
Mathlib/FieldTheory/PerfectClosure.lean
PerfectClosure.eq_iff'
[ { "state_after": "case mp\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y : ℕ × K\n⊢ mk K p x = mk K p y → ∃ z, (↑(frobenius K p)^[y.fst + z]) x.snd = (↑(frobenius K p)^[x.fst + z]) y.snd\n\ncase mpr\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y : ℕ × K\n⊢ (∃ z, (↑(frobenius K p)^[y.fst + z]) x.snd = (↑(frobenius K p)^[x.fst + z]) y.snd) → mk K p x = mk K p y", "state_before": "K : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y : ℕ × K\n⊢ mk K p x = mk K p y ↔ ∃ z, (↑(frobenius K p)^[y.fst + z]) x.snd = (↑(frobenius K p)^[x.fst + z]) y.snd", "tactic": "constructor" }, { "state_after": "case mpr\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y : ℕ × K\nH : ∃ z, (↑(frobenius K p)^[y.fst + z]) x.snd = (↑(frobenius K p)^[x.fst + z]) y.snd\n⊢ mk K p x = mk K p y", "state_before": "case mpr\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y : ℕ × K\n⊢ (∃ z, (↑(frobenius K p)^[y.fst + z]) x.snd = (↑(frobenius K p)^[x.fst + z]) y.snd) → mk K p x = mk K p y", "tactic": "intro H" }, { "state_after": "case mpr.mk\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\ny : ℕ × K\nm : ℕ\nx : K\nH : ∃ z, (↑(frobenius K p)^[y.fst + z]) (m, x).snd = (↑(frobenius K p)^[(m, x).fst + z]) y.snd\n⊢ mk K p (m, x) = mk K p y", "state_before": "case mpr\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y : ℕ × K\nH : ∃ z, (↑(frobenius K p)^[y.fst + z]) x.snd = (↑(frobenius K p)^[x.fst + z]) y.snd\n⊢ mk K p x = mk K p y", "tactic": "cases' x with m x" }, { "state_after": "case mpr.mk.mk\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nm : ℕ\nx : K\nn : ℕ\ny : K\nH : ∃ z, (↑(frobenius K p)^[(n, y).fst + z]) (m, x).snd = (↑(frobenius K p)^[(m, x).fst + z]) (n, y).snd\n⊢ mk K p (m, x) = mk K p (n, y)", "state_before": "case mpr.mk\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\ny : ℕ × K\nm : ℕ\nx : K\nH : ∃ z, (↑(frobenius K p)^[y.fst + z]) (m, x).snd = (↑(frobenius K p)^[(m, x).fst + z]) y.snd\n⊢ mk K p (m, x) = mk K p y", "tactic": "cases' y with n y" }, { "state_after": "case mpr.mk.mk.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nm : ℕ\nx : K\nn : ℕ\ny : K\nz : ℕ\nH : (↑(frobenius K p)^[(n, y).fst + z]) (m, x).snd = (↑(frobenius K p)^[(m, x).fst + z]) (n, y).snd\n⊢ mk K p (m, x) = mk K p (n, y)", "state_before": "case mpr.mk.mk\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nm : ℕ\nx : K\nn : ℕ\ny : K\nH : ∃ z, (↑(frobenius K p)^[(n, y).fst + z]) (m, x).snd = (↑(frobenius K p)^[(m, x).fst + z]) (n, y).snd\n⊢ mk K p (m, x) = mk K p (n, y)", "tactic": "cases' H with z H" }, { "state_after": "case mpr.mk.mk.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nm : ℕ\nx : K\nn : ℕ\ny : K\nz : ℕ\nH : (↑(frobenius K p)^[n + z]) x = (↑(frobenius K p)^[m + z]) y\n⊢ mk K p (m, x) = mk K p (n, y)", "state_before": "case mpr.mk.mk.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nm : ℕ\nx : K\nn : ℕ\ny : K\nz : ℕ\nH : (↑(frobenius K p)^[(n, y).fst + z]) (m, x).snd = (↑(frobenius K p)^[(m, x).fst + z]) (n, y).snd\n⊢ mk K p (m, x) = mk K p (n, y)", "tactic": "dsimp only at H" }, { "state_after": "case mpr.mk.mk.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nm : ℕ\nx : K\nn : ℕ\ny : K\nz : ℕ\nH : (↑(frobenius K p)^[n + z]) x = (↑(frobenius K p)^[m + z]) y\n⊢ mk K p (n + z + m, (↑(frobenius K p)^[m + z]) y) = mk K p (m + z + n, (↑(frobenius K p)^[m + z]) y)", "state_before": "case mpr.mk.mk.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nm : ℕ\nx : K\nn : ℕ\ny : K\nz : ℕ\nH : (↑(frobenius K p)^[n + z]) x = (↑(frobenius K p)^[m + z]) y\n⊢ mk K p (m, x) = mk K p (n, y)", "tactic": "rw [R.sound K p (n + z) m x _ rfl, R.sound K p (m + z) n y _ rfl, H]" }, { "state_after": "no goals", "state_before": "case mpr.mk.mk.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nm : ℕ\nx : K\nn : ℕ\ny : K\nz : ℕ\nH : (↑(frobenius K p)^[n + z]) x = (↑(frobenius K p)^[m + z]) y\n⊢ mk K p (n + z + m, (↑(frobenius K p)^[m + z]) y) = mk K p (m + z + n, (↑(frobenius K p)^[m + z]) y)", "tactic": "rw [add_assoc, add_comm, add_comm z]" }, { "state_after": "case mp\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y : ℕ × K\nH : mk K p x = mk K p y\n⊢ ∃ z, (↑(frobenius K p)^[y.fst + z]) x.snd = (↑(frobenius K p)^[x.fst + z]) y.snd", "state_before": "case mp\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y : ℕ × K\n⊢ mk K p x = mk K p y → ∃ z, (↑(frobenius K p)^[y.fst + z]) x.snd = (↑(frobenius K p)^[x.fst + z]) y.snd", "tactic": "intro H" }, { "state_after": "case mp\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y : ℕ × K\nH : EqvGen (R K p) x y\n⊢ ∃ z, (↑(frobenius K p)^[y.fst + z]) x.snd = (↑(frobenius K p)^[x.fst + z]) y.snd", "state_before": "case mp\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y : ℕ × K\nH : mk K p x = mk K p y\n⊢ ∃ z, (↑(frobenius K p)^[y.fst + z]) x.snd = (↑(frobenius K p)^[x.fst + z]) y.snd", "tactic": "replace H := Quot.exact _ H" }, { "state_after": "case mp.rel\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ : ℕ × K\na✝ : R K p x✝ y✝\n⊢ ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\n\ncase mp.refl\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ : ℕ × K\n⊢ ∃ z, (↑(frobenius K p)^[x✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) x✝.snd\n\ncase mp.symm\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ : ℕ × K\na✝ : EqvGen (R K p) x✝ y✝\na_ih✝ : ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\n⊢ ∃ z, (↑(frobenius K p)^[x✝.fst + z]) y✝.snd = (↑(frobenius K p)^[y✝.fst + z]) x✝.snd\n\ncase mp.trans\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ z✝ : ℕ × K\na✝¹ : EqvGen (R K p) x✝ y✝\na✝ : EqvGen (R K p) y✝ z✝\na_ih✝¹ : ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\na_ih✝ : ∃ z, (↑(frobenius K p)^[z✝.fst + z]) y✝.snd = (↑(frobenius K p)^[y✝.fst + z]) z✝.snd\n⊢ ∃ z, (↑(frobenius K p)^[z✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) z✝.snd", "state_before": "case mp\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y : ℕ × K\nH : EqvGen (R K p) x y\n⊢ ∃ z, (↑(frobenius K p)^[y.fst + z]) x.snd = (↑(frobenius K p)^[x.fst + z]) y.snd", "tactic": "induction H" }, { "state_after": "case mp.refl\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ : ℕ × K\n⊢ ∃ z, (↑(frobenius K p)^[x✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) x✝.snd\n\ncase mp.symm\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ : ℕ × K\na✝ : EqvGen (R K p) x✝ y✝\na_ih✝ : ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\n⊢ ∃ z, (↑(frobenius K p)^[x✝.fst + z]) y✝.snd = (↑(frobenius K p)^[y✝.fst + z]) x✝.snd\n\ncase mp.trans\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ z✝ : ℕ × K\na✝¹ : EqvGen (R K p) x✝ y✝\na✝ : EqvGen (R K p) y✝ z✝\na_ih✝¹ : ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\na_ih✝ : ∃ z, (↑(frobenius K p)^[z✝.fst + z]) y✝.snd = (↑(frobenius K p)^[y✝.fst + z]) z✝.snd\n⊢ ∃ z, (↑(frobenius K p)^[z✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) z✝.snd", "state_before": "case mp.rel\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ : ℕ × K\na✝ : R K p x✝ y✝\n⊢ ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\n\ncase mp.refl\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ : ℕ × K\n⊢ ∃ z, (↑(frobenius K p)^[x✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) x✝.snd\n\ncase mp.symm\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ : ℕ × K\na✝ : EqvGen (R K p) x✝ y✝\na_ih✝ : ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\n⊢ ∃ z, (↑(frobenius K p)^[x✝.fst + z]) y✝.snd = (↑(frobenius K p)^[y✝.fst + z]) x✝.snd\n\ncase mp.trans\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ z✝ : ℕ × K\na✝¹ : EqvGen (R K p) x✝ y✝\na✝ : EqvGen (R K p) y✝ z✝\na_ih✝¹ : ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\na_ih✝ : ∃ z, (↑(frobenius K p)^[z✝.fst + z]) y✝.snd = (↑(frobenius K p)^[y✝.fst + z]) z✝.snd\n⊢ ∃ z, (↑(frobenius K p)^[z✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) z✝.snd", "tactic": "case rel x y H => cases' H with n x; exact ⟨0, rfl⟩" }, { "state_after": "case mp.symm\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ : ℕ × K\na✝ : EqvGen (R K p) x✝ y✝\na_ih✝ : ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\n⊢ ∃ z, (↑(frobenius K p)^[x✝.fst + z]) y✝.snd = (↑(frobenius K p)^[y✝.fst + z]) x✝.snd\n\ncase mp.trans\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ z✝ : ℕ × K\na✝¹ : EqvGen (R K p) x✝ y✝\na✝ : EqvGen (R K p) y✝ z✝\na_ih✝¹ : ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\na_ih✝ : ∃ z, (↑(frobenius K p)^[z✝.fst + z]) y✝.snd = (↑(frobenius K p)^[y✝.fst + z]) z✝.snd\n⊢ ∃ z, (↑(frobenius K p)^[z✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) z✝.snd", "state_before": "case mp.refl\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ : ℕ × K\n⊢ ∃ z, (↑(frobenius K p)^[x✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) x✝.snd\n\ncase mp.symm\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ : ℕ × K\na✝ : EqvGen (R K p) x✝ y✝\na_ih✝ : ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\n⊢ ∃ z, (↑(frobenius K p)^[x✝.fst + z]) y✝.snd = (↑(frobenius K p)^[y✝.fst + z]) x✝.snd\n\ncase mp.trans\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ z✝ : ℕ × K\na✝¹ : EqvGen (R K p) x✝ y✝\na✝ : EqvGen (R K p) y✝ z✝\na_ih✝¹ : ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\na_ih✝ : ∃ z, (↑(frobenius K p)^[z✝.fst + z]) y✝.snd = (↑(frobenius K p)^[y✝.fst + z]) z✝.snd\n⊢ ∃ z, (↑(frobenius K p)^[z✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) z✝.snd", "tactic": "case refl H => exact ⟨0, rfl⟩" }, { "state_after": "case mp.trans\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ z✝ : ℕ × K\na✝¹ : EqvGen (R K p) x✝ y✝\na✝ : EqvGen (R K p) y✝ z✝\na_ih✝¹ : ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\na_ih✝ : ∃ z, (↑(frobenius K p)^[z✝.fst + z]) y✝.snd = (↑(frobenius K p)^[y✝.fst + z]) z✝.snd\n⊢ ∃ z, (↑(frobenius K p)^[z✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) z✝.snd", "state_before": "case mp.symm\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ : ℕ × K\na✝ : EqvGen (R K p) x✝ y✝\na_ih✝ : ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\n⊢ ∃ z, (↑(frobenius K p)^[x✝.fst + z]) y✝.snd = (↑(frobenius K p)^[y✝.fst + z]) x✝.snd\n\ncase mp.trans\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ z✝ : ℕ × K\na✝¹ : EqvGen (R K p) x✝ y✝\na✝ : EqvGen (R K p) y✝ z✝\na_ih✝¹ : ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\na_ih✝ : ∃ z, (↑(frobenius K p)^[z✝.fst + z]) y✝.snd = (↑(frobenius K p)^[y✝.fst + z]) z✝.snd\n⊢ ∃ z, (↑(frobenius K p)^[z✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) z✝.snd", "tactic": "case symm x y H ih => cases' ih with w ih; exact ⟨w, ih.symm⟩" }, { "state_after": "no goals", "state_before": "case mp.trans\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y x✝ y✝ z✝ : ℕ × K\na✝¹ : EqvGen (R K p) x✝ y✝\na✝ : EqvGen (R K p) y✝ z✝\na_ih✝¹ : ∃ z, (↑(frobenius K p)^[y✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) y✝.snd\na_ih✝ : ∃ z, (↑(frobenius K p)^[z✝.fst + z]) y✝.snd = (↑(frobenius K p)^[y✝.fst + z]) z✝.snd\n⊢ ∃ z, (↑(frobenius K p)^[z✝.fst + z]) x✝.snd = (↑(frobenius K p)^[x✝.fst + z]) z✝.snd", "tactic": "case trans x y z H1 H2 ih1 ih2 =>\n cases' ih1 with z1 ih1\n cases' ih2 with z2 ih2\n exists z2 + (y.1 + z1)\n rw [← add_assoc, iterate_add_apply, ih1]\n rw [← iterate_add_apply, add_comm, iterate_add_apply, ih2]\n rw [← iterate_add_apply]\n simp only [add_comm, add_left_comm]" }, { "state_after": "case intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y : ℕ × K\nn : ℕ\nx : K\n⊢ ∃ z,\n (↑(frobenius K p)^[(n + 1, ↑(frobenius K p) x).fst + z]) (n, x).snd =\n (↑(frobenius K p)^[(n, x).fst + z]) (n + 1, ↑(frobenius K p) x).snd", "state_before": "K : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y : ℕ × K\nH : R K p x y\n⊢ ∃ z, (↑(frobenius K p)^[y.fst + z]) x.snd = (↑(frobenius K p)^[x.fst + z]) y.snd", "tactic": "cases' H with n x" }, { "state_after": "no goals", "state_before": "case intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y : ℕ × K\nn : ℕ\nx : K\n⊢ ∃ z,\n (↑(frobenius K p)^[(n + 1, ↑(frobenius K p) x).fst + z]) (n, x).snd =\n (↑(frobenius K p)^[(n, x).fst + z]) (n + 1, ↑(frobenius K p) x).snd", "tactic": "exact ⟨0, rfl⟩" }, { "state_after": "no goals", "state_before": "K : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx y H : ℕ × K\n⊢ ∃ z, (↑(frobenius K p)^[H.fst + z]) H.snd = (↑(frobenius K p)^[H.fst + z]) H.snd", "tactic": "exact ⟨0, rfl⟩" }, { "state_after": "case intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y : ℕ × K\nH : EqvGen (R K p) x y\nw : ℕ\nih : (↑(frobenius K p)^[y.fst + w]) x.snd = (↑(frobenius K p)^[x.fst + w]) y.snd\n⊢ ∃ z, (↑(frobenius K p)^[x.fst + z]) y.snd = (↑(frobenius K p)^[y.fst + z]) x.snd", "state_before": "K : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y : ℕ × K\nH : EqvGen (R K p) x y\nih : ∃ z, (↑(frobenius K p)^[y.fst + z]) x.snd = (↑(frobenius K p)^[x.fst + z]) y.snd\n⊢ ∃ z, (↑(frobenius K p)^[x.fst + z]) y.snd = (↑(frobenius K p)^[y.fst + z]) x.snd", "tactic": "cases' ih with w ih" }, { "state_after": "no goals", "state_before": "case intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y : ℕ × K\nH : EqvGen (R K p) x y\nw : ℕ\nih : (↑(frobenius K p)^[y.fst + w]) x.snd = (↑(frobenius K p)^[x.fst + w]) y.snd\n⊢ ∃ z, (↑(frobenius K p)^[x.fst + z]) y.snd = (↑(frobenius K p)^[y.fst + z]) x.snd", "tactic": "exact ⟨w, ih.symm⟩" }, { "state_after": "case intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y z : ℕ × K\nH1 : EqvGen (R K p) x y\nH2 : EqvGen (R K p) y z\nih2 : ∃ z_1, (↑(frobenius K p)^[z.fst + z_1]) y.snd = (↑(frobenius K p)^[y.fst + z_1]) z.snd\nz1 : ℕ\nih1 : (↑(frobenius K p)^[y.fst + z1]) x.snd = (↑(frobenius K p)^[x.fst + z1]) y.snd\n⊢ ∃ z_1, (↑(frobenius K p)^[z.fst + z_1]) x.snd = (↑(frobenius K p)^[x.fst + z_1]) z.snd", "state_before": "K : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y z : ℕ × K\nH1 : EqvGen (R K p) x y\nH2 : EqvGen (R K p) y z\nih1 : ∃ z, (↑(frobenius K p)^[y.fst + z]) x.snd = (↑(frobenius K p)^[x.fst + z]) y.snd\nih2 : ∃ z_1, (↑(frobenius K p)^[z.fst + z_1]) y.snd = (↑(frobenius K p)^[y.fst + z_1]) z.snd\n⊢ ∃ z_1, (↑(frobenius K p)^[z.fst + z_1]) x.snd = (↑(frobenius K p)^[x.fst + z_1]) z.snd", "tactic": "cases' ih1 with z1 ih1" }, { "state_after": "case intro.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y z : ℕ × K\nH1 : EqvGen (R K p) x y\nH2 : EqvGen (R K p) y z\nz1 : ℕ\nih1 : (↑(frobenius K p)^[y.fst + z1]) x.snd = (↑(frobenius K p)^[x.fst + z1]) y.snd\nz2 : ℕ\nih2 : (↑(frobenius K p)^[z.fst + z2]) y.snd = (↑(frobenius K p)^[y.fst + z2]) z.snd\n⊢ ∃ z_1, (↑(frobenius K p)^[z.fst + z_1]) x.snd = (↑(frobenius K p)^[x.fst + z_1]) z.snd", "state_before": "case intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y z : ℕ × K\nH1 : EqvGen (R K p) x y\nH2 : EqvGen (R K p) y z\nih2 : ∃ z_1, (↑(frobenius K p)^[z.fst + z_1]) y.snd = (↑(frobenius K p)^[y.fst + z_1]) z.snd\nz1 : ℕ\nih1 : (↑(frobenius K p)^[y.fst + z1]) x.snd = (↑(frobenius K p)^[x.fst + z1]) y.snd\n⊢ ∃ z_1, (↑(frobenius K p)^[z.fst + z_1]) x.snd = (↑(frobenius K p)^[x.fst + z_1]) z.snd", "tactic": "cases' ih2 with z2 ih2" }, { "state_after": "case intro.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y z : ℕ × K\nH1 : EqvGen (R K p) x y\nH2 : EqvGen (R K p) y z\nz1 : ℕ\nih1 : (↑(frobenius K p)^[y.fst + z1]) x.snd = (↑(frobenius K p)^[x.fst + z1]) y.snd\nz2 : ℕ\nih2 : (↑(frobenius K p)^[z.fst + z2]) y.snd = (↑(frobenius K p)^[y.fst + z2]) z.snd\n⊢ (↑(frobenius K p)^[z.fst + (z2 + (y.fst + z1))]) x.snd = (↑(frobenius K p)^[x.fst + (z2 + (y.fst + z1))]) z.snd", "state_before": "case intro.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y z : ℕ × K\nH1 : EqvGen (R K p) x y\nH2 : EqvGen (R K p) y z\nz1 : ℕ\nih1 : (↑(frobenius K p)^[y.fst + z1]) x.snd = (↑(frobenius K p)^[x.fst + z1]) y.snd\nz2 : ℕ\nih2 : (↑(frobenius K p)^[z.fst + z2]) y.snd = (↑(frobenius K p)^[y.fst + z2]) z.snd\n⊢ ∃ z_1, (↑(frobenius K p)^[z.fst + z_1]) x.snd = (↑(frobenius K p)^[x.fst + z_1]) z.snd", "tactic": "exists z2 + (y.1 + z1)" }, { "state_after": "case intro.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y z : ℕ × K\nH1 : EqvGen (R K p) x y\nH2 : EqvGen (R K p) y z\nz1 : ℕ\nih1 : (↑(frobenius K p)^[y.fst + z1]) x.snd = (↑(frobenius K p)^[x.fst + z1]) y.snd\nz2 : ℕ\nih2 : (↑(frobenius K p)^[z.fst + z2]) y.snd = (↑(frobenius K p)^[y.fst + z2]) z.snd\n⊢ (↑(frobenius K p)^[z.fst + z2]) ((↑(frobenius K p)^[x.fst + z1]) y.snd) =\n (↑(frobenius K p)^[x.fst + (z2 + (y.fst + z1))]) z.snd", "state_before": "case intro.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y z : ℕ × K\nH1 : EqvGen (R K p) x y\nH2 : EqvGen (R K p) y z\nz1 : ℕ\nih1 : (↑(frobenius K p)^[y.fst + z1]) x.snd = (↑(frobenius K p)^[x.fst + z1]) y.snd\nz2 : ℕ\nih2 : (↑(frobenius K p)^[z.fst + z2]) y.snd = (↑(frobenius K p)^[y.fst + z2]) z.snd\n⊢ (↑(frobenius K p)^[z.fst + (z2 + (y.fst + z1))]) x.snd = (↑(frobenius K p)^[x.fst + (z2 + (y.fst + z1))]) z.snd", "tactic": "rw [← add_assoc, iterate_add_apply, ih1]" }, { "state_after": "case intro.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y z : ℕ × K\nH1 : EqvGen (R K p) x y\nH2 : EqvGen (R K p) y z\nz1 : ℕ\nih1 : (↑(frobenius K p)^[y.fst + z1]) x.snd = (↑(frobenius K p)^[x.fst + z1]) y.snd\nz2 : ℕ\nih2 : (↑(frobenius K p)^[z.fst + z2]) y.snd = (↑(frobenius K p)^[y.fst + z2]) z.snd\n⊢ (↑(frobenius K p)^[x.fst + z1]) ((↑(frobenius K p)^[y.fst + z2]) z.snd) =\n (↑(frobenius K p)^[x.fst + (z2 + (y.fst + z1))]) z.snd", "state_before": "case intro.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y z : ℕ × K\nH1 : EqvGen (R K p) x y\nH2 : EqvGen (R K p) y z\nz1 : ℕ\nih1 : (↑(frobenius K p)^[y.fst + z1]) x.snd = (↑(frobenius K p)^[x.fst + z1]) y.snd\nz2 : ℕ\nih2 : (↑(frobenius K p)^[z.fst + z2]) y.snd = (↑(frobenius K p)^[y.fst + z2]) z.snd\n⊢ (↑(frobenius K p)^[z.fst + z2]) ((↑(frobenius K p)^[x.fst + z1]) y.snd) =\n (↑(frobenius K p)^[x.fst + (z2 + (y.fst + z1))]) z.snd", "tactic": "rw [← iterate_add_apply, add_comm, iterate_add_apply, ih2]" }, { "state_after": "case intro.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y z : ℕ × K\nH1 : EqvGen (R K p) x y\nH2 : EqvGen (R K p) y z\nz1 : ℕ\nih1 : (↑(frobenius K p)^[y.fst + z1]) x.snd = (↑(frobenius K p)^[x.fst + z1]) y.snd\nz2 : ℕ\nih2 : (↑(frobenius K p)^[z.fst + z2]) y.snd = (↑(frobenius K p)^[y.fst + z2]) z.snd\n⊢ (↑(frobenius K p)^[x.fst + z1 + (y.fst + z2)]) z.snd = (↑(frobenius K p)^[x.fst + (z2 + (y.fst + z1))]) z.snd", "state_before": "case intro.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y z : ℕ × K\nH1 : EqvGen (R K p) x y\nH2 : EqvGen (R K p) y z\nz1 : ℕ\nih1 : (↑(frobenius K p)^[y.fst + z1]) x.snd = (↑(frobenius K p)^[x.fst + z1]) y.snd\nz2 : ℕ\nih2 : (↑(frobenius K p)^[z.fst + z2]) y.snd = (↑(frobenius K p)^[y.fst + z2]) z.snd\n⊢ (↑(frobenius K p)^[x.fst + z1]) ((↑(frobenius K p)^[y.fst + z2]) z.snd) =\n (↑(frobenius K p)^[x.fst + (z2 + (y.fst + z1))]) z.snd", "tactic": "rw [← iterate_add_apply]" }, { "state_after": "no goals", "state_before": "case intro.intro\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx✝ y✝ x y z : ℕ × K\nH1 : EqvGen (R K p) x y\nH2 : EqvGen (R K p) y z\nz1 : ℕ\nih1 : (↑(frobenius K p)^[y.fst + z1]) x.snd = (↑(frobenius K p)^[x.fst + z1]) y.snd\nz2 : ℕ\nih2 : (↑(frobenius K p)^[z.fst + z2]) y.snd = (↑(frobenius K p)^[y.fst + z2]) z.snd\n⊢ (↑(frobenius K p)^[x.fst + z1 + (y.fst + z2)]) z.snd = (↑(frobenius K p)^[x.fst + (z2 + (y.fst + z1))]) z.snd", "tactic": "simp only [add_comm, add_left_comm]" } ]
[ 416, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 394, 1 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
Finsupp.sum_inner
[ { "state_after": "case h.e'_3\n𝕜 : Type u_2\nE : Type u_3\nF : Type ?u.1418390\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type u_1\nl : ι →₀ 𝕜\nv : ι → E\nx : E\n⊢ (sum l fun i a => ↑(starRingEnd 𝕜) a • inner (v i) x) = ∑ i in l.support, inner (↑l i • v i) x", "state_before": "𝕜 : Type u_2\nE : Type u_3\nF : Type ?u.1418390\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type u_1\nl : ι →₀ 𝕜\nv : ι → E\nx : E\n⊢ inner (sum l fun i a => a • v i) x = sum l fun i a => ↑(starRingEnd 𝕜) a • inner (v i) x", "tactic": "convert _root_.sum_inner (𝕜 := 𝕜) l.support (fun a => l a • v a) x" }, { "state_after": "no goals", "state_before": "case h.e'_3\n𝕜 : Type u_2\nE : Type u_3\nF : Type ?u.1418390\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type u_1\nl : ι →₀ 𝕜\nv : ι → E\nx : E\n⊢ (sum l fun i a => ↑(starRingEnd 𝕜) a • inner (v i) x) = ∑ i in l.support, inner (↑l i • v i) x", "tactic": "simp only [inner_smul_left, Finsupp.sum, smul_eq_mul]" } ]
[ 537, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 534, 1 ]
Mathlib/CategoryTheory/Functor/FullyFaithful.lean
CategoryTheory.natIsoOfCompFullyFaithful_inv
[ { "state_after": "case w.h\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nE : Type u_2\ninst✝² : Category E\nF G : C ⥤ D\nH : D ⥤ E\ninst✝¹ : Full H\ninst✝ : Faithful H\ni : F ⋙ H ≅ G ⋙ H\nx✝ : C\n⊢ (natIsoOfCompFullyFaithful H i).inv.app x✝ = (natTransOfCompFullyFaithful H i.inv).app x✝", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nE : Type u_2\ninst✝² : Category E\nF G : C ⥤ D\nH : D ⥤ E\ninst✝¹ : Full H\ninst✝ : Faithful H\ni : F ⋙ H ≅ G ⋙ H\n⊢ (natIsoOfCompFullyFaithful H i).inv = natTransOfCompFullyFaithful H i.inv", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case w.h\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nE : Type u_2\ninst✝² : Category E\nF G : C ⥤ D\nH : D ⥤ E\ninst✝¹ : Full H\ninst✝ : Faithful H\ni : F ⋙ H ≅ G ⋙ H\nx✝ : C\n⊢ (natIsoOfCompFullyFaithful H i).inv.app x✝ = (natTransOfCompFullyFaithful H i.inv).app x✝", "tactic": "simp [← preimage_comp]" } ]
[ 235, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 232, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.Reachable.rfl
[]
[ 1872, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1872, 11 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
ciSup_const
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type ?u.58776\nγ : Type ?u.58779\nι : Sort u_1\ninst✝ : ConditionallyCompleteLattice α\ns t : Set α\na✝ b : α\nhι : Nonempty ι\na : α\n⊢ (⨆ (x : ι), a) = a", "tactic": "rw [iSup, range_const, csSup_singleton]" } ]
[ 832, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 831, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.induction_on_max_value
[ { "state_after": "case a\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\n⊢ p s", "state_before": "F : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\ns : Finset ι\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\n⊢ p s", "tactic": "induction' s using Finset.strongInductionOn with s ihs" }, { "state_after": "case a.inl\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : image f s = ∅\n⊢ p s\n\ncase a.inr\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : Finset.Nonempty (image f s)\n⊢ p s", "state_before": "case a\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\n⊢ p s", "tactic": "rcases(s.image f).eq_empty_or_nonempty with (hne | hne)" }, { "state_after": "case a.inl\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : s = ∅\n⊢ p s", "state_before": "case a.inl\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : image f s = ∅\n⊢ p s", "tactic": "simp only [image_eq_empty] at hne" }, { "state_after": "no goals", "state_before": "case a.inl\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : s = ∅\n⊢ p s", "tactic": "simp only [hne, h0]" }, { "state_after": "case a.inr\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : Finset.Nonempty (image f s)\nH : max' (image f s) hne ∈ image f s\n⊢ p s", "state_before": "case a.inr\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : Finset.Nonempty (image f s)\n⊢ p s", "tactic": "have H : (s.image f).max' hne ∈ s.image f := max'_mem (s.image f) hne" }, { "state_after": "case a.inr\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : Finset.Nonempty (image f s)\nH : ∃ a, a ∈ s ∧ f a = max' (image f s) hne\n⊢ p s", "state_before": "case a.inr\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : Finset.Nonempty (image f s)\nH : max' (image f s) hne ∈ image f s\n⊢ p s", "tactic": "simp only [mem_image, exists_prop] at H" }, { "state_after": "case a.inr.intro.intro\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : Finset.Nonempty (image f s)\na : ι\nhas : a ∈ s\nhfa : f a = max' (image f s) hne\n⊢ p s", "state_before": "case a.inr\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : Finset.Nonempty (image f s)\nH : ∃ a, a ∈ s ∧ f a = max' (image f s) hne\n⊢ p s", "tactic": "rcases H with ⟨a, has, hfa⟩" }, { "state_after": "case a.inr.intro.intro\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : Finset.Nonempty (image f s)\na : ι\nhas : a ∈ s\nhfa : f a = max' (image f s) hne\n⊢ p (insert a (erase s a))", "state_before": "case a.inr.intro.intro\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : Finset.Nonempty (image f s)\na : ι\nhas : a ∈ s\nhfa : f a = max' (image f s) hne\n⊢ p s", "tactic": "rw [← insert_erase has]" }, { "state_after": "case a.inr.intro.intro\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : Finset.Nonempty (image f s)\na : ι\nhas : a ∈ s\nhfa : f a = max' (image f s) hne\nx : ι\nhx : x ∈ erase s a\n⊢ f x ≤ f a", "state_before": "case a.inr.intro.intro\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : Finset.Nonempty (image f s)\na : ι\nhas : a ∈ s\nhfa : f a = max' (image f s) hne\n⊢ p (insert a (erase s a))", "tactic": "refine' step _ _ (not_mem_erase a s) (fun x hx => _) (ihs _ <| erase_ssubset has)" }, { "state_after": "case a.inr.intro.intro\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : Finset.Nonempty (image f s)\na : ι\nhas : a ∈ s\nhfa : f a = max' (image f s) hne\nx : ι\nhx : x ∈ erase s a\n⊢ f x ≤ max' (image f s) hne", "state_before": "case a.inr.intro.intro\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : Finset.Nonempty (image f s)\na : ι\nhas : a ∈ s\nhfa : f a = max' (image f s) hne\nx : ι\nhx : x ∈ erase s a\n⊢ f x ≤ f a", "tactic": "rw [hfa]" }, { "state_after": "no goals", "state_before": "case a.inr.intro.intro\nF : Type ?u.399951\nα : Type u_2\nβ : Type ?u.399957\nγ : Type ?u.399960\nι : Type u_1\nκ : Type ?u.399966\ninst✝² : LinearOrder α\ninst✝¹ : LinearOrder β\ninst✝ : DecidableEq ι\nf : ι → α\np : Finset ι → Prop\nh0 : p ∅\nstep : ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → f x ≤ f a) → p s → p (insert a s)\ns : Finset ι\nihs : ∀ (t : Finset ι), t ⊂ s → p t\nhne : Finset.Nonempty (image f s)\na : ι\nhas : a ∈ s\nhfa : f a = max' (image f s) hne\nx : ι\nhx : x ∈ erase s a\n⊢ f x ≤ max' (image f s) hne", "tactic": "exact le_max' _ _ (mem_image_of_mem _ <| mem_of_mem_erase hx)" } ]
[ 1673, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1661, 1 ]
Mathlib/LinearAlgebra/Matrix/Charpoly/Coeff.lean
Matrix.det_eq_sign_charpoly_coeff
[ { "state_after": "R : Type u\ninst✝³ : CommRing R\nn G : Type v\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\nα β : Type v\ninst✝ : DecidableEq α\nM✝ M : Matrix n n R\n⊢ det M = det (-1 • eval (↑(scalar n) 0) (X - ↑C M))", "state_before": "R : Type u\ninst✝³ : CommRing R\nn G : Type v\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\nα β : Type v\ninst✝ : DecidableEq α\nM✝ M : Matrix n n R\n⊢ det M = (-1) ^ Fintype.card n * coeff (charpoly M) 0", "tactic": "rw [coeff_zero_eq_eval_zero, charpoly, eval_det, matPolyEquiv_charmatrix, ← det_smul]" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝³ : CommRing R\nn G : Type v\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\nα β : Type v\ninst✝ : DecidableEq α\nM✝ M : Matrix n n R\n⊢ det M = det (-1 • eval (↑(scalar n) 0) (X - ↑C M))", "tactic": "simp" } ]
[ 198, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 195, 1 ]
Mathlib/Data/List/Perm.lean
List.Perm.take_inter
[ { "state_after": "α✝ : Type uu\nβ : Type vv\nl₁ l₂ : List α✝\nα : Type u_1\ninst✝ : DecidableEq α\nxs ys : List α\nn : ℕ\nh : xs ~ ys\nh' : Nodup ys\n⊢ take n xs ~ List.filter (fun x => decide (x ∈ take n xs)) ys", "state_before": "α✝ : Type uu\nβ : Type vv\nl₁ l₂ : List α✝\nα : Type u_1\ninst✝ : DecidableEq α\nxs ys : List α\nn : ℕ\nh : xs ~ ys\nh' : Nodup ys\n⊢ take n xs ~ List.inter ys (take n xs)", "tactic": "simp only [List.inter]" }, { "state_after": "no goals", "state_before": "α✝ : Type uu\nβ : Type vv\nl₁ l₂ : List α✝\nα : Type u_1\ninst✝ : DecidableEq α\nxs ys : List α\nn : ℕ\nh : xs ~ ys\nh' : Nodup ys\n⊢ take n xs ~ List.filter (fun x => decide (x ∈ take n xs)) ys", "tactic": "exact Perm.trans (show xs.take n ~ xs.filter (. ∈ xs.take n) by\n conv_lhs => rw [Nodup.take_eq_filter_mem ((Perm.nodup_iff h).2 h')])\n (Perm.filter _ h)" }, { "state_after": "no goals", "state_before": "α✝ : Type uu\nβ : Type vv\nl₁ l₂ : List α✝\nα : Type u_1\ninst✝ : DecidableEq α\nxs ys : List α\nn : ℕ\nh : xs ~ ys\nh' : Nodup ys\n⊢ take n xs ~ List.filter (fun x => decide (x ∈ take n xs)) xs", "tactic": "conv_lhs => rw [Nodup.take_eq_filter_mem ((Perm.nodup_iff h).2 h')]" } ]
[ 1163, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1158, 1 ]
Mathlib/MeasureTheory/Group/MeasurableEquiv.lean
MeasurableEquiv.coe_smul₀
[]
[ 79, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 1 ]
Mathlib/Data/Polynomial/Coeff.lean
Polynomial.coeff_X_mul
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝ q r p : R[X]\nn : ℕ\n⊢ coeff (X * p) (n + 1) = coeff p n", "tactic": "rw [(commute_X p).eq, coeff_mul_X]" } ]
[ 270, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 269, 1 ]
Mathlib/LinearAlgebra/Matrix/ToLin.lean
LinearMap.toMatrix_transpose_apply'
[]
[ 599, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 597, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.IsImage.symm_eqOn_of_inter_eq_of_eqOn
[]
[ 582, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 579, 1 ]
Mathlib/Analysis/Normed/Field/Basic.lean
eventually_norm_pow_le
[]
[ 387, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 386, 1 ]
Mathlib/GroupTheory/Subgroup/Saturated.lean
Subgroup.saturated_iff_zpow
[ { "state_after": "case mp\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\n⊢ Saturated H → ∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H\n\ncase mpr\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\n⊢ (∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H) → Saturated H", "state_before": "G : Type u_1\ninst✝ : Group G\nH : Subgroup G\n⊢ Saturated H ↔ ∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H", "tactic": "constructor" }, { "state_after": "case mp\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : Saturated H\nn : ℤ\ng : G\nhgn : g ^ n ∈ H\n⊢ n = 0 ∨ g ∈ H", "state_before": "case mp\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\n⊢ Saturated H → ∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H", "tactic": "intros hH n g hgn" }, { "state_after": "case mp.ofNat\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : Saturated H\nn✝ : ℤ\ng : G\nhgn✝ : g ^ n✝ ∈ H\nn : ℕ\nhgn : g ^ Int.ofNat n ∈ H\n⊢ Int.ofNat n = 0 ∨ g ∈ H\n\ncase mp.negSucc\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : Saturated H\nn✝ : ℤ\ng : G\nhgn✝ : g ^ n✝ ∈ H\nn : ℕ\nhgn : g ^ Int.negSucc n ∈ H\n⊢ Int.negSucc n = 0 ∨ g ∈ H", "state_before": "case mp\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : Saturated H\nn : ℤ\ng : G\nhgn : g ^ n ∈ H\n⊢ n = 0 ∨ g ∈ H", "tactic": "induction' n with n n" }, { "state_after": "case mp.ofNat\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : Saturated H\nn✝ : ℤ\ng : G\nhgn✝ : g ^ n✝ ∈ H\nn : ℕ\nhgn : g ^ n ∈ H\n⊢ n = 0 ∨ g ∈ H", "state_before": "case mp.ofNat\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : Saturated H\nn✝ : ℤ\ng : G\nhgn✝ : g ^ n✝ ∈ H\nn : ℕ\nhgn : g ^ Int.ofNat n ∈ H\n⊢ Int.ofNat n = 0 ∨ g ∈ H", "tactic": "simp only [Int.coe_nat_eq_zero, Int.ofNat_eq_coe, zpow_ofNat] at hgn⊢" }, { "state_after": "no goals", "state_before": "case mp.ofNat\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : Saturated H\nn✝ : ℤ\ng : G\nhgn✝ : g ^ n✝ ∈ H\nn : ℕ\nhgn : g ^ n ∈ H\n⊢ n = 0 ∨ g ∈ H", "tactic": "exact hH hgn" }, { "state_after": "case mp.negSucc\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : Saturated H\nn✝ : ℤ\ng : G\nhgn✝ : g ^ n✝ ∈ H\nn : ℕ\nhgn : g ^ Int.negSucc n ∈ H\n⊢ g ^ (n + 1) ∈ H", "state_before": "case mp.negSucc\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : Saturated H\nn✝ : ℤ\ng : G\nhgn✝ : g ^ n✝ ∈ H\nn : ℕ\nhgn : g ^ Int.negSucc n ∈ H\n⊢ Int.negSucc n = 0 ∨ g ∈ H", "tactic": "suffices g ^ (n + 1) ∈ H by\n refine' (hH this).imp _ id\n simp only [IsEmpty.forall_iff, Nat.succ_ne_zero]" }, { "state_after": "no goals", "state_before": "case mp.negSucc\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : Saturated H\nn✝ : ℤ\ng : G\nhgn✝ : g ^ n✝ ∈ H\nn : ℕ\nhgn : g ^ Int.negSucc n ∈ H\n⊢ g ^ (n + 1) ∈ H", "tactic": "simpa only [inv_mem_iff, zpow_negSucc] using hgn" }, { "state_after": "G : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : Saturated H\nn✝ : ℤ\ng : G\nhgn✝ : g ^ n✝ ∈ H\nn : ℕ\nhgn : g ^ Int.negSucc n ∈ H\nthis : g ^ (n + 1) ∈ H\n⊢ n + 1 = 0 → Int.negSucc n = 0", "state_before": "G : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : Saturated H\nn✝ : ℤ\ng : G\nhgn✝ : g ^ n✝ ∈ H\nn : ℕ\nhgn : g ^ Int.negSucc n ∈ H\nthis : g ^ (n + 1) ∈ H\n⊢ Int.negSucc n = 0 ∨ g ∈ H", "tactic": "refine' (hH this).imp _ id" }, { "state_after": "no goals", "state_before": "G : Type u_1\ninst✝ : Group G\nH : Subgroup G\nhH : Saturated H\nn✝ : ℤ\ng : G\nhgn✝ : g ^ n✝ ∈ H\nn : ℕ\nhgn : g ^ Int.negSucc n ∈ H\nthis : g ^ (n + 1) ∈ H\n⊢ n + 1 = 0 → Int.negSucc n = 0", "tactic": "simp only [IsEmpty.forall_iff, Nat.succ_ne_zero]" }, { "state_after": "case mpr\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nh : ∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H\nn : ℕ\ng : G\nhgn : g ^ n ∈ H\n⊢ n = 0 ∨ g ∈ H", "state_before": "case mpr\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\n⊢ (∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H) → Saturated H", "tactic": "intro h n g hgn" }, { "state_after": "case mpr\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nn : ℕ\ng : G\nhgn : g ^ n ∈ H\nh : g ^ ↑n ∈ H → ↑n = 0 ∨ g ∈ H\n⊢ n = 0 ∨ g ∈ H", "state_before": "case mpr\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nh : ∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H\nn : ℕ\ng : G\nhgn : g ^ n ∈ H\n⊢ n = 0 ∨ g ∈ H", "tactic": "specialize h n g" }, { "state_after": "case mpr\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nn : ℕ\ng : G\nhgn : g ^ n ∈ H\nh : g ^ n ∈ H → n = 0 ∨ g ∈ H\n⊢ n = 0 ∨ g ∈ H", "state_before": "case mpr\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nn : ℕ\ng : G\nhgn : g ^ n ∈ H\nh : g ^ ↑n ∈ H → ↑n = 0 ∨ g ∈ H\n⊢ n = 0 ∨ g ∈ H", "tactic": "simp only [Int.coe_nat_eq_zero, zpow_ofNat] at h" }, { "state_after": "no goals", "state_before": "case mpr\nG : Type u_1\ninst✝ : Group G\nH : Subgroup G\nn : ℕ\ng : G\nhgn : g ^ n ∈ H\nh : g ^ n ∈ H → n = 0 ∨ g ∈ H\n⊢ n = 0 ∨ g ∈ H", "tactic": "apply h hgn" } ]
[ 58, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 44, 1 ]
Mathlib/RingTheory/Coprime/Basic.lean
IsCoprime.of_mul_add_right_right
[ { "state_after": "R : Type u\ninst✝ : CommSemiring R\nx y z : R\nh : IsCoprime x (y + z * x)\n⊢ IsCoprime x y", "state_before": "R : Type u\ninst✝ : CommSemiring R\nx y z : R\nh : IsCoprime x (z * x + y)\n⊢ IsCoprime x y", "tactic": "rw [add_comm] at h" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝ : CommSemiring R\nx y z : R\nh : IsCoprime x (y + z * x)\n⊢ IsCoprime x y", "tactic": "exact h.of_add_mul_right_right" } ]
[ 221, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 219, 1 ]
Mathlib/Data/Set/Function.lean
Set.piecewise_insert
[ { "state_after": "α : Type u_1\nβ : Type ?u.73354\nγ : Type ?u.73357\nι : Sort ?u.73360\nπ : α → Type ?u.73365\nδ : α → Sort u_2\ns : Set α\nf g : (i : α) → δ i\ninst✝² : (j : α) → Decidable (j ∈ s)\ninst✝¹ : DecidableEq α\nj : α\ninst✝ : (i : α) → Decidable (i ∈ insert j s)\n⊢ (fun i => if i = j ∨ i ∈ s then f i else g i) = update (fun i => if i ∈ s then f i else g i) j (f j)", "state_before": "α : Type u_1\nβ : Type ?u.73354\nγ : Type ?u.73357\nι : Sort ?u.73360\nπ : α → Type ?u.73365\nδ : α → Sort u_2\ns : Set α\nf g : (i : α) → δ i\ninst✝² : (j : α) → Decidable (j ∈ s)\ninst✝¹ : DecidableEq α\nj : α\ninst✝ : (i : α) → Decidable (i ∈ insert j s)\n⊢ piecewise (insert j s) f g = update (piecewise s f g) j (f j)", "tactic": "simp [piecewise]" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.73354\nγ : Type ?u.73357\nι : Sort ?u.73360\nπ : α → Type ?u.73365\nδ : α → Sort u_2\ns : Set α\nf g : (i : α) → δ i\ninst✝² : (j : α) → Decidable (j ∈ s)\ninst✝¹ : DecidableEq α\nj : α\ninst✝ : (i : α) → Decidable (i ∈ insert j s)\ni : α\n⊢ (if i = j ∨ i ∈ s then f i else g i) = update (fun i => if i ∈ s then f i else g i) j (f j) i", "state_before": "α : Type u_1\nβ : Type ?u.73354\nγ : Type ?u.73357\nι : Sort ?u.73360\nπ : α → Type ?u.73365\nδ : α → Sort u_2\ns : Set α\nf g : (i : α) → δ i\ninst✝² : (j : α) → Decidable (j ∈ s)\ninst✝¹ : DecidableEq α\nj : α\ninst✝ : (i : α) → Decidable (i ∈ insert j s)\n⊢ (fun i => if i = j ∨ i ∈ s then f i else g i) = update (fun i => if i ∈ s then f i else g i) j (f j)", "tactic": "ext i" }, { "state_after": "case pos\nα : Type u_1\nβ : Type ?u.73354\nγ : Type ?u.73357\nι : Sort ?u.73360\nπ : α → Type ?u.73365\nδ : α → Sort u_2\ns : Set α\nf g : (i : α) → δ i\ninst✝² : (j : α) → Decidable (j ∈ s)\ninst✝¹ : DecidableEq α\nj : α\ninst✝ : (i : α) → Decidable (i ∈ insert j s)\ni : α\nh : i = j\n⊢ (if i = j ∨ i ∈ s then f i else g i) = update (fun i => if i ∈ s then f i else g i) j (f j) i\n\ncase neg\nα : Type u_1\nβ : Type ?u.73354\nγ : Type ?u.73357\nι : Sort ?u.73360\nπ : α → Type ?u.73365\nδ : α → Sort u_2\ns : Set α\nf g : (i : α) → δ i\ninst✝² : (j : α) → Decidable (j ∈ s)\ninst✝¹ : DecidableEq α\nj : α\ninst✝ : (i : α) → Decidable (i ∈ insert j s)\ni : α\nh : ¬i = j\n⊢ (if i = j ∨ i ∈ s then f i else g i) = update (fun i => if i ∈ s then f i else g i) j (f j) i", "state_before": "case h\nα : Type u_1\nβ : Type ?u.73354\nγ : Type ?u.73357\nι : Sort ?u.73360\nπ : α → Type ?u.73365\nδ : α → Sort u_2\ns : Set α\nf g : (i : α) → δ i\ninst✝² : (j : α) → Decidable (j ∈ s)\ninst✝¹ : DecidableEq α\nj : α\ninst✝ : (i : α) → Decidable (i ∈ insert j s)\ni : α\n⊢ (if i = j ∨ i ∈ s then f i else g i) = update (fun i => if i ∈ s then f i else g i) j (f j) i", "tactic": "by_cases h : i = j" }, { "state_after": "case pos\nα : Type u_1\nβ : Type ?u.73354\nγ : Type ?u.73357\nι : Sort ?u.73360\nπ : α → Type ?u.73365\nδ : α → Sort u_2\ns : Set α\nf g : (i : α) → δ i\ninst✝² : (j : α) → Decidable (j ∈ s)\ninst✝¹ : DecidableEq α\nj : α\ninst✝ : (i : α) → Decidable (i ∈ insert j s)\ni : α\nh : i = j\n⊢ (if j = j ∨ j ∈ s then f j else g j) = update (fun i => if i ∈ s then f i else g i) j (f j) j", "state_before": "case pos\nα : Type u_1\nβ : Type ?u.73354\nγ : Type ?u.73357\nι : Sort ?u.73360\nπ : α → Type ?u.73365\nδ : α → Sort u_2\ns : Set α\nf g : (i : α) → δ i\ninst✝² : (j : α) → Decidable (j ∈ s)\ninst✝¹ : DecidableEq α\nj : α\ninst✝ : (i : α) → Decidable (i ∈ insert j s)\ni : α\nh : i = j\n⊢ (if i = j ∨ i ∈ s then f i else g i) = update (fun i => if i ∈ s then f i else g i) j (f j) i", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nβ : Type ?u.73354\nγ : Type ?u.73357\nι : Sort ?u.73360\nπ : α → Type ?u.73365\nδ : α → Sort u_2\ns : Set α\nf g : (i : α) → δ i\ninst✝² : (j : α) → Decidable (j ∈ s)\ninst✝¹ : DecidableEq α\nj : α\ninst✝ : (i : α) → Decidable (i ∈ insert j s)\ni : α\nh : i = j\n⊢ (if j = j ∨ j ∈ s then f j else g j) = update (fun i => if i ∈ s then f i else g i) j (f j) j", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.73354\nγ : Type ?u.73357\nι : Sort ?u.73360\nπ : α → Type ?u.73365\nδ : α → Sort u_2\ns : Set α\nf g : (i : α) → δ i\ninst✝² : (j : α) → Decidable (j ∈ s)\ninst✝¹ : DecidableEq α\nj : α\ninst✝ : (i : α) → Decidable (i ∈ insert j s)\ni : α\nh : ¬i = j\n⊢ (if i = j ∨ i ∈ s then f i else g i) = update (fun i => if i ∈ s then f i else g i) j (f j) i", "tactic": "by_cases h' : i ∈ s <;> simp [h, h']" } ]
[ 1380, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1373, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Mul.lean
DifferentiableAt.smul
[]
[ 205, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 203, 1 ]
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.Bounded.weak
[]
[ 927, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 926, 1 ]
Mathlib/Data/MvPolynomial/Comap.lean
MvPolynomial.comap_comp
[ { "state_after": "case h\nσ : Type u_2\nτ : Type u_3\nυ : Type u_4\nR : Type u_1\ninst✝ : CommSemiring R\nf : MvPolynomial σ R →ₐ[R] MvPolynomial τ R\ng : MvPolynomial τ R →ₐ[R] MvPolynomial υ R\nx : υ → R\n⊢ comap (AlgHom.comp g f) x = (comap f ∘ comap g) x", "state_before": "σ : Type u_2\nτ : Type u_3\nυ : Type u_4\nR : Type u_1\ninst✝ : CommSemiring R\nf : MvPolynomial σ R →ₐ[R] MvPolynomial τ R\ng : MvPolynomial τ R →ₐ[R] MvPolynomial υ R\n⊢ comap (AlgHom.comp g f) = comap f ∘ comap g", "tactic": "funext x" }, { "state_after": "no goals", "state_before": "case h\nσ : Type u_2\nτ : Type u_3\nυ : Type u_4\nR : Type u_1\ninst✝ : CommSemiring R\nf : MvPolynomial σ R →ₐ[R] MvPolynomial τ R\ng : MvPolynomial τ R →ₐ[R] MvPolynomial υ R\nx : υ → R\n⊢ comap (AlgHom.comp g f) x = (comap f ∘ comap g) x", "tactic": "exact comap_comp_apply _ _ _" } ]
[ 83, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 80, 1 ]
Mathlib/Topology/Covering.lean
IsCoveringMap.isLocallyHomeomorph
[]
[ 169, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 11 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.mex_le_lsub
[]
[ 2035, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2034, 1 ]
Mathlib/Data/Fin/Tuple/Basic.lean
Fin.insertNth_add
[]
[ 777, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 774, 1 ]
Mathlib/LinearAlgebra/TensorProduct.lean
TensorProduct.Neg.aux_of
[]
[ 1193, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1192, 1 ]
Mathlib/Order/Filter/AtTopBot.lean
Filter.Tendsto.atBot_mul_atTop
[ { "state_after": "ι : Type ?u.197158\nι' : Type ?u.197161\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.197170\ninst✝ : StrictOrderedRing α\nl : Filter β\nf g : β → α\nhf : Tendsto f l atBot\nhg : Tendsto g l atTop\nthis : Tendsto (fun x => -f x * g x) l atTop\n⊢ Tendsto (fun x => f x * g x) l atBot", "state_before": "ι : Type ?u.197158\nι' : Type ?u.197161\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.197170\ninst✝ : StrictOrderedRing α\nl : Filter β\nf g : β → α\nhf : Tendsto f l atBot\nhg : Tendsto g l atTop\n⊢ Tendsto (fun x => f x * g x) l atBot", "tactic": "have : Tendsto (fun x => -f x * g x) l atTop :=\n (tendsto_neg_atBot_atTop.comp hf).atTop_mul_atTop hg" } ]
[ 916, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 912, 1 ]
Mathlib/MeasureTheory/Measure/Lebesgue/EqHaar.lean
MeasureTheory.Measure.add_haar_closedBall'
[ { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2003002\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns : Set E\nx : E\nr : ℝ\nhr : 0 ≤ r\n⊢ ↑↑μ (closedBall x r) = ENNReal.ofReal (r ^ finrank ℝ E) * ↑↑μ (closedBall 0 1)", "tactic": "rw [← add_haar_closedBall_mul μ x hr zero_le_one, mul_one]" } ]
[ 460, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 458, 1 ]
Mathlib/FieldTheory/RatFunc.lean
RatFunc.toFractionRing_injective
[ { "state_after": "K : Type u\ninst✝ : CommRing K\nx : FractionRing K[X]\n⊢ { toFractionRing := x } = { toFractionRing := { toFractionRing := x }.toFractionRing }", "state_before": "K : Type u\ninst✝ : CommRing K\nx y : FractionRing K[X]\nxy : { toFractionRing := x }.toFractionRing = { toFractionRing := y }.toFractionRing\n⊢ { toFractionRing := x } = { toFractionRing := y }", "tactic": "subst xy" }, { "state_after": "no goals", "state_before": "K : Type u\ninst✝ : CommRing K\nx : FractionRing K[X]\n⊢ { toFractionRing := x } = { toFractionRing := { toFractionRing := x }.toFractionRing }", "tactic": "rfl" } ]
[ 136, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 134, 1 ]
Mathlib/Topology/Algebra/Order/MonotoneConvergence.lean
iSup_eq_iSup_subseq_of_monotone
[]
[ 322, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 316, 1 ]
Mathlib/Topology/Algebra/UniformGroup.lean
TopologicalGroup.tendstoUniformlyOn_iff
[]
[ 628, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 623, 1 ]
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
MeasureTheory.SimpleFunc.FinMeasSupp.integrable
[]
[ 382, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 381, 1 ]
Mathlib/Topology/Sets/Opens.lean
TopologicalSpace.Opens.coe_eq_univ
[]
[ 203, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 202, 1 ]
Mathlib/Topology/MetricSpace/GromovHausdorffRealized.lean
GromovHausdorff.HD_below_aux2
[]
[ 313, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 310, 1 ]
Mathlib/Data/MvPolynomial/Basic.lean
MvPolynomial.induction_on_monomial
[ { "state_after": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\n⊢ M (↑(monomial s) a)", "state_before": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na a' a₁ a₂ : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\n⊢ ∀ (s : σ →₀ ℕ) (a : R), M (↑(monomial s) a)", "tactic": "intro s a" }, { "state_after": "case h0\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\n⊢ M (↑(monomial 0) a)\n\ncase ha\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\n⊢ ∀ (a_1 : σ) (b : ℕ) (f : σ →₀ ℕ),\n ¬a_1 ∈ f.support → b ≠ 0 → M (↑(monomial f) a) → M (↑(monomial (Finsupp.single a_1 b + f)) a)", "state_before": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\n⊢ M (↑(monomial s) a)", "tactic": "apply @Finsupp.induction σ ℕ _ _ s" }, { "state_after": "case h0\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\n⊢ M (↑(monomial 0) a)", "state_before": "case h0\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\n⊢ M (↑(monomial 0) a)", "tactic": "show M (monomial 0 a)" }, { "state_after": "no goals", "state_before": "case h0\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\n⊢ M (↑(monomial 0) a)", "tactic": "exact h_C a" }, { "state_after": "case ha\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne✝ : ℕ\nn✝ m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np✝ q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\nn : σ\ne : ℕ\np : σ →₀ ℕ\n_hpn : ¬n ∈ p.support\n_he : e ≠ 0\nih : M (↑(monomial p) a)\n⊢ M (↑(monomial (Finsupp.single n e + p)) a)", "state_before": "case ha\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\n⊢ ∀ (a_1 : σ) (b : ℕ) (f : σ →₀ ℕ),\n ¬a_1 ∈ f.support → b ≠ 0 → M (↑(monomial f) a) → M (↑(monomial (Finsupp.single a_1 b + f)) a)", "tactic": "intro n e p _hpn _he ih" }, { "state_after": "case ha\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne✝ : ℕ\nn✝ m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np✝ q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\nn : σ\ne : ℕ\np : σ →₀ ℕ\n_hpn : ¬n ∈ p.support\n_he : e ≠ 0\nih : M (↑(monomial p) a)\nthis : ∀ (e : ℕ), M (↑(monomial p) a * X n ^ e)\n⊢ M (↑(monomial (Finsupp.single n e + p)) a)", "state_before": "case ha\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne✝ : ℕ\nn✝ m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np✝ q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\nn : σ\ne : ℕ\np : σ →₀ ℕ\n_hpn : ¬n ∈ p.support\n_he : e ≠ 0\nih : M (↑(monomial p) a)\n⊢ M (↑(monomial (Finsupp.single n e + p)) a)", "tactic": "have : ∀ e : ℕ, M (monomial p a * X n ^ e) := by\n intro e\n induction e with\n | zero => simp [ih]\n | succ e e_ih => simp [ih, pow_succ', (mul_assoc _ _ _).symm, h_X, e_ih]" }, { "state_after": "no goals", "state_before": "case ha\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne✝ : ℕ\nn✝ m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np✝ q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\nn : σ\ne : ℕ\np : σ →₀ ℕ\n_hpn : ¬n ∈ p.support\n_he : e ≠ 0\nih : M (↑(monomial p) a)\nthis : ∀ (e : ℕ), M (↑(monomial p) a * X n ^ e)\n⊢ M (↑(monomial (Finsupp.single n e + p)) a)", "tactic": "simp [add_comm, monomial_add_single, this]" }, { "state_after": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne✝¹ : ℕ\nn✝ m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np✝ q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\nn : σ\ne✝ : ℕ\np : σ →₀ ℕ\n_hpn : ¬n ∈ p.support\n_he : e✝ ≠ 0\nih : M (↑(monomial p) a)\ne : ℕ\n⊢ M (↑(monomial p) a * X n ^ e)", "state_before": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne✝ : ℕ\nn✝ m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np✝ q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\nn : σ\ne : ℕ\np : σ →₀ ℕ\n_hpn : ¬n ∈ p.support\n_he : e ≠ 0\nih : M (↑(monomial p) a)\n⊢ ∀ (e : ℕ), M (↑(monomial p) a * X n ^ e)", "tactic": "intro e" }, { "state_after": "no goals", "state_before": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne✝¹ : ℕ\nn✝ m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np✝ q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\nn : σ\ne✝ : ℕ\np : σ →₀ ℕ\n_hpn : ¬n ∈ p.support\n_he : e✝ ≠ 0\nih : M (↑(monomial p) a)\ne : ℕ\n⊢ M (↑(monomial p) a * X n ^ e)", "tactic": "induction e with\n| zero => simp [ih]\n| succ e e_ih => simp [ih, pow_succ', (mul_assoc _ _ _).symm, h_X, e_ih]" }, { "state_after": "no goals", "state_before": "case zero\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne✝ : ℕ\nn✝ m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np✝ q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\nn : σ\ne : ℕ\np : σ →₀ ℕ\n_hpn : ¬n ∈ p.support\n_he : e ≠ 0\nih : M (↑(monomial p) a)\n⊢ M (↑(monomial p) a * X n ^ Nat.zero)", "tactic": "simp [ih]" }, { "state_after": "no goals", "state_before": "case succ\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na✝ a' a₁ a₂ : R\ne✝¹ : ℕ\nn✝ m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np✝ q : MvPolynomial σ R\nM : MvPolynomial σ R → Prop\nh_C : ∀ (a : R), M (↑C a)\nh_X : ∀ (p : MvPolynomial σ R) (n : σ), M p → M (p * X n)\ns : σ →₀ ℕ\na : R\nn : σ\ne✝ : ℕ\np : σ →₀ ℕ\n_hpn : ¬n ∈ p.support\n_he : e✝ ≠ 0\nih : M (↑(monomial p) a)\ne : ℕ\ne_ih : M (↑(monomial p) a * X n ^ e)\n⊢ M (↑(monomial p) a * X n ^ Nat.succ e)", "tactic": "simp [ih, pow_succ', (mul_assoc _ _ _).symm, h_X, e_ih]" } ]
[ 406, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 394, 1 ]
Mathlib/Algebra/Quaternion.lean
Quaternion.neg_im
[]
[ 919, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 919, 16 ]
Mathlib/CategoryTheory/Localization/Predicate.lean
CategoryTheory.Functor.IsLocalization.of_equivalence_target
[ { "state_after": "C : Type u_4\nD : Type u_6\ninst✝⁴ : Category C\ninst✝³ : Category D\nL : C ⥤ D\nW : MorphismProperty C\nE✝ : Type ?u.77743\ninst✝² : Category E✝\nE : Type u_1\ninst✝¹ : Category E\nL' : C ⥤ E\neq : D ≌ E\ninst✝ : IsLocalization L W\ne : L ⋙ eq.functor ≅ L'\nh : MorphismProperty.IsInvertedBy W L'\n⊢ IsLocalization L' W", "state_before": "C : Type u_4\nD : Type u_6\ninst✝⁴ : Category C\ninst✝³ : Category D\nL : C ⥤ D\nW : MorphismProperty C\nE✝ : Type ?u.77743\ninst✝² : Category E✝\nE : Type u_1\ninst✝¹ : Category E\nL' : C ⥤ E\neq : D ≌ E\ninst✝ : IsLocalization L W\ne : L ⋙ eq.functor ≅ L'\n⊢ IsLocalization L' W", "tactic": "have h : W.IsInvertedBy L' := by\n rw [← MorphismProperty.IsInvertedBy.iff_of_iso W e]\n exact MorphismProperty.IsInvertedBy.of_comp W L (Localization.inverts L W) eq.functor" }, { "state_after": "C : Type u_4\nD : Type u_6\ninst✝⁴ : Category C\ninst✝³ : Category D\nL : C ⥤ D\nW : MorphismProperty C\nE✝ : Type ?u.77743\ninst✝² : Category E✝\nE : Type u_1\ninst✝¹ : Category E\nL' : C ⥤ E\neq : D ≌ E\ninst✝ : IsLocalization L W\ne : L ⋙ eq.functor ≅ L'\nh : MorphismProperty.IsInvertedBy W L'\nF₁ : MorphismProperty.Localization W ⥤ D := Construction.lift L (_ : MorphismProperty.IsInvertedBy W L)\n⊢ IsLocalization L' W", "state_before": "C : Type u_4\nD : Type u_6\ninst✝⁴ : Category C\ninst✝³ : Category D\nL : C ⥤ D\nW : MorphismProperty C\nE✝ : Type ?u.77743\ninst✝² : Category E✝\nE : Type u_1\ninst✝¹ : Category E\nL' : C ⥤ E\neq : D ≌ E\ninst✝ : IsLocalization L W\ne : L ⋙ eq.functor ≅ L'\nh : MorphismProperty.IsInvertedBy W L'\n⊢ IsLocalization L' W", "tactic": "let F₁ := Localization.Construction.lift L (Localization.inverts L W)" }, { "state_after": "C : Type u_4\nD : Type u_6\ninst✝⁴ : Category C\ninst✝³ : Category D\nL : C ⥤ D\nW : MorphismProperty C\nE✝ : Type ?u.77743\ninst✝² : Category E✝\nE : Type u_1\ninst✝¹ : Category E\nL' : C ⥤ E\neq : D ≌ E\ninst✝ : IsLocalization L W\ne : L ⋙ eq.functor ≅ L'\nh : MorphismProperty.IsInvertedBy W L'\nF₁ : MorphismProperty.Localization W ⥤ D := Construction.lift L (_ : MorphismProperty.IsInvertedBy W L)\nF₂ : MorphismProperty.Localization W ⥤ E := Construction.lift L' h\n⊢ IsLocalization L' W", "state_before": "C : Type u_4\nD : Type u_6\ninst✝⁴ : Category C\ninst✝³ : Category D\nL : C ⥤ D\nW : MorphismProperty C\nE✝ : Type ?u.77743\ninst✝² : Category E✝\nE : Type u_1\ninst✝¹ : Category E\nL' : C ⥤ E\neq : D ≌ E\ninst✝ : IsLocalization L W\ne : L ⋙ eq.functor ≅ L'\nh : MorphismProperty.IsInvertedBy W L'\nF₁ : MorphismProperty.Localization W ⥤ D := Construction.lift L (_ : MorphismProperty.IsInvertedBy W L)\n⊢ IsLocalization L' W", "tactic": "let F₂ := Localization.Construction.lift L' h" }, { "state_after": "C : Type u_4\nD : Type u_6\ninst✝⁴ : Category C\ninst✝³ : Category D\nL : C ⥤ D\nW : MorphismProperty C\nE✝ : Type ?u.77743\ninst✝² : Category E✝\nE : Type u_1\ninst✝¹ : Category E\nL' : C ⥤ E\neq : D ≌ E\ninst✝ : IsLocalization L W\ne : L ⋙ eq.functor ≅ L'\nh : MorphismProperty.IsInvertedBy W L'\nF₁ : MorphismProperty.Localization W ⥤ D := Construction.lift L (_ : MorphismProperty.IsInvertedBy W L)\nF₂ : MorphismProperty.Localization W ⥤ E := Construction.lift L' h\ne' : F₁ ⋙ eq.functor ≅ F₂ := liftNatIso (MorphismProperty.Q W) W (L ⋙ eq.functor) L' (F₁ ⋙ eq.functor) F₂ e\n⊢ IsLocalization L' W", "state_before": "C : Type u_4\nD : Type u_6\ninst✝⁴ : Category C\ninst✝³ : Category D\nL : C ⥤ D\nW : MorphismProperty C\nE✝ : Type ?u.77743\ninst✝² : Category E✝\nE : Type u_1\ninst✝¹ : Category E\nL' : C ⥤ E\neq : D ≌ E\ninst✝ : IsLocalization L W\ne : L ⋙ eq.functor ≅ L'\nh : MorphismProperty.IsInvertedBy W L'\nF₁ : MorphismProperty.Localization W ⥤ D := Construction.lift L (_ : MorphismProperty.IsInvertedBy W L)\nF₂ : MorphismProperty.Localization W ⥤ E := Construction.lift L' h\n⊢ IsLocalization L' W", "tactic": "let e' : F₁ ⋙ eq.functor ≅ F₂ := liftNatIso W.Q W (L ⋙ eq.functor) L' _ _ e" }, { "state_after": "no goals", "state_before": "C : Type u_4\nD : Type u_6\ninst✝⁴ : Category C\ninst✝³ : Category D\nL : C ⥤ D\nW : MorphismProperty C\nE✝ : Type ?u.77743\ninst✝² : Category E✝\nE : Type u_1\ninst✝¹ : Category E\nL' : C ⥤ E\neq : D ≌ E\ninst✝ : IsLocalization L W\ne : L ⋙ eq.functor ≅ L'\nh : MorphismProperty.IsInvertedBy W L'\nF₁ : MorphismProperty.Localization W ⥤ D := Construction.lift L (_ : MorphismProperty.IsInvertedBy W L)\nF₂ : MorphismProperty.Localization W ⥤ E := Construction.lift L' h\ne' : F₁ ⋙ eq.functor ≅ F₂ := liftNatIso (MorphismProperty.Q W) W (L ⋙ eq.functor) L' (F₁ ⋙ eq.functor) F₂ e\n⊢ IsLocalization L' W", "tactic": "exact\n { inverts := h\n nonempty_isEquivalence := Nonempty.intro (IsEquivalence.ofIso e' inferInstance) }" }, { "state_after": "C : Type u_4\nD : Type u_6\ninst✝⁴ : Category C\ninst✝³ : Category D\nL : C ⥤ D\nW : MorphismProperty C\nE✝ : Type ?u.77743\ninst✝² : Category E✝\nE : Type u_1\ninst✝¹ : Category E\nL' : C ⥤ E\neq : D ≌ E\ninst✝ : IsLocalization L W\ne : L ⋙ eq.functor ≅ L'\n⊢ MorphismProperty.IsInvertedBy W (L ⋙ eq.functor)", "state_before": "C : Type u_4\nD : Type u_6\ninst✝⁴ : Category C\ninst✝³ : Category D\nL : C ⥤ D\nW : MorphismProperty C\nE✝ : Type ?u.77743\ninst✝² : Category E✝\nE : Type u_1\ninst✝¹ : Category E\nL' : C ⥤ E\neq : D ≌ E\ninst✝ : IsLocalization L W\ne : L ⋙ eq.functor ≅ L'\n⊢ MorphismProperty.IsInvertedBy W L'", "tactic": "rw [← MorphismProperty.IsInvertedBy.iff_of_iso W e]" }, { "state_after": "no goals", "state_before": "C : Type u_4\nD : Type u_6\ninst✝⁴ : Category C\ninst✝³ : Category D\nL : C ⥤ D\nW : MorphismProperty C\nE✝ : Type ?u.77743\ninst✝² : Category E✝\nE : Type u_1\ninst✝¹ : Category E\nL' : C ⥤ E\neq : D ≌ E\ninst✝ : IsLocalization L W\ne : L ⋙ eq.functor ≅ L'\n⊢ MorphismProperty.IsInvertedBy W (L ⋙ eq.functor)", "tactic": "exact MorphismProperty.IsInvertedBy.of_comp W L (Localization.inverts L W) eq.functor" } ]
[ 435, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 425, 1 ]
Mathlib/Topology/Separation.lean
exists_compact_superset_iff
[]
[ 1309, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1306, 1 ]
Mathlib/Data/Setoid/Basic.lean
Quotient.subsingleton_iff
[ { "state_after": "α : Type u_1\nβ : Type ?u.22286\ns : Setoid α\n⊢ (∀ (x y : Quotient s), x = y) ↔ ∀ {x y : α}, ⊤ → Setoid.Rel s x y", "state_before": "α : Type u_1\nβ : Type ?u.22286\ns : Setoid α\n⊢ Subsingleton (Quotient s) ↔ s = ⊤", "tactic": "simp only [_root_.subsingleton_iff, eq_top_iff, Setoid.le_def, Setoid.top_def, Pi.top_apply,\n forall_const]" }, { "state_after": "α : Type u_1\nβ : Type ?u.22286\ns : Setoid α\na : α\n⊢ (∀ (y : Quotient s), Quotient.mk s a = y) ↔ ∀ {y : α}, ⊤ → Setoid.Rel s a y", "state_before": "α : Type u_1\nβ : Type ?u.22286\ns : Setoid α\n⊢ (∀ (x y : Quotient s), x = y) ↔ ∀ {x y : α}, ⊤ → Setoid.Rel s x y", "tactic": "refine' (surjective_quotient_mk _).forall.trans (forall_congr' fun a => _)" }, { "state_after": "α : Type u_1\nβ : Type ?u.22286\ns : Setoid α\na b : α\n⊢ Quotient.mk s a = Quotient.mk s b ↔ ⊤ → Setoid.Rel s a b", "state_before": "α : Type u_1\nβ : Type ?u.22286\ns : Setoid α\na : α\n⊢ (∀ (y : Quotient s), Quotient.mk s a = y) ↔ ∀ {y : α}, ⊤ → Setoid.Rel s a y", "tactic": "refine' (surjective_quotient_mk _).forall.trans (forall_congr' fun b => _)" }, { "state_after": "α : Type u_1\nβ : Type ?u.22286\ns : Setoid α\na b : α\n⊢ Setoid.r a b ↔ Setoid.Rel s a b", "state_before": "α : Type u_1\nβ : Type ?u.22286\ns : Setoid α\na b : α\n⊢ Quotient.mk s a = Quotient.mk s b ↔ ⊤ → Setoid.Rel s a b", "tactic": "simp_rw [←Quotient.mk''_eq_mk, Prop.top_eq_true, true_implies, Quotient.eq'']" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.22286\ns : Setoid α\na b : α\n⊢ Setoid.r a b ↔ Setoid.Rel s a b", "tactic": "rfl" } ]
[ 468, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 462, 1 ]
Mathlib/RingTheory/WittVector/IsPoly.lean
WittVector.IsPoly.comp
[ { "state_after": "case mk'.intro\np : ℕ\nR S : Type u\nσ : Type ?u.528965\nidx : Type ?u.528968\ninst✝¹ : CommRing R\ninst✝ : CommRing S\ng f : ⦃R : Type u_1⦄ → [inst : CommRing R] → 𝕎 R → 𝕎 R\nhg : IsPoly p g\nφ : ℕ → MvPolynomial ℕ ℤ\nhf : ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R), (f x).coeff = fun n => ↑(aeval x.coeff) (φ n)\n⊢ IsPoly p fun R _Rcr => g ∘ f", "state_before": "p : ℕ\nR S : Type u\nσ : Type ?u.528965\nidx : Type ?u.528968\ninst✝¹ : CommRing R\ninst✝ : CommRing S\ng f : ⦃R : Type u_1⦄ → [inst : CommRing R] → 𝕎 R → 𝕎 R\nhg : IsPoly p g\nhf : IsPoly p f\n⊢ IsPoly p fun R _Rcr => g ∘ f", "tactic": "obtain ⟨φ, hf⟩ := hf" }, { "state_after": "case mk'.intro.mk'.intro\np : ℕ\nR S : Type u\nσ : Type ?u.528965\nidx : Type ?u.528968\ninst✝¹ : CommRing R\ninst✝ : CommRing S\ng f : ⦃R : Type u_1⦄ → [inst : CommRing R] → 𝕎 R → 𝕎 R\nφ : ℕ → MvPolynomial ℕ ℤ\nhf : ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R), (f x).coeff = fun n => ↑(aeval x.coeff) (φ n)\nψ : ℕ → MvPolynomial ℕ ℤ\nhg : ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R), (g x).coeff = fun n => ↑(aeval x.coeff) (ψ n)\n⊢ IsPoly p fun R _Rcr => g ∘ f", "state_before": "case mk'.intro\np : ℕ\nR S : Type u\nσ : Type ?u.528965\nidx : Type ?u.528968\ninst✝¹ : CommRing R\ninst✝ : CommRing S\ng f : ⦃R : Type u_1⦄ → [inst : CommRing R] → 𝕎 R → 𝕎 R\nhg : IsPoly p g\nφ : ℕ → MvPolynomial ℕ ℤ\nhf : ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R), (f x).coeff = fun n => ↑(aeval x.coeff) (φ n)\n⊢ IsPoly p fun R _Rcr => g ∘ f", "tactic": "obtain ⟨ψ, hg⟩ := hg" }, { "state_after": "case mk'.intro.mk'.intro\np : ℕ\nR S : Type u\nσ : Type ?u.528965\nidx : Type ?u.528968\ninst✝¹ : CommRing R\ninst✝ : CommRing S\ng f : ⦃R : Type u_1⦄ → [inst : CommRing R] → 𝕎 R → 𝕎 R\nφ : ℕ → MvPolynomial ℕ ℤ\nhf : ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R), (f x).coeff = fun n => ↑(aeval x.coeff) (φ n)\nψ : ℕ → MvPolynomial ℕ ℤ\nhg : ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R), (g x).coeff = fun n => ↑(aeval x.coeff) (ψ n)\n⊢ ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R),\n ((g ∘ f) x).coeff = fun n => ↑(aeval x.coeff) ((fun n => ↑(bind₁ φ) (ψ n)) n)", "state_before": "case mk'.intro.mk'.intro\np : ℕ\nR S : Type u\nσ : Type ?u.528965\nidx : Type ?u.528968\ninst✝¹ : CommRing R\ninst✝ : CommRing S\ng f : ⦃R : Type u_1⦄ → [inst : CommRing R] → 𝕎 R → 𝕎 R\nφ : ℕ → MvPolynomial ℕ ℤ\nhf : ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R), (f x).coeff = fun n => ↑(aeval x.coeff) (φ n)\nψ : ℕ → MvPolynomial ℕ ℤ\nhg : ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R), (g x).coeff = fun n => ↑(aeval x.coeff) (ψ n)\n⊢ IsPoly p fun R _Rcr => g ∘ f", "tactic": "use fun n => bind₁ φ (ψ n)" }, { "state_after": "case mk'.intro.mk'.intro\np : ℕ\nR S : Type u\nσ : Type ?u.528965\nidx : Type ?u.528968\ninst✝² : CommRing R\ninst✝¹ : CommRing S\ng f : ⦃R : Type u_1⦄ → [inst : CommRing R] → 𝕎 R → 𝕎 R\nφ : ℕ → MvPolynomial ℕ ℤ\nhf : ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R), (f x).coeff = fun n => ↑(aeval x.coeff) (φ n)\nψ : ℕ → MvPolynomial ℕ ℤ\nhg : ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R), (g x).coeff = fun n => ↑(aeval x.coeff) (ψ n)\nR✝ : Type u_1\ninst✝ : CommRing R✝\nx✝ : 𝕎 R✝\n⊢ ((g ∘ f) x✝).coeff = fun n => ↑(aeval x✝.coeff) ((fun n => ↑(bind₁ φ) (ψ n)) n)", "state_before": "case mk'.intro.mk'.intro\np : ℕ\nR S : Type u\nσ : Type ?u.528965\nidx : Type ?u.528968\ninst✝¹ : CommRing R\ninst✝ : CommRing S\ng f : ⦃R : Type u_1⦄ → [inst : CommRing R] → 𝕎 R → 𝕎 R\nφ : ℕ → MvPolynomial ℕ ℤ\nhf : ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R), (f x).coeff = fun n => ↑(aeval x.coeff) (φ n)\nψ : ℕ → MvPolynomial ℕ ℤ\nhg : ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R), (g x).coeff = fun n => ↑(aeval x.coeff) (ψ n)\n⊢ ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R),\n ((g ∘ f) x).coeff = fun n => ↑(aeval x.coeff) ((fun n => ↑(bind₁ φ) (ψ n)) n)", "tactic": "intros" }, { "state_after": "no goals", "state_before": "case mk'.intro.mk'.intro\np : ℕ\nR S : Type u\nσ : Type ?u.528965\nidx : Type ?u.528968\ninst✝² : CommRing R\ninst✝¹ : CommRing S\ng f : ⦃R : Type u_1⦄ → [inst : CommRing R] → 𝕎 R → 𝕎 R\nφ : ℕ → MvPolynomial ℕ ℤ\nhf : ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R), (f x).coeff = fun n => ↑(aeval x.coeff) (φ n)\nψ : ℕ → MvPolynomial ℕ ℤ\nhg : ∀ ⦃R : Type u_1⦄ [inst : CommRing R] (x : 𝕎 R), (g x).coeff = fun n => ↑(aeval x.coeff) (ψ n)\nR✝ : Type u_1\ninst✝ : CommRing R✝\nx✝ : 𝕎 R✝\n⊢ ((g ∘ f) x✝).coeff = fun n => ↑(aeval x✝.coeff) ((fun n => ↑(bind₁ φ) (ψ n)) n)", "tactic": "simp only [aeval_bind₁, Function.comp, hg, hf]" } ]
[ 279, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 273, 1 ]
Mathlib/Order/Hom/Basic.lean
WithBot.toDualTopEquiv_symm_bot
[]
[ 1264, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1263, 1 ]
Mathlib/Algebra/Order/Monoid/Defs.lean
Mul.to_covariantClass_right
[]
[ 83, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 80, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.mem_ae_of_mem_ae_map
[]
[ 2704, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2702, 1 ]
Mathlib/Order/UpperLower/Basic.lean
IsLowerSet.top_mem
[]
[ 290, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 289, 1 ]
Std/Data/List/Lemmas.lean
List.suffix_or_suffix_of_suffix
[]
[ 1678, 21 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1676, 1 ]